pseries: savevm support with KVM
[qemu/ar7.git] / hw / ppc / spapr.c
blob714482929418cd36b975acaacdfdf17f36ba72aa
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "sysemu/sysemu.h"
28 #include "hw/hw.h"
29 #include "elf.h"
30 #include "net/net.h"
31 #include "sysemu/blockdev.h"
32 #include "sysemu/cpus.h"
33 #include "sysemu/kvm.h"
34 #include "kvm_ppc.h"
35 #include "mmu-hash64.h"
37 #include "hw/boards.h"
38 #include "hw/ppc/ppc.h"
39 #include "hw/loader.h"
41 #include "hw/ppc/spapr.h"
42 #include "hw/ppc/spapr_vio.h"
43 #include "hw/pci-host/spapr.h"
44 #include "hw/ppc/xics.h"
45 #include "hw/pci/msi.h"
47 #include "hw/pci/pci.h"
49 #include "exec/address-spaces.h"
50 #include "hw/usb.h"
51 #include "qemu/config-file.h"
53 #include <libfdt.h>
55 /* SLOF memory layout:
57 * SLOF raw image loaded at 0, copies its romfs right below the flat
58 * device-tree, then position SLOF itself 31M below that
60 * So we set FW_OVERHEAD to 40MB which should account for all of that
61 * and more
63 * We load our kernel at 4M, leaving space for SLOF initial image
65 #define FDT_MAX_SIZE 0x10000
66 #define RTAS_MAX_SIZE 0x10000
67 #define FW_MAX_SIZE 0x400000
68 #define FW_FILE_NAME "slof.bin"
69 #define FW_OVERHEAD 0x2800000
70 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
72 #define MIN_RMA_SLOF 128UL
74 #define TIMEBASE_FREQ 512000000ULL
76 #define MAX_CPUS 256
77 #define XICS_IRQS 1024
79 #define PHANDLE_XICP 0x00001111
81 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
83 sPAPREnvironment *spapr;
85 int spapr_allocate_irq(int hint, bool lsi)
87 int irq;
89 if (hint) {
90 irq = hint;
91 /* FIXME: we should probably check for collisions somehow */
92 } else {
93 irq = spapr->next_irq++;
96 /* Configure irq type */
97 if (!xics_get_qirq(spapr->icp, irq)) {
98 return 0;
101 xics_set_irq_type(spapr->icp, irq, lsi);
103 return irq;
106 /* Allocate block of consequtive IRQs, returns a number of the first */
107 int spapr_allocate_irq_block(int num, bool lsi)
109 int first = -1;
110 int i;
112 for (i = 0; i < num; ++i) {
113 int irq;
115 irq = spapr_allocate_irq(0, lsi);
116 if (!irq) {
117 return -1;
120 if (0 == i) {
121 first = irq;
124 /* If the above doesn't create a consecutive block then that's
125 * an internal bug */
126 assert(irq == (first + i));
129 return first;
132 static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr)
134 int ret = 0, offset;
135 CPUState *cpu;
136 char cpu_model[32];
137 int smt = kvmppc_smt_threads();
138 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
140 assert(spapr->cpu_model);
142 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
143 uint32_t associativity[] = {cpu_to_be32(0x5),
144 cpu_to_be32(0x0),
145 cpu_to_be32(0x0),
146 cpu_to_be32(0x0),
147 cpu_to_be32(cpu->numa_node),
148 cpu_to_be32(cpu->cpu_index)};
150 if ((cpu->cpu_index % smt) != 0) {
151 continue;
154 snprintf(cpu_model, 32, "/cpus/%s@%x", spapr->cpu_model,
155 cpu->cpu_index);
157 offset = fdt_path_offset(fdt, cpu_model);
158 if (offset < 0) {
159 return offset;
162 if (nb_numa_nodes > 1) {
163 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
164 sizeof(associativity));
165 if (ret < 0) {
166 return ret;
170 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
171 pft_size_prop, sizeof(pft_size_prop));
172 if (ret < 0) {
173 return ret;
176 return ret;
180 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
181 size_t maxsize)
183 size_t maxcells = maxsize / sizeof(uint32_t);
184 int i, j, count;
185 uint32_t *p = prop;
187 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
188 struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
190 if (!sps->page_shift) {
191 break;
193 for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
194 if (sps->enc[count].page_shift == 0) {
195 break;
198 if ((p - prop) >= (maxcells - 3 - count * 2)) {
199 break;
201 *(p++) = cpu_to_be32(sps->page_shift);
202 *(p++) = cpu_to_be32(sps->slb_enc);
203 *(p++) = cpu_to_be32(count);
204 for (j = 0; j < count; j++) {
205 *(p++) = cpu_to_be32(sps->enc[j].page_shift);
206 *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
210 return (p - prop) * sizeof(uint32_t);
213 #define _FDT(exp) \
