4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
24 #include "qemu-common.h"
28 #if !defined(CONFIG_USER_ONLY)
29 #include "hw/boards.h"
32 #include "sysemu/kvm.h"
33 #include "sysemu/sysemu.h"
34 #include "hw/xen/xen.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #include "exec/memory.h"
39 #include "sysemu/dma.h"
40 #include "exec/address-spaces.h"
41 #if defined(CONFIG_USER_ONLY)
43 #else /* !CONFIG_USER_ONLY */
44 #include "sysemu/xen-mapcache.h"
47 #include "exec/cpu-all.h"
48 #include "qemu/rcu_queue.h"
49 #include "qemu/main-loop.h"
50 #include "translate-all.h"
51 #include "sysemu/replay.h"
53 #include "exec/memory-internal.h"
54 #include "exec/ram_addr.h"
57 #include "qemu/range.h"
59 #include "qemu/mmap-alloc.h"
62 //#define DEBUG_SUBPAGE
64 #if !defined(CONFIG_USER_ONLY)
65 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
66 * are protected by the ramlist lock.
68 RAMList ram_list
= { .blocks
= QLIST_HEAD_INITIALIZER(ram_list
.blocks
) };
70 static MemoryRegion
*system_memory
;
71 static MemoryRegion
*system_io
;
73 AddressSpace address_space_io
;
74 AddressSpace address_space_memory
;
76 MemoryRegion io_mem_rom
, io_mem_notdirty
;
77 static MemoryRegion io_mem_unassigned
;
79 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
80 #define RAM_PREALLOC (1 << 0)
82 /* RAM is mmap-ed with MAP_SHARED */
83 #define RAM_SHARED (1 << 1)
85 /* Only a portion of RAM (used_length) is actually used, and migrated.
86 * This used_length size can change across reboots.
88 #define RAM_RESIZEABLE (1 << 2)
92 struct CPUTailQ cpus
= QTAILQ_HEAD_INITIALIZER(cpus
);
93 /* current CPU in the current thread. It is only valid inside
95 __thread CPUState
*current_cpu
;
96 /* 0 = Do not count executed instructions.
97 1 = Precise instruction counting.
98 2 = Adaptive rate instruction counting. */
101 #if !defined(CONFIG_USER_ONLY)
103 typedef struct PhysPageEntry PhysPageEntry
;
105 struct PhysPageEntry
{
106 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
108 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
112 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
114 /* Size of the L2 (and L3, etc) page tables. */
115 #define ADDR_SPACE_BITS 64
118 #define P_L2_SIZE (1 << P_L2_BITS)
120 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
122 typedef PhysPageEntry Node
[P_L2_SIZE
];
124 typedef struct PhysPageMap
{
127 unsigned sections_nb
;
128 unsigned sections_nb_alloc
;
130 unsigned nodes_nb_alloc
;
132 MemoryRegionSection
*sections
;
135 struct AddressSpaceDispatch
{
138 /* This is a multi-level map on the physical address space.
139 * The bottom level has pointers to MemoryRegionSections.
141 PhysPageEntry phys_map
;
146 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
147 typedef struct subpage_t
{
151 uint16_t sub_section
[TARGET_PAGE_SIZE
];
154 #define PHYS_SECTION_UNASSIGNED 0
155 #define PHYS_SECTION_NOTDIRTY 1
156 #define PHYS_SECTION_ROM 2
157 #define PHYS_SECTION_WATCH 3
159 static void io_mem_init(void);
160 static void memory_map_init(void);
161 static void tcg_commit(MemoryListener
*listener
);
163 static MemoryRegion io_mem_watch
;
166 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
167 * @cpu: the CPU whose AddressSpace this is
168 * @as: the AddressSpace itself
169 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
170 * @tcg_as_listener: listener for tracking changes to the AddressSpace
172 struct CPUAddressSpace
{
175 struct AddressSpaceDispatch
*memory_dispatch
;
176 MemoryListener tcg_as_listener
;
181 #if !defined(CONFIG_USER_ONLY)
183 static void phys_map_node_reserve(PhysPageMap
*map
, unsigned nodes
)
185 if (map
->nodes_nb
+ nodes
> map
->nodes_nb_alloc
) {
186 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
* 2, 16);
187 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, map
->nodes_nb
+ nodes
);
188 map
->nodes
= g_renew(Node
, map
->nodes
, map
->nodes_nb_alloc
);
192 static uint32_t phys_map_node_alloc(PhysPageMap
*map
, bool leaf
)
199 ret
= map
->nodes_nb
++;
201 assert(ret
!= PHYS_MAP_NODE_NIL
);
202 assert(ret
!= map
->nodes_nb_alloc
);
204 e
.skip
= leaf
? 0 : 1;
205 e
.ptr
= leaf
? PHYS_SECTION_UNASSIGNED
: PHYS_MAP_NODE_NIL
;
206 for (i
= 0; i
< P_L2_SIZE
; ++i
) {
207 memcpy(&p
[i
], &e
, sizeof(e
));
212 static void phys_page_set_level(PhysPageMap
*map
, PhysPageEntry
*lp
,
213 hwaddr
*index
, hwaddr
*nb
, uint16_t leaf
,
217 hwaddr step
= (hwaddr
)1 << (level
* P_L2_BITS
);
219 if (lp
->skip
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
220 lp
->ptr
= phys_map_node_alloc(map
, level
== 0);
222 p
= map
->nodes
[lp
->ptr
];
223 lp
= &p
[(*index
>> (level
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
225 while (*nb
&& lp
< &p
[P_L2_SIZE
]) {
226 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
232 phys_page_set_level(map
, lp
, index
, nb
, leaf
, level
- 1);
238 static void phys_page_set(AddressSpaceDispatch
*d
,
239 hwaddr index
, hwaddr nb
,
242 /* Wildly overreserve - it doesn't matter much. */
243 phys_map_node_reserve(&d
->map
, 3 * P_L2_LEVELS
);
245 phys_page_set_level(&d
->map
, &d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
248 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
249 * and update our entry so we can skip it and go directly to the destination.
251 static void phys_page_compact(PhysPageEntry
*lp
, Node
*nodes
, unsigned long *compacted
)
253 unsigned valid_ptr
= P_L2_SIZE
;
258 if (lp
->ptr
== PHYS_MAP_NODE_NIL
) {
263 for (i
= 0; i
< P_L2_SIZE
; i
++) {
264 if (p
[i
].ptr
== PHYS_MAP_NODE_NIL
) {
271 phys_page_compact(&p
[i
], nodes
, compacted
);
275 /* We can only compress if there's only one child. */
280 assert(valid_ptr
< P_L2_SIZE
);
282 /* Don't compress if it won't fit in the # of bits we have. */
283 if (lp
->skip
+ p
[valid_ptr
].skip
>= (1 << 3)) {
287 lp
->ptr
= p
[valid_ptr
].ptr
;
288 if (!p
[valid_ptr
].skip
) {
289 /* If our only child is a leaf, make this a leaf. */
290 /* By design, we should have made this node a leaf to begin with so we
291 * should never reach here.
292 * But since it's so simple to handle this, let's do it just in case we
297 lp
->skip
+= p
[valid_ptr
].skip
;
301 static void phys_page_compact_all(AddressSpaceDispatch
*d
, int nodes_nb
)
303 DECLARE_BITMAP(compacted
, nodes_nb
);
305 if (d
->phys_map
.skip
) {
306 phys_page_compact(&d
->phys_map
, d
->map
.nodes
, compacted
);
310 static MemoryRegionSection
*phys_page_find(PhysPageEntry lp
, hwaddr addr
,
311 Node
*nodes
, MemoryRegionSection
*sections
)
314 hwaddr index
= addr
>> TARGET_PAGE_BITS
;
317 for (i
= P_L2_LEVELS
; lp
.skip
&& (i
-= lp
.skip
) >= 0;) {
318 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
319 return §ions
[PHYS_SECTION_UNASSIGNED
];
322 lp
= p
[(index
>> (i
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
325 if (sections
[lp
.ptr
].size
.hi
||
326 range_covers_byte(sections
[lp
.ptr
].offset_within_address_space
,
327 sections
[lp
.ptr
].size
.lo
, addr
)) {
328 return §ions
[lp
.ptr
];
330 return §ions
[PHYS_SECTION_UNASSIGNED
];
334 bool memory_region_is_unassigned(MemoryRegion
*mr
)
336 return mr
!= &io_mem_rom
&& mr
!= &io_mem_notdirty
&& !mr
->rom_device
337 && mr
!= &io_mem_watch
;
340 /* Called from RCU critical section */
341 static MemoryRegionSection
*address_space_lookup_region(AddressSpaceDispatch
*d
,
343 bool resolve_subpage
)
345 MemoryRegionSection
*section
;
348 section
= phys_page_find(d
->phys_map
, addr
, d
->map
.nodes
, d
->map
.sections
);
349 if (resolve_subpage
&& section
->mr
->subpage
) {
350 subpage
= container_of(section
->mr
, subpage_t
, iomem
);
351 section
= &d
->map
.sections
[subpage
->sub_section
[SUBPAGE_IDX(addr
)]];
356 /* Called from RCU critical section */
357 static MemoryRegionSection
*
358 address_space_translate_internal(AddressSpaceDispatch
*d
, hwaddr addr
, hwaddr
*xlat
,
359 hwaddr
*plen
, bool resolve_subpage
)
361 MemoryRegionSection
*section
;
365 section
= address_space_lookup_region(d
, addr
, resolve_subpage
);
366 /* Compute offset within MemoryRegionSection */
367 addr
-= section
->offset_within_address_space
;
369 /* Compute offset within MemoryRegion */
370 *xlat
= addr
+ section
->offset_within_region
;
374 /* MMIO registers can be expected to perform full-width accesses based only
375 * on their address, without considering adjacent registers that could
376 * decode to completely different MemoryRegions. When such registers
377 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
378 * regions overlap wildly. For this reason we cannot clamp the accesses
381 * If the length is small (as is the case for address_space_ldl/stl),
382 * everything works fine. If the incoming length is large, however,
383 * the caller really has to do the clamping through memory_access_size.
