nbd: add missed aio_context_acquire in nbd_export_new
[qemu/ar7.git] / target-arm / translate-a64.c
blob80f6c2058c232d0354da8bbd99f41f2a05bc8634
1 /*
2 * AArch64 translation
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "tcg-op.h"
23 #include "qemu/log.h"
24 #include "arm_ldst.h"
25 #include "translate.h"
26 #include "internals.h"
27 #include "qemu/host-utils.h"
29 #include "exec/semihost.h"
30 #include "exec/gen-icount.h"
32 #include "exec/helper-proto.h"
33 #include "exec/helper-gen.h"
35 #include "trace-tcg.h"
37 static TCGv_i64 cpu_X[32];
38 static TCGv_i64 cpu_pc;
40 /* Load/store exclusive handling */
41 static TCGv_i64 cpu_exclusive_high;
43 static const char *regnames[] = {
44 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
45 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
46 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
47 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
50 enum a64_shift_type {
51 A64_SHIFT_TYPE_LSL = 0,
52 A64_SHIFT_TYPE_LSR = 1,
53 A64_SHIFT_TYPE_ASR = 2,
54 A64_SHIFT_TYPE_ROR = 3
57 /* Table based decoder typedefs - used when the relevant bits for decode
58 * are too awkwardly scattered across the instruction (eg SIMD).
60 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
62 typedef struct AArch64DecodeTable {
63 uint32_t pattern;
64 uint32_t mask;
65 AArch64DecodeFn *disas_fn;
66 } AArch64DecodeTable;
68 /* Function prototype for gen_ functions for calling Neon helpers */
69 typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32);
70 typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32);
71 typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
72 typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64);
73 typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64);
74 typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64);
75 typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64);
76 typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32);
77 typedef void NeonGenTwoSingleOPFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
78 typedef void NeonGenTwoDoubleOPFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
79 typedef void NeonGenOneOpFn(TCGv_i64, TCGv_i64);
80 typedef void CryptoTwoOpEnvFn(TCGv_ptr, TCGv_i32, TCGv_i32);
81 typedef void CryptoThreeOpEnvFn(TCGv_ptr, TCGv_i32, TCGv_i32, TCGv_i32);
83 /* initialize TCG globals. */
84 void a64_translate_init(void)
86 int i;
88 cpu_pc = tcg_global_mem_new_i64(TCG_AREG0,
89 offsetof(CPUARMState, pc),
90 "pc");
91 for (i = 0; i < 32; i++) {
92 cpu_X[i] = tcg_global_mem_new_i64(TCG_AREG0,
93 offsetof(CPUARMState, xregs[i]),
94 regnames[i]);
97 cpu_exclusive_high = tcg_global_mem_new_i64(TCG_AREG0,
98 offsetof(CPUARMState, exclusive_high), "exclusive_high");
101 static inline ARMMMUIdx get_a64_user_mem_index(DisasContext *s)
103 /* Return the mmu_idx to use for A64 "unprivileged load/store" insns:
104 * if EL1, access as if EL0; otherwise access at current EL
106 switch (s->mmu_idx) {
107 case ARMMMUIdx_S12NSE1:
108 return ARMMMUIdx_S12NSE0;
109 case ARMMMUIdx_S1SE1:
110 return ARMMMUIdx_S1SE0;
111 case ARMMMUIdx_S2NS:
112 g_assert_not_reached();
113 default:
114 return s->mmu_idx;
118 void aarch64_cpu_dump_state(CPUState *cs, FILE *f,
119 fprintf_function cpu_fprintf, int flags)
121 ARMCPU *cpu = ARM_CPU(cs);
122 CPUARMState *env = &cpu->env;
123 uint32_t psr = pstate_read(env);
124 int i;
125 int el = arm_current_el(env);
126 const char *ns_status;
128 cpu_fprintf(f, "PC=%016"PRIx64" SP=%016"PRIx64"\n",
129 env->pc, env->xregs[31]);
130 for (i = 0; i < 31; i++) {
131 cpu_fprintf(f, "X%02d=%016"PRIx64, i, env->xregs[i]);
132 if ((i % 4) == 3) {
133 cpu_fprintf(f, "\n");
134 } else {
135 cpu_fprintf(f, " ");
139 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
140 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
141 } else {
142 ns_status = "";
145 cpu_fprintf(f, "\nPSTATE=%08x %c%c%c%c %sEL%d%c\n",
146 psr,
147 psr & PSTATE_N ? 'N' : '-',
148 psr & PSTATE_Z ? 'Z' : '-',
149 psr & PSTATE_C ? 'C' : '-',
150 psr & PSTATE_V ? 'V' : '-',
151 ns_status,
153 psr & PSTATE_SP ? 'h' : 't');
155 if (flags & CPU_DUMP_FPU) {
156 int numvfpregs = 32;
157 for (i = 0; i < numvfpregs; i += 2) {
158 uint64_t vlo = float64_val(env->vfp.regs[i * 2]);
159 uint64_t vhi = float64_val(env->vfp.regs[(i * 2) + 1]);
160 cpu_fprintf(f, "q%02d=%016" PRIx64 ":%016" PRIx64 " ",
161 i, vhi, vlo);
162 vlo = float64_val(env->vfp.regs[(i + 1) * 2]);
163 vhi = float64_val(env->vfp.regs[((i + 1) * 2) + 1]);
164 cpu_fprintf(f, "q%02d=%016" PRIx64 ":%016" PRIx64 "\n",
165 i + 1, vhi, vlo);
167 cpu_fprintf(f, "FPCR: %08x FPSR: %08x\n",
168 vfp_get_fpcr(env), vfp_get_fpsr(env));
172 void gen_a64_set_pc_im(uint64_t val)
174 tcg_gen_movi_i64(cpu_pc, val);
177 typedef struct DisasCompare64 {
178 TCGCond cond;
179 TCGv_i64 value;
180 } DisasCompare64;
182 static void a64_test_cc(DisasCompare64 *c64, int cc)
184 DisasCompare c32;
186 arm_test_cc(&c32, cc);
188 /* Sign-extend the 32-bit value so that the GE/LT comparisons work
189 * properly. The NE/EQ comparisons are also fine with this choice. */
190 c64->cond = c32.cond;
191 c64->value = tcg_temp_new_i64();
192 tcg_gen_ext_i32_i64(c64->value, c32.value);
194 arm_free_cc(&c32);
197 static void a64_free_cc(DisasCompare64 *c64)
199 tcg_temp_free_i64(c64->value);
202 static void gen_exception_internal(int excp)
204 TCGv_i32 tcg_excp = tcg_const_i32(excp);
206 assert(excp_is_internal(excp));
207 gen_helper_exception_internal(cpu_env, tcg_excp);
208 tcg_temp_free_i32(tcg_excp);
211 static void gen_exception(int excp, uint32_t syndrome, uint32_t target_el)
213 TCGv_i32 tcg_excp = tcg_const_i32(excp);
214 TCGv_i32 tcg_syn = tcg_const_i32(syndrome);
215 TCGv_i32 tcg_el = tcg_const_i32(target_el);
217 gen_helper_exception_with_syndrome(cpu_env, tcg_excp,
218 tcg_syn, tcg_el);
219 tcg_temp_free_i32(tcg_el);
220 tcg_temp_free_i32(tcg_syn);
221 tcg_temp_free_i32(tcg_excp);
224 static void gen_exception_internal_insn(DisasContext *s, int offset, int excp)
226 gen_a64_set_pc_im(s->pc - offset);
227 gen_exception_internal(excp);
228 s->is_jmp = DISAS_EXC;
231 static void gen_exception_insn(DisasContext *s, int offset, int excp,
232 uint32_t syndrome, uint32_t target_el)
234 gen_a64_set_pc_im(s->pc - offset);
235 gen_exception(excp, syndrome, target_el);
236 s->is_jmp = DISAS_EXC;
239 static void gen_ss_advance(DisasContext *s)
241 /* If the singlestep state is Active-not-pending, advance to
242 * Active-pending.
244 if (s->ss_active) {
245 s->pstate_ss = 0;
246 gen_helper_clear_pstate_ss(cpu_env);
250 static void gen_step_complete_exception(DisasContext *s)
252 /* We just completed step of an insn. Move from Active-not-pending
253 * to Active-pending, and then also take the swstep exception.
254 * This corresponds to making the (IMPDEF) choice to prioritize
255 * swstep exceptions over asynchronous exceptions taken to an exception
256 * level where debug is disabled. This choice has the advantage that
257 * we do not need to maintain internal state corresponding to the
258 * ISV/EX syndrome bits between completion of the step and generation
259 * of the exception, and our syndrome information is always correct.
261 gen_ss_advance(s);
262 gen_exception(EXCP_UDEF, syn_swstep(s->ss_same_el, 1, s->is_ldex),
263 default_exception_el(s));
264 s->is_jmp = DISAS_EXC;
267 static inline bool use_goto_tb(DisasContext *s, int n, uint64_t dest)
269 /* No direct tb linking with singlestep (either QEMU's or the ARM
270 * debug architecture kind) or deterministic io
272 if (s->singlestep_enabled || s->ss_active || (s->tb->cflags & CF_LAST_IO)) {
273 return false;
276 /* Only link tbs from inside the same guest page */
277 if ((s->tb->pc & TARGET_PAGE_MASK) != (dest & TARGET_PAGE_MASK)) {
278 return false;
281 return true;
284 static inline void gen_goto_tb(DisasContext *s, int n, uint64_t dest)
286 TranslationBlock *tb;
288 tb = s->tb;
289 if (use_goto_tb(s, n, dest)) {
290 tcg_gen_goto_tb(n);
291 gen_a64_set_pc_im(dest);
292 tcg_gen_exit_tb((intptr_t)tb + n);
293 s->is_jmp = DISAS_TB_JUMP;
294 } else {
295 gen_a64_set_pc_im(dest);
296 if (s->ss_active) {
297 gen_step_complete_exception(s);
298 } else if (s->singlestep_enabled) {
299 gen_exception_internal(EXCP_DEBUG);
300 } else {
301 tcg_gen_exit_tb(0);
302 s->is_jmp = DISAS_TB_JUMP;
307 static void unallocated_encoding(DisasContext *s)
309 /* Unallocated and reserved encodings are uncategorized */
310 gen_exception_insn(s, 4, EXCP_UDEF, syn_uncategorized(),
311 default_exception_el(s));
314 #define unsupported_encoding(s, insn) \
315 do { \
316 qemu_log_mask(LOG_UNIMP, \
317 "%s:%d: unsupported instruction encoding 0x%08x " \
318 "at pc=%016" PRIx64 "\n", \
319 __FILE__, __LINE__, insn, s->pc - 4); \
320 unallocated_encoding(s); \
321 } while (0);
323 static void init_tmp_a64_array(DisasContext *s)
325 #ifdef CONFIG_DEBUG_TCG
326 int i;
327 for (i = 0; i < ARRAY_SIZE(s->tmp_a64); i++) {
328 TCGV_UNUSED_I64(s->tmp_a64[i]);
330 #endif
331 s->tmp_a64_count = 0;
334 static void free_tmp_a64(DisasContext *s)
336 int i;
337 for (i = 0; i < s->tmp_a64_count; i++) {
338 tcg_temp_free_i64(s->tmp_a64[i]);
340 init_tmp_a64_array(s);
343 static TCGv_i64 new_tmp_a64(DisasContext *s)
345 assert(s->tmp_a64_count < TMP_A64_MAX);
346 return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_new_i64();
349 static TCGv_i64 new_tmp_a64_zero(DisasContext *s)
351 TCGv_i64 t = new_tmp_a64(s);
352 tcg_gen_movi_i64(t, 0);
353 return t;
357 * Register access functions
359 * These functions are used for directly accessing a register in where
360 * changes to the final register value are likely to be made. If you
361 * need to use a register for temporary calculation (e.g. index type
362 * operations) use the read_* form.
364 * B1.2.1 Register mappings
366 * In instruction register encoding 31 can refer to ZR (zero register) or
367 * the SP (stack pointer) depending on context. In QEMU's case we map SP
368 * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
369 * This is the point of the _sp forms.
371 static TCGv_i64 cpu_reg(DisasContext *s, int reg)
373 if (reg == 31) {
374 return new_tmp_a64_zero(s);
375 } else {
376 return cpu_X[reg];
380 /* register access for when 31 == SP */
381 static TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
383 return cpu_X[reg];
386 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
387 * representing the register contents. This TCGv is an auto-freed
388 * temporary so it need not be explicitly freed, and may be modified.
390 static TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
392 TCGv_i64 v = new_tmp_a64(s);
393 if (reg != 31) {
394 if (sf) {
395 tcg_gen_mov_i64(v, cpu_X[reg]);
396 } else {
397 tcg_gen_ext32u_i64(v, cpu_X[reg]);
399 } else {
400 tcg_gen_movi_i64(v, 0);
402 return v;
405 static TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
407 TCGv_i64 v = new_tmp_a64(s);
408 if (sf) {
409 tcg_gen_mov_i64(v, cpu_X[reg]);
410 } else {
411 tcg_gen_ext32u_i64(v, cpu_X[reg]);
413 return v;
416 /* We should have at some point before trying to access an FP register
417 * done the necessary access check, so assert that
418 * (a) we did the check and
419 * (b) we didn't then just plough ahead anyway if it failed.
420 * Print the instruction pattern in the abort message so we can figure
421 * out what we need to fix if a user encounters this problem in the wild.
423 static inline void assert_fp_access_checked(DisasContext *s)
425 #ifdef CONFIG_DEBUG_TCG
426 if (unlikely(!s->fp_access_checked || s->fp_excp_el)) {
427 fprintf(stderr, "target-arm: FP access check missing for "
428 "instruction 0x%08x\n", s->insn);
429 abort();
431 #endif
434 /* Return the offset into CPUARMState of an element of specified
435 * size, 'element' places in from the least significant end of
436 * the FP/vector register Qn.
438 static inline int vec_reg_offset(DisasContext *s, int regno,
439 int element, TCGMemOp size)
441 int offs = offsetof(CPUARMState, vfp.regs[regno * 2]);
442 #ifdef HOST_WORDS_BIGENDIAN
443 /* This is complicated slightly because vfp.regs[2n] is
444 * still the low half and vfp.regs[2n+1] the high half
445 * of the 128 bit vector, even on big endian systems.
446 * Calculate the offset assuming a fully bigendian 128 bits,
447 * then XOR to account for the order of the two 64 bit halves.
449 offs += (16 - ((element + 1) * (1 << size)));
450 offs ^= 8;
451 #else
452 offs += element * (1 << size);
453 #endif
454 assert_fp_access_checked(s);
455 return offs;
458 /* Return the offset into CPUARMState of a slice (from
459 * the least significant end) of FP register Qn (ie
460 * Dn, Sn, Hn or Bn).
461 * (Note that this is not the same mapping as for A32; see cpu.h)
463 static inline int fp_reg_offset(DisasContext *s, int regno, TCGMemOp size)
465 int offs = offsetof(CPUARMState, vfp.regs[regno * 2]);
466 #ifdef HOST_WORDS_BIGENDIAN
467 offs += (8 - (1 << size));
468 #endif
469 assert_fp_access_checked(s);
470 return offs;
473 /* Offset of the high half of the 128 bit vector Qn */
474 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
476 assert_fp_access_checked(s);
477 return offsetof(CPUARMState, vfp.regs[regno * 2 + 1]);
480 /* Convenience accessors for reading and writing single and double
481 * FP registers. Writing clears the upper parts of the associated
482 * 128 bit vector register, as required by the architecture.
483 * Note that unlike the GP register accessors, the values returned
484 * by the read functions must be manually freed.
486 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
488 TCGv_i64 v = tcg_temp_new_i64();
490 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
491 return v;
494 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
496 TCGv_i32 v = tcg_temp_new_i32();
498 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32));
499 return v;
502 static void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
504 TCGv_i64 tcg_zero = tcg_const_i64(0);
506 tcg_gen_st_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
507 tcg_gen_st_i64(tcg_zero, cpu_env, fp_reg_hi_offset(s, reg));
508 tcg_temp_free_i64(tcg_zero);
511 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
513 TCGv_i64 tmp = tcg_temp_new_i64();
515 tcg_gen_extu_i32_i64(tmp, v);
516 write_fp_dreg(s, reg, tmp);
517 tcg_temp_free_i64(tmp);
520 static TCGv_ptr get_fpstatus_ptr(void)
522 TCGv_ptr statusptr = tcg_temp_new_ptr();
523 int offset;
525 /* In A64 all instructions (both FP and Neon) use the FPCR;
526 * there is no equivalent of the A32 Neon "standard FPSCR value"
527 * and all operations use vfp.fp_status.
529 offset = offsetof(CPUARMState, vfp.fp_status);
530 tcg_gen_addi_ptr(statusptr, cpu_env, offset);
531 return statusptr;
534 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
535 * than the 32 bit equivalent.
537 static inline void gen_set_NZ64(TCGv_i64 result)
539 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
540 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
543 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
544 static inline void gen_logic_CC(int sf, TCGv_i64 result)
546 if (sf) {
547 gen_set_NZ64(result);
548 } else {
549 tcg_gen_extrl_i64_i32(cpu_ZF, result);
550 tcg_gen_mov_i32(cpu_NF, cpu_ZF);
552 tcg_gen_movi_i32(cpu_CF, 0);
553 tcg_gen_movi_i32(cpu_VF, 0);
556 /* dest = T0 + T1; compute C, N, V and Z flags */
557 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
559 if (sf) {
560 TCGv_i64 result, flag, tmp;
561 result = tcg_temp_new_i64();
562 flag = tcg_temp_new_i64();
563 tmp = tcg_temp_new_i64();
565 tcg_gen_movi_i64(tmp, 0);
566 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
568 tcg_gen_extrl_i64_i32(cpu_CF, flag);
570 gen_set_NZ64(result);
572 tcg_gen_xor_i64(flag, result, t0);
573 tcg_gen_xor_i64(tmp, t0, t1);
574 tcg_gen_andc_i64(flag, flag, tmp);
575 tcg_temp_free_i64(tmp);
576 tcg_gen_extrh_i64_i32(cpu_VF, flag);
578 tcg_gen_mov_i64(dest, result);
579 tcg_temp_free_i64(result);
580 tcg_temp_free_i64(flag);
581 } else {
582 /* 32 bit arithmetic */
583 TCGv_i32 t0_32 = tcg_temp_new_i32();
584 TCGv_i32 t1_32 = tcg_temp_new_i32();
585 TCGv_i32 tmp = tcg_temp_new_i32();
587 tcg_gen_movi_i32(tmp, 0);
588 tcg_gen_extrl_i64_i32(t0_32, t0);
589 tcg_gen_extrl_i64_i32(t1_32, t1);
590 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
591 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
592 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
593 tcg_gen_xor_i32(tmp, t0_32, t1_32);
594 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
595 tcg_gen_extu_i32_i64(dest, cpu_NF);
597 tcg_temp_free_i32(tmp);
598 tcg_temp_free_i32(t0_32);
599 tcg_temp_free_i32(t1_32);
603 /* dest = T0 - T1; compute C, N, V and Z flags */
604 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
606 if (sf) {
607 /* 64 bit arithmetic */
608 TCGv_i64 result, flag, tmp;
610 result = tcg_temp_new_i64();
611 flag = tcg_temp_new_i64();
612 tcg_gen_sub_i64(result, t0, t1);
614 gen_set_NZ64(result);
616 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
617 tcg_gen_extrl_i64_i32(cpu_CF, flag);
619 tcg_gen_xor_i64(flag, result, t0);
620 tmp = tcg_temp_new_i64();
621 tcg_gen_xor_i64(tmp, t0, t1);
622 tcg_gen_and_i64(flag, flag, tmp);
623 tcg_temp_free_i64(tmp);
624 tcg_gen_extrh_i64_i32(cpu_VF, flag);
625 tcg_gen_mov_i64(dest, result);
626 tcg_temp_free_i64(flag);
627 tcg_temp_free_i64(result);
628 } else {
629 /* 32 bit arithmetic */
630 TCGv_i32 t0_32 = tcg_temp_new_i32();
631 TCGv_i32 t1_32 = tcg_temp_new_i32();
632 TCGv_i32 tmp;
634 tcg_gen_extrl_i64_i32(t0_32, t0);
635 tcg_gen_extrl_i64_i32(t1_32, t1);
636 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
637 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
638 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
639 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
640 tmp = tcg_temp_new_i32();
641 tcg_gen_xor_i32(tmp, t0_32, t1_32);
642 tcg_temp_free_i32(t0_32);
643 tcg_temp_free_i32(t1_32);
644 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
645 tcg_temp_free_i32(tmp);
646 tcg_gen_extu_i32_i64(dest, cpu_NF);
650 /* dest = T0 + T1 + CF; do not compute flags. */
651 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
653 TCGv_i64 flag = tcg_temp_new_i64();
654 tcg_gen_extu_i32_i64(flag, cpu_CF);
655 tcg_gen_add_i64(dest, t0, t1);
656 tcg_gen_add_i64(dest, dest, flag);
657 tcg_temp_free_i64(flag);
659 if (!sf) {
660 tcg_gen_ext32u_i64(dest, dest);
664 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
665 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
667 if (sf) {
668 TCGv_i64 result, cf_64, vf_64, tmp;
669 result = tcg_temp_new_i64();
670 cf_64 = tcg_temp_new_i64();
671 vf_64 = tcg_temp_new_i64();
672 tmp = tcg_const_i64(0);
674 tcg_gen_extu_i32_i64(cf_64, cpu_CF);
675 tcg_gen_add2_i64(result, cf_64, t0, tmp, cf_64, tmp);
676 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, tmp);
677 tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
678 gen_set_NZ64(result);
680 tcg_gen_xor_i64(vf_64, result, t0);
681 tcg_gen_xor_i64(tmp, t0, t1);
682 tcg_gen_andc_i64(vf_64, vf_64, tmp);
683 tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
685 tcg_gen_mov_i64(dest, result);
687 tcg_temp_free_i64(tmp);
688 tcg_temp_free_i64(vf_64);
689 tcg_temp_free_i64(cf_64);
690 tcg_temp_free_i64(result);
691 } else {
692 TCGv_i32 t0_32, t1_32, tmp;
693 t0_32 = tcg_temp_new_i32();
694 t1_32 = tcg_temp_new_i32();
695 tmp = tcg_const_i32(0);
697 tcg_gen_extrl_i64_i32(t0_32, t0);
698 tcg_gen_extrl_i64_i32(t1_32, t1);
699 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, cpu_CF, tmp);
700 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, tmp);
702 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
703 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
704 tcg_gen_xor_i32(tmp, t0_32, t1_32);
705 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
706 tcg_gen_extu_i32_i64(dest, cpu_NF);
708 tcg_temp_free_i32(tmp);
709 tcg_temp_free_i32(t1_32);
710 tcg_temp_free_i32(t0_32);
715 * Load/Store generators
719 * Store from GPR register to memory.
721 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
722 TCGv_i64 tcg_addr, int size, int memidx)
724 g_assert(size <= 3);
725 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, MO_TE + size);
728 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
729 TCGv_i64 tcg_addr, int size)
731 do_gpr_st_memidx(s, source, tcg_addr, size, get_mem_index(s));
735 * Load from memory to GPR register
737 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
738 int size, bool is_signed, bool extend, int memidx)
740 TCGMemOp memop = MO_TE + size;
742 g_assert(size <= 3);
744 if (is_signed) {
745 memop += MO_SIGN;
748 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
750 if (extend && is_signed) {
751 g_assert(size < 3);
752 tcg_gen_ext32u_i64(dest, dest);
756 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
757 int size, bool is_signed, bool extend)
759 do_gpr_ld_memidx(s, dest, tcg_addr, size, is_signed, extend,
760 get_mem_index(s));
764 * Store from FP register to memory
766 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size)
768 /* This writes the bottom N bits of a 128 bit wide vector to memory */
769 TCGv_i64 tmp = tcg_temp_new_i64();
770 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_offset(s, srcidx, MO_64));
771 if (size < 4) {
772 tcg_gen_qemu_st_i64(tmp, tcg_addr, get_mem_index(s), MO_TE + size);
773 } else {
774 TCGv_i64 tcg_hiaddr = tcg_temp_new_i64();
775 tcg_gen_qemu_st_i64(tmp, tcg_addr, get_mem_index(s), MO_TEQ);
776 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_hi_offset(s, srcidx));
777 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
778 tcg_gen_qemu_st_i64(tmp, tcg_hiaddr, get_mem_index(s), MO_TEQ);
779 tcg_temp_free_i64(tcg_hiaddr);
782 tcg_temp_free_i64(tmp);
786 * Load from memory to FP register
788 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size)
790 /* This always zero-extends and writes to a full 128 bit wide vector */
791 TCGv_i64 tmplo = tcg_temp_new_i64();
792 TCGv_i64 tmphi;
794 if (size < 4) {
795 TCGMemOp memop = MO_TE + size;
796 tmphi = tcg_const_i64(0);
797 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), memop);
798 } else {
799 TCGv_i64 tcg_hiaddr;
800 tmphi = tcg_temp_new_i64();
801 tcg_hiaddr = tcg_temp_new_i64();
803 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), MO_TEQ);
804 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
805 tcg_gen_qemu_ld_i64(tmphi, tcg_hiaddr, get_mem_index(s), MO_TEQ);
806 tcg_temp_free_i64(tcg_hiaddr);
809 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64));
810 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx));
812 tcg_temp_free_i64(tmplo);
813 tcg_temp_free_i64(tmphi);
817 * Vector load/store helpers.
819 * The principal difference between this and a FP load is that we don't
820 * zero extend as we are filling a partial chunk of the vector register.
821 * These functions don't support 128 bit loads/stores, which would be
822 * normal load/store operations.
824 * The _i32 versions are useful when operating on 32 bit quantities
825 * (eg for floating point single or using Neon helper functions).
828 /* Get value of an element within a vector register */
829 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
830 int element, TCGMemOp memop)
832 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
833 switch (memop) {
834 case MO_8:
835 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
836 break;
837 case MO_16:
838 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
839 break;
840 case MO_32:
841 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
842 break;
843 case MO_8|MO_SIGN:
844 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
845 break;
846 case MO_16|MO_SIGN:
847 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
848 break;
849 case MO_32|MO_SIGN:
850 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
851 break;
852 case MO_64:
853 case MO_64|MO_SIGN:
854 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
855 break;
856 default:
857 g_assert_not_reached();
861 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
862 int element, TCGMemOp memop)
864 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
865 switch (memop) {
866 case MO_8:
867 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
868 break;
869 case MO_16:
870 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
871 break;
872 case MO_8|MO_SIGN:
873 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
874 break;
875 case MO_16|MO_SIGN:
876 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
877 break;
878 case MO_32:
879 case MO_32|MO_SIGN:
880 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
881 break;
882 default:
883 g_assert_not_reached();
887 /* Set value of an element within a vector register */
888 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
889 int element, TCGMemOp memop)
891 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
892 switch (memop) {
893 case MO_8:
894 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
895 break;
896 case MO_16:
897 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
898 break;
899 case MO_32:
900 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
901 break;
902 case MO_64:
903 tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
904 break;
905 default:
906 g_assert_not_reached();
910 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
911 int destidx, int element, TCGMemOp memop)
913 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
914 switch (memop) {
915 case MO_8:
916 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
917 break;
918 case MO_16:
919 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
920 break;
921 case MO_32:
922 tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
923 break;
924 default:
925 g_assert_not_reached();
929 /* Clear the high 64 bits of a 128 bit vector (in general non-quad
930 * vector ops all need to do this).
932 static void clear_vec_high(DisasContext *s, int rd)
934 TCGv_i64 tcg_zero = tcg_const_i64(0);
936 write_vec_element(s, tcg_zero, rd, 1, MO_64);
937 tcg_temp_free_i64(tcg_zero);
940 /* Store from vector register to memory */
941 static void do_vec_st(DisasContext *s, int srcidx, int element,
942 TCGv_i64 tcg_addr, int size)
944 TCGMemOp memop = MO_TE + size;
945 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
947 read_vec_element(s, tcg_tmp, srcidx, element, size);
948 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), memop);
950 tcg_temp_free_i64(tcg_tmp);
953 /* Load from memory to vector register */
954 static void do_vec_ld(DisasContext *s, int destidx, int element,
955 TCGv_i64 tcg_addr, int size)
957 TCGMemOp memop = MO_TE + size;
958 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
960 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), memop);
961 write_vec_element(s, tcg_tmp, destidx, element, size);
963 tcg_temp_free_i64(tcg_tmp);
966 /* Check that FP/Neon access is enabled. If it is, return
967 * true. If not, emit code to generate an appropriate exception,
968 * and return false; the caller should not emit any code for
969 * the instruction. Note that this check must happen after all
970 * unallocated-encoding checks (otherwise the syndrome information
971 * for the resulting exception will be incorrect).
973 static inline bool fp_access_check(DisasContext *s)
975 assert(!s->fp_access_checked);
976 s->fp_access_checked = true;
978 if (!s->fp_excp_el) {
979 return true;
982 gen_exception_insn(s, 4, EXCP_UDEF, syn_fp_access_trap(1, 0xe, false),
983 s->fp_excp_el);
984 return false;
988 * This utility function is for doing register extension with an
989 * optional shift. You will likely want to pass a temporary for the
990 * destination register. See DecodeRegExtend() in the ARM ARM.
992 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
993 int option, unsigned int shift)
995 int extsize = extract32(option, 0, 2);
996 bool is_signed = extract32(option, 2, 1);
998 if (is_signed) {
999 switch (extsize) {
1000 case 0:
1001 tcg_gen_ext8s_i64(tcg_out, tcg_in);
1002 break;
1003 case 1:
1004 tcg_gen_ext16s_i64(tcg_out, tcg_in);
1005 break;
1006 case 2:
1007 tcg_gen_ext32s_i64(tcg_out, tcg_in);
1008 break;
1009 case 3:
1010 tcg_gen_mov_i64(tcg_out, tcg_in);
1011 break;
1013 } else {
1014 switch (extsize) {
1015 case 0:
1016 tcg_gen_ext8u_i64(tcg_out, tcg_in);
1017 break;
1018 case 1:
1019 tcg_gen_ext16u_i64(tcg_out, tcg_in);
1020 break;
1021 case 2:
1022 tcg_gen_ext32u_i64(tcg_out, tcg_in);
1023 break;
1024 case 3:
1025 tcg_gen_mov_i64(tcg_out, tcg_in);
1026 break;
1030 if (shift) {
1031 tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1035 static inline void gen_check_sp_alignment(DisasContext *s)
1037 /* The AArch64 architecture mandates that (if enabled via PSTATE
1038 * or SCTLR bits) there is a check that SP is 16-aligned on every
1039 * SP-relative load or store (with an exception generated if it is not).
1040 * In line with general QEMU practice regarding misaligned accesses,
1041 * we omit these checks for the sake of guest program performance.
1042 * This function is provided as a hook so we can more easily add these
1043 * checks in future (possibly as a "favour catching guest program bugs
1044 * over speed" user selectable option).
1049 * This provides a simple table based table lookup decoder. It is
1050 * intended to be used when the relevant bits for decode are too
1051 * awkwardly placed and switch/if based logic would be confusing and
1052 * deeply nested. Since it's a linear search through the table, tables
1053 * should be kept small.
1055 * It returns the first handler where insn & mask == pattern, or
1056 * NULL if there is no match.
1057 * The table is terminated by an empty mask (i.e. 0)
1059 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1060 uint32_t insn)
1062 const AArch64DecodeTable *tptr = table;
1064 while (tptr->mask) {
1065 if ((insn & tptr->mask) == tptr->pattern) {
1066 return tptr->disas_fn;
1068 tptr++;
1070 return NULL;
1074 * the instruction disassembly implemented here matches
1075 * the instruction encoding classifications in chapter 3 (C3)
1076 * of the ARM Architecture Reference Manual (DDI0487A_a)
1079 /* C3.2.7 Unconditional branch (immediate)
1080 * 31 30 26 25 0
1081 * +----+-----------+-------------------------------------+
1082 * | op | 0 0 1 0 1 | imm26 |
1083 * +----+-----------+-------------------------------------+
1085 static void disas_uncond_b_imm(DisasContext *s, uint32_t insn)
1087 uint64_t addr = s->pc + sextract32(insn, 0, 26) * 4 - 4;
1089 if (insn & (1U << 31)) {
1090 /* C5.6.26 BL Branch with link */
1091 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
1094 /* C5.6.20 B Branch / C5.6.26 BL Branch with link */
1095 gen_goto_tb(s, 0, addr);
1098 /* C3.2.1 Compare & branch (immediate)
1099 * 31 30 25 24 23 5 4 0
1100 * +----+-------------+----+---------------------+--------+
1101 * | sf | 0 1 1 0 1 0 | op | imm19 | Rt |
1102 * +----+-------------+----+---------------------+--------+
1104 static void disas_comp_b_imm(DisasContext *s, uint32_t insn)
1106 unsigned int sf, op, rt;
1107 uint64_t addr;
1108 TCGLabel *label_match;
1109 TCGv_i64 tcg_cmp;
1111 sf = extract32(insn, 31, 1);
1112 op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */
1113 rt = extract32(insn, 0, 5);
1114 addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
1116 tcg_cmp = read_cpu_reg(s, rt, sf);
1117 label_match = gen_new_label();
1119 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1120 tcg_cmp, 0, label_match);
1122 gen_goto_tb(s, 0, s->pc);
1123 gen_set_label(label_match);
1124 gen_goto_tb(s, 1, addr);
1127 /* C3.2.5 Test & branch (immediate)
1128 * 31 30 25 24 23 19 18 5 4 0
1129 * +----+-------------+----+-------+-------------+------+
1130 * | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt |
1131 * +----+-------------+----+-------+-------------+------+
1133 static void disas_test_b_imm(DisasContext *s, uint32_t insn)
1135 unsigned int bit_pos, op, rt;
1136 uint64_t addr;
1137 TCGLabel *label_match;
1138 TCGv_i64 tcg_cmp;
1140 bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5);
1141 op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */
1142 addr = s->pc + sextract32(insn, 5, 14) * 4 - 4;
1143 rt = extract32(insn, 0, 5);
1145 tcg_cmp = tcg_temp_new_i64();
1146 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos));
1147 label_match = gen_new_label();
1148 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1149 tcg_cmp, 0, label_match);
1150 tcg_temp_free_i64(tcg_cmp);
1151 gen_goto_tb(s, 0, s->pc);
1152 gen_set_label(label_match);
1153 gen_goto_tb(s, 1, addr);
1156 /* C3.2.2 / C5.6.19 Conditional branch (immediate)
1157 * 31 25 24 23 5 4 3 0
1158 * +---------------+----+---------------------+----+------+
1159 * | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond |
1160 * +---------------+----+---------------------+----+------+
1162 static void disas_cond_b_imm(DisasContext *s, uint32_t insn)
1164 unsigned int cond;
1165 uint64_t addr;
1167 if ((insn & (1 << 4)) || (insn & (1 << 24))) {
1168 unallocated_encoding(s);
1169 return;
1171 addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
1172 cond = extract32(insn, 0, 4);
1174 if (cond < 0x0e) {
1175 /* genuinely conditional branches */
1176 TCGLabel *label_match = gen_new_label();
1177 arm_gen_test_cc(cond, label_match);
1178 gen_goto_tb(s, 0, s->pc);
1179 gen_set_label(label_match);
1180 gen_goto_tb(s, 1, addr);
1181 } else {
1182 /* 0xe and 0xf are both "always" conditions */
1183 gen_goto_tb(s, 0, addr);
1187 /* C5.6.68 HINT */
1188 static void handle_hint(DisasContext *s, uint32_t insn,
1189 unsigned int op1, unsigned int op2, unsigned int crm)
1191 unsigned int selector = crm << 3 | op2;
1193 if (op1 != 3) {
1194 unallocated_encoding(s);
1195 return;
1198 switch (selector) {
1199 case 0: /* NOP */
1200 return;
1201 case 3: /* WFI */
1202 s->is_jmp = DISAS_WFI;
1203 return;
1204 case 1: /* YIELD */
1205 s->is_jmp = DISAS_YIELD;
1206 return;
1207 case 2: /* WFE */
1208 s->is_jmp = DISAS_WFE;
1209 return;
1210 case 4: /* SEV */
1211 case 5: /* SEVL */
1212 /* we treat all as NOP at least for now */
1213 return;
1214 default:
1215 /* default specified as NOP equivalent */
1216 return;
1220 static void gen_clrex(DisasContext *s, uint32_t insn)
1222 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1225 /* CLREX, DSB, DMB, ISB */
1226 static void handle_sync(DisasContext *s, uint32_t insn,
1227 unsigned int op1, unsigned int op2, unsigned int crm)
1229 if (op1 != 3) {
1230 unallocated_encoding(s);
1231 return;
1234 switch (op2) {
1235 case 2: /* CLREX */
1236 gen_clrex(s, insn);
1237 return;
1238 case 4: /* DSB */
1239 case 5: /* DMB */
1240 /* We don't emulate caches so barriers are no-ops */
1241 return;
1242 case 6: /* ISB */
1243 /* We need to break the TB after this insn to execute
1244 * a self-modified code correctly and also to take
1245 * any pending interrupts immediately.
1247 s->is_jmp = DISAS_UPDATE;
1248 return;
1249 default:
1250 unallocated_encoding(s);
1251 return;
1255 /* C5.6.130 MSR (immediate) - move immediate to processor state field */
1256 static void handle_msr_i(DisasContext *s, uint32_t insn,
1257 unsigned int op1, unsigned int op2, unsigned int crm)
1259 int op = op1 << 3 | op2;
1260 switch (op) {
1261 case 0x05: /* SPSel */
1262 if (s->current_el == 0) {
1263 unallocated_encoding(s);
1264 return;
1266 /* fall through */
1267 case 0x1e: /* DAIFSet */
1268 case 0x1f: /* DAIFClear */
1270 TCGv_i32 tcg_imm = tcg_const_i32(crm);
1271 TCGv_i32 tcg_op = tcg_const_i32(op);
1272 gen_a64_set_pc_im(s->pc - 4);
1273 gen_helper_msr_i_pstate(cpu_env, tcg_op, tcg_imm);
1274 tcg_temp_free_i32(tcg_imm);
1275 tcg_temp_free_i32(tcg_op);
1276 s->is_jmp = DISAS_UPDATE;
1277 break;
1279 default:
1280 unallocated_encoding(s);
1281 return;
1285 static void gen_get_nzcv(TCGv_i64 tcg_rt)
1287 TCGv_i32 tmp = tcg_temp_new_i32();
1288 TCGv_i32 nzcv = tcg_temp_new_i32();
1290 /* build bit 31, N */
1291 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
1292 /* build bit 30, Z */
1293 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
1294 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
1295 /* build bit 29, C */
1296 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
1297 /* build bit 28, V */
1298 tcg_gen_shri_i32(tmp, cpu_VF, 31);
1299 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
1300 /* generate result */
1301 tcg_gen_extu_i32_i64(tcg_rt, nzcv);
1303 tcg_temp_free_i32(nzcv);
1304 tcg_temp_free_i32(tmp);
1307 static void gen_set_nzcv(TCGv_i64 tcg_rt)
1310 TCGv_i32 nzcv = tcg_temp_new_i32();
1312 /* take NZCV from R[t] */
1313 tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
1315 /* bit 31, N */
1316 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
1317 /* bit 30, Z */
1318 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
1319 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
1320 /* bit 29, C */
1321 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
1322 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
1323 /* bit 28, V */
1324 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
1325 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
1326 tcg_temp_free_i32(nzcv);
1329 /* C5.6.129 MRS - move from system register
1330 * C5.6.131 MSR (register) - move to system register
1331 * C5.6.204 SYS
1332 * C5.6.205 SYSL
1333 * These are all essentially the same insn in 'read' and 'write'
1334 * versions, with varying op0 fields.
1336 static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
1337 unsigned int op0, unsigned int op1, unsigned int op2,
1338 unsigned int crn, unsigned int crm, unsigned int rt)
1340 const ARMCPRegInfo *ri;
1341 TCGv_i64 tcg_rt;
1343 ri = get_arm_cp_reginfo(s->cp_regs,
1344 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1345 crn, crm, op0, op1, op2));
1347 if (!ri) {
1348 /* Unknown register; this might be a guest error or a QEMU
1349 * unimplemented feature.
1351 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
1352 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
1353 isread ? "read" : "write", op0, op1, crn, crm, op2);
1354 unallocated_encoding(s);
1355 return;
1358 /* Check access permissions */
1359 if (!cp_access_ok(s->current_el, ri, isread)) {
1360 unallocated_encoding(s);
1361 return;
1364 if (ri->accessfn) {
1365 /* Emit code to perform further access permissions checks at
1366 * runtime; this may result in an exception.
1368 TCGv_ptr tmpptr;
1369 TCGv_i32 tcg_syn;
1370 uint32_t syndrome;
1372 gen_a64_set_pc_im(s->pc - 4);
1373 tmpptr = tcg_const_ptr(ri);
1374 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
1375 tcg_syn = tcg_const_i32(syndrome);
1376 gen_helper_access_check_cp_reg(cpu_env, tmpptr, tcg_syn);
1377 tcg_temp_free_ptr(tmpptr);
1378 tcg_temp_free_i32(tcg_syn);
1381 /* Handle special cases first */
1382 switch (ri->type & ~(ARM_CP_FLAG_MASK & ~ARM_CP_SPECIAL)) {
1383 case ARM_CP_NOP:
1384 return;
1385 case ARM_CP_NZCV:
1386 tcg_rt = cpu_reg(s, rt);
1387 if (isread) {
1388 gen_get_nzcv(tcg_rt);
1389 } else {
1390 gen_set_nzcv(tcg_rt);
1392 return;
1393 case ARM_CP_CURRENTEL:
1394 /* Reads as current EL value from pstate, which is
1395 * guaranteed to be constant by the tb flags.