214 do { \
215 int ret = (exp); \
216 if (ret < 0) { \
217 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
218 #exp, fdt_strerror(ret)); \
219 exit(1); \
221 } while (0)
224 static void *spapr_create_fdt_skel(const char *cpu_model,
225 hwaddr initrd_base,
226 hwaddr initrd_size,
227 hwaddr kernel_size,
228 const char *boot_device,
229 const char *kernel_cmdline,
230 uint32_t epow_irq)
232 void *fdt;
233 CPUState *cs;
234 uint32_t start_prop = cpu_to_be32(initrd_base);
235 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
236 char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
237 "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk";
238 char qemu_hypertas_prop[] = "hcall-memop1";
239 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
240 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
241 char *modelname;
242 int i, smt = kvmppc_smt_threads();
243 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
245 fdt = g_malloc0(FDT_MAX_SIZE);
246 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
248 if (kernel_size) {
249 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
251 if (initrd_size) {
252 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
254 _FDT((fdt_finish_reservemap(fdt)));
256 /* Root node */
257 _FDT((fdt_begin_node(fdt, "")));
258 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
259 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
260 _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
262 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
263 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
265 /* /chosen */
266 _FDT((fdt_begin_node(fdt, "chosen")));
268 /* Set Form1_affinity */
269 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
271 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
272 _FDT((fdt_property(fdt, "linux,initrd-start",
273 &start_prop, sizeof(start_prop))));
274 _FDT((fdt_property(fdt, "linux,initrd-end",
275 &end_prop, sizeof(end_prop))));
276 if (kernel_size) {
277 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
278 cpu_to_be64(kernel_size) };
280 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
282 if (boot_device) {
283 _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
285 _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
286 _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
287 _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
289 _FDT((fdt_end_node(fdt)));
291 /* cpus */
292 _FDT((fdt_begin_node(fdt, "cpus")));
294 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
295 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
297 modelname = g_strdup(cpu_model);
299 for (i = 0; i < strlen(modelname); i++) {
300 modelname[i] = toupper(modelname[i]);
303 /* This is needed during FDT finalization */
304 spapr->cpu_model = g_strdup(modelname);
306 for (cs = first_cpu; cs != NULL; cs = cs->next_cpu) {
307 PowerPCCPU *cpu = POWERPC_CPU(cs);
308 CPUPPCState *env = &cpu->env;
309 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
310 int index = cs->cpu_index;
311 uint32_t servers_prop[smp_threads];
312 uint32_t gservers_prop[smp_threads * 2];
313 char *nodename;
314 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
315 0xffffffff, 0xffffffff};
316 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
317 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
318 uint32_t page_sizes_prop[64];
319 size_t page_sizes_prop_size;
321 if ((index % smt) != 0) {
322 continue;
325 nodename = g_strdup_printf("%s@%x", modelname, index);
327 _FDT((fdt_begin_node(fdt, nodename)));
329 g_free(nodename);
331 _FDT((fdt_property_cell(fdt, "reg", index)));
332 _FDT((fdt_property_string(fdt, "device_type", "cpu")));
334 _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
335 _FDT((fdt_property_cell(fdt, "d-cache-block-size",
336 env->dcache_line_size)));
337 _FDT((fdt_property_cell(fdt, "d-cache-line-size",
338 env->dcache_line_size)));
339 _FDT((fdt_property_cell(fdt, "i-cache-block-size",
340 env->icache_line_size)));
341 _FDT((fdt_property_cell(fdt, "i-cache-line-size",
342 env->icache_line_size)));
344 if (pcc->l1_dcache_size) {
345 _FDT((fdt_property_cell(fdt, "d-cache-size", pcc->l1_dcache_size)));
