virtio-pci: update virtio pci bar layout documentation
[qemu/ar7.git] / target / i386 / hvf / hvf.c
blobd72543dc31b65f21302e2e139ef687eb36b80b61
1 /* Copyright 2008 IBM Corporation
2 * 2008 Red Hat, Inc.
3 * Copyright 2011 Intel Corporation
4 * Copyright 2016 Veertu, Inc.
5 * Copyright 2017 The Android Open Source Project
7 * QEMU Hypervisor.framework support
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of version 2 of the GNU General Public
11 * License as published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, see <http://www.gnu.org/licenses/>.
21 * This file contain code under public domain from the hvdos project:
22 * https://github.com/mist64/hvdos
24 * Parts Copyright (c) 2011 NetApp, Inc.
25 * All rights reserved.
27 * Redistribution and use in source and binary forms, with or without
28 * modification, are permitted provided that the following conditions
29 * are met:
30 * 1. Redistributions of source code must retain the above copyright
31 * notice, this list of conditions and the following disclaimer.
32 * 2. Redistributions in binary form must reproduce the above copyright
33 * notice, this list of conditions and the following disclaimer in the
34 * documentation and/or other materials provided with the distribution.
36 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
37 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
39 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
40 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
41 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
42 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
44 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
45 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
46 * SUCH DAMAGE.
49 #include "qemu/osdep.h"
50 #include "qemu-common.h"
51 #include "qemu/error-report.h"
53 #include "sysemu/hvf.h"
54 #include "sysemu/runstate.h"
55 #include "hvf-i386.h"
56 #include "vmcs.h"
57 #include "vmx.h"
58 #include "x86.h"
59 #include "x86_descr.h"
60 #include "x86_mmu.h"
61 #include "x86_decode.h"
62 #include "x86_emu.h"
63 #include "x86_task.h"
64 #include "x86hvf.h"
66 #include <Hypervisor/hv.h>
67 #include <Hypervisor/hv_vmx.h>
69 #include "exec/address-spaces.h"
70 #include "hw/i386/apic_internal.h"
71 #include "qemu/main-loop.h"
72 #include "sysemu/accel.h"
73 #include "target/i386/cpu.h"
75 HVFState *hvf_state;
77 static void assert_hvf_ok(hv_return_t ret)
79 if (ret == HV_SUCCESS) {
80 return;
83 switch (ret) {
84 case HV_ERROR:
85 error_report("Error: HV_ERROR");
86 break;
87 case HV_BUSY:
88 error_report("Error: HV_BUSY");
89 break;
90 case HV_BAD_ARGUMENT:
91 error_report("Error: HV_BAD_ARGUMENT");
92 break;
93 case HV_NO_RESOURCES:
94 error_report("Error: HV_NO_RESOURCES");
95 break;
96 case HV_NO_DEVICE:
97 error_report("Error: HV_NO_DEVICE");
98 break;
99 case HV_UNSUPPORTED:
100 error_report("Error: HV_UNSUPPORTED");
101 break;
102 default:
103 error_report("Unknown Error");
106 abort();
109 /* Memory slots */
110 hvf_slot *hvf_find_overlap_slot(uint64_t start, uint64_t size)
112 hvf_slot *slot;
113 int x;
114 for (x = 0; x < hvf_state->num_slots; ++x) {
115 slot = &hvf_state->slots[x];
116 if (slot->size && start < (slot->start + slot->size) &&
117 (start + size) > slot->start) {
118 return slot;
121 return NULL;
124 struct mac_slot {
125 int present;
126 uint64_t size;
127 uint64_t gpa_start;
128 uint64_t gva;
131 struct mac_slot mac_slots[32];
133 static int do_hvf_set_memory(hvf_slot *slot, hv_memory_flags_t flags)
135 struct mac_slot *macslot;
136 hv_return_t ret;
138 macslot = &mac_slots[slot->slot_id];
140 if (macslot->present) {
141 if (macslot->size != slot->size) {
142 macslot->present = 0;
143 ret = hv_vm_unmap(macslot->gpa_start, macslot->size);
144 assert_hvf_ok(ret);
148 if (!slot->size) {
149 return 0;
152 macslot->present = 1;
153 macslot->gpa_start = slot->start;
154 macslot->size = slot->size;
155 ret = hv_vm_map((hv_uvaddr_t)slot->mem, slot->start, slot->size, flags);
156 assert_hvf_ok(ret);
157 return 0;
160 void hvf_set_phys_mem(MemoryRegionSection *section, bool add)
162 hvf_slot *mem;
163 MemoryRegion *area = section->mr;
164 bool writeable = !area->readonly && !area->rom_device;
165 hv_memory_flags_t flags;
167 if (!memory_region_is_ram(area)) {
168 if (writeable) {
169 return;
170 } else if (!memory_region_is_romd(area)) {
172 * If the memory device is not in romd_mode, then we actually want
173 * to remove the hvf memory slot so all accesses will trap.