1397 tcg_rt = cpu_reg(s, rt);
1398 tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
1399 return;
1400 case ARM_CP_DC_ZVA:
1401 /* Writes clear the aligned block of memory which rt points into. */
1402 tcg_rt = cpu_reg(s, rt);
1403 gen_helper_dc_zva(cpu_env, tcg_rt);
1404 return;
1405 default:
1406 break;
1409 if ((s->tb->cflags & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1410 gen_io_start();
1413 tcg_rt = cpu_reg(s, rt);
1415 if (isread) {
1416 if (ri->type & ARM_CP_CONST) {
1417 tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
1418 } else if (ri->readfn) {
1419 TCGv_ptr tmpptr;
1420 tmpptr = tcg_const_ptr(ri);
1421 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tmpptr);
1422 tcg_temp_free_ptr(tmpptr);
1423 } else {
1424 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset);
1426 } else {
1427 if (ri->type & ARM_CP_CONST) {
1428 /* If not forbidden by access permissions, treat as WI */
1429 return;
1430 } else if (ri->writefn) {
1431 TCGv_ptr tmpptr;
1432 tmpptr = tcg_const_ptr(ri);
1433 gen_helper_set_cp_reg64(cpu_env, tmpptr, tcg_rt);
1434 tcg_temp_free_ptr(tmpptr);
1435 } else {
1436 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset);
1440 if ((s->tb->cflags & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1441 /* I/O operations must end the TB here (whether read or write) */
1442 gen_io_end();
1443 s->is_jmp = DISAS_UPDATE;
1444 } else if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
1445 /* We default to ending the TB on a coprocessor register write,
1446 * but allow this to be suppressed by the register definition
1447 * (usually only necessary to work around guest bugs).
1449 s->is_jmp = DISAS_UPDATE;
1453 /* C3.2.4 System
1454 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0
1455 * +---------------------+---+-----+-----+-------+-------+-----+------+
1456 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt |
1457 * +---------------------+---+-----+-----+-------+-------+-----+------+
1459 static void disas_system(DisasContext *s, uint32_t insn)
1461 unsigned int l, op0, op1, crn, crm, op2, rt;
1462 l = extract32(insn, 21, 1);
1463 op0 = extract32(insn, 19, 2);
1464 op1 = extract32(insn, 16, 3);
1465 crn = extract32(insn, 12, 4);
1466 crm = extract32(insn, 8, 4);
1467 op2 = extract32(insn, 5, 3);
1468 rt = extract32(insn, 0, 5);
1470 if (op0 == 0) {
1471 if (l || rt != 31) {
1472 unallocated_encoding(s);
1473 return;
1475 switch (crn) {
1476 case 2: /* C5.6.68 HINT */
1477 handle_hint(s, insn, op1, op2, crm);
1478 break;
1479 case 3: /* CLREX, DSB, DMB, ISB */
1480 handle_sync(s, insn, op1, op2, crm);
1481 break;
1482 case 4: /* C5.6.130 MSR (immediate) */
1483 handle_msr_i(s, insn, op1, op2, crm);
1484 break;
1485 default:
1486 unallocated_encoding(s);
1487 break;
1489 return;
1491 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt);
1494 /* C3.2.3 Exception generation
1496 * 31 24 23 21 20 5 4 2 1 0
1497 * +-----------------+-----+------------------------+-----+----+
1498 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL |
1499 * +-----------------------+------------------------+----------+
1501 static void disas_exc(DisasContext *s, uint32_t insn)
1503 int opc = extract32(insn, 21, 3);
1504 int op2_ll = extract32(insn, 0, 5);
1505 int imm16 = extract32(insn, 5, 16);
1506 TCGv_i32 tmp;
1508 switch (opc) {
1509 case 0:
1510 /* For SVC, HVC and SMC we advance the single-step state
1511 * machine before taking the exception. This is architecturally
1512 * mandated, to ensure that single-stepping a system call
1513 * instruction works properly.
1515 switch (op2_ll) {
1516 case 1:
1517 gen_ss_advance(s);
1518 gen_exception_insn(s, 0, EXCP_SWI, syn_aa64_svc(imm16),
1519 default_exception_el(s));
1520 break;
1521 case 2:
1522 if (s->current_el == 0) {
1523 unallocated_encoding(s);
1524 break;
1526 /* The pre HVC helper handles cases when HVC gets trapped
1527 * as an undefined insn by runtime configuration.
1529 gen_a64_set_pc_im(s->pc - 4);
1530 gen_helper_pre_hvc(cpu_env);
1531 gen_ss_advance(s);
1532 gen_exception_insn(s, 0, EXCP_HVC, syn_aa64_hvc(imm16), 2);
1533 break;
1534 case 3:
1535 if (s->current_el == 0) {
1536 unallocated_encoding(s);
1537 break;
1539 gen_a64_set_pc_im(s->pc - 4);
1540 tmp = tcg_const_i32(syn_aa64_smc(imm16));
1541 gen_helper_pre_smc(cpu_env, tmp);
1542 tcg_temp_free_i32(tmp);
1543 gen_ss_advance(s);
1544 gen_exception_insn(s, 0, EXCP_SMC, syn_aa64_smc(imm16), 3);
1545 break;
1546 default:
1547 unallocated_encoding(s);
1548 break;
1550 break;
1551 case 1:
1552 if (op2_ll != 0) {
1553 unallocated_encoding(s);
1554 break;
1556 /* BRK */
1557 gen_exception_insn(s, 4, EXCP_BKPT, syn_aa64_bkpt(imm16),
1558 default_exception_el(s));
1559 break;
1560 case 2:
1561 if (op2_ll != 0) {
1562 unallocated_encoding(s);
1563 break;
1565 /* HLT. This has two purposes.
1566 * Architecturally, it is an external halting debug instruction.
1567 * Since QEMU doesn't implement external debug, we treat this as
1568 * it is required for halting debug disabled: it will UNDEF.
1569 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
1571 if (semihosting_enabled() && imm16 == 0xf000) {
1572 #ifndef CONFIG_USER_ONLY
1573 /* In system mode, don't allow userspace access to semihosting,
1574 * to provide some semblance of security (and for consistency
1575 * with our 32-bit semihosting).
1577 if (s->current_el == 0) {
1578 unsupported_encoding(s, insn);
1579 break;
1581 #endif
1582 gen_exception_internal_insn(s, 0, EXCP_SEMIHOST);
1583 } else {
1584 unsupported_encoding(s, insn);
1586 break;
1587 case 5:
1588 if (op2_ll < 1 || op2_ll > 3) {
1589 unallocated_encoding(s);
1590 break;
1592 /* DCPS1, DCPS2, DCPS3 */
1593 unsupported_encoding(s, insn);
1594 break;
1595 default:
1596 unallocated_encoding(s);
1597 break;
1601 /* C3.2.7 Unconditional branch (register)
1602 * 31 25 24 21 20 16 15 10 9 5 4 0
1603 * +---------------+-------+-------+-------+------+-------+
1604 * | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 |
1605 * +---------------+-------+-------+-------+------+-------+
1607 static void disas_uncond_b_reg(DisasContext *s, uint32_t insn)
1609 unsigned int opc, op2, op3, rn, op4;
1611 opc = extract32(insn, 21, 4);
1612 op2 = extract32(insn, 16, 5);
1613 op3 = extract32(insn, 10, 6);
1614 rn = extract32(insn, 5, 5);
1615 op4 = extract32(insn, 0, 5);
1617 if (op4 != 0x0 || op3 != 0x0 || op2 != 0x1f) {
1618 unallocated_encoding(s);
1619 return;
1622 switch (opc) {
1623 case 0: /* BR */
1624 case 2: /* RET */
1625 tcg_gen_mov_i64(cpu_pc, cpu_reg(s, rn));
1626 break;
1627 case 1: /* BLR */
1628 tcg_gen_mov_i64(cpu_pc, cpu_reg(s, rn));
1629 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
1630 break;
1631 case 4: /* ERET */
1632 if (s->current_el == 0) {
1633 unallocated_encoding(s);
1634 return;
1636 gen_helper_exception_return(cpu_env);
1637 s->is_jmp = DISAS_JUMP;
1638 return;
1639 case 5: /* DRPS */
1640 if (rn != 0x1f) {
1641 unallocated_encoding(s);
1642 } else {
1643 unsupported_encoding(s, insn);
1645 return;
1646 default:
1647 unallocated_encoding(s);
1648 return;
1651 s->is_jmp = DISAS_JUMP;
1654 /* C3.2 Branches, exception generating and system instructions */
1655 static void disas_b_exc_sys(DisasContext *s, uint32_t insn)
1657 switch (extract32(insn, 25, 7)) {
1658 case 0x0a: case 0x0b:
1659 case 0x4a: case 0x4b: /* Unconditional branch (immediate) */
1660 disas_uncond_b_imm(s, insn);
1661 break;
1662 case 0x1a: case 0x5a: /* Compare & branch (immediate) */
1663 disas_comp_b_imm(s, insn);
1664 break;
1665 case 0x1b: case 0x5b: /* Test & branch (immediate) */
1666 disas_test_b_imm(s, insn);
1667 break;
1668 case 0x2a: /* Conditional branch (immediate) */
1669 disas_cond_b_imm(s, insn);
1670 break;
1671 case 0x6a: /* Exception generation / System */
1672 if (insn & (1 << 24)) {
1673 disas_system(s, insn);
1674 } else {
1675 disas_exc(s, insn);
1677 break;
1678 case 0x6b: /* Unconditional branch (register) */
1679 disas_uncond_b_reg(s, insn);
1680 break;
1681 default:
1682 unallocated_encoding(s);
1683 break;
1688 * Load/Store exclusive instructions are implemented by remembering
1689 * the value/address loaded, and seeing if these are the same
1690 * when the store is performed. This is not actually the architecturally
1691 * mandated semantics, but it works for typical guest code sequences
1692 * and avoids having to monitor regular stores.
1694 * In system emulation mode only one CPU will be running at once, so
1695 * this sequence is effectively atomic. In user emulation mode we
1696 * throw an exception and handle the atomic operation elsewhere.
1698 static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
1699 TCGv_i64 addr, int size, bool is_pair)
1701 TCGv_i64 tmp = tcg_temp_new_i64();
1702 TCGMemOp memop = MO_TE + size;
1704 g_assert(size <= 3);
1705 tcg_gen_qemu_ld_i64(tmp, addr, get_mem_index(s), memop);
1707 if (is_pair) {
1708 TCGv_i64 addr2 = tcg_temp_new_i64();
1709 TCGv_i64 hitmp = tcg_temp_new_i64();
1711 g_assert(size >= 2);
1712 tcg_gen_addi_i64(addr2, addr, 1 << size);
1713 tcg_gen_qemu_ld_i64(hitmp, addr2, get_mem_index(s), memop);
1714 tcg_temp_free_i64(addr2);
1715 tcg_gen_mov_i64(cpu_exclusive_high, hitmp);
1716 tcg_gen_mov_i64(cpu_reg(s, rt2), hitmp);
1717 tcg_temp_free_i64(hitmp);
1720 tcg_gen_mov_i64(cpu_exclusive_val, tmp);
1721 tcg_gen_mov_i64(cpu_reg(s, rt), tmp);
1723 tcg_temp_free_i64(tmp);
1724 tcg_gen_mov_i64(cpu_exclusive_addr, addr);
1727 #ifdef CONFIG_USER_ONLY
1728 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
1729 TCGv_i64 addr, int size, int is_pair)
1731 tcg_gen_mov_i64(cpu_exclusive_test, addr);
1732 tcg_gen_movi_i32(cpu_exclusive_info,
1733 size | is_pair << 2 | (rd << 4) | (rt << 9) | (rt2 << 14));
1734 gen_exception_internal_insn(s, 4, EXCP_STREX);
1736 #else
1737 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
1738 TCGv_i64 inaddr, int size, int is_pair)
1740 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
1741 * && (!is_pair || env->exclusive_high == [addr + datasize])) {
1742 * [addr] = {Rt};
1743 * if (is_pair) {
1744 * [addr + datasize] = {Rt2};
1746 * {Rd} = 0;
1747 * } else {
1748 * {Rd} = 1;
1750 * env->exclusive_addr = -1;
1752 TCGLabel *fail_label = gen_new_label();
1753 TCGLabel *done_label = gen_new_label();
1754 TCGv_i64 addr = tcg_temp_local_new_i64();
1755 TCGv_i64 tmp;
1757 /* Copy input into a local temp so it is not trashed when the
1758 * basic block ends at the branch insn.
1760 tcg_gen_mov_i64(addr, inaddr);
1761 tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label);
1763 tmp = tcg_temp_new_i64();
1764 tcg_gen_qemu_ld_i64(tmp, addr, get_mem_index(s), MO_TE + size);
1765 tcg_gen_brcond_i64(TCG_COND_NE, tmp, cpu_exclusive_val, fail_label);
1766 tcg_temp_free_i64(tmp);
1768 if (is_pair) {
1769 TCGv_i64 addrhi = tcg_temp_new_i64();
1770 TCGv_i64 tmphi = tcg_temp_new_i64();
1772 tcg_gen_addi_i64(addrhi, addr, 1 << size);
1773 tcg_gen_qemu_ld_i64(tmphi, addrhi, get_mem_index(s), MO_TE + size);
1774 tcg_gen_brcond_i64(TCG_COND_NE, tmphi, cpu_exclusive_high, fail_label);
1776 tcg_temp_free_i64(tmphi);
1777 tcg_temp_free_i64(addrhi);
1780 /* We seem to still have the exclusive monitor, so do the store */
1781 tcg_gen_qemu_st_i64(cpu_reg(s, rt), addr, get_mem_index(s), MO_TE + size);
1782 if (is_pair) {
1783 TCGv_i64 addrhi = tcg_temp_new_i64();
1785 tcg_gen_addi_i64(addrhi, addr, 1 << size);
1786 tcg_gen_qemu_st_i64(cpu_reg(s, rt2), addrhi,
1787 get_mem_index(s), MO_TE + size);
1788 tcg_temp_free_i64(addrhi);
1791 tcg_temp_free_i64(addr);
1793 tcg_gen_movi_i64(cpu_reg(s, rd), 0);
1794 tcg_gen_br(done_label);
1795 gen_set_label(fail_label);
1796 tcg_gen_movi_i64(cpu_reg(s, rd), 1);
1797 gen_set_label(done_label);
1798 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1801 #endif
1803 /* C3.3.6 Load/store exclusive
1805 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0
1806 * +-----+-------------+----+---+----+------+----+-------+------+------+
1807 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt |
1808 * +-----+-------------+----+---+----+------+----+-------+------+------+
1810 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
1811 * L: 0 -> store, 1 -> load
1812 * o2: 0 -> exclusive, 1 -> not
1813 * o1: 0 -> single register, 1 -> register pair
1814 * o0: 1 -> load-acquire/store-release, 0 -> not
1816 static void disas_ldst_excl(DisasContext *s, uint32_t insn)
1818 int rt = extract32(insn, 0, 5);
1819 int rn = extract32(insn, 5, 5);
1820 int rt2 = extract32(insn, 10, 5);
1821 int is_lasr = extract32(insn, 15, 1);
1822 int rs = extract32(insn, 16, 5);
1823 int is_pair = extract32(insn, 21, 1);
1824 int is_store = !extract32(insn, 22, 1);
1825 int is_excl = !extract32(insn, 23, 1);
1826 int size = extract32(insn, 30, 2);
1827 TCGv_i64 tcg_addr;
1829 if ((!is_excl && !is_pair && !is_lasr) ||
1830 (!is_excl && is_pair) ||
1831 (is_pair && size < 2)) {
1832 unallocated_encoding(s);
1833 return;
1836 if (rn == 31) {
1837 gen_check_sp_alignment(s);
1839 tcg_addr = read_cpu_reg_sp(s, rn, 1);
1841 /* Note that since TCG is single threaded load-acquire/store-release
1842 * semantics require no extra if (is_lasr) { ... } handling.
1845 if (is_excl) {
1846 if (!is_store) {
1847 s->is_ldex = true;
1848 gen_load_exclusive(s, rt, rt2, tcg_addr, size, is_pair);
1849 } else {
1850 gen_store_exclusive(s, rs, rt, rt2, tcg_addr, size, is_pair);
1852 } else {
1853 TCGv_i64 tcg_rt = cpu_reg(s, rt);
1854 if (is_store) {
1855 do_gpr_st(s, tcg_rt, tcg_addr, size);
1856 } else {
1857 do_gpr_ld(s, tcg_rt, tcg_addr, size, false, false);
1863 * C3.3.5 Load register (literal)
1865 * 31 30 29 27 26 25 24 23 5 4 0
1866 * +-----+-------+---+-----+-------------------+-------+
1867 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt |
1868 * +-----+-------+---+-----+-------------------+-------+
1870 * V: 1 -> vector (simd/fp)
1871 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit,
1872 * 10-> 32 bit signed, 11 -> prefetch
1873 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated)
1875 static void disas_ld_lit(DisasContext *s, uint32_t insn)
1877 int rt = extract32(insn, 0, 5);
1878 int64_t imm = sextract32(insn, 5, 19) << 2;
1879 bool is_vector = extract32(insn, 26, 1);
1880 int opc = extract32(insn, 30, 2);
1881 bool is_signed = false;
1882 int size = 2;
1883 TCGv_i64 tcg_rt, tcg_addr;
1885 if (is_vector) {
1886 if (opc == 3) {
1887 unallocated_encoding(s);
1888 return;
1890 size = 2 + opc;
1891 if (!fp_access_check(s)) {
1892 return;
1894 } else {
1895 if (opc == 3) {
1896 /* PRFM (literal) : prefetch */
1897 return;
1899 size = 2 + extract32(opc, 0, 1);
1900 is_signed = extract32(opc, 1, 1);
1903 tcg_rt = cpu_reg(s, rt);
1905 tcg_addr = tcg_const_i64((s->pc - 4) + imm);
1906 if (is_vector) {
1907 do_fp_ld(s, rt, tcg_addr, size);
1908 } else {
1909 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, false);
1911 tcg_temp_free_i64(tcg_addr);
1915 * C5.6.80 LDNP (Load Pair - non-temporal hint)
1916 * C5.6.81 LDP (Load Pair - non vector)
1917 * C5.6.82 LDPSW (Load Pair Signed Word - non vector)
1918 * C5.6.176 STNP (Store Pair - non-temporal hint)
1919 * C5.6.177 STP (Store Pair - non vector)
1920 * C6.3.165 LDNP (Load Pair of SIMD&FP - non-temporal hint)
1921 * C6.3.165 LDP (Load Pair of SIMD&FP)
1922 * C6.3.284 STNP (Store Pair of SIMD&FP - non-temporal hint)
1923 * C6.3.284 STP (Store Pair of SIMD&FP)
1925 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0
1926 * +-----+-------+---+---+-------+---+-----------------------------+
1927 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt |
1928 * +-----+-------+---+---+-------+---+-------+-------+------+------+
1930 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit
1931 * LDPSW 01
1932 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit
1933 * V: 0 -> GPR, 1 -> Vector
1934 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index,
1935 * 10 -> signed offset, 11 -> pre-index
1936 * L: 0 -> Store 1 -> Load
1938 * Rt, Rt2 = GPR or SIMD registers to be stored
1939 * Rn = general purpose register containing address
1940 * imm7 = signed offset (multiple of 4 or 8 depending on size)
1942 static void disas_ldst_pair(DisasContext *s, uint32_t insn)
1944 int rt = extract32(insn, 0, 5);
1945 int rn = extract32(insn, 5, 5);
1946 int rt2 = extract32(insn, 10, 5);
1947 uint64_t offset = sextract64(insn, 15, 7);
1948 int index = extract32(insn, 23, 2);
1949 bool is_vector = extract32(insn, 26, 1);
1950 bool is_load = extract32(insn, 22, 1);
1951 int opc = extract32(insn, 30, 2);
1953 bool is_signed = false;
1954 bool postindex = false;
1955 bool wback = false;
1957 TCGv_i64 tcg_addr; /* calculated address */
1958 int size;
1960 if (opc == 3) {
1961 unallocated_encoding(s);
1962 return;
1965 if (is_vector) {
1966 size = 2 + opc;
1967 } else {
1968 size = 2 + extract32(opc, 1, 1);
1969 is_signed = extract32(opc, 0, 1);
1970 if (!is_load && is_signed) {
1971 unallocated_encoding(s);
1972 return;
1976 switch (index) {
1977 case 1: /* post-index */
1978 postindex = true;
1979 wback = true;
1980 break;
1981 case 0:
1982 /* signed offset with "non-temporal" hint. Since we don't emulate
1983 * caches we don't care about hints to the cache system about
1984 * data access patterns, and handle this identically to plain
1985 * signed offset.
1987 if (is_signed) {
1988 /* There is no non-temporal-hint version of LDPSW */
1989 unallocated_encoding(s);
1990 return;
1992 postindex = false;
1993 break;
1994 case 2: /* signed offset, rn not updated */
1995 postindex = false;
1996 break;
1997 case 3: /* pre-index */
1998 postindex = false;
1999 wback = true;
2000 break;
2003 if (is_vector && !fp_access_check(s)) {
2004 return;
2007 offset <<= size;
2009 if (rn == 31) {
2010 gen_check_sp_alignment(s);
2013 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2015 if (!postindex) {
2016 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset);
2019 if (is_vector) {
2020 if (is_load) {
2021 do_fp_ld(s, rt, tcg_addr, size);
2022 } else {
2023 do_fp_st(s, rt, tcg_addr, size);
2025 } else {
2026 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2027 if (is_load) {
2028 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, false);
2029 } else {
2030 do_gpr_st(s, tcg_rt, tcg_addr, size);
2033 tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size);
2034 if (is_vector) {
2035 if (is_load) {
2036 do_fp_ld(s, rt2, tcg_addr, size);
2037 } else {
2038 do_fp_st(s, rt2, tcg_addr, size);
2040 } else {
2041 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2);
2042 if (is_load) {
2043 do_gpr_ld(s, tcg_rt2, tcg_addr, size, is_signed, false);
2044 } else {
2045 do_gpr_st(s, tcg_rt2, tcg_addr, size);
2049 if (wback) {
2050 if (postindex) {
2051 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset - (1 << size));
2052 } else {
2053 tcg_gen_subi_i64(tcg_addr, tcg_addr, 1 << size);
2055 tcg_gen_mov_i64(cpu_reg_sp(s, rn), tcg_addr);
2060 * C3.3.8 Load/store (immediate post-indexed)
2061 * C3.3.9 Load/store (immediate pre-indexed)
2062 * C3.3.12 Load/store (unscaled immediate)
2064 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
2065 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2066 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt |
2067 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2069 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback)
2070 10 -> unprivileged
2071 * V = 0 -> non-vector
2072 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit
2073 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2075 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn)
2077 int rt = extract32(insn, 0, 5);
2078 int rn = extract32(insn, 5, 5);
2079 int imm9 = sextract32(insn, 12, 9);
2080 int opc = extract32(insn, 22, 2);
2081 int size = extract32(insn, 30, 2);
2082 int idx = extract32(insn, 10, 2);
2083 bool is_signed = false;
2084 bool is_store = false;
2085 bool is_extended = false;
2086 bool is_unpriv = (idx == 2);
2087 bool is_vector = extract32(insn, 26, 1);
2088 bool post_index;
2089 bool writeback;
2091 TCGv_i64 tcg_addr;
2093 if (is_vector) {
2094 size |= (opc & 2) << 1;
2095 if (size > 4 || is_unpriv) {
2096 unallocated_encoding(s);
2097 return;
2099 is_store = ((opc & 1) == 0);
2100 if (!fp_access_check(s)) {
2101 return;
2103 } else {
2104 if (size == 3 && opc == 2) {
2105 /* PRFM - prefetch */
2106 if (is_unpriv) {
2107 unallocated_encoding(s);
2108 return;
2110 return;
2112 if (opc == 3 && size > 1) {
2113 unallocated_encoding(s);
2114 return;
2116 is_store = (opc == 0);
2117 is_signed = opc & (1<<1);
2118 is_extended = (size < 3) && (opc & 1);
2121 switch (idx) {
2122 case 0:
2123 case 2:
2124 post_index = false;
2125 writeback = false;
2126 break;
2127 case 1:
2128 post_index = true;
2129 writeback = true;
2130 break;
2131 case 3:
2132 post_index = false;
2133 writeback = true;
2134 break;
2137 if (rn == 31) {
2138 gen_check_sp_alignment(s);
2140 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2142 if (!post_index) {
2143 tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9);
2146 if (is_vector) {
2147 if (is_store) {
2148 do_fp_st(s, rt, tcg_addr, size);
2149 } else {
2150 do_fp_ld(s, rt, tcg_addr, size);
2152 } else {
2153 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2154 int memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
2156 if (is_store) {
2157 do_gpr_st_memidx(s, tcg_rt, tcg_addr, size, memidx);
2158 } else {
2159 do_gpr_ld_memidx(s, tcg_rt, tcg_addr, size,
2160 is_signed, is_extended, memidx);
2164 if (writeback) {
2165 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
2166 if (post_index) {
2167 tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9);
2169 tcg_gen_mov_i64(tcg_rn, tcg_addr);
2174 * C3.3.10 Load/store (register offset)
2176 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2177 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2178 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt |
2179 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2181 * For non-vector:
2182 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
2183 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2184 * For vector:
2185 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
2186 * opc<0>: 0 -> store, 1 -> load
2187 * V: 1 -> vector/simd
2188 * opt: extend encoding (see DecodeRegExtend)
2189 * S: if S=1 then scale (essentially index by sizeof(size))
2190 * Rt: register to transfer into/out of
2191 * Rn: address register or SP for base
2192 * Rm: offset register or ZR for offset
2194 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn)
2196 int rt = extract32(insn, 0, 5);
2197 int rn = extract32(insn, 5, 5);
2198 int shift = extract32(insn, 12, 1);
2199 int rm = extract32(insn, 16, 5);
2200 int opc = extract32(insn, 22, 2);
2201 int opt = extract32(insn, 13, 3);
2202 int size = extract32(insn, 30, 2);
2203 bool is_signed = false;
2204 bool is_store = false;
2205 bool is_extended = false;
2206 bool is_vector = extract32(insn, 26, 1);
2208 TCGv_i64 tcg_rm;
2209 TCGv_i64 tcg_addr;
2211 if (extract32(opt, 1, 1) == 0) {
2212 unallocated_encoding(s);
2213 return;
2216 if (is_vector) {
2217 size |= (opc & 2) << 1;
2218 if (size > 4) {
2219 unallocated_encoding(s);
2220 return;
2222 is_store = !extract32(opc, 0, 1);
2223 if (!fp_access_check(s)) {
2224 return;
2226 } else {
2227 if (size == 3 && opc == 2) {
2228 /* PRFM - prefetch */
2229 return;
2231 if (opc == 3 && size > 1) {
2232 unallocated_encoding(s);
2233 return;
2235 is_store = (opc == 0);
2236 is_signed = extract32(opc, 1, 1);
2237 is_extended = (size < 3) && extract32(opc, 0, 1);
2240 if (rn == 31) {
2241 gen_check_sp_alignment(s);
2243 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2245 tcg_rm = read_cpu_reg(s, rm, 1);
2246 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0);
2248 tcg_gen_add_i64(tcg_addr, tcg_addr, tcg_rm);
2250 if (is_vector) {
2251 if (is_store) {
2252 do_fp_st(s, rt, tcg_addr, size);
2253 } else {
2254 do_fp_ld(s, rt, tcg_addr, size);
2256 } else {
2257 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2258 if (is_store) {
2259 do_gpr_st(s, tcg_rt, tcg_addr, size);
2260 } else {
2261 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, is_extended);
2267 * C3.3.13 Load/store (unsigned immediate)
2269 * 31 30 29 27 26 25 24 23 22 21 10 9 5
2270 * +----+-------+---+-----+-----+------------+-------+------+
2271 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt |
2272 * +----+-------+---+-----+-----+------------+-------+------+
2274 * For non-vector:
2275 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
2276 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2277 * For vector:
2278 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
2279 * opc<0>: 0 -> store, 1 -> load
2280 * Rn: base address register (inc SP)
2281 * Rt: target register
2283 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn)
2285 int rt = extract32(insn, 0, 5);
2286 int rn = extract32(insn, 5, 5);
2287 unsigned int imm12 = extract32(insn, 10, 12);
2288 bool is_vector = extract32(insn, 26, 1);
2289 int size = extract32(insn, 30, 2);
2290 int opc = extract32(insn, 22, 2);
2291 unsigned int offset;
2293 TCGv_i64 tcg_addr;
2295 bool is_store;
2296 bool is_signed = false;
2297 bool is_extended = false;
2299 if (is_vector) {
2300 size |= (opc & 2) << 1;
2301 if (size > 4) {
2302 unallocated_encoding(s);
2303 return;
2305 is_store = !extract32(opc, 0, 1);
2306 if (!fp_access_check(s)) {
2307 return;
2309 } else {
2310 if (size == 3 && opc == 2) {
2311 /* PRFM - prefetch */
2312 return;
2314 if (opc == 3 && size > 1) {
2315 unallocated_encoding(s);
2316 return;
2318 is_store = (opc == 0);
2319 is_signed = extract32(opc, 1, 1);
2320 is_extended = (size < 3) && extract32(opc, 0, 1);
2323 if (rn == 31) {
2324 gen_check_sp_alignment(s);
2326 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2327 offset = imm12 << size;
2328 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset);
2330 if (is_vector) {
2331 if (is_store) {
2332 do_fp_st(s, rt, tcg_addr, size);
2333 } else {
2334 do_fp_ld(s, rt, tcg_addr, size);
2336 } else {
2337 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2338 if (is_store) {
2339 do_gpr_st(s, tcg_rt, tcg_addr, size);
2340 } else {
2341 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, is_extended);
2346 /* Load/store register (all forms) */
2347 static void disas_ldst_reg(DisasContext *s, uint32_t insn)
2349 switch (extract32(insn, 24, 2)) {
2350 case 0:
2351 if (extract32(insn, 21, 1) == 1 && extract32(insn, 10, 2) == 2) {
2352 disas_ldst_reg_roffset(s, insn);
2353 } else {
2354 /* Load/store register (unscaled immediate)
2355 * Load/store immediate pre/post-indexed
2356 * Load/store register unprivileged
2358 disas_ldst_reg_imm9(s, insn);
2360 break;
2361 case 1:
2362 disas_ldst_reg_unsigned_imm(s, insn);
2363 break;
2364 default:
2365 unallocated_encoding(s);
2366 break;
2370 /* C3.3.1 AdvSIMD load/store multiple structures
2372 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0
2373 * +---+---+---------------+---+-------------+--------+------+------+------+
2374 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt |
2375 * +---+---+---------------+---+-------------+--------+------+------+------+
2377 * C3.3.2 AdvSIMD load/store multiple structures (post-indexed)
2379 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0
2380 * +---+---+---------------+---+---+---------+--------+------+------+------+
2381 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt |
2382 * +---+---+---------------+---+---+---------+--------+------+------+------+
2384 * Rt: first (or only) SIMD&FP register to be transferred
2385 * Rn: base address or SP
2386 * Rm (post-index only): post-index register (when !31) or size dependent #imm
2388 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
2390 int rt = extract32(insn, 0, 5);
2391 int rn = extract32(insn, 5, 5);
2392 int size = extract32(insn, 10, 2);
2393 int opcode = extract32(insn, 12, 4);
2394 bool is_store = !extract32(insn, 22, 1);
2395 bool is_postidx = extract32(insn, 23, 1);
2396 bool is_q = extract32(insn, 30, 1);
2397 TCGv_i64 tcg_addr, tcg_rn;
2399 int ebytes = 1 << size;
2400 int elements = (is_q ? 128 : 64) / (8 << size);
2401 int rpt; /* num iterations */
2402 int selem; /* structure elements */
2403 int r;
2405 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) {
2406 unallocated_encoding(s);
2407 return;
2410 /* From the shared decode logic */
2411 switch (opcode) {
2412 case 0x0:
2413 rpt = 1;
2414 selem = 4;
2415 break;
2416 case 0x2:
2417 rpt = 4;
2418 selem = 1;
2419 break;
2420 case 0x4:
2421 rpt = 1;
2422 selem = 3;
2423 break;
2424 case 0x6:
2425 rpt = 3;
2426 selem = 1;
2427 break;
2428 case 0x7:
2429 rpt = 1;
2430 selem = 1;
2431 break;
2432 case 0x8:
2433 rpt = 1;
2434 selem = 2;
2435 break;
2436 case 0xa:
2437 rpt = 2;
2438 selem = 1;
2439 break;
2440 default:
2441 unallocated_encoding(s);
2442 return;
2445 if (size == 3 && !is_q && selem != 1) {
2446 /* reserved */
2447 unallocated_encoding(s);
2448 return;
2451 if (!fp_access_check(s)) {
2452 return;
2455 if (rn == 31) {
2456 gen_check_sp_alignment(s);
2459 tcg_rn = cpu_reg_sp(s, rn);
2460 tcg_addr = tcg_temp_new_i64();
2461 tcg_gen_mov_i64(tcg_addr, tcg_rn);
2463 for (r = 0; r < rpt; r++) {
2464 int e;
2465 for (e = 0; e < elements; e++) {
2466 int tt = (rt + r) % 32;
2467 int xs;
2468 for (xs = 0; xs < selem; xs++) {
2469 if (is_store) {
2470 do_vec_st(s, tt, e, tcg_addr, size);
2471 } else {
2472 do_vec_ld(s, tt, e, tcg_addr, size);
2474 /* For non-quad operations, setting a slice of the low
2475 * 64 bits of the register clears the high 64 bits (in
2476 * the ARM ARM pseudocode this is implicit in the fact
2477 * that 'rval' is a 64 bit wide variable). We optimize
2478 * by noticing that we only need to do this the first
2479 * time we touch a register.
2481 if (!is_q && e == 0 && (r == 0 || xs == selem - 1)) {
2482 clear_vec_high(s, tt);
2485 tcg_gen_addi_i64(tcg_addr, tcg_addr, ebytes);
2486 tt = (tt + 1) % 32;
2491 if (is_postidx) {
2492 int rm = extract32(insn, 16, 5);
2493 if (rm == 31) {
2494 tcg_gen_mov_i64(tcg_rn, tcg_addr);
2495 } else {
2496 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
2499 tcg_temp_free_i64(tcg_addr);
2502 /* C3.3.3 AdvSIMD load/store single structure
2504 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2505 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2506 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt |
2507 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2509 * C3.3.4 AdvSIMD load/store single structure (post-indexed)
2511 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2512 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2513 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt |
2514 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2516 * Rt: first (or only) SIMD&FP register to be transferred
2517 * Rn: base address or SP
2518 * Rm (post-index only): post-index register (when !31) or size dependent #imm
2519 * index = encoded in Q:S:size dependent on size
2521 * lane_size = encoded in R, opc
2522 * transfer width = encoded in opc, S, size
2524 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
2526 int rt = extract32(insn, 0, 5);
2527 int rn = extract32(insn, 5, 5);
2528 int size = extract32(insn, 10, 2);
2529 int S = extract32(insn, 12, 1);
2530 int opc = extract32(insn, 13, 3);
2531 int R = extract32(insn, 21, 1);
2532 int is_load = extract32(insn, 22, 1);
2533 int is_postidx = extract32(insn, 23, 1);
2534 int is_q = extract32(insn, 30, 1);
2536 int scale = extract32(opc, 1, 2);
2537 int selem = (extract32(opc, 0, 1) << 1 | R) + 1;
2538 bool replicate = false;
2539 int index = is_q << 3 | S << 2 | size;
2540 int ebytes, xs;
2541 TCGv_i64 tcg_addr, tcg_rn;
2543 switch (scale) {
2544 case 3:
2545 if (!is_load || S) {
2546 unallocated_encoding(s);
2547 return;
2549 scale = size;
2550 replicate = true;
2551 break;
2552 case 0:
2553 break;
2554 case 1:
2555 if (extract32(size, 0, 1)) {
2556 unallocated_encoding(s);
2557 return;
2559 index >>= 1;
2560 break;
2561 case 2:
2562 if (extract32(size, 1, 1)) {
2563 unallocated_encoding(s);
2564 return;
2566 if (!extract32(size, 0, 1)) {
2567 index >>= 2;
2568 } else {
2569 if (S) {
2570 unallocated_encoding(s);
2571 return;
2573 index >>= 3;
2574 scale = 3;
2576 break;
2577 default:
2578 g_assert_not_reached();
2581 if (!fp_access_check(s)) {
2582 return;
2585 ebytes = 1 << scale;
2587 if (rn == 31) {
2588 gen_check_sp_alignment(s);
2591 tcg_rn = cpu_reg_sp(s, rn);
2592 tcg_addr = tcg_temp_new_i64();
2593 tcg_gen_mov_i64(tcg_addr, tcg_rn);
2595 for (xs = 0; xs < selem; xs++) {
2596 if (replicate) {
2597 /* Load and replicate to all elements */
2598 uint64_t mulconst;
2599 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
2601 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr,
2602 get_mem_index(s), MO_TE + scale);
2603 switch (scale) {
2604 case 0:
2605 mulconst = 0x0101010101010101ULL;
2606 break;
2607 case 1:
2608 mulconst = 0x0001000100010001ULL;
2609 break;
2610 case 2:
2611 mulconst = 0x0000000100000001ULL;
2612 break;
2613 case 3:
2614 mulconst = 0;
2615 break;
2616 default:
2617 g_assert_not_reached();
2619 if (mulconst) {
2620 tcg_gen_muli_i64(tcg_tmp, tcg_tmp, mulconst);
2622 write_vec_element(s, tcg_tmp, rt, 0, MO_64);
2623 if (is_q) {
2624 write_vec_element(s, tcg_tmp, rt, 1, MO_64);
2625 } else {
2626 clear_vec_high(s, rt);
2628 tcg_temp_free_i64(tcg_tmp);
2629 } else {
2630 /* Load/store one element per register */
2631 if (is_load) {
2632 do_vec_ld(s, rt, index, tcg_addr, MO_TE + scale);
2633 } else {
2634 do_vec_st(s, rt, index, tcg_addr, MO_TE + scale);
2637 tcg_gen_addi_i64(tcg_addr, tcg_addr, ebytes);
2638 rt = (rt + 1) % 32;
2641 if (is_postidx) {
2642 int rm = extract32(insn, 16, 5);
2643 if (rm == 31) {
2644 tcg_gen_mov_i64(tcg_rn, tcg_addr);
2645 } else {
2646 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
2649 tcg_temp_free_i64(tcg_addr);
2652 /* C3.3 Loads and stores */
2653 static void disas_ldst(DisasContext *s, uint32_t insn)
2655 switch (extract32(insn, 24, 6)) {
2656 case 0x08: /* Load/store exclusive */
2657 disas_ldst_excl(s, insn);
2658 break;
2659 case 0x18: case 0x1c: /* Load register (literal) */
2660 disas_ld_lit(s, insn);
2661 break;
2662 case 0x28: case 0x29:
2663 case 0x2c: case 0x2d: /* Load/store pair (all forms) */
2664 disas_ldst_pair(s, insn);
2665 break;
2666 case 0x38: case 0x39:
2667 case 0x3c: case 0x3d: /* Load/store register (all forms) */
2668 disas_ldst_reg(s, insn);
2669 break;
2670 case 0x0c: /* AdvSIMD load/store multiple structures */
2671 disas_ldst_multiple_struct(s, insn);
2672 break;
2673 case 0x0d: /* AdvSIMD load/store single structure */
2674 disas_ldst_single_struct(s, insn);
2675 break;
2676 default:
2677 unallocated_encoding(s);
2678 break;
2682 /* C3.4.6 PC-rel. addressing
2683 * 31 30 29 28 24 23 5 4 0
2684 * +----+-------+-----------+-------------------+------+
2685 * | op | immlo | 1 0 0 0 0 | immhi | Rd |
2686 * +----+-------+-----------+-------------------+------+
2688 static void disas_pc_rel_adr(DisasContext *s, uint32_t insn)
2690 unsigned int page, rd;
2691 uint64_t base;
2692 uint64_t offset;
2694 page = extract32(insn, 31, 1);
2695 /* SignExtend(immhi:immlo) -> offset */
2696 offset = sextract64(insn, 5, 19);
2697 offset = offset << 2 | extract32(insn, 29, 2);
2698 rd = extract32(insn, 0, 5);
2699 base = s->pc - 4;
2701 if (page) {
2702 /* ADRP (page based) */
2703 base &= ~0xfff;
2704 offset <<= 12;
2707 tcg_gen_movi_i64(cpu_reg(s, rd), base + offset);
2711 * C3.4.1 Add/subtract (immediate)
2713 * 31 30 29 28 24 23 22 21 10 9 5 4 0
2714 * +--+--+--+-----------+-----+-------------+-----+-----+
2715 * |sf|op| S| 1 0 0 0 1 |shift| imm12 | Rn | Rd |
2716 * +--+--+--+-----------+-----+-------------+-----+-----+
2718 * sf: 0 -> 32bit, 1 -> 64bit
2719 * op: 0 -> add , 1 -> sub
2720 * S: 1 -> set flags
2721 * shift: 00 -> LSL imm by 0, 01 -> LSL imm by 12
2723 static void disas_add_sub_imm(DisasContext *s, uint32_t insn)
2725 int rd = extract32(insn, 0, 5);
2726 int rn = extract32(insn, 5, 5);
2727 uint64_t imm = extract32(insn, 10, 12);
2728 int shift = extract32(insn, 22, 2);
2729 bool setflags = extract32(insn, 29, 1);
2730 bool sub_op = extract32(insn, 30, 1);
2731 bool is_64bit = extract32(insn, 31, 1);
2733 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
2734 TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd);
2735 TCGv_i64 tcg_result;
2737 switch (shift) {
2738 case 0x0:
2739 break;
2740 case 0x1:
2741 imm <<= 12;
2742 break;
2743 default:
2744 unallocated_encoding(s);
2745 return;
2748 tcg_result = tcg_temp_new_i64();
2749 if (!setflags) {
2750 if (sub_op) {
2751 tcg_gen_subi_i64(tcg_result, tcg_rn, imm);
2752 } else {
2753 tcg_gen_addi_i64(tcg_result, tcg_rn, imm);
2755 } else {
2756 TCGv_i64 tcg_imm = tcg_const_i64(imm);
2757 if (sub_op) {
2758 gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
2759 } else {
2760 gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
2762 tcg_temp_free_i64(tcg_imm);
2765 if (is_64bit) {
2766 tcg_gen_mov_i64(tcg_rd, tcg_result);
2767 } else {
2768 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
2771 tcg_temp_free_i64(tcg_result);
2774 /* The input should be a value in the bottom e bits (with higher
2775 * bits zero); returns that value replicated into every element
2776 * of size e in a 64 bit integer.