346 } else {
347 fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
349 if (pcc->l1_icache_size) {
350 _FDT((fdt_property_cell(fdt, "i-cache-size", pcc->l1_icache_size)));
351 } else {
352 fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
355 _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
356 _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
357 _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
358 _FDT((fdt_property_string(fdt, "status", "okay")));
359 _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
361 /* Build interrupt servers and gservers properties */
362 for (i = 0; i < smp_threads; i++) {
363 servers_prop[i] = cpu_to_be32(index + i);
364 /* Hack, direct the group queues back to cpu 0 */
365 gservers_prop[i*2] = cpu_to_be32(index + i);
366 gservers_prop[i*2 + 1] = 0;
368 _FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s",
369 servers_prop, sizeof(servers_prop))));
370 _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s",
371 gservers_prop, sizeof(gservers_prop))));
373 if (env->mmu_model & POWERPC_MMU_1TSEG) {
374 _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
375 segs, sizeof(segs))));
378 /* Advertise VMX/VSX (vector extensions) if available
379 * 0 / no property == no vector extensions
380 * 1 == VMX / Altivec available
381 * 2 == VSX available */
382 if (env->insns_flags & PPC_ALTIVEC) {
383 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
385 _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
388 /* Advertise DFP (Decimal Floating Point) if available
389 * 0 / no property == no DFP
390 * 1 == DFP available */
391 if (env->insns_flags2 & PPC2_DFP) {
392 _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
395 page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
396 sizeof(page_sizes_prop));
397 if (page_sizes_prop_size) {
398 _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
399 page_sizes_prop, page_sizes_prop_size)));
402 _FDT((fdt_end_node(fdt)));
405 g_free(modelname);
407 _FDT((fdt_end_node(fdt)));
409 /* RTAS */
410 _FDT((fdt_begin_node(fdt, "rtas")));
412 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
413 sizeof(hypertas_prop))));
414 _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas_prop,
415 sizeof(qemu_hypertas_prop))));
417 _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
418 refpoints, sizeof(refpoints))));
420 _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
422 _FDT((fdt_end_node(fdt)));
424 /* interrupt controller */
425 _FDT((fdt_begin_node(fdt, "interrupt-controller")));
427 _FDT((fdt_property_string(fdt, "device_type",
428 "PowerPC-External-Interrupt-Presentation")));
429 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
430 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
431 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
432 interrupt_server_ranges_prop,
433 sizeof(interrupt_server_ranges_prop))));
434 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
435 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
436 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
438 _FDT((fdt_end_node(fdt)));
440 /* vdevice */
441 _FDT((fdt_begin_node(fdt, "vdevice")));
443 _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
444 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
445 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
446 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
447 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
448 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
450 _FDT((fdt_end_node(fdt)));
452 /* event-sources */
453 spapr_events_fdt_skel(fdt, epow_irq);
455 _FDT((fdt_end_node(fdt))); /* close root node */
456 _FDT((fdt_finish(fdt)));
458 return fdt;
461 static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt)
463 uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
464 cpu_to_be32(0x0), cpu_to_be32(0x0),
465 cpu_to_be32(0x0)};
466 char mem_name[32];
467 hwaddr node0_size, mem_start;
468 uint64_t mem_reg_property[2];
469 int i, off;
471 /* memory node(s) */
472 node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
473 if (spapr->rma_size > node0_size) {
474 spapr->rma_size = node0_size;
477 /* RMA */