175 add = false;
179 mem = hvf_find_overlap_slot(
180 section->offset_within_address_space,
181 int128_get64(section->size));
183 if (mem && add) {
184 if (mem->size == int128_get64(section->size) &&
185 mem->start == section->offset_within_address_space &&
186 mem->mem == (memory_region_get_ram_ptr(area) +
187 section->offset_within_region)) {
188 return; /* Same region was attempted to register, go away. */
192 /* Region needs to be reset. set the size to 0 and remap it. */
193 if (mem) {
194 mem->size = 0;
195 if (do_hvf_set_memory(mem, 0)) {
196 error_report("Failed to reset overlapping slot");
197 abort();
201 if (!add) {
202 return;
205 if (area->readonly ||
206 (!memory_region_is_ram(area) && memory_region_is_romd(area))) {
207 flags = HV_MEMORY_READ | HV_MEMORY_EXEC;
208 } else {
209 flags = HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC;
212 /* Now make a new slot. */
213 int x;
215 for (x = 0; x < hvf_state->num_slots; ++x) {
216 mem = &hvf_state->slots[x];
217 if (!mem->size) {
218 break;
222 if (x == hvf_state->num_slots) {
223 error_report("No free slots");
224 abort();
227 mem->size = int128_get64(section->size);
228 mem->mem = memory_region_get_ram_ptr(area) + section->offset_within_region;
229 mem->start = section->offset_within_address_space;
230 mem->region = area;
232 if (do_hvf_set_memory(mem, flags)) {
233 error_report("Error registering new memory slot");
234 abort();
238 void vmx_update_tpr(CPUState *cpu)
240 /* TODO: need integrate APIC handling */
241 X86CPU *x86_cpu = X86_CPU(cpu);
242 int tpr = cpu_get_apic_tpr(x86_cpu->apic_state) << 4;
243 int irr = apic_get_highest_priority_irr(x86_cpu->apic_state);
245 wreg(cpu->hvf_fd, HV_X86_TPR, tpr);
246 if (irr == -1) {
247 wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, 0);
248 } else {
249 wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, (irr > tpr) ? tpr >> 4 :
250 irr >> 4);
254 void update_apic_tpr(CPUState *cpu)
256 X86CPU *x86_cpu = X86_CPU(cpu);
257 int tpr = rreg(cpu->hvf_fd, HV_X86_TPR) >> 4;
258 cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
261 #define VECTORING_INFO_VECTOR_MASK 0xff
263 static void hvf_handle_interrupt(CPUState * cpu, int mask)
265 cpu->interrupt_request |= mask;
266 if (!qemu_cpu_is_self(cpu)) {
267 qemu_cpu_kick(cpu);
271 void hvf_handle_io(CPUArchState *env, uint16_t port, void *buffer,
272 int direction, int size, int count)
274 int i;
275 uint8_t *ptr = buffer;
277 for (i = 0; i < count; i++) {
278 address_space_rw(&address_space_io, port, MEMTXATTRS_UNSPECIFIED,
279 ptr, size,
280 direction);
281 ptr += size;
285 /* TODO: synchronize vcpu state */
286 static void do_hvf_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
288 CPUState *cpu_state = cpu;
289 if (cpu_state->vcpu_dirty == 0) {
290 hvf_get_registers(cpu_state);
293 cpu_state->vcpu_dirty = 1;
296 void hvf_cpu_synchronize_state(CPUState *cpu_state)
298 if (cpu_state->vcpu_dirty == 0) {
