virtio-input: make virtio devices follow usual naming convention
[qemu/ar7.git] / hw / bt / hci-csr.c
blob7b9b91608a87b035eac6048e3f6cb15e00f7fa64
1 /*
2 * Bluetooth serial HCI transport.
3 * CSR41814 HCI with H4p vendor extensions.
5 * Copyright (C) 2008 Andrzej Zaborowski <balrog@zabor.org>
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 or
10 * (at your option) version 3 of the License.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, see <http://www.gnu.org/licenses/>.
21 #include "qemu-common.h"
22 #include "sysemu/char.h"
23 #include "qemu/timer.h"
24 #include "hw/irq.h"
25 #include "sysemu/bt.h"
26 #include "hw/bt.h"
28 struct csrhci_s {
29 int enable;
30 qemu_irq *pins;
31 int pin_state;
32 int modem_state;
33 CharDriverState chr;
34 #define FIFO_LEN 4096
35 int out_start;
36 int out_len;
37 int out_size;
38 uint8_t outfifo[FIFO_LEN * 2];
39 uint8_t inpkt[FIFO_LEN];
40 int in_len;
41 int in_hdr;
42 int in_data;
43 QEMUTimer *out_tm;
44 int64_t baud_delay;
46 bdaddr_t bd_addr;
47 struct HCIInfo *hci;
50 /* H4+ packet types */
51 enum {
52 H4_CMD_PKT = 1,
53 H4_ACL_PKT = 2,
54 H4_SCO_PKT = 3,
55 H4_EVT_PKT = 4,
56 H4_NEG_PKT = 6,
57 H4_ALIVE_PKT = 7,
60 /* CSR41814 negotiation start magic packet */
61 static const uint8_t csrhci_neg_packet[] = {
62 H4_NEG_PKT, 10,
63 0x00, 0xa0, 0x01, 0x00, 0x00,
64 0x4c, 0x00, 0x96, 0x00, 0x00,
67 /* CSR41814 vendor-specific command OCFs */
68 enum {
69 OCF_CSR_SEND_FIRMWARE = 0x000,
72 static inline void csrhci_fifo_wake(struct csrhci_s *s)
74 if (!s->enable || !s->out_len)
75 return;
77 /* XXX: Should wait for s->modem_state & CHR_TIOCM_RTS? */
78 if (s->chr.chr_can_read && s->chr.chr_can_read(s->chr.handler_opaque) &&
79 s->chr.chr_read) {
80 s->chr.chr_read(s->chr.handler_opaque,
81 s->outfifo + s->out_start ++, 1);
82 s->out_len --;
83 if (s->out_start >= s->out_size) {
84 s->out_start = 0;
85 s->out_size = FIFO_LEN;
89 if (s->out_len)
90 timer_mod(s->out_tm, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->baud_delay);
93 #define csrhci_out_packetz(s, len) memset(csrhci_out_packet(s, len), 0, len)
94 static uint8_t *csrhci_out_packet(struct csrhci_s *s, int len)
96 int off = s->out_start + s->out_len;
98 /* TODO: do the padding here, i.e. align len */
99 s->out_len += len;
101 if (off < FIFO_LEN) {
102 if (off + len > FIFO_LEN && (s->out_size = off + len) > FIFO_LEN * 2) {
103 fprintf(stderr, "%s: can't alloc %i bytes\n", __FUNCTION__, len);
104 exit(-1);
106 return s->outfifo + off;
109 if (s->out_len > s->out_size) {
110 fprintf(stderr, "%s: can't alloc %i bytes\n", __FUNCTION__, len);
111 exit(-1);
114 return s->outfifo + off - s->out_size;
117 static inline uint8_t *csrhci_out_packet_csr(struct csrhci_s *s,
118 int type, int len)