478 mem_reg_property[0] = 0;
479 mem_reg_property[1] = cpu_to_be64(spapr->rma_size);
480 off = fdt_add_subnode(fdt, 0, "memory@0");
481 _FDT(off);
482 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
483 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
484 sizeof(mem_reg_property))));
485 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
486 sizeof(associativity))));
488 /* RAM: Node 0 */
489 if (node0_size > spapr->rma_size) {
490 mem_reg_property[0] = cpu_to_be64(spapr->rma_size);
491 mem_reg_property[1] = cpu_to_be64(node0_size - spapr->rma_size);
493 sprintf(mem_name, "memory@" TARGET_FMT_lx, spapr->rma_size);
494 off = fdt_add_subnode(fdt, 0, mem_name);
495 _FDT(off);
496 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
497 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
498 sizeof(mem_reg_property))));
499 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
500 sizeof(associativity))));
503 /* RAM: Node 1 and beyond */
504 mem_start = node0_size;
505 for (i = 1; i < nb_numa_nodes; i++) {
506 mem_reg_property[0] = cpu_to_be64(mem_start);
507 mem_reg_property[1] = cpu_to_be64(node_mem[i]);
508 associativity[3] = associativity[4] = cpu_to_be32(i);
509 sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start);
510 off = fdt_add_subnode(fdt, 0, mem_name);
511 _FDT(off);
512 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
513 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
514 sizeof(mem_reg_property))));
515 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
516 sizeof(associativity))));
517 mem_start += node_mem[i];
520 return 0;
523 static void spapr_finalize_fdt(sPAPREnvironment *spapr,
524 hwaddr fdt_addr,
525 hwaddr rtas_addr,
526 hwaddr rtas_size)
528 int ret;
529 void *fdt;
530 sPAPRPHBState *phb;
532 fdt = g_malloc(FDT_MAX_SIZE);
534 /* open out the base tree into a temp buffer for the final tweaks */
535 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
537 ret = spapr_populate_memory(spapr, fdt);
538 if (ret < 0) {
539 fprintf(stderr, "couldn't setup memory nodes in fdt\n");
540 exit(1);
543 ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
544 if (ret < 0) {
545 fprintf(stderr, "couldn't setup vio devices in fdt\n");
546 exit(1);
549 QLIST_FOREACH(phb, &spapr->phbs, list) {
550 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
553 if (ret < 0) {
554 fprintf(stderr, "couldn't setup PCI devices in fdt\n");
555 exit(1);
558 /* RTAS */
559 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
560 if (ret < 0) {
561 fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
564 /* Advertise NUMA via ibm,associativity */
565 ret = spapr_fixup_cpu_dt(fdt, spapr);
566 if (ret < 0) {
567 fprintf(stderr, "Couldn't finalize CPU device tree properties\n");
570 if (!spapr->has_graphics) {
571 spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
574 _FDT((fdt_pack(fdt)));
576 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
577 hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
578 fdt_totalsize(fdt), FDT_MAX_SIZE);
579 exit(1);
582 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
584 g_free(fdt);
587 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
589 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
592 static void emulate_spapr_hypercall(PowerPCCPU *cpu)
594 CPUPPCState *env = &cpu->env;
596 if (msr_pr) {
597 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
598 env->gpr[3] = H_PRIVILEGE;
599 } else {
600 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
604 static void spapr_reset_htab(sPAPREnvironment *spapr)
606 long shift;
608 /* allocate hash page table. For now we always make this 16mb,
609 * later we should probably make it scale to the size of guest
610 * RAM */
612 shift = kvmppc_reset_htab(spapr->htab_shift);
614 if (shift > 0) {
615 /* Kernel handles htab, we don't need to allocate one */
616 spapr->htab_shift = shift;
617 } else {
618 if (!spapr->htab) {
619 /* Allocate an htab if we don't yet have one */
620 spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
623 /* And clear it */
624 memset(spapr->htab, 0, HTAB_SIZE(spapr));
627 /* Update the RMA size if necessary */
628 if (spapr->vrma_adjust) {