2778 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
2780 assert(e != 0);
2781 while (e < 64) {
2782 mask |= mask << e;
2783 e *= 2;
2785 return mask;
2788 /* Return a value with the bottom len bits set (where 0 < len <= 64) */
2789 static inline uint64_t bitmask64(unsigned int length)
2791 assert(length > 0 && length <= 64);
2792 return ~0ULL >> (64 - length);
2795 /* Simplified variant of pseudocode DecodeBitMasks() for the case where we
2796 * only require the wmask. Returns false if the imms/immr/immn are a reserved
2797 * value (ie should cause a guest UNDEF exception), and true if they are
2798 * valid, in which case the decoded bit pattern is written to result.
2800 static bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
2801 unsigned int imms, unsigned int immr)
2803 uint64_t mask;
2804 unsigned e, levels, s, r;
2805 int len;
2807 assert(immn < 2 && imms < 64 && immr < 64);
2809 /* The bit patterns we create here are 64 bit patterns which
2810 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
2811 * 64 bits each. Each element contains the same value: a run
2812 * of between 1 and e-1 non-zero bits, rotated within the
2813 * element by between 0 and e-1 bits.
2815 * The element size and run length are encoded into immn (1 bit)
2816 * and imms (6 bits) as follows:
2817 * 64 bit elements: immn = 1, imms = <length of run - 1>
2818 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
2819 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
2820 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
2821 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
2822 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
2823 * Notice that immn = 0, imms = 11111x is the only combination
2824 * not covered by one of the above options; this is reserved.
2825 * Further, <length of run - 1> all-ones is a reserved pattern.
2827 * In all cases the rotation is by immr % e (and immr is 6 bits).
2830 /* First determine the element size */
2831 len = 31 - clz32((immn << 6) | (~imms & 0x3f));
2832 if (len < 1) {
2833 /* This is the immn == 0, imms == 0x11111x case */
2834 return false;
2836 e = 1 << len;
2838 levels = e - 1;
2839 s = imms & levels;
2840 r = immr & levels;
2842 if (s == levels) {
2843 /* <length of run - 1> mustn't be all-ones. */
2844 return false;
2847 /* Create the value of one element: s+1 set bits rotated
2848 * by r within the element (which is e bits wide)...
2850 mask = bitmask64(s + 1);
2851 if (r) {
2852 mask = (mask >> r) | (mask << (e - r));
2853 mask &= bitmask64(e);
2855 /* ...then replicate the element over the whole 64 bit value */
2856 mask = bitfield_replicate(mask, e);
2857 *result = mask;
2858 return true;
2861 /* C3.4.4 Logical (immediate)
2862 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
2863 * +----+-----+-------------+---+------+------+------+------+
2864 * | sf | opc | 1 0 0 1 0 0 | N | immr | imms | Rn | Rd |
2865 * +----+-----+-------------+---+------+------+------+------+
2867 static void disas_logic_imm(DisasContext *s, uint32_t insn)
2869 unsigned int sf, opc, is_n, immr, imms, rn, rd;
2870 TCGv_i64 tcg_rd, tcg_rn;
2871 uint64_t wmask;
2872 bool is_and = false;
2874 sf = extract32(insn, 31, 1);
2875 opc = extract32(insn, 29, 2);
2876 is_n = extract32(insn, 22, 1);
2877 immr = extract32(insn, 16, 6);
2878 imms = extract32(insn, 10, 6);
2879 rn = extract32(insn, 5, 5);
2880 rd = extract32(insn, 0, 5);
2882 if (!sf && is_n) {
2883 unallocated_encoding(s);
2884 return;
2887 if (opc == 0x3) { /* ANDS */
2888 tcg_rd = cpu_reg(s, rd);
2889 } else {
2890 tcg_rd = cpu_reg_sp(s, rd);
2892 tcg_rn = cpu_reg(s, rn);
2894 if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) {
2895 /* some immediate field values are reserved */
2896 unallocated_encoding(s);
2897 return;
2900 if (!sf) {
2901 wmask &= 0xffffffff;
2904 switch (opc) {
2905 case 0x3: /* ANDS */
2906 case 0x0: /* AND */
2907 tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask);
2908 is_and = true;
2909 break;
2910 case 0x1: /* ORR */
2911 tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask);
2912 break;
2913 case 0x2: /* EOR */
2914 tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask);
2915 break;
2916 default:
2917 assert(FALSE); /* must handle all above */
2918 break;
2921 if (!sf && !is_and) {
2922 /* zero extend final result; we know we can skip this for AND
2923 * since the immediate had the high 32 bits clear.
2925 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
2928 if (opc == 3) { /* ANDS */
2929 gen_logic_CC(sf, tcg_rd);
2934 * C3.4.5 Move wide (immediate)
2936 * 31 30 29 28 23 22 21 20 5 4 0
2937 * +--+-----+-------------+-----+----------------+------+
2938 * |sf| opc | 1 0 0 1 0 1 | hw | imm16 | Rd |
2939 * +--+-----+-------------+-----+----------------+------+
2941 * sf: 0 -> 32 bit, 1 -> 64 bit
2942 * opc: 00 -> N, 10 -> Z, 11 -> K
2943 * hw: shift/16 (0,16, and sf only 32, 48)
2945 static void disas_movw_imm(DisasContext *s, uint32_t insn)
2947 int rd = extract32(insn, 0, 5);
2948 uint64_t imm = extract32(insn, 5, 16);
2949 int sf = extract32(insn, 31, 1);
2950 int opc = extract32(insn, 29, 2);
2951 int pos = extract32(insn, 21, 2) << 4;
2952 TCGv_i64 tcg_rd = cpu_reg(s, rd);
2953 TCGv_i64 tcg_imm;
2955 if (!sf && (pos >= 32)) {
2956 unallocated_encoding(s);
2957 return;
2960 switch (opc) {
2961 case 0: /* MOVN */
2962 case 2: /* MOVZ */
2963 imm <<= pos;
2964 if (opc == 0) {
2965 imm = ~imm;
2967 if (!sf) {
2968 imm &= 0xffffffffu;
2970 tcg_gen_movi_i64(tcg_rd, imm);
2971 break;
2972 case 3: /* MOVK */
2973 tcg_imm = tcg_const_i64(imm);
2974 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_imm, pos, 16);
2975 tcg_temp_free_i64(tcg_imm);
2976 if (!sf) {
2977 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
2979 break;
2980 default:
2981 unallocated_encoding(s);
2982 break;
2986 /* C3.4.2 Bitfield
2987 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
2988 * +----+-----+-------------+---+------+------+------+------+
2989 * | sf | opc | 1 0 0 1 1 0 | N | immr | imms | Rn | Rd |
2990 * +----+-----+-------------+---+------+------+------+------+
2992 static void disas_bitfield(DisasContext *s, uint32_t insn)
2994 unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len;
2995 TCGv_i64 tcg_rd, tcg_tmp;
2997 sf = extract32(insn, 31, 1);
2998 opc = extract32(insn, 29, 2);
2999 n = extract32(insn, 22, 1);
3000 ri = extract32(insn, 16, 6);
3001 si = extract32(insn, 10, 6);
3002 rn = extract32(insn, 5, 5);
3003 rd = extract32(insn, 0, 5);
3004 bitsize = sf ? 64 : 32;
3006 if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) {
3007 unallocated_encoding(s);
3008 return;
3011 tcg_rd = cpu_reg(s, rd);
3013 /* Suppress the zero-extend for !sf. Since RI and SI are constrained
3014 to be smaller than bitsize, we'll never reference data outside the
3015 low 32-bits anyway. */
3016 tcg_tmp = read_cpu_reg(s, rn, 1);
3018 /* Recognize the common aliases. */
3019 if (opc == 0) { /* SBFM */
3020 if (ri == 0) {
3021 if (si == 7) { /* SXTB */
3022 tcg_gen_ext8s_i64(tcg_rd, tcg_tmp);
3023 goto done;
3024 } else if (si == 15) { /* SXTH */
3025 tcg_gen_ext16s_i64(tcg_rd, tcg_tmp);
3026 goto done;
3027 } else if (si == 31) { /* SXTW */
3028 tcg_gen_ext32s_i64(tcg_rd, tcg_tmp);
3029 goto done;
3032 if (si == 63 || (si == 31 && ri <= si)) { /* ASR */
3033 if (si == 31) {
3034 tcg_gen_ext32s_i64(tcg_tmp, tcg_tmp);
3036 tcg_gen_sari_i64(tcg_rd, tcg_tmp, ri);
3037 goto done;
3039 } else if (opc == 2) { /* UBFM */
3040 if (ri == 0) { /* UXTB, UXTH, plus non-canonical AND */
3041 tcg_gen_andi_i64(tcg_rd, tcg_tmp, bitmask64(si + 1));
3042 return;
3044 if (si == 63 || (si == 31 && ri <= si)) { /* LSR */
3045 if (si == 31) {
3046 tcg_gen_ext32u_i64(tcg_tmp, tcg_tmp);
3048 tcg_gen_shri_i64(tcg_rd, tcg_tmp, ri);
3049 return;
3051 if (si + 1 == ri && si != bitsize - 1) { /* LSL */
3052 int shift = bitsize - 1 - si;
3053 tcg_gen_shli_i64(tcg_rd, tcg_tmp, shift);
3054 goto done;
3058 if (opc != 1) { /* SBFM or UBFM */
3059 tcg_gen_movi_i64(tcg_rd, 0);
3062 /* do the bit move operation */
3063 if (si >= ri) {
3064 /* Wd<s-r:0> = Wn<s:r> */
3065 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
3066 pos = 0;
3067 len = (si - ri) + 1;
3068 } else {
3069 /* Wd<32+s-r,32-r> = Wn<s:0> */
3070 pos = bitsize - ri;
3071 len = si + 1;
3074 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
3076 if (opc == 0) { /* SBFM - sign extend the destination field */
3077 tcg_gen_shli_i64(tcg_rd, tcg_rd, 64 - (pos + len));
3078 tcg_gen_sari_i64(tcg_rd, tcg_rd, 64 - (pos + len));
3081 done:
3082 if (!sf) { /* zero extend final result */
3083 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3087 /* C3.4.3 Extract
3088 * 31 30 29 28 23 22 21 20 16 15 10 9 5 4 0
3089 * +----+------+-------------+---+----+------+--------+------+------+
3090 * | sf | op21 | 1 0 0 1 1 1 | N | o0 | Rm | imms | Rn | Rd |
3091 * +----+------+-------------+---+----+------+--------+------+------+
3093 static void disas_extract(DisasContext *s, uint32_t insn)
3095 unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0;
3097 sf = extract32(insn, 31, 1);
3098 n = extract32(insn, 22, 1);
3099 rm = extract32(insn, 16, 5);
3100 imm = extract32(insn, 10, 6);
3101 rn = extract32(insn, 5, 5);
3102 rd = extract32(insn, 0, 5);
3103 op21 = extract32(insn, 29, 2);
3104 op0 = extract32(insn, 21, 1);
3105 bitsize = sf ? 64 : 32;
3107 if (sf != n || op21 || op0 || imm >= bitsize) {
3108 unallocated_encoding(s);
3109 } else {
3110 TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
3112 tcg_rd = cpu_reg(s, rd);
3114 if (unlikely(imm == 0)) {
3115 /* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
3116 * so an extract from bit 0 is a special case.
3118 if (sf) {
3119 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm));
3120 } else {
3121 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm));
3123 } else if (rm == rn) { /* ROR */
3124 tcg_rm = cpu_reg(s, rm);
3125 if (sf) {
3126 tcg_gen_rotri_i64(tcg_rd, tcg_rm, imm);
3127 } else {
3128 TCGv_i32 tmp = tcg_temp_new_i32();
3129 tcg_gen_extrl_i64_i32(tmp, tcg_rm);
3130 tcg_gen_rotri_i32(tmp, tmp, imm);
3131 tcg_gen_extu_i32_i64(tcg_rd, tmp);
3132 tcg_temp_free_i32(tmp);
3134 } else {
3135 tcg_rm = read_cpu_reg(s, rm, sf);
3136 tcg_rn = read_cpu_reg(s, rn, sf);
3137 tcg_gen_shri_i64(tcg_rm, tcg_rm, imm);
3138 tcg_gen_shli_i64(tcg_rn, tcg_rn, bitsize - imm);
3139 tcg_gen_or_i64(tcg_rd, tcg_rm, tcg_rn);
3140 if (!sf) {
3141 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3147 /* C3.4 Data processing - immediate */
3148 static void disas_data_proc_imm(DisasContext *s, uint32_t insn)
3150 switch (extract32(insn, 23, 6)) {
3151 case 0x20: case 0x21: /* PC-rel. addressing */
3152 disas_pc_rel_adr(s, insn);
3153 break;
3154 case 0x22: case 0x23: /* Add/subtract (immediate) */
3155 disas_add_sub_imm(s, insn);
3156 break;
3157 case 0x24: /* Logical (immediate) */
3158 disas_logic_imm(s, insn);
3159 break;
3160 case 0x25: /* Move wide (immediate) */
3161 disas_movw_imm(s, insn);
3162 break;
3163 case 0x26: /* Bitfield */
3164 disas_bitfield(s, insn);
3165 break;
3166 case 0x27: /* Extract */
3167 disas_extract(s, insn);
3168 break;
3169 default:
3170 unallocated_encoding(s);
3171 break;
3175 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
3176 * Note that it is the caller's responsibility to ensure that the
3177 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
3178 * mandated semantics for out of range shifts.
3180 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
3181 enum a64_shift_type shift_type, TCGv_i64 shift_amount)
3183 switch (shift_type) {
3184 case A64_SHIFT_TYPE_LSL:
3185 tcg_gen_shl_i64(dst, src, shift_amount);
3186 break;
3187 case A64_SHIFT_TYPE_LSR:
3188 tcg_gen_shr_i64(dst, src, shift_amount);
3189 break;
3190 case A64_SHIFT_TYPE_ASR:
3191 if (!sf) {
3192 tcg_gen_ext32s_i64(dst, src);
3194 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
3195 break;
3196 case A64_SHIFT_TYPE_ROR:
3197 if (sf) {
3198 tcg_gen_rotr_i64(dst, src, shift_amount);
3199 } else {
3200 TCGv_i32 t0, t1;
3201 t0 = tcg_temp_new_i32();
3202 t1 = tcg_temp_new_i32();
3203 tcg_gen_extrl_i64_i32(t0, src);
3204 tcg_gen_extrl_i64_i32(t1, shift_amount);
3205 tcg_gen_rotr_i32(t0, t0, t1);
3206 tcg_gen_extu_i32_i64(dst, t0);
3207 tcg_temp_free_i32(t0);
3208 tcg_temp_free_i32(t1);
3210 break;
3211 default:
3212 assert(FALSE); /* all shift types should be handled */
3213 break;
3216 if (!sf) { /* zero extend final result */
3217 tcg_gen_ext32u_i64(dst, dst);
3221 /* Shift a TCGv src by immediate, put result in dst.
3222 * The shift amount must be in range (this should always be true as the
3223 * relevant instructions will UNDEF on bad shift immediates).
3225 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
3226 enum a64_shift_type shift_type, unsigned int shift_i)
3228 assert(shift_i < (sf ? 64 : 32));
3230 if (shift_i == 0) {
3231 tcg_gen_mov_i64(dst, src);
3232 } else {
3233 TCGv_i64 shift_const;
3235 shift_const = tcg_const_i64(shift_i);
3236 shift_reg(dst, src, sf, shift_type, shift_const);
3237 tcg_temp_free_i64(shift_const);
3241 /* C3.5.10 Logical (shifted register)
3242 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
3243 * +----+-----+-----------+-------+---+------+--------+------+------+
3244 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
3245 * +----+-----+-----------+-------+---+------+--------+------+------+
3247 static void disas_logic_reg(DisasContext *s, uint32_t insn)
3249 TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
3250 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
3252 sf = extract32(insn, 31, 1);
3253 opc = extract32(insn, 29, 2);
3254 shift_type = extract32(insn, 22, 2);
3255 invert = extract32(insn, 21, 1);
3256 rm = extract32(insn, 16, 5);
3257 shift_amount = extract32(insn, 10, 6);
3258 rn = extract32(insn, 5, 5);
3259 rd = extract32(insn, 0, 5);
3261 if (!sf && (shift_amount & (1 << 5))) {
3262 unallocated_encoding(s);
3263 return;
3266 tcg_rd = cpu_reg(s, rd);
3268 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
3269 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
3270 * register-register MOV and MVN, so it is worth special casing.
3272 tcg_rm = cpu_reg(s, rm);
3273 if (invert) {
3274 tcg_gen_not_i64(tcg_rd, tcg_rm);
3275 if (!sf) {
3276 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3278 } else {
3279 if (sf) {
3280 tcg_gen_mov_i64(tcg_rd, tcg_rm);
3281 } else {
3282 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
3285 return;
3288 tcg_rm = read_cpu_reg(s, rm, sf);
3290 if (shift_amount) {
3291 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
3294 tcg_rn = cpu_reg(s, rn);
3296 switch (opc | (invert << 2)) {
3297 case 0: /* AND */
3298 case 3: /* ANDS */
3299 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
3300 break;
3301 case 1: /* ORR */
3302 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
3303 break;
3304 case 2: /* EOR */
3305 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
3306 break;
3307 case 4: /* BIC */
3308 case 7: /* BICS */
3309 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
3310 break;
3311 case 5: /* ORN */
3312 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
3313 break;
3314 case 6: /* EON */
3315 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
3316 break;
3317 default:
3318 assert(FALSE);
3319 break;
3322 if (!sf) {
3323 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3326 if (opc == 3) {
3327 gen_logic_CC(sf, tcg_rd);
3332 * C3.5.1 Add/subtract (extended register)
3334 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
3335 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
3336 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
3337 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
3339 * sf: 0 -> 32bit, 1 -> 64bit
3340 * op: 0 -> add , 1 -> sub
3341 * S: 1 -> set flags
3342 * opt: 00
3343 * option: extension type (see DecodeRegExtend)
3344 * imm3: optional shift to Rm
3346 * Rd = Rn + LSL(extend(Rm), amount)
3348 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
3350 int rd = extract32(insn, 0, 5);
3351 int rn = extract32(insn, 5, 5);
3352 int imm3 = extract32(insn, 10, 3);
3353 int option = extract32(insn, 13, 3);
3354 int rm = extract32(insn, 16, 5);
3355 bool setflags = extract32(insn, 29, 1);
3356 bool sub_op = extract32(insn, 30, 1);
3357 bool sf = extract32(insn, 31, 1);
3359 TCGv_i64 tcg_rm, tcg_rn; /* temps */
3360 TCGv_i64 tcg_rd;
3361 TCGv_i64 tcg_result;
3363 if (imm3 > 4) {
3364 unallocated_encoding(s);
3365 return;
3368 /* non-flag setting ops may use SP */
3369 if (!setflags) {
3370 tcg_rd = cpu_reg_sp(s, rd);
3371 } else {
3372 tcg_rd = cpu_reg(s, rd);
3374 tcg_rn = read_cpu_reg_sp(s, rn, sf);
3376 tcg_rm = read_cpu_reg(s, rm, sf);
3377 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
3379 tcg_result = tcg_temp_new_i64();
3381 if (!setflags) {
3382 if (sub_op) {
3383 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
3384 } else {
3385 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
3387 } else {
3388 if (sub_op) {
3389 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
3390 } else {
3391 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
3395 if (sf) {
3396 tcg_gen_mov_i64(tcg_rd, tcg_result);
3397 } else {
3398 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
3401 tcg_temp_free_i64(tcg_result);
3405 * C3.5.2 Add/subtract (shifted register)
3407 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
3408 * +--+--+--+-----------+-----+--+-------+---------+------+------+
3409 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
3410 * +--+--+--+-----------+-----+--+-------+---------+------+------+
3412 * sf: 0 -> 32bit, 1 -> 64bit
3413 * op: 0 -> add , 1 -> sub
3414 * S: 1 -> set flags
3415 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
3416 * imm6: Shift amount to apply to Rm before the add/sub
3418 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
3420 int rd = extract32(insn, 0, 5);
3421 int rn = extract32(insn, 5, 5);
3422 int imm6 = extract32(insn, 10, 6);
3423 int rm = extract32(insn, 16, 5);
3424 int shift_type = extract32(insn, 22, 2);
3425 bool setflags = extract32(insn, 29, 1);
3426 bool sub_op = extract32(insn, 30, 1);
3427 bool sf = extract32(insn, 31, 1);
3429 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3430 TCGv_i64 tcg_rn, tcg_rm;
3431 TCGv_i64 tcg_result;
3433 if ((shift_type == 3) || (!sf && (imm6 > 31))) {
3434 unallocated_encoding(s);
3435 return;
3438 tcg_rn = read_cpu_reg(s, rn, sf);
3439 tcg_rm = read_cpu_reg(s, rm, sf);
3441 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
3443 tcg_result = tcg_temp_new_i64();
3445 if (!setflags) {
3446 if (sub_op) {
3447 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
3448 } else {
3449 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
3451 } else {
3452 if (sub_op) {
3453 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
3454 } else {
3455 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
3459 if (sf) {
3460 tcg_gen_mov_i64(tcg_rd, tcg_result);
3461 } else {
3462 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
3465 tcg_temp_free_i64(tcg_result);
3468 /* C3.5.9 Data-processing (3 source)
3470 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
3471 +--+------+-----------+------+------+----+------+------+------+
3472 |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
3473 +--+------+-----------+------+------+----+------+------+------+
3476 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
3478 int rd = extract32(insn, 0, 5);
3479 int rn = extract32(insn, 5, 5);
3480 int ra = extract32(insn, 10, 5);
3481 int rm = extract32(insn, 16, 5);
3482 int op_id = (extract32(insn, 29, 3) << 4) |
3483 (extract32(insn, 21, 3) << 1) |
3484 extract32(insn, 15, 1);
3485 bool sf = extract32(insn, 31, 1);
3486 bool is_sub = extract32(op_id, 0, 1);
3487 bool is_high = extract32(op_id, 2, 1);
3488 bool is_signed = false;
3489 TCGv_i64 tcg_op1;
3490 TCGv_i64 tcg_op2;
3491 TCGv_i64 tcg_tmp;
3493 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
3494 switch (op_id) {
3495 case 0x42: /* SMADDL */
3496 case 0x43: /* SMSUBL */
3497 case 0x44: /* SMULH */
3498 is_signed = true;
3499 break;
3500 case 0x0: /* MADD (32bit) */
3501 case 0x1: /* MSUB (32bit) */
3502 case 0x40: /* MADD (64bit) */
3503 case 0x41: /* MSUB (64bit) */
3504 case 0x4a: /* UMADDL */
3505 case 0x4b: /* UMSUBL */
3506 case 0x4c: /* UMULH */
3507 break;
3508 default:
3509 unallocated_encoding(s);
3510 return;
3513 if (is_high) {
3514 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
3515 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3516 TCGv_i64 tcg_rn = cpu_reg(s, rn);
3517 TCGv_i64 tcg_rm = cpu_reg(s, rm);
3519 if (is_signed) {
3520 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
3521 } else {
3522 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
3525 tcg_temp_free_i64(low_bits);
3526 return;
3529 tcg_op1 = tcg_temp_new_i64();
3530 tcg_op2 = tcg_temp_new_i64();
3531 tcg_tmp = tcg_temp_new_i64();
3533 if (op_id < 0x42) {
3534 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
3535 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
3536 } else {
3537 if (is_signed) {
3538 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
3539 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
3540 } else {
3541 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
3542 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
3546 if (ra == 31 && !is_sub) {
3547 /* Special-case MADD with rA == XZR; it is the standard MUL alias */
3548 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
3549 } else {
3550 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
3551 if (is_sub) {
3552 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
3553 } else {
3554 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
3558 if (!sf) {
3559 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
3562 tcg_temp_free_i64(tcg_op1);
3563 tcg_temp_free_i64(tcg_op2);
3564 tcg_temp_free_i64(tcg_tmp);
3567 /* C3.5.3 - Add/subtract (with carry)
3568 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
3569 * +--+--+--+------------------------+------+---------+------+-----+
3570 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | opcode2 | Rn | Rd |
3571 * +--+--+--+------------------------+------+---------+------+-----+
3572 * [000000]
3575 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
3577 unsigned int sf, op, setflags, rm, rn, rd;
3578 TCGv_i64 tcg_y, tcg_rn, tcg_rd;
3580 if (extract32(insn, 10, 6) != 0) {
3581 unallocated_encoding(s);
3582 return;
3585 sf = extract32(insn, 31, 1);
3586 op = extract32(insn, 30, 1);
3587 setflags = extract32(insn, 29, 1);
3588 rm = extract32(insn, 16, 5);
3589 rn = extract32(insn, 5, 5);
3590 rd = extract32(insn, 0, 5);
3592 tcg_rd = cpu_reg(s, rd);
3593 tcg_rn = cpu_reg(s, rn);
3595 if (op) {
3596 tcg_y = new_tmp_a64(s);
3597 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
3598 } else {
3599 tcg_y = cpu_reg(s, rm);
3602 if (setflags) {
3603 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
3604 } else {
3605 gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
3609 /* C3.5.4 - C3.5.5 Conditional compare (immediate / register)
3610 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
3611 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
3612 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
3613 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
3614 * [1] y [0] [0]
3616 static void disas_cc(DisasContext *s, uint32_t insn)
3618 unsigned int sf, op, y, cond, rn, nzcv, is_imm;
3619 TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
3620 TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
3621 DisasCompare c;
3623 if (!extract32(insn, 29, 1)) {
3624 unallocated_encoding(s);
3625 return;
3627 if (insn & (1 << 10 | 1 << 4)) {
3628 unallocated_encoding(s);
3629 return;
3631 sf = extract32(insn, 31, 1);
3632 op = extract32(insn, 30, 1);
3633 is_imm = extract32(insn, 11, 1);
3634 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
3635 cond = extract32(insn, 12, 4);
3636 rn = extract32(insn, 5, 5);
3637 nzcv = extract32(insn, 0, 4);
3639 /* Set T0 = !COND. */
3640 tcg_t0 = tcg_temp_new_i32();
3641 arm_test_cc(&c, cond);
3642 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
3643 arm_free_cc(&c);
3645 /* Load the arguments for the new comparison. */
3646 if (is_imm) {
3647 tcg_y = new_tmp_a64(s);
3648 tcg_gen_movi_i64(tcg_y, y);
3649 } else {
3650 tcg_y = cpu_reg(s, y);
3652 tcg_rn = cpu_reg(s, rn);
3654 /* Set the flags for the new comparison. */
3655 tcg_tmp = tcg_temp_new_i64();
3656 if (op) {
3657 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
3658 } else {
3659 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
3661 tcg_temp_free_i64(tcg_tmp);
3663 /* If COND was false, force the flags to #nzcv. Compute two masks
3664 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
3665 * For tcg hosts that support ANDC, we can make do with just T1.
3666 * In either case, allow the tcg optimizer to delete any unused mask.
3668 tcg_t1 = tcg_temp_new_i32();
3669 tcg_t2 = tcg_temp_new_i32();
3670 tcg_gen_neg_i32(tcg_t1, tcg_t0);
3671 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
3673 if (nzcv & 8) { /* N */
3674 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
3675 } else {
3676 if (TCG_TARGET_HAS_andc_i32) {
3677 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
3678 } else {
3679 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
3682 if (nzcv & 4) { /* Z */
3683 if (TCG_TARGET_HAS_andc_i32) {
3684 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
3685 } else {
3686 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
3688 } else {
3689 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
3691 if (nzcv & 2) { /* C */
3692 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
3693 } else {
3694 if (TCG_TARGET_HAS_andc_i32) {
3695 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
3696 } else {
3697 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
3700 if (nzcv & 1) { /* V */
3701 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
3702 } else {
3703 if (TCG_TARGET_HAS_andc_i32) {
3704 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
3705 } else {
3706 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
3709 tcg_temp_free_i32(tcg_t0);
3710 tcg_temp_free_i32(tcg_t1);
3711 tcg_temp_free_i32(tcg_t2);
3714 /* C3.5.6 Conditional select
3715 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
3716 * +----+----+---+-----------------+------+------+-----+------+------+
3717 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
3718 * +----+----+---+-----------------+------+------+-----+------+------+
3720 static void disas_cond_select(DisasContext *s, uint32_t insn)
3722 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
3723 TCGv_i64 tcg_rd, zero;
3724 DisasCompare64 c;
3726 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
3727 /* S == 1 or op2<1> == 1 */
3728 unallocated_encoding(s);
3729 return;
3731 sf = extract32(insn, 31, 1);
3732 else_inv = extract32(insn, 30, 1);
3733 rm = extract32(insn, 16, 5);
3734 cond = extract32(insn, 12, 4);
3735 else_inc = extract32(insn, 10, 1);
3736 rn = extract32(insn, 5, 5);
3737 rd = extract32(insn, 0, 5);
3739 tcg_rd = cpu_reg(s, rd);
3741 a64_test_cc(&c, cond);
3742 zero = tcg_const_i64(0);
3744 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
3745 /* CSET & CSETM. */
3746 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero);
3747 if (else_inv) {
3748 tcg_gen_neg_i64(tcg_rd, tcg_rd);
3750 } else {
3751 TCGv_i64 t_true = cpu_reg(s, rn);
3752 TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
3753 if (else_inv && else_inc) {
3754 tcg_gen_neg_i64(t_false, t_false);
3755 } else if (else_inv) {
3756 tcg_gen_not_i64(t_false, t_false);
3757 } else if (else_inc) {
3758 tcg_gen_addi_i64(t_false, t_false, 1);
3760 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
3763 tcg_temp_free_i64(zero);
3764 a64_free_cc(&c);
3766 if (!sf) {
3767 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3771 static void handle_clz(DisasContext *s, unsigned int sf,
3772 unsigned int rn, unsigned int rd)
3774 TCGv_i64 tcg_rd, tcg_rn;
3775 tcg_rd = cpu_reg(s, rd);
3776 tcg_rn = cpu_reg(s, rn);
3778 if (sf) {
3779 gen_helper_clz64(tcg_rd, tcg_rn);
3780 } else {
3781 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
3782 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
3783 gen_helper_clz(tcg_tmp32, tcg_tmp32);
3784 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
3785 tcg_temp_free_i32(tcg_tmp32);
3789 static void handle_cls(DisasContext *s, unsigned int sf,
3790 unsigned int rn, unsigned int rd)
3792 TCGv_i64 tcg_rd, tcg_rn;
3793 tcg_rd = cpu_reg(s, rd);
3794 tcg_rn = cpu_reg(s, rn);
3796 if (sf) {
3797 gen_helper_cls64(tcg_rd, tcg_rn);
3798 } else {
3799 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
3800 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
3801 gen_helper_cls32(tcg_tmp32, tcg_tmp32);
3802 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
3803 tcg_temp_free_i32(tcg_tmp32);
3807 static void handle_rbit(DisasContext *s, unsigned int sf,
3808 unsigned int rn, unsigned int rd)
3810 TCGv_i64 tcg_rd, tcg_rn;
3811 tcg_rd = cpu_reg(s, rd);
3812 tcg_rn = cpu_reg(s, rn);
3814 if (sf) {
3815 gen_helper_rbit64(tcg_rd, tcg_rn);
3816 } else {
3817 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
3818 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
3819 gen_helper_rbit(tcg_tmp32, tcg_tmp32);
3820 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
3821 tcg_temp_free_i32(tcg_tmp32);
3825 /* C5.6.149 REV with sf==1, opcode==3 ("REV64") */
3826 static void handle_rev64(DisasContext *s, unsigned int sf,
3827 unsigned int rn, unsigned int rd)
3829 if (!sf) {
3830 unallocated_encoding(s);
3831 return;
3833 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
3836 /* C5.6.149 REV with sf==0, opcode==2
3837 * C5.6.151 REV32 (sf==1, opcode==2)
3839 static void handle_rev32(DisasContext *s, unsigned int sf,
3840 unsigned int rn, unsigned int rd)
3842 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3844 if (sf) {
3845 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3846 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
3848 /* bswap32_i64 requires zero high word */
3849 tcg_gen_ext32u_i64(tcg_tmp, tcg_rn);
3850 tcg_gen_bswap32_i64(tcg_rd, tcg_tmp);
3851 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 32);
3852 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
3853 tcg_gen_concat32_i64(tcg_rd, tcg_rd, tcg_tmp);
3855 tcg_temp_free_i64(tcg_tmp);
3856 } else {
3857 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rn));
3858 tcg_gen_bswap32_i64(tcg_rd, tcg_rd);
3862 /* C5.6.150 REV16 (opcode==1) */
3863 static void handle_rev16(DisasContext *s, unsigned int sf,
3864 unsigned int rn, unsigned int rd)
3866 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3867 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3868 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
3870 tcg_gen_andi_i64(tcg_tmp, tcg_rn, 0xffff);
3871 tcg_gen_bswap16_i64(tcg_rd, tcg_tmp);
3873 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 16);
3874 tcg_gen_andi_i64(tcg_tmp, tcg_tmp, 0xffff);
3875 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
3876 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, 16, 16);
3878 if (sf) {
3879 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 32);
3880 tcg_gen_andi_i64(tcg_tmp, tcg_tmp, 0xffff);
3881 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
3882 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, 32, 16);
3884 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 48);
3885 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
3886 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, 48, 16);
3889 tcg_temp_free_i64(tcg_tmp);
3892 /* C3.5.7 Data-processing (1 source)
3893 * 31 30 29 28 21 20 16 15 10 9 5 4 0
3894 * +----+---+---+-----------------+---------+--------+------+------+
3895 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
3896 * +----+---+---+-----------------+---------+--------+------+------+
3898 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
3900 unsigned int sf, opcode, rn, rd;
3902 if (extract32(insn, 29, 1) || extract32(insn, 16, 5)) {
3903 unallocated_encoding(s);
3904 return;
3907 sf = extract32(insn, 31, 1);
3908 opcode = extract32(insn, 10, 6);
3909 rn = extract32(insn, 5, 5);
3910 rd = extract32(insn, 0, 5);
3912 switch (opcode) {
3913 case 0: /* RBIT */
3914 handle_rbit(s, sf, rn, rd);
3915 break;
3916 case 1: /* REV16 */
3917 handle_rev16(s, sf, rn, rd);
3918 break;
3919 case 2: /* REV32 */
3920 handle_rev32(s, sf, rn, rd);
3921 break;
3922 case 3: /* REV64 */
3923 handle_rev64(s, sf, rn, rd);
3924 break;
3925 case 4: /* CLZ */
3926 handle_clz(s, sf, rn, rd);
3927 break;
3928 case 5: /* CLS */
3929 handle_cls(s, sf, rn, rd);
3930 break;
3934 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
3935 unsigned int rm, unsigned int rn, unsigned int rd)
3937 TCGv_i64 tcg_n, tcg_m, tcg_rd;
3938 tcg_rd = cpu_reg(s, rd);
3940 if (!sf && is_signed) {
3941 tcg_n = new_tmp_a64(s);
3942 tcg_m = new_tmp_a64(s);
3943 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
3944 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
3945 } else {
3946 tcg_n = read_cpu_reg(s, rn, sf);
3947 tcg_m = read_cpu_reg(s, rm, sf);
3950 if (is_signed) {
3951 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
3952 } else {
3953 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
3956 if (!sf) { /* zero extend final result */
3957 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3961 /* C5.6.115 LSLV, C5.6.118 LSRV, C5.6.17 ASRV, C5.6.154 RORV */
3962 static void handle_shift_reg(DisasContext *s,
3963 enum a64_shift_type shift_type, unsigned int sf,
3964 unsigned int rm, unsigned int rn, unsigned int rd)
3966 TCGv_i64 tcg_shift = tcg_temp_new_i64();
3967 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3968 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
3970 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
3971 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
3972 tcg_temp_free_i64(tcg_shift);
3975 /* CRC32[BHWX], CRC32C[BHWX] */
3976 static void handle_crc32(DisasContext *s,
3977 unsigned int sf, unsigned int sz, bool crc32c,
3978 unsigned int rm, unsigned int rn, unsigned int rd)
3980 TCGv_i64 tcg_acc, tcg_val;
3981 TCGv_i32 tcg_bytes;
3983 if (!arm_dc_feature(s, ARM_FEATURE_CRC)
3984 || (sf == 1 && sz != 3)
3985 || (sf == 0 && sz == 3)) {
3986 unallocated_encoding(s);
3987 return;
3990 if (sz == 3) {
3991 tcg_val = cpu_reg(s, rm);
3992 } else {
3993 uint64_t mask;
3994 switch (sz) {
3995 case 0:
3996 mask = 0xFF;
3997 break;
3998 case 1:
3999 mask = 0xFFFF;
4000 break;
4001 case 2:
4002 mask = 0xFFFFFFFF;
4003 break;
4004 default:
4005 g_assert_not_reached();
4007 tcg_val = new_tmp_a64(s);
4008 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
4011 tcg_acc = cpu_reg(s, rn);
4012 tcg_bytes = tcg_const_i32(1 << sz);
4014 if (crc32c) {
4015 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
4016 } else {
4017 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
4020 tcg_temp_free_i32(tcg_bytes);
4023 /* C3.5.8 Data-processing (2 source)
4024 * 31 30 29 28 21 20 16 15 10 9 5 4 0
4025 * +----+---+---+-----------------+------+--------+------+------+
4026 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
4027 * +----+---+---+-----------------+------+--------+------+------+
4029 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
4031 unsigned int sf, rm, opcode, rn, rd;
4032 sf = extract32(insn, 31, 1);
4033 rm = extract32(insn, 16, 5);
4034 opcode = extract32(insn, 10, 6);
4035 rn = extract32(insn, 5, 5);
4036 rd = extract32(insn, 0, 5);
4038 if (extract32(insn, 29, 1)) {
4039 unallocated_encoding(s);
4040 return;
4043 switch (opcode) {
4044 case 2: /* UDIV */
4045 handle_div(s, false, sf, rm, rn, rd);
4046 break;
4047 case 3: /* SDIV */
4048 handle_div(s, true, sf, rm, rn, rd);
4049 break;
4050 case 8: /* LSLV */
4051 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
4052 break;
4053 case 9: /* LSRV */
4054 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
4055 break;
4056 case 10: /* ASRV */
4057 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
4058 break;
4059 case 11: /* RORV */
4060 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
4061 break;
4062 case 16:
4063 case 17:
4064 case 18:
4065 case 19:
4066 case 20:
4067 case 21:
4068 case 22:
4069 case 23: /* CRC32 */
4071 int sz = extract32(opcode, 0, 2);
4072 bool crc32c = extract32(opcode, 2, 1);
4073 handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
4074 break;
4076 default:
4077 unallocated_encoding(s);
4078 break;
4082 /* C3.5 Data processing - register */
4083 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
4085 switch (extract32(insn, 24, 5)) {
4086 case 0x0a: /* Logical (shifted register) */
4087 disas_logic_reg(s, insn);
4088 break;
4089 case 0x0b: /* Add/subtract */
4090 if (insn & (1 << 21)) { /* (extended register) */
4091 disas_add_sub_ext_reg(s, insn);
4092 } else {
4093 disas_add_sub_reg(s, insn);
4095 break;
4096 case 0x1b: /* Data-processing (3 source) */
4097 disas_data_proc_3src(s, insn);
4098 break;
4099 case 0x1a:
4100 switch (extract32(insn, 21, 3)) {
4101 case 0x0: /* Add/subtract (with carry) */
4102 disas_adc_sbc(s, insn);
4103 break;
4104 case 0x2: /* Conditional compare */
4105 disas_cc(s, insn); /* both imm and reg forms */
4106 break;
4107 case 0x4: /* Conditional select */
4108 disas_cond_select(s, insn);
4109 break;
4110 case 0x6: /* Data-processing */
4111 if (insn & (1 << 30)) { /* (1 source) */
4112 disas_data_proc_1src(s, insn);
4113 } else { /* (2 source) */
4114 disas_data_proc_2src(s, insn);
4116 break;
4117 default:
4118 unallocated_encoding(s);
4119 break;
4121 break;
4122 default:
4123 unallocated_encoding(s);
4124 break;
4128 static void handle_fp_compare(DisasContext *s, bool is_double,
4129 unsigned int rn, unsigned int rm,
4130 bool cmp_with_zero, bool signal_all_nans)
4132 TCGv_i64 tcg_flags = tcg_temp_new_i64();
4133 TCGv_ptr fpst = get_fpstatus_ptr();
4135 if (is_double) {
4136 TCGv_i64 tcg_vn, tcg_vm;
4138 tcg_vn = read_fp_dreg(s, rn);
4139 if (cmp_with_zero) {
4140 tcg_vm = tcg_const_i64(0);
4141 } else {
4142 tcg_vm = read_fp_dreg(s, rm);
4144 if (signal_all_nans) {
4145 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4146 } else {
4147 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4149 tcg_temp_free_i64(tcg_vn);
4150 tcg_temp_free_i64(tcg_vm);
4151 } else {
4152 TCGv_i32 tcg_vn, tcg_vm;