120 uint8_t *ret = csrhci_out_packetz(s, len + 2);
122 *ret ++ = type;
123 *ret ++ = len;
125 return ret;
128 static inline uint8_t *csrhci_out_packet_event(struct csrhci_s *s,
129 int evt, int len)
131 uint8_t *ret = csrhci_out_packetz(s,
132 len + 1 + sizeof(struct hci_event_hdr));
134 *ret ++ = H4_EVT_PKT;
135 ((struct hci_event_hdr *) ret)->evt = evt;
136 ((struct hci_event_hdr *) ret)->plen = len;
138 return ret + sizeof(struct hci_event_hdr);
141 static void csrhci_in_packet_vendor(struct csrhci_s *s, int ocf,
142 uint8_t *data, int len)
144 int offset;
145 uint8_t *rpkt;
147 switch (ocf) {
148 case OCF_CSR_SEND_FIRMWARE:
149 /* Check if this is the bd_address packet */
150 if (len >= 18 + 8 && data[12] == 0x01 && data[13] == 0x00) {
151 offset = 18;
152 s->bd_addr.b[0] = data[offset + 7]; /* Beyond cmd packet end(!?) */
153 s->bd_addr.b[1] = data[offset + 6];
154 s->bd_addr.b[2] = data[offset + 4];
155 s->bd_addr.b[3] = data[offset + 0];
156 s->bd_addr.b[4] = data[offset + 3];
157 s->bd_addr.b[5] = data[offset + 2];
159 s->hci->bdaddr_set(s->hci, s->bd_addr.b);
160 fprintf(stderr, "%s: bd_address loaded from firmware: "
161 "%02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
162 s->bd_addr.b[0], s->bd_addr.b[1], s->bd_addr.b[2],
163 s->bd_addr.b[3], s->bd_addr.b[4], s->bd_addr.b[5]);
166 rpkt = csrhci_out_packet_event(s, EVT_VENDOR, 11);
167 /* Status bytes: no error */
168 rpkt[9] = 0x00;
169 rpkt[10] = 0x00;
170 break;
172 default:
173 fprintf(stderr, "%s: got a bad CMD packet\n", __FUNCTION__);
174 return;
177 csrhci_fifo_wake(s);
180 static void csrhci_in_packet(struct csrhci_s *s, uint8_t *pkt)
182 uint8_t *rpkt;
183 int opc;
185 switch (*pkt ++) {
186 case H4_CMD_PKT:
187 opc = le16_to_cpu(((struct hci_command_hdr *) pkt)->opcode);
188 if (cmd_opcode_ogf(opc) == OGF_VENDOR_CMD) {
189 csrhci_in_packet_vendor(s, cmd_opcode_ocf(opc),
190 pkt + sizeof(struct hci_command_hdr),
191 s->in_len - sizeof(struct hci_command_hdr) - 1);
192 return;
195 /* TODO: if the command is OCF_READ_LOCAL_COMMANDS or the likes,
196 * we need to send it to the HCI layer and then add our supported
197 * commands to the returned mask (such as OGF_VENDOR_CMD). With
198 * bt-hci.c we could just have hooks for this kind of commands but
199 * we can't with bt-host.c. */
201 s->hci->cmd_send(s->hci, pkt, s->in_len - 1);
202 break;
204 case H4_EVT_PKT:
205 goto bad_pkt;
207 case H4_ACL_PKT:
208 s->hci->acl_send(s->hci, pkt, s->in_len - 1);
209 break;
211 case H4_SCO_PKT:
212 s->hci->sco_send(s->hci, pkt, s->in_len - 1);
213 break;
215 case H4_NEG_PKT:
216 if (s->in_hdr != sizeof(csrhci_neg_packet) ||
217 memcmp(pkt - 1, csrhci_neg_packet, s->in_hdr)) {
218 fprintf(stderr, "%s: got a bad NEG packet\n", __FUNCTION__);