385 if (memory_region_is_ram(mr
)) {
386 diff
= int128_sub(section
->size
, int128_make64(addr
));
387 *plen
= int128_get64(int128_min(diff
, int128_make64(*plen
)));
392 /* Called from RCU critical section */
393 MemoryRegion
*address_space_translate(AddressSpace
*as
, hwaddr addr
,
394 hwaddr
*xlat
, hwaddr
*plen
,
398 MemoryRegionSection
*section
;
402 AddressSpaceDispatch
*d
= atomic_rcu_read(&as
->dispatch
);
403 section
= address_space_translate_internal(d
, addr
, &addr
, plen
, true);
406 if (!mr
->iommu_ops
) {
410 iotlb
= mr
->iommu_ops
->translate(mr
, addr
, is_write
);
411 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
412 | (addr
& iotlb
.addr_mask
));
413 *plen
= MIN(*plen
, (addr
| iotlb
.addr_mask
) - addr
+ 1);
414 if (!(iotlb
.perm
& (1 << is_write
))) {
415 mr
= &io_mem_unassigned
;
419 as
= iotlb
.target_as
;
422 if (xen_enabled() && memory_access_is_direct(mr
, is_write
)) {
423 hwaddr page
= ((addr
& TARGET_PAGE_MASK
) + TARGET_PAGE_SIZE
) - addr
;
424 *plen
= MIN(page
, *plen
);
431 /* Called from RCU critical section */
432 MemoryRegionSection
*
433 address_space_translate_for_iotlb(CPUState
*cpu
, int asidx
, hwaddr addr
,
434 hwaddr
*xlat
, hwaddr
*plen
)
436 MemoryRegionSection
*section
;
437 AddressSpaceDispatch
*d
= cpu
->cpu_ases
[asidx
].memory_dispatch
;
439 section
= address_space_translate_internal(d
, addr
, xlat
, plen
, false);
441 assert(!section
->mr
->iommu_ops
);
446 #if !defined(CONFIG_USER_ONLY)
448 static int cpu_common_post_load(void *opaque
, int version_id
)
450 CPUState
*cpu
= opaque
;
452 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
453 version_id is increased. */
454 cpu
->interrupt_request
&= ~0x01;
460 static int cpu_common_pre_load(void *opaque
)
462 CPUState
*cpu
= opaque
;
464 cpu
->exception_index
= -1;
469 static bool cpu_common_exception_index_needed(void *opaque
)
471 CPUState
*cpu
= opaque
;
473 return tcg_enabled() && cpu
->exception_index
!= -1;
476 static const VMStateDescription vmstate_cpu_common_exception_index
= {
477 .name
= "cpu_common/exception_index",
479 .minimum_version_id
= 1,
480 .needed
= cpu_common_exception_index_needed
,
481 .fields
= (VMStateField
[]) {
482 VMSTATE_INT32(exception_index
, CPUState
),
483 VMSTATE_END_OF_LIST()
487 static bool cpu_common_crash_occurred_needed(void *opaque
)
489 CPUState
*cpu
= opaque
;
491 return cpu
->crash_occurred
;
494 static const VMStateDescription vmstate_cpu_common_crash_occurred
= {
495 .name
= "cpu_common/crash_occurred",
497 .minimum_version_id
= 1,
498 .needed
= cpu_common_crash_occurred_needed
,
499 .fields
= (VMStateField
[]) {
500 VMSTATE_BOOL(crash_occurred
, CPUState
),
501 VMSTATE_END_OF_LIST()
505 const VMStateDescription vmstate_cpu_common
= {
506 .name
= "cpu_common",
508 .minimum_version_id
= 1,
509 .pre_load
= cpu_common_pre_load
,
510 .post_load
= cpu_common_post_load
,
511 .fields
= (VMStateField
[]) {
512 VMSTATE_UINT32(halted
, CPUState
),
513 VMSTATE_UINT32(interrupt_request
, CPUState
),
514 VMSTATE_END_OF_LIST()
516 .subsections
= (const VMStateDescription
*[]) {
517 &vmstate_cpu_common_exception_index
,
518 &vmstate_cpu_common_crash_occurred
,
525 CPUState
*qemu_get_cpu(int index
)
530 if (cpu
->cpu_index
== index
) {
538 #if !defined(CONFIG_USER_ONLY)
539 void cpu_address_space_init(CPUState
*cpu
, AddressSpace
*as
, int asidx
)
541 CPUAddressSpace
*newas
;
543 /* Target code should have set num_ases before calling us */
544 assert(asidx
< cpu
->num_ases
);
547 /* address space 0 gets the convenience alias */
551 /* KVM cannot currently support multiple address spaces. */
552 assert(asidx
== 0 || !kvm_enabled());
554 if (!cpu
->cpu_ases
) {
555 cpu
->cpu_ases
= g_new0(CPUAddressSpace
, cpu
->num_ases
);
558 newas
= &cpu
->cpu_ases
[asidx
];
562 newas
->tcg_as_listener
.commit
= tcg_commit
;
563 memory_listener_register(&newas
->tcg_as_listener
, as
);
567 AddressSpace
*cpu_get_address_space(CPUState
*cpu
, int asidx
)
569 /* Return the AddressSpace corresponding to the specified index */
570 return cpu
->cpu_ases
[asidx
].as
;
574 #ifndef CONFIG_USER_ONLY
575 static DECLARE_BITMAP(cpu_index_map
, MAX_CPUMASK_BITS
);
577 static int cpu_get_free_index(Error
**errp
)
579 int cpu
= find_first_zero_bit(cpu_index_map
, MAX_CPUMASK_BITS
);
581 if (cpu
>= MAX_CPUMASK_BITS
) {
582 error_setg(errp
, "Trying to use more CPUs than max of %d",
587 bitmap_set(cpu_index_map
, cpu
, 1);
591 void cpu_exec_exit(CPUState
*cpu
)
593 if (cpu
->cpu_index
== -1) {
594 /* cpu_index was never allocated by this @cpu or was already freed. */
598 bitmap_clear(cpu_index_map
, cpu
->cpu_index
, 1);
603 static int cpu_get_free_index(Error
**errp
)
608 CPU_FOREACH(some_cpu
) {
614 void cpu_exec_exit(CPUState
*cpu
)
619 void cpu_exec_init(CPUState
*cpu
, Error
**errp
)
621 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
623 Error
*local_err
= NULL
;
628 #ifndef CONFIG_USER_ONLY
629 cpu
->thread_id
= qemu_get_thread_id();
631 /* This is a softmmu CPU object, so create a property for it
632 * so users can wire up its memory. (This can't go in qom/cpu.c
633 * because that file is compiled only once for both user-mode
634 * and system builds.) The default if no link is set up is to use
635 * the system address space.
637 object_property_add_link(OBJECT(cpu
), "memory", TYPE_MEMORY_REGION
,
638 (Object
**)&cpu
->memory
,
639 qdev_prop_allow_set_link_before_realize
,
640 OBJ_PROP_LINK_UNREF_ON_RELEASE
,
642 cpu
->memory
= system_memory
;
643 object_ref(OBJECT(cpu
->memory
));
646 #if defined(CONFIG_USER_ONLY)
649 cpu_index
= cpu
->cpu_index
= cpu_get_free_index(&local_err
);
651 error_propagate(errp
, local_err
);
652 #if defined(CONFIG_USER_ONLY)
657 QTAILQ_INSERT_TAIL(&cpus
, cpu
, node
);
658 #if defined(CONFIG_USER_ONLY)
661 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
662 vmstate_register(NULL
, cpu_index
, &vmstate_cpu_common
, cpu
);
664 if (cc
->vmsd
!= NULL
) {
665 vmstate_register(NULL
, cpu_index
, cc
->vmsd
, cpu
);
669 #if defined(CONFIG_USER_ONLY)
670 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
672 tb_invalidate_phys_page_range(pc
, pc
+ 1, 0);
675 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
678 hwaddr phys
= cpu_get_phys_page_attrs_debug(cpu
, pc
, &attrs
);
679 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
681 tb_invalidate_phys_addr(cpu
->cpu_ases
[asidx
].as
,
682 phys
| (pc
& ~TARGET_PAGE_MASK
));
687 #if defined(CONFIG_USER_ONLY)
688 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
693 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
699 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
703 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
704 int flags
, CPUWatchpoint
**watchpoint
)
709 /* Add a watchpoint. */
710 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
711 int flags
, CPUWatchpoint
**watchpoint
)
715 /* forbid ranges which are empty or run off the end of the address space */
716 if (len
== 0 || (addr
+ len
- 1) < addr
) {
717 error_report("tried to set invalid watchpoint at %"
718 VADDR_PRIx
", len=%" VADDR_PRIu
, addr
, len
);
721 wp
= g_malloc(sizeof(*wp
));
727 /* keep all GDB-injected watchpoints in front */
728 if (flags
& BP_GDB
) {
729 QTAILQ_INSERT_HEAD(&cpu
->watchpoints
, wp
, entry
);
731 QTAILQ_INSERT_TAIL(&cpu
->watchpoints
, wp
, entry
);
734 tlb_flush_page(cpu
, addr
);
741 /* Remove a specific watchpoint. */
742 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
747 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
748 if (addr
== wp
->vaddr
&& len
== wp
->len
749 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
750 cpu_watchpoint_remove_by_ref(cpu
, wp
);
757 /* Remove a specific watchpoint by reference. */
758 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
760 QTAILQ_REMOVE(&cpu
->watchpoints
, watchpoint
, entry
);
762 tlb_flush_page(cpu
, watchpoint
->vaddr
);
767 /* Remove all matching watchpoints. */
768 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
770 CPUWatchpoint
*wp
, *next
;
772 QTAILQ_FOREACH_SAFE(wp
, &cpu
->watchpoints
, entry
, next
) {
773 if (wp
->flags
& mask
) {
774 cpu_watchpoint_remove_by_ref(cpu
, wp
);
779 /* Return true if this watchpoint address matches the specified
780 * access (ie the address range covered by the watchpoint overlaps
781 * partially or completely with the address range covered by the
784 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint
*wp
,
788 /* We know the lengths are non-zero, but a little caution is
789 * required to avoid errors in the case where the range ends
790 * exactly at the top of the address space and so addr + len
791 * wraps round to zero.
793 vaddr wpend
= wp
->vaddr
+ wp
->len
- 1;
794 vaddr addrend
= addr
+ len
- 1;
796 return !(addr
> wpend
|| wp
->vaddr
> addrend
);
801 /* Add a breakpoint. */
802 int cpu_breakpoint_insert(CPUState
*cpu
, vaddr pc
, int flags
,
803 CPUBreakpoint
**breakpoint
)
807 bp
= g_malloc(sizeof(*bp
));
812 /* keep all GDB-injected breakpoints in front */
813 if (flags
& BP_GDB
) {
814 QTAILQ_INSERT_HEAD(&cpu
->breakpoints
, bp
, entry
);
816 QTAILQ_INSERT_TAIL(&cpu
->breakpoints
, bp
, entry
);
819 breakpoint_invalidate(cpu
, pc
);
827 /* Remove a specific breakpoint. */
828 int cpu_breakpoint_remove(CPUState
*cpu
, vaddr pc
, int flags
)
832 QTAILQ_FOREACH(bp
, &cpu
->breakpoints
, entry
) {
833 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
834 cpu_breakpoint_remove_by_ref(cpu
, bp
);
841 /* Remove a specific breakpoint by reference. */
842 void cpu_breakpoint_remove_by_ref(CPUState
*cpu
, CPUBreakpoint
*breakpoint
)
844 QTAILQ_REMOVE(&cpu
->breakpoints
, breakpoint
, entry
);
846 breakpoint_invalidate(cpu
, breakpoint
->pc
);
851 /* Remove all matching breakpoints. */
852 void cpu_breakpoint_remove_all(CPUState
*cpu
, int mask
)
854 CPUBreakpoint
*bp
, *next
;
856 QTAILQ_FOREACH_SAFE(bp
, &cpu
->breakpoints
, entry
, next
) {
857 if (bp
->flags
& mask
) {
858 cpu_breakpoint_remove_by_ref(cpu
, bp
);
863 /* enable or disable single step mode. EXCP_DEBUG is returned by the
864 CPU loop after each instruction */
865 void cpu_single_step(CPUState
*cpu
, int enabled
)
867 if (cpu
->singlestep_enabled
!= enabled
) {
868 cpu
->singlestep_enabled
= enabled
;
870 kvm_update_guest_debug(cpu
, 0);
872 /* must flush all the translated code to avoid inconsistencies */
873 /* XXX: only flush what is necessary */
879 void cpu_abort(CPUState
*cpu
, const char *fmt
, ...)