4154 tcg_vn = read_fp_sreg(s, rn);
4155 if (cmp_with_zero) {
4156 tcg_vm = tcg_const_i32(0);
4157 } else {
4158 tcg_vm = read_fp_sreg(s, rm);
4160 if (signal_all_nans) {
4161 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4162 } else {
4163 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4165 tcg_temp_free_i32(tcg_vn);
4166 tcg_temp_free_i32(tcg_vm);
4169 tcg_temp_free_ptr(fpst);
4171 gen_set_nzcv(tcg_flags);
4173 tcg_temp_free_i64(tcg_flags);
4176 /* C3.6.22 Floating point compare
4177 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
4178 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
4179 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
4180 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
4182 static void disas_fp_compare(DisasContext *s, uint32_t insn)
4184 unsigned int mos, type, rm, op, rn, opc, op2r;
4186 mos = extract32(insn, 29, 3);
4187 type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
4188 rm = extract32(insn, 16, 5);
4189 op = extract32(insn, 14, 2);
4190 rn = extract32(insn, 5, 5);
4191 opc = extract32(insn, 3, 2);
4192 op2r = extract32(insn, 0, 3);
4194 if (mos || op || op2r || type > 1) {
4195 unallocated_encoding(s);
4196 return;
4199 if (!fp_access_check(s)) {
4200 return;
4203 handle_fp_compare(s, type, rn, rm, opc & 1, opc & 2);
4206 /* C3.6.23 Floating point conditional compare
4207 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
4208 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
4209 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
4210 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
4212 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
4214 unsigned int mos, type, rm, cond, rn, op, nzcv;
4215 TCGv_i64 tcg_flags;
4216 TCGLabel *label_continue = NULL;
4218 mos = extract32(insn, 29, 3);
4219 type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
4220 rm = extract32(insn, 16, 5);
4221 cond = extract32(insn, 12, 4);
4222 rn = extract32(insn, 5, 5);
4223 op = extract32(insn, 4, 1);
4224 nzcv = extract32(insn, 0, 4);
4226 if (mos || type > 1) {
4227 unallocated_encoding(s);
4228 return;
4231 if (!fp_access_check(s)) {
4232 return;
4235 if (cond < 0x0e) { /* not always */
4236 TCGLabel *label_match = gen_new_label();
4237 label_continue = gen_new_label();
4238 arm_gen_test_cc(cond, label_match);
4239 /* nomatch: */
4240 tcg_flags = tcg_const_i64(nzcv << 28);
4241 gen_set_nzcv(tcg_flags);
4242 tcg_temp_free_i64(tcg_flags);
4243 tcg_gen_br(label_continue);
4244 gen_set_label(label_match);
4247 handle_fp_compare(s, type, rn, rm, false, op);
4249 if (cond < 0x0e) {
4250 gen_set_label(label_continue);
4254 /* C3.6.24 Floating point conditional select
4255 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
4256 * +---+---+---+-----------+------+---+------+------+-----+------+------+
4257 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd |
4258 * +---+---+---+-----------+------+---+------+------+-----+------+------+
4260 static void disas_fp_csel(DisasContext *s, uint32_t insn)
4262 unsigned int mos, type, rm, cond, rn, rd;
4263 TCGv_i64 t_true, t_false, t_zero;
4264 DisasCompare64 c;
4266 mos = extract32(insn, 29, 3);
4267 type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
4268 rm = extract32(insn, 16, 5);
4269 cond = extract32(insn, 12, 4);
4270 rn = extract32(insn, 5, 5);
4271 rd = extract32(insn, 0, 5);
4273 if (mos || type > 1) {
4274 unallocated_encoding(s);
4275 return;
4278 if (!fp_access_check(s)) {
4279 return;
4282 /* Zero extend sreg inputs to 64 bits now. */
4283 t_true = tcg_temp_new_i64();
4284 t_false = tcg_temp_new_i64();
4285 read_vec_element(s, t_true, rn, 0, type ? MO_64 : MO_32);
4286 read_vec_element(s, t_false, rm, 0, type ? MO_64 : MO_32);
4288 a64_test_cc(&c, cond);
4289 t_zero = tcg_const_i64(0);
4290 tcg_gen_movcond_i64(c.cond, t_true, c.value, t_zero, t_true, t_false);
4291 tcg_temp_free_i64(t_zero);
4292 tcg_temp_free_i64(t_false);
4293 a64_free_cc(&c);
4295 /* Note that sregs write back zeros to the high bits,
4296 and we've already done the zero-extension. */
4297 write_fp_dreg(s, rd, t_true);
4298 tcg_temp_free_i64(t_true);
4301 /* C3.6.25 Floating-point data-processing (1 source) - single precision */
4302 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
4304 TCGv_ptr fpst;
4305 TCGv_i32 tcg_op;
4306 TCGv_i32 tcg_res;
4308 fpst = get_fpstatus_ptr();
4309 tcg_op = read_fp_sreg(s, rn);
4310 tcg_res = tcg_temp_new_i32();
4312 switch (opcode) {
4313 case 0x0: /* FMOV */
4314 tcg_gen_mov_i32(tcg_res, tcg_op);
4315 break;
4316 case 0x1: /* FABS */
4317 gen_helper_vfp_abss(tcg_res, tcg_op);
4318 break;
4319 case 0x2: /* FNEG */
4320 gen_helper_vfp_negs(tcg_res, tcg_op);
4321 break;
4322 case 0x3: /* FSQRT */
4323 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
4324 break;
4325 case 0x8: /* FRINTN */
4326 case 0x9: /* FRINTP */
4327 case 0xa: /* FRINTM */
4328 case 0xb: /* FRINTZ */
4329 case 0xc: /* FRINTA */
4331 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
4333 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4334 gen_helper_rints(tcg_res, tcg_op, fpst);
4336 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4337 tcg_temp_free_i32(tcg_rmode);
4338 break;
4340 case 0xe: /* FRINTX */
4341 gen_helper_rints_exact(tcg_res, tcg_op, fpst);
4342 break;
4343 case 0xf: /* FRINTI */
4344 gen_helper_rints(tcg_res, tcg_op, fpst);
4345 break;
4346 default:
4347 abort();
4350 write_fp_sreg(s, rd, tcg_res);
4352 tcg_temp_free_ptr(fpst);
4353 tcg_temp_free_i32(tcg_op);
4354 tcg_temp_free_i32(tcg_res);
4357 /* C3.6.25 Floating-point data-processing (1 source) - double precision */
4358 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
4360 TCGv_ptr fpst;
4361 TCGv_i64 tcg_op;
4362 TCGv_i64 tcg_res;
4364 fpst = get_fpstatus_ptr();
4365 tcg_op = read_fp_dreg(s, rn);
4366 tcg_res = tcg_temp_new_i64();
4368 switch (opcode) {
4369 case 0x0: /* FMOV */
4370 tcg_gen_mov_i64(tcg_res, tcg_op);
4371 break;
4372 case 0x1: /* FABS */
4373 gen_helper_vfp_absd(tcg_res, tcg_op);
4374 break;
4375 case 0x2: /* FNEG */
4376 gen_helper_vfp_negd(tcg_res, tcg_op);
4377 break;
4378 case 0x3: /* FSQRT */
4379 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env);
4380 break;
4381 case 0x8: /* FRINTN */
4382 case 0x9: /* FRINTP */
4383 case 0xa: /* FRINTM */
4384 case 0xb: /* FRINTZ */
4385 case 0xc: /* FRINTA */
4387 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
4389 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4390 gen_helper_rintd(tcg_res, tcg_op, fpst);
4392 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4393 tcg_temp_free_i32(tcg_rmode);
4394 break;
4396 case 0xe: /* FRINTX */
4397 gen_helper_rintd_exact(tcg_res, tcg_op, fpst);
4398 break;
4399 case 0xf: /* FRINTI */
4400 gen_helper_rintd(tcg_res, tcg_op, fpst);
4401 break;
4402 default:
4403 abort();
4406 write_fp_dreg(s, rd, tcg_res);
4408 tcg_temp_free_ptr(fpst);
4409 tcg_temp_free_i64(tcg_op);
4410 tcg_temp_free_i64(tcg_res);
4413 static void handle_fp_fcvt(DisasContext *s, int opcode,
4414 int rd, int rn, int dtype, int ntype)
4416 switch (ntype) {
4417 case 0x0:
4419 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
4420 if (dtype == 1) {
4421 /* Single to double */
4422 TCGv_i64 tcg_rd = tcg_temp_new_i64();
4423 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env);
4424 write_fp_dreg(s, rd, tcg_rd);
4425 tcg_temp_free_i64(tcg_rd);
4426 } else {
4427 /* Single to half */
4428 TCGv_i32 tcg_rd = tcg_temp_new_i32();
4429 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, cpu_env);
4430 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
4431 write_fp_sreg(s, rd, tcg_rd);
4432 tcg_temp_free_i32(tcg_rd);
4434 tcg_temp_free_i32(tcg_rn);
4435 break;
4437 case 0x1:
4439 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
4440 TCGv_i32 tcg_rd = tcg_temp_new_i32();
4441 if (dtype == 0) {
4442 /* Double to single */
4443 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env);
4444 } else {
4445 /* Double to half */
4446 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, cpu_env);
4447 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
4449 write_fp_sreg(s, rd, tcg_rd);
4450 tcg_temp_free_i32(tcg_rd);
4451 tcg_temp_free_i64(tcg_rn);
4452 break;
4454 case 0x3:
4456 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
4457 tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
4458 if (dtype == 0) {
4459 /* Half to single */
4460 TCGv_i32 tcg_rd = tcg_temp_new_i32();
4461 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, cpu_env);
4462 write_fp_sreg(s, rd, tcg_rd);
4463 tcg_temp_free_i32(tcg_rd);
4464 } else {
4465 /* Half to double */
4466 TCGv_i64 tcg_rd = tcg_temp_new_i64();
4467 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, cpu_env);
4468 write_fp_dreg(s, rd, tcg_rd);
4469 tcg_temp_free_i64(tcg_rd);
4471 tcg_temp_free_i32(tcg_rn);
4472 break;
4474 default:
4475 abort();
4479 /* C3.6.25 Floating point data-processing (1 source)
4480 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
4481 * +---+---+---+-----------+------+---+--------+-----------+------+------+
4482 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
4483 * +---+---+---+-----------+------+---+--------+-----------+------+------+
4485 static void disas_fp_1src(DisasContext *s, uint32_t insn)
4487 int type = extract32(insn, 22, 2);
4488 int opcode = extract32(insn, 15, 6);
4489 int rn = extract32(insn, 5, 5);
4490 int rd = extract32(insn, 0, 5);
4492 switch (opcode) {
4493 case 0x4: case 0x5: case 0x7:
4495 /* FCVT between half, single and double precision */
4496 int dtype = extract32(opcode, 0, 2);
4497 if (type == 2 || dtype == type) {
4498 unallocated_encoding(s);
4499 return;
4501 if (!fp_access_check(s)) {
4502 return;
4505 handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
4506 break;
4508 case 0x0 ... 0x3:
4509 case 0x8 ... 0xc:
4510 case 0xe ... 0xf:
4511 /* 32-to-32 and 64-to-64 ops */
4512 switch (type) {
4513 case 0:
4514 if (!fp_access_check(s)) {
4515 return;
4518 handle_fp_1src_single(s, opcode, rd, rn);
4519 break;
4520 case 1:
4521 if (!fp_access_check(s)) {
4522 return;
4525 handle_fp_1src_double(s, opcode, rd, rn);
4526 break;
4527 default:
4528 unallocated_encoding(s);
4530 break;
4531 default:
4532 unallocated_encoding(s);
4533 break;
4537 /* C3.6.26 Floating-point data-processing (2 source) - single precision */
4538 static void handle_fp_2src_single(DisasContext *s, int opcode,
4539 int rd, int rn, int rm)
4541 TCGv_i32 tcg_op1;
4542 TCGv_i32 tcg_op2;
4543 TCGv_i32 tcg_res;
4544 TCGv_ptr fpst;
4546 tcg_res = tcg_temp_new_i32();
4547 fpst = get_fpstatus_ptr();
4548 tcg_op1 = read_fp_sreg(s, rn);
4549 tcg_op2 = read_fp_sreg(s, rm);
4551 switch (opcode) {
4552 case 0x0: /* FMUL */
4553 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
4554 break;
4555 case 0x1: /* FDIV */
4556 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
4557 break;
4558 case 0x2: /* FADD */
4559 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
4560 break;
4561 case 0x3: /* FSUB */
4562 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
4563 break;
4564 case 0x4: /* FMAX */
4565 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
4566 break;
4567 case 0x5: /* FMIN */
4568 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
4569 break;
4570 case 0x6: /* FMAXNM */
4571 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
4572 break;
4573 case 0x7: /* FMINNM */
4574 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
4575 break;
4576 case 0x8: /* FNMUL */
4577 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
4578 gen_helper_vfp_negs(tcg_res, tcg_res);
4579 break;
4582 write_fp_sreg(s, rd, tcg_res);
4584 tcg_temp_free_ptr(fpst);
4585 tcg_temp_free_i32(tcg_op1);
4586 tcg_temp_free_i32(tcg_op2);
4587 tcg_temp_free_i32(tcg_res);
4590 /* C3.6.26 Floating-point data-processing (2 source) - double precision */
4591 static void handle_fp_2src_double(DisasContext *s, int opcode,
4592 int rd, int rn, int rm)
4594 TCGv_i64 tcg_op1;
4595 TCGv_i64 tcg_op2;
4596 TCGv_i64 tcg_res;
4597 TCGv_ptr fpst;
4599 tcg_res = tcg_temp_new_i64();
4600 fpst = get_fpstatus_ptr();
4601 tcg_op1 = read_fp_dreg(s, rn);
4602 tcg_op2 = read_fp_dreg(s, rm);
4604 switch (opcode) {
4605 case 0x0: /* FMUL */
4606 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
4607 break;
4608 case 0x1: /* FDIV */
4609 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
4610 break;
4611 case 0x2: /* FADD */
4612 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
4613 break;
4614 case 0x3: /* FSUB */
4615 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
4616 break;
4617 case 0x4: /* FMAX */
4618 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
4619 break;
4620 case 0x5: /* FMIN */
4621 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
4622 break;
4623 case 0x6: /* FMAXNM */
4624 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
4625 break;
4626 case 0x7: /* FMINNM */
4627 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
4628 break;
4629 case 0x8: /* FNMUL */
4630 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
4631 gen_helper_vfp_negd(tcg_res, tcg_res);
4632 break;
4635 write_fp_dreg(s, rd, tcg_res);
4637 tcg_temp_free_ptr(fpst);
4638 tcg_temp_free_i64(tcg_op1);
4639 tcg_temp_free_i64(tcg_op2);
4640 tcg_temp_free_i64(tcg_res);
4643 /* C3.6.26 Floating point data-processing (2 source)
4644 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
4645 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
4646 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd |
4647 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
4649 static void disas_fp_2src(DisasContext *s, uint32_t insn)
4651 int type = extract32(insn, 22, 2);
4652 int rd = extract32(insn, 0, 5);
4653 int rn = extract32(insn, 5, 5);
4654 int rm = extract32(insn, 16, 5);
4655 int opcode = extract32(insn, 12, 4);
4657 if (opcode > 8) {
4658 unallocated_encoding(s);
4659 return;
4662 switch (type) {
4663 case 0:
4664 if (!fp_access_check(s)) {
4665 return;
4667 handle_fp_2src_single(s, opcode, rd, rn, rm);
4668 break;
4669 case 1:
4670 if (!fp_access_check(s)) {
4671 return;
4673 handle_fp_2src_double(s, opcode, rd, rn, rm);
4674 break;
4675 default:
4676 unallocated_encoding(s);
4680 /* C3.6.27 Floating-point data-processing (3 source) - single precision */
4681 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
4682 int rd, int rn, int rm, int ra)
4684 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
4685 TCGv_i32 tcg_res = tcg_temp_new_i32();
4686 TCGv_ptr fpst = get_fpstatus_ptr();
4688 tcg_op1 = read_fp_sreg(s, rn);
4689 tcg_op2 = read_fp_sreg(s, rm);
4690 tcg_op3 = read_fp_sreg(s, ra);
4692 /* These are fused multiply-add, and must be done as one
4693 * floating point operation with no rounding between the
4694 * multiplication and addition steps.
4695 * NB that doing the negations here as separate steps is
4696 * correct : an input NaN should come out with its sign bit
4697 * flipped if it is a negated-input.
4699 if (o1 == true) {
4700 gen_helper_vfp_negs(tcg_op3, tcg_op3);
4703 if (o0 != o1) {
4704 gen_helper_vfp_negs(tcg_op1, tcg_op1);
4707 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
4709 write_fp_sreg(s, rd, tcg_res);
4711 tcg_temp_free_ptr(fpst);
4712 tcg_temp_free_i32(tcg_op1);
4713 tcg_temp_free_i32(tcg_op2);
4714 tcg_temp_free_i32(tcg_op3);
4715 tcg_temp_free_i32(tcg_res);
4718 /* C3.6.27 Floating-point data-processing (3 source) - double precision */
4719 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
4720 int rd, int rn, int rm, int ra)
4722 TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
4723 TCGv_i64 tcg_res = tcg_temp_new_i64();
4724 TCGv_ptr fpst = get_fpstatus_ptr();
4726 tcg_op1 = read_fp_dreg(s, rn);
4727 tcg_op2 = read_fp_dreg(s, rm);
4728 tcg_op3 = read_fp_dreg(s, ra);
4730 /* These are fused multiply-add, and must be done as one
4731 * floating point operation with no rounding between the
4732 * multiplication and addition steps.
4733 * NB that doing the negations here as separate steps is
4734 * correct : an input NaN should come out with its sign bit
4735 * flipped if it is a negated-input.
4737 if (o1 == true) {
4738 gen_helper_vfp_negd(tcg_op3, tcg_op3);
4741 if (o0 != o1) {
4742 gen_helper_vfp_negd(tcg_op1, tcg_op1);
4745 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
4747 write_fp_dreg(s, rd, tcg_res);
4749 tcg_temp_free_ptr(fpst);
4750 tcg_temp_free_i64(tcg_op1);
4751 tcg_temp_free_i64(tcg_op2);
4752 tcg_temp_free_i64(tcg_op3);
4753 tcg_temp_free_i64(tcg_res);
4756 /* C3.6.27 Floating point data-processing (3 source)
4757 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0
4758 * +---+---+---+-----------+------+----+------+----+------+------+------+
4759 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd |
4760 * +---+---+---+-----------+------+----+------+----+------+------+------+
4762 static void disas_fp_3src(DisasContext *s, uint32_t insn)
4764 int type = extract32(insn, 22, 2);
4765 int rd = extract32(insn, 0, 5);
4766 int rn = extract32(insn, 5, 5);
4767 int ra = extract32(insn, 10, 5);
4768 int rm = extract32(insn, 16, 5);
4769 bool o0 = extract32(insn, 15, 1);
4770 bool o1 = extract32(insn, 21, 1);
4772 switch (type) {
4773 case 0:
4774 if (!fp_access_check(s)) {
4775 return;
4777 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
4778 break;
4779 case 1:
4780 if (!fp_access_check(s)) {
4781 return;
4783 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
4784 break;
4785 default:
4786 unallocated_encoding(s);
4790 /* C3.6.28 Floating point immediate
4791 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
4792 * +---+---+---+-----------+------+---+------------+-------+------+------+
4793 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
4794 * +---+---+---+-----------+------+---+------------+-------+------+------+
4796 static void disas_fp_imm(DisasContext *s, uint32_t insn)
4798 int rd = extract32(insn, 0, 5);
4799 int imm8 = extract32(insn, 13, 8);
4800 int is_double = extract32(insn, 22, 2);
4801 uint64_t imm;
4802 TCGv_i64 tcg_res;
4804 if (is_double > 1) {
4805 unallocated_encoding(s);
4806 return;
4809 if (!fp_access_check(s)) {
4810 return;
4813 /* The imm8 encodes the sign bit, enough bits to represent
4814 * an exponent in the range 01....1xx to 10....0xx,
4815 * and the most significant 4 bits of the mantissa; see
4816 * VFPExpandImm() in the v8 ARM ARM.
4818 if (is_double) {
4819 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
4820 (extract32(imm8, 6, 1) ? 0x3fc0 : 0x4000) |
4821 extract32(imm8, 0, 6);
4822 imm <<= 48;
4823 } else {
4824 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
4825 (extract32(imm8, 6, 1) ? 0x3e00 : 0x4000) |
4826 (extract32(imm8, 0, 6) << 3);
4827 imm <<= 16;
4830 tcg_res = tcg_const_i64(imm);
4831 write_fp_dreg(s, rd, tcg_res);
4832 tcg_temp_free_i64(tcg_res);
4835 /* Handle floating point <=> fixed point conversions. Note that we can
4836 * also deal with fp <=> integer conversions as a special case (scale == 64)
4837 * OPTME: consider handling that special case specially or at least skipping
4838 * the call to scalbn in the helpers for zero shifts.
4840 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
4841 bool itof, int rmode, int scale, int sf, int type)
4843 bool is_signed = !(opcode & 1);
4844 bool is_double = type;
4845 TCGv_ptr tcg_fpstatus;
4846 TCGv_i32 tcg_shift;
4848 tcg_fpstatus = get_fpstatus_ptr();
4850 tcg_shift = tcg_const_i32(64 - scale);
4852 if (itof) {
4853 TCGv_i64 tcg_int = cpu_reg(s, rn);
4854 if (!sf) {
4855 TCGv_i64 tcg_extend = new_tmp_a64(s);
4857 if (is_signed) {
4858 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
4859 } else {
4860 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
4863 tcg_int = tcg_extend;
4866 if (is_double) {
4867 TCGv_i64 tcg_double = tcg_temp_new_i64();
4868 if (is_signed) {
4869 gen_helper_vfp_sqtod(tcg_double, tcg_int,
4870 tcg_shift, tcg_fpstatus);
4871 } else {
4872 gen_helper_vfp_uqtod(tcg_double, tcg_int,
4873 tcg_shift, tcg_fpstatus);
4875 write_fp_dreg(s, rd, tcg_double);
4876 tcg_temp_free_i64(tcg_double);
4877 } else {
4878 TCGv_i32 tcg_single = tcg_temp_new_i32();
4879 if (is_signed) {
4880 gen_helper_vfp_sqtos(tcg_single, tcg_int,
4881 tcg_shift, tcg_fpstatus);
4882 } else {
4883 gen_helper_vfp_uqtos(tcg_single, tcg_int,
4884 tcg_shift, tcg_fpstatus);
4886 write_fp_sreg(s, rd, tcg_single);
4887 tcg_temp_free_i32(tcg_single);
4889 } else {
4890 TCGv_i64 tcg_int = cpu_reg(s, rd);
4891 TCGv_i32 tcg_rmode;
4893 if (extract32(opcode, 2, 1)) {
4894 /* There are too many rounding modes to all fit into rmode,
4895 * so FCVTA[US] is a special case.
4897 rmode = FPROUNDING_TIEAWAY;
4900 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
4902 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4904 if (is_double) {
4905 TCGv_i64 tcg_double = read_fp_dreg(s, rn);
4906 if (is_signed) {
4907 if (!sf) {
4908 gen_helper_vfp_tosld(tcg_int, tcg_double,
4909 tcg_shift, tcg_fpstatus);
4910 } else {
4911 gen_helper_vfp_tosqd(tcg_int, tcg_double,
4912 tcg_shift, tcg_fpstatus);
4914 } else {
4915 if (!sf) {
4916 gen_helper_vfp_tould(tcg_int, tcg_double,
4917 tcg_shift, tcg_fpstatus);
4918 } else {
4919 gen_helper_vfp_touqd(tcg_int, tcg_double,
4920 tcg_shift, tcg_fpstatus);
4923 tcg_temp_free_i64(tcg_double);
4924 } else {
4925 TCGv_i32 tcg_single = read_fp_sreg(s, rn);
4926 if (sf) {
4927 if (is_signed) {
4928 gen_helper_vfp_tosqs(tcg_int, tcg_single,
4929 tcg_shift, tcg_fpstatus);
4930 } else {
4931 gen_helper_vfp_touqs(tcg_int, tcg_single,
4932 tcg_shift, tcg_fpstatus);
4934 } else {
4935 TCGv_i32 tcg_dest = tcg_temp_new_i32();
4936 if (is_signed) {
4937 gen_helper_vfp_tosls(tcg_dest, tcg_single,
4938 tcg_shift, tcg_fpstatus);
4939 } else {
4940 gen_helper_vfp_touls(tcg_dest, tcg_single,
4941 tcg_shift, tcg_fpstatus);
4943 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
4944 tcg_temp_free_i32(tcg_dest);
4946 tcg_temp_free_i32(tcg_single);
4949 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4950 tcg_temp_free_i32(tcg_rmode);
4952 if (!sf) {
4953 tcg_gen_ext32u_i64(tcg_int, tcg_int);
4957 tcg_temp_free_ptr(tcg_fpstatus);
4958 tcg_temp_free_i32(tcg_shift);
4961 /* C3.6.29 Floating point <-> fixed point conversions
4962 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
4963 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
4964 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
4965 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
4967 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
4969 int rd = extract32(insn, 0, 5);
4970 int rn = extract32(insn, 5, 5);
4971 int scale = extract32(insn, 10, 6);
4972 int opcode = extract32(insn, 16, 3);
4973 int rmode = extract32(insn, 19, 2);
4974 int type = extract32(insn, 22, 2);
4975 bool sbit = extract32(insn, 29, 1);
4976 bool sf = extract32(insn, 31, 1);
4977 bool itof;
4979 if (sbit || (type > 1)
4980 || (!sf && scale < 32)) {
4981 unallocated_encoding(s);
4982 return;
4985 switch ((rmode << 3) | opcode) {
4986 case 0x2: /* SCVTF */
4987 case 0x3: /* UCVTF */
4988 itof = true;
4989 break;
4990 case 0x18: /* FCVTZS */
4991 case 0x19: /* FCVTZU */
4992 itof = false;
4993 break;
4994 default:
4995 unallocated_encoding(s);
4996 return;
4999 if (!fp_access_check(s)) {
5000 return;
5003 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
5006 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
5008 /* FMOV: gpr to or from float, double, or top half of quad fp reg,
5009 * without conversion.
5012 if (itof) {
5013 TCGv_i64 tcg_rn = cpu_reg(s, rn);
5015 switch (type) {
5016 case 0:
5018 /* 32 bit */
5019 TCGv_i64 tmp = tcg_temp_new_i64();
5020 tcg_gen_ext32u_i64(tmp, tcg_rn);
5021 tcg_gen_st_i64(tmp, cpu_env, fp_reg_offset(s, rd, MO_64));
5022 tcg_gen_movi_i64(tmp, 0);
5023 tcg_gen_st_i64(tmp, cpu_env, fp_reg_hi_offset(s, rd));
5024 tcg_temp_free_i64(tmp);
5025 break;
5027 case 1:
5029 /* 64 bit */
5030 TCGv_i64 tmp = tcg_const_i64(0);
5031 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_offset(s, rd, MO_64));
5032 tcg_gen_st_i64(tmp, cpu_env, fp_reg_hi_offset(s, rd));
5033 tcg_temp_free_i64(tmp);
5034 break;
5036 case 2:
5037 /* 64 bit to top half. */
5038 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd));
5039 break;
5041 } else {
5042 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5044 switch (type) {
5045 case 0:
5046 /* 32 bit */
5047 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32));
5048 break;
5049 case 1:
5050 /* 64 bit */
5051 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64));
5052 break;
5053 case 2:
5054 /* 64 bits from top half */
5055 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn));
5056 break;
5061 /* C3.6.30 Floating point <-> integer conversions
5062 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
5063 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
5064 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
5065 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
5067 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
5069 int rd = extract32(insn, 0, 5);
5070 int rn = extract32(insn, 5, 5);
5071 int opcode = extract32(insn, 16, 3);
5072 int rmode = extract32(insn, 19, 2);
5073 int type = extract32(insn, 22, 2);
5074 bool sbit = extract32(insn, 29, 1);
5075 bool sf = extract32(insn, 31, 1);
5077 if (sbit) {
5078 unallocated_encoding(s);
5079 return;
5082 if (opcode > 5) {
5083 /* FMOV */
5084 bool itof = opcode & 1;
5086 if (rmode >= 2) {
5087 unallocated_encoding(s);
5088 return;
5091 switch (sf << 3 | type << 1 | rmode) {
5092 case 0x0: /* 32 bit */
5093 case 0xa: /* 64 bit */
5094 case 0xd: /* 64 bit to top half of quad */
5095 break;
5096 default:
5097 /* all other sf/type/rmode combinations are invalid */
5098 unallocated_encoding(s);
5099 break;
5102 if (!fp_access_check(s)) {
5103 return;
5105 handle_fmov(s, rd, rn, type, itof);
5106 } else {
5107 /* actual FP conversions */
5108 bool itof = extract32(opcode, 1, 1);
5110 if (type > 1 || (rmode != 0 && opcode > 1)) {
5111 unallocated_encoding(s);
5112 return;
5115 if (!fp_access_check(s)) {
5116 return;
5118 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
5122 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
5123 * 31 30 29 28 25 24 0
5124 * +---+---+---+---------+-----------------------------+
5125 * | | 0 | | 1 1 1 1 | |
5126 * +---+---+---+---------+-----------------------------+
5128 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
5130 if (extract32(insn, 24, 1)) {
5131 /* Floating point data-processing (3 source) */
5132 disas_fp_3src(s, insn);
5133 } else if (extract32(insn, 21, 1) == 0) {
5134 /* Floating point to fixed point conversions */
5135 disas_fp_fixed_conv(s, insn);
5136 } else {
5137 switch (extract32(insn, 10, 2)) {
5138 case 1:
5139 /* Floating point conditional compare */
5140 disas_fp_ccomp(s, insn);
5141 break;
5142 case 2:
5143 /* Floating point data-processing (2 source) */
5144 disas_fp_2src(s, insn);
5145 break;
5146 case 3:
5147 /* Floating point conditional select */
5148 disas_fp_csel(s, insn);
5149 break;
5150 case 0:
5151 switch (ctz32(extract32(insn, 12, 4))) {
5152 case 0: /* [15:12] == xxx1 */
5153 /* Floating point immediate */
5154 disas_fp_imm(s, insn);
5155 break;
5156 case 1: /* [15:12] == xx10 */
5157 /* Floating point compare */
5158 disas_fp_compare(s, insn);
5159 break;
5160 case 2: /* [15:12] == x100 */
5161 /* Floating point data-processing (1 source) */
5162 disas_fp_1src(s, insn);
5163 break;
5164 case 3: /* [15:12] == 1000 */
5165 unallocated_encoding(s);
5166 break;
5167 default: /* [15:12] == 0000 */
5168 /* Floating point <-> integer conversions */
5169 disas_fp_int_conv(s, insn);
5170 break;
5172 break;
5177 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
5178 int pos)
5180 /* Extract 64 bits from the middle of two concatenated 64 bit
5181 * vector register slices left:right. The extracted bits start
5182 * at 'pos' bits into the right (least significant) side.
5183 * We return the result in tcg_right, and guarantee not to
5184 * trash tcg_left.
5186 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
5187 assert(pos > 0 && pos < 64);
5189 tcg_gen_shri_i64(tcg_right, tcg_right, pos);
5190 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
5191 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
5193 tcg_temp_free_i64(tcg_tmp);
5196 /* C3.6.1 EXT
5197 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
5198 * +---+---+-------------+-----+---+------+---+------+---+------+------+
5199 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
5200 * +---+---+-------------+-----+---+------+---+------+---+------+------+
5202 static void disas_simd_ext(DisasContext *s, uint32_t insn)
5204 int is_q = extract32(insn, 30, 1);
5205 int op2 = extract32(insn, 22, 2);
5206 int imm4 = extract32(insn, 11, 4);
5207 int rm = extract32(insn, 16, 5);
5208 int rn = extract32(insn, 5, 5);
5209 int rd = extract32(insn, 0, 5);
5210 int pos = imm4 << 3;
5211 TCGv_i64 tcg_resl, tcg_resh;
5213 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
5214 unallocated_encoding(s);
5215 return;
5218 if (!fp_access_check(s)) {
5219 return;
5222 tcg_resh = tcg_temp_new_i64();
5223 tcg_resl = tcg_temp_new_i64();
5225 /* Vd gets bits starting at pos bits into Vm:Vn. This is
5226 * either extracting 128 bits from a 128:128 concatenation, or
5227 * extracting 64 bits from a 64:64 concatenation.
5229 if (!is_q) {
5230 read_vec_element(s, tcg_resl, rn, 0, MO_64);
5231 if (pos != 0) {
5232 read_vec_element(s, tcg_resh, rm, 0, MO_64);
5233 do_ext64(s, tcg_resh, tcg_resl, pos);
5235 tcg_gen_movi_i64(tcg_resh, 0);
5236 } else {
5237 TCGv_i64 tcg_hh;
5238 typedef struct {
5239 int reg;
5240 int elt;
5241 } EltPosns;
5242 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
5243 EltPosns *elt = eltposns;
5245 if (pos >= 64) {
5246 elt++;
5247 pos -= 64;
5250 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
5251 elt++;
5252 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
5253 elt++;
5254 if (pos != 0) {
5255 do_ext64(s, tcg_resh, tcg_resl, pos);
5256 tcg_hh = tcg_temp_new_i64();
5257 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
5258 do_ext64(s, tcg_hh, tcg_resh, pos);
5259 tcg_temp_free_i64(tcg_hh);
5263 write_vec_element(s, tcg_resl, rd, 0, MO_64);
5264 tcg_temp_free_i64(tcg_resl);
5265 write_vec_element(s, tcg_resh, rd, 1, MO_64);
5266 tcg_temp_free_i64(tcg_resh);
5269 /* C3.6.2 TBL/TBX
5270 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
5271 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
5272 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
5273 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
5275 static void disas_simd_tb(DisasContext *s, uint32_t insn)
5277 int op2 = extract32(insn, 22, 2);
5278 int is_q = extract32(insn, 30, 1);
5279 int rm = extract32(insn, 16, 5);
5280 int rn = extract32(insn, 5, 5);
5281 int rd = extract32(insn, 0, 5);
5282 int is_tblx = extract32(insn, 12, 1);
5283 int len = extract32(insn, 13, 2);
5284 TCGv_i64 tcg_resl, tcg_resh, tcg_idx;
5285 TCGv_i32 tcg_regno, tcg_numregs;
5287 if (op2 != 0) {
5288 unallocated_encoding(s);
5289 return;
5292 if (!fp_access_check(s)) {
5293 return;
5296 /* This does a table lookup: for every byte element in the input
5297 * we index into a table formed from up to four vector registers,
5298 * and then the output is the result of the lookups. Our helper
5299 * function does the lookup operation for a single 64 bit part of
5300 * the input.
5302 tcg_resl = tcg_temp_new_i64();
5303 tcg_resh = tcg_temp_new_i64();
5305 if (is_tblx) {
5306 read_vec_element(s, tcg_resl, rd, 0, MO_64);
5307 } else {
5308 tcg_gen_movi_i64(tcg_resl, 0);
5310 if (is_tblx && is_q) {
5311 read_vec_element(s, tcg_resh, rd, 1, MO_64);
5312 } else {
5313 tcg_gen_movi_i64(tcg_resh, 0);
5316 tcg_idx = tcg_temp_new_i64();
5317 tcg_regno = tcg_const_i32(rn);
5318 tcg_numregs = tcg_const_i32(len + 1);
5319 read_vec_element(s, tcg_idx, rm, 0, MO_64);
5320 gen_helper_simd_tbl(tcg_resl, cpu_env, tcg_resl, tcg_idx,
5321 tcg_regno, tcg_numregs);
5322 if (is_q) {
5323 read_vec_element(s, tcg_idx, rm, 1, MO_64);
5324 gen_helper_simd_tbl(tcg_resh, cpu_env, tcg_resh, tcg_idx,
5325 tcg_regno, tcg_numregs);
5327 tcg_temp_free_i64(tcg_idx);
5328 tcg_temp_free_i32(tcg_regno);
5329 tcg_temp_free_i32(tcg_numregs);
5331 write_vec_element(s, tcg_resl, rd, 0, MO_64);
5332 tcg_temp_free_i64(tcg_resl);
5333 write_vec_element(s, tcg_resh, rd, 1, MO_64);
5334 tcg_temp_free_i64(tcg_resh);
5337 /* C3.6.3 ZIP/UZP/TRN
5338 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
5339 * +---+---+-------------+------+---+------+---+------------------+------+
5340 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
5341 * +---+---+-------------+------+---+------+---+------------------+------+
5343 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
5345 int rd = extract32(insn, 0, 5);
5346 int rn = extract32(insn, 5, 5);
5347 int rm = extract32(insn, 16, 5);
5348 int size = extract32(insn, 22, 2);
5349 /* opc field bits [1:0] indicate ZIP/UZP/TRN;
5350 * bit 2 indicates 1 vs 2 variant of the insn.
5352 int opcode = extract32(insn, 12, 2);
5353 bool part = extract32(insn, 14, 1);
5354 bool is_q = extract32(insn, 30, 1);
5355 int esize = 8 << size;
5356 int i, ofs;
5357 int datasize = is_q ? 128 : 64;
5358 int elements = datasize / esize;
5359 TCGv_i64 tcg_res, tcg_resl, tcg_resh;
5361 if (opcode == 0 || (size == 3 && !is_q)) {
5362 unallocated_encoding(s);
5363 return;
5366 if (!fp_access_check(s)) {
5367 return;
5370 tcg_resl = tcg_const_i64(0);
5371 tcg_resh = tcg_const_i64(0);
5372 tcg_res = tcg_temp_new_i64();
5374 for (i = 0; i < elements; i++) {
5375 switch (opcode) {
5376 case 1: /* UZP1/2 */
5378 int midpoint = elements / 2;
5379 if (i < midpoint) {
5380 read_vec_element(s, tcg_res, rn, 2 * i + part, size);
5381 } else {
5382 read_vec_element(s, tcg_res, rm,
5383 2 * (i - midpoint) + part, size);
5385 break;
5387 case 2: /* TRN1/2 */
5388 if (i & 1) {
5389 read_vec_element(s, tcg_res, rm, (i & ~1) + part, size);
5390 } else {
5391 read_vec_element(s, tcg_res, rn, (i & ~1) + part, size);
5393 break;
5394 case 3: /* ZIP1/2 */
5396 int base = part * elements / 2;
5397 if (i & 1) {
5398 read_vec_element(s, tcg_res, rm, base + (i >> 1), size);
5399 } else {
5400 read_vec_element(s, tcg_res, rn, base + (i >> 1), size);
5402 break;
5404 default:
5405 g_assert_not_reached();
5408 ofs = i * esize;
5409 if (ofs < 64) {
5410 tcg_gen_shli_i64(tcg_res, tcg_res, ofs);
5411 tcg_gen_or_i64(tcg_resl, tcg_resl, tcg_res);
5412 } else {
5413 tcg_gen_shli_i64(tcg_res, tcg_res, ofs - 64);
5414 tcg_gen_or_i64(tcg_resh, tcg_resh, tcg_res);
5418 tcg_temp_free_i64(tcg_res);
5420 write_vec_element(s, tcg_resl, rd, 0, MO_64);
5421 tcg_temp_free_i64(tcg_resl);
5422 write_vec_element(s, tcg_resh, rd, 1, MO_64);
5423 tcg_temp_free_i64(tcg_resh);
5426 static void do_minmaxop(DisasContext *s, TCGv_i32 tcg_elt1, TCGv_i32 tcg_elt2,
5427 int opc, bool is_min, TCGv_ptr fpst)
5429 /* Helper function for disas_simd_across_lanes: do a single precision
5430 * min/max operation on the specified two inputs,
5431 * and return the result in tcg_elt1.
5433 if (opc == 0xc) {
5434 if (is_min) {
5435 gen_helper_vfp_minnums(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
5436 } else {
5437 gen_helper_vfp_maxnums(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
5439 } else {
5440 assert(opc == 0xf);
5441 if (is_min) {
5442 gen_helper_vfp_mins(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
5443 } else {
5444 gen_helper_vfp_maxs(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
5449 /* C3.6.4 AdvSIMD across lanes
5450 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
5451 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
5452 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
5453 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
5455 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
5457 int rd = extract32(insn, 0, 5);
5458 int rn = extract32(insn, 5, 5);
5459 int size = extract32(insn, 22, 2);
5460 int opcode = extract32(insn, 12, 5);
5461 bool is_q = extract32(insn, 30, 1);
5462 bool is_u = extract32(insn, 29, 1);
5463 bool is_fp = false;
5464 bool is_min = false;
5465 int esize;
5466 int elements;
5467 int i;
5468 TCGv_i64 tcg_res, tcg_elt;
5470 switch (opcode) {
5471 case 0x1b: /* ADDV */
5472 if (is_u) {
5473 unallocated_encoding(s);
5474 return;
5476 /* fall through */
5477 case 0x3: /* SADDLV, UADDLV */
5478 case 0xa: /* SMAXV, UMAXV */
5479 case 0x1a: /* SMINV, UMINV */
5480 if (size == 3 || (size == 2 && !is_q)) {
5481 unallocated_encoding(s);
5482 return;
5484 break;
5485 case 0xc: /* FMAXNMV, FMINNMV */
5486 case 0xf: /* FMAXV, FMINV */
5487 if (!is_u || !is_q || extract32(size, 0, 1)) {
5488 unallocated_encoding(s);
5489 return;
5491 /* Bit 1 of size field encodes min vs max, and actual size is always
5492 * 32 bits: adjust the size variable so following code can rely on it
5494 is_min = extract32(size, 1, 1);
5495 is_fp = true;
5496 size = 2;
5497 break;
5498 default:
5499 unallocated_encoding(s);
5500 return;
5503 if (!fp_access_check(s)) {
5504 return;
5507 esize = 8 << size;
5508 elements = (is_q ? 128 : 64) / esize;
5510 tcg_res = tcg_temp_new_i64();
5511 tcg_elt = tcg_temp_new_i64();
5513 /* These instructions operate across all lanes of a vector
5514 * to produce a single result. We can guarantee that a 64
5515 * bit intermediate is sufficient:
5516 * + for [US]ADDLV the maximum element size is 32 bits, and
5517 * the result type is 64 bits
5518 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the
5519 * same as the element size, which is 32 bits at most
5520 * For the integer operations we can choose to work at 64
5521 * or 32 bits and truncate at the end; for simplicity
5522 * we use 64 bits always. The floating point
5523 * ops do require 32 bit intermediates, though.
5525 if (!is_fp) {
5526 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
5528 for (i = 1; i < elements; i++) {
5529 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
5531 switch (opcode) {
5532 case 0x03: /* SADDLV / UADDLV */
5533 case 0x1b: /* ADDV */
5534 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
5535 break;
5536 case 0x0a: /* SMAXV / UMAXV */
5537 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
5538 tcg_res,
5539 tcg_res, tcg_elt, tcg_res, tcg_elt);
5540 break;
5541 case 0x1a: /* SMINV / UMINV */
5542 tcg_gen_movcond_i64(is_u ? TCG_COND_LEU : TCG_COND_LE,
5543 tcg_res,
5544 tcg_res, tcg_elt, tcg_res, tcg_elt);
5545 break;
5546 break;
5547 default:
5548 g_assert_not_reached();
5552 } else {
5553 /* Floating point ops which work on 32 bit (single) intermediates.
