docs/sphinx: avoid invalid escape in Python string
[qemu/ar7.git] / hw / timer / cadence_ttc.c
blobe57a0f5f09f74271bf171058580c14acfa0c89e2
1 /*
2 * Xilinx Zynq cadence TTC model
4 * Copyright (c) 2011 Xilinx Inc.
5 * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
6 * Copyright (c) 2012 PetaLogix Pty Ltd.
7 * Written By Haibing Ma
8 * M. Habib
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "hw/irq.h"
21 #include "hw/sysbus.h"
22 #include "migration/vmstate.h"
23 #include "qemu/module.h"
24 #include "qemu/timer.h"
25 #include "qom/object.h"
27 #include "hw/timer/cadence_ttc.h"
29 #ifdef CADENCE_TTC_ERR_DEBUG
30 #define DB_PRINT(...) do { \
31 fprintf(stderr, ": %s: ", __func__); \
32 fprintf(stderr, ## __VA_ARGS__); \
33 } while (0)
34 #else
35 #define DB_PRINT(...)
36 #endif
38 #define COUNTER_INTR_IV 0x00000001
39 #define COUNTER_INTR_M1 0x00000002
40 #define COUNTER_INTR_M2 0x00000004
41 #define COUNTER_INTR_M3 0x00000008
42 #define COUNTER_INTR_OV 0x00000010
43 #define COUNTER_INTR_EV 0x00000020
45 #define COUNTER_CTRL_DIS 0x00000001
46 #define COUNTER_CTRL_INT 0x00000002
47 #define COUNTER_CTRL_DEC 0x00000004
48 #define COUNTER_CTRL_MATCH 0x00000008
49 #define COUNTER_CTRL_RST 0x00000010
51 #define CLOCK_CTRL_PS_EN 0x00000001
52 #define CLOCK_CTRL_PS_V 0x0000001e
54 static void cadence_timer_update(CadenceTimerState *s)
56 qemu_set_irq(s->irq, !!(s->reg_intr & s->reg_intr_en));
59 static CadenceTimerState *cadence_timer_from_addr(void *opaque,
60 hwaddr offset)
62 unsigned int index;
63 CadenceTTCState *s = (CadenceTTCState *)opaque;
65 index = (offset >> 2) % 3;
67 return &s->timer[index];
70 static uint64_t cadence_timer_get_ns(CadenceTimerState *s, uint64_t timer_steps)
72 /* timer_steps has max value of 0x100000000. double check it
73 * (or overflow can happen below) */
74 assert(timer_steps <= 1ULL << 32);
76 uint64_t r = timer_steps * 1000000000ULL;
77 if (s->reg_clock & CLOCK_CTRL_PS_EN) {
78 r >>= 16 - (((s->reg_clock & CLOCK_CTRL_PS_V) >> 1) + 1);
79 } else {
80 r >>= 16;
82 r /= (uint64_t)s->freq;
83 return r;
86 static uint64_t cadence_timer_get_steps(CadenceTimerState *s, uint64_t ns)
88 uint64_t to_divide = 1000000000ULL;
90 uint64_t r = ns;
91 /* for very large intervals (> 8s) do some division first to stop
92 * overflow (costs some prescision) */
93 while (r >= 8ULL << 30 && to_divide > 1) {
94 r /= 1000;
95 to_divide /= 1000;
97 r <<= 16;
98 /* keep early-dividing as needed */
99 while (r >= 8ULL << 30 && to_divide > 1) {
100 r /= 1000;
101 to_divide /= 1000;
103 r *= (uint64_t)s->freq;
104 if (s->reg_clock & CLOCK_CTRL_PS_EN) {
105 r /= 1 << (((s->reg_clock & CLOCK_CTRL_PS_V) >> 1) + 1);
108 r /= to_divide;
109 return r;
112 /* determine if x is in between a and b, exclusive of a, inclusive of b */
114 static inline int64_t is_between(int64_t x, int64_t a, int64_t b)
116 if (a < b) {
117 return x > a && x <= b;
119 return x < a && x >= b;
122 static void cadence_timer_run(CadenceTimerState *s)
124 int i;
125 int64_t event_interval, next_value;
127 assert(s->cpu_time_valid); /* cadence_timer_sync must be called first */
129 if (s->reg_count & COUNTER_CTRL_DIS) {
130 s->cpu_time_valid = 0;
131 return;
134 { /* figure out what's going to happen next (rollover or match) */
135 int64_t interval = (uint64_t)((s->reg_count & COUNTER_CTRL_INT) ?