219 return;
221 pkt += 2;
223 rpkt = csrhci_out_packet_csr(s, H4_NEG_PKT, 10);
225 *rpkt ++ = 0x20; /* Operational settings negotiation Ok */
226 memcpy(rpkt, pkt, 7); rpkt += 7;
227 *rpkt ++ = 0xff;
228 *rpkt = 0xff;
229 break;
231 case H4_ALIVE_PKT:
232 if (s->in_hdr != 4 || pkt[1] != 0x55 || pkt[2] != 0x00) {
233 fprintf(stderr, "%s: got a bad ALIVE packet\n", __FUNCTION__);
234 return;
237 rpkt = csrhci_out_packet_csr(s, H4_ALIVE_PKT, 2);
239 *rpkt ++ = 0xcc;
240 *rpkt = 0x00;
241 break;
243 default:
244 bad_pkt:
245 /* TODO: error out */
246 fprintf(stderr, "%s: got a bad packet\n", __FUNCTION__);
247 break;
250 csrhci_fifo_wake(s);
253 static int csrhci_header_len(const uint8_t *pkt)
255 switch (pkt[0]) {
256 case H4_CMD_PKT:
257 return HCI_COMMAND_HDR_SIZE;
258 case H4_EVT_PKT:
259 return HCI_EVENT_HDR_SIZE;
260 case H4_ACL_PKT:
261 return HCI_ACL_HDR_SIZE;
262 case H4_SCO_PKT:
263 return HCI_SCO_HDR_SIZE;
264 case H4_NEG_PKT:
265 return pkt[1] + 1;
266 case H4_ALIVE_PKT:
267 return 3;
270 exit(-1);
273 static int csrhci_data_len(const uint8_t *pkt)
275 switch (*pkt ++) {
276 case H4_CMD_PKT:
277 /* It seems that vendor-specific command packets for H4+ are all
278 * one byte longer than indicated in the standard header. */
279 if (le16_to_cpu(((struct hci_command_hdr *) pkt)->opcode) == 0xfc00)
280 return (((struct hci_command_hdr *) pkt)->plen + 1) & ~1;
282 return ((struct hci_command_hdr *) pkt)->plen;
283 case H4_EVT_PKT:
284 return ((struct hci_event_hdr *) pkt)->plen;
285 case H4_ACL_PKT:
286 return le16_to_cpu(((struct hci_acl_hdr *) pkt)->dlen);
287 case H4_SCO_PKT:
288 return ((struct hci_sco_hdr *) pkt)->dlen;
289 case H4_NEG_PKT:
290 case H4_ALIVE_PKT:
291 return 0;
294 exit(-1);
297 static int csrhci_write(struct CharDriverState *chr,
298 const uint8_t *buf, int len)
300 struct csrhci_s *s = (struct csrhci_s *) chr->opaque;
301 int plen = s->in_len;
303 if (!s->enable)
304 return 0;
306 s->in_len += len;
307 memcpy(s->inpkt + plen, buf, len);
309 while (1) {
310 if (s->in_len >= 2 && plen < 2)
311 s->in_hdr = csrhci_header_len(s->inpkt) + 1;
313 if (s->in_len >= s->in_hdr && plen < s->in_hdr)
314 s->in_data = csrhci_data_len(s->inpkt) + s->in_hdr;
316 if (s->in_len >= s->in_data) {
317 csrhci_in_packet(s, s->inpkt);
319 memmove(s->inpkt, s->inpkt + s->in_len, s->in_len - s->in_data);
320 s->in_len -= s->in_data;
321 s->in_hdr = INT_MAX;
322 s->in_data = INT_MAX;
323 plen = 0;
324 } else
325 break;
328 return len;
331 static void csrhci_out_hci_packet_event(void *opaque,
332 const uint8_t *data, int len)
334 struct csrhci_s *s = (struct csrhci_s *) opaque;
335 uint8_t *pkt = csrhci_out_packet(s, (len + 2) & ~1); /* Align */
337 *pkt ++ = H4_EVT_PKT;
338 memcpy(pkt, data, len);