299 run_on_cpu(cpu_state, do_hvf_cpu_synchronize_state, RUN_ON_CPU_NULL);
303 static void do_hvf_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
305 CPUState *cpu_state = cpu;
306 hvf_put_registers(cpu_state);
307 cpu_state->vcpu_dirty = false;
310 void hvf_cpu_synchronize_post_reset(CPUState *cpu_state)
312 run_on_cpu(cpu_state, do_hvf_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
315 void _hvf_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
317 CPUState *cpu_state = cpu;
318 hvf_put_registers(cpu_state);
319 cpu_state->vcpu_dirty = false;
322 void hvf_cpu_synchronize_post_init(CPUState *cpu_state)
324 run_on_cpu(cpu_state, _hvf_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
327 static bool ept_emulation_fault(hvf_slot *slot, uint64_t gpa, uint64_t ept_qual)
329 int read, write;
331 /* EPT fault on an instruction fetch doesn't make sense here */
332 if (ept_qual & EPT_VIOLATION_INST_FETCH) {
333 return false;
336 /* EPT fault must be a read fault or a write fault */
337 read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
338 write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
339 if ((read | write) == 0) {
340 return false;
343 if (write && slot) {
344 if (slot->flags & HVF_SLOT_LOG) {
345 memory_region_set_dirty(slot->region, gpa - slot->start, 1);
346 hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
347 HV_MEMORY_READ | HV_MEMORY_WRITE);
352 * The EPT violation must have been caused by accessing a
353 * guest-physical address that is a translation of a guest-linear
354 * address.
356 if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
357 (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
358 return false;
361 if (!slot) {
362 return true;
364 if (!memory_region_is_ram(slot->region) &&
365 !(read && memory_region_is_romd(slot->region))) {
366 return true;
368 return false;
371 static void hvf_set_dirty_tracking(MemoryRegionSection *section, bool on)
373 hvf_slot *slot;
375 slot = hvf_find_overlap_slot(
376 section->offset_within_address_space,
377 int128_get64(section->size));
379 /* protect region against writes; begin tracking it */
380 if (on) {
381 slot->flags |= HVF_SLOT_LOG;
382 hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
383 HV_MEMORY_READ);
384 /* stop tracking region*/
385 } else {
386 slot->flags &= ~HVF_SLOT_LOG;
387 hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
388 HV_MEMORY_READ | HV_MEMORY_WRITE);
392 static void hvf_log_start(MemoryListener *listener,
393 MemoryRegionSection *section, int old, int new)
395 if (old != 0) {
396 return;
399 hvf_set_dirty_tracking(section, 1);
402 static void hvf_log_stop(MemoryListener *listener,
403 MemoryRegionSection *section, int old, int new)
405 if (new != 0) {
406 return;
409 hvf_set_dirty_tracking(section, 0);
412 static void hvf_log_sync(MemoryListener *listener,
413 MemoryRegionSection *section)
416 * sync of dirty pages is handled elsewhere; just make sure we keep
417 * tracking the region.
