generic-loader: Add a generic loader
[qemu/ar7.git] / include / exec / memory.h
blob10d7eacc40ff733ca3e853aa4126ae8fc3e340f1
1 /*
2 * Physical memory management API
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
14 #ifndef MEMORY_H
15 #define MEMORY_H
17 #ifndef CONFIG_USER_ONLY
19 #define DIRTY_MEMORY_VGA 0
20 #define DIRTY_MEMORY_CODE 1
21 #define DIRTY_MEMORY_MIGRATION 2
22 #define DIRTY_MEMORY_NUM 3 /* num of dirty bits */
24 #include "exec/cpu-common.h"
25 #ifndef CONFIG_USER_ONLY
26 #include "exec/hwaddr.h"
27 #endif
28 #include "exec/memattrs.h"
29 #include "qemu/queue.h"
30 #include "qemu/int128.h"
31 #include "qemu/notify.h"
32 #include "qom/object.h"
33 #include "qemu/rcu.h"
35 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
37 #define MAX_PHYS_ADDR_SPACE_BITS 62
38 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
40 #define TYPE_MEMORY_REGION "qemu:memory-region"
41 #define MEMORY_REGION(obj) \
42 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
44 typedef struct MemoryRegionOps MemoryRegionOps;
45 typedef struct MemoryRegionMmio MemoryRegionMmio;
47 struct MemoryRegionMmio {
48 CPUReadMemoryFunc *read[3];
49 CPUWriteMemoryFunc *write[3];
52 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
54 /* See address_space_translate: bit 0 is read, bit 1 is write. */
55 typedef enum {
56 IOMMU_NONE = 0,
57 IOMMU_RO = 1,
58 IOMMU_WO = 2,
59 IOMMU_RW = 3,
60 } IOMMUAccessFlags;
62 struct IOMMUTLBEntry {
63 AddressSpace *target_as;
64 hwaddr iova;
65 hwaddr translated_addr;
66 hwaddr addr_mask; /* 0xfff = 4k translation */
67 IOMMUAccessFlags perm;
71 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
72 * register with one or multiple IOMMU Notifier capability bit(s).
74 typedef enum {
75 IOMMU_NOTIFIER_NONE = 0,
76 /* Notify cache invalidations */
77 IOMMU_NOTIFIER_UNMAP = 0x1,
78 /* Notify entry changes (newly created entries) */
79 IOMMU_NOTIFIER_MAP = 0x2,
80 } IOMMUNotifierFlag;
82 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
84 struct IOMMUNotifier {
85 void (*notify)(struct IOMMUNotifier *notifier, IOMMUTLBEntry *data);
86 IOMMUNotifierFlag notifier_flags;
87 QLIST_ENTRY(IOMMUNotifier) node;
89 typedef struct IOMMUNotifier IOMMUNotifier;
91 /* New-style MMIO accessors can indicate that the transaction failed.
92 * A zero (MEMTX_OK) response means success; anything else is a failure
93 * of some kind. The memory subsystem will bitwise-OR together results
94 * if it is synthesizing an operation from multiple smaller accesses.
96 #define MEMTX_OK 0
97 #define MEMTX_ERROR (1U << 0) /* device returned an error */
98 #define MEMTX_DECODE_ERROR (1U << 1) /* nothing at that address */
99 typedef uint32_t MemTxResult;
102 * Memory region callbacks
104 struct MemoryRegionOps {
105 /* Read from the memory region. @addr is relative to @mr; @size is
106 * in bytes. */
107 uint64_t (*read)(void *opaque,
108 hwaddr addr,
109 unsigned size);
110 /* Write to the memory region. @addr is relative to @mr; @size is
111 * in bytes. */
112 void (*write)(void *opaque,
113 hwaddr addr,
114 uint64_t data,
115 unsigned size);
117 MemTxResult (*read_with_attrs)(void *opaque,
118 hwaddr addr,
119 uint64_t *data,
120 unsigned size,
121 MemTxAttrs attrs);
122 MemTxResult (*write_with_attrs)(void *opaque,
123 hwaddr addr,
124 uint64_t data,
125 unsigned size,
126 MemTxAttrs attrs);
128 enum device_endian endianness;
129 /* Guest-visible constraints: */
130 struct {
131 /* If nonzero, specify bounds on access sizes beyond which a machine
132 * check is thrown.