886 fprintf(stderr
, "qemu: fatal: ");
887 vfprintf(stderr
, fmt
, ap
);
888 fprintf(stderr
, "\n");
889 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
890 if (qemu_log_separate()) {
891 qemu_log("qemu: fatal: ");
892 qemu_log_vprintf(fmt
, ap2
);
894 log_cpu_state(cpu
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
901 #if defined(CONFIG_USER_ONLY)
903 struct sigaction act
;
904 sigfillset(&act
.sa_mask
);
905 act
.sa_handler
= SIG_DFL
;
906 sigaction(SIGABRT
, &act
, NULL
);
912 #if !defined(CONFIG_USER_ONLY)
913 /* Called from RCU critical section */
914 static RAMBlock
*qemu_get_ram_block(ram_addr_t addr
)
918 block
= atomic_rcu_read(&ram_list
.mru_block
);
919 if (block
&& addr
- block
->offset
< block
->max_length
) {
922 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
923 if (addr
- block
->offset
< block
->max_length
) {
928 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
932 /* It is safe to write mru_block outside the iothread lock. This
937 * xxx removed from list
941 * call_rcu(reclaim_ramblock, xxx);
944 * atomic_rcu_set is not needed here. The block was already published
945 * when it was placed into the list. Here we're just making an extra
946 * copy of the pointer.
948 ram_list
.mru_block
= block
;
952 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t length
)
959 end
= TARGET_PAGE_ALIGN(start
+ length
);
960 start
&= TARGET_PAGE_MASK
;
963 block
= qemu_get_ram_block(start
);
964 assert(block
== qemu_get_ram_block(end
- 1));
965 start1
= (uintptr_t)ramblock_ptr(block
, start
- block
->offset
);
967 tlb_reset_dirty(cpu
, start1
, length
);
972 /* Note: start and end must be within the same ram block. */
973 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start
,
977 DirtyMemoryBlocks
*blocks
;
978 unsigned long end
, page
;
985 end
= TARGET_PAGE_ALIGN(start
+ length
) >> TARGET_PAGE_BITS
;
986 page
= start
>> TARGET_PAGE_BITS
;
990 blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[client
]);
993 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
994 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
995 unsigned long num
= MIN(end
- page
, DIRTY_MEMORY_BLOCK_SIZE
- offset
);
997 dirty
|= bitmap_test_and_clear_atomic(blocks
->blocks
[idx
],
1004 if (dirty
&& tcg_enabled()) {
1005 tlb_reset_dirty_range_all(start
, length
);
1011 /* Called from RCU critical section */
1012 hwaddr
memory_region_section_get_iotlb(CPUState
*cpu
,
1013 MemoryRegionSection
*section
,
1015 hwaddr paddr
, hwaddr xlat
,
1017 target_ulong
*address
)
1022 if (memory_region_is_ram(section
->mr
)) {
1024 iotlb
= (memory_region_get_ram_addr(section
->mr
) & TARGET_PAGE_MASK
)
1026 if (!section
->readonly
) {
1027 iotlb
|= PHYS_SECTION_NOTDIRTY
;
1029 iotlb
|= PHYS_SECTION_ROM
;
1032 AddressSpaceDispatch
*d
;
1034 d
= atomic_rcu_read(§ion
->address_space
->dispatch
);
1035 iotlb
= section
- d
->map
.sections
;
1039 /* Make accesses to pages with watchpoints go via the
1040 watchpoint trap routines. */
1041 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
1042 if (cpu_watchpoint_address_matches(wp
, vaddr
, TARGET_PAGE_SIZE
)) {
1043 /* Avoid trapping reads of pages with a write breakpoint. */
1044 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
1045 iotlb
= PHYS_SECTION_WATCH
+ paddr
;
1046 *address
|= TLB_MMIO
;
1054 #endif /* defined(CONFIG_USER_ONLY) */
1056 #if !defined(CONFIG_USER_ONLY)
1058 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1060 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
);
1062 static void *(*phys_mem_alloc
)(size_t size
, uint64_t *align
) =
1063 qemu_anon_ram_alloc
;
1066 * Set a custom physical guest memory alloator.
1067 * Accelerators with unusual needs may need this. Hopefully, we can
1068 * get rid of it eventually.
1070 void phys_mem_set_alloc(void *(*alloc
)(size_t, uint64_t *align
))
1072 phys_mem_alloc
= alloc
;
1075 static uint16_t phys_section_add(PhysPageMap
*map
,
1076 MemoryRegionSection
*section
)
1078 /* The physical section number is ORed with a page-aligned
1079 * pointer to produce the iotlb entries. Thus it should
1080 * never overflow into the page-aligned value.
1082 assert(map
->sections_nb
< TARGET_PAGE_SIZE
);
1084 if (map
->sections_nb
== map
->sections_nb_alloc
) {
1085 map
->sections_nb_alloc
= MAX(map
->sections_nb_alloc
* 2, 16);
1086 map
->sections
= g_renew(MemoryRegionSection
, map
->sections
,
1087 map
->sections_nb_alloc
);
1089 map
->sections
[map
->sections_nb
] = *section
;
1090 memory_region_ref(section
->mr
);
1091 return map
->sections_nb
++;
1094 static void phys_section_destroy(MemoryRegion
*mr
)
1096 bool have_sub_page
= mr
->subpage
;
1098 memory_region_unref(mr
);
1100 if (have_sub_page
) {
1101 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
1102 object_unref(OBJECT(&subpage
->iomem
));
1107 static void phys_sections_free(PhysPageMap
*map
)
1109 while (map
->sections_nb
> 0) {
1110 MemoryRegionSection
*section
= &map
->sections
[--map
->sections_nb
];
1111 phys_section_destroy(section
->mr
);
1113 g_free(map
->sections
);
1117 static void register_subpage(AddressSpaceDispatch
*d
, MemoryRegionSection
*section
)
1120 hwaddr base
= section
->offset_within_address_space
1122 MemoryRegionSection
*existing
= phys_page_find(d
->phys_map
, base
,
1123 d
->map
.nodes
, d
->map
.sections
);
1124 MemoryRegionSection subsection
= {
1125 .offset_within_address_space
= base
,
1126 .size
= int128_make64(TARGET_PAGE_SIZE
),
1130 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
1132 if (!(existing
->mr
->subpage
)) {
1133 subpage
= subpage_init(d
->as
, base
);
1134 subsection
.address_space
= d
->as
;
1135 subsection
.mr
= &subpage
->iomem
;
1136 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
1137 phys_section_add(&d
->map
, &subsection
));
1139 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
1141 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
1142 end
= start
+ int128_get64(section
->size
) - 1;
1143 subpage_register(subpage
, start
, end
,
1144 phys_section_add(&d
->map
, section
));
1148 static void register_multipage(AddressSpaceDispatch
*d
,
1149 MemoryRegionSection
*section
)
1151 hwaddr start_addr
= section
->offset_within_address_space
;
1152 uint16_t section_index
= phys_section_add(&d
->map
, section
);
1153 uint64_t num_pages
= int128_get64(int128_rshift(section
->size
,
1157 phys_page_set(d
, start_addr
>> TARGET_PAGE_BITS
, num_pages
, section_index
);
1160 static void mem_add(MemoryListener
*listener
, MemoryRegionSection
*section
)
1162 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
1163 AddressSpaceDispatch
*d
= as
->next_dispatch
;
1164 MemoryRegionSection now
= *section
, remain
= *section
;
1165 Int128 page_size
= int128_make64(TARGET_PAGE_SIZE
);
1167 if (now
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1168 uint64_t left
= TARGET_PAGE_ALIGN(now
.offset_within_address_space
)
1169 - now
.offset_within_address_space
;
1171 now
.size
= int128_min(int128_make64(left
), now
.size
);
1172 register_subpage(d
, &now
);
1174 now
.size
= int128_zero();
1176 while (int128_ne(remain
.size
, now
.size
)) {
1177 remain
.size
= int128_sub(remain
.size
, now
.size
);
1178 remain
.offset_within_address_space
+= int128_get64(now
.size
);
1179 remain
.offset_within_region
+= int128_get64(now
.size
);
1181 if (int128_lt(remain
.size
, page_size
)) {
1182 register_subpage(d
, &now
);
1183 } else if (remain
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1184 now
.size
= page_size
;
1185 register_subpage(d
, &now
);
1187 now
.size
= int128_and(now
.size
, int128_neg(page_size
));
1188 register_multipage(d
, &now
);
1193 void qemu_flush_coalesced_mmio_buffer(void)
1196 kvm_flush_coalesced_mmio_buffer();
1199 void qemu_mutex_lock_ramlist(void)
1201 qemu_mutex_lock(&ram_list
.mutex
);
1204 void qemu_mutex_unlock_ramlist(void)
1206 qemu_mutex_unlock(&ram_list
.mutex
);
1211 #include <sys/vfs.h>
1213 #define HUGETLBFS_MAGIC 0x958458f6
1215 static long gethugepagesize(const char *path
, Error
**errp
)
1221 ret
= statfs(path
, &fs
);
1222 } while (ret
!= 0 && errno
== EINTR
);
1225 error_setg_errno(errp
, errno
, "failed to get page size of file %s",
1233 static void *file_ram_alloc(RAMBlock
*block
,
1240 char *sanitized_name
;
1245 Error
*local_err
= NULL
;
1247 hpagesize
= gethugepagesize(path
, &local_err
);
1249 error_propagate(errp
, local_err
);
1252 block
->mr
->align
= hpagesize
;
1254 if (memory
< hpagesize
) {
1255 error_setg(errp
, "memory size 0x" RAM_ADDR_FMT
" must be equal to "
1256 "or larger than huge page size 0x%" PRIx64
,
1261 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1263 "host lacks kvm mmu notifiers, -mem-path unsupported");
1267 if (!stat(path
, &st
) && S_ISDIR(st
.st_mode
)) {
1268 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1269 sanitized_name
= g_strdup(memory_region_name(block
->mr
));
1270 for (c
= sanitized_name
; *c
!= '\0'; c
++) {
1276 filename
= g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path
,
1278 g_free(sanitized_name
);
1280 fd
= mkstemp(filename
);
1286 fd
= open(path
, O_RDWR
| O_CREAT
, 0644);
1290 error_setg_errno(errp
, errno
,
1291 "unable to create backing store for hugepages");
1295 memory
= ROUND_UP(memory
, hpagesize
);
1298 * ftruncate is not supported by hugetlbfs in older
1299 * hosts, so don't bother bailing out on errors.