136 (int64_t)s->reg_interval + 1 : 0x10000ULL) << 16;
137 next_value = (s->reg_count & COUNTER_CTRL_DEC) ? -1ULL : interval;
138 for (i = 0; i < 3; ++i) {
139 int64_t cand = (uint64_t)s->reg_match[i] << 16;
140 if (is_between(cand, (uint64_t)s->reg_value, next_value)) {
141 next_value = cand;
145 DB_PRINT("next timer event value: %09llx\n",
146 (unsigned long long)next_value);
148 event_interval = next_value - (int64_t)s->reg_value;
149 event_interval = (event_interval < 0) ? -event_interval : event_interval;
151 timer_mod(s->timer, s->cpu_time +
152 cadence_timer_get_ns(s, event_interval));
155 static void cadence_timer_sync(CadenceTimerState *s)
157 int i;
158 int64_t r, x;
159 int64_t interval = ((s->reg_count & COUNTER_CTRL_INT) ?
160 (int64_t)s->reg_interval + 1 : 0x10000ULL) << 16;
161 uint64_t old_time = s->cpu_time;
163 s->cpu_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
164 DB_PRINT("cpu time: %lld ns\n", (long long)old_time);
166 if (!s->cpu_time_valid || old_time == s->cpu_time) {
167 s->cpu_time_valid = 1;
168 return;
171 r = (int64_t)cadence_timer_get_steps(s, s->cpu_time - old_time);
172 x = (int64_t)s->reg_value + ((s->reg_count & COUNTER_CTRL_DEC) ? -r : r);
174 for (i = 0; i < 3; ++i) {
175 int64_t m = (int64_t)s->reg_match[i] << 16;
176 if (m > interval) {
177 continue;
179 /* check to see if match event has occurred. check m +/- interval
180 * to account for match events in wrap around cases */
181 if (is_between(m, s->reg_value, x) ||
182 is_between(m + interval, s->reg_value, x) ||
183 is_between(m - interval, s->reg_value, x)) {
184 s->reg_intr |= (2 << i);
187 if ((x < 0) || (x >= interval)) {
188 s->reg_intr |= (s->reg_count & COUNTER_CTRL_INT) ?
189 COUNTER_INTR_IV : COUNTER_INTR_OV;
191 while (x < 0) {
192 x += interval;
194 s->reg_value = (uint32_t)(x % interval);
195 cadence_timer_update(s);
198 static void cadence_timer_tick(void *opaque)
200 CadenceTimerState *s = opaque;
202 DB_PRINT("\n");
203 cadence_timer_sync(s);
204 cadence_timer_run(s);
207 static uint32_t cadence_ttc_read_imp(void *opaque, hwaddr offset)
209 CadenceTimerState *s = cadence_timer_from_addr(opaque, offset);
210 uint32_t value;
212 cadence_timer_sync(s);
213 cadence_timer_run(s);
215 switch (offset) {
216 case 0x00: /* clock control */
217 case 0x04:
218 case 0x08:
219 return s->reg_clock;
221 case 0x0c: /* counter control */
222 case 0x10:
223 case 0x14:
224 return s->reg_count;
226 case 0x18: /* counter value */
227 case 0x1c:
228 case 0x20:
229 return (uint16_t)(s->reg_value >> 16);
231 case 0x24: /* reg_interval counter */
232 case 0x28:
233 case 0x2c:
234 return s->reg_interval;
236 case 0x30: /* match 1 counter */
237 case 0x34:
238 case 0x38:
239 return s->reg_match[0];
241 case 0x3c: /* match 2 counter */
242 case 0x40:
243 case 0x44:
244 return s->reg_match[1];
246 case 0x48: /* match 3 counter */
247 case 0x4c:
248 case 0x50:
249 return s->reg_match[2];
251 case 0x54: /* interrupt register */
252 case 0x58:
253 case 0x5c:
254 /* cleared after read */
255 value = s->reg_intr;
256 s->reg_intr = 0;
257 cadence_timer_update(s);
258 return value;
260 case 0x60: /* interrupt enable */
261 case 0x64:
262 case 0x68:
263 return s->reg_intr_en;
265 case 0x6c:
266 case 0x70:
267 case 0x74:
268 return s->reg_event_ctrl;
270 case 0x78:
271 case 0x7c:
272 case 0x80:
273 return s->reg_event;
275 default:
276 return 0;
280 static uint64_t cadence_ttc_read(void *opaque, hwaddr offset,
281 unsigned size)
283 uint32_t ret = cadence_ttc_read_imp(opaque, offset);
285 DB_PRINT("addr: %08x data: %08x\n", (unsigned)offset, (unsigned)ret);
286 return ret;
289 static void cadence_ttc_write(void *opaque, hwaddr offset,
290 uint64_t value, unsigned size)
292 CadenceTimerState *s = cadence_timer_from_addr(opaque, offset);
294 DB_PRINT("addr: %08x data %08x\n", (unsigned)offset, (unsigned)value);
296 cadence_timer_sync(s);
298 switch (offset) {
299 case 0x00: /* clock control */
300 case 0x04:
301 case 0x08:
302 s->reg_clock = value & 0x3F;