134 unsigned min_access_size;
135 unsigned max_access_size;
136 /* If true, unaligned accesses are supported. Otherwise unaligned
137 * accesses throw machine checks.
139 bool unaligned;
141 * If present, and returns #false, the transaction is not accepted
142 * by the device (and results in machine dependent behaviour such
143 * as a machine check exception).
145 bool (*accepts)(void *opaque, hwaddr addr,
146 unsigned size, bool is_write);
147 } valid;
148 /* Internal implementation constraints: */
149 struct {
150 /* If nonzero, specifies the minimum size implemented. Smaller sizes
151 * will be rounded upwards and a partial result will be returned.
153 unsigned min_access_size;
154 /* If nonzero, specifies the maximum size implemented. Larger sizes
155 * will be done as a series of accesses with smaller sizes.
157 unsigned max_access_size;
158 /* If true, unaligned accesses are supported. Otherwise all accesses
159 * are converted to (possibly multiple) naturally aligned accesses.
161 bool unaligned;
162 } impl;
164 /* If .read and .write are not present, old_mmio may be used for
165 * backwards compatibility with old mmio registration
167 const MemoryRegionMmio old_mmio;
170 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps;
172 struct MemoryRegionIOMMUOps {
173 /* Return a TLB entry that contains a given address. */
174 IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr, bool is_write);
175 /* Returns minimum supported page size */
176 uint64_t (*get_min_page_size)(MemoryRegion *iommu);
177 /* Called when IOMMU Notifier flag changed */
178 void (*notify_flag_changed)(MemoryRegion *iommu,
179 IOMMUNotifierFlag old_flags,
180 IOMMUNotifierFlag new_flags);
183 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
184 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
186 struct MemoryRegion {
187 Object parent_obj;
189 /* All fields are private - violators will be prosecuted */
191 /* The following fields should fit in a cache line */
192 bool romd_mode;
193 bool ram;
194 bool subpage;
195 bool readonly; /* For RAM regions */
196 bool rom_device;
197 bool flush_coalesced_mmio;
198 bool global_locking;
199 uint8_t dirty_log_mask;
200 RAMBlock *ram_block;
201 Object *owner;
202 const MemoryRegionIOMMUOps *iommu_ops;
204 const MemoryRegionOps *ops;
205 void *opaque;
206 MemoryRegion *container;
207 Int128 size;
208 hwaddr addr;
209 void (*destructor)(MemoryRegion *mr);
210 uint64_t align;
211 bool terminates;
212 bool skip_dump;
213 bool enabled;
214 bool warning_printed; /* For reservations */
215 uint8_t vga_logging_count;
216 MemoryRegion *alias;
217 hwaddr alias_offset;
218 int32_t priority;
219 QTAILQ_HEAD(subregions, MemoryRegion) subregions;
220 QTAILQ_ENTRY(MemoryRegion) subregions_link;
221 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
222 const char *name;
223 unsigned ioeventfd_nb;
224 MemoryRegionIoeventfd *ioeventfds;
225 QLIST_HEAD(, IOMMUNotifier) iommu_notify;
226 IOMMUNotifierFlag iommu_notify_flags;
230 * MemoryListener: callbacks structure for updates to the physical memory map
232 * Allows a component to adjust to changes in the guest-visible memory map.
233 * Use with memory_listener_register() and memory_listener_unregister().