1300 * If anything goes wrong with it under other filesystems,
1303 if (ftruncate(fd
, memory
)) {
1304 perror("ftruncate");
1307 area
= qemu_ram_mmap(fd
, memory
, hpagesize
, block
->flags
& RAM_SHARED
);
1308 if (area
== MAP_FAILED
) {
1309 error_setg_errno(errp
, errno
,
1310 "unable to map backing store for hugepages");
1316 os_mem_prealloc(fd
, area
, memory
);
1327 /* Called with the ramlist lock held. */
1328 static ram_addr_t
find_ram_offset(ram_addr_t size
)
1330 RAMBlock
*block
, *next_block
;
1331 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
1333 assert(size
!= 0); /* it would hand out same offset multiple times */
1335 if (QLIST_EMPTY_RCU(&ram_list
.blocks
)) {
1339 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1340 ram_addr_t end
, next
= RAM_ADDR_MAX
;
1342 end
= block
->offset
+ block
->max_length
;
1344 QLIST_FOREACH_RCU(next_block
, &ram_list
.blocks
, next
) {
1345 if (next_block
->offset
>= end
) {
1346 next
= MIN(next
, next_block
->offset
);
1349 if (next
- end
>= size
&& next
- end
< mingap
) {
1351 mingap
= next
- end
;
1355 if (offset
== RAM_ADDR_MAX
) {
1356 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
1364 ram_addr_t
last_ram_offset(void)
1367 ram_addr_t last
= 0;
1370 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1371 last
= MAX(last
, block
->offset
+ block
->max_length
);
1377 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
1381 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1382 if (!machine_dump_guest_core(current_machine
)) {
1383 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
1385 perror("qemu_madvise");
1386 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
1387 "but dump_guest_core=off specified\n");
1392 /* Called within an RCU critical section, or while the ramlist lock
1395 static RAMBlock
*find_ram_block(ram_addr_t addr
)
1399 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1400 if (block
->offset
== addr
) {
1408 const char *qemu_ram_get_idstr(RAMBlock
*rb
)
1413 /* Called with iothread lock held. */
1414 void qemu_ram_set_idstr(ram_addr_t addr
, const char *name
, DeviceState
*dev
)
1416 RAMBlock
*new_block
, *block
;
1419 new_block
= find_ram_block(addr
);
1421 assert(!new_block
->idstr
[0]);
1424 char *id
= qdev_get_dev_path(dev
);
1426 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
1430 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
1432 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1433 if (block
!= new_block
&& !strcmp(block
->idstr
, new_block
->idstr
)) {
1434 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
1442 /* Called with iothread lock held. */
1443 void qemu_ram_unset_idstr(ram_addr_t addr
)
1447 /* FIXME: arch_init.c assumes that this is not called throughout
1448 * migration. Ignore the problem since hot-unplug during migration
1449 * does not work anyway.
1453 block
= find_ram_block(addr
);
1455 memset(block
->idstr
, 0, sizeof(block
->idstr
));
1460 static int memory_try_enable_merging(void *addr
, size_t len
)
1462 if (!machine_mem_merge(current_machine
)) {
1463 /* disabled by the user */
1467 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
1470 /* Only legal before guest might have detected the memory size: e.g. on
1471 * incoming migration, or right after reset.
1473 * As memory core doesn't know how is memory accessed, it is up to
1474 * resize callback to update device state and/or add assertions to detect
1475 * misuse, if necessary.
1477 int qemu_ram_resize(ram_addr_t base
, ram_addr_t newsize
, Error
**errp
)
1479 RAMBlock
*block
= find_ram_block(base
);
1483 newsize
= HOST_PAGE_ALIGN(newsize
);
1485 if (block
->used_length
== newsize
) {
1489 if (!(block
->flags
& RAM_RESIZEABLE
)) {
1490 error_setg_errno(errp
, EINVAL
,
1491 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1492 " in != 0x" RAM_ADDR_FMT
, block
->idstr
,
1493 newsize
, block
->used_length
);
1497 if (block
->max_length
< newsize
) {
1498 error_setg_errno(errp
, EINVAL
,
1499 "Length too large: %s: 0x" RAM_ADDR_FMT
1500 " > 0x" RAM_ADDR_FMT
, block
->idstr
,
1501 newsize
, block
->max_length
);
1505 cpu_physical_memory_clear_dirty_range(block
->offset
, block
->used_length
);
1506 block
->used_length
= newsize
;
1507 cpu_physical_memory_set_dirty_range(block
->offset
, block
->used_length
,
1509 memory_region_set_size(block
->mr
, newsize
);
1510 if (block
->resized
) {
1511 block
->resized(block
->idstr
, newsize
, block
->host
);
1516 /* Called with ram_list.mutex held */
1517 static void dirty_memory_extend(ram_addr_t old_ram_size
,
1518 ram_addr_t new_ram_size
)
1520 ram_addr_t old_num_blocks
= DIV_ROUND_UP(old_ram_size
,
1521 DIRTY_MEMORY_BLOCK_SIZE
);
1522 ram_addr_t new_num_blocks
= DIV_ROUND_UP(new_ram_size
,
1523 DIRTY_MEMORY_BLOCK_SIZE
);
1526 /* Only need to extend if block count increased */
1527 if (new_num_blocks
<= old_num_blocks
) {
1531 for (i
= 0; i
< DIRTY_MEMORY_NUM
; i
++) {
1532 DirtyMemoryBlocks
*old_blocks
;
1533 DirtyMemoryBlocks
*new_blocks
;
1536 old_blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[i
]);
1537 new_blocks
= g_malloc(sizeof(*new_blocks
) +
1538 sizeof(new_blocks
->blocks
[0]) * new_num_blocks
);
1540 if (old_num_blocks
) {
1541 memcpy(new_blocks
->blocks
, old_blocks
->blocks
,
1542 old_num_blocks
* sizeof(old_blocks
->blocks
[0]));
1545 for (j
= old_num_blocks
; j
< new_num_blocks
; j
++) {
1546 new_blocks
->blocks
[j
] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE
);
1549 atomic_rcu_set(&ram_list
.dirty_memory
[i
], new_blocks
);
1552 g_free_rcu(old_blocks
, rcu
);
1557 static ram_addr_t
ram_block_add(RAMBlock
*new_block
, Error
**errp
)
1560 RAMBlock
*last_block
= NULL
;
1561 ram_addr_t old_ram_size
, new_ram_size
;
1564 old_ram_size
= last_ram_offset() >> TARGET_PAGE_BITS
;
1566 qemu_mutex_lock_ramlist();
1567 new_block
->offset
= find_ram_offset(new_block
->max_length
);
1569 if (!new_block
->host
) {
1570 if (xen_enabled()) {
1571 xen_ram_alloc(new_block
->offset
, new_block
->max_length
,
1572 new_block
->mr
, &err
);
1574 error_propagate(errp
, err
);
1575 qemu_mutex_unlock_ramlist();
1579 new_block
->host
= phys_mem_alloc(new_block
->max_length
,
1580 &new_block
->mr
->align
);
1581 if (!new_block
->host
) {
1582 error_setg_errno(errp
, errno
,
1583 "cannot set up guest memory '%s'",
1584 memory_region_name(new_block
->mr
));
1585 qemu_mutex_unlock_ramlist();
1588 memory_try_enable_merging(new_block
->host
, new_block
->max_length
);
1592 new_ram_size
= MAX(old_ram_size
,
1593 (new_block
->offset
+ new_block
->max_length
) >> TARGET_PAGE_BITS
);
1594 if (new_ram_size
> old_ram_size
) {
1595 migration_bitmap_extend(old_ram_size
, new_ram_size
);
1596 dirty_memory_extend(old_ram_size
, new_ram_size
);
1598 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1599 * QLIST (which has an RCU-friendly variant) does not have insertion at
1600 * tail, so save the last element in last_block.
1602 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1604 if (block
->max_length
< new_block
->max_length
) {
1609 QLIST_INSERT_BEFORE_RCU(block
, new_block
, next
);
1610 } else if (last_block
) {
1611 QLIST_INSERT_AFTER_RCU(last_block
, new_block
, next
);
1612 } else { /* list is empty */
1613 QLIST_INSERT_HEAD_RCU(&ram_list
.blocks
, new_block
, next
);
1615 ram_list
.mru_block
= NULL
;
1617 /* Write list before version */
1620 qemu_mutex_unlock_ramlist();
1622 cpu_physical_memory_set_dirty_range(new_block
->offset
,
1623 new_block
->used_length
,
1626 if (new_block
->host
) {
1627 qemu_ram_setup_dump(new_block
->host
, new_block
->max_length
);
1628 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_HUGEPAGE
);
1629 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_DONTFORK
);
1630 if (kvm_enabled()) {
1631 kvm_setup_guest_memory(new_block
->host
, new_block
->max_length
);
1635 return new_block
->offset
;
1639 ram_addr_t
qemu_ram_alloc_from_file(ram_addr_t size
, MemoryRegion
*mr
,
1640 bool share
, const char *mem_path
,
1643 RAMBlock
*new_block
;
1645 Error
*local_err
= NULL
;
1647 if (xen_enabled()) {
1648 error_setg(errp
, "-mem-path not supported with Xen");
1652 if (phys_mem_alloc
!= qemu_anon_ram_alloc
) {
1654 * file_ram_alloc() needs to allocate just like
1655 * phys_mem_alloc, but we haven't bothered to provide
1659 "-mem-path not supported with this accelerator");
1663 size
= HOST_PAGE_ALIGN(size
);
1664 new_block
= g_malloc0(sizeof(*new_block
));
1666 new_block
->used_length
= size
;
1667 new_block
->max_length
= size
;
1668 new_block
->flags
= share
? RAM_SHARED
: 0;
1669 new_block
->host
= file_ram_alloc(new_block
, size
,
1671 if (!new_block
->host
) {
1676 addr
= ram_block_add(new_block
, &local_err
);
1679 error_propagate(errp
, local_err
);
1687 ram_addr_t
qemu_ram_alloc_internal(ram_addr_t size
, ram_addr_t max_size
,
1688 void (*resized
)(const char*,
1691 void *host
, bool resizeable
,
1692 MemoryRegion
*mr
, Error
**errp
)
1694 RAMBlock
*new_block
;
1696 Error
*local_err
= NULL
;
1698 size
= HOST_PAGE_ALIGN(size
);
1699 max_size
= HOST_PAGE_ALIGN(max_size
);
1700 new_block
= g_malloc0(sizeof(*new_block
));
1702 new_block
->resized
= resized
;
1703 new_block
->used_length
= size
;
1704 new_block
->max_length
= max_size
;
1705 assert(max_size
>= size
);
1707 new_block
->host
= host
;
1709 new_block
->flags
|= RAM_PREALLOC
;
1712 new_block
->flags
|= RAM_RESIZEABLE
;
1714 addr
= ram_block_add(new_block
, &local_err
);
1717 error_propagate(errp
, local_err
);
1721 mr
->ram_block
= new_block
;
1725 ram_addr_t
qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
1726 MemoryRegion
*mr
, Error
**errp
)
1728 return qemu_ram_alloc_internal(size
, size
, NULL
, host
, false, mr
, errp
);
1731 ram_addr_t
qemu_ram_alloc(ram_addr_t size
, MemoryRegion
*mr
, Error
**errp
)
1733 return qemu_ram_alloc_internal(size
, size
, NULL
, NULL
, false, mr
, errp
);
1736 ram_addr_t
qemu_ram_alloc_resizeable(ram_addr_t size
, ram_addr_t maxsz
,
1737 void (*resized
)(const char*,
1740 MemoryRegion
*mr
, Error
**errp
)
1742 return qemu_ram_alloc_internal(size
, maxsz
, resized
, NULL
, true, mr
, errp
);
1745 static void reclaim_ramblock(RAMBlock
*block
)
1747 if (block
->flags
& RAM_PREALLOC
) {
1749 } else if (xen_enabled()) {
1750 xen_invalidate_map_cache_entry(block
->host
);
1752 } else if (block
->fd
>= 0) {
1753 qemu_ram_munmap(block
->host
, block
->max_length
);
1757 qemu_anon_ram_free(block
->host
, block
->max_length
);
1762 void qemu_ram_free(ram_addr_t addr
)
1766 qemu_mutex_lock_ramlist();
1767 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1768 if (addr
== block
->offset
) {
1769 QLIST_REMOVE_RCU(block
, next
);
1770 ram_list
.mru_block
= NULL
;
1771 /* Write list before version */
1774 call_rcu(block
, reclaim_ramblock
, rcu
);
1778 qemu_mutex_unlock_ramlist();
1782 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
1789 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1790 offset
= addr
- block
->offset
;
1791 if (offset
< block
->max_length
) {
1792 vaddr
= ramblock_ptr(block
, offset
);
1793 if (block
->flags
& RAM_PREALLOC
) {
1795 } else if (xen_enabled()) {
1799 if (block
->fd
>= 0) {
1800 flags
|= (block
->flags
& RAM_SHARED
?