419 hvf_set_dirty_tracking(section, 1);
422 static void hvf_region_add(MemoryListener *listener,
423 MemoryRegionSection *section)
425 hvf_set_phys_mem(section, true);
428 static void hvf_region_del(MemoryListener *listener,
429 MemoryRegionSection *section)
431 hvf_set_phys_mem(section, false);
434 static MemoryListener hvf_memory_listener = {
435 .priority = 10,
436 .region_add = hvf_region_add,
437 .region_del = hvf_region_del,
438 .log_start = hvf_log_start,
439 .log_stop = hvf_log_stop,
440 .log_sync = hvf_log_sync,
443 void hvf_reset_vcpu(CPUState *cpu) {
444 uint64_t pdpte[4] = {0, 0, 0, 0};
445 int i;
447 /* TODO: this shouldn't be needed; there is already a call to
448 * cpu_synchronize_all_post_reset in vl.c
450 wvmcs(cpu->hvf_fd, VMCS_ENTRY_CTLS, 0);
451 wvmcs(cpu->hvf_fd, VMCS_GUEST_IA32_EFER, 0);
453 /* Initialize PDPTE */
454 for (i = 0; i < 4; i++) {
455 wvmcs(cpu->hvf_fd, VMCS_GUEST_PDPTE0 + i * 2, pdpte[i]);
458 macvm_set_cr0(cpu->hvf_fd, 0x60000010);
460 wvmcs(cpu->hvf_fd, VMCS_CR4_MASK, CR4_VMXE_MASK);
461 wvmcs(cpu->hvf_fd, VMCS_CR4_SHADOW, 0x0);
462 wvmcs(cpu->hvf_fd, VMCS_GUEST_CR4, CR4_VMXE_MASK);
464 /* set VMCS guest state fields */
465 wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_SELECTOR, 0xf000);
466 wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_LIMIT, 0xffff);
467 wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_ACCESS_RIGHTS, 0x9b);
468 wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_BASE, 0xffff0000);
470 wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_SELECTOR, 0);
471 wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_LIMIT, 0xffff);
472 wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_ACCESS_RIGHTS, 0x93);
473 wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_BASE, 0);
475 wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_SELECTOR, 0);
476 wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_LIMIT, 0xffff);
477 wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_ACCESS_RIGHTS, 0x93);
478 wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_BASE, 0);
480 wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_SELECTOR, 0);
481 wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_LIMIT, 0xffff);
482 wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_ACCESS_RIGHTS, 0x93);
483 wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_BASE, 0);
485 wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_SELECTOR, 0);
486 wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_LIMIT, 0xffff);
487 wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_ACCESS_RIGHTS, 0x93);
488 wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_BASE, 0);
490 wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_SELECTOR, 0);
491 wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_LIMIT, 0xffff);
492 wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_ACCESS_RIGHTS, 0x93);
493 wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_BASE, 0);
495 wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_SELECTOR, 0);
496 wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_LIMIT, 0);
497 wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_ACCESS_RIGHTS, 0x10000);
498 wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_BASE, 0);
500 wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_SELECTOR, 0);
501 wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_LIMIT, 0);