340 csrhci_fifo_wake(s);
343 static void csrhci_out_hci_packet_acl(void *opaque,
344 const uint8_t *data, int len)
346 struct csrhci_s *s = (struct csrhci_s *) opaque;
347 uint8_t *pkt = csrhci_out_packet(s, (len + 2) & ~1); /* Align */
349 *pkt ++ = H4_ACL_PKT;
350 pkt[len & ~1] = 0;
351 memcpy(pkt, data, len);
353 csrhci_fifo_wake(s);
356 static int csrhci_ioctl(struct CharDriverState *chr, int cmd, void *arg)
358 QEMUSerialSetParams *ssp;
359 struct csrhci_s *s = (struct csrhci_s *) chr->opaque;
360 int prev_state = s->modem_state;
362 switch (cmd) {
363 case CHR_IOCTL_SERIAL_SET_PARAMS:
364 ssp = (QEMUSerialSetParams *) arg;
365 s->baud_delay = get_ticks_per_sec() / ssp->speed;
366 /* Moments later... (but shorter than 100ms) */
367 s->modem_state |= CHR_TIOCM_CTS;
368 break;
370 case CHR_IOCTL_SERIAL_GET_TIOCM:
371 *(int *) arg = s->modem_state;
372 break;
374 case CHR_IOCTL_SERIAL_SET_TIOCM:
375 s->modem_state = *(int *) arg;
376 if (~s->modem_state & prev_state & CHR_TIOCM_RTS)
377 s->modem_state &= ~CHR_TIOCM_CTS;
378 break;
380 default:
381 return -ENOTSUP;
383 return 0;
386 static void csrhci_reset(struct csrhci_s *s)
388 s->out_len = 0;
389 s->out_size = FIFO_LEN;
390 s->in_len = 0;
391 s->baud_delay = get_ticks_per_sec();
392 s->enable = 0;
393 s->in_hdr = INT_MAX;
394 s->in_data = INT_MAX;
396 s->modem_state = 0;
397 /* After a while... (but sooner than 10ms) */
398 s->modem_state |= CHR_TIOCM_CTS;
400 memset(&s->bd_addr, 0, sizeof(bdaddr_t));
403 static void csrhci_out_tick(void *opaque)
405 csrhci_fifo_wake((struct csrhci_s *) opaque);
408 static void csrhci_pins(void *opaque, int line, int level)
410 struct csrhci_s *s = (struct csrhci_s *) opaque;
411 int state = s->pin_state;
413 s->pin_state &= ~(1 << line);
414 s->pin_state |= (!!level) << line;
416 if ((state & ~s->pin_state) & (1 << csrhci_pin_reset)) {
417 /* TODO: Disappear from lower layers */
418 csrhci_reset(s);
421 if (s->pin_state == 3 && state != 3) {
422 s->enable = 1;
423 /* TODO: Wake lower layers up */
427 qemu_irq *csrhci_pins_get(CharDriverState *chr)
429 struct csrhci_s *s = (struct csrhci_s *) chr->opaque;
431 return s->pins;
434 CharDriverState *uart_hci_init(qemu_irq wakeup)
436 struct csrhci_s *s = (struct csrhci_s *)
437 g_malloc0(sizeof(struct csrhci_s));
439 s->chr.opaque = s;
440 s->chr.chr_write = csrhci_write;
441 s->chr.chr_ioctl = csrhci_ioctl;
442 s->chr.avail_connections = 1;
444 s->hci = qemu_next_hci();
445 s->hci->opaque = s;
446 s->hci->evt_recv = csrhci_out_hci_packet_event;
447 s->hci->acl_recv = csrhci_out_hci_packet_acl;
449 s->out_tm = timer_new_ns(QEMU_CLOCK_VIRTUAL, csrhci_out_tick, s);
450 s->pins = qemu_allocate_irqs(csrhci_pins, s, __csrhci_pins);
451 csrhci_reset(s);
453 return &s->chr;