1801 MAP_SHARED
: MAP_PRIVATE
);
1802 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1803 flags
, block
->fd
, offset
);
1806 * Remap needs to match alloc. Accelerators that
1807 * set phys_mem_alloc never remap. If they did,
1808 * we'd need a remap hook here.
1810 assert(phys_mem_alloc
== qemu_anon_ram_alloc
);
1812 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
1813 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1816 if (area
!= vaddr
) {
1817 fprintf(stderr
, "Could not remap addr: "
1818 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"\n",
1822 memory_try_enable_merging(vaddr
, length
);
1823 qemu_ram_setup_dump(vaddr
, length
);
1828 #endif /* !_WIN32 */
1830 int qemu_get_ram_fd(ram_addr_t addr
)
1836 block
= qemu_get_ram_block(addr
);
1842 void qemu_set_ram_fd(ram_addr_t addr
, int fd
)
1847 block
= qemu_get_ram_block(addr
);
1852 void *qemu_get_ram_block_host_ptr(ram_addr_t addr
)
1858 block
= qemu_get_ram_block(addr
);
1859 ptr
= ramblock_ptr(block
, 0);
1864 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1865 * This should not be used for general purpose DMA. Use address_space_map
1866 * or address_space_rw instead. For local memory (e.g. video ram) that the
1867 * device owns, use memory_region_get_ram_ptr.
1869 * Called within RCU critical section.
1871 void *qemu_get_ram_ptr(RAMBlock
*ram_block
, ram_addr_t addr
)
1873 RAMBlock
*block
= ram_block
;
1875 if (block
== NULL
) {
1876 block
= qemu_get_ram_block(addr
);
1879 if (xen_enabled() && block
->host
== NULL
) {
1880 /* We need to check if the requested address is in the RAM
1881 * because we don't want to map the entire memory in QEMU.
1882 * In that case just map until the end of the page.
1884 if (block
->offset
== 0) {
1885 return xen_map_cache(addr
, 0, 0);
1888 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1);
1890 return ramblock_ptr(block
, addr
- block
->offset
);
1893 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1894 * but takes a size argument.
1896 * Called within RCU critical section.
1898 static void *qemu_ram_ptr_length(RAMBlock
*ram_block
, ram_addr_t addr
,
1901 RAMBlock
*block
= ram_block
;
1902 ram_addr_t offset_inside_block
;
1907 if (block
== NULL
) {
1908 block
= qemu_get_ram_block(addr
);
1910 offset_inside_block
= addr
- block
->offset
;
1911 *size
= MIN(*size
, block
->max_length
- offset_inside_block
);
1913 if (xen_enabled() && block
->host
== NULL
) {
1914 /* We need to check if the requested address is in the RAM
1915 * because we don't want to map the entire memory in QEMU.
1916 * In that case just map the requested area.
1918 if (block
->offset
== 0) {
1919 return xen_map_cache(addr
, *size
, 1);
1922 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1);
1925 return ramblock_ptr(block
, offset_inside_block
);
1929 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
1932 * ptr: Host pointer to look up
1933 * round_offset: If true round the result offset down to a page boundary
1934 * *ram_addr: set to result ram_addr
1935 * *offset: set to result offset within the RAMBlock
1937 * Returns: RAMBlock (or NULL if not found)
1939 * By the time this function returns, the returned pointer is not protected
1940 * by RCU anymore. If the caller is not within an RCU critical section and
1941 * does not hold the iothread lock, it must have other means of protecting the
1942 * pointer, such as a reference to the region that includes the incoming
1945 RAMBlock
*qemu_ram_block_from_host(void *ptr
, bool round_offset
,
1946 ram_addr_t
*ram_addr
,
1950 uint8_t *host
= ptr
;
1952 if (xen_enabled()) {
1954 *ram_addr
= xen_ram_addr_from_mapcache(ptr
);
1955 block
= qemu_get_ram_block(*ram_addr
);
1957 *offset
= (host
- block
->host
);
1964 block
= atomic_rcu_read(&ram_list
.mru_block
);
1965 if (block
&& block
->host
&& host
- block
->host
< block
->max_length
) {
1969 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1970 /* This case append when the block is not mapped. */
1971 if (block
->host
== NULL
) {
1974 if (host
- block
->host
< block
->max_length
) {
1983 *offset
= (host
- block
->host
);
1985 *offset
&= TARGET_PAGE_MASK
;
1987 *ram_addr
= block
->offset
+ *offset
;
1993 * Finds the named RAMBlock
1995 * name: The name of RAMBlock to find
1997 * Returns: RAMBlock (or NULL if not found)
1999 RAMBlock
*qemu_ram_block_by_name(const char *name
)
2003 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
2004 if (!strcmp(name
, block
->idstr
)) {
2012 /* Some of the softmmu routines need to translate from a host pointer
2013 (typically a TLB entry) back to a ram offset. */
2014 MemoryRegion
*qemu_ram_addr_from_host(void *ptr
, ram_addr_t
*ram_addr
)
2017 ram_addr_t offset
; /* Not used */
2019 block
= qemu_ram_block_from_host(ptr
, false, ram_addr
, &offset
);
2028 /* Called within RCU critical section. */
2029 static void notdirty_mem_write(void *opaque
, hwaddr ram_addr
,
2030 uint64_t val
, unsigned size
)
2032 if (!cpu_physical_memory_get_dirty_flag(ram_addr
, DIRTY_MEMORY_CODE
)) {
2033 tb_invalidate_phys_page_fast(ram_addr
, size
);
2037 stb_p(qemu_get_ram_ptr(NULL
, ram_addr
), val
);
2040 stw_p(qemu_get_ram_ptr(NULL
, ram_addr
), val
);
2043 stl_p(qemu_get_ram_ptr(NULL
, ram_addr
), val
);
2048 /* Set both VGA and migration bits for simplicity and to remove
2049 * the notdirty callback faster.
2051 cpu_physical_memory_set_dirty_range(ram_addr
, size
,
2052 DIRTY_CLIENTS_NOCODE
);
2053 /* we remove the notdirty callback only if the code has been
2055 if (!cpu_physical_memory_is_clean(ram_addr
)) {
2056 tlb_set_dirty(current_cpu
, current_cpu
->mem_io_vaddr
);
2060 static bool notdirty_mem_accepts(void *opaque
, hwaddr addr
,
2061 unsigned size
, bool is_write
)
2066 static const MemoryRegionOps notdirty_mem_ops
= {
2067 .write
= notdirty_mem_write
,
2068 .valid
.accepts
= notdirty_mem_accepts
,
2069 .endianness
= DEVICE_NATIVE_ENDIAN
,
2072 /* Generate a debug exception if a watchpoint has been hit. */
2073 static void check_watchpoint(int offset
, int len
, MemTxAttrs attrs
, int flags
)
2075 CPUState
*cpu
= current_cpu
;
2076 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
2077 CPUArchState
*env
= cpu
->env_ptr
;
2078 target_ulong pc
, cs_base
;
2083 if (cpu
->watchpoint_hit
) {
2084 /* We re-entered the check after replacing the TB. Now raise
2085 * the debug interrupt so that is will trigger after the
2086 * current instruction. */
2087 cpu_interrupt(cpu
, CPU_INTERRUPT_DEBUG
);
2090 vaddr
= (cpu
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
2091 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
2092 if (cpu_watchpoint_address_matches(wp
, vaddr
, len
)
2093 && (wp
->flags
& flags
)) {
2094 if (flags
== BP_MEM_READ
) {
2095 wp
->flags
|= BP_WATCHPOINT_HIT_READ
;
2097 wp
->flags
|= BP_WATCHPOINT_HIT_WRITE
;
2099 wp
->hitaddr
= vaddr
;
2100 wp
->hitattrs
= attrs
;
2101 if (!cpu
->watchpoint_hit
) {
2102 if (wp
->flags
& BP_CPU
&&
2103 !cc
->debug_check_watchpoint(cpu
, wp
)) {
2104 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2107 cpu
->watchpoint_hit
= wp
;
2108 tb_check_watchpoint(cpu
);
2109 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
2110 cpu
->exception_index
= EXCP_DEBUG
;
2113 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
2114 tb_gen_code(cpu
, pc
, cs_base
, cpu_flags
, 1);
2115 cpu_resume_from_signal(cpu
, NULL
);
2119 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2124 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2125 so these check for a hit then pass through to the normal out-of-line
2127 static MemTxResult
watch_mem_read(void *opaque
, hwaddr addr
, uint64_t *pdata
,
2128 unsigned size
, MemTxAttrs attrs
)
2132 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2133 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2135 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_READ
);
2138 data
= address_space_ldub(as
, addr
, attrs
, &res
);
2141 data
= address_space_lduw(as
, addr
, attrs
, &res
);
2144 data
= address_space_ldl(as
, addr
, attrs
, &res
);
2152 static MemTxResult
watch_mem_write(void *opaque
, hwaddr addr
,
2153 uint64_t val
, unsigned size
,
2157 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2158 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2160 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_WRITE
);
2163 address_space_stb(as
, addr
, val
, attrs
, &res
);
2166 address_space_stw(as
, addr
, val
, attrs
, &res
);
2169 address_space_stl(as
, addr
, val
, attrs
, &res
);
2176 static const MemoryRegionOps watch_mem_ops
= {
2177 .read_with_attrs
= watch_mem_read
,
2178 .write_with_attrs
= watch_mem_write
,
2179 .endianness
= DEVICE_NATIVE_ENDIAN
,
2182 static MemTxResult
subpage_read(void *opaque
, hwaddr addr
, uint64_t *data
,
2183 unsigned len
, MemTxAttrs attrs
)
2185 subpage_t
*subpage
= opaque
;
2189 #if defined(DEBUG_SUBPAGE)
2190 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
"\n", __func__
,
2191 subpage
, len
, addr
);
2193 res
= address_space_read(subpage
->as
, addr
+ subpage
->base
,
2200 *data
= ldub_p(buf
);
2203 *data
= lduw_p(buf
);
2216 static MemTxResult
subpage_write(void *opaque
, hwaddr addr
,
2217 uint64_t value
, unsigned len
, MemTxAttrs attrs
)
2219 subpage_t
*subpage
= opaque
;
2222 #if defined(DEBUG_SUBPAGE)
2223 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2224 " value %"PRIx64
"\n",
2225 __func__
, subpage
, len
, addr
, value
);
2243 return address_space_write(subpage
->as
, addr
+ subpage
->base
,
2247 static bool subpage_accepts(void *opaque
, hwaddr addr
,
2248 unsigned len
, bool is_write
)
2250 subpage_t
*subpage
= opaque
;
2251 #if defined(DEBUG_SUBPAGE)
2252 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx
"\n",
2253 __func__
, subpage
, is_write
? 'w' : 'r', len
, addr
);
2256 return address_space_access_valid(subpage
->as
, addr
+ subpage
->base
,
2260 static const MemoryRegionOps subpage_ops
= {
2261 .read_with_attrs
= subpage_read
,
2262 .write_with_attrs
= subpage_write
,
2263 .impl
.min_access_size
= 1,
2264 .impl
.max_access_size
= 8,
2265 .valid
.min_access_size
= 1,
2266 .valid
.max_access_size
= 8,
2267 .valid
.accepts
= subpage_accepts
,
2268 .endianness
= DEVICE_NATIVE_ENDIAN
,
2271 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2276 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
2278 idx
= SUBPAGE_IDX(start
);
2279 eidx
= SUBPAGE_IDX(end
);
2280 #if defined(DEBUG_SUBPAGE)
2281 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2282 __func__
, mmio
, start
, end
, idx
, eidx
, section
);
2284 for (; idx
<= eidx
; idx
++) {
2285 mmio
->sub_section
[idx
] = section
;
2291 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
)
2295 mmio
= g_malloc0(sizeof(subpage_t
));
2299 memory_region_init_io(&mmio
->iomem
, NULL
, &subpage_ops
, mmio
,
2300 NULL
, TARGET_PAGE_SIZE
);
2301 mmio
->iomem
.subpage
= true;
2302 #if defined(DEBUG_SUBPAGE)
2303 printf("%s: %p base " TARGET_FMT_plx
" len %08x\n", __func__
,
2304 mmio
, base
, TARGET_PAGE_SIZE