629 spapr->rma_size = kvmppc_rma_size(ram_size, spapr->htab_shift);
633 static void ppc_spapr_reset(void)
635 PowerPCCPU *first_ppc_cpu;
637 /* Reset the hash table & recalc the RMA */
638 spapr_reset_htab(spapr);
640 qemu_devices_reset();
642 /* Load the fdt */
643 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
644 spapr->rtas_size);
646 /* Set up the entry state */
647 first_ppc_cpu = POWERPC_CPU(first_cpu);
648 first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
649 first_ppc_cpu->env.gpr[5] = 0;
650 first_cpu->halted = 0;
651 first_ppc_cpu->env.nip = spapr->entry_point;
655 static void spapr_cpu_reset(void *opaque)
657 PowerPCCPU *cpu = opaque;
658 CPUState *cs = CPU(cpu);
659 CPUPPCState *env = &cpu->env;
661 cpu_reset(cs);
663 /* All CPUs start halted. CPU0 is unhalted from the machine level
664 * reset code and the rest are explicitly started up by the guest
665 * using an RTAS call */
666 cs->halted = 1;
668 env->spr[SPR_HIOR] = 0;
670 env->external_htab = (uint8_t *)spapr->htab;
671 env->htab_base = -1;
672 env->htab_mask = HTAB_SIZE(spapr) - 1;
673 env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
674 (spapr->htab_shift - 18);
677 static void spapr_create_nvram(sPAPREnvironment *spapr)
679 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
680 const char *drivename = qemu_opt_get(qemu_get_machine_opts(), "nvram");
682 if (drivename) {
683 BlockDriverState *bs;
685 bs = bdrv_find(drivename);
686 if (!bs) {
687 fprintf(stderr, "No such block device \"%s\" for nvram\n",
688 drivename);
689 exit(1);
691 qdev_prop_set_drive_nofail(dev, "drive", bs);
694 qdev_init_nofail(dev);
696 spapr->nvram = (struct sPAPRNVRAM *)dev;
699 /* Returns whether we want to use VGA or not */
700 static int spapr_vga_init(PCIBus *pci_bus)
702 switch (vga_interface_type) {
703 case VGA_NONE:
704 case VGA_STD:
705 return pci_vga_init(pci_bus) != NULL;
706 default:
707 fprintf(stderr, "This vga model is not supported,"
708 "currently it only supports -vga std\n");
709 exit(0);
710 break;
714 static const VMStateDescription vmstate_spapr = {
715 .name = "spapr",
716 .version_id = 1,
717 .minimum_version_id = 1,
718 .minimum_version_id_old = 1,
719 .fields = (VMStateField []) {
720 VMSTATE_UINT32(next_irq, sPAPREnvironment),
722 /* RTC offset */
723 VMSTATE_UINT64(rtc_offset, sPAPREnvironment),
725 VMSTATE_END_OF_LIST()
729 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
730 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
731 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
732 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
734 static int htab_save_setup(QEMUFile *f, void *opaque)
736 sPAPREnvironment *spapr = opaque;
738 /* "Iteration" header */
739 qemu_put_be32(f, spapr->htab_shift);
741 if (spapr->htab) {
742 spapr->htab_save_index = 0;
743 spapr->htab_first_pass = true;
744 } else {
745 assert(kvm_enabled());
747 spapr->htab_fd = kvmppc_get_htab_fd(false);
748 if (spapr->htab_fd < 0) {
749 fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
750 strerror(errno));
751 return -1;
756 return 0;
759 static void htab_save_first_pass(QEMUFile *f, sPAPREnvironment *spapr,
760 int64_t max_ns)
762 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
763 int index = spapr->htab_save_index;
764 int64_t starttime = qemu_get_clock_ns(rt_clock);
766 assert(spapr->htab_first_pass);
768 do {
769 int chunkstart;
771 /* Consume invalid HPTEs */
772 while ((index < htabslots)
773 && !HPTE_VALID(HPTE(spapr->htab, index))) {
774 index++;
775 CLEAN_HPTE(HPTE(spapr->htab, index));
778 /* Consume valid HPTEs */
779 chunkstart = index;
780 while ((index < htabslots)
781 && HPTE_VALID(HPTE(spapr->htab, index))) {
782 index++;
783 CLEAN_HPTE(HPTE(spapr->htab, index));
786 if (index > chunkstart) {
787 int n_valid = index - chunkstart;
789 qemu_put_be32(f, chunkstart);
790 qemu_put_be16(f, n_valid);
791 qemu_put_be16(f, 0);
792 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
793 HASH_PTE_SIZE_64 * n_valid);
795 if ((qemu_get_clock_ns(rt_clock) - starttime) > max_ns) {
796 break;
799 } while ((index < htabslots) && !qemu_file_rate_limit(f));
801 if (index >= htabslots) {
802 assert(index == htabslots);