5554 * Note that correct NaN propagation requires that we do these
5555 * operations in exactly the order specified by the pseudocode.
5557 TCGv_i32 tcg_elt1 = tcg_temp_new_i32();
5558 TCGv_i32 tcg_elt2 = tcg_temp_new_i32();
5559 TCGv_i32 tcg_elt3 = tcg_temp_new_i32();
5560 TCGv_ptr fpst = get_fpstatus_ptr();
5562 assert(esize == 32);
5563 assert(elements == 4);
5565 read_vec_element(s, tcg_elt, rn, 0, MO_32);
5566 tcg_gen_extrl_i64_i32(tcg_elt1, tcg_elt);
5567 read_vec_element(s, tcg_elt, rn, 1, MO_32);
5568 tcg_gen_extrl_i64_i32(tcg_elt2, tcg_elt);
5570 do_minmaxop(s, tcg_elt1, tcg_elt2, opcode, is_min, fpst);
5572 read_vec_element(s, tcg_elt, rn, 2, MO_32);
5573 tcg_gen_extrl_i64_i32(tcg_elt2, tcg_elt);
5574 read_vec_element(s, tcg_elt, rn, 3, MO_32);
5575 tcg_gen_extrl_i64_i32(tcg_elt3, tcg_elt);
5577 do_minmaxop(s, tcg_elt2, tcg_elt3, opcode, is_min, fpst);
5579 do_minmaxop(s, tcg_elt1, tcg_elt2, opcode, is_min, fpst);
5581 tcg_gen_extu_i32_i64(tcg_res, tcg_elt1);
5582 tcg_temp_free_i32(tcg_elt1);
5583 tcg_temp_free_i32(tcg_elt2);
5584 tcg_temp_free_i32(tcg_elt3);
5585 tcg_temp_free_ptr(fpst);
5588 tcg_temp_free_i64(tcg_elt);
5590 /* Now truncate the result to the width required for the final output */
5591 if (opcode == 0x03) {
5592 /* SADDLV, UADDLV: result is 2*esize */
5593 size++;
5596 switch (size) {
5597 case 0:
5598 tcg_gen_ext8u_i64(tcg_res, tcg_res);
5599 break;
5600 case 1:
5601 tcg_gen_ext16u_i64(tcg_res, tcg_res);
5602 break;
5603 case 2:
5604 tcg_gen_ext32u_i64(tcg_res, tcg_res);
5605 break;
5606 case 3:
5607 break;
5608 default:
5609 g_assert_not_reached();
5612 write_fp_dreg(s, rd, tcg_res);
5613 tcg_temp_free_i64(tcg_res);
5616 /* C6.3.31 DUP (Element, Vector)
5618 * 31 30 29 21 20 16 15 10 9 5 4 0
5619 * +---+---+-------------------+--------+-------------+------+------+
5620 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
5621 * +---+---+-------------------+--------+-------------+------+------+
5623 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5625 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
5626 int imm5)
5628 int size = ctz32(imm5);
5629 int esize = 8 << size;
5630 int elements = (is_q ? 128 : 64) / esize;
5631 int index, i;
5632 TCGv_i64 tmp;
5634 if (size > 3 || (size == 3 && !is_q)) {
5635 unallocated_encoding(s);
5636 return;
5639 if (!fp_access_check(s)) {
5640 return;
5643 index = imm5 >> (size + 1);
5645 tmp = tcg_temp_new_i64();
5646 read_vec_element(s, tmp, rn, index, size);
5648 for (i = 0; i < elements; i++) {
5649 write_vec_element(s, tmp, rd, i, size);
5652 if (!is_q) {
5653 clear_vec_high(s, rd);
5656 tcg_temp_free_i64(tmp);
5659 /* C6.3.31 DUP (element, scalar)
5660 * 31 21 20 16 15 10 9 5 4 0
5661 * +-----------------------+--------+-------------+------+------+
5662 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
5663 * +-----------------------+--------+-------------+------+------+
5665 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
5666 int imm5)
5668 int size = ctz32(imm5);
5669 int index;
5670 TCGv_i64 tmp;
5672 if (size > 3) {
5673 unallocated_encoding(s);
5674 return;
5677 if (!fp_access_check(s)) {
5678 return;
5681 index = imm5 >> (size + 1);
5683 /* This instruction just extracts the specified element and
5684 * zero-extends it into the bottom of the destination register.
5686 tmp = tcg_temp_new_i64();
5687 read_vec_element(s, tmp, rn, index, size);
5688 write_fp_dreg(s, rd, tmp);
5689 tcg_temp_free_i64(tmp);
5692 /* C6.3.32 DUP (General)
5694 * 31 30 29 21 20 16 15 10 9 5 4 0
5695 * +---+---+-------------------+--------+-------------+------+------+
5696 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd |
5697 * +---+---+-------------------+--------+-------------+------+------+
5699 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5701 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
5702 int imm5)
5704 int size = ctz32(imm5);
5705 int esize = 8 << size;
5706 int elements = (is_q ? 128 : 64)/esize;
5707 int i = 0;
5709 if (size > 3 || ((size == 3) && !is_q)) {
5710 unallocated_encoding(s);
5711 return;
5714 if (!fp_access_check(s)) {
5715 return;
5718 for (i = 0; i < elements; i++) {
5719 write_vec_element(s, cpu_reg(s, rn), rd, i, size);
5721 if (!is_q) {
5722 clear_vec_high(s, rd);
5726 /* C6.3.150 INS (Element)
5728 * 31 21 20 16 15 14 11 10 9 5 4 0
5729 * +-----------------------+--------+------------+---+------+------+
5730 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
5731 * +-----------------------+--------+------------+---+------+------+
5733 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5734 * index: encoded in imm5<4:size+1>
5736 static void handle_simd_inse(DisasContext *s, int rd, int rn,
5737 int imm4, int imm5)
5739 int size = ctz32(imm5);
5740 int src_index, dst_index;
5741 TCGv_i64 tmp;
5743 if (size > 3) {
5744 unallocated_encoding(s);
5745 return;
5748 if (!fp_access_check(s)) {
5749 return;
5752 dst_index = extract32(imm5, 1+size, 5);
5753 src_index = extract32(imm4, size, 4);
5755 tmp = tcg_temp_new_i64();
5757 read_vec_element(s, tmp, rn, src_index, size);
5758 write_vec_element(s, tmp, rd, dst_index, size);
5760 tcg_temp_free_i64(tmp);
5764 /* C6.3.151 INS (General)
5766 * 31 21 20 16 15 10 9 5 4 0
5767 * +-----------------------+--------+-------------+------+------+
5768 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd |
5769 * +-----------------------+--------+-------------+------+------+
5771 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5772 * index: encoded in imm5<4:size+1>
5774 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
5776 int size = ctz32(imm5);
5777 int idx;
5779 if (size > 3) {
5780 unallocated_encoding(s);
5781 return;
5784 if (!fp_access_check(s)) {
5785 return;
5788 idx = extract32(imm5, 1 + size, 4 - size);
5789 write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
5793 * C6.3.321 UMOV (General)
5794 * C6.3.237 SMOV (General)
5796 * 31 30 29 21 20 16 15 12 10 9 5 4 0
5797 * +---+---+-------------------+--------+-------------+------+------+
5798 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd |
5799 * +---+---+-------------------+--------+-------------+------+------+
5801 * U: unsigned when set
5802 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5804 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
5805 int rn, int rd, int imm5)
5807 int size = ctz32(imm5);
5808 int element;
5809 TCGv_i64 tcg_rd;
5811 /* Check for UnallocatedEncodings */
5812 if (is_signed) {
5813 if (size > 2 || (size == 2 && !is_q)) {
5814 unallocated_encoding(s);
5815 return;
5817 } else {
5818 if (size > 3
5819 || (size < 3 && is_q)
5820 || (size == 3 && !is_q)) {
5821 unallocated_encoding(s);
5822 return;
5826 if (!fp_access_check(s)) {
5827 return;
5830 element = extract32(imm5, 1+size, 4);
5832 tcg_rd = cpu_reg(s, rd);
5833 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
5834 if (is_signed && !is_q) {
5835 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5839 /* C3.6.5 AdvSIMD copy
5840 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
5841 * +---+---+----+-----------------+------+---+------+---+------+------+
5842 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
5843 * +---+---+----+-----------------+------+---+------+---+------+------+
5845 static void disas_simd_copy(DisasContext *s, uint32_t insn)
5847 int rd = extract32(insn, 0, 5);
5848 int rn = extract32(insn, 5, 5);
5849 int imm4 = extract32(insn, 11, 4);
5850 int op = extract32(insn, 29, 1);
5851 int is_q = extract32(insn, 30, 1);
5852 int imm5 = extract32(insn, 16, 5);
5854 if (op) {
5855 if (is_q) {
5856 /* INS (element) */
5857 handle_simd_inse(s, rd, rn, imm4, imm5);
5858 } else {
5859 unallocated_encoding(s);
5861 } else {
5862 switch (imm4) {
5863 case 0:
5864 /* DUP (element - vector) */
5865 handle_simd_dupe(s, is_q, rd, rn, imm5);
5866 break;
5867 case 1:
5868 /* DUP (general) */
5869 handle_simd_dupg(s, is_q, rd, rn, imm5);
5870 break;
5871 case 3:
5872 if (is_q) {
5873 /* INS (general) */
5874 handle_simd_insg(s, rd, rn, imm5);
5875 } else {
5876 unallocated_encoding(s);
5878 break;
5879 case 5:
5880 case 7:
5881 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
5882 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
5883 break;
5884 default:
5885 unallocated_encoding(s);
5886 break;
5891 /* C3.6.6 AdvSIMD modified immediate
5892 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
5893 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
5894 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
5895 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
5897 * There are a number of operations that can be carried out here:
5898 * MOVI - move (shifted) imm into register
5899 * MVNI - move inverted (shifted) imm into register
5900 * ORR - bitwise OR of (shifted) imm with register
5901 * BIC - bitwise clear of (shifted) imm with register
5903 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
5905 int rd = extract32(insn, 0, 5);
5906 int cmode = extract32(insn, 12, 4);
5907 int cmode_3_1 = extract32(cmode, 1, 3);
5908 int cmode_0 = extract32(cmode, 0, 1);
5909 int o2 = extract32(insn, 11, 1);
5910 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
5911 bool is_neg = extract32(insn, 29, 1);
5912 bool is_q = extract32(insn, 30, 1);
5913 uint64_t imm = 0;
5914 TCGv_i64 tcg_rd, tcg_imm;
5915 int i;
5917 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
5918 unallocated_encoding(s);
5919 return;
5922 if (!fp_access_check(s)) {
5923 return;
5926 /* See AdvSIMDExpandImm() in ARM ARM */
5927 switch (cmode_3_1) {
5928 case 0: /* Replicate(Zeros(24):imm8, 2) */
5929 case 1: /* Replicate(Zeros(16):imm8:Zeros(8), 2) */
5930 case 2: /* Replicate(Zeros(8):imm8:Zeros(16), 2) */
5931 case 3: /* Replicate(imm8:Zeros(24), 2) */
5933 int shift = cmode_3_1 * 8;
5934 imm = bitfield_replicate(abcdefgh << shift, 32);
5935 break;
5937 case 4: /* Replicate(Zeros(8):imm8, 4) */
5938 case 5: /* Replicate(imm8:Zeros(8), 4) */
5940 int shift = (cmode_3_1 & 0x1) * 8;
5941 imm = bitfield_replicate(abcdefgh << shift, 16);
5942 break;
5944 case 6:
5945 if (cmode_0) {
5946 /* Replicate(Zeros(8):imm8:Ones(16), 2) */
5947 imm = (abcdefgh << 16) | 0xffff;
5948 } else {
5949 /* Replicate(Zeros(16):imm8:Ones(8), 2) */
5950 imm = (abcdefgh << 8) | 0xff;
5952 imm = bitfield_replicate(imm, 32);
5953 break;
5954 case 7:
5955 if (!cmode_0 && !is_neg) {
5956 imm = bitfield_replicate(abcdefgh, 8);
5957 } else if (!cmode_0 && is_neg) {
5958 int i;
5959 imm = 0;
5960 for (i = 0; i < 8; i++) {
5961 if ((abcdefgh) & (1 << i)) {
5962 imm |= 0xffULL << (i * 8);
5965 } else if (cmode_0) {
5966 if (is_neg) {
5967 imm = (abcdefgh & 0x3f) << 48;
5968 if (abcdefgh & 0x80) {
5969 imm |= 0x8000000000000000ULL;
5971 if (abcdefgh & 0x40) {
5972 imm |= 0x3fc0000000000000ULL;
5973 } else {
5974 imm |= 0x4000000000000000ULL;
5976 } else {
5977 imm = (abcdefgh & 0x3f) << 19;
5978 if (abcdefgh & 0x80) {
5979 imm |= 0x80000000;
5981 if (abcdefgh & 0x40) {
5982 imm |= 0x3e000000;
5983 } else {
5984 imm |= 0x40000000;
5986 imm |= (imm << 32);
5989 break;
5992 if (cmode_3_1 != 7 && is_neg) {
5993 imm = ~imm;
5996 tcg_imm = tcg_const_i64(imm);
5997 tcg_rd = new_tmp_a64(s);
5999 for (i = 0; i < 2; i++) {
6000 int foffs = i ? fp_reg_hi_offset(s, rd) : fp_reg_offset(s, rd, MO_64);
6002 if (i == 1 && !is_q) {
6003 /* non-quad ops clear high half of vector */
6004 tcg_gen_movi_i64(tcg_rd, 0);
6005 } else if ((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9) {
6006 tcg_gen_ld_i64(tcg_rd, cpu_env, foffs);
6007 if (is_neg) {
6008 /* AND (BIC) */
6009 tcg_gen_and_i64(tcg_rd, tcg_rd, tcg_imm);
6010 } else {
6011 /* ORR */
6012 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_imm);
6014 } else {
6015 /* MOVI */
6016 tcg_gen_mov_i64(tcg_rd, tcg_imm);
6018 tcg_gen_st_i64(tcg_rd, cpu_env, foffs);
6021 tcg_temp_free_i64(tcg_imm);
6024 /* C3.6.7 AdvSIMD scalar copy
6025 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
6026 * +-----+----+-----------------+------+---+------+---+------+------+
6027 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
6028 * +-----+----+-----------------+------+---+------+---+------+------+
6030 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
6032 int rd = extract32(insn, 0, 5);
6033 int rn = extract32(insn, 5, 5);
6034 int imm4 = extract32(insn, 11, 4);
6035 int imm5 = extract32(insn, 16, 5);
6036 int op = extract32(insn, 29, 1);
6038 if (op != 0 || imm4 != 0) {
6039 unallocated_encoding(s);
6040 return;
6043 /* DUP (element, scalar) */
6044 handle_simd_dupes(s, rd, rn, imm5);
6047 /* C3.6.8 AdvSIMD scalar pairwise
6048 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
6049 * +-----+---+-----------+------+-----------+--------+-----+------+------+
6050 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
6051 * +-----+---+-----------+------+-----------+--------+-----+------+------+
6053 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
6055 int u = extract32(insn, 29, 1);
6056 int size = extract32(insn, 22, 2);
6057 int opcode = extract32(insn, 12, 5);
6058 int rn = extract32(insn, 5, 5);
6059 int rd = extract32(insn, 0, 5);
6060 TCGv_ptr fpst;
6062 /* For some ops (the FP ones), size[1] is part of the encoding.
6063 * For ADDP strictly it is not but size[1] is always 1 for valid
6064 * encodings.
6066 opcode |= (extract32(size, 1, 1) << 5);
6068 switch (opcode) {
6069 case 0x3b: /* ADDP */
6070 if (u || size != 3) {
6071 unallocated_encoding(s);
6072 return;
6074 if (!fp_access_check(s)) {
6075 return;
6078 TCGV_UNUSED_PTR(fpst);
6079 break;
6080 case 0xc: /* FMAXNMP */
6081 case 0xd: /* FADDP */
6082 case 0xf: /* FMAXP */
6083 case 0x2c: /* FMINNMP */
6084 case 0x2f: /* FMINP */
6085 /* FP op, size[0] is 32 or 64 bit */
6086 if (!u) {
6087 unallocated_encoding(s);
6088 return;
6090 if (!fp_access_check(s)) {
6091 return;
6094 size = extract32(size, 0, 1) ? 3 : 2;
6095 fpst = get_fpstatus_ptr();
6096 break;
6097 default:
6098 unallocated_encoding(s);
6099 return;
6102 if (size == 3) {
6103 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
6104 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
6105 TCGv_i64 tcg_res = tcg_temp_new_i64();
6107 read_vec_element(s, tcg_op1, rn, 0, MO_64);
6108 read_vec_element(s, tcg_op2, rn, 1, MO_64);
6110 switch (opcode) {
6111 case 0x3b: /* ADDP */
6112 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
6113 break;
6114 case 0xc: /* FMAXNMP */
6115 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6116 break;
6117 case 0xd: /* FADDP */
6118 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
6119 break;
6120 case 0xf: /* FMAXP */
6121 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
6122 break;
6123 case 0x2c: /* FMINNMP */
6124 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6125 break;
6126 case 0x2f: /* FMINP */
6127 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
6128 break;
6129 default:
6130 g_assert_not_reached();
6133 write_fp_dreg(s, rd, tcg_res);
6135 tcg_temp_free_i64(tcg_op1);
6136 tcg_temp_free_i64(tcg_op2);
6137 tcg_temp_free_i64(tcg_res);
6138 } else {
6139 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
6140 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
6141 TCGv_i32 tcg_res = tcg_temp_new_i32();
6143 read_vec_element_i32(s, tcg_op1, rn, 0, MO_32);
6144 read_vec_element_i32(s, tcg_op2, rn, 1, MO_32);
6146 switch (opcode) {
6147 case 0xc: /* FMAXNMP */
6148 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
6149 break;
6150 case 0xd: /* FADDP */
6151 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
6152 break;
6153 case 0xf: /* FMAXP */
6154 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
6155 break;
6156 case 0x2c: /* FMINNMP */
6157 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
6158 break;
6159 case 0x2f: /* FMINP */
6160 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
6161 break;
6162 default:
6163 g_assert_not_reached();
6166 write_fp_sreg(s, rd, tcg_res);
6168 tcg_temp_free_i32(tcg_op1);
6169 tcg_temp_free_i32(tcg_op2);
6170 tcg_temp_free_i32(tcg_res);
6173 if (!TCGV_IS_UNUSED_PTR(fpst)) {
6174 tcg_temp_free_ptr(fpst);
6179 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
6181 * This code is handles the common shifting code and is used by both
6182 * the vector and scalar code.
6184 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
6185 TCGv_i64 tcg_rnd, bool accumulate,
6186 bool is_u, int size, int shift)
6188 bool extended_result = false;
6189 bool round = !TCGV_IS_UNUSED_I64(tcg_rnd);
6190 int ext_lshift = 0;
6191 TCGv_i64 tcg_src_hi;
6193 if (round && size == 3) {
6194 extended_result = true;
6195 ext_lshift = 64 - shift;
6196 tcg_src_hi = tcg_temp_new_i64();
6197 } else if (shift == 64) {
6198 if (!accumulate && is_u) {
6199 /* result is zero */
6200 tcg_gen_movi_i64(tcg_res, 0);
6201 return;
6205 /* Deal with the rounding step */
6206 if (round) {
6207 if (extended_result) {
6208 TCGv_i64 tcg_zero = tcg_const_i64(0);
6209 if (!is_u) {
6210 /* take care of sign extending tcg_res */
6211 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
6212 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
6213 tcg_src, tcg_src_hi,
6214 tcg_rnd, tcg_zero);
6215 } else {
6216 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
6217 tcg_src, tcg_zero,
6218 tcg_rnd, tcg_zero);
6220 tcg_temp_free_i64(tcg_zero);
6221 } else {
6222 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
6226 /* Now do the shift right */
6227 if (round && extended_result) {
6228 /* extended case, >64 bit precision required */
6229 if (ext_lshift == 0) {
6230 /* special case, only high bits matter */
6231 tcg_gen_mov_i64(tcg_src, tcg_src_hi);
6232 } else {
6233 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
6234 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
6235 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
6237 } else {
6238 if (is_u) {
6239 if (shift == 64) {
6240 /* essentially shifting in 64 zeros */
6241 tcg_gen_movi_i64(tcg_src, 0);
6242 } else {
6243 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
6245 } else {
6246 if (shift == 64) {
6247 /* effectively extending the sign-bit */
6248 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
6249 } else {
6250 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
6255 if (accumulate) {
6256 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
6257 } else {
6258 tcg_gen_mov_i64(tcg_res, tcg_src);
6261 if (extended_result) {
6262 tcg_temp_free_i64(tcg_src_hi);
6266 /* Common SHL/SLI - Shift left with an optional insert */
6267 static void handle_shli_with_ins(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
6268 bool insert, int shift)
6270 if (insert) { /* SLI */
6271 tcg_gen_deposit_i64(tcg_res, tcg_res, tcg_src, shift, 64 - shift);
6272 } else { /* SHL */
6273 tcg_gen_shli_i64(tcg_res, tcg_src, shift);
6277 /* SRI: shift right with insert */
6278 static void handle_shri_with_ins(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
6279 int size, int shift)
6281 int esize = 8 << size;
6283 /* shift count same as element size is valid but does nothing;
6284 * special case to avoid potential shift by 64.
6286 if (shift != esize) {
6287 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
6288 tcg_gen_deposit_i64(tcg_res, tcg_res, tcg_src, 0, esize - shift);
6292 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
6293 static void handle_scalar_simd_shri(DisasContext *s,
6294 bool is_u, int immh, int immb,
6295 int opcode, int rn, int rd)
6297 const int size = 3;
6298 int immhb = immh << 3 | immb;
6299 int shift = 2 * (8 << size) - immhb;
6300 bool accumulate = false;
6301 bool round = false;
6302 bool insert = false;
6303 TCGv_i64 tcg_rn;
6304 TCGv_i64 tcg_rd;
6305 TCGv_i64 tcg_round;
6307 if (!extract32(immh, 3, 1)) {
6308 unallocated_encoding(s);
6309 return;
6312 if (!fp_access_check(s)) {
6313 return;
6316 switch (opcode) {
6317 case 0x02: /* SSRA / USRA (accumulate) */
6318 accumulate = true;
6319 break;
6320 case 0x04: /* SRSHR / URSHR (rounding) */
6321 round = true;
6322 break;
6323 case 0x06: /* SRSRA / URSRA (accum + rounding) */
6324 accumulate = round = true;
6325 break;
6326 case 0x08: /* SRI */
6327 insert = true;
6328 break;
6331 if (round) {
6332 uint64_t round_const = 1ULL << (shift - 1);
6333 tcg_round = tcg_const_i64(round_const);
6334 } else {
6335 TCGV_UNUSED_I64(tcg_round);
6338 tcg_rn = read_fp_dreg(s, rn);
6339 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
6341 if (insert) {
6342 handle_shri_with_ins(tcg_rd, tcg_rn, size, shift);
6343 } else {
6344 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
6345 accumulate, is_u, size, shift);
6348 write_fp_dreg(s, rd, tcg_rd);
6350 tcg_temp_free_i64(tcg_rn);
6351 tcg_temp_free_i64(tcg_rd);
6352 if (round) {
6353 tcg_temp_free_i64(tcg_round);
6357 /* SHL/SLI - Scalar shift left */
6358 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
6359 int immh, int immb, int opcode,
6360 int rn, int rd)
6362 int size = 32 - clz32(immh) - 1;
6363 int immhb = immh << 3 | immb;
6364 int shift = immhb - (8 << size);
6365 TCGv_i64 tcg_rn = new_tmp_a64(s);
6366 TCGv_i64 tcg_rd = new_tmp_a64(s);
6368 if (!extract32(immh, 3, 1)) {
6369 unallocated_encoding(s);
6370 return;
6373 if (!fp_access_check(s)) {
6374 return;
6377 tcg_rn = read_fp_dreg(s, rn);
6378 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
6380 handle_shli_with_ins(tcg_rd, tcg_rn, insert, shift);
6382 write_fp_dreg(s, rd, tcg_rd);
6384 tcg_temp_free_i64(tcg_rn);
6385 tcg_temp_free_i64(tcg_rd);
6388 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
6389 * (signed/unsigned) narrowing */
6390 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
6391 bool is_u_shift, bool is_u_narrow,
6392 int immh, int immb, int opcode,
6393 int rn, int rd)
6395 int immhb = immh << 3 | immb;
6396 int size = 32 - clz32(immh) - 1;
6397 int esize = 8 << size;
6398 int shift = (2 * esize) - immhb;
6399 int elements = is_scalar ? 1 : (64 / esize);
6400 bool round = extract32(opcode, 0, 1);
6401 TCGMemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
6402 TCGv_i64 tcg_rn, tcg_rd, tcg_round;
6403 TCGv_i32 tcg_rd_narrowed;
6404 TCGv_i64 tcg_final;
6406 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
6407 { gen_helper_neon_narrow_sat_s8,
6408 gen_helper_neon_unarrow_sat8 },
6409 { gen_helper_neon_narrow_sat_s16,
6410 gen_helper_neon_unarrow_sat16 },
6411 { gen_helper_neon_narrow_sat_s32,
6412 gen_helper_neon_unarrow_sat32 },
6413 { NULL, NULL },
6415 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
6416 gen_helper_neon_narrow_sat_u8,
6417 gen_helper_neon_narrow_sat_u16,
6418 gen_helper_neon_narrow_sat_u32,
6419 NULL
6421 NeonGenNarrowEnvFn *narrowfn;
6423 int i;
6425 assert(size < 4);
6427 if (extract32(immh, 3, 1)) {
6428 unallocated_encoding(s);
6429 return;
6432 if (!fp_access_check(s)) {
6433 return;
6436 if (is_u_shift) {
6437 narrowfn = unsigned_narrow_fns[size];
6438 } else {
6439 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
6442 tcg_rn = tcg_temp_new_i64();
6443 tcg_rd = tcg_temp_new_i64();
6444 tcg_rd_narrowed = tcg_temp_new_i32();
6445 tcg_final = tcg_const_i64(0);
6447 if (round) {
6448 uint64_t round_const = 1ULL << (shift - 1);
6449 tcg_round = tcg_const_i64(round_const);
6450 } else {
6451 TCGV_UNUSED_I64(tcg_round);
6454 for (i = 0; i < elements; i++) {
6455 read_vec_element(s, tcg_rn, rn, i, ldop);
6456 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
6457 false, is_u_shift, size+1, shift);
6458 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd);
6459 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
6460 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
6463 if (!is_q) {
6464 clear_vec_high(s, rd);
6465 write_vec_element(s, tcg_final, rd, 0, MO_64);
6466 } else {
6467 write_vec_element(s, tcg_final, rd, 1, MO_64);
6470 if (round) {
6471 tcg_temp_free_i64(tcg_round);
6473 tcg_temp_free_i64(tcg_rn);
6474 tcg_temp_free_i64(tcg_rd);
6475 tcg_temp_free_i32(tcg_rd_narrowed);
6476 tcg_temp_free_i64(tcg_final);
6477 return;
6480 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
6481 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
6482 bool src_unsigned, bool dst_unsigned,
6483 int immh, int immb, int rn, int rd)
6485 int immhb = immh << 3 | immb;
6486 int size = 32 - clz32(immh) - 1;
6487 int shift = immhb - (8 << size);
6488 int pass;
6490 assert(immh != 0);
6491 assert(!(scalar && is_q));
6493 if (!scalar) {
6494 if (!is_q && extract32(immh, 3, 1)) {
6495 unallocated_encoding(s);
6496 return;
6499 /* Since we use the variable-shift helpers we must
6500 * replicate the shift count into each element of
6501 * the tcg_shift value.
6503 switch (size) {
6504 case 0:
6505 shift |= shift << 8;
6506 /* fall through */
6507 case 1:
6508 shift |= shift << 16;
6509 break;
6510 case 2:
6511 case 3:
6512 break;
6513 default:
6514 g_assert_not_reached();
6518 if (!fp_access_check(s)) {
6519 return;
6522 if (size == 3) {
6523 TCGv_i64 tcg_shift = tcg_const_i64(shift);
6524 static NeonGenTwo64OpEnvFn * const fns[2][2] = {
6525 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
6526 { NULL, gen_helper_neon_qshl_u64 },
6528 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
6529 int maxpass = is_q ? 2 : 1;
6531 for (pass = 0; pass < maxpass; pass++) {
6532 TCGv_i64 tcg_op = tcg_temp_new_i64();
6534 read_vec_element(s, tcg_op, rn, pass, MO_64);
6535 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
6536 write_vec_element(s, tcg_op, rd, pass, MO_64);
6538 tcg_temp_free_i64(tcg_op);
6540 tcg_temp_free_i64(tcg_shift);
6542 if (!is_q) {
6543 clear_vec_high(s, rd);
6545 } else {
6546 TCGv_i32 tcg_shift = tcg_const_i32(shift);
6547 static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
6549 { gen_helper_neon_qshl_s8,
6550 gen_helper_neon_qshl_s16,
6551 gen_helper_neon_qshl_s32 },
6552 { gen_helper_neon_qshlu_s8,
6553 gen_helper_neon_qshlu_s16,
6554 gen_helper_neon_qshlu_s32 }
6555 }, {
6556 { NULL, NULL, NULL },
6557 { gen_helper_neon_qshl_u8,
6558 gen_helper_neon_qshl_u16,
6559 gen_helper_neon_qshl_u32 }
6562 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
6563 TCGMemOp memop = scalar ? size : MO_32;
6564 int maxpass = scalar ? 1 : is_q ? 4 : 2;
6566 for (pass = 0; pass < maxpass; pass++) {
6567 TCGv_i32 tcg_op = tcg_temp_new_i32();
6569 read_vec_element_i32(s, tcg_op, rn, pass, memop);
6570 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
6571 if (scalar) {
6572 switch (size) {
6573 case 0:
6574 tcg_gen_ext8u_i32(tcg_op, tcg_op);
6575 break;
6576 case 1:
6577 tcg_gen_ext16u_i32(tcg_op, tcg_op);
6578 break;
6579 case 2:
6580 break;
6581 default:
6582 g_assert_not_reached();
6584 write_fp_sreg(s, rd, tcg_op);
6585 } else {
6586 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
6589 tcg_temp_free_i32(tcg_op);
6591 tcg_temp_free_i32(tcg_shift);
6593 if (!is_q && !scalar) {
6594 clear_vec_high(s, rd);
6599 /* Common vector code for handling integer to FP conversion */
6600 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
6601 int elements, int is_signed,
6602 int fracbits, int size)
6604 bool is_double = size == 3 ? true : false;
6605 TCGv_ptr tcg_fpst = get_fpstatus_ptr();
6606 TCGv_i32 tcg_shift = tcg_const_i32(fracbits);
6607 TCGv_i64 tcg_int = tcg_temp_new_i64();
6608 TCGMemOp mop = size | (is_signed ? MO_SIGN : 0);
6609 int pass;
6611 for (pass = 0; pass < elements; pass++) {
6612 read_vec_element(s, tcg_int, rn, pass, mop);
6614 if (is_double) {
6615 TCGv_i64 tcg_double = tcg_temp_new_i64();
6616 if (is_signed) {
6617 gen_helper_vfp_sqtod(tcg_double, tcg_int,
6618 tcg_shift, tcg_fpst);
6619 } else {
6620 gen_helper_vfp_uqtod(tcg_double, tcg_int,
6621 tcg_shift, tcg_fpst);
6623 if (elements == 1) {
6624 write_fp_dreg(s, rd, tcg_double);
6625 } else {
6626 write_vec_element(s, tcg_double, rd, pass, MO_64);
6628 tcg_temp_free_i64(tcg_double);
6629 } else {
6630 TCGv_i32 tcg_single = tcg_temp_new_i32();
6631 if (is_signed) {
6632 gen_helper_vfp_sqtos(tcg_single, tcg_int,
6633 tcg_shift, tcg_fpst);
6634 } else {
6635 gen_helper_vfp_uqtos(tcg_single, tcg_int,
6636 tcg_shift, tcg_fpst);
6638 if (elements == 1) {
6639 write_fp_sreg(s, rd, tcg_single);
6640 } else {
6641 write_vec_element_i32(s, tcg_single, rd, pass, MO_32);
6643 tcg_temp_free_i32(tcg_single);
6647 if (!is_double && elements == 2) {
6648 clear_vec_high(s, rd);
6651 tcg_temp_free_i64(tcg_int);
6652 tcg_temp_free_ptr(tcg_fpst);
6653 tcg_temp_free_i32(tcg_shift);
6656 /* UCVTF/SCVTF - Integer to FP conversion */
6657 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
6658 bool is_q, bool is_u,
6659 int immh, int immb, int opcode,
6660 int rn, int rd)
6662 bool is_double = extract32(immh, 3, 1);
6663 int size = is_double ? MO_64 : MO_32;
6664 int elements;
6665 int immhb = immh << 3 | immb;
6666 int fracbits = (is_double ? 128 : 64) - immhb;
6668 if (!extract32(immh, 2, 2)) {
6669 unallocated_encoding(s);
6670 return;
6673 if (is_scalar) {
6674 elements = 1;
6675 } else {
6676 elements = is_double ? 2 : is_q ? 4 : 2;
6677 if (is_double && !is_q) {
6678 unallocated_encoding(s);
6679 return;
6683 if (!fp_access_check(s)) {
6684 return;
6687 /* immh == 0 would be a failure of the decode logic */
6688 g_assert(immh);
6690 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
6693 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
6694 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
6695 bool is_q, bool is_u,
6696 int immh, int immb, int rn, int rd)
6698 bool is_double = extract32(immh, 3, 1);
6699 int immhb = immh << 3 | immb;
6700 int fracbits = (is_double ? 128 : 64) - immhb;
6701 int pass;
6702 TCGv_ptr tcg_fpstatus;
6703 TCGv_i32 tcg_rmode, tcg_shift;
6705 if (!extract32(immh, 2, 2)) {
6706 unallocated_encoding(s);
6707 return;
6710 if (!is_scalar && !is_q && is_double) {
6711 unallocated_encoding(s);
6712 return;
6715 if (!fp_access_check(s)) {
6716 return;
6719 assert(!(is_scalar && is_q));
6721 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(FPROUNDING_ZERO));
6722 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
6723 tcg_fpstatus = get_fpstatus_ptr();
6724 tcg_shift = tcg_const_i32(fracbits);
6726 if (is_double) {
6727 int maxpass = is_scalar ? 1 : 2;
6729 for (pass = 0; pass < maxpass; pass++) {
6730 TCGv_i64 tcg_op = tcg_temp_new_i64();
6732 read_vec_element(s, tcg_op, rn, pass, MO_64);
6733 if (is_u) {
6734 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
6735 } else {
6736 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
6738 write_vec_element(s, tcg_op, rd, pass, MO_64);
6739 tcg_temp_free_i64(tcg_op);
6741 if (!is_q) {
6742 clear_vec_high(s, rd);
6744 } else {
6745 int maxpass = is_scalar ? 1 : is_q ? 4 : 2;
6746 for (pass = 0; pass < maxpass; pass++) {
6747 TCGv_i32 tcg_op = tcg_temp_new_i32();
6749 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
6750 if (is_u) {
6751 gen_helper_vfp_touls(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
6752 } else {
6753 gen_helper_vfp_tosls(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
6755 if (is_scalar) {
6756 write_fp_sreg(s, rd, tcg_op);
6757 } else {
6758 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
6760 tcg_temp_free_i32(tcg_op);
6762 if (!is_q && !is_scalar) {
6763 clear_vec_high(s, rd);
6767 tcg_temp_free_ptr(tcg_fpstatus);
6768 tcg_temp_free_i32(tcg_shift);
6769 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
6770 tcg_temp_free_i32(tcg_rmode);
6773 /* C3.6.9 AdvSIMD scalar shift by immediate
6774 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
6775 * +-----+---+-------------+------+------+--------+---+------+------+
6776 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
6777 * +-----+---+-------------+------+------+--------+---+------+------+
6779 * This is the scalar version so it works on a fixed sized registers
6781 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
6783 int rd = extract32(insn, 0, 5);
6784 int rn = extract32(insn, 5, 5);
6785 int opcode = extract32(insn, 11, 5);
6786 int immb = extract32(insn, 16, 3);
6787 int immh = extract32(insn, 19, 4);
6788 bool is_u = extract32(insn, 29, 1);
6790 if (immh == 0) {
6791 unallocated_encoding(s);
6792 return;
6795 switch (opcode) {
6796 case 0x08: /* SRI */
6797 if (!is_u) {
6798 unallocated_encoding(s);
6799 return;
6801 /* fall through */
6802 case 0x00: /* SSHR / USHR */
6803 case 0x02: /* SSRA / USRA */
6804 case 0x04: /* SRSHR / URSHR */
6805 case 0x06: /* SRSRA / URSRA */
6806 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
6807 break;
6808 case 0x0a: /* SHL / SLI */
6809 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
6810 break;
6811 case 0x1c: /* SCVTF, UCVTF */
6812 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
6813 opcode, rn, rd);
6814 break;
6815 case 0x10: /* SQSHRUN, SQSHRUN2 */
6816 case 0x11: /* SQRSHRUN, SQRSHRUN2 */
6817 if (!is_u) {
6818 unallocated_encoding(s);
6819 return;
6821 handle_vec_simd_sqshrn(s, true, false, false, true,
6822 immh, immb, opcode, rn, rd);
6823 break;
6824 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
6825 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
6826 handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
6827 immh, immb, opcode, rn, rd);
6828 break;
6829 case 0xc: /* SQSHLU */
6830 if (!is_u) {
6831 unallocated_encoding(s);
6832 return;
6834 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
6835 break;
6836 case 0xe: /* SQSHL, UQSHL */
6837 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
6838 break;
6839 case 0x1f: /* FCVTZS, FCVTZU */
6840 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
6841 break;
6842 default:
6843 unallocated_encoding(s);
6844 break;
6848 /* C3.6.10 AdvSIMD scalar three different
6849 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
6850 * +-----+---+-----------+------+---+------+--------+-----+------+------+
6851 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
6852 * +-----+---+-----------+------+---+------+--------+-----+------+------+
6854 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
6856 bool is_u = extract32(insn, 29, 1);
6857 int size = extract32(insn, 22, 2);
6858 int opcode = extract32(insn, 12, 4);
6859 int rm = extract32(insn, 16, 5);
6860 int rn = extract32(insn, 5, 5);
6861 int rd = extract32(insn, 0, 5);
6863 if (is_u) {
6864 unallocated_encoding(s);
6865 return;
6868 switch (opcode) {
6869 case 0x9: /* SQDMLAL, SQDMLAL2 */
6870 case 0xb: /* SQDMLSL, SQDMLSL2 */
6871 case 0xd: /* SQDMULL, SQDMULL2 */
6872 if (size == 0 || size == 3) {
6873 unallocated_encoding(s);
6874 return;
6876 break;
6877 default:
6878 unallocated_encoding(s);
6879 return;
6882 if (!fp_access_check(s)) {
6883 return;
6886 if (size == 2) {
6887 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
6888 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
6889 TCGv_i64 tcg_res = tcg_temp_new_i64();
6891 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
6892 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
6894 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
6895 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res);
6897 switch (opcode) {
6898 case 0xd: /* SQDMULL, SQDMULL2 */
6899 break;
6900 case 0xb: /* SQDMLSL, SQDMLSL2 */
6901 tcg_gen_neg_i64(tcg_res, tcg_res);
6902 /* fall through */
6903 case 0x9: /* SQDMLAL, SQDMLAL2 */
6904 read_vec_element(s, tcg_op1, rd, 0, MO_64);
6905 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env,
6906 tcg_res, tcg_op1);
6907 break;
6908 default:
6909 g_assert_not_reached();
6912 write_fp_dreg(s, rd, tcg_res);
6914 tcg_temp_free_i64(tcg_op1);
6915 tcg_temp_free_i64(tcg_op2);
6916 tcg_temp_free_i64(tcg_res);
6917 } else {
6918 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
6919 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
6920 TCGv_i64 tcg_res = tcg_temp_new_i64();
6922 read_vec_element_i32(s, tcg_op1, rn, 0, MO_16);
6923 read_vec_element_i32(s, tcg_op2, rm, 0, MO_16);
6925 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
6926 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res);
6928 switch (opcode) {
6929 case 0xd: /* SQDMULL, SQDMULL2 */
6930 break;
6931 case 0xb: /* SQDMLSL, SQDMLSL2 */
6932 gen_helper_neon_negl_u32(tcg_res, tcg_res);
6933 /* fall through */
6934 case 0x9: /* SQDMLAL, SQDMLAL2 */
6936 TCGv_i64 tcg_op3 = tcg_temp_new_i64();
6937 read_vec_element(s, tcg_op3, rd, 0, MO_32);
6938 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env,
6939 tcg_res, tcg_op3);
6940 tcg_temp_free_i64(tcg_op3);
6941 break;
6943 default:
6944 g_assert_not_reached();
6947 tcg_gen_ext32u_i64(tcg_res, tcg_res);
6948 write_fp_dreg(s, rd, tcg_res);
6950 tcg_temp_free_i32(tcg_op1);
6951 tcg_temp_free_i32(tcg_op2);
6952 tcg_temp_free_i64(tcg_res);
6956 static void handle_3same_64(DisasContext *s, int opcode, bool u,
6957 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
6959 /* Handle 64x64->64 opcodes which are shared between the scalar
6960 * and vector 3-same groups. We cover every opcode where size == 3
6961 * is valid in either the three-reg-same (integer, not pairwise)
6962 * or scalar-three-reg-same groups. (Some opcodes are not yet
6963 * implemented.)
6965 TCGCond cond;
6967 switch (opcode) {
6968 case 0x1: /* SQADD */
6969 if (u) {
6970 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
6971 } else {
6972 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
6974 break;
6975 case 0x5: /* SQSUB */
6976 if (u) {
6977 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
6978 } else {
6979 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
6981 break;
6982 case 0x6: /* CMGT, CMHI */
6983 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
6984 * We implement this using setcond (test) and then negating.