502 wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_ACCESS_RIGHTS, 0x83);
503 wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_BASE, 0);
505 wvmcs(cpu->hvf_fd, VMCS_GUEST_GDTR_LIMIT, 0);
506 wvmcs(cpu->hvf_fd, VMCS_GUEST_GDTR_BASE, 0);
508 wvmcs(cpu->hvf_fd, VMCS_GUEST_IDTR_LIMIT, 0);
509 wvmcs(cpu->hvf_fd, VMCS_GUEST_IDTR_BASE, 0);
511 /*wvmcs(cpu->hvf_fd, VMCS_GUEST_CR2, 0x0);*/
512 wvmcs(cpu->hvf_fd, VMCS_GUEST_CR3, 0x0);
514 wreg(cpu->hvf_fd, HV_X86_RIP, 0xfff0);
515 wreg(cpu->hvf_fd, HV_X86_RDX, 0x623);
516 wreg(cpu->hvf_fd, HV_X86_RFLAGS, 0x2);
517 wreg(cpu->hvf_fd, HV_X86_RSP, 0x0);
518 wreg(cpu->hvf_fd, HV_X86_RAX, 0x0);
519 wreg(cpu->hvf_fd, HV_X86_RBX, 0x0);
520 wreg(cpu->hvf_fd, HV_X86_RCX, 0x0);
521 wreg(cpu->hvf_fd, HV_X86_RSI, 0x0);
522 wreg(cpu->hvf_fd, HV_X86_RDI, 0x0);
523 wreg(cpu->hvf_fd, HV_X86_RBP, 0x0);
525 for (int i = 0; i < 8; i++) {
526 wreg(cpu->hvf_fd, HV_X86_R8 + i, 0x0);
529 hv_vcpu_invalidate_tlb(cpu->hvf_fd);
530 hv_vcpu_flush(cpu->hvf_fd);
533 void hvf_vcpu_destroy(CPUState *cpu)
535 hv_return_t ret = hv_vcpu_destroy((hv_vcpuid_t)cpu->hvf_fd);
536 assert_hvf_ok(ret);
539 static void dummy_signal(int sig)
543 int hvf_init_vcpu(CPUState *cpu)
546 X86CPU *x86cpu = X86_CPU(cpu);
547 CPUX86State *env = &x86cpu->env;
548 int r;
550 /* init cpu signals */
551 sigset_t set;
552 struct sigaction sigact;
554 memset(&sigact, 0, sizeof(sigact));
555 sigact.sa_handler = dummy_signal;
556 sigaction(SIG_IPI, &sigact, NULL);
558 pthread_sigmask(SIG_BLOCK, NULL, &set);
559 sigdelset(&set, SIG_IPI);
561 init_emu();
562 init_decoder();
564 hvf_state->hvf_caps = g_new0(struct hvf_vcpu_caps, 1);
565 env->hvf_emul = g_new0(HVFX86EmulatorState, 1);
567 r = hv_vcpu_create((hv_vcpuid_t *)&cpu->hvf_fd, HV_VCPU_DEFAULT);
568 cpu->vcpu_dirty = 1;
569 assert_hvf_ok(r);
571 if (hv_vmx_read_capability(HV_VMX_CAP_PINBASED,
572 &hvf_state->hvf_caps->vmx_cap_pinbased)) {
573 abort();
575 if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED,
576 &hvf_state->hvf_caps->vmx_cap_procbased)) {
577 abort();
579 if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED2,
580 &hvf_state->hvf_caps->vmx_cap_procbased2)) {
581 abort();
583 if (hv_vmx_read_capability(HV_VMX_CAP_ENTRY,
584 &hvf_state->hvf_caps->vmx_cap_entry)) {
585 abort();
588 /* set VMCS control fields */
589 wvmcs(cpu->hvf_fd, VMCS_PIN_BASED_CTLS,
590 cap2ctrl(hvf_state->hvf_caps->vmx_cap_pinbased,
591 VMCS_PIN_BASED_CTLS_EXTINT |
592 VMCS_PIN_BASED_CTLS_NMI |
593 VMCS_PIN_BASED_CTLS_VNMI));
594 wvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS,
595 cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased,
596 VMCS_PRI_PROC_BASED_CTLS_HLT |
597 VMCS_PRI_PROC_BASED_CTLS_MWAIT |
598 VMCS_PRI_PROC_BASED_CTLS_TSC_OFFSET |
599 VMCS_PRI_PROC_BASED_CTLS_TPR_SHADOW) |
600 VMCS_PRI_PROC_BASED_CTLS_SEC_CONTROL);
601 wvmcs(cpu->hvf_fd, VMCS_SEC_PROC_BASED_CTLS,
602 cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased2,
603 VMCS_PRI_PROC_BASED2_CTLS_APIC_ACCESSES));
605 wvmcs(cpu->hvf_fd, VMCS_ENTRY_CTLS, cap2ctrl(hvf_state->hvf_caps->vmx_cap_entry,
606 0));
607 wvmcs(cpu->hvf_fd, VMCS_EXCEPTION_BITMAP, 0); /* Double fault */
609 wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, 0);
611 x86cpu = X86_CPU(cpu);
612 x86cpu->env.xsave_buf = qemu_memalign(4096, 4096);
614 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_STAR, 1);
615 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_LSTAR, 1);