803 index = 0;
804 spapr->htab_first_pass = false;
806 spapr->htab_save_index = index;
809 static int htab_save_later_pass(QEMUFile *f, sPAPREnvironment *spapr,
810 int64_t max_ns)
812 bool final = max_ns < 0;
813 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
814 int examined = 0, sent = 0;
815 int index = spapr->htab_save_index;
816 int64_t starttime = qemu_get_clock_ns(rt_clock);
818 assert(!spapr->htab_first_pass);
820 do {
821 int chunkstart, invalidstart;
823 /* Consume non-dirty HPTEs */
824 while ((index < htabslots)
825 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
826 index++;
827 examined++;
830 chunkstart = index;
831 /* Consume valid dirty HPTEs */
832 while ((index < htabslots)
833 && HPTE_DIRTY(HPTE(spapr->htab, index))
834 && HPTE_VALID(HPTE(spapr->htab, index))) {
835 CLEAN_HPTE(HPTE(spapr->htab, index));
836 index++;
837 examined++;
840 invalidstart = index;
841 /* Consume invalid dirty HPTEs */
842 while ((index < htabslots)
843 && HPTE_DIRTY(HPTE(spapr->htab, index))
844 && !HPTE_VALID(HPTE(spapr->htab, index))) {
845 CLEAN_HPTE(HPTE(spapr->htab, index));
846 index++;
847 examined++;
850 if (index > chunkstart) {
851 int n_valid = invalidstart - chunkstart;
852 int n_invalid = index - invalidstart;
854 qemu_put_be32(f, chunkstart);
855 qemu_put_be16(f, n_valid);
856 qemu_put_be16(f, n_invalid);
857 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
858 HASH_PTE_SIZE_64 * n_valid);
859 sent += index - chunkstart;
861 if (!final && (qemu_get_clock_ns(rt_clock) - starttime) > max_ns) {
862 break;
866 if (examined >= htabslots) {
867 break;
870 if (index >= htabslots) {
871 assert(index == htabslots);
872 index = 0;
874 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
876 if (index >= htabslots) {
877 assert(index == htabslots);
878 index = 0;
881 spapr->htab_save_index = index;
883 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
886 #define MAX_ITERATION_NS 5000000 /* 5 ms */
887 #define MAX_KVM_BUF_SIZE 2048
889 static int htab_save_iterate(QEMUFile *f, void *opaque)
891 sPAPREnvironment *spapr = opaque;
892 int rc = 0;
894 /* Iteration header */
895 qemu_put_be32(f, 0);
897 if (!spapr->htab) {
898 assert(kvm_enabled());
900 rc = kvmppc_save_htab(f, spapr->htab_fd,
901 MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
902 if (rc < 0) {
903 return rc;
905 } else if (spapr->htab_first_pass) {
906 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
907 } else {
908 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
911 /* End marker */
912 qemu_put_be32(f, 0);
913 qemu_put_be16(f, 0);
914 qemu_put_be16(f, 0);
916 return rc;
919 static int htab_save_complete(QEMUFile *f, void *opaque)
921 sPAPREnvironment *spapr = opaque;
923 /* Iteration header */
924 qemu_put_be32(f, 0);
926 if (!spapr->htab) {
927 int rc;
929 assert(kvm_enabled());
931 rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
932 if (rc < 0) {
933 return rc;
935 close(spapr->htab_fd);
936 spapr->htab_fd = -1;
937 } else {
938 htab_save_later_pass(f, spapr, -1);
941 /* End marker */
942 qemu_put_be32(f, 0);
943 qemu_put_be16(f, 0);
944 qemu_put_be16(f, 0);
946 return 0;
949 static int htab_load(QEMUFile *f, void *opaque, int version_id)
951 sPAPREnvironment *spapr = opaque;
952 uint32_t section_hdr;
953 int fd = -1;
955 if (version_id < 1 || version_id > 1) {
956 fprintf(stderr, "htab_load() bad version\n");
957 return -EINVAL;
960 section_hdr = qemu_get_be32(f);
962 if (section_hdr) {
963 /* First section, just the hash shift */
964 if (spapr->htab_shift != section_hdr) {
965 return -EINVAL;
967 return 0;
970 if (!spapr->htab) {
971 assert(kvm_enabled());
973 fd = kvmppc_get_htab_fd(true);
974 if (fd < 0) {
975 fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
976 strerror(errno));
980 while (true) {
981 uint32_t index;
982 uint16_t n_valid, n_invalid;
984 index = qemu_get_be32(f);
985 n_valid = qemu_get_be16(f);
986 n_invalid = qemu_get_be16(f);
988 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
989 /* End of Stream */
990 break;
993 if ((index + n_valid + n_invalid) >
994 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
995 /* Bad index in stream */