6986 cond = u ? TCG_COND_GTU : TCG_COND_GT;
6987 do_cmop:
6988 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
6989 tcg_gen_neg_i64(tcg_rd, tcg_rd);
6990 break;
6991 case 0x7: /* CMGE, CMHS */
6992 cond = u ? TCG_COND_GEU : TCG_COND_GE;
6993 goto do_cmop;
6994 case 0x11: /* CMTST, CMEQ */
6995 if (u) {
6996 cond = TCG_COND_EQ;
6997 goto do_cmop;
6999 /* CMTST : test is "if (X & Y != 0)". */
7000 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
7001 tcg_gen_setcondi_i64(TCG_COND_NE, tcg_rd, tcg_rd, 0);
7002 tcg_gen_neg_i64(tcg_rd, tcg_rd);
7003 break;
7004 case 0x8: /* SSHL, USHL */
7005 if (u) {
7006 gen_helper_neon_shl_u64(tcg_rd, tcg_rn, tcg_rm);
7007 } else {
7008 gen_helper_neon_shl_s64(tcg_rd, tcg_rn, tcg_rm);
7010 break;
7011 case 0x9: /* SQSHL, UQSHL */
7012 if (u) {
7013 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7014 } else {
7015 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7017 break;
7018 case 0xa: /* SRSHL, URSHL */
7019 if (u) {
7020 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
7021 } else {
7022 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
7024 break;
7025 case 0xb: /* SQRSHL, UQRSHL */
7026 if (u) {
7027 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7028 } else {
7029 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7031 break;
7032 case 0x10: /* ADD, SUB */
7033 if (u) {
7034 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
7035 } else {
7036 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
7038 break;
7039 default:
7040 g_assert_not_reached();
7044 /* Handle the 3-same-operands float operations; shared by the scalar
7045 * and vector encodings. The caller must filter out any encodings
7046 * not allocated for the encoding it is dealing with.
7048 static void handle_3same_float(DisasContext *s, int size, int elements,
7049 int fpopcode, int rd, int rn, int rm)
7051 int pass;
7052 TCGv_ptr fpst = get_fpstatus_ptr();
7054 for (pass = 0; pass < elements; pass++) {
7055 if (size) {
7056 /* Double */
7057 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
7058 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
7059 TCGv_i64 tcg_res = tcg_temp_new_i64();
7061 read_vec_element(s, tcg_op1, rn, pass, MO_64);
7062 read_vec_element(s, tcg_op2, rm, pass, MO_64);
7064 switch (fpopcode) {
7065 case 0x39: /* FMLS */
7066 /* As usual for ARM, separate negation for fused multiply-add */
7067 gen_helper_vfp_negd(tcg_op1, tcg_op1);
7068 /* fall through */
7069 case 0x19: /* FMLA */
7070 read_vec_element(s, tcg_res, rd, pass, MO_64);
7071 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
7072 tcg_res, fpst);
7073 break;
7074 case 0x18: /* FMAXNM */
7075 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7076 break;
7077 case 0x1a: /* FADD */
7078 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
7079 break;
7080 case 0x1b: /* FMULX */
7081 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
7082 break;
7083 case 0x1c: /* FCMEQ */
7084 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7085 break;
7086 case 0x1e: /* FMAX */
7087 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
7088 break;
7089 case 0x1f: /* FRECPS */
7090 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7091 break;
7092 case 0x38: /* FMINNM */
7093 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7094 break;
7095 case 0x3a: /* FSUB */
7096 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
7097 break;
7098 case 0x3e: /* FMIN */
7099 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
7100 break;
7101 case 0x3f: /* FRSQRTS */
7102 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7103 break;
7104 case 0x5b: /* FMUL */
7105 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
7106 break;
7107 case 0x5c: /* FCMGE */
7108 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7109 break;
7110 case 0x5d: /* FACGE */
7111 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7112 break;
7113 case 0x5f: /* FDIV */
7114 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
7115 break;
7116 case 0x7a: /* FABD */
7117 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
7118 gen_helper_vfp_absd(tcg_res, tcg_res);
7119 break;
7120 case 0x7c: /* FCMGT */
7121 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7122 break;
7123 case 0x7d: /* FACGT */
7124 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7125 break;
7126 default:
7127 g_assert_not_reached();
7130 write_vec_element(s, tcg_res, rd, pass, MO_64);
7132 tcg_temp_free_i64(tcg_res);
7133 tcg_temp_free_i64(tcg_op1);
7134 tcg_temp_free_i64(tcg_op2);
7135 } else {
7136 /* Single */
7137 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
7138 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
7139 TCGv_i32 tcg_res = tcg_temp_new_i32();
7141 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
7142 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
7144 switch (fpopcode) {
7145 case 0x39: /* FMLS */
7146 /* As usual for ARM, separate negation for fused multiply-add */
7147 gen_helper_vfp_negs(tcg_op1, tcg_op1);
7148 /* fall through */
7149 case 0x19: /* FMLA */
7150 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
7151 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
7152 tcg_res, fpst);
7153 break;
7154 case 0x1a: /* FADD */
7155 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
7156 break;
7157 case 0x1b: /* FMULX */
7158 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
7159 break;
7160 case 0x1c: /* FCMEQ */
7161 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7162 break;
7163 case 0x1e: /* FMAX */
7164 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
7165 break;
7166 case 0x1f: /* FRECPS */
7167 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7168 break;
7169 case 0x18: /* FMAXNM */
7170 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
7171 break;
7172 case 0x38: /* FMINNM */
7173 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
7174 break;
7175 case 0x3a: /* FSUB */
7176 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
7177 break;
7178 case 0x3e: /* FMIN */
7179 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
7180 break;
7181 case 0x3f: /* FRSQRTS */
7182 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7183 break;
7184 case 0x5b: /* FMUL */
7185 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
7186 break;
7187 case 0x5c: /* FCMGE */
7188 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7189 break;
7190 case 0x5d: /* FACGE */
7191 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7192 break;
7193 case 0x5f: /* FDIV */
7194 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
7195 break;
7196 case 0x7a: /* FABD */
7197 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
7198 gen_helper_vfp_abss(tcg_res, tcg_res);
7199 break;
7200 case 0x7c: /* FCMGT */
7201 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7202 break;
7203 case 0x7d: /* FACGT */
7204 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7205 break;
7206 default:
7207 g_assert_not_reached();
7210 if (elements == 1) {
7211 /* scalar single so clear high part */
7212 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7214 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
7215 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
7216 tcg_temp_free_i64(tcg_tmp);
7217 } else {
7218 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
7221 tcg_temp_free_i32(tcg_res);
7222 tcg_temp_free_i32(tcg_op1);
7223 tcg_temp_free_i32(tcg_op2);
7227 tcg_temp_free_ptr(fpst);
7229 if ((elements << size) < 4) {
7230 /* scalar, or non-quad vector op */
7231 clear_vec_high(s, rd);
7235 /* C3.6.11 AdvSIMD scalar three same
7236 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
7237 * +-----+---+-----------+------+---+------+--------+---+------+------+
7238 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
7239 * +-----+---+-----------+------+---+------+--------+---+------+------+
7241 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
7243 int rd = extract32(insn, 0, 5);
7244 int rn = extract32(insn, 5, 5);
7245 int opcode = extract32(insn, 11, 5);
7246 int rm = extract32(insn, 16, 5);
7247 int size = extract32(insn, 22, 2);
7248 bool u = extract32(insn, 29, 1);
7249 TCGv_i64 tcg_rd;
7251 if (opcode >= 0x18) {
7252 /* Floating point: U, size[1] and opcode indicate operation */
7253 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
7254 switch (fpopcode) {
7255 case 0x1b: /* FMULX */
7256 case 0x1f: /* FRECPS */
7257 case 0x3f: /* FRSQRTS */
7258 case 0x5d: /* FACGE */
7259 case 0x7d: /* FACGT */
7260 case 0x1c: /* FCMEQ */
7261 case 0x5c: /* FCMGE */
7262 case 0x7c: /* FCMGT */
7263 case 0x7a: /* FABD */
7264 break;
7265 default:
7266 unallocated_encoding(s);
7267 return;
7270 if (!fp_access_check(s)) {
7271 return;
7274 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
7275 return;
7278 switch (opcode) {
7279 case 0x1: /* SQADD, UQADD */
7280 case 0x5: /* SQSUB, UQSUB */
7281 case 0x9: /* SQSHL, UQSHL */
7282 case 0xb: /* SQRSHL, UQRSHL */
7283 break;
7284 case 0x8: /* SSHL, USHL */
7285 case 0xa: /* SRSHL, URSHL */
7286 case 0x6: /* CMGT, CMHI */
7287 case 0x7: /* CMGE, CMHS */
7288 case 0x11: /* CMTST, CMEQ */
7289 case 0x10: /* ADD, SUB (vector) */
7290 if (size != 3) {
7291 unallocated_encoding(s);
7292 return;
7294 break;
7295 case 0x16: /* SQDMULH, SQRDMULH (vector) */
7296 if (size != 1 && size != 2) {
7297 unallocated_encoding(s);
7298 return;
7300 break;
7301 default:
7302 unallocated_encoding(s);
7303 return;
7306 if (!fp_access_check(s)) {
7307 return;
7310 tcg_rd = tcg_temp_new_i64();
7312 if (size == 3) {
7313 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
7314 TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
7316 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
7317 tcg_temp_free_i64(tcg_rn);
7318 tcg_temp_free_i64(tcg_rm);
7319 } else {
7320 /* Do a single operation on the lowest element in the vector.
7321 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
7322 * no side effects for all these operations.
7323 * OPTME: special-purpose helpers would avoid doing some
7324 * unnecessary work in the helper for the 8 and 16 bit cases.
7326 NeonGenTwoOpEnvFn *genenvfn;
7327 TCGv_i32 tcg_rn = tcg_temp_new_i32();
7328 TCGv_i32 tcg_rm = tcg_temp_new_i32();
7329 TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
7331 read_vec_element_i32(s, tcg_rn, rn, 0, size);
7332 read_vec_element_i32(s, tcg_rm, rm, 0, size);
7334 switch (opcode) {
7335 case 0x1: /* SQADD, UQADD */
7337 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7338 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
7339 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
7340 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
7342 genenvfn = fns[size][u];
7343 break;
7345 case 0x5: /* SQSUB, UQSUB */
7347 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7348 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
7349 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
7350 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
7352 genenvfn = fns[size][u];
7353 break;
7355 case 0x9: /* SQSHL, UQSHL */
7357 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7358 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
7359 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
7360 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
7362 genenvfn = fns[size][u];
7363 break;
7365 case 0xb: /* SQRSHL, UQRSHL */
7367 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7368 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
7369 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
7370 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
7372 genenvfn = fns[size][u];
7373 break;
7375 case 0x16: /* SQDMULH, SQRDMULH */
7377 static NeonGenTwoOpEnvFn * const fns[2][2] = {
7378 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
7379 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
7381 assert(size == 1 || size == 2);
7382 genenvfn = fns[size - 1][u];
7383 break;
7385 default:
7386 g_assert_not_reached();
7389 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm);
7390 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
7391 tcg_temp_free_i32(tcg_rd32);
7392 tcg_temp_free_i32(tcg_rn);
7393 tcg_temp_free_i32(tcg_rm);
7396 write_fp_dreg(s, rd, tcg_rd);
7398 tcg_temp_free_i64(tcg_rd);
7401 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
7402 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
7403 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
7405 /* Handle 64->64 opcodes which are shared between the scalar and
7406 * vector 2-reg-misc groups. We cover every integer opcode where size == 3
7407 * is valid in either group and also the double-precision fp ops.
7408 * The caller only need provide tcg_rmode and tcg_fpstatus if the op
7409 * requires them.
7411 TCGCond cond;
7413 switch (opcode) {
7414 case 0x4: /* CLS, CLZ */
7415 if (u) {
7416 gen_helper_clz64(tcg_rd, tcg_rn);
7417 } else {
7418 gen_helper_cls64(tcg_rd, tcg_rn);
7420 break;
7421 case 0x5: /* NOT */
7422 /* This opcode is shared with CNT and RBIT but we have earlier
7423 * enforced that size == 3 if and only if this is the NOT insn.
7425 tcg_gen_not_i64(tcg_rd, tcg_rn);
7426 break;
7427 case 0x7: /* SQABS, SQNEG */
7428 if (u) {
7429 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn);
7430 } else {
7431 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn);
7433 break;
7434 case 0xa: /* CMLT */
7435 /* 64 bit integer comparison against zero, result is
7436 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and
7437 * subtracting 1.
7439 cond = TCG_COND_LT;
7440 do_cmop:
7441 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0);
7442 tcg_gen_neg_i64(tcg_rd, tcg_rd);
7443 break;
7444 case 0x8: /* CMGT, CMGE */
7445 cond = u ? TCG_COND_GE : TCG_COND_GT;
7446 goto do_cmop;
7447 case 0x9: /* CMEQ, CMLE */
7448 cond = u ? TCG_COND_LE : TCG_COND_EQ;
7449 goto do_cmop;
7450 case 0xb: /* ABS, NEG */
7451 if (u) {
7452 tcg_gen_neg_i64(tcg_rd, tcg_rn);
7453 } else {
7454 TCGv_i64 tcg_zero = tcg_const_i64(0);
7455 tcg_gen_neg_i64(tcg_rd, tcg_rn);
7456 tcg_gen_movcond_i64(TCG_COND_GT, tcg_rd, tcg_rn, tcg_zero,
7457 tcg_rn, tcg_rd);
7458 tcg_temp_free_i64(tcg_zero);
7460 break;
7461 case 0x2f: /* FABS */
7462 gen_helper_vfp_absd(tcg_rd, tcg_rn);
7463 break;
7464 case 0x6f: /* FNEG */
7465 gen_helper_vfp_negd(tcg_rd, tcg_rn);
7466 break;
7467 case 0x7f: /* FSQRT */
7468 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env);
7469 break;
7470 case 0x1a: /* FCVTNS */
7471 case 0x1b: /* FCVTMS */
7472 case 0x1c: /* FCVTAS */
7473 case 0x3a: /* FCVTPS */
7474 case 0x3b: /* FCVTZS */
7476 TCGv_i32 tcg_shift = tcg_const_i32(0);
7477 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
7478 tcg_temp_free_i32(tcg_shift);
7479 break;
7481 case 0x5a: /* FCVTNU */
7482 case 0x5b: /* FCVTMU */
7483 case 0x5c: /* FCVTAU */
7484 case 0x7a: /* FCVTPU */
7485 case 0x7b: /* FCVTZU */
7487 TCGv_i32 tcg_shift = tcg_const_i32(0);
7488 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
7489 tcg_temp_free_i32(tcg_shift);
7490 break;
7492 case 0x18: /* FRINTN */
7493 case 0x19: /* FRINTM */
7494 case 0x38: /* FRINTP */
7495 case 0x39: /* FRINTZ */
7496 case 0x58: /* FRINTA */
7497 case 0x79: /* FRINTI */
7498 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
7499 break;
7500 case 0x59: /* FRINTX */
7501 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
7502 break;
7503 default:
7504 g_assert_not_reached();
7508 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
7509 bool is_scalar, bool is_u, bool is_q,
7510 int size, int rn, int rd)
7512 bool is_double = (size == 3);
7513 TCGv_ptr fpst;
7515 if (!fp_access_check(s)) {
7516 return;
7519 fpst = get_fpstatus_ptr();
7521 if (is_double) {
7522 TCGv_i64 tcg_op = tcg_temp_new_i64();
7523 TCGv_i64 tcg_zero = tcg_const_i64(0);
7524 TCGv_i64 tcg_res = tcg_temp_new_i64();
7525 NeonGenTwoDoubleOPFn *genfn;
7526 bool swap = false;
7527 int pass;
7529 switch (opcode) {
7530 case 0x2e: /* FCMLT (zero) */
7531 swap = true;
7532 /* fallthrough */
7533 case 0x2c: /* FCMGT (zero) */
7534 genfn = gen_helper_neon_cgt_f64;
7535 break;
7536 case 0x2d: /* FCMEQ (zero) */
7537 genfn = gen_helper_neon_ceq_f64;
7538 break;
7539 case 0x6d: /* FCMLE (zero) */
7540 swap = true;
7541 /* fall through */
7542 case 0x6c: /* FCMGE (zero) */
7543 genfn = gen_helper_neon_cge_f64;
7544 break;
7545 default:
7546 g_assert_not_reached();
7549 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
7550 read_vec_element(s, tcg_op, rn, pass, MO_64);
7551 if (swap) {
7552 genfn(tcg_res, tcg_zero, tcg_op, fpst);
7553 } else {
7554 genfn(tcg_res, tcg_op, tcg_zero, fpst);
7556 write_vec_element(s, tcg_res, rd, pass, MO_64);
7558 if (is_scalar) {
7559 clear_vec_high(s, rd);
7562 tcg_temp_free_i64(tcg_res);
7563 tcg_temp_free_i64(tcg_zero);
7564 tcg_temp_free_i64(tcg_op);
7565 } else {
7566 TCGv_i32 tcg_op = tcg_temp_new_i32();
7567 TCGv_i32 tcg_zero = tcg_const_i32(0);
7568 TCGv_i32 tcg_res = tcg_temp_new_i32();
7569 NeonGenTwoSingleOPFn *genfn;
7570 bool swap = false;
7571 int pass, maxpasses;
7573 switch (opcode) {
7574 case 0x2e: /* FCMLT (zero) */
7575 swap = true;
7576 /* fall through */
7577 case 0x2c: /* FCMGT (zero) */
7578 genfn = gen_helper_neon_cgt_f32;
7579 break;
7580 case 0x2d: /* FCMEQ (zero) */
7581 genfn = gen_helper_neon_ceq_f32;
7582 break;
7583 case 0x6d: /* FCMLE (zero) */
7584 swap = true;
7585 /* fall through */
7586 case 0x6c: /* FCMGE (zero) */
7587 genfn = gen_helper_neon_cge_f32;
7588 break;
7589 default:
7590 g_assert_not_reached();
7593 if (is_scalar) {
7594 maxpasses = 1;
7595 } else {
7596 maxpasses = is_q ? 4 : 2;
7599 for (pass = 0; pass < maxpasses; pass++) {
7600 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
7601 if (swap) {
7602 genfn(tcg_res, tcg_zero, tcg_op, fpst);
7603 } else {
7604 genfn(tcg_res, tcg_op, tcg_zero, fpst);
7606 if (is_scalar) {
7607 write_fp_sreg(s, rd, tcg_res);
7608 } else {
7609 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
7612 tcg_temp_free_i32(tcg_res);
7613 tcg_temp_free_i32(tcg_zero);
7614 tcg_temp_free_i32(tcg_op);
7615 if (!is_q && !is_scalar) {
7616 clear_vec_high(s, rd);
7620 tcg_temp_free_ptr(fpst);
7623 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
7624 bool is_scalar, bool is_u, bool is_q,
7625 int size, int rn, int rd)
7627 bool is_double = (size == 3);
7628 TCGv_ptr fpst = get_fpstatus_ptr();
7630 if (is_double) {
7631 TCGv_i64 tcg_op = tcg_temp_new_i64();
7632 TCGv_i64 tcg_res = tcg_temp_new_i64();
7633 int pass;
7635 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
7636 read_vec_element(s, tcg_op, rn, pass, MO_64);
7637 switch (opcode) {
7638 case 0x3d: /* FRECPE */
7639 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
7640 break;
7641 case 0x3f: /* FRECPX */
7642 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
7643 break;
7644 case 0x7d: /* FRSQRTE */
7645 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
7646 break;
7647 default:
7648 g_assert_not_reached();
7650 write_vec_element(s, tcg_res, rd, pass, MO_64);
7652 if (is_scalar) {
7653 clear_vec_high(s, rd);
7656 tcg_temp_free_i64(tcg_res);
7657 tcg_temp_free_i64(tcg_op);
7658 } else {
7659 TCGv_i32 tcg_op = tcg_temp_new_i32();
7660 TCGv_i32 tcg_res = tcg_temp_new_i32();
7661 int pass, maxpasses;
7663 if (is_scalar) {
7664 maxpasses = 1;
7665 } else {
7666 maxpasses = is_q ? 4 : 2;
7669 for (pass = 0; pass < maxpasses; pass++) {
7670 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
7672 switch (opcode) {
7673 case 0x3c: /* URECPE */
7674 gen_helper_recpe_u32(tcg_res, tcg_op, fpst);
7675 break;
7676 case 0x3d: /* FRECPE */
7677 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
7678 break;
7679 case 0x3f: /* FRECPX */
7680 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
7681 break;
7682 case 0x7d: /* FRSQRTE */
7683 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
7684 break;
7685 default:
7686 g_assert_not_reached();
7689 if (is_scalar) {
7690 write_fp_sreg(s, rd, tcg_res);
7691 } else {
7692 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
7695 tcg_temp_free_i32(tcg_res);
7696 tcg_temp_free_i32(tcg_op);
7697 if (!is_q && !is_scalar) {
7698 clear_vec_high(s, rd);
7701 tcg_temp_free_ptr(fpst);
7704 static void handle_2misc_narrow(DisasContext *s, bool scalar,
7705 int opcode, bool u, bool is_q,
7706 int size, int rn, int rd)
7708 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
7709 * in the source becomes a size element in the destination).
7711 int pass;
7712 TCGv_i32 tcg_res[2];
7713 int destelt = is_q ? 2 : 0;
7714 int passes = scalar ? 1 : 2;
7716 if (scalar) {
7717 tcg_res[1] = tcg_const_i32(0);
7720 for (pass = 0; pass < passes; pass++) {
7721 TCGv_i64 tcg_op = tcg_temp_new_i64();
7722 NeonGenNarrowFn *genfn = NULL;
7723 NeonGenNarrowEnvFn *genenvfn = NULL;
7725 if (scalar) {
7726 read_vec_element(s, tcg_op, rn, pass, size + 1);
7727 } else {
7728 read_vec_element(s, tcg_op, rn, pass, MO_64);
7730 tcg_res[pass] = tcg_temp_new_i32();
7732 switch (opcode) {
7733 case 0x12: /* XTN, SQXTUN */
7735 static NeonGenNarrowFn * const xtnfns[3] = {
7736 gen_helper_neon_narrow_u8,
7737 gen_helper_neon_narrow_u16,
7738 tcg_gen_extrl_i64_i32,
7740 static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
7741 gen_helper_neon_unarrow_sat8,
7742 gen_helper_neon_unarrow_sat16,
7743 gen_helper_neon_unarrow_sat32,
7745 if (u) {
7746 genenvfn = sqxtunfns[size];
7747 } else {
7748 genfn = xtnfns[size];
7750 break;
7752 case 0x14: /* SQXTN, UQXTN */
7754 static NeonGenNarrowEnvFn * const fns[3][2] = {
7755 { gen_helper_neon_narrow_sat_s8,
7756 gen_helper_neon_narrow_sat_u8 },
7757 { gen_helper_neon_narrow_sat_s16,
7758 gen_helper_neon_narrow_sat_u16 },
7759 { gen_helper_neon_narrow_sat_s32,
7760 gen_helper_neon_narrow_sat_u32 },
7762 genenvfn = fns[size][u];
7763 break;
7765 case 0x16: /* FCVTN, FCVTN2 */
7766 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
7767 if (size == 2) {
7768 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env);
7769 } else {
7770 TCGv_i32 tcg_lo = tcg_temp_new_i32();
7771 TCGv_i32 tcg_hi = tcg_temp_new_i32();
7772 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
7773 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, cpu_env);
7774 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, cpu_env);
7775 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
7776 tcg_temp_free_i32(tcg_lo);
7777 tcg_temp_free_i32(tcg_hi);
7779 break;
7780 case 0x56: /* FCVTXN, FCVTXN2 */
7781 /* 64 bit to 32 bit float conversion
7782 * with von Neumann rounding (round to odd)
7784 assert(size == 2);
7785 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env);
7786 break;
7787 default:
7788 g_assert_not_reached();
7791 if (genfn) {
7792 genfn(tcg_res[pass], tcg_op);
7793 } else if (genenvfn) {
7794 genenvfn(tcg_res[pass], cpu_env, tcg_op);
7797 tcg_temp_free_i64(tcg_op);
7800 for (pass = 0; pass < 2; pass++) {
7801 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
7802 tcg_temp_free_i32(tcg_res[pass]);
7804 if (!is_q) {
7805 clear_vec_high(s, rd);
7809 /* Remaining saturating accumulating ops */
7810 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
7811 bool is_q, int size, int rn, int rd)
7813 bool is_double = (size == 3);
7815 if (is_double) {
7816 TCGv_i64 tcg_rn = tcg_temp_new_i64();
7817 TCGv_i64 tcg_rd = tcg_temp_new_i64();
7818 int pass;
7820 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
7821 read_vec_element(s, tcg_rn, rn, pass, MO_64);
7822 read_vec_element(s, tcg_rd, rd, pass, MO_64);
7824 if (is_u) { /* USQADD */
7825 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
7826 } else { /* SUQADD */
7827 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
7829 write_vec_element(s, tcg_rd, rd, pass, MO_64);
7831 if (is_scalar) {
7832 clear_vec_high(s, rd);
7835 tcg_temp_free_i64(tcg_rd);
7836 tcg_temp_free_i64(tcg_rn);
7837 } else {
7838 TCGv_i32 tcg_rn = tcg_temp_new_i32();
7839 TCGv_i32 tcg_rd = tcg_temp_new_i32();
7840 int pass, maxpasses;
7842 if (is_scalar) {
7843 maxpasses = 1;
7844 } else {
7845 maxpasses = is_q ? 4 : 2;
7848 for (pass = 0; pass < maxpasses; pass++) {
7849 if (is_scalar) {
7850 read_vec_element_i32(s, tcg_rn, rn, pass, size);
7851 read_vec_element_i32(s, tcg_rd, rd, pass, size);
7852 } else {
7853 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
7854 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
7857 if (is_u) { /* USQADD */
7858 switch (size) {
7859 case 0:
7860 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
7861 break;
7862 case 1:
7863 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
7864 break;
7865 case 2:
7866 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
7867 break;
7868 default:
7869 g_assert_not_reached();
7871 } else { /* SUQADD */
7872 switch (size) {
7873 case 0:
7874 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
7875 break;
7876 case 1:
7877 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
7878 break;
7879 case 2:
7880 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
7881 break;
7882 default:
7883 g_assert_not_reached();
7887 if (is_scalar) {
7888 TCGv_i64 tcg_zero = tcg_const_i64(0);
7889 write_vec_element(s, tcg_zero, rd, 0, MO_64);
7890 tcg_temp_free_i64(tcg_zero);
7892 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
7895 if (!is_q) {
7896 clear_vec_high(s, rd);
7899 tcg_temp_free_i32(tcg_rd);
7900 tcg_temp_free_i32(tcg_rn);
7904 /* C3.6.12 AdvSIMD scalar two reg misc
7905 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
7906 * +-----+---+-----------+------+-----------+--------+-----+------+------+
7907 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
7908 * +-----+---+-----------+------+-----------+--------+-----+------+------+
7910 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
7912 int rd = extract32(insn, 0, 5);
7913 int rn = extract32(insn, 5, 5);
7914 int opcode = extract32(insn, 12, 5);
7915 int size = extract32(insn, 22, 2);
7916 bool u = extract32(insn, 29, 1);
7917 bool is_fcvt = false;
7918 int rmode;
7919 TCGv_i32 tcg_rmode;
7920 TCGv_ptr tcg_fpstatus;
7922 switch (opcode) {
7923 case 0x3: /* USQADD / SUQADD*/
7924 if (!fp_access_check(s)) {
7925 return;
7927 handle_2misc_satacc(s, true, u, false, size, rn, rd);
7928 return;
7929 case 0x7: /* SQABS / SQNEG */
7930 break;
7931 case 0xa: /* CMLT */
7932 if (u) {
7933 unallocated_encoding(s);
7934 return;
7936 /* fall through */
7937 case 0x8: /* CMGT, CMGE */
7938 case 0x9: /* CMEQ, CMLE */
7939 case 0xb: /* ABS, NEG */
7940 if (size != 3) {
7941 unallocated_encoding(s);
7942 return;
7944 break;
7945 case 0x12: /* SQXTUN */
7946 if (!u) {
7947 unallocated_encoding(s);
7948 return;
7950 /* fall through */
7951 case 0x14: /* SQXTN, UQXTN */
7952 if (size == 3) {
7953 unallocated_encoding(s);
7954 return;
7956 if (!fp_access_check(s)) {
7957 return;
7959 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
7960 return;
7961 case 0xc ... 0xf:
7962 case 0x16 ... 0x1d:
7963 case 0x1f:
7964 /* Floating point: U, size[1] and opcode indicate operation;
7965 * size[0] indicates single or double precision.
7967 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
7968 size = extract32(size, 0, 1) ? 3 : 2;
7969 switch (opcode) {
7970 case 0x2c: /* FCMGT (zero) */
7971 case 0x2d: /* FCMEQ (zero) */
7972 case 0x2e: /* FCMLT (zero) */
7973 case 0x6c: /* FCMGE (zero) */
7974 case 0x6d: /* FCMLE (zero) */
7975 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
7976 return;
7977 case 0x1d: /* SCVTF */
7978 case 0x5d: /* UCVTF */
7980 bool is_signed = (opcode == 0x1d);
7981 if (!fp_access_check(s)) {
7982 return;
7984 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
7985 return;
7987 case 0x3d: /* FRECPE */
7988 case 0x3f: /* FRECPX */
7989 case 0x7d: /* FRSQRTE */
7990 if (!fp_access_check(s)) {
7991 return;
7993 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
7994 return;
7995 case 0x1a: /* FCVTNS */
7996 case 0x1b: /* FCVTMS */
7997 case 0x3a: /* FCVTPS */
7998 case 0x3b: /* FCVTZS */
7999 case 0x5a: /* FCVTNU */
8000 case 0x5b: /* FCVTMU */
8001 case 0x7a: /* FCVTPU */
8002 case 0x7b: /* FCVTZU */
8003 is_fcvt = true;
8004 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
8005 break;
8006 case 0x1c: /* FCVTAS */
8007 case 0x5c: /* FCVTAU */
8008 /* TIEAWAY doesn't fit in the usual rounding mode encoding */
8009 is_fcvt = true;
8010 rmode = FPROUNDING_TIEAWAY;
8011 break;
8012 case 0x56: /* FCVTXN, FCVTXN2 */
8013 if (size == 2) {
8014 unallocated_encoding(s);
8015 return;
8017 if (!fp_access_check(s)) {
8018 return;
8020 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
8021 return;
8022 default:
8023 unallocated_encoding(s);
8024 return;
8026 break;
8027 default:
8028 unallocated_encoding(s);
8029 return;
8032 if (!fp_access_check(s)) {
8033 return;
8036 if (is_fcvt) {
8037 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
8038 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
8039 tcg_fpstatus = get_fpstatus_ptr();
8040 } else {
8041 TCGV_UNUSED_I32(tcg_rmode);
8042 TCGV_UNUSED_PTR(tcg_fpstatus);
8045 if (size == 3) {
8046 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
8047 TCGv_i64 tcg_rd = tcg_temp_new_i64();
8049 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
8050 write_fp_dreg(s, rd, tcg_rd);
8051 tcg_temp_free_i64(tcg_rd);
8052 tcg_temp_free_i64(tcg_rn);
8053 } else {
8054 TCGv_i32 tcg_rn = tcg_temp_new_i32();
8055 TCGv_i32 tcg_rd = tcg_temp_new_i32();
8057 read_vec_element_i32(s, tcg_rn, rn, 0, size);
8059 switch (opcode) {
8060 case 0x7: /* SQABS, SQNEG */
8062 NeonGenOneOpEnvFn *genfn;
8063 static NeonGenOneOpEnvFn * const fns[3][2] = {
8064 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
8065 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
8066 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
8068 genfn = fns[size][u];
8069 genfn(tcg_rd, cpu_env, tcg_rn);
8070 break;
8072 case 0x1a: /* FCVTNS */
8073 case 0x1b: /* FCVTMS */
8074 case 0x1c: /* FCVTAS */
8075 case 0x3a: /* FCVTPS */
8076 case 0x3b: /* FCVTZS */
8078 TCGv_i32 tcg_shift = tcg_const_i32(0);
8079 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
8080 tcg_temp_free_i32(tcg_shift);
8081 break;
8083 case 0x5a: /* FCVTNU */
8084 case 0x5b: /* FCVTMU */
8085 case 0x5c: /* FCVTAU */
8086 case 0x7a: /* FCVTPU */
8087 case 0x7b: /* FCVTZU */
8089 TCGv_i32 tcg_shift = tcg_const_i32(0);
8090 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
8091 tcg_temp_free_i32(tcg_shift);
8092 break;
8094 default:
8095 g_assert_not_reached();
8098 write_fp_sreg(s, rd, tcg_rd);
8099 tcg_temp_free_i32(tcg_rd);
8100 tcg_temp_free_i32(tcg_rn);
8103 if (is_fcvt) {
8104 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
8105 tcg_temp_free_i32(tcg_rmode);
8106 tcg_temp_free_ptr(tcg_fpstatus);
8110 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
8111 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
8112 int immh, int immb, int opcode, int rn, int rd)
8114 int size = 32 - clz32(immh) - 1;
8115 int immhb = immh << 3 | immb;
8116 int shift = 2 * (8 << size) - immhb;
8117 bool accumulate = false;
8118 bool round = false;
8119 bool insert = false;
8120 int dsize = is_q ? 128 : 64;
8121 int esize = 8 << size;
8122 int elements = dsize/esize;
8123 TCGMemOp memop = size | (is_u ? 0 : MO_SIGN);
8124 TCGv_i64 tcg_rn = new_tmp_a64(s);
8125 TCGv_i64 tcg_rd = new_tmp_a64(s);
8126 TCGv_i64 tcg_round;
8127 int i;
8129 if (extract32(immh, 3, 1) && !is_q) {
8130 unallocated_encoding(s);
8131 return;
8134 if (size > 3 && !is_q) {
8135 unallocated_encoding(s);
8136 return;
8139 if (!fp_access_check(s)) {
8140 return;
8143 switch (opcode) {
8144 case 0x02: /* SSRA / USRA (accumulate) */
8145 accumulate = true;
8146 break;
8147 case 0x04: /* SRSHR / URSHR (rounding) */
8148 round = true;
8149 break;
8150 case 0x06: /* SRSRA / URSRA (accum + rounding) */
8151 accumulate = round = true;
8152 break;
8153 case 0x08: /* SRI */
8154 insert = true;
8155 break;
8158 if (round) {
8159 uint64_t round_const = 1ULL << (shift - 1);
8160 tcg_round = tcg_const_i64(round_const);
8161 } else {
8162 TCGV_UNUSED_I64(tcg_round);
8165 for (i = 0; i < elements; i++) {
8166 read_vec_element(s, tcg_rn, rn, i, memop);
8167 if (accumulate || insert) {
8168 read_vec_element(s, tcg_rd, rd, i, memop);
8171 if (insert) {
8172 handle_shri_with_ins(tcg_rd, tcg_rn, size, shift);
8173 } else {
8174 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8175 accumulate, is_u, size, shift);
8178 write_vec_element(s, tcg_rd, rd, i, size);
8181 if (!is_q) {
8182 clear_vec_high(s, rd);
8185 if (round) {
8186 tcg_temp_free_i64(tcg_round);
8190 /* SHL/SLI - Vector shift left */
8191 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
8192 int immh, int immb, int opcode, int rn, int rd)
8194 int size = 32 - clz32(immh) - 1;
8195 int immhb = immh << 3 | immb;
8196 int shift = immhb - (8 << size);
8197 int dsize = is_q ? 128 : 64;
8198 int esize = 8 << size;
8199 int elements = dsize/esize;
8200 TCGv_i64 tcg_rn = new_tmp_a64(s);
8201 TCGv_i64 tcg_rd = new_tmp_a64(s);
8202 int i;
8204 if (extract32(immh, 3, 1) && !is_q) {
8205 unallocated_encoding(s);
8206 return;
8209 if (size > 3 && !is_q) {
8210 unallocated_encoding(s);
8211 return;
8214 if (!fp_access_check(s)) {
8215 return;
8218 for (i = 0; i < elements; i++) {
8219 read_vec_element(s, tcg_rn, rn, i, size);
8220 if (insert) {
8221 read_vec_element(s, tcg_rd, rd, i, size);
8224 handle_shli_with_ins(tcg_rd, tcg_rn, insert, shift);
8226 write_vec_element(s, tcg_rd, rd, i, size);
8229 if (!is_q) {
8230 clear_vec_high(s, rd);
8234 /* USHLL/SHLL - Vector shift left with widening */
8235 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
8236 int immh, int immb, int opcode, int rn, int rd)
8238 int size = 32 - clz32(immh) - 1;
8239 int immhb = immh << 3 | immb;
8240 int shift = immhb - (8 << size);
8241 int dsize = 64;
8242 int esize = 8 << size;
8243 int elements = dsize/esize;
8244 TCGv_i64 tcg_rn = new_tmp_a64(s);
8245 TCGv_i64 tcg_rd = new_tmp_a64(s);
8246 int i;
8248 if (size >= 3) {
8249 unallocated_encoding(s);
8250 return;
8253 if (!fp_access_check(s)) {
8254 return;
8257 /* For the LL variants the store is larger than the load,
8258 * so if rd == rn we would overwrite parts of our input.
8259 * So load everything right now and use shifts in the main loop.
8261 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
8263 for (i = 0; i < elements; i++) {
8264 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
8265 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
8266 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
8267 write_vec_element(s, tcg_rd, rd, i, size + 1);
8271 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
8272 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
8273 int immh, int immb, int opcode, int rn, int rd)
8275 int immhb = immh << 3 | immb;
8276 int size = 32 - clz32(immh) - 1;
8277 int dsize = 64;
8278 int esize = 8 << size;
8279 int elements = dsize/esize;
8280 int shift = (2 * esize) - immhb;
8281 bool round = extract32(opcode, 0, 1);
8282 TCGv_i64 tcg_rn, tcg_rd, tcg_final;
8283 TCGv_i64 tcg_round;
8284 int i;
8286 if (extract32(immh, 3, 1)) {
8287 unallocated_encoding(s);
8288 return;
8291 if (!fp_access_check(s)) {
8292 return;
8295 tcg_rn = tcg_temp_new_i64();
8296 tcg_rd = tcg_temp_new_i64();
8297 tcg_final = tcg_temp_new_i64();
8298 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
8300 if (round) {
8301 uint64_t round_const = 1ULL << (shift - 1);
8302 tcg_round = tcg_const_i64(round_const);
8303 } else {
8304 TCGV_UNUSED_I64(tcg_round);
8307 for (i = 0; i < elements; i++) {
8308 read_vec_element(s, tcg_rn, rn, i, size+1);
8309 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8310 false, true, size+1, shift);
8312 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8315 if (!is_q) {
8316 clear_vec_high(s, rd);
8317 write_vec_element(s, tcg_final, rd, 0, MO_64);
8318 } else {
8319 write_vec_element(s, tcg_final, rd, 1, MO_64);
8322 if (round) {
8323 tcg_temp_free_i64(tcg_round);
8325 tcg_temp_free_i64(tcg_rn);
8326 tcg_temp_free_i64(tcg_rd);
8327 tcg_temp_free_i64(tcg_final);
8328 return;
8332 /* C3.6.14 AdvSIMD shift by immediate
8333 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
8334 * +---+---+---+-------------+------+------+--------+---+------+------+
8335 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
8336 * +---+---+---+-------------+------+------+--------+---+------+------+
8338 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
8340 int rd = extract32(insn, 0, 5);
8341 int rn = extract32(insn, 5, 5);
8342 int opcode = extract32(insn, 11, 5);
8343 int immb = extract32(insn, 16, 3);
8344 int immh = extract32(insn, 19, 4);
8345 bool is_u = extract32(insn, 29, 1);
8346 bool is_q = extract32(insn, 30, 1);
8348 switch (opcode) {
8349 case 0x08: /* SRI */
8350 if (!is_u) {
8351 unallocated_encoding(s);
8352 return;
8354 /* fall through */
8355 case 0x00: /* SSHR / USHR */
8356 case 0x02: /* SSRA / USRA (accumulate) */
8357 case 0x04: /* SRSHR / URSHR (rounding) */
8358 case 0x06: /* SRSRA / URSRA (accum + rounding) */
8359 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
8360 break;
8361 case 0x0a: /* SHL / SLI */
8362 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
8363 break;
8364 case 0x10: /* SHRN */
8365 case 0x11: /* RSHRN / SQRSHRUN */
8366 if (is_u) {
8367 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
8368 opcode, rn, rd);
8369 } else {
8370 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
8372 break;
8373 case 0x12: /* SQSHRN / UQSHRN */
8374 case 0x13: /* SQRSHRN / UQRSHRN */
8375 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
8376 opcode, rn, rd);
8377 break;
8378 case 0x14: /* SSHLL / USHLL */
8379 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
8380 break;
8381 case 0x1c: /* SCVTF / UCVTF */
8382 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
8383 opcode, rn, rd);
8384 break;
8385 case 0xc: /* SQSHLU */
8386 if (!is_u) {
8387 unallocated_encoding(s);
8388 return;
8390 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
8391 break;
8392 case 0xe: /* SQSHL, UQSHL */
8393 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
8394 break;
8395 case 0x1f: /* FCVTZS/ FCVTZU */
8396 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
8397 return;
8398 default:
8399 unallocated_encoding(s);
8400 return;
8404 /* Generate code to do a "long" addition or subtraction, ie one done in
8405 * TCGv_i64 on vector lanes twice the width specified by size.
8407 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
8408 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
8410 static NeonGenTwo64OpFn * const fns[3][2] = {
8411 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
8412 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
8413 { tcg_gen_add_i64, tcg_gen_sub_i64 },
8415 NeonGenTwo64OpFn *genfn;
8416 assert(size < 3);
8418 genfn = fns[size][is_sub];
8419 genfn(tcg_res, tcg_op1, tcg_op2);
8422 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
8423 int opcode, int rd, int rn, int rm)
8425 /* 3-reg-different widening insns: 64 x 64 -> 128 */
8426 TCGv_i64 tcg_res[2];
8427 int pass, accop;
8429 tcg_res[0] = tcg_temp_new_i64();
8430 tcg_res[1] = tcg_temp_new_i64();
8432 /* Does this op do an adding accumulate, a subtracting accumulate,
8433 * or no accumulate at all?