);
2306 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, PHYS_SECTION_UNASSIGNED
);
2311 static uint16_t dummy_section(PhysPageMap
*map
, AddressSpace
*as
,
2315 MemoryRegionSection section
= {
2316 .address_space
= as
,
2318 .offset_within_address_space
= 0,
2319 .offset_within_region
= 0,
2320 .size
= int128_2_64(),
2323 return phys_section_add(map
, §ion
);
2326 MemoryRegion
*iotlb_to_region(CPUState
*cpu
, hwaddr index
, MemTxAttrs attrs
)
2328 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
2329 CPUAddressSpace
*cpuas
= &cpu
->cpu_ases
[asidx
];
2330 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpuas
->memory_dispatch
);
2331 MemoryRegionSection
*sections
= d
->map
.sections
;
2333 return sections
[index
& ~TARGET_PAGE_MASK
].mr
;
2336 static void io_mem_init(void)
2338 memory_region_init_io(&io_mem_rom
, NULL
, &unassigned_mem_ops
, NULL
, NULL
, UINT64_MAX
);
2339 memory_region_init_io(&io_mem_unassigned
, NULL
, &unassigned_mem_ops
, NULL
,
2341 memory_region_init_io(&io_mem_notdirty
, NULL
, ¬dirty_mem_ops
, NULL
,
2343 memory_region_init_io(&io_mem_watch
, NULL
, &watch_mem_ops
, NULL
,
2347 static void mem_begin(MemoryListener
*listener
)
2349 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
2350 AddressSpaceDispatch
*d
= g_new0(AddressSpaceDispatch
, 1);
2353 n
= dummy_section(&d
->map
, as
, &io_mem_unassigned
);
2354 assert(n
== PHYS_SECTION_UNASSIGNED
);
2355 n
= dummy_section(&d
->map
, as
, &io_mem_notdirty
);
2356 assert(n
== PHYS_SECTION_NOTDIRTY
);
2357 n
= dummy_section(&d
->map
, as
, &io_mem_rom
);
2358 assert(n
== PHYS_SECTION_ROM
);
2359 n
= dummy_section(&d
->map
, as
, &io_mem_watch
);
2360 assert(n
== PHYS_SECTION_WATCH
);
2362 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .skip
= 1 };
2364 as
->next_dispatch
= d
;
2367 static void address_space_dispatch_free(AddressSpaceDispatch
*d
)
2369 phys_sections_free(&d
->map
);
2373 static void mem_commit(MemoryListener
*listener
)
2375 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
2376 AddressSpaceDispatch
*cur
= as
->dispatch
;
2377 AddressSpaceDispatch
*next
= as
->next_dispatch
;
2379 phys_page_compact_all(next
, next
->map
.nodes_nb
);
2381 atomic_rcu_set(&as
->dispatch
, next
);
2383 call_rcu(cur
, address_space_dispatch_free
, rcu
);
2387 static void tcg_commit(MemoryListener
*listener
)
2389 CPUAddressSpace
*cpuas
;
2390 AddressSpaceDispatch
*d
;
2392 /* since each CPU stores ram addresses in its TLB cache, we must
2393 reset the modified entries */
2394 cpuas
= container_of(listener
, CPUAddressSpace
, tcg_as_listener
);
2395 cpu_reloading_memory_map();
2396 /* The CPU and TLB are protected by the iothread lock.
2397 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2398 * may have split the RCU critical section.
2400 d
= atomic_rcu_read(&cpuas
->as
->dispatch
);
2401 cpuas
->memory_dispatch
= d
;
2402 tlb_flush(cpuas
->cpu
, 1);
2405 void address_space_init_dispatch(AddressSpace
*as
)
2407 as
->dispatch
= NULL
;
2408 as
->dispatch_listener
= (MemoryListener
) {
2410 .commit
= mem_commit
,
2411 .region_add
= mem_add
,
2412 .region_nop
= mem_add
,
2415 memory_listener_register(&as
->dispatch_listener
, as
);
2418 void address_space_unregister(AddressSpace
*as
)
2420 memory_listener_unregister(&as
->dispatch_listener
);
2423 void address_space_destroy_dispatch(AddressSpace
*as
)
2425 AddressSpaceDispatch
*d
= as
->dispatch
;
2427 atomic_rcu_set(&as
->dispatch
, NULL
);
2429 call_rcu(d
, address_space_dispatch_free
, rcu
);
2433 static void memory_map_init(void)
2435 system_memory
= g_malloc(sizeof(*system_memory
));
2437 memory_region_init(system_memory
, NULL
, "system", UINT64_MAX
);
2438 address_space_init(&address_space_memory
, system_memory
, "memory");
2440 system_io
= g_malloc(sizeof(*system_io
));
2441 memory_region_init_io(system_io
, NULL
, &unassigned_io_ops
, NULL
, "io",
2443 address_space_init(&address_space_io
, system_io
, "I/O");
2446 MemoryRegion
*get_system_memory(void)
2448 return system_memory
;
2451 MemoryRegion
*get_system_io(void)
2456 #endif /* !defined(CONFIG_USER_ONLY) */
2458 /* physical memory access (slow version, mainly for debug) */
2459 #if defined(CONFIG_USER_ONLY)
2460 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
2461 uint8_t *buf
, int len
, int is_write
)
2468 page
= addr
& TARGET_PAGE_MASK
;
2469 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2472 flags
= page_get_flags(page
);
2473 if (!(flags
& PAGE_VALID
))
2476 if (!(flags
& PAGE_WRITE
))
2478 /* XXX: this code should not depend on lock_user */
2479 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
2482 unlock_user(p
, addr
, l
);
2484 if (!(flags
& PAGE_READ
))
2486 /* XXX: this code should not depend on lock_user */
2487 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
2490 unlock_user(p
, addr
, 0);
2501 static void invalidate_and_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
2504 uint8_t dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
2505 /* No early return if dirty_log_mask is or becomes 0, because
2506 * cpu_physical_memory_set_dirty_range will still call
2507 * xen_modified_memory.
2509 if (dirty_log_mask
) {
2511 cpu_physical_memory_range_includes_clean(addr
, length
, dirty_log_mask
);
2513 if (dirty_log_mask
& (1 << DIRTY_MEMORY_CODE
)) {
2514 tb_invalidate_phys_range(addr
, addr
+ length
);
2515 dirty_log_mask
&= ~(1 << DIRTY_MEMORY_CODE
);
2517 cpu_physical_memory_set_dirty_range(addr
, length
, dirty_log_mask
);
2520 static int memory_access_size(MemoryRegion
*mr
, unsigned l
, hwaddr addr
)
2522 unsigned access_size_max
= mr
->ops
->valid
.max_access_size
;
2524 /* Regions are assumed to support 1-4 byte accesses unless
2525 otherwise specified. */
2526 if (access_size_max
== 0) {
2527 access_size_max
= 4;
2530 /* Bound the maximum access by the alignment of the address. */
2531 if (!mr
->ops
->impl
.unaligned
) {
2532 unsigned align_size_max
= addr
& -addr
;
2533 if (align_size_max
!= 0 && align_size_max
< access_size_max
) {
2534 access_size_max
= align_size_max
;
2538 /* Don't attempt accesses larger than the maximum. */
2539 if (l
> access_size_max
) {
2540 l
= access_size_max
;
2547 static bool prepare_mmio_access(MemoryRegion
*mr
)
2549 bool unlocked
= !qemu_mutex_iothread_locked();
2550 bool release_lock
= false;
2552 if (unlocked
&& mr
->global_locking
) {
2553 qemu_mutex_lock_iothread();
2555 release_lock
= true;
2557 if (mr
->flush_coalesced_mmio
) {
2559 qemu_mutex_lock_iothread();
2561 qemu_flush_coalesced_mmio_buffer();
2563 qemu_mutex_unlock_iothread();
2567 return release_lock
;
2570 /* Called within RCU critical section. */
2571 static MemTxResult
address_space_write_continue(AddressSpace
*as
, hwaddr addr
,
2574 int len
, hwaddr addr1
,
2575 hwaddr l
, MemoryRegion
*mr
)
2579 MemTxResult result
= MEMTX_OK
;
2580 bool release_lock
= false;
2583 if (!memory_access_is_direct(mr
, true)) {
2584 release_lock
|= prepare_mmio_access(mr
);
2585 l
= memory_access_size(mr
, l
, addr1
);
2586 /* XXX: could force current_cpu to NULL to avoid
2590 /* 64 bit write access */
2592 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 8,
2596 /* 32 bit write access */
2598 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 4,
2602 /* 16 bit write access */
2604 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 2,
2608 /* 8 bit write access */
2610 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 1,
2617 addr1
+= memory_region_get_ram_addr(mr
);
2619 ptr
= qemu_get_ram_ptr(mr
->ram_block
, addr1
);
2620 memcpy(ptr
, buf
, l
);
2621 invalidate_and_set_dirty(mr
, addr1
, l
);
2625 qemu_mutex_unlock_iothread();
2626 release_lock
= false;
2638 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2644 MemTxResult
address_space_write(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
2645 const uint8_t *buf
, int len
)
2650 MemTxResult result
= MEMTX_OK
;
2655 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2656 result
= address_space_write_continue(as
, addr
, attrs
, buf
, len
,
2664 /* Called within RCU critical section. */
2665 MemTxResult
address_space_read_continue(AddressSpace
*as
, hwaddr addr
,
2666 MemTxAttrs attrs
, uint8_t *buf
,
2667 int len
, hwaddr addr1
, hwaddr l
,
2672 MemTxResult result
= MEMTX_OK
;
2673 bool release_lock
= false;
2676 if (!memory_access_is_direct(mr
, false)) {
2678 release_lock
|= prepare_mmio_access(mr
);
2679 l
= memory_access_size(mr
, l
, addr1
);
2682 /* 64 bit read access */
2683 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 8,
2688 /* 32 bit read access */
2689 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 4,
2694 /* 16 bit read access */
2695 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 2,
2700 /* 8 bit read access */
2701 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 1,
2710 ptr
= qemu_get_ram_ptr(mr
->ram_block
, mr
->ram_addr
+ addr1
);
2711 memcpy(buf
, ptr
, l
);
2715 qemu_mutex_unlock_iothread();
2716 release_lock
= false;
2728 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
2734 MemTxResult
address_space_read_full(AddressSpace
*as
, hwaddr addr
,
2735 MemTxAttrs attrs
, uint8_t *buf
, int len
)
2740 MemTxResult result
= MEMTX_OK
;
2745 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
2746 result
= address_space_read_continue(as
, addr
, attrs
, buf
, len
,
2754 MemTxResult
address_space_rw(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
2755 uint8_t *buf
, int len
, bool is_write
)
2758 return address_space_write(as
, addr
, attrs
, (uint8_t *)buf
, len
);
2760 return address_space_read(as
, addr
, attrs
, (uint8_t *)buf
, len
);
2764 void cpu_physical_memory_rw(hwaddr addr
, uint8_t *buf
,
2765 int len
, int is_write
)
2767 address_space_rw(&address_space_memory
, addr
, MEMTXATTRS_UNSPECIFIED
,
2768 buf
, len
, is_write
);
2771 enum write_rom_type
{
2776 static inline void cpu_physical_memory_write_rom_internal(AddressSpace
*as
,
2777 hwaddr addr
, const uint8_t *buf
, int len
, enum write_rom_type type
)
2787 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2789 if (!(memory_region_is_ram(mr
) ||
2790 memory_region_is_romd(mr
))) {
2791 l
= memory_access_size(mr
, l
, addr1
);
2793 addr1
+= memory_region_get_ram_addr(mr
);
2795 ptr
= qemu_get_ram_ptr(mr
->ram_block
, addr1
);
2798 memcpy(ptr
, buf
, l
);
2799 invalidate_and_set_dirty(mr
, addr1
, l
);
2802 flush_icache_range((uintptr_t)ptr
, (uintptr_t)ptr
+ l
);
2813 /* used for ROM loading : can write in RAM and ROM */
2814 void cpu_physical_memory_write_rom(AddressSpace
*as
, hwaddr addr
,
2815 const uint8_t *buf
, int len
)
2817 cpu_physical_memory_write_rom_internal(as
, addr
, buf
, len
, WRITE_DATA
);
2820 void cpu_flush_icache_range(hwaddr start
, int len
)
2823 * This function should do the same thing as an icache flush that was
2824 * triggered from within the guest. For TCG we are always cache coherent,
2825 * so there is no need to flush anything. For KVM / Xen we need to flush
2826 * the host's instruction cache at least.