996 fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
997 "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
998 spapr->htab_shift);
999 return -EINVAL;
1002 if (spapr->htab) {
1003 if (n_valid) {
1004 qemu_get_buffer(f, HPTE(spapr->htab, index),
1005 HASH_PTE_SIZE_64 * n_valid);
1007 if (n_invalid) {
1008 memset(HPTE(spapr->htab, index + n_valid), 0,
1009 HASH_PTE_SIZE_64 * n_invalid);
1011 } else {
1012 int rc;
1014 assert(fd >= 0);
1016 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1017 if (rc < 0) {
1018 return rc;
1023 if (!spapr->htab) {
1024 assert(fd >= 0);
1025 close(fd);
1028 return 0;
1031 static SaveVMHandlers savevm_htab_handlers = {
1032 .save_live_setup = htab_save_setup,
1033 .save_live_iterate = htab_save_iterate,
1034 .save_live_complete = htab_save_complete,
1035 .load_state = htab_load,
1038 /* pSeries LPAR / sPAPR hardware init */
1039 static void ppc_spapr_init(QEMUMachineInitArgs *args)
1041 ram_addr_t ram_size = args->ram_size;
1042 const char *cpu_model = args->cpu_model;
1043 const char *kernel_filename = args->kernel_filename;
1044 const char *kernel_cmdline = args->kernel_cmdline;
1045 const char *initrd_filename = args->initrd_filename;
1046 const char *boot_device = args->boot_device;
1047 PowerPCCPU *cpu;
1048 CPUPPCState *env;
1049 PCIHostState *phb;
1050 int i;
1051 MemoryRegion *sysmem = get_system_memory();
1052 MemoryRegion *ram = g_new(MemoryRegion, 1);
1053 hwaddr rma_alloc_size;
1054 uint32_t initrd_base = 0;
1055 long kernel_size = 0, initrd_size = 0;
1056 long load_limit, rtas_limit, fw_size;
1057 char *filename;
1059 msi_supported = true;
1061 spapr = g_malloc0(sizeof(*spapr));
1062 QLIST_INIT(&spapr->phbs);
1064 cpu_ppc_hypercall = emulate_spapr_hypercall;
1066 /* Allocate RMA if necessary */
1067 rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem);
1069 if (rma_alloc_size == -1) {
1070 hw_error("qemu: Unable to create RMA\n");
1071 exit(1);
1074 if (rma_alloc_size && (rma_alloc_size < ram_size)) {
1075 spapr->rma_size = rma_alloc_size;
1076 } else {
1077 spapr->rma_size = ram_size;
1079 /* With KVM, we don't actually know whether KVM supports an
1080 * unbounded RMA (PR KVM) or is limited by the hash table size
1081 * (HV KVM using VRMA), so we always assume the latter
1083 * In that case, we also limit the initial allocations for RTAS
1084 * etc... to 256M since we have no way to know what the VRMA size
1085 * is going to be as it depends on the size of the hash table
1086 * isn't determined yet.
1088 if (kvm_enabled()) {
1089 spapr->vrma_adjust = 1;
1090 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1094 /* We place the device tree and RTAS just below either the top of the RMA,
1095 * or just below 2GB, whichever is lowere, so that it can be
1096 * processed with 32-bit real mode code if necessary */
1097 rtas_limit = MIN(spapr->rma_size, 0x80000000);
1098 spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1099 spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
1100 load_limit = spapr->fdt_addr - FW_OVERHEAD;
1102 /* We aim for a hash table of size 1/128 the size of RAM. The
1103 * normal rule of thumb is 1/64 the size of RAM, but that's much
1104 * more than needed for the Linux guests we support. */
1105 spapr->htab_shift = 18; /* Minimum architected size */
1106 while (spapr->htab_shift <= 46) {
1107 if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) {
1108 break;
1110 spapr->htab_shift++;
1113 /* Set up Interrupt Controller before we create the VCPUs */
1114 spapr->icp = xics_system_init(smp_cpus * kvmppc_smt_threads() / smp_threads,
1115 XICS_IRQS);
1116 spapr->next_irq = XICS_IRQ_BASE;
1118 /* init CPUs */
1119 if (cpu_model == NULL) {
1120 cpu_model = kvm_enabled() ? "host" : "POWER7";
1122 for (i = 0; i < smp_cpus; i++) {
1123 cpu = cpu_ppc_init(cpu_model);
1124 if (cpu == NULL) {
1125 fprintf(stderr, "Unable to find PowerPC CPU definition\n");
1126 exit(1);
1128 env = &cpu->env;
1130 xics_cpu_setup(spapr->icp, cpu);
1132 /* Set time-base frequency to 512 MHz */
1133 cpu_ppc_tb_init(env, TIMEBASE_FREQ);
1135 /* PAPR always has exception vectors in RAM not ROM. To ensure this,
1136 * MSR[IP] should never be set.