616 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_CSTAR, 1);
617 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_FMASK, 1);
618 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_FSBASE, 1);
619 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_GSBASE, 1);
620 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_KERNELGSBASE, 1);
621 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_TSC_AUX, 1);
622 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_TSC, 1);
623 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_CS, 1);
624 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_EIP, 1);
625 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_ESP, 1);
627 return 0;
630 static void hvf_store_events(CPUState *cpu, uint32_t ins_len, uint64_t idtvec_info)
632 X86CPU *x86_cpu = X86_CPU(cpu);
633 CPUX86State *env = &x86_cpu->env;
635 env->exception_nr = -1;
636 env->exception_pending = 0;
637 env->exception_injected = 0;
638 env->interrupt_injected = -1;
639 env->nmi_injected = false;
640 env->ins_len = 0;
641 env->has_error_code = false;
642 if (idtvec_info & VMCS_IDT_VEC_VALID) {
643 switch (idtvec_info & VMCS_IDT_VEC_TYPE) {
644 case VMCS_IDT_VEC_HWINTR:
645 case VMCS_IDT_VEC_SWINTR:
646 env->interrupt_injected = idtvec_info & VMCS_IDT_VEC_VECNUM;
647 break;
648 case VMCS_IDT_VEC_NMI:
649 env->nmi_injected = true;
650 break;
651 case VMCS_IDT_VEC_HWEXCEPTION:
652 case VMCS_IDT_VEC_SWEXCEPTION:
653 env->exception_nr = idtvec_info & VMCS_IDT_VEC_VECNUM;
654 env->exception_injected = 1;
655 break;
656 case VMCS_IDT_VEC_PRIV_SWEXCEPTION:
657 default:
658 abort();
660 if ((idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWEXCEPTION ||
661 (idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWINTR) {
662 env->ins_len = ins_len;
664 if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
665 env->has_error_code = true;
666 env->error_code = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_ERROR);
669 if ((rvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY) &
670 VMCS_INTERRUPTIBILITY_NMI_BLOCKING)) {
671 env->hflags2 |= HF2_NMI_MASK;
672 } else {
673 env->hflags2 &= ~HF2_NMI_MASK;
675 if (rvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY) &
676 (VMCS_INTERRUPTIBILITY_STI_BLOCKING |
677 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)) {
678 env->hflags |= HF_INHIBIT_IRQ_MASK;
679 } else {
680 env->hflags &= ~HF_INHIBIT_IRQ_MASK;
684 int hvf_vcpu_exec(CPUState *cpu)
686 X86CPU *x86_cpu = X86_CPU(cpu);
687 CPUX86State *env = &x86_cpu->env;
688 int ret = 0;
689 uint64_t rip = 0;
691 if (hvf_process_events(cpu)) {
692 return EXCP_HLT;
695 do {
696 if (cpu->vcpu_dirty) {
697 hvf_put_registers(cpu);
698 cpu->vcpu_dirty = false;
701 if (hvf_inject_interrupts(cpu)) {
702 return EXCP_INTERRUPT;
704 vmx_update_tpr(cpu);
706 qemu_mutex_unlock_iothread();
707 if (!cpu_is_bsp(X86_CPU(cpu)) && cpu->halted) {
708 qemu_mutex_lock_iothread();
709 return EXCP_HLT;
712 hv_return_t r = hv_vcpu_run(cpu->hvf_fd);
713 assert_hvf_ok(r);
715 /* handle VMEXIT */
716 uint64_t exit_reason = rvmcs(cpu->hvf_fd, VMCS_EXIT_REASON);
717 uint64_t exit_qual = rvmcs(cpu->hvf_fd, VMCS_EXIT_QUALIFICATION);
718 uint32_t ins_len = (uint32_t)rvmcs(cpu->hvf_fd,
719 VMCS_EXIT_INSTRUCTION_LENGTH);
721 uint64_t idtvec_info = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_INFO);
723 hvf_store_events(cpu, ins_len, idtvec_info);
724 rip = rreg(cpu->hvf_fd, HV_X86_RIP);