2828 if (tcg_enabled()) {
2832 cpu_physical_memory_write_rom_internal(&address_space_memory
,
2833 start
, NULL
, len
, FLUSH_CACHE
);
2844 static BounceBuffer bounce
;
2846 typedef struct MapClient
{
2848 QLIST_ENTRY(MapClient
) link
;
2851 QemuMutex map_client_list_lock
;
2852 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
2853 = QLIST_HEAD_INITIALIZER(map_client_list
);
2855 static void cpu_unregister_map_client_do(MapClient
*client
)
2857 QLIST_REMOVE(client
, link
);
2861 static void cpu_notify_map_clients_locked(void)
2865 while (!QLIST_EMPTY(&map_client_list
)) {
2866 client
= QLIST_FIRST(&map_client_list
);
2867 qemu_bh_schedule(client
->bh
);
2868 cpu_unregister_map_client_do(client
);
2872 void cpu_register_map_client(QEMUBH
*bh
)
2874 MapClient
*client
= g_malloc(sizeof(*client
));
2876 qemu_mutex_lock(&map_client_list_lock
);
2878 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
2879 if (!atomic_read(&bounce
.in_use
)) {
2880 cpu_notify_map_clients_locked();
2882 qemu_mutex_unlock(&map_client_list_lock
);
2885 void cpu_exec_init_all(void)
2887 qemu_mutex_init(&ram_list
.mutex
);
2890 qemu_mutex_init(&map_client_list_lock
);
2893 void cpu_unregister_map_client(QEMUBH
*bh
)
2897 qemu_mutex_lock(&map_client_list_lock
);
2898 QLIST_FOREACH(client
, &map_client_list
, link
) {
2899 if (client
->bh
== bh
) {
2900 cpu_unregister_map_client_do(client
);
2904 qemu_mutex_unlock(&map_client_list_lock
);
2907 static void cpu_notify_map_clients(void)
2909 qemu_mutex_lock(&map_client_list_lock
);
2910 cpu_notify_map_clients_locked();
2911 qemu_mutex_unlock(&map_client_list_lock
);
2914 bool address_space_access_valid(AddressSpace
*as
, hwaddr addr
, int len
, bool is_write
)
2922 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2923 if (!memory_access_is_direct(mr
, is_write
)) {
2924 l
= memory_access_size(mr
, l
, addr
);
2925 if (!memory_region_access_valid(mr
, xlat
, l
, is_write
)) {
2937 /* Map a physical memory region into a host virtual address.
2938 * May map a subset of the requested range, given by and returned in *plen.
2939 * May return NULL if resources needed to perform the mapping are exhausted.
2940 * Use only for reads OR writes - not for read-modify-write operations.
2941 * Use cpu_register_map_client() to know when retrying the map operation is
2942 * likely to succeed.
2944 void *address_space_map(AddressSpace
*as
,
2951 hwaddr l
, xlat
, base
;
2952 MemoryRegion
*mr
, *this_mr
;
2962 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2964 if (!memory_access_is_direct(mr
, is_write
)) {
2965 if (atomic_xchg(&bounce
.in_use
, true)) {
2969 /* Avoid unbounded allocations */
2970 l
= MIN(l
, TARGET_PAGE_SIZE
);
2971 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, l
);
2975 memory_region_ref(mr
);
2978 address_space_read(as
, addr
, MEMTXATTRS_UNSPECIFIED
,
2984 return bounce
.buffer
;
2988 raddr
= memory_region_get_ram_addr(mr
);
2999 this_mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
3000 if (this_mr
!= mr
|| xlat
!= base
+ done
) {
3005 memory_region_ref(mr
);
3007 ptr
= qemu_ram_ptr_length(mr
->ram_block
, raddr
+ base
, plen
);
3013 /* Unmaps a memory region previously mapped by address_space_map().
3014 * Will also mark the memory as dirty if is_write == 1. access_len gives
3015 * the amount of memory that was actually read or written by the caller.
3017 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
3018 int is_write
, hwaddr access_len
)
3020 if (buffer
!= bounce
.buffer
) {
3024 mr
= qemu_ram_addr_from_host(buffer
, &addr1
);
3027 invalidate_and_set_dirty(mr
, addr1
, access_len
);
3029 if (xen_enabled()) {
3030 xen_invalidate_map_cache_entry(buffer
);
3032 memory_region_unref(mr
);
3036 address_space_write(as
, bounce
.addr
, MEMTXATTRS_UNSPECIFIED
,
3037 bounce
.buffer
, access_len
);
3039 qemu_vfree(bounce
.buffer
);
3040 bounce
.buffer
= NULL
;
3041 memory_region_unref(bounce
.mr
);
3042 atomic_mb_set(&bounce
.in_use
, false);
3043 cpu_notify_map_clients();
3046 void *cpu_physical_memory_map(hwaddr addr
,
3050 return address_space_map(&address_space_memory
, addr
, plen
, is_write
);
3053 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
3054 int is_write
, hwaddr access_len
)
3056 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
3059 /* warning: addr must be aligned */
3060 static inline uint32_t address_space_ldl_internal(AddressSpace
*as
, hwaddr addr
,
3062 MemTxResult
*result
,
3063 enum device_endian endian
)
3071 bool release_lock
= false;
3074 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
3075 if (l
< 4 || !memory_access_is_direct(mr
, false)) {
3076 release_lock
|= prepare_mmio_access(mr
);
3079 r
= memory_region_dispatch_read(mr
, addr1
, &val
, 4, attrs
);
3080 #if defined(TARGET_WORDS_BIGENDIAN)
3081 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3085 if (endian
== DEVICE_BIG_ENDIAN
) {
3091 ptr
= qemu_get_ram_ptr(mr
->ram_block
,
3092 (memory_region_get_ram_addr(mr
)
3096 case DEVICE_LITTLE_ENDIAN
:
3097 val
= ldl_le_p(ptr
);
3099 case DEVICE_BIG_ENDIAN
:
3100 val
= ldl_be_p(ptr
);
3112 qemu_mutex_unlock_iothread();
3118 uint32_t address_space_ldl(AddressSpace
*as
, hwaddr addr
,
3119 MemTxAttrs attrs
, MemTxResult
*result
)
3121 return address_space_ldl_internal(as
, addr
, attrs
, result
,
3122 DEVICE_NATIVE_ENDIAN
);
3125 uint32_t address_space_ldl_le(AddressSpace
*as
, hwaddr addr
,
3126 MemTxAttrs attrs
, MemTxResult
*result
)
3128 return address_space_ldl_internal(as
, addr
, attrs
, result
,
3129 DEVICE_LITTLE_ENDIAN
);
3132 uint32_t address_space_ldl_be(AddressSpace
*as
, hwaddr addr
,
3133 MemTxAttrs attrs
, MemTxResult
*result
)
3135 return address_space_ldl_internal(as
, addr
, attrs
, result
,
3139 uint32_t ldl_phys(AddressSpace
*as
, hwaddr addr
)
3141 return address_space_ldl(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3144 uint32_t ldl_le_phys(AddressSpace
*as
, hwaddr addr
)
3146 return address_space_ldl_le(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3149 uint32_t ldl_be_phys(AddressSpace
*as
, hwaddr addr
)
3151 return address_space_ldl_be(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3154 /* warning: addr must be aligned */
3155 static inline uint64_t address_space_ldq_internal(AddressSpace
*as
, hwaddr addr
,
3157 MemTxResult
*result
,
3158 enum device_endian endian
)
3166 bool release_lock
= false;
3169 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3171 if (l
< 8 || !memory_access_is_direct(mr
, false)) {
3172 release_lock
|= prepare_mmio_access(mr
);
3175 r
= memory_region_dispatch_read(mr
, addr1
, &val
, 8, attrs
);
3176 #if defined(TARGET_WORDS_BIGENDIAN)
3177 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3181 if (endian
== DEVICE_BIG_ENDIAN
) {
3187 ptr
= qemu_get_ram_ptr(mr
->ram_block
,
3188 (memory_region_get_ram_addr(mr
)
3192 case DEVICE_LITTLE_ENDIAN
:
3193 val
= ldq_le_p(ptr
);
3195 case DEVICE_BIG_ENDIAN
:
3196 val
= ldq_be_p(ptr
);
3208 qemu_mutex_unlock_iothread();
3214 uint64_t address_space_ldq(AddressSpace
*as
, hwaddr addr
,
3215 MemTxAttrs attrs
, MemTxResult
*result
)
3217 return address_space_ldq_internal(as
, addr
, attrs
, result
,
3218 DEVICE_NATIVE_ENDIAN
);
3221 uint64_t address_space_ldq_le(AddressSpace
*as
, hwaddr addr
,
3222 MemTxAttrs attrs
, MemTxResult
*result
)
3224 return address_space_ldq_internal(as
, addr
, attrs
, result
,
3225 DEVICE_LITTLE_ENDIAN
);
3228 uint64_t address_space_ldq_be(AddressSpace
*as
, hwaddr addr
,
3229 MemTxAttrs attrs
, MemTxResult
*result
)
3231 return address_space_ldq_internal(as
, addr
, attrs
, result
,
3235 uint64_t ldq_phys(AddressSpace
*as
, hwaddr addr
)
3237 return address_space_ldq(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3240 uint64_t ldq_le_phys(AddressSpace
*as
, hwaddr addr
)
3242 return address_space_ldq_le(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3245 uint64_t ldq_be_phys(AddressSpace
*as
, hwaddr addr
)
3247 return address_space_ldq_be(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3251 uint32_t address_space_ldub(AddressSpace
*as
, hwaddr addr
,
3252 MemTxAttrs attrs
, MemTxResult
*result
)
3257 r
= address_space_rw(as
, addr
, attrs
, &val
, 1, 0);
3264 uint32_t ldub_phys(AddressSpace
*as
, hwaddr addr
)
3266 return address_space_ldub(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3269 /* warning: addr must be aligned */
3270 static inline uint32_t address_space_lduw_internal(AddressSpace
*as
,
3273 MemTxResult
*result
,
3274 enum device_endian endian
)
3282 bool release_lock
= false;
3285 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3287 if (l
< 2 || !memory_access_is_direct(mr
, false)) {
3288 release_lock
|= prepare_mmio_access(mr
);
3291 r
= memory_region_dispatch_read(mr
, addr1
, &val
, 2, attrs
);
3292 #if defined(TARGET_WORDS_BIGENDIAN)
3293 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3297 if (endian
== DEVICE_BIG_ENDIAN
) {
3303 ptr
= qemu_get_ram_ptr(mr
->ram_block
,
3304 (memory_region_get_ram_addr(mr
)
3308 case DEVICE_LITTLE_ENDIAN
:
3309 val
= lduw_le_p(ptr
);
3311 case DEVICE_BIG_ENDIAN
:
3312 val
= lduw_be_p(ptr
);
3324 qemu_mutex_unlock_iothread();