303 break;
305 case 0x0c: /* counter control */
306 case 0x10:
307 case 0x14:
308 if (value & COUNTER_CTRL_RST) {
309 s->reg_value = 0;
311 s->reg_count = value & 0x3f & ~COUNTER_CTRL_RST;
312 break;
314 case 0x24: /* interval register */
315 case 0x28:
316 case 0x2c:
317 s->reg_interval = value & 0xffff;
318 break;
320 case 0x30: /* match register */
321 case 0x34:
322 case 0x38:
323 s->reg_match[0] = value & 0xffff;
324 break;
326 case 0x3c: /* match register */
327 case 0x40:
328 case 0x44:
329 s->reg_match[1] = value & 0xffff;
330 break;
332 case 0x48: /* match register */
333 case 0x4c:
334 case 0x50:
335 s->reg_match[2] = value & 0xffff;
336 break;
338 case 0x54: /* interrupt register */
339 case 0x58:
340 case 0x5c:
341 break;
343 case 0x60: /* interrupt enable */
344 case 0x64:
345 case 0x68:
346 s->reg_intr_en = value & 0x3f;
347 break;
349 case 0x6c: /* event control */
350 case 0x70:
351 case 0x74:
352 s->reg_event_ctrl = value & 0x07;
353 break;
355 default:
356 return;
359 cadence_timer_run(s);
360 cadence_timer_update(s);
363 static const MemoryRegionOps cadence_ttc_ops = {
364 .read = cadence_ttc_read,
365 .write = cadence_ttc_write,
366 .endianness = DEVICE_NATIVE_ENDIAN,
369 static void cadence_timer_reset(CadenceTimerState *s)
371 s->reg_count = 0x21;
374 static void cadence_timer_init(uint32_t freq, CadenceTimerState *s)
376 memset(s, 0, sizeof(CadenceTimerState));
377 s->freq = freq;
379 cadence_timer_reset(s);
381 s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cadence_timer_tick, s);
384 static void cadence_ttc_init(Object *obj)
386 CadenceTTCState *s = CADENCE_TTC(obj);
388 memory_region_init_io(&s->iomem, obj, &cadence_ttc_ops, s,
389 "timer", 0x1000);
390 sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem);
393 static void cadence_ttc_realize(DeviceState *dev, Error **errp)
395 CadenceTTCState *s = CADENCE_TTC(dev);
396 int i;
398 for (i = 0; i < 3; ++i) {
399 cadence_timer_init(133000000, &s->timer[i]);
400 sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->timer[i].irq);
404 static int cadence_timer_pre_save(void *opaque)
406 cadence_timer_sync((CadenceTimerState *)opaque);
408 return 0;
411 static int cadence_timer_post_load(void *opaque, int version_id)
413 CadenceTimerState *s = opaque;
415 s->cpu_time_valid = 0;
416 cadence_timer_sync(s);
417 cadence_timer_run(s);
418 cadence_timer_update(s);
419 return 0;
422 static const VMStateDescription vmstate_cadence_timer = {
423 .name = "cadence_timer",
424 .version_id = 1,
425 .minimum_version_id = 1,
426 .pre_save = cadence_timer_pre_save,
427 .post_load = cadence_timer_post_load,
428 .fields = (VMStateField[]) {
429 VMSTATE_UINT32(reg_clock, CadenceTimerState),
430 VMSTATE_UINT32(reg_count, CadenceTimerState),
431 VMSTATE_UINT32(reg_value, CadenceTimerState),
432 VMSTATE_UINT16(reg_interval, CadenceTimerState),
433 VMSTATE_UINT16_ARRAY(reg_match, CadenceTimerState, 3),
434 VMSTATE_UINT32(reg_intr, CadenceTimerState),
435 VMSTATE_UINT32(reg_intr_en, CadenceTimerState),
436 VMSTATE_UINT32(reg_event_ctrl, CadenceTimerState),
437 VMSTATE_UINT32(reg_event, CadenceTimerState),
438 VMSTATE_END_OF_LIST()
442 static const VMStateDescription vmstate_cadence_ttc = {
443 .name = "cadence_TTC",
444 .version_id = 1,
445 .minimum_version_id = 1,
446 .fields = (VMStateField[]) {
447 VMSTATE_STRUCT_ARRAY(timer, CadenceTTCState, 3, 0,
448 vmstate_cadence_timer,
449 CadenceTimerState),
450 VMSTATE_END_OF_LIST()
454 static void cadence_ttc_class_init(ObjectClass *klass, void *data)
456 DeviceClass *dc = DEVICE_CLASS(klass);
458 dc->vmsd = &vmstate_cadence_ttc;
459 dc->realize = cadence_ttc_realize;
462 static const TypeInfo cadence_ttc_info = {
463 .name = TYPE_CADENCE_TTC,
464 .parent = TYPE_SYS_BUS_DEVICE,
465 .instance_size = sizeof(CadenceTTCState),
466 .instance_init = cadence_ttc_init,
467 .class_init = cadence_ttc_class_init,
470 static void cadence_ttc_register_types(void)
472 type_register_static(&cadence_ttc_info);
475 type_init(cadence_ttc_register_types)