1138 env->msr_mask &= ~(1 << 6);
1140 /* Tell KVM that we're in PAPR mode */
1141 if (kvm_enabled()) {
1142 kvmppc_set_papr(cpu);
1145 qemu_register_reset(spapr_cpu_reset, cpu);
1148 /* allocate RAM */
1149 spapr->ram_limit = ram_size;
1150 if (spapr->ram_limit > rma_alloc_size) {
1151 ram_addr_t nonrma_base = rma_alloc_size;
1152 ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size;
1154 memory_region_init_ram(ram, NULL, "ppc_spapr.ram", nonrma_size);
1155 vmstate_register_ram_global(ram);
1156 memory_region_add_subregion(sysmem, nonrma_base, ram);
1159 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1160 spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
1161 rtas_limit - spapr->rtas_addr);
1162 if (spapr->rtas_size < 0) {
1163 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
1164 exit(1);
1166 if (spapr->rtas_size > RTAS_MAX_SIZE) {
1167 hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
1168 spapr->rtas_size, RTAS_MAX_SIZE);
1169 exit(1);
1171 g_free(filename);
1173 /* Set up EPOW events infrastructure */
1174 spapr_events_init(spapr);
1176 /* Set up VIO bus */
1177 spapr->vio_bus = spapr_vio_bus_init();
1179 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1180 if (serial_hds[i]) {
1181 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1185 /* We always have at least the nvram device on VIO */
1186 spapr_create_nvram(spapr);
1188 /* Set up PCI */
1189 spapr_pci_rtas_init();
1191 phb = spapr_create_phb(spapr, 0);
1193 for (i = 0; i < nb_nics; i++) {
1194 NICInfo *nd = &nd_table[i];
1196 if (!nd->model) {
1197 nd->model = g_strdup("ibmveth");
1200 if (strcmp(nd->model, "ibmveth") == 0) {
1201 spapr_vlan_create(spapr->vio_bus, nd);
1202 } else {
1203 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1207 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1208 spapr_vscsi_create(spapr->vio_bus);
1211 /* Graphics */
1212 if (spapr_vga_init(phb->bus)) {
1213 spapr->has_graphics = true;
1216 if (usb_enabled(spapr->has_graphics)) {
1217 pci_create_simple(phb->bus, -1, "pci-ohci");
1218 if (spapr->has_graphics) {
1219 usbdevice_create("keyboard");
1220 usbdevice_create("mouse");
1224 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1225 fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
1226 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
1227 exit(1);
1230 if (kernel_filename) {
1231 uint64_t lowaddr = 0;
1233 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
1234 NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
1235 if (kernel_size < 0) {
1236 kernel_size = load_image_targphys(kernel_filename,
1237 KERNEL_LOAD_ADDR,
1238 load_limit - KERNEL_LOAD_ADDR);
1240 if (kernel_size < 0) {
1241 fprintf(stderr, "qemu: could not load kernel '%s'\n",
1242 kernel_filename);
1243 exit(1);
1246 /* load initrd */
1247 if (initrd_filename) {
1248 /* Try to locate the initrd in the gap between the kernel
1249 * and the firmware. Add a bit of space just in case
1251 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1252 initrd_size = load_image_targphys(initrd_filename, initrd_base,
1253 load_limit - initrd_base);
1254 if (initrd_size < 0) {
1255 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
1256 initrd_filename);
1257 exit(1);
1259 } else {
1260 initrd_base = 0;
1261 initrd_size = 0;
1265 if (bios_name == NULL) {
1266 bios_name = FW_FILE_NAME;
1268 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1269 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
1270 if (fw_size < 0) {
1271 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
1272 exit(1);
1274 g_free(filename);
1276 spapr->entry_point = 0x100;
1278 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
1279 register_savevm_live(NULL, "spapr/htab", -1, 1,
1280 &savevm_htab_handlers, spapr);
1282 /* Prepare the device tree */
1283 spapr->fdt_skel = spapr_create_fdt_skel(cpu_model,
1284 initrd_base, initrd_size,
1285 kernel_size,
1286 boot_device, kernel_cmdline,
1287 spapr->epow_irq);
1288 assert(spapr->fdt_skel != NULL);
1291 static QEMUMachine spapr_machine = {
1292 .name = "pseries",
1293 .desc = "pSeries Logical Partition (PAPR compliant)",
1294 .is_default = 1,
1295 .init = ppc_spapr_init,
1296 .reset = ppc_spapr_reset,
1297 .block_default_type = IF_SCSI,
1298 .max_cpus = MAX_CPUS,
1299 .no_parallel = 1,
1300 .boot_order = NULL,
1303 static void spapr_machine_init(void)
1305 qemu_register_machine(&spapr_machine);
1308 machine_init(spapr_machine_init);