3330 uint32_t address_space_lduw(AddressSpace
*as
, hwaddr addr
,
3331 MemTxAttrs attrs
, MemTxResult
*result
)
3333 return address_space_lduw_internal(as
, addr
, attrs
, result
,
3334 DEVICE_NATIVE_ENDIAN
);
3337 uint32_t address_space_lduw_le(AddressSpace
*as
, hwaddr addr
,
3338 MemTxAttrs attrs
, MemTxResult
*result
)
3340 return address_space_lduw_internal(as
, addr
, attrs
, result
,
3341 DEVICE_LITTLE_ENDIAN
);
3344 uint32_t address_space_lduw_be(AddressSpace
*as
, hwaddr addr
,
3345 MemTxAttrs attrs
, MemTxResult
*result
)
3347 return address_space_lduw_internal(as
, addr
, attrs
, result
,
3351 uint32_t lduw_phys(AddressSpace
*as
, hwaddr addr
)
3353 return address_space_lduw(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3356 uint32_t lduw_le_phys(AddressSpace
*as
, hwaddr addr
)
3358 return address_space_lduw_le(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3361 uint32_t lduw_be_phys(AddressSpace
*as
, hwaddr addr
)
3363 return address_space_lduw_be(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3366 /* warning: addr must be aligned. The ram page is not masked as dirty
3367 and the code inside is not invalidated. It is useful if the dirty
3368 bits are used to track modified PTEs */
3369 void address_space_stl_notdirty(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3370 MemTxAttrs attrs
, MemTxResult
*result
)
3377 uint8_t dirty_log_mask
;
3378 bool release_lock
= false;
3381 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3383 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
3384 release_lock
|= prepare_mmio_access(mr
);
3386 r
= memory_region_dispatch_write(mr
, addr1
, val
, 4, attrs
);
3388 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
3389 ptr
= qemu_get_ram_ptr(mr
->ram_block
, addr1
);
3392 dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
3393 dirty_log_mask
&= ~(1 << DIRTY_MEMORY_CODE
);
3394 cpu_physical_memory_set_dirty_range(addr1
, 4, dirty_log_mask
);
3401 qemu_mutex_unlock_iothread();
3406 void stl_phys_notdirty(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3408 address_space_stl_notdirty(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3411 /* warning: addr must be aligned */
3412 static inline void address_space_stl_internal(AddressSpace
*as
,
3413 hwaddr addr
, uint32_t val
,
3415 MemTxResult
*result
,
3416 enum device_endian endian
)
3423 bool release_lock
= false;
3426 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3428 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
3429 release_lock
|= prepare_mmio_access(mr
);
3431 #if defined(TARGET_WORDS_BIGENDIAN)
3432 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3436 if (endian
== DEVICE_BIG_ENDIAN
) {
3440 r
= memory_region_dispatch_write(mr
, addr1
, val
, 4, attrs
);
3443 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
3444 ptr
= qemu_get_ram_ptr(mr
->ram_block
, addr1
);
3446 case DEVICE_LITTLE_ENDIAN
:
3449 case DEVICE_BIG_ENDIAN
:
3456 invalidate_and_set_dirty(mr
, addr1
, 4);
3463 qemu_mutex_unlock_iothread();
3468 void address_space_stl(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3469 MemTxAttrs attrs
, MemTxResult
*result
)
3471 address_space_stl_internal(as
, addr
, val
, attrs
, result
,
3472 DEVICE_NATIVE_ENDIAN
);
3475 void address_space_stl_le(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3476 MemTxAttrs attrs
, MemTxResult
*result
)
3478 address_space_stl_internal(as
, addr
, val
, attrs
, result
,
3479 DEVICE_LITTLE_ENDIAN
);
3482 void address_space_stl_be(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3483 MemTxAttrs attrs
, MemTxResult
*result
)
3485 address_space_stl_internal(as
, addr
, val
, attrs
, result
,
3489 void stl_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3491 address_space_stl(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3494 void stl_le_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3496 address_space_stl_le(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3499 void stl_be_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3501 address_space_stl_be(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3505 void address_space_stb(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3506 MemTxAttrs attrs
, MemTxResult
*result
)
3511 r
= address_space_rw(as
, addr
, attrs
, &v
, 1, 1);
3517 void stb_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3519 address_space_stb(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3522 /* warning: addr must be aligned */
3523 static inline void address_space_stw_internal(AddressSpace
*as
,
3524 hwaddr addr
, uint32_t val
,
3526 MemTxResult
*result
,
3527 enum device_endian endian
)
3534 bool release_lock
= false;
3537 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
3538 if (l
< 2 || !memory_access_is_direct(mr
, true)) {
3539 release_lock
|= prepare_mmio_access(mr
);
3541 #if defined(TARGET_WORDS_BIGENDIAN)
3542 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3546 if (endian
== DEVICE_BIG_ENDIAN
) {
3550 r
= memory_region_dispatch_write(mr
, addr1
, val
, 2, attrs
);
3553 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
3554 ptr
= qemu_get_ram_ptr(mr
->ram_block
, addr1
);
3556 case DEVICE_LITTLE_ENDIAN
:
3559 case DEVICE_BIG_ENDIAN
:
3566 invalidate_and_set_dirty(mr
, addr1
, 2);
3573 qemu_mutex_unlock_iothread();
3578 void address_space_stw(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3579 MemTxAttrs attrs
, MemTxResult
*result
)
3581 address_space_stw_internal(as
, addr
, val
, attrs
, result
,
3582 DEVICE_NATIVE_ENDIAN
);
3585 void address_space_stw_le(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3586 MemTxAttrs attrs
, MemTxResult
*result
)
3588 address_space_stw_internal(as
, addr
, val
, attrs
, result
,
3589 DEVICE_LITTLE_ENDIAN
);
3592 void address_space_stw_be(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3593 MemTxAttrs attrs
, MemTxResult
*result
)
3595 address_space_stw_internal(as
, addr
, val
, attrs
, result
,
3599 void stw_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3601 address_space_stw(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3604 void stw_le_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3606 address_space_stw_le(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3609 void stw_be_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3611 address_space_stw_be(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3615 void address_space_stq(AddressSpace
*as
, hwaddr addr
, uint64_t val
,
3616 MemTxAttrs attrs
, MemTxResult
*result
)
3620 r
= address_space_rw(as
, addr
, attrs
, (void *) &val
, 8, 1);
3626 void address_space_stq_le(AddressSpace
*as
, hwaddr addr
, uint64_t val
,
3627 MemTxAttrs attrs
, MemTxResult
*result
)
3630 val
= cpu_to_le64(val
);
3631 r
= address_space_rw(as
, addr
, attrs
, (void *) &val
, 8, 1);
3636 void address_space_stq_be(AddressSpace
*as
, hwaddr addr
, uint64_t val
,
3637 MemTxAttrs attrs
, MemTxResult
*result
)
3640 val
= cpu_to_be64(val
);
3641 r
= address_space_rw(as
, addr
, attrs
, (void *) &val
, 8, 1);
3647 void stq_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
3649 address_space_stq(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3652 void stq_le_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
3654 address_space_stq_le(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3657 void stq_be_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
3659 address_space_stq_be(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3662 /* virtual memory access for debug (includes writing to ROM) */
3663 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
3664 uint8_t *buf
, int len
, int is_write
)
3674 page
= addr
& TARGET_PAGE_MASK
;
3675 phys_addr
= cpu_get_phys_page_attrs_debug(cpu
, page
, &attrs
);
3676 asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
3677 /* if no physical page mapped, return an error */
3678 if (phys_addr
== -1)
3680 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3683 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
3685 cpu_physical_memory_write_rom(cpu
->cpu_ases
[asidx
].as
,
3688 address_space_rw(cpu
->cpu_ases
[asidx
].as
, phys_addr
,
3689 MEMTXATTRS_UNSPECIFIED
,
3700 * Allows code that needs to deal with migration bitmaps etc to still be built
3701 * target independent.
3703 size_t qemu_target_page_bits(void)
3705 return TARGET_PAGE_BITS
;
3711 * A helper function for the _utterly broken_ virtio device model to find out if
3712 * it's running on a big endian machine. Don't do this at home kids!
3714 bool target_words_bigendian(void);
3715 bool target_words_bigendian(void)
3717 #if defined(TARGET_WORDS_BIGENDIAN)
3724 #ifndef CONFIG_USER_ONLY
3725 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
3732 mr
= address_space_translate(&address_space_memory
,
3733 phys_addr
, &phys_addr
, &l
, false);
3735 res
= !(memory_region_is_ram(mr
) || memory_region_is_romd(mr
));
3740 int qemu_ram_foreach_block(RAMBlockIterFunc func
, void *opaque
)
3746 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
3747 ret
= func(block
->idstr
, block
->host
, block
->offset
,
3748 block
->used_length
, opaque
);