235 struct MemoryListener {
236 void (*begin)(MemoryListener *listener);
237 void (*commit)(MemoryListener *listener);
238 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
239 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
240 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
241 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
242 int old, int new);
243 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
244 int old, int new);
245 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
246 void (*log_global_start)(MemoryListener *listener);
247 void (*log_global_stop)(MemoryListener *listener);
248 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
249 bool match_data, uint64_t data, EventNotifier *e);
250 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
251 bool match_data, uint64_t data, EventNotifier *e);
252 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
253 hwaddr addr, hwaddr len);
254 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
255 hwaddr addr, hwaddr len);
256 /* Lower = earlier (during add), later (during del) */
257 unsigned priority;
258 AddressSpace *address_space_filter;
259 QTAILQ_ENTRY(MemoryListener) link;
263 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
265 struct AddressSpace {
266 /* All fields are private. */
267 struct rcu_head rcu;
268 char *name;
269 MemoryRegion *root;
270 int ref_count;
271 bool malloced;
273 /* Accessed via RCU. */
274 struct FlatView *current_map;
276 int ioeventfd_nb;
277 struct MemoryRegionIoeventfd *ioeventfds;
278 struct AddressSpaceDispatch *dispatch;
279 struct AddressSpaceDispatch *next_dispatch;
280 MemoryListener dispatch_listener;
282 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
286 * MemoryRegionSection: describes a fragment of a #MemoryRegion
288 * @mr: the region, or %NULL if empty
289 * @address_space: the address space the region is mapped in
290 * @offset_within_region: the beginning of the section, relative to @mr's start
291 * @size: the size of the section; will not exceed @mr's boundaries
292 * @offset_within_address_space: the address of the first byte of the section
293 * relative to the region's address space
294 * @readonly: writes to this section are ignored
296 struct MemoryRegionSection {
297 MemoryRegion *mr;
298 AddressSpace *address_space;
299 hwaddr offset_within_region;
300 Int128 size;
301 hwaddr offset_within_address_space;
302 bool readonly;
306 * memory_region_init: Initialize a memory region
308 * The region typically acts as a container for other memory regions. Use
309 * memory_region_add_subregion() to add subregions.
311 * @mr: the #MemoryRegion to be initialized
312 * @owner: the object that tracks the region's reference count
313 * @name: used for debugging; not visible to the user or ABI
314 * @size: size of the region; any subregions beyond this size will be clipped
316 void memory_region_init(MemoryRegion *mr,
317 struct Object *owner,
318 const char *name,
319 uint64_t size);
322 * memory_region_ref: Add 1 to a memory region's reference count
324 * Whenever memory regions are accessed outside the BQL, they need to be
325 * preserved against hot-unplug. MemoryRegions actually do not have their
326 * own reference count; they piggyback on a QOM object, their "owner".
327 * This function adds a reference to the owner.
329 * All MemoryRegions must have an owner if they can disappear, even if the
330 * device they belong to operates exclusively under the BQL. This is because
331 * the region could be returned at any time by memory_region_find, and this
332 * is usually under guest control.
334 * @mr: the #MemoryRegion
336 void memory_region_ref(MemoryRegion *mr);
339 * memory_region_unref: Remove 1 to a memory region's reference count
341 * Whenever memory regions are accessed outside the BQL, they need to be
342 * preserved against hot-unplug. MemoryRegions actually do not have their
343 * own reference count; they piggyback on a QOM object, their "owner".
344 * This function removes a reference to the owner and possibly destroys it.
346 * @mr: the #MemoryRegion
348 void memory_region_unref(MemoryRegion *mr);
351 * memory_region_init_io: Initialize an I/O memory region.
353 * Accesses into the region will cause the callbacks in @ops to be called.
354 * if @size is nonzero, subregions will be clipped to @size.
356 * @mr: the #MemoryRegion to be initialized.
357 * @owner: the object that tracks the region's reference count
358 * @ops: a structure containing read and write callbacks to be used when
359 * I/O is performed on the region.
360 * @opaque: passed to the read and write callbacks of the @ops structure.
361 * @name: used for debugging; not visible to the user or ABI
362 * @size: size of the region.
364 void memory_region_init_io(MemoryRegion *mr,
365 struct Object *owner,
366 const MemoryRegionOps *ops,
367 void *opaque,
368 const char *name,
369 uint64_t size);
372 * memory_region_init_ram: Initialize RAM memory region. Accesses into the
373 * region will modify memory directly.