8435 switch (opcode) {
8436 case 5:
8437 case 8:
8438 case 9:
8439 accop = 1;
8440 break;
8441 case 10:
8442 case 11:
8443 accop = -1;
8444 break;
8445 default:
8446 accop = 0;
8447 break;
8450 if (accop != 0) {
8451 read_vec_element(s, tcg_res[0], rd, 0, MO_64);
8452 read_vec_element(s, tcg_res[1], rd, 1, MO_64);
8455 /* size == 2 means two 32x32->64 operations; this is worth special
8456 * casing because we can generally handle it inline.
8458 if (size == 2) {
8459 for (pass = 0; pass < 2; pass++) {
8460 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8461 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8462 TCGv_i64 tcg_passres;
8463 TCGMemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
8465 int elt = pass + is_q * 2;
8467 read_vec_element(s, tcg_op1, rn, elt, memop);
8468 read_vec_element(s, tcg_op2, rm, elt, memop);
8470 if (accop == 0) {
8471 tcg_passres = tcg_res[pass];
8472 } else {
8473 tcg_passres = tcg_temp_new_i64();
8476 switch (opcode) {
8477 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
8478 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
8479 break;
8480 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
8481 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
8482 break;
8483 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
8484 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
8486 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
8487 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
8489 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
8490 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
8491 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
8492 tcg_passres,
8493 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
8494 tcg_temp_free_i64(tcg_tmp1);
8495 tcg_temp_free_i64(tcg_tmp2);
8496 break;
8498 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
8499 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
8500 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
8501 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
8502 break;
8503 case 9: /* SQDMLAL, SQDMLAL2 */
8504 case 11: /* SQDMLSL, SQDMLSL2 */
8505 case 13: /* SQDMULL, SQDMULL2 */
8506 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
8507 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
8508 tcg_passres, tcg_passres);
8509 break;
8510 default:
8511 g_assert_not_reached();
8514 if (opcode == 9 || opcode == 11) {
8515 /* saturating accumulate ops */
8516 if (accop < 0) {
8517 tcg_gen_neg_i64(tcg_passres, tcg_passres);
8519 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
8520 tcg_res[pass], tcg_passres);
8521 } else if (accop > 0) {
8522 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
8523 } else if (accop < 0) {
8524 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
8527 if (accop != 0) {
8528 tcg_temp_free_i64(tcg_passres);
8531 tcg_temp_free_i64(tcg_op1);
8532 tcg_temp_free_i64(tcg_op2);
8534 } else {
8535 /* size 0 or 1, generally helper functions */
8536 for (pass = 0; pass < 2; pass++) {
8537 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8538 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8539 TCGv_i64 tcg_passres;
8540 int elt = pass + is_q * 2;
8542 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
8543 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
8545 if (accop == 0) {
8546 tcg_passres = tcg_res[pass];
8547 } else {
8548 tcg_passres = tcg_temp_new_i64();
8551 switch (opcode) {
8552 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
8553 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
8555 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
8556 static NeonGenWidenFn * const widenfns[2][2] = {
8557 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
8558 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
8560 NeonGenWidenFn *widenfn = widenfns[size][is_u];
8562 widenfn(tcg_op2_64, tcg_op2);
8563 widenfn(tcg_passres, tcg_op1);
8564 gen_neon_addl(size, (opcode == 2), tcg_passres,
8565 tcg_passres, tcg_op2_64);
8566 tcg_temp_free_i64(tcg_op2_64);
8567 break;
8569 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
8570 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
8571 if (size == 0) {
8572 if (is_u) {
8573 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
8574 } else {
8575 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
8577 } else {
8578 if (is_u) {
8579 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
8580 } else {
8581 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
8584 break;
8585 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
8586 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
8587 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
8588 if (size == 0) {
8589 if (is_u) {
8590 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
8591 } else {
8592 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
8594 } else {
8595 if (is_u) {
8596 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
8597 } else {
8598 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
8601 break;
8602 case 9: /* SQDMLAL, SQDMLAL2 */
8603 case 11: /* SQDMLSL, SQDMLSL2 */
8604 case 13: /* SQDMULL, SQDMULL2 */
8605 assert(size == 1);
8606 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
8607 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
8608 tcg_passres, tcg_passres);
8609 break;
8610 case 14: /* PMULL */
8611 assert(size == 0);
8612 gen_helper_neon_mull_p8(tcg_passres, tcg_op1, tcg_op2);
8613 break;
8614 default:
8615 g_assert_not_reached();
8617 tcg_temp_free_i32(tcg_op1);
8618 tcg_temp_free_i32(tcg_op2);
8620 if (accop != 0) {
8621 if (opcode == 9 || opcode == 11) {
8622 /* saturating accumulate ops */
8623 if (accop < 0) {
8624 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
8626 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
8627 tcg_res[pass],
8628 tcg_passres);
8629 } else {
8630 gen_neon_addl(size, (accop < 0), tcg_res[pass],
8631 tcg_res[pass], tcg_passres);
8633 tcg_temp_free_i64(tcg_passres);
8638 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
8639 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
8640 tcg_temp_free_i64(tcg_res[0]);
8641 tcg_temp_free_i64(tcg_res[1]);
8644 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
8645 int opcode, int rd, int rn, int rm)
8647 TCGv_i64 tcg_res[2];
8648 int part = is_q ? 2 : 0;
8649 int pass;
8651 for (pass = 0; pass < 2; pass++) {
8652 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8653 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8654 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
8655 static NeonGenWidenFn * const widenfns[3][2] = {
8656 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
8657 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
8658 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
8660 NeonGenWidenFn *widenfn = widenfns[size][is_u];
8662 read_vec_element(s, tcg_op1, rn, pass, MO_64);
8663 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
8664 widenfn(tcg_op2_wide, tcg_op2);
8665 tcg_temp_free_i32(tcg_op2);
8666 tcg_res[pass] = tcg_temp_new_i64();
8667 gen_neon_addl(size, (opcode == 3),
8668 tcg_res[pass], tcg_op1, tcg_op2_wide);
8669 tcg_temp_free_i64(tcg_op1);
8670 tcg_temp_free_i64(tcg_op2_wide);
8673 for (pass = 0; pass < 2; pass++) {
8674 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
8675 tcg_temp_free_i64(tcg_res[pass]);
8679 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
8681 tcg_gen_addi_i64(in, in, 1U << 31);
8682 tcg_gen_extrh_i64_i32(res, in);
8685 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
8686 int opcode, int rd, int rn, int rm)
8688 TCGv_i32 tcg_res[2];
8689 int part = is_q ? 2 : 0;
8690 int pass;
8692 for (pass = 0; pass < 2; pass++) {
8693 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8694 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8695 TCGv_i64 tcg_wideres = tcg_temp_new_i64();
8696 static NeonGenNarrowFn * const narrowfns[3][2] = {
8697 { gen_helper_neon_narrow_high_u8,
8698 gen_helper_neon_narrow_round_high_u8 },
8699 { gen_helper_neon_narrow_high_u16,
8700 gen_helper_neon_narrow_round_high_u16 },
8701 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
8703 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
8705 read_vec_element(s, tcg_op1, rn, pass, MO_64);
8706 read_vec_element(s, tcg_op2, rm, pass, MO_64);
8708 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
8710 tcg_temp_free_i64(tcg_op1);
8711 tcg_temp_free_i64(tcg_op2);
8713 tcg_res[pass] = tcg_temp_new_i32();
8714 gennarrow(tcg_res[pass], tcg_wideres);
8715 tcg_temp_free_i64(tcg_wideres);
8718 for (pass = 0; pass < 2; pass++) {
8719 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
8720 tcg_temp_free_i32(tcg_res[pass]);
8722 if (!is_q) {
8723 clear_vec_high(s, rd);
8727 static void handle_pmull_64(DisasContext *s, int is_q, int rd, int rn, int rm)
8729 /* PMULL of 64 x 64 -> 128 is an odd special case because it
8730 * is the only three-reg-diff instruction which produces a
8731 * 128-bit wide result from a single operation. However since
8732 * it's possible to calculate the two halves more or less
8733 * separately we just use two helper calls.
8735 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8736 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8737 TCGv_i64 tcg_res = tcg_temp_new_i64();
8739 read_vec_element(s, tcg_op1, rn, is_q, MO_64);
8740 read_vec_element(s, tcg_op2, rm, is_q, MO_64);
8741 gen_helper_neon_pmull_64_lo(tcg_res, tcg_op1, tcg_op2);
8742 write_vec_element(s, tcg_res, rd, 0, MO_64);
8743 gen_helper_neon_pmull_64_hi(tcg_res, tcg_op1, tcg_op2);
8744 write_vec_element(s, tcg_res, rd, 1, MO_64);
8746 tcg_temp_free_i64(tcg_op1);
8747 tcg_temp_free_i64(tcg_op2);
8748 tcg_temp_free_i64(tcg_res);
8751 /* C3.6.15 AdvSIMD three different
8752 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
8753 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
8754 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
8755 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
8757 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
8759 /* Instructions in this group fall into three basic classes
8760 * (in each case with the operation working on each element in
8761 * the input vectors):
8762 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
8763 * 128 bit input)
8764 * (2) wide 64 x 128 -> 128
8765 * (3) narrowing 128 x 128 -> 64
8766 * Here we do initial decode, catch unallocated cases and
8767 * dispatch to separate functions for each class.
8769 int is_q = extract32(insn, 30, 1);
8770 int is_u = extract32(insn, 29, 1);
8771 int size = extract32(insn, 22, 2);
8772 int opcode = extract32(insn, 12, 4);
8773 int rm = extract32(insn, 16, 5);
8774 int rn = extract32(insn, 5, 5);
8775 int rd = extract32(insn, 0, 5);
8777 switch (opcode) {
8778 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
8779 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
8780 /* 64 x 128 -> 128 */
8781 if (size == 3) {
8782 unallocated_encoding(s);
8783 return;
8785 if (!fp_access_check(s)) {
8786 return;
8788 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
8789 break;
8790 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
8791 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
8792 /* 128 x 128 -> 64 */
8793 if (size == 3) {
8794 unallocated_encoding(s);
8795 return;
8797 if (!fp_access_check(s)) {
8798 return;
8800 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
8801 break;
8802 case 14: /* PMULL, PMULL2 */
8803 if (is_u || size == 1 || size == 2) {
8804 unallocated_encoding(s);
8805 return;
8807 if (size == 3) {
8808 if (!arm_dc_feature(s, ARM_FEATURE_V8_PMULL)) {
8809 unallocated_encoding(s);
8810 return;
8812 if (!fp_access_check(s)) {
8813 return;
8815 handle_pmull_64(s, is_q, rd, rn, rm);
8816 return;
8818 goto is_widening;
8819 case 9: /* SQDMLAL, SQDMLAL2 */
8820 case 11: /* SQDMLSL, SQDMLSL2 */
8821 case 13: /* SQDMULL, SQDMULL2 */
8822 if (is_u || size == 0) {
8823 unallocated_encoding(s);
8824 return;
8826 /* fall through */
8827 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
8828 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
8829 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
8830 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
8831 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
8832 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
8833 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
8834 /* 64 x 64 -> 128 */
8835 if (size == 3) {
8836 unallocated_encoding(s);
8837 return;
8839 is_widening:
8840 if (!fp_access_check(s)) {
8841 return;
8844 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
8845 break;
8846 default:
8847 /* opcode 15 not allocated */
8848 unallocated_encoding(s);
8849 break;
8853 /* Logic op (opcode == 3) subgroup of C3.6.16. */
8854 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
8856 int rd = extract32(insn, 0, 5);
8857 int rn = extract32(insn, 5, 5);
8858 int rm = extract32(insn, 16, 5);
8859 int size = extract32(insn, 22, 2);
8860 bool is_u = extract32(insn, 29, 1);
8861 bool is_q = extract32(insn, 30, 1);
8862 TCGv_i64 tcg_op1, tcg_op2, tcg_res[2];
8863 int pass;
8865 if (!fp_access_check(s)) {
8866 return;
8869 tcg_op1 = tcg_temp_new_i64();
8870 tcg_op2 = tcg_temp_new_i64();
8871 tcg_res[0] = tcg_temp_new_i64();
8872 tcg_res[1] = tcg_temp_new_i64();
8874 for (pass = 0; pass < (is_q ? 2 : 1); pass++) {
8875 read_vec_element(s, tcg_op1, rn, pass, MO_64);
8876 read_vec_element(s, tcg_op2, rm, pass, MO_64);
8878 if (!is_u) {
8879 switch (size) {
8880 case 0: /* AND */
8881 tcg_gen_and_i64(tcg_res[pass], tcg_op1, tcg_op2);
8882 break;
8883 case 1: /* BIC */
8884 tcg_gen_andc_i64(tcg_res[pass], tcg_op1, tcg_op2);
8885 break;
8886 case 2: /* ORR */
8887 tcg_gen_or_i64(tcg_res[pass], tcg_op1, tcg_op2);
8888 break;
8889 case 3: /* ORN */
8890 tcg_gen_orc_i64(tcg_res[pass], tcg_op1, tcg_op2);
8891 break;
8893 } else {
8894 if (size != 0) {
8895 /* B* ops need res loaded to operate on */
8896 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
8899 switch (size) {
8900 case 0: /* EOR */
8901 tcg_gen_xor_i64(tcg_res[pass], tcg_op1, tcg_op2);
8902 break;
8903 case 1: /* BSL bitwise select */
8904 tcg_gen_xor_i64(tcg_op1, tcg_op1, tcg_op2);
8905 tcg_gen_and_i64(tcg_op1, tcg_op1, tcg_res[pass]);
8906 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op1);
8907 break;
8908 case 2: /* BIT, bitwise insert if true */
8909 tcg_gen_xor_i64(tcg_op1, tcg_op1, tcg_res[pass]);
8910 tcg_gen_and_i64(tcg_op1, tcg_op1, tcg_op2);
8911 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
8912 break;
8913 case 3: /* BIF, bitwise insert if false */
8914 tcg_gen_xor_i64(tcg_op1, tcg_op1, tcg_res[pass]);
8915 tcg_gen_andc_i64(tcg_op1, tcg_op1, tcg_op2);
8916 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
8917 break;
8922 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
8923 if (!is_q) {
8924 tcg_gen_movi_i64(tcg_res[1], 0);
8926 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
8928 tcg_temp_free_i64(tcg_op1);
8929 tcg_temp_free_i64(tcg_op2);
8930 tcg_temp_free_i64(tcg_res[0]);
8931 tcg_temp_free_i64(tcg_res[1]);
8934 /* Helper functions for 32 bit comparisons */
8935 static void gen_max_s32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
8937 tcg_gen_movcond_i32(TCG_COND_GE, res, op1, op2, op1, op2);
8940 static void gen_max_u32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
8942 tcg_gen_movcond_i32(TCG_COND_GEU, res, op1, op2, op1, op2);
8945 static void gen_min_s32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
8947 tcg_gen_movcond_i32(TCG_COND_LE, res, op1, op2, op1, op2);
8950 static void gen_min_u32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
8952 tcg_gen_movcond_i32(TCG_COND_LEU, res, op1, op2, op1, op2);
8955 /* Pairwise op subgroup of C3.6.16.
8957 * This is called directly or via the handle_3same_float for float pairwise
8958 * operations where the opcode and size are calculated differently.
8960 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
8961 int size, int rn, int rm, int rd)
8963 TCGv_ptr fpst;
8964 int pass;
8966 /* Floating point operations need fpst */
8967 if (opcode >= 0x58) {
8968 fpst = get_fpstatus_ptr();
8969 } else {
8970 TCGV_UNUSED_PTR(fpst);
8973 if (!fp_access_check(s)) {
8974 return;
8977 /* These operations work on the concatenated rm:rn, with each pair of
8978 * adjacent elements being operated on to produce an element in the result.
8980 if (size == 3) {
8981 TCGv_i64 tcg_res[2];
8983 for (pass = 0; pass < 2; pass++) {
8984 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8985 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8986 int passreg = (pass == 0) ? rn : rm;
8988 read_vec_element(s, tcg_op1, passreg, 0, MO_64);
8989 read_vec_element(s, tcg_op2, passreg, 1, MO_64);
8990 tcg_res[pass] = tcg_temp_new_i64();
8992 switch (opcode) {
8993 case 0x17: /* ADDP */
8994 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
8995 break;
8996 case 0x58: /* FMAXNMP */
8997 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
8998 break;
8999 case 0x5a: /* FADDP */
9000 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9001 break;
9002 case 0x5e: /* FMAXP */
9003 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9004 break;
9005 case 0x78: /* FMINNMP */
9006 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9007 break;
9008 case 0x7e: /* FMINP */
9009 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9010 break;
9011 default:
9012 g_assert_not_reached();
9015 tcg_temp_free_i64(tcg_op1);
9016 tcg_temp_free_i64(tcg_op2);
9019 for (pass = 0; pass < 2; pass++) {
9020 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
9021 tcg_temp_free_i64(tcg_res[pass]);
9023 } else {
9024 int maxpass = is_q ? 4 : 2;
9025 TCGv_i32 tcg_res[4];
9027 for (pass = 0; pass < maxpass; pass++) {
9028 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9029 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9030 NeonGenTwoOpFn *genfn = NULL;
9031 int passreg = pass < (maxpass / 2) ? rn : rm;
9032 int passelt = (is_q && (pass & 1)) ? 2 : 0;
9034 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
9035 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
9036 tcg_res[pass] = tcg_temp_new_i32();
9038 switch (opcode) {
9039 case 0x17: /* ADDP */
9041 static NeonGenTwoOpFn * const fns[3] = {
9042 gen_helper_neon_padd_u8,
9043 gen_helper_neon_padd_u16,
9044 tcg_gen_add_i32,
9046 genfn = fns[size];
9047 break;
9049 case 0x14: /* SMAXP, UMAXP */
9051 static NeonGenTwoOpFn * const fns[3][2] = {
9052 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
9053 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
9054 { gen_max_s32, gen_max_u32 },
9056 genfn = fns[size][u];
9057 break;
9059 case 0x15: /* SMINP, UMINP */
9061 static NeonGenTwoOpFn * const fns[3][2] = {
9062 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
9063 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
9064 { gen_min_s32, gen_min_u32 },
9066 genfn = fns[size][u];
9067 break;
9069 /* The FP operations are all on single floats (32 bit) */
9070 case 0x58: /* FMAXNMP */
9071 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9072 break;
9073 case 0x5a: /* FADDP */
9074 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9075 break;
9076 case 0x5e: /* FMAXP */
9077 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9078 break;
9079 case 0x78: /* FMINNMP */
9080 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9081 break;
9082 case 0x7e: /* FMINP */
9083 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9084 break;
9085 default:
9086 g_assert_not_reached();
9089 /* FP ops called directly, otherwise call now */
9090 if (genfn) {
9091 genfn(tcg_res[pass], tcg_op1, tcg_op2);
9094 tcg_temp_free_i32(tcg_op1);
9095 tcg_temp_free_i32(tcg_op2);
9098 for (pass = 0; pass < maxpass; pass++) {
9099 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
9100 tcg_temp_free_i32(tcg_res[pass]);
9102 if (!is_q) {
9103 clear_vec_high(s, rd);
9107 if (!TCGV_IS_UNUSED_PTR(fpst)) {
9108 tcg_temp_free_ptr(fpst);
9112 /* Floating point op subgroup of C3.6.16. */
9113 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
9115 /* For floating point ops, the U, size[1] and opcode bits
9116 * together indicate the operation. size[0] indicates single
9117 * or double.
9119 int fpopcode = extract32(insn, 11, 5)
9120 | (extract32(insn, 23, 1) << 5)
9121 | (extract32(insn, 29, 1) << 6);
9122 int is_q = extract32(insn, 30, 1);
9123 int size = extract32(insn, 22, 1);
9124 int rm = extract32(insn, 16, 5);
9125 int rn = extract32(insn, 5, 5);
9126 int rd = extract32(insn, 0, 5);
9128 int datasize = is_q ? 128 : 64;
9129 int esize = 32 << size;
9130 int elements = datasize / esize;
9132 if (size == 1 && !is_q) {
9133 unallocated_encoding(s);
9134 return;
9137 switch (fpopcode) {
9138 case 0x58: /* FMAXNMP */
9139 case 0x5a: /* FADDP */
9140 case 0x5e: /* FMAXP */
9141 case 0x78: /* FMINNMP */
9142 case 0x7e: /* FMINP */
9143 if (size && !is_q) {
9144 unallocated_encoding(s);
9145 return;
9147 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
9148 rn, rm, rd);
9149 return;
9150 case 0x1b: /* FMULX */
9151 case 0x1f: /* FRECPS */
9152 case 0x3f: /* FRSQRTS */
9153 case 0x5d: /* FACGE */
9154 case 0x7d: /* FACGT */
9155 case 0x19: /* FMLA */
9156 case 0x39: /* FMLS */
9157 case 0x18: /* FMAXNM */
9158 case 0x1a: /* FADD */
9159 case 0x1c: /* FCMEQ */
9160 case 0x1e: /* FMAX */
9161 case 0x38: /* FMINNM */
9162 case 0x3a: /* FSUB */
9163 case 0x3e: /* FMIN */
9164 case 0x5b: /* FMUL */
9165 case 0x5c: /* FCMGE */
9166 case 0x5f: /* FDIV */
9167 case 0x7a: /* FABD */
9168 case 0x7c: /* FCMGT */
9169 if (!fp_access_check(s)) {
9170 return;
9173 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
9174 return;
9175 default:
9176 unallocated_encoding(s);
9177 return;
9181 /* Integer op subgroup of C3.6.16. */
9182 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
9184 int is_q = extract32(insn, 30, 1);
9185 int u = extract32(insn, 29, 1);
9186 int size = extract32(insn, 22, 2);
9187 int opcode = extract32(insn, 11, 5);
9188 int rm = extract32(insn, 16, 5);
9189 int rn = extract32(insn, 5, 5);
9190 int rd = extract32(insn, 0, 5);
9191 int pass;
9193 switch (opcode) {
9194 case 0x13: /* MUL, PMUL */
9195 if (u && size != 0) {
9196 unallocated_encoding(s);
9197 return;
9199 /* fall through */
9200 case 0x0: /* SHADD, UHADD */
9201 case 0x2: /* SRHADD, URHADD */
9202 case 0x4: /* SHSUB, UHSUB */
9203 case 0xc: /* SMAX, UMAX */
9204 case 0xd: /* SMIN, UMIN */
9205 case 0xe: /* SABD, UABD */
9206 case 0xf: /* SABA, UABA */
9207 case 0x12: /* MLA, MLS */
9208 if (size == 3) {
9209 unallocated_encoding(s);
9210 return;
9212 break;
9213 case 0x16: /* SQDMULH, SQRDMULH */
9214 if (size == 0 || size == 3) {
9215 unallocated_encoding(s);
9216 return;
9218 break;
9219 default:
9220 if (size == 3 && !is_q) {
9221 unallocated_encoding(s);
9222 return;
9224 break;
9227 if (!fp_access_check(s)) {
9228 return;
9231 if (size == 3) {
9232 assert(is_q);
9233 for (pass = 0; pass < 2; pass++) {
9234 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9235 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9236 TCGv_i64 tcg_res = tcg_temp_new_i64();
9238 read_vec_element(s, tcg_op1, rn, pass, MO_64);
9239 read_vec_element(s, tcg_op2, rm, pass, MO_64);
9241 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
9243 write_vec_element(s, tcg_res, rd, pass, MO_64);
9245 tcg_temp_free_i64(tcg_res);
9246 tcg_temp_free_i64(tcg_op1);
9247 tcg_temp_free_i64(tcg_op2);
9249 } else {
9250 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
9251 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9252 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9253 TCGv_i32 tcg_res = tcg_temp_new_i32();
9254 NeonGenTwoOpFn *genfn = NULL;
9255 NeonGenTwoOpEnvFn *genenvfn = NULL;
9257 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
9258 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
9260 switch (opcode) {
9261 case 0x0: /* SHADD, UHADD */
9263 static NeonGenTwoOpFn * const fns[3][2] = {
9264 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
9265 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
9266 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
9268 genfn = fns[size][u];
9269 break;
9271 case 0x1: /* SQADD, UQADD */
9273 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9274 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9275 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9276 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9278 genenvfn = fns[size][u];
9279 break;
9281 case 0x2: /* SRHADD, URHADD */
9283 static NeonGenTwoOpFn * const fns[3][2] = {
9284 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
9285 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
9286 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
9288 genfn = fns[size][u];
9289 break;
9291 case 0x4: /* SHSUB, UHSUB */
9293 static NeonGenTwoOpFn * const fns[3][2] = {
9294 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
9295 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
9296 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
9298 genfn = fns[size][u];
9299 break;
9301 case 0x5: /* SQSUB, UQSUB */
9303 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9304 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9305 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9306 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9308 genenvfn = fns[size][u];
9309 break;
9311 case 0x6: /* CMGT, CMHI */
9313 static NeonGenTwoOpFn * const fns[3][2] = {
9314 { gen_helper_neon_cgt_s8, gen_helper_neon_cgt_u8 },
9315 { gen_helper_neon_cgt_s16, gen_helper_neon_cgt_u16 },
9316 { gen_helper_neon_cgt_s32, gen_helper_neon_cgt_u32 },
9318 genfn = fns[size][u];
9319 break;
9321 case 0x7: /* CMGE, CMHS */
9323 static NeonGenTwoOpFn * const fns[3][2] = {
9324 { gen_helper_neon_cge_s8, gen_helper_neon_cge_u8 },
9325 { gen_helper_neon_cge_s16, gen_helper_neon_cge_u16 },
9326 { gen_helper_neon_cge_s32, gen_helper_neon_cge_u32 },
9328 genfn = fns[size][u];
9329 break;
9331 case 0x8: /* SSHL, USHL */
9333 static NeonGenTwoOpFn * const fns[3][2] = {
9334 { gen_helper_neon_shl_s8, gen_helper_neon_shl_u8 },
9335 { gen_helper_neon_shl_s16, gen_helper_neon_shl_u16 },
9336 { gen_helper_neon_shl_s32, gen_helper_neon_shl_u32 },
9338 genfn = fns[size][u];
9339 break;
9341 case 0x9: /* SQSHL, UQSHL */
9343 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9344 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9345 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9346 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9348 genenvfn = fns[size][u];
9349 break;
9351 case 0xa: /* SRSHL, URSHL */
9353 static NeonGenTwoOpFn * const fns[3][2] = {
9354 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
9355 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
9356 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
9358 genfn = fns[size][u];
9359 break;
9361 case 0xb: /* SQRSHL, UQRSHL */
9363 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9364 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9365 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9366 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9368 genenvfn = fns[size][u];
9369 break;
9371 case 0xc: /* SMAX, UMAX */
9373 static NeonGenTwoOpFn * const fns[3][2] = {
9374 { gen_helper_neon_max_s8, gen_helper_neon_max_u8 },
9375 { gen_helper_neon_max_s16, gen_helper_neon_max_u16 },
9376 { gen_max_s32, gen_max_u32 },
9378 genfn = fns[size][u];
9379 break;
9382 case 0xd: /* SMIN, UMIN */
9384 static NeonGenTwoOpFn * const fns[3][2] = {
9385 { gen_helper_neon_min_s8, gen_helper_neon_min_u8 },
9386 { gen_helper_neon_min_s16, gen_helper_neon_min_u16 },
9387 { gen_min_s32, gen_min_u32 },
9389 genfn = fns[size][u];
9390 break;
9392 case 0xe: /* SABD, UABD */
9393 case 0xf: /* SABA, UABA */
9395 static NeonGenTwoOpFn * const fns[3][2] = {
9396 { gen_helper_neon_abd_s8, gen_helper_neon_abd_u8 },
9397 { gen_helper_neon_abd_s16, gen_helper_neon_abd_u16 },
9398 { gen_helper_neon_abd_s32, gen_helper_neon_abd_u32 },
9400 genfn = fns[size][u];
9401 break;
9403 case 0x10: /* ADD, SUB */
9405 static NeonGenTwoOpFn * const fns[3][2] = {
9406 { gen_helper_neon_add_u8, gen_helper_neon_sub_u8 },
9407 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
9408 { tcg_gen_add_i32, tcg_gen_sub_i32 },
9410 genfn = fns[size][u];
9411 break;
9413 case 0x11: /* CMTST, CMEQ */
9415 static NeonGenTwoOpFn * const fns[3][2] = {
9416 { gen_helper_neon_tst_u8, gen_helper_neon_ceq_u8 },
9417 { gen_helper_neon_tst_u16, gen_helper_neon_ceq_u16 },
9418 { gen_helper_neon_tst_u32, gen_helper_neon_ceq_u32 },
9420 genfn = fns[size][u];
9421 break;
9423 case 0x13: /* MUL, PMUL */
9424 if (u) {
9425 /* PMUL */
9426 assert(size == 0);
9427 genfn = gen_helper_neon_mul_p8;
9428 break;
9430 /* fall through : MUL */
9431 case 0x12: /* MLA, MLS */
9433 static NeonGenTwoOpFn * const fns[3] = {
9434 gen_helper_neon_mul_u8,
9435 gen_helper_neon_mul_u16,
9436 tcg_gen_mul_i32,
9438 genfn = fns[size];
9439 break;
9441 case 0x16: /* SQDMULH, SQRDMULH */
9443 static NeonGenTwoOpEnvFn * const fns[2][2] = {
9444 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9445 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9447 assert(size == 1 || size == 2);
9448 genenvfn = fns[size - 1][u];
9449 break;
9451 default:
9452 g_assert_not_reached();
9455 if (genenvfn) {
9456 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2);
9457 } else {
9458 genfn(tcg_res, tcg_op1, tcg_op2);
9461 if (opcode == 0xf || opcode == 0x12) {
9462 /* SABA, UABA, MLA, MLS: accumulating ops */
9463 static NeonGenTwoOpFn * const fns[3][2] = {
9464 { gen_helper_neon_add_u8, gen_helper_neon_sub_u8 },
9465 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
9466 { tcg_gen_add_i32, tcg_gen_sub_i32 },
9468 bool is_sub = (opcode == 0x12 && u); /* MLS */
9470 genfn = fns[size][is_sub];
9471 read_vec_element_i32(s, tcg_op1, rd, pass, MO_32);
9472 genfn(tcg_res, tcg_op1, tcg_res);
9475 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9477 tcg_temp_free_i32(tcg_res);
9478 tcg_temp_free_i32(tcg_op1);
9479 tcg_temp_free_i32(tcg_op2);
9483 if (!is_q) {
9484 clear_vec_high(s, rd);
9488 /* C3.6.16 AdvSIMD three same
9489 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
9490 * +---+---+---+-----------+------+---+------+--------+---+------+------+
9491 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
9492 * +---+---+---+-----------+------+---+------+--------+---+------+------+
9494 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
9496 int opcode = extract32(insn, 11, 5);
9498 switch (opcode) {
9499 case 0x3: /* logic ops */
9500 disas_simd_3same_logic(s, insn);
9501 break;
9502 case 0x17: /* ADDP */
9503 case 0x14: /* SMAXP, UMAXP */
9504 case 0x15: /* SMINP, UMINP */
9506 /* Pairwise operations */
9507 int is_q = extract32(insn, 30, 1);
9508 int u = extract32(insn, 29, 1);
9509 int size = extract32(insn, 22, 2);
9510 int rm = extract32(insn, 16, 5);
9511 int rn = extract32(insn, 5, 5);
9512 int rd = extract32(insn, 0, 5);
9513 if (opcode == 0x17) {
9514 if (u || (size == 3 && !is_q)) {
9515 unallocated_encoding(s);
9516 return;
9518 } else {
9519 if (size == 3) {
9520 unallocated_encoding(s);
9521 return;
9524 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
9525 break;
9527 case 0x18 ... 0x31:
9528 /* floating point ops, sz[1] and U are part of opcode */
9529 disas_simd_3same_float(s, insn);
9530 break;
9531 default:
9532 disas_simd_3same_int(s, insn);
9533 break;
9537 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
9538 int size, int rn, int rd)
9540 /* Handle 2-reg-misc ops which are widening (so each size element
9541 * in the source becomes a 2*size element in the destination.
9542 * The only instruction like this is FCVTL.
9544 int pass;
9546 if (size == 3) {
9547 /* 32 -> 64 bit fp conversion */
9548 TCGv_i64 tcg_res[2];
9549 int srcelt = is_q ? 2 : 0;
9551 for (pass = 0; pass < 2; pass++) {
9552 TCGv_i32 tcg_op = tcg_temp_new_i32();
9553 tcg_res[pass] = tcg_temp_new_i64();
9555 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
9556 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env);
9557 tcg_temp_free_i32(tcg_op);
9559 for (pass = 0; pass < 2; pass++) {
9560 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
9561 tcg_temp_free_i64(tcg_res[pass]);
9563 } else {
9564 /* 16 -> 32 bit fp conversion */
9565 int srcelt = is_q ? 4 : 0;
9566 TCGv_i32 tcg_res[4];
9568 for (pass = 0; pass < 4; pass++) {
9569 tcg_res[pass] = tcg_temp_new_i32();
9571 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
9572 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
9573 cpu_env);
9575 for (pass = 0; pass < 4; pass++) {
9576 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
9577 tcg_temp_free_i32(tcg_res[pass]);
9582 static void handle_rev(DisasContext *s, int opcode, bool u,
9583 bool is_q, int size, int rn, int rd)
9585 int op = (opcode << 1) | u;
9586 int opsz = op + size;
9587 int grp_size = 3 - opsz;
9588 int dsize = is_q ? 128 : 64;
9589 int i;
9591 if (opsz >= 3) {
9592 unallocated_encoding(s);
9593 return;
9596 if (!fp_access_check(s)) {
9597 return;
9600 if (size == 0) {
9601 /* Special case bytes, use bswap op on each group of elements */
9602 int groups = dsize / (8 << grp_size);
9604 for (i = 0; i < groups; i++) {
9605 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
9607 read_vec_element(s, tcg_tmp, rn, i, grp_size);
9608 switch (grp_size) {
9609 case MO_16:
9610 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
9611 break;
9612 case MO_32:
9613 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
9614 break;
9615 case MO_64:
9616 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
9617 break;
9618 default:
9619 g_assert_not_reached();
9621 write_vec_element(s, tcg_tmp, rd, i, grp_size);
9622 tcg_temp_free_i64(tcg_tmp);
9624 if (!is_q) {
9625 clear_vec_high(s, rd);
9627 } else {
9628 int revmask = (1 << grp_size) - 1;
9629 int esize = 8 << size;
9630 int elements = dsize / esize;
9631 TCGv_i64 tcg_rn = tcg_temp_new_i64();
9632 TCGv_i64 tcg_rd = tcg_const_i64(0);
9633 TCGv_i64 tcg_rd_hi = tcg_const_i64(0);
9635 for (i = 0; i < elements; i++) {
9636 int e_rev = (i & 0xf) ^ revmask;
9637 int off = e_rev * esize;
9638 read_vec_element(s, tcg_rn, rn, i, size);
9639 if (off >= 64) {
9640 tcg_gen_deposit_i64(tcg_rd_hi, tcg_rd_hi,
9641 tcg_rn, off - 64, esize);
9642 } else {
9643 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, off, esize);
9646 write_vec_element(s, tcg_rd, rd, 0, MO_64);
9647 write_vec_element(s, tcg_rd_hi, rd, 1, MO_64);
9649 tcg_temp_free_i64(tcg_rd_hi);
9650 tcg_temp_free_i64(tcg_rd);
9651 tcg_temp_free_i64(tcg_rn);
9655 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
9656 bool is_q, int size, int rn, int rd)
9658 /* Implement the pairwise operations from 2-misc:
9659 * SADDLP, UADDLP, SADALP, UADALP.
9660 * These all add pairs of elements in the input to produce a
9661 * double-width result element in the output (possibly accumulating).
9663 bool accum = (opcode == 0x6);
9664 int maxpass = is_q ? 2 : 1;
9665 int pass;
9666 TCGv_i64 tcg_res[2];
9668 if (size == 2) {
9669 /* 32 + 32 -> 64 op */
9670 TCGMemOp memop = size + (u ? 0 : MO_SIGN);
9672 for (pass = 0; pass < maxpass; pass++) {
9673 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9674 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9676 tcg_res[pass] = tcg_temp_new_i64();
9678 read_vec_element(s, tcg_op1, rn, pass * 2, memop);
9679 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
9680 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
9681 if (accum) {
9682 read_vec_element(s, tcg_op1, rd, pass, MO_64);
9683 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
9686 tcg_temp_free_i64(tcg_op1);
9687 tcg_temp_free_i64(tcg_op2);
9689 } else {
9690 for (pass = 0; pass < maxpass; pass++) {
9691 TCGv_i64 tcg_op = tcg_temp_new_i64();
9692 NeonGenOneOpFn *genfn;
9693 static NeonGenOneOpFn * const fns[2][2] = {
9694 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 },
9695 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 },
9698 genfn = fns[size][u];
9700 tcg_res[pass] = tcg_temp_new_i64();
9702 read_vec_element(s, tcg_op, rn, pass, MO_64);
9703 genfn(tcg_res[pass], tcg_op);
9705 if (accum) {
9706 read_vec_element(s, tcg_op, rd, pass, MO_64);
9707 if (size == 0) {
9708 gen_helper_neon_addl_u16(tcg_res[pass],
9709 tcg_res[pass], tcg_op);
9710 } else {
9711 gen_helper_neon_addl_u32(tcg_res[pass],
9712 tcg_res[pass], tcg_op);
9715 tcg_temp_free_i64(tcg_op);
9718 if (!is_q) {
9719 tcg_res[1] = tcg_const_i64(0);
9721 for (pass = 0; pass < 2; pass++) {
9722 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
9723 tcg_temp_free_i64(tcg_res[pass]);
9727 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
9729 /* Implement SHLL and SHLL2 */
9730 int pass;
9731 int part = is_q ? 2 : 0;
9732 TCGv_i64 tcg_res[2];
9734 for (pass = 0; pass < 2; pass++) {
9735 static NeonGenWidenFn * const widenfns[3] = {
9736 gen_helper_neon_widen_u8,
9737 gen_helper_neon_widen_u16,
9738 tcg_gen_extu_i32_i64,
9740 NeonGenWidenFn *widenfn = widenfns[size];
9741 TCGv_i32 tcg_op = tcg_temp_new_i32();
9743 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
9744 tcg_res[pass] = tcg_temp_new_i64();
9745 widenfn(tcg_res[pass], tcg_op);
9746 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
9748 tcg_temp_free_i32(tcg_op);
9751 for (pass = 0; pass < 2; pass++) {
9752 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
9753 tcg_temp_free_i64(tcg_res[pass]);
9757 /* C3.6.17 AdvSIMD two reg misc
9758 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
9759 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
9760 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
9761 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
9763 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
9765 int size = extract32(insn, 22, 2);
9766 int opcode = extract32(insn, 12, 5);
9767 bool u = extract32(insn, 29, 1);
9768 bool is_q = extract32(insn, 30, 1);
9769 int rn = extract32(insn, 5, 5);
9770 int rd = extract32(insn, 0, 5);
9771 bool need_fpstatus = false;
9772 bool need_rmode = false;
9773 int rmode = -1;
9774 TCGv_i32 tcg_rmode;
9775 TCGv_ptr tcg_fpstatus;
9777 switch (opcode) {
9778 case 0x0: /* REV64, REV32 */
9779 case 0x1: /* REV16 */
9780 handle_rev(s, opcode, u, is_q, size, rn, rd);
9781 return;
9782 case 0x5: /* CNT, NOT, RBIT */
9783 if (u && size == 0) {
9784 /* NOT: adjust size so we can use the 64-bits-at-a-time loop. */
9785 size = 3;
9786 break;
9787 } else if (u && size == 1) {
9788 /* RBIT */
9789 break;
9790 } else if (!u && size == 0) {
9791 /* CNT */
9792 break;
9794 unallocated_encoding(s);
9795 return;
9796 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
9797 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
9798 if (size == 3) {
9799 unallocated_encoding(s);
9800 return;
9802 if (!fp_access_check(s)) {
9803 return;
9806 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
9807 return;
9808 case 0x4: /* CLS, CLZ */
9809 if (size == 3) {
9810 unallocated_encoding(s);
9811 return;
9813 break;
9814 case 0x2: /* SADDLP, UADDLP */
9815 case 0x6: /* SADALP, UADALP */
9816 if (size == 3) {
9817 unallocated_encoding(s);
9818 return;
9820 if (!fp_access_check(s)) {
9821 return;
9823 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
9824 return;
9825 case 0x13: /* SHLL, SHLL2 */
9826 if (u == 0 || size == 3) {
9827 unallocated_encoding(s);
9828 return;
9830 if (!fp_access_check(s)) {
9831 return;
9833 handle_shll(s, is_q, size, rn, rd);
9834 return;
9835 case 0xa: /* CMLT */
9836 if (u == 1) {
9837 unallocated_encoding(s);
9838 return;
9840 /* fall through */
9841 case 0x8: /* CMGT, CMGE */
9842 case 0x9: /* CMEQ, CMLE */
9843 case 0xb: /* ABS, NEG */
9844 if (size == 3 && !is_q) {
9845 unallocated_encoding(s);
9846 return;
9848 break;
9849 case 0x3: /* SUQADD, USQADD */
9850 if (size == 3 && !is_q) {
9851 unallocated_encoding(s);
9852 return;
9854 if (!fp_access_check(s)) {
9855 return;
9857 handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
9858 return;
9859 case 0x7: /* SQABS, SQNEG */
9860 if (size == 3 && !is_q) {
9861 unallocated_encoding(s);
9862 return;
9864 break;
9865 case 0xc ... 0xf:
9866 case 0x16 ... 0x1d:
9867 case 0x1f:
9869 /* Floating point: U, size[1] and opcode indicate operation;
9870 * size[0] indicates single or double precision.