725 RFLAGS(env) = rreg(cpu->hvf_fd, HV_X86_RFLAGS);
726 env->eflags = RFLAGS(env);
728 qemu_mutex_lock_iothread();
730 update_apic_tpr(cpu);
731 current_cpu = cpu;
733 ret = 0;
734 switch (exit_reason) {
735 case EXIT_REASON_HLT: {
736 macvm_set_rip(cpu, rip + ins_len);
737 if (!((cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
738 (EFLAGS(env) & IF_MASK))
739 && !(cpu->interrupt_request & CPU_INTERRUPT_NMI) &&
740 !(idtvec_info & VMCS_IDT_VEC_VALID)) {
741 cpu->halted = 1;
742 ret = EXCP_HLT;
743 break;
745 ret = EXCP_INTERRUPT;
746 break;
748 case EXIT_REASON_MWAIT: {
749 ret = EXCP_INTERRUPT;
750 break;
752 /* Need to check if MMIO or unmapped fault */
753 case EXIT_REASON_EPT_FAULT:
755 hvf_slot *slot;
756 uint64_t gpa = rvmcs(cpu->hvf_fd, VMCS_GUEST_PHYSICAL_ADDRESS);
758 if (((idtvec_info & VMCS_IDT_VEC_VALID) == 0) &&
759 ((exit_qual & EXIT_QUAL_NMIUDTI) != 0)) {
760 vmx_set_nmi_blocking(cpu);
763 slot = hvf_find_overlap_slot(gpa, 1);
764 /* mmio */
765 if (ept_emulation_fault(slot, gpa, exit_qual)) {
766 struct x86_decode decode;
768 load_regs(cpu);
769 env->hvf_emul->fetch_rip = rip;
771 decode_instruction(env, &decode);
772 exec_instruction(env, &decode);
773 store_regs(cpu);
774 break;
776 break;
778 case EXIT_REASON_INOUT:
780 uint32_t in = (exit_qual & 8) != 0;
781 uint32_t size = (exit_qual & 7) + 1;
782 uint32_t string = (exit_qual & 16) != 0;
783 uint32_t port = exit_qual >> 16;
784 /*uint32_t rep = (exit_qual & 0x20) != 0;*/
786 if (!string && in) {
787 uint64_t val = 0;
788 load_regs(cpu);
789 hvf_handle_io(env, port, &val, 0, size, 1);
790 if (size == 1) {
791 AL(env) = val;
792 } else if (size == 2) {
793 AX(env) = val;
794 } else if (size == 4) {
795 RAX(env) = (uint32_t)val;
796 } else {
797 RAX(env) = (uint64_t)val;
799 RIP(env) += ins_len;
800 store_regs(cpu);
801 break;
802 } else if (!string && !in) {
803 RAX(env) = rreg(cpu->hvf_fd, HV_X86_RAX);
804 hvf_handle_io(env, port, &RAX(env), 1, size, 1);
805 macvm_set_rip(cpu, rip + ins_len);
806 break;
808 struct x86_decode decode;
810 load_regs(cpu);
811 env->hvf_emul->fetch_rip = rip;
813 decode_instruction(env, &decode);
814 assert(ins_len == decode.len);
815 exec_instruction(env, &decode);
816 store_regs(cpu);
818 break;
820 case EXIT_REASON_CPUID: {
821 uint32_t rax = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RAX);
822 uint32_t rbx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RBX);
823 uint32_t rcx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RCX);
824 uint32_t rdx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RDX);
826 cpu_x86_cpuid(env, rax, rcx, &rax, &rbx, &rcx, &rdx);
828 wreg(cpu->hvf_fd, HV_X86_RAX, rax);
829 wreg(cpu->hvf_fd, HV_X86_RBX, rbx);
830 wreg(cpu->hvf_fd, HV_X86_RCX, rcx);
831 wreg(cpu->hvf_fd, HV_X86_RDX, rdx);
833 macvm_set_rip(cpu, rip + ins_len);
834 break;
836 case EXIT_REASON_XSETBV: {
837 X86CPU *x86_cpu = X86_CPU(cpu);
838 CPUX86State *env = &x86_cpu->env;
839 uint32_t eax = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RAX);
840 uint32_t ecx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RCX);
841 uint32_t edx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RDX);
843 if (ecx) {
844 macvm_set_rip(cpu, rip + ins_len);
845 break;
847 env->xcr0 = ((uint64_t)edx << 32) | eax;
848 wreg(cpu->hvf_fd, HV_X86_XCR0, env->xcr0 | 1);
849 macvm_set_rip(cpu, rip + ins_len);
850 break;
852 case EXIT_REASON_INTR_WINDOW:
853 vmx_clear_int_window_exiting(cpu);
854 ret = EXCP_INTERRUPT;
855 break;
856 case EXIT_REASON_NMI_WINDOW:
857 vmx_clear_nmi_window_exiting(cpu);
858 ret = EXCP_INTERRUPT;
859 break;
860 case EXIT_REASON_EXT_INTR:
861 /* force exit and allow io handling */
862 ret = EXCP_INTERRUPT;
863 break;
864 case EXIT_REASON_RDMSR:
865 case EXIT_REASON_WRMSR:
867 load_regs(cpu);
868 if (exit_reason == EXIT_REASON_RDMSR) {
869 simulate_rdmsr(cpu);
870 } else {
871 simulate_wrmsr(cpu);
873 RIP(env) += rvmcs(cpu->hvf_fd, VMCS_EXIT_INSTRUCTION_LENGTH);
874 store_regs(cpu);
875 break;
877 case EXIT_REASON_CR_ACCESS: {
878 int cr;
879 int reg;
881 load_regs(cpu);
882 cr = exit_qual & 15;
883 reg = (exit_qual >> 8) & 15;
885 switch (cr) {
886 case 0x0: {
887 macvm_set_cr0(cpu->hvf_fd, RRX(env, reg));
888 break;
890 case 4: {
891 macvm_set_cr4(cpu->hvf_fd, RRX(env, reg));
892 break;
894 case 8: {
895 X86CPU *x86_cpu = X86_CPU(cpu);
896 if (exit_qual & 0x10) {
897 RRX(env, reg) = cpu_get_apic_tpr(x86_cpu->apic_state);
898 } else {
899 int tpr = RRX(env, reg);
900 cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
901 ret = EXCP_INTERRUPT;
903 break;
905 default:
906 error_report("Unrecognized CR %d", cr);
907 abort();
909 RIP(env) += ins_len;
910 store_regs(cpu);
911 break;
913 case EXIT_REASON_APIC_ACCESS: { /* TODO */
914 struct x86_decode decode;
916 load_regs(cpu);
917 env->hvf_emul->fetch_rip = rip;
919 decode_instruction(env, &decode);
920 exec_instruction(env, &decode);
921 store_regs(cpu);
922 break;
924 case EXIT_REASON_TPR: {
925 ret = 1;
926 break;
928 case EXIT_REASON_TASK_SWITCH: {
929 uint64_t vinfo = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_INFO);
930 x68_segment_selector sel = {.sel = exit_qual & 0xffff};
931 vmx_handle_task_switch(cpu, sel, (exit_qual >> 30) & 0x3,
932 vinfo & VMCS_INTR_VALID, vinfo & VECTORING_INFO_VECTOR_MASK, vinfo
933 & VMCS_INTR_T_MASK);
934 break;
936 case EXIT_REASON_TRIPLE_FAULT: {
937 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
938 ret = EXCP_INTERRUPT;
939 break;
941 case EXIT_REASON_RDPMC:
942 wreg(cpu->hvf_fd, HV_X86_RAX, 0);
943 wreg(cpu->hvf_fd, HV_X86_RDX, 0);
944 macvm_set_rip(cpu, rip + ins_len);
945 break;
946 case VMX_REASON_VMCALL:
947 env->exception_nr = EXCP0D_GPF;
948 env->exception_injected = 1;
949 env->has_error_code = true;
950 env->error_code = 0;
951 break;
952 default:
953 error_report("%llx: unhandled exit %llx", rip, exit_reason);
955 } while (ret == 0);
957 return ret;
960 bool hvf_allowed;
962 static int hvf_accel_init(MachineState *ms)
964 int x;
965 hv_return_t ret;
966 HVFState *s;
968 ret = hv_vm_create(HV_VM_DEFAULT);
969 assert_hvf_ok(ret);
971 s = g_new0(HVFState, 1);
973 s->num_slots = 32;
974 for (x = 0; x < s->num_slots; ++x) {
975 s->slots[x].size = 0;
976 s->slots[x].slot_id = x;
979 hvf_state = s;
980 cpu_interrupt_handler = hvf_handle_interrupt;
981 memory_listener_register(&hvf_memory_listener, &address_space_memory);
982 return 0;
985 static void hvf_accel_class_init(ObjectClass *oc, void *data)
987 AccelClass *ac = ACCEL_CLASS(oc);
988 ac->name = "HVF";
989 ac->init_machine = hvf_accel_init;
990 ac->allowed = &hvf_allowed;
993 static const TypeInfo hvf_accel_type = {
994 .name = TYPE_HVF_ACCEL,
995 .parent = TYPE_ACCEL,
996 .class_init = hvf_accel_class_init,
999 static void hvf_type_init(void)
1001 type_register_static(&hvf_accel_type);
1004 type_init(hvf_type_init);