375 * @mr: the #MemoryRegion to be initialized.
376 * @owner: the object that tracks the region's reference count
377 * @name: the name of the region.
378 * @size: size of the region.
379 * @errp: pointer to Error*, to store an error if it happens.
381 void memory_region_init_ram(MemoryRegion *mr,
382 struct Object *owner,
383 const char *name,
384 uint64_t size,
385 Error **errp);
388 * memory_region_init_resizeable_ram: Initialize memory region with resizeable
389 * RAM. Accesses into the region will
390 * modify memory directly. Only an initial
391 * portion of this RAM is actually used.
392 * The used size can change across reboots.
394 * @mr: the #MemoryRegion to be initialized.
395 * @owner: the object that tracks the region's reference count
396 * @name: the name of the region.
397 * @size: used size of the region.
398 * @max_size: max size of the region.
399 * @resized: callback to notify owner about used size change.
400 * @errp: pointer to Error*, to store an error if it happens.
402 void memory_region_init_resizeable_ram(MemoryRegion *mr,
403 struct Object *owner,
404 const char *name,
405 uint64_t size,
406 uint64_t max_size,
407 void (*resized)(const char*,
408 uint64_t length,
409 void *host),
410 Error **errp);
411 #ifdef __linux__
413 * memory_region_init_ram_from_file: Initialize RAM memory region with a
414 * mmap-ed backend.
416 * @mr: the #MemoryRegion to be initialized.
417 * @owner: the object that tracks the region's reference count
418 * @name: the name of the region.
419 * @size: size of the region.
420 * @share: %true if memory must be mmaped with the MAP_SHARED flag
421 * @path: the path in which to allocate the RAM.
422 * @errp: pointer to Error*, to store an error if it happens.
424 void memory_region_init_ram_from_file(MemoryRegion *mr,
425 struct Object *owner,
426 const char *name,
427 uint64_t size,
428 bool share,
429 const char *path,
430 Error **errp);
431 #endif
434 * memory_region_init_ram_ptr: Initialize RAM memory region from a
435 * user-provided pointer. Accesses into the
436 * region will modify memory directly.
438 * @mr: the #MemoryRegion to be initialized.
439 * @owner: the object that tracks the region's reference count
440 * @name: the name of the region.
441 * @size: size of the region.
442 * @ptr: memory to be mapped; must contain at least @size bytes.
444 void memory_region_init_ram_ptr(MemoryRegion *mr,
445 struct Object *owner,
446 const char *name,
447 uint64_t size,
448 void *ptr);
451 * memory_region_init_alias: Initialize a memory region that aliases all or a
452 * part of another memory region.
454 * @mr: the #MemoryRegion to be initialized.
455 * @owner: the object that tracks the region's reference count
456 * @name: used for debugging; not visible to the user or ABI
457 * @orig: the region to be referenced; @mr will be equivalent to
458 * @orig between @offset and @offset + @size - 1.
459 * @offset: start of the section in @orig to be referenced.
460 * @size: size of the region.
462 void memory_region_init_alias(MemoryRegion *mr,
463 struct Object *owner,
464 const char *name,
465 MemoryRegion *orig,
466 hwaddr offset,
467 uint64_t size);
470 * memory_region_init_rom: Initialize a ROM memory region.
472 * This has the same effect as calling memory_region_init_ram()
473 * and then marking the resulting region read-only with
474 * memory_region_set_readonly().
476 * @mr: the #MemoryRegion to be initialized.
477 * @owner: the object that tracks the region's reference count
478 * @name: the name of the region.
479 * @size: size of the region.
480 * @errp: pointer to Error*, to store an error if it happens.
482 void memory_region_init_rom(MemoryRegion *mr,
483 struct Object *owner,
484 const char *name,
485 uint64_t size,
486 Error **errp);
489 * memory_region_init_rom_device: Initialize a ROM memory region. Writes are
490 * handled via callbacks.
492 * @mr: the #MemoryRegion to be initialized.
493 * @owner: the object that tracks the region's reference count
494 * @ops: callbacks for write access handling (must not be NULL).
495 * @name: the name of the region.
496 * @size: size of the region.
497 * @errp: pointer to Error*, to store an error if it happens.
499 void memory_region_init_rom_device(MemoryRegion *mr,
500 struct Object *owner,
501 const MemoryRegionOps *ops,
502 void *opaque,
503 const char *name,
504 uint64_t size,
505 Error **errp);
508 * memory_region_init_reservation: Initialize a memory region that reserves
509 * I/O space.
511 * A reservation region primariy serves debugging purposes. It claims I/O
512 * space that is not supposed to be handled by QEMU itself. Any access via
513 * the memory API will cause an abort().
514 * This function is deprecated. Use memory_region_init_io() with NULL
515 * callbacks instead.
517 * @mr: the #MemoryRegion to be initialized
518 * @owner: the object that tracks the region's reference count
519 * @name: used for debugging; not visible to the user or ABI
520 * @size: size of the region.
522 static inline void memory_region_init_reservation(MemoryRegion *mr,
523 Object *owner,
524 const char *name,
525 uint64_t size)
527 memory_region_init_io(mr, owner, NULL, mr, name, size);
531 * memory_region_init_iommu: Initialize a memory region that translates
532 * addresses
534 * An IOMMU region translates addresses and forwards accesses to a target
535 * memory region.
537 * @mr: the #MemoryRegion to be initialized
538 * @owner: the object that tracks the region's reference count
539 * @ops: a function that translates addresses into the @target region
540 * @name: used for debugging; not visible to the user or ABI
541 * @size: size of the region.
543 void memory_region_init_iommu(MemoryRegion *mr,
544 struct Object *owner,
545 const MemoryRegionIOMMUOps *ops,
546 const char *name,
547 uint64_t size);
550 * memory_region_owner: get a memory region's owner.
552 * @mr: the memory region being queried.
554 struct Object *memory_region_owner(MemoryRegion *mr);
557 * memory_region_size: get a memory region's size.
559 * @mr: the memory region being queried.
561 uint64_t memory_region_size(MemoryRegion *mr);
564 * memory_region_is_ram: check whether a memory region is random access
566 * Returns %true is a memory region is random access.
568 * @mr: the memory region being queried
570 static inline bool memory_region_is_ram(MemoryRegion *mr)
572 return mr->ram;
576 * memory_region_is_skip_dump: check whether a memory region should not be
577 * dumped
579 * Returns %true is a memory region should not be dumped(e.g. VFIO BAR MMAP).
581 * @mr: the memory region being queried
583 bool memory_region_is_skip_dump(MemoryRegion *mr);
586 * memory_region_set_skip_dump: Set skip_dump flag, dump will ignore this memory
587 * region
589 * @mr: the memory region being queried
591 void memory_region_set_skip_dump(MemoryRegion *mr);
594 * memory_region_is_romd: check whether a memory region is in ROMD mode
596 * Returns %true if a memory region is a ROM device and currently set to allow
597 * direct reads.
599 * @mr: the memory region being queried
601 static inline bool memory_region_is_romd(MemoryRegion *mr)
603 return mr->rom_device && mr->romd_mode;
607 * memory_region_is_iommu: check whether a memory region is an iommu
609 * Returns %true is a memory region is an iommu.
611 * @mr: the memory region being queried
613 static inline bool memory_region_is_iommu(MemoryRegion *mr)
615 return mr->iommu_ops;
620 * memory_region_iommu_get_min_page_size: get minimum supported page size
621 * for an iommu
623 * Returns minimum supported page size for an iommu.
625 * @mr: the memory region being queried
627 uint64_t memory_region_iommu_get_min_page_size(MemoryRegion *mr);
630 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
632 * The notification type will be decided by entry.perm bits:
634 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
635 * - For MAP (newly added entry) notifies: set entry.perm to the
636 * permission of the page (which is definitely !IOMMU_NONE).
638 * Note: for any IOMMU implementation, an in-place mapping change
639 * should be notified with an UNMAP followed by a MAP.
641 * @mr: the memory region that was changed
642 * @entry: the new entry in the IOMMU translation table. The entry
643 * replaces all old entries for the same virtual I/O address range.
644 * Deleted entries have .@perm == 0.
646 void memory_region_notify_iommu(MemoryRegion *mr,
647 IOMMUTLBEntry entry);
650 * memory_region_register_iommu_notifier: register a notifier for changes to
651 * IOMMU translation entries.
653 * @mr: the memory region to observe
654 * @n: the IOMMUNotifier to be added; the notify callback receives a
655 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer
656 * ceases to be valid on exit from the notifier.
658 void memory_region_register_iommu_notifier(MemoryRegion *mr,
659 IOMMUNotifier *n);
662 * memory_region_iommu_replay: replay existing IOMMU translations to
663 * a notifier with the minimum page granularity returned by
664 * mr->iommu_ops->get_page_size().
666 * @mr: the memory region to observe
667 * @n: the notifier to which to replay iommu mappings
668 * @is_write: Whether to treat the replay as a translate "write"
669 * through the iommu
671 void memory_region_iommu_replay(MemoryRegion *mr, IOMMUNotifier *n,
672 bool is_write);
675 * memory_region_unregister_iommu_notifier: unregister a notifier for
676 * changes to IOMMU translation entries.
678 * @mr: the memory region which was observed and for which notity_stopped()
679 * needs to be called
680 * @n: the notifier to be removed.
682 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
683 IOMMUNotifier *n);
686 * memory_region_name: get a memory region's name
688 * Returns the string that was used to initialize the memory region.
690 * @mr: the memory region being queried
692 const char *memory_region_name(const MemoryRegion *mr);
695 * memory_region_is_logging: return whether a memory region is logging writes
697 * Returns %true if the memory region is logging writes for the given client
699 * @mr: the memory region being queried
700 * @client: the client being queried
702 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
705 * memory_region_get_dirty_log_mask: return the clients for which a
706 * memory region is logging writes.
708 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
709 * are the bit indices.
711 * @mr: the memory region being queried
713 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
716 * memory_region_is_rom: check whether a memory region is ROM
718 * Returns %true is a memory region is read-only memory.
720 * @mr: the memory region being queried
722 static inline bool memory_region_is_rom(MemoryRegion *mr)
724 return mr->ram && mr->readonly;
729 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
731 * Returns a file descriptor backing a file-based RAM memory region,
732 * or -1 if the region is not a file-based RAM memory region.
734 * @mr: the RAM or alias memory region being queried.
736 int memory_region_get_fd(MemoryRegion *mr);
739 * memory_region_set_fd: Mark a RAM memory region as backed by a
740 * file descriptor.
742 * This function is typically used after memory_region_init_ram_ptr().
744 * @mr: the memory region being queried.
745 * @fd: the file descriptor that backs @mr.
747 void memory_region_set_fd(MemoryRegion *mr, int fd);
750 * memory_region_from_host: Convert a pointer into a RAM memory region
751 * and an offset within it.
753 * Given a host pointer inside a RAM memory region (created with
754 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
755 * the MemoryRegion and the offset within it.
757 * Use with care; by the time this function returns, the returned pointer is
758 * not protected by RCU anymore. If the caller is not within an RCU critical
759 * section and does not hold the iothread lock, it must have other means of
760 * protecting the pointer, such as a reference to the region that includes
761 * the incoming ram_addr_t.
763 * @mr: the memory region being queried.
765 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
768 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
770 * Returns a host pointer to a RAM memory region (created with
771 * memory_region_init_ram() or memory_region_init_ram_ptr()).
773 * Use with care; by the time this function returns, the returned pointer is
774 * not protected by RCU anymore. If the caller is not within an RCU critical
775 * section and does not hold the iothread lock, it must have other means of
776 * protecting the pointer, such as a reference to the region that includes
777 * the incoming ram_addr_t.
779 * @mr: the memory region being queried.
781 void *memory_region_get_ram_ptr(MemoryRegion *mr);
783 /* memory_region_ram_resize: Resize a RAM region.
785 * Only legal before guest might have detected the memory size: e.g. on
786 * incoming migration, or right after reset.
788 * @mr: a memory region created with @memory_region_init_resizeable_ram.
789 * @newsize: the new size the region
790 * @errp: pointer to Error*, to store an error if it happens.
792 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
793 Error **errp);
796 * memory_region_set_log: Turn dirty logging on or off for a region.
798 * Turns dirty logging on or off for a specified client (display, migration).
799 * Only meaningful for RAM regions.
801 * @mr: the memory region being updated.
802 * @log: whether dirty logging is to be enabled or disabled.
803 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
805 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
808 * memory_region_get_dirty: Check whether a range of bytes is dirty
809 * for a specified client.
811 * Checks whether a range of bytes has been written to since the last
812 * call to memory_region_reset_dirty() with the same @client. Dirty logging
813 * must be enabled.
815 * @mr: the memory region being queried.
816 * @addr: the address (relative to the start of the region) being queried.
817 * @size: the size of the range being queried.
818 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
819 * %DIRTY_MEMORY_VGA.
821 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
822 hwaddr size, unsigned client);
825 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
827 * Marks a range of bytes as dirty, after it has been dirtied outside
828 * guest code.
830 * @mr: the memory region being dirtied.
831 * @addr: the address (relative to the start of the region) being dirtied.
832 * @size: size of the range being dirtied.
834 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
835 hwaddr size);
838 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
839 * for a specified client. It clears them.
841 * Checks whether a range of bytes has been written to since the last
842 * call to memory_region_reset_dirty() with the same @client. Dirty logging
843 * must be enabled.
845 * @mr: the memory region being queried.
846 * @addr: the address (relative to the start of the region) being queried.
847 * @size: the size of the range being queried.
848 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
849 * %DIRTY_MEMORY_VGA.
851 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
852 hwaddr size, unsigned client);
854 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
855 * any external TLBs (e.g. kvm)
857 * Flushes dirty information from accelerators such as kvm and vhost-net
858 * and makes it available to users of the memory API.
860 * @mr: the region being flushed.
862 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
865 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
866 * client.
868 * Marks a range of pages as no longer dirty.
870 * @mr: the region being updated.
871 * @addr: the start of the subrange being cleaned.
872 * @size: the size of the subrange being cleaned.
873 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
874 * %DIRTY_MEMORY_VGA.
876 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
877 hwaddr size, unsigned client);
880 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
882 * Allows a memory region to be marked as read-only (turning it into a ROM).
883 * only useful on RAM regions.
885 * @mr: the region being updated.
886 * @readonly: whether rhe region is to be ROM or RAM.
888 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
891 * memory_region_rom_device_set_romd: enable/disable ROMD mode
893 * Allows a ROM device (initialized with memory_region_init_rom_device() to
894 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
895 * device is mapped to guest memory and satisfies read access directly.
896 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
897 * Writes are always handled by the #MemoryRegion.write function.
899 * @mr: the memory region to be updated
900 * @romd_mode: %true to put the region into ROMD mode
902 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
905 * memory_region_set_coalescing: Enable memory coalescing for the region.
907 * Enabled writes to a region to be queued for later processing. MMIO ->write
908 * callbacks may be delayed until a non-coalesced MMIO is issued.
909 * Only useful for IO regions. Roughly similar to write-combining hardware.
911 * @mr: the memory region to be write coalesced
913 void memory_region_set_coalescing(MemoryRegion *mr);
916 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
917 * a region.
919 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
920 * Multiple calls can be issued coalesced disjoint ranges.
922 * @mr: the memory region to be updated.
923 * @offset: the start of the range within the region to be coalesced.
924 * @size: the size of the subrange to be coalesced.
926 void memory_region_add_coalescing(MemoryRegion *mr,
927 hwaddr offset,
928 uint64_t size);
931 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
933 * Disables any coalescing caused by memory_region_set_coalescing() or
934 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
935 * hardware.
937 * @mr: the memory region to be updated.
939 void memory_region_clear_coalescing(MemoryRegion *mr);
942 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
943 * accesses.
945 * Ensure that pending coalesced MMIO request are flushed before the memory
946 * region is accessed. This property is automatically enabled for all regions
947 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
949 * @mr: the memory region to be updated.
951 void memory_region_set_flush_coalesced(MemoryRegion *mr);
954 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
955 * accesses.
957 * Clear the automatic coalesced MMIO flushing enabled via
958 * memory_region_set_flush_coalesced. Note that this service has no effect on
959 * memory regions that have MMIO coalescing enabled for themselves. For them,
960 * automatic flushing will stop once coalescing is disabled.
962 * @mr: the memory region to be updated.
964 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
967 * memory_region_set_global_locking: Declares the access processing requires
968 * QEMU's global lock.
970 * When this is invoked, accesses to the memory region will be processed while
971 * holding the global lock of QEMU. This is the default behavior of memory
972 * regions.
974 * @mr: the memory region to be updated.
976 void memory_region_set_global_locking(MemoryRegion *mr);
979 * memory_region_clear_global_locking: Declares that access processing does
980 * not depend on the QEMU global lock.
982 * By clearing this property, accesses to the memory region will be processed
983 * outside of QEMU's global lock (unless the lock is held on when issuing the
984 * access request). In this case, the device model implementing the access
985 * handlers is responsible for synchronization of concurrency.
987 * @mr: the memory region to be updated.
989 void memory_region_clear_global_locking(MemoryRegion *mr);
992 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
993 * is written to a location.
995 * Marks a word in an IO region (initialized with memory_region_init_io())
996 * as a trigger for an eventfd event. The I/O callback will not be called.
997 * The caller must be prepared to handle failure (that is, take the required
998 * action if the callback _is_ called).
1000 * @mr: the memory region being updated.
1001 * @addr: the address within @mr that is to be monitored
1002 * @size: the size of the access to trigger the eventfd
1003 * @match_data: whether to match against @data, instead of just @addr
1004 * @data: the data to match against the guest write
1005 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1007 void memory_region_add_eventfd(MemoryRegion *mr,
1008 hwaddr addr,
1009 unsigned size,
1010 bool match_data,
1011 uint64_t data,
1012 EventNotifier *e);
1015 * memory_region_del_eventfd: Cancel an eventfd.
1017 * Cancels an eventfd trigger requested by a previous
1018 * memory_region_add_eventfd() call.
1020 * @mr: the memory region being updated.
1021 * @addr: the address within @mr that is to be monitored
1022 * @size: the size of the access to trigger the eventfd
1023 * @match_data: whether to match against @data, instead of just @addr
1024 * @data: the data to match against the guest write
1025 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1027 void memory_region_del_eventfd(MemoryRegion *mr,
1028 hwaddr addr,
1029 unsigned size,
1030 bool match_data,
1031 uint64_t data,
1032 EventNotifier *e);
1035 * memory_region_add_subregion: Add a subregion to a container.
1037 * Adds a subregion at @offset. The subregion may not overlap with other
1038 * subregions (except for those explicitly marked as overlapping). A region
1039 * may only be added once as a subregion (unless removed with
1040 * memory_region_del_subregion()); use memory_region_init_alias() if you
1041 * want a region to be a subregion in multiple locations.
1043 * @mr: the region to contain the new subregion; must be a container
1044 * initialized with memory_region_init().
1045 * @offset: the offset relative to @mr where @subregion is added.
1046 * @subregion: the subregion to be added.
1048 void memory_region_add_subregion(MemoryRegion *mr,
1049 hwaddr offset,
1050 MemoryRegion *subregion);
1052 * memory_region_add_subregion_overlap: Add a subregion to a container
1053 * with overlap.
1055 * Adds a subregion at