9872 int is_double = extract32(size, 0, 1);
9873 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
9874 size = is_double ? 3 : 2;
9875 switch (opcode) {
9876 case 0x2f: /* FABS */
9877 case 0x6f: /* FNEG */
9878 if (size == 3 && !is_q) {
9879 unallocated_encoding(s);
9880 return;
9882 break;
9883 case 0x1d: /* SCVTF */
9884 case 0x5d: /* UCVTF */
9886 bool is_signed = (opcode == 0x1d) ? true : false;
9887 int elements = is_double ? 2 : is_q ? 4 : 2;
9888 if (is_double && !is_q) {
9889 unallocated_encoding(s);
9890 return;
9892 if (!fp_access_check(s)) {
9893 return;
9895 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
9896 return;
9898 case 0x2c: /* FCMGT (zero) */
9899 case 0x2d: /* FCMEQ (zero) */
9900 case 0x2e: /* FCMLT (zero) */
9901 case 0x6c: /* FCMGE (zero) */
9902 case 0x6d: /* FCMLE (zero) */
9903 if (size == 3 && !is_q) {
9904 unallocated_encoding(s);
9905 return;
9907 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
9908 return;
9909 case 0x7f: /* FSQRT */
9910 if (size == 3 && !is_q) {
9911 unallocated_encoding(s);
9912 return;
9914 break;
9915 case 0x1a: /* FCVTNS */
9916 case 0x1b: /* FCVTMS */
9917 case 0x3a: /* FCVTPS */
9918 case 0x3b: /* FCVTZS */
9919 case 0x5a: /* FCVTNU */
9920 case 0x5b: /* FCVTMU */
9921 case 0x7a: /* FCVTPU */
9922 case 0x7b: /* FCVTZU */
9923 need_fpstatus = true;
9924 need_rmode = true;
9925 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
9926 if (size == 3 && !is_q) {
9927 unallocated_encoding(s);
9928 return;
9930 break;
9931 case 0x5c: /* FCVTAU */
9932 case 0x1c: /* FCVTAS */
9933 need_fpstatus = true;
9934 need_rmode = true;
9935 rmode = FPROUNDING_TIEAWAY;
9936 if (size == 3 && !is_q) {
9937 unallocated_encoding(s);
9938 return;
9940 break;
9941 case 0x3c: /* URECPE */
9942 if (size == 3) {
9943 unallocated_encoding(s);
9944 return;
9946 /* fall through */
9947 case 0x3d: /* FRECPE */
9948 case 0x7d: /* FRSQRTE */
9949 if (size == 3 && !is_q) {
9950 unallocated_encoding(s);
9951 return;
9953 if (!fp_access_check(s)) {
9954 return;
9956 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
9957 return;
9958 case 0x56: /* FCVTXN, FCVTXN2 */
9959 if (size == 2) {
9960 unallocated_encoding(s);
9961 return;
9963 /* fall through */
9964 case 0x16: /* FCVTN, FCVTN2 */
9965 /* handle_2misc_narrow does a 2*size -> size operation, but these
9966 * instructions encode the source size rather than dest size.
9968 if (!fp_access_check(s)) {
9969 return;
9971 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
9972 return;
9973 case 0x17: /* FCVTL, FCVTL2 */
9974 if (!fp_access_check(s)) {
9975 return;
9977 handle_2misc_widening(s, opcode, is_q, size, rn, rd);
9978 return;
9979 case 0x18: /* FRINTN */
9980 case 0x19: /* FRINTM */
9981 case 0x38: /* FRINTP */
9982 case 0x39: /* FRINTZ */
9983 need_rmode = true;
9984 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
9985 /* fall through */
9986 case 0x59: /* FRINTX */
9987 case 0x79: /* FRINTI */
9988 need_fpstatus = true;
9989 if (size == 3 && !is_q) {
9990 unallocated_encoding(s);
9991 return;
9993 break;
9994 case 0x58: /* FRINTA */
9995 need_rmode = true;
9996 rmode = FPROUNDING_TIEAWAY;
9997 need_fpstatus = true;
9998 if (size == 3 && !is_q) {
9999 unallocated_encoding(s);
10000 return;
10002 break;
10003 case 0x7c: /* URSQRTE */
10004 if (size == 3) {
10005 unallocated_encoding(s);
10006 return;
10008 need_fpstatus = true;
10009 break;
10010 default:
10011 unallocated_encoding(s);
10012 return;
10014 break;
10016 default:
10017 unallocated_encoding(s);
10018 return;
10021 if (!fp_access_check(s)) {
10022 return;
10025 if (need_fpstatus) {
10026 tcg_fpstatus = get_fpstatus_ptr();
10027 } else {
10028 TCGV_UNUSED_PTR(tcg_fpstatus);
10030 if (need_rmode) {
10031 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
10032 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
10033 } else {
10034 TCGV_UNUSED_I32(tcg_rmode);
10037 if (size == 3) {
10038 /* All 64-bit element operations can be shared with scalar 2misc */
10039 int pass;
10041 for (pass = 0; pass < (is_q ? 2 : 1); pass++) {
10042 TCGv_i64 tcg_op = tcg_temp_new_i64();
10043 TCGv_i64 tcg_res = tcg_temp_new_i64();
10045 read_vec_element(s, tcg_op, rn, pass, MO_64);
10047 handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
10048 tcg_rmode, tcg_fpstatus);
10050 write_vec_element(s, tcg_res, rd, pass, MO_64);
10052 tcg_temp_free_i64(tcg_res);
10053 tcg_temp_free_i64(tcg_op);
10055 } else {
10056 int pass;
10058 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
10059 TCGv_i32 tcg_op = tcg_temp_new_i32();
10060 TCGv_i32 tcg_res = tcg_temp_new_i32();
10061 TCGCond cond;
10063 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
10065 if (size == 2) {
10066 /* Special cases for 32 bit elements */
10067 switch (opcode) {
10068 case 0xa: /* CMLT */
10069 /* 32 bit integer comparison against zero, result is
10070 * test ? (2^32 - 1) : 0. We implement via setcond(test)
10071 * and inverting.
10073 cond = TCG_COND_LT;
10074 do_cmop:
10075 tcg_gen_setcondi_i32(cond, tcg_res, tcg_op, 0);
10076 tcg_gen_neg_i32(tcg_res, tcg_res);
10077 break;
10078 case 0x8: /* CMGT, CMGE */
10079 cond = u ? TCG_COND_GE : TCG_COND_GT;
10080 goto do_cmop;
10081 case 0x9: /* CMEQ, CMLE */
10082 cond = u ? TCG_COND_LE : TCG_COND_EQ;
10083 goto do_cmop;
10084 case 0x4: /* CLS */
10085 if (u) {
10086 gen_helper_clz32(tcg_res, tcg_op);
10087 } else {
10088 gen_helper_cls32(tcg_res, tcg_op);
10090 break;
10091 case 0x7: /* SQABS, SQNEG */
10092 if (u) {
10093 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op);
10094 } else {
10095 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op);
10097 break;
10098 case 0xb: /* ABS, NEG */
10099 if (u) {
10100 tcg_gen_neg_i32(tcg_res, tcg_op);
10101 } else {
10102 TCGv_i32 tcg_zero = tcg_const_i32(0);
10103 tcg_gen_neg_i32(tcg_res, tcg_op);
10104 tcg_gen_movcond_i32(TCG_COND_GT, tcg_res, tcg_op,
10105 tcg_zero, tcg_op, tcg_res);
10106 tcg_temp_free_i32(tcg_zero);
10108 break;
10109 case 0x2f: /* FABS */
10110 gen_helper_vfp_abss(tcg_res, tcg_op);
10111 break;
10112 case 0x6f: /* FNEG */
10113 gen_helper_vfp_negs(tcg_res, tcg_op);
10114 break;
10115 case 0x7f: /* FSQRT */
10116 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
10117 break;
10118 case 0x1a: /* FCVTNS */
10119 case 0x1b: /* FCVTMS */
10120 case 0x1c: /* FCVTAS */
10121 case 0x3a: /* FCVTPS */
10122 case 0x3b: /* FCVTZS */
10124 TCGv_i32 tcg_shift = tcg_const_i32(0);
10125 gen_helper_vfp_tosls(tcg_res, tcg_op,
10126 tcg_shift, tcg_fpstatus);
10127 tcg_temp_free_i32(tcg_shift);
10128 break;
10130 case 0x5a: /* FCVTNU */
10131 case 0x5b: /* FCVTMU */
10132 case 0x5c: /* FCVTAU */
10133 case 0x7a: /* FCVTPU */
10134 case 0x7b: /* FCVTZU */
10136 TCGv_i32 tcg_shift = tcg_const_i32(0);
10137 gen_helper_vfp_touls(tcg_res, tcg_op,
10138 tcg_shift, tcg_fpstatus);
10139 tcg_temp_free_i32(tcg_shift);
10140 break;
10142 case 0x18: /* FRINTN */
10143 case 0x19: /* FRINTM */
10144 case 0x38: /* FRINTP */
10145 case 0x39: /* FRINTZ */
10146 case 0x58: /* FRINTA */
10147 case 0x79: /* FRINTI */
10148 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
10149 break;
10150 case 0x59: /* FRINTX */
10151 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
10152 break;
10153 case 0x7c: /* URSQRTE */
10154 gen_helper_rsqrte_u32(tcg_res, tcg_op, tcg_fpstatus);
10155 break;
10156 default:
10157 g_assert_not_reached();
10159 } else {
10160 /* Use helpers for 8 and 16 bit elements */
10161 switch (opcode) {
10162 case 0x5: /* CNT, RBIT */
10163 /* For these two insns size is part of the opcode specifier
10164 * (handled earlier); they always operate on byte elements.
10166 if (u) {
10167 gen_helper_neon_rbit_u8(tcg_res, tcg_op);
10168 } else {
10169 gen_helper_neon_cnt_u8(tcg_res, tcg_op);
10171 break;
10172 case 0x7: /* SQABS, SQNEG */
10174 NeonGenOneOpEnvFn *genfn;
10175 static NeonGenOneOpEnvFn * const fns[2][2] = {
10176 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10177 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10179 genfn = fns[size][u];
10180 genfn(tcg_res, cpu_env, tcg_op);
10181 break;
10183 case 0x8: /* CMGT, CMGE */
10184 case 0x9: /* CMEQ, CMLE */
10185 case 0xa: /* CMLT */
10187 static NeonGenTwoOpFn * const fns[3][2] = {
10188 { gen_helper_neon_cgt_s8, gen_helper_neon_cgt_s16 },
10189 { gen_helper_neon_cge_s8, gen_helper_neon_cge_s16 },
10190 { gen_helper_neon_ceq_u8, gen_helper_neon_ceq_u16 },
10192 NeonGenTwoOpFn *genfn;
10193 int comp;
10194 bool reverse;
10195 TCGv_i32 tcg_zero = tcg_const_i32(0);
10197 /* comp = index into [CMGT, CMGE, CMEQ, CMLE, CMLT] */
10198 comp = (opcode - 0x8) * 2 + u;
10199 /* ...but LE, LT are implemented as reverse GE, GT */
10200 reverse = (comp > 2);
10201 if (reverse) {
10202 comp = 4 - comp;
10204 genfn = fns[comp][size];
10205 if (reverse) {
10206 genfn(tcg_res, tcg_zero, tcg_op);
10207 } else {
10208 genfn(tcg_res, tcg_op, tcg_zero);
10210 tcg_temp_free_i32(tcg_zero);
10211 break;
10213 case 0xb: /* ABS, NEG */
10214 if (u) {
10215 TCGv_i32 tcg_zero = tcg_const_i32(0);
10216 if (size) {
10217 gen_helper_neon_sub_u16(tcg_res, tcg_zero, tcg_op);
10218 } else {
10219 gen_helper_neon_sub_u8(tcg_res, tcg_zero, tcg_op);
10221 tcg_temp_free_i32(tcg_zero);
10222 } else {
10223 if (size) {
10224 gen_helper_neon_abs_s16(tcg_res, tcg_op);
10225 } else {
10226 gen_helper_neon_abs_s8(tcg_res, tcg_op);
10229 break;
10230 case 0x4: /* CLS, CLZ */
10231 if (u) {
10232 if (size == 0) {
10233 gen_helper_neon_clz_u8(tcg_res, tcg_op);
10234 } else {
10235 gen_helper_neon_clz_u16(tcg_res, tcg_op);
10237 } else {
10238 if (size == 0) {
10239 gen_helper_neon_cls_s8(tcg_res, tcg_op);
10240 } else {
10241 gen_helper_neon_cls_s16(tcg_res, tcg_op);
10244 break;
10245 default:
10246 g_assert_not_reached();
10250 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10252 tcg_temp_free_i32(tcg_res);
10253 tcg_temp_free_i32(tcg_op);
10256 if (!is_q) {
10257 clear_vec_high(s, rd);
10260 if (need_rmode) {
10261 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
10262 tcg_temp_free_i32(tcg_rmode);
10264 if (need_fpstatus) {
10265 tcg_temp_free_ptr(tcg_fpstatus);
10269 /* C3.6.13 AdvSIMD scalar x indexed element
10270 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
10271 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
10272 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
10273 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
10274 * C3.6.18 AdvSIMD vector x indexed element
10275 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
10276 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
10277 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
10278 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
10280 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
10282 /* This encoding has two kinds of instruction:
10283 * normal, where we perform elt x idxelt => elt for each
10284 * element in the vector
10285 * long, where we perform elt x idxelt and generate a result of
10286 * double the width of the input element
10287 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
10289 bool is_scalar = extract32(insn, 28, 1);
10290 bool is_q = extract32(insn, 30, 1);
10291 bool u = extract32(insn, 29, 1);
10292 int size = extract32(insn, 22, 2);
10293 int l = extract32(insn, 21, 1);
10294 int m = extract32(insn, 20, 1);
10295 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
10296 int rm = extract32(insn, 16, 4);
10297 int opcode = extract32(insn, 12, 4);
10298 int h = extract32(insn, 11, 1);
10299 int rn = extract32(insn, 5, 5);
10300 int rd = extract32(insn, 0, 5);
10301 bool is_long = false;
10302 bool is_fp = false;
10303 int index;
10304 TCGv_ptr fpst;
10306 switch (opcode) {
10307 case 0x0: /* MLA */
10308 case 0x4: /* MLS */
10309 if (!u || is_scalar) {
10310 unallocated_encoding(s);
10311 return;
10313 break;
10314 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10315 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10316 case 0xa: /* SMULL, SMULL2, UMULL, UMULL2 */
10317 if (is_scalar) {
10318 unallocated_encoding(s);
10319 return;
10321 is_long = true;
10322 break;
10323 case 0x3: /* SQDMLAL, SQDMLAL2 */
10324 case 0x7: /* SQDMLSL, SQDMLSL2 */
10325 case 0xb: /* SQDMULL, SQDMULL2 */
10326 is_long = true;
10327 /* fall through */
10328 case 0xc: /* SQDMULH */
10329 case 0xd: /* SQRDMULH */
10330 if (u) {
10331 unallocated_encoding(s);
10332 return;
10334 break;
10335 case 0x8: /* MUL */
10336 if (u || is_scalar) {
10337 unallocated_encoding(s);
10338 return;
10340 break;
10341 case 0x1: /* FMLA */
10342 case 0x5: /* FMLS */
10343 if (u) {
10344 unallocated_encoding(s);
10345 return;
10347 /* fall through */
10348 case 0x9: /* FMUL, FMULX */
10349 if (!extract32(size, 1, 1)) {
10350 unallocated_encoding(s);
10351 return;
10353 is_fp = true;
10354 break;
10355 default:
10356 unallocated_encoding(s);
10357 return;
10360 if (is_fp) {
10361 /* low bit of size indicates single/double */
10362 size = extract32(size, 0, 1) ? 3 : 2;
10363 if (size == 2) {
10364 index = h << 1 | l;
10365 } else {
10366 if (l || !is_q) {
10367 unallocated_encoding(s);
10368 return;
10370 index = h;
10372 rm |= (m << 4);
10373 } else {
10374 switch (size) {
10375 case 1:
10376 index = h << 2 | l << 1 | m;
10377 break;
10378 case 2:
10379 index = h << 1 | l;
10380 rm |= (m << 4);
10381 break;
10382 default:
10383 unallocated_encoding(s);
10384 return;
10388 if (!fp_access_check(s)) {
10389 return;
10392 if (is_fp) {
10393 fpst = get_fpstatus_ptr();
10394 } else {
10395 TCGV_UNUSED_PTR(fpst);
10398 if (size == 3) {
10399 TCGv_i64 tcg_idx = tcg_temp_new_i64();
10400 int pass;
10402 assert(is_fp && is_q && !is_long);
10404 read_vec_element(s, tcg_idx, rm, index, MO_64);
10406 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10407 TCGv_i64 tcg_op = tcg_temp_new_i64();
10408 TCGv_i64 tcg_res = tcg_temp_new_i64();
10410 read_vec_element(s, tcg_op, rn, pass, MO_64);
10412 switch (opcode) {
10413 case 0x5: /* FMLS */
10414 /* As usual for ARM, separate negation for fused multiply-add */
10415 gen_helper_vfp_negd(tcg_op, tcg_op);
10416 /* fall through */
10417 case 0x1: /* FMLA */
10418 read_vec_element(s, tcg_res, rd, pass, MO_64);
10419 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
10420 break;
10421 case 0x9: /* FMUL, FMULX */
10422 if (u) {
10423 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
10424 } else {
10425 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
10427 break;
10428 default:
10429 g_assert_not_reached();
10432 write_vec_element(s, tcg_res, rd, pass, MO_64);
10433 tcg_temp_free_i64(tcg_op);
10434 tcg_temp_free_i64(tcg_res);
10437 if (is_scalar) {
10438 clear_vec_high(s, rd);
10441 tcg_temp_free_i64(tcg_idx);
10442 } else if (!is_long) {
10443 /* 32 bit floating point, or 16 or 32 bit integer.
10444 * For the 16 bit scalar case we use the usual Neon helpers and
10445 * rely on the fact that 0 op 0 == 0 with no side effects.
10447 TCGv_i32 tcg_idx = tcg_temp_new_i32();
10448 int pass, maxpasses;
10450 if (is_scalar) {
10451 maxpasses = 1;
10452 } else {
10453 maxpasses = is_q ? 4 : 2;
10456 read_vec_element_i32(s, tcg_idx, rm, index, size);
10458 if (size == 1 && !is_scalar) {
10459 /* The simplest way to handle the 16x16 indexed ops is to duplicate
10460 * the index into both halves of the 32 bit tcg_idx and then use
10461 * the usual Neon helpers.
10463 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
10466 for (pass = 0; pass < maxpasses; pass++) {
10467 TCGv_i32 tcg_op = tcg_temp_new_i32();
10468 TCGv_i32 tcg_res = tcg_temp_new_i32();
10470 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
10472 switch (opcode) {
10473 case 0x0: /* MLA */
10474 case 0x4: /* MLS */
10475 case 0x8: /* MUL */
10477 static NeonGenTwoOpFn * const fns[2][2] = {
10478 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
10479 { tcg_gen_add_i32, tcg_gen_sub_i32 },
10481 NeonGenTwoOpFn *genfn;
10482 bool is_sub = opcode == 0x4;
10484 if (size == 1) {
10485 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
10486 } else {
10487 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
10489 if (opcode == 0x8) {
10490 break;
10492 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
10493 genfn = fns[size - 1][is_sub];
10494 genfn(tcg_res, tcg_op, tcg_res);
10495 break;
10497 case 0x5: /* FMLS */
10498 /* As usual for ARM, separate negation for fused multiply-add */
10499 gen_helper_vfp_negs(tcg_op, tcg_op);
10500 /* fall through */
10501 case 0x1: /* FMLA */
10502 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10503 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
10504 break;
10505 case 0x9: /* FMUL, FMULX */
10506 if (u) {
10507 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
10508 } else {
10509 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
10511 break;
10512 case 0xc: /* SQDMULH */
10513 if (size == 1) {
10514 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env,
10515 tcg_op, tcg_idx);
10516 } else {
10517 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env,
10518 tcg_op, tcg_idx);
10520 break;
10521 case 0xd: /* SQRDMULH */
10522 if (size == 1) {
10523 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env,
10524 tcg_op, tcg_idx);
10525 } else {
10526 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env,
10527 tcg_op, tcg_idx);
10529 break;
10530 default:
10531 g_assert_not_reached();
10534 if (is_scalar) {
10535 write_fp_sreg(s, rd, tcg_res);
10536 } else {
10537 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10540 tcg_temp_free_i32(tcg_op);
10541 tcg_temp_free_i32(tcg_res);
10544 tcg_temp_free_i32(tcg_idx);
10546 if (!is_q) {
10547 clear_vec_high(s, rd);
10549 } else {
10550 /* long ops: 16x16->32 or 32x32->64 */
10551 TCGv_i64 tcg_res[2];
10552 int pass;
10553 bool satop = extract32(opcode, 0, 1);
10554 TCGMemOp memop = MO_32;
10556 if (satop || !u) {
10557 memop |= MO_SIGN;
10560 if (size == 2) {
10561 TCGv_i64 tcg_idx = tcg_temp_new_i64();
10563 read_vec_element(s, tcg_idx, rm, index, memop);
10565 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10566 TCGv_i64 tcg_op = tcg_temp_new_i64();
10567 TCGv_i64 tcg_passres;
10568 int passelt;
10570 if (is_scalar) {
10571 passelt = 0;
10572 } else {
10573 passelt = pass + (is_q * 2);
10576 read_vec_element(s, tcg_op, rn, passelt, memop);
10578 tcg_res[pass] = tcg_temp_new_i64();
10580 if (opcode == 0xa || opcode == 0xb) {
10581 /* Non-accumulating ops */
10582 tcg_passres = tcg_res[pass];
10583 } else {
10584 tcg_passres = tcg_temp_new_i64();
10587 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
10588 tcg_temp_free_i64(tcg_op);
10590 if (satop) {
10591 /* saturating, doubling */
10592 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
10593 tcg_passres, tcg_passres);
10596 if (opcode == 0xa || opcode == 0xb) {
10597 continue;
10600 /* Accumulating op: handle accumulate step */
10601 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10603 switch (opcode) {
10604 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10605 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10606 break;
10607 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10608 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10609 break;
10610 case 0x7: /* SQDMLSL, SQDMLSL2 */
10611 tcg_gen_neg_i64(tcg_passres, tcg_passres);
10612 /* fall through */
10613 case 0x3: /* SQDMLAL, SQDMLAL2 */
10614 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
10615 tcg_res[pass],
10616 tcg_passres);
10617 break;
10618 default:
10619 g_assert_not_reached();
10621 tcg_temp_free_i64(tcg_passres);
10623 tcg_temp_free_i64(tcg_idx);
10625 if (is_scalar) {
10626 clear_vec_high(s, rd);
10628 } else {
10629 TCGv_i32 tcg_idx = tcg_temp_new_i32();
10631 assert(size == 1);
10632 read_vec_element_i32(s, tcg_idx, rm, index, size);
10634 if (!is_scalar) {
10635 /* The simplest way to handle the 16x16 indexed ops is to
10636 * duplicate the index into both halves of the 32 bit tcg_idx
10637 * and then use the usual Neon helpers.
10639 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
10642 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10643 TCGv_i32 tcg_op = tcg_temp_new_i32();
10644 TCGv_i64 tcg_passres;
10646 if (is_scalar) {
10647 read_vec_element_i32(s, tcg_op, rn, pass, size);
10648 } else {
10649 read_vec_element_i32(s, tcg_op, rn,
10650 pass + (is_q * 2), MO_32);
10653 tcg_res[pass] = tcg_temp_new_i64();
10655 if (opcode == 0xa || opcode == 0xb) {
10656 /* Non-accumulating ops */
10657 tcg_passres = tcg_res[pass];
10658 } else {
10659 tcg_passres = tcg_temp_new_i64();
10662 if (memop & MO_SIGN) {
10663 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
10664 } else {
10665 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
10667 if (satop) {
10668 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
10669 tcg_passres, tcg_passres);
10671 tcg_temp_free_i32(tcg_op);
10673 if (opcode == 0xa || opcode == 0xb) {
10674 continue;
10677 /* Accumulating op: handle accumulate step */
10678 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10680 switch (opcode) {
10681 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10682 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
10683 tcg_passres);
10684 break;
10685 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10686 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
10687 tcg_passres);
10688 break;
10689 case 0x7: /* SQDMLSL, SQDMLSL2 */
10690 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10691 /* fall through */
10692 case 0x3: /* SQDMLAL, SQDMLAL2 */
10693 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
10694 tcg_res[pass],
10695 tcg_passres);
10696 break;
10697 default:
10698 g_assert_not_reached();
10700 tcg_temp_free_i64(tcg_passres);
10702 tcg_temp_free_i32(tcg_idx);
10704 if (is_scalar) {
10705 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
10709 if (is_scalar) {
10710 tcg_res[1] = tcg_const_i64(0);
10713 for (pass = 0; pass < 2; pass++) {
10714 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10715 tcg_temp_free_i64(tcg_res[pass]);
10719 if (!TCGV_IS_UNUSED_PTR(fpst)) {
10720 tcg_temp_free_ptr(fpst);
10724 /* C3.6.19 Crypto AES
10725 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
10726 * +-----------------+------+-----------+--------+-----+------+------+
10727 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
10728 * +-----------------+------+-----------+--------+-----+------+------+
10730 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
10732 int size = extract32(insn, 22, 2);
10733 int opcode = extract32(insn, 12, 5);
10734 int rn = extract32(insn, 5, 5);
10735 int rd = extract32(insn, 0, 5);
10736 int decrypt;
10737 TCGv_i32 tcg_rd_regno, tcg_rn_regno, tcg_decrypt;
10738 CryptoThreeOpEnvFn *genfn;
10740 if (!arm_dc_feature(s, ARM_FEATURE_V8_AES)
10741 || size != 0) {
10742 unallocated_encoding(s);
10743 return;
10746 switch (opcode) {
10747 case 0x4: /* AESE */
10748 decrypt = 0;
10749 genfn = gen_helper_crypto_aese;
10750 break;
10751 case 0x6: /* AESMC */
10752 decrypt = 0;
10753 genfn = gen_helper_crypto_aesmc;
10754 break;
10755 case 0x5: /* AESD */
10756 decrypt = 1;
10757 genfn = gen_helper_crypto_aese;
10758 break;
10759 case 0x7: /* AESIMC */
10760 decrypt = 1;
10761 genfn = gen_helper_crypto_aesmc;
10762 break;
10763 default:
10764 unallocated_encoding(s);
10765 return;
10768 /* Note that we convert the Vx register indexes into the
10769 * index within the vfp.regs[] array, so we can share the
10770 * helper with the AArch32 instructions.
10772 tcg_rd_regno = tcg_const_i32(rd << 1);
10773 tcg_rn_regno = tcg_const_i32(rn << 1);
10774 tcg_decrypt = tcg_const_i32(decrypt);
10776 genfn(cpu_env, tcg_rd_regno, tcg_rn_regno, tcg_decrypt);
10778 tcg_temp_free_i32(tcg_rd_regno);
10779 tcg_temp_free_i32(tcg_rn_regno);
10780 tcg_temp_free_i32(tcg_decrypt);
10783 /* C3.6.20 Crypto three-reg SHA
10784 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
10785 * +-----------------+------+---+------+---+--------+-----+------+------+
10786 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd |
10787 * +-----------------+------+---+------+---+--------+-----+------+------+
10789 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
10791 int size = extract32(insn, 22, 2);
10792 int opcode = extract32(insn, 12, 3);
10793 int rm = extract32(insn, 16, 5);
10794 int rn = extract32(insn, 5, 5);
10795 int rd = extract32(insn, 0, 5);
10796 CryptoThreeOpEnvFn *genfn;
10797 TCGv_i32 tcg_rd_regno, tcg_rn_regno, tcg_rm_regno;
10798 int feature = ARM_FEATURE_V8_SHA256;
10800 if (size != 0) {
10801 unallocated_encoding(s);
10802 return;
10805 switch (opcode) {
10806 case 0: /* SHA1C */
10807 case 1: /* SHA1P */
10808 case 2: /* SHA1M */
10809 case 3: /* SHA1SU0 */
10810 genfn = NULL;
10811 feature = ARM_FEATURE_V8_SHA1;
10812 break;
10813 case 4: /* SHA256H */
10814 genfn = gen_helper_crypto_sha256h;
10815 break;
10816 case 5: /* SHA256H2 */
10817 genfn = gen_helper_crypto_sha256h2;
10818 break;
10819 case 6: /* SHA256SU1 */
10820 genfn = gen_helper_crypto_sha256su1;
10821 break;
10822 default:
10823 unallocated_encoding(s);
10824 return;
10827 if (!arm_dc_feature(s, feature)) {
10828 unallocated_encoding(s);
10829 return;
10832 tcg_rd_regno = tcg_const_i32(rd << 1);
10833 tcg_rn_regno = tcg_const_i32(rn << 1);
10834 tcg_rm_regno = tcg_const_i32(rm << 1);
10836 if (genfn) {
10837 genfn(cpu_env, tcg_rd_regno, tcg_rn_regno, tcg_rm_regno);
10838 } else {
10839 TCGv_i32 tcg_opcode = tcg_const_i32(opcode);
10841 gen_helper_crypto_sha1_3reg(cpu_env, tcg_rd_regno,
10842 tcg_rn_regno, tcg_rm_regno, tcg_opcode);
10843 tcg_temp_free_i32(tcg_opcode);
10846 tcg_temp_free_i32(tcg_rd_regno);
10847 tcg_temp_free_i32(tcg_rn_regno);
10848 tcg_temp_free_i32(tcg_rm_regno);
10851 /* C3.6.21 Crypto two-reg SHA
10852 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
10853 * +-----------------+------+-----------+--------+-----+------+------+
10854 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
10855 * +-----------------+------+-----------+--------+-----+------+------+
10857 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
10859 int size = extract32(insn, 22, 2);
10860 int opcode = extract32(insn, 12, 5);
10861 int rn = extract32(insn, 5, 5);
10862 int rd = extract32(insn, 0, 5);
10863 CryptoTwoOpEnvFn *genfn;
10864 int feature;
10865 TCGv_i32 tcg_rd_regno, tcg_rn_regno;
10867 if (size != 0) {
10868 unallocated_encoding(s);
10869 return;
10872 switch (opcode) {
10873 case 0: /* SHA1H */
10874 feature = ARM_FEATURE_V8_SHA1;
10875 genfn = gen_helper_crypto_sha1h;
10876 break;
10877 case 1: /* SHA1SU1 */
10878 feature = ARM_FEATURE_V8_SHA1;
10879 genfn = gen_helper_crypto_sha1su1;
10880 break;
10881 case 2: /* SHA256SU0 */
10882 feature = ARM_FEATURE_V8_SHA256;
10883 genfn = gen_helper_crypto_sha256su0;
10884 break;
10885 default:
10886 unallocated_encoding(s);
10887 return;
10890 if (!arm_dc_feature(s, feature)) {
10891 unallocated_encoding(s);
10892 return;
10895 tcg_rd_regno = tcg_const_i32(rd << 1);
10896 tcg_rn_regno = tcg_const_i32(rn << 1);
10898 genfn(cpu_env, tcg_rd_regno, tcg_rn_regno);
10900 tcg_temp_free_i32(tcg_rd_regno);
10901 tcg_temp_free_i32(tcg_rn_regno);
10904 /* C3.6 Data processing - SIMD, inc Crypto
10906 * As the decode gets a little complex we are using a table based
10907 * approach for this part of the decode.
10909 static const AArch64DecodeTable data_proc_simd[] = {
10910 /* pattern , mask , fn */
10911 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
10912 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
10913 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
10914 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
10915 { 0x0e000400, 0x9fe08400, disas_simd_copy },
10916 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
10917 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
10918 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
10919 { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
10920 { 0x0e000000, 0xbf208c00, disas_simd_tb },
10921 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
10922 { 0x2e000000, 0xbf208400, disas_simd_ext },
10923 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
10924 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
10925 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
10926 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
10927 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
10928 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
10929 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
10930 { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
10931 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
10932 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
10933 { 0x00000000, 0x00000000, NULL }
10936 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
10938 /* Note that this is called with all non-FP cases from
10939 * table C3-6 so it must UNDEF for entries not specifically
10940 * allocated to instructions in that table.
10942 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
10943 if (fn) {
10944 fn(s, insn);
10945 } else {
10946 unallocated_encoding(s);
10950 /* C3.6 Data processing - SIMD and floating point */
10951 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
10953 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
10954 disas_data_proc_fp(s, insn);
10955 } else {
10956 /* SIMD, including crypto */
10957 disas_data_proc_simd(s, insn);
10961 /* C3.1 A64 instruction index by encoding */
10962 static void disas_a64_insn(CPUARMState *env, DisasContext *s)
10964 uint32_t insn;
10966 insn = arm_ldl_code(env, s->pc, s->bswap_code);
10967 s->insn = insn;
10968 s->pc += 4;
10970 s->fp_access_checked = false;
10972 switch (extract32(insn, 25, 4)) {
10973 case 0x0: case 0x1: case 0x2: case 0x3: /* UNALLOCATED */
10974 unallocated_encoding(s);
10975 break;
10976 case 0x8: case 0x9: /* Data processing - immediate */
10977 disas_data_proc_imm(s, insn);
10978 break;
10979 case 0xa: case 0xb: /* Branch, exception generation and system insns */
10980 disas_b_exc_sys(s, insn);
10981 break;
10982 case 0x4:
10983 case 0x6:
10984 case 0xc:
10985 case 0xe: /* Loads and stores */
10986 disas_ldst(s, insn);
10987 break;
10988 case 0x5:
10989 case 0xd: /* Data processing - register */
10990 disas_data_proc_reg(s, insn);
10991 break;
10992 case 0x7:
10993 case 0xf: /* Data processing - SIMD and floating point */
10994 disas_data_proc_simd_fp(s, insn);
10995 break;
10996 default:
10997 assert(FALSE); /* all 15 cases should be handled above */
10998 break;
11001 /* if we allocated any temporaries, free them here */
11002 free_tmp_a64(s);
11005 void gen_intermediate_code_a64(ARMCPU *cpu, TranslationBlock *tb)
11007 CPUState *cs = CPU(cpu);
11008 CPUARMState *env = &cpu->env;
11009 DisasContext dc1, *dc = &dc1;
11010 target_ulong pc_start;
11011 target_ulong next_page_start;
11012 int num_insns;
11013 int max_insns;
11015 pc_start = tb->pc;
11017 dc->tb = tb;
11019 dc->is_jmp = DISAS_NEXT;
11020 dc->pc = pc_start;
11021 dc->singlestep_enabled = cs->singlestep_enabled;
11022 dc->condjmp = 0;
11024 dc->aarch64 = 1;
11025 /* If we are coming from secure EL0 in a system with a 32-bit EL3, then
11026 * there is no secure EL1, so we route exceptions to EL3.
11028 dc->secure_routed_to_el3 = arm_feature(env, ARM_FEATURE_EL3) &&
11029 !arm_el_is_aa64(env, 3);
11030 dc->thumb = 0;
11031 dc->bswap_code = 0;
11032 dc->condexec_mask = 0;
11033 dc->condexec_cond = 0;
11034 dc->mmu_idx = ARM_TBFLAG_MMUIDX(tb->flags);
11035 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
11036 #if !defined(CONFIG_USER_ONLY)
11037 dc->user = (dc->current_el == 0);
11038 #endif
11039 dc->fp_excp_el = ARM_TBFLAG_FPEXC_EL(tb->flags);
11040 dc->vec_len = 0;
11041 dc->vec_stride = 0;
11042 dc->cp_regs = cpu->cp_regs;
11043 dc->features = env->features;
11045 /* Single step state. The code-generation logic here is:
11046 * SS_ACTIVE == 0:
11047 * generate code with no special handling for single-stepping (except
11048 * that anything that can make us go to SS_ACTIVE == 1 must end the TB;
11049 * this happens anyway because those changes are all system register or
11050 * PSTATE writes).
11051 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
11052 * emit code for one insn
11053 * emit code to clear PSTATE.SS
11054 * emit code to generate software step exception for completed step
11055 * end TB (as usual for having generated an exception)
11056 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
11057 * emit code to generate a software step exception
11058 * end the TB
11060 dc->ss_active = ARM_TBFLAG_SS_ACTIVE(tb->flags);
11061 dc->pstate_ss = ARM_TBFLAG_PSTATE_SS(tb->flags);
11062 dc->is_ldex = false;
11063 dc->ss_same_el = (arm_debug_target_el(env) == dc->current_el);
11065 init_tmp_a64_array(dc);
11067 next_page_start = (pc_start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
11068 num_insns = 0;
11069 max_insns = tb->cflags & CF_COUNT_MASK;
11070 if (max_insns == 0) {
11071 max_insns = CF_COUNT_MASK;
11073 if (max_insns > TCG_MAX_INSNS) {
11074 max_insns = TCG_MAX_INSNS;
11077 gen_tb_start(tb);
11079 tcg_clear_temp_count();
11081 do {
11082 tcg_gen_insn_start(dc->pc, 0);
11083 num_insns++;
11085 if (unlikely(!QTAILQ_EMPTY(&cs->breakpoints))) {
11086 CPUBreakpoint *bp;
11087 QTAILQ_FOREACH(bp, &cs->breakpoints, entry) {
11088 if (bp->pc == dc->pc) {
11089 if (bp->flags & BP_CPU) {
11090 gen_a64_set_pc_im(dc->pc);
11091 gen_helper_check_breakpoints(cpu_env);
11092 /* End the TB early; it likely won't be executed */
11093 dc->is_jmp = DISAS_UPDATE;
11094 } else {
11095 gen_exception_internal_insn(dc, 0, EXCP_DEBUG);
11096 /* The address covered by the breakpoint must be
11097 included in [tb->pc, tb->pc + tb->size) in order
11098 to for it to be properly cleared -- thus we
11099 increment the PC here so that the logic setting
11100 tb->size below does the right thing. */
11101 dc->pc += 4;
11102 goto done_generating;
11104 break;
11109 if (num_insns == max_insns && (tb->cflags & CF_LAST_IO)) {
11110 gen_io_start();
11113 if (dc->ss_active && !dc->pstate_ss) {
11114 /* Singlestep state is Active-pending.
11115 * If we're in this state at the start of a TB then either
11116 * a) we just took an exception to an EL which is being debugged
11117 * and this is the first insn in the exception handler
11118 * b) debug exceptions were masked and we just unmasked them
11119 * without changing EL (eg by clearing PSTATE.D)
11120 * In either case we're going to take a swstep exception in the
11121 * "did not step an insn" case, and so the syndrome ISV and EX
11122 * bits should be zero.
11124 assert(num_insns == 1);
11125 gen_exception(EXCP_UDEF, syn_swstep(dc->ss_same_el, 0, 0),
11126 default_exception_el(dc));
11127 dc->is_jmp = DISAS_EXC;
11128 break;
11131 disas_a64_insn(env, dc);
11133 if (tcg_check_temp_count()) {
11134 fprintf(stderr, "TCG temporary leak before "TARGET_FMT_lx"\n",
11135 dc->pc);
11138 /* Translation stops when a conditional branch is encountered.
11139 * Otherwise the subsequent code could get translated several times.
11140 * Also stop translation when a page boundary is reached. This
11141 * ensures prefetch aborts occur at the right place.
11143 } while (!dc->is_jmp && !tcg_op_buf_full() &&
11144 !cs->singlestep_enabled &&
11145 !singlestep &&
11146 !dc->ss_active &&
11147 dc->pc < next_page_start &&
11148 num_insns < max_insns);
11150 if (tb->cflags & CF_LAST_IO) {
11151 gen_io_end();
11154 if (unlikely(cs->singlestep_enabled || dc->ss_active)
11155 && dc->is_jmp != DISAS_EXC) {
11156 /* Note that this means single stepping WFI doesn't halt the CPU.
11157 * For conditional branch insns this is harmless unreachable code as
11158 * gen_goto_tb() has already handled emitting the debug exception
11159 * (and thus a tb-jump is not possible when singlestepping).
11161 assert(dc->is_jmp != DISAS_TB_JUMP);
11162 if (dc->is_jmp != DISAS_JUMP) {
11163 gen_a64_set_pc_im(dc->pc);
11165 if (cs->singlestep_enabled) {
11166 gen_exception_internal(EXCP_DEBUG);
11167 } else {
11168 gen_step_complete_exception(dc);
11170 } else {
11171 switch (dc->is_jmp) {
11172 case DISAS_NEXT:
11173 gen_goto_tb(dc, 1, dc->pc);
11174 break;
11175 default:
11176 case DISAS_UPDATE:
11177 gen_a64_set_pc_im(dc->pc);
11178 /* fall through */
11179 case DISAS_JUMP:
11180 /* indicate that the hash table must be used to find the next TB */
11181 tcg_gen_exit_tb(0);
11182 break;
11183 case DISAS_TB_JUMP:
11184 case DISAS_EXC:
11185 case DISAS_SWI:
11186 break;
11187 case DISAS_WFE:
11188 gen_a64_set_pc_im(dc->pc);
11189 gen_helper_wfe(cpu_env);
11190 break;
11191 case DISAS_YIELD:
11192 gen_a64_set_pc_im(dc->pc);
11193 gen_helper_yield(cpu_env);
11194 break;
11195 case DISAS_WFI:
11196 /* This is a special case because we don't want to just halt the CPU
11197 * if trying to debug across a WFI.
11199 gen_a64_set_pc_im(dc->pc);
11200 gen_helper_wfi(cpu_env);
11201 /* The helper doesn't necessarily throw an exception, but we
11202 * must go back to the main loop to check for interrupts anyway.
11204 tcg_gen_exit_tb(0);
11205 break;
11209 done_generating:
11210 gen_tb_end(tb, num_insns);
11212 #ifdef DEBUG_DISAS
11213 if (qemu_loglevel_mask(CPU_LOG_TB_IN_ASM)) {
11214 qemu_log("----------------\n");
11215 qemu_log("IN: %s\n", lookup_symbol(pc_start));
11216 log_target_disas(cs, pc_start, dc->pc - pc_start,
11217 4 | (dc->bswap_code << 1));
11218 qemu_log("\n");
11220 #endif
11221 tb->size = dc->pc - pc_start;
11222 tb->icount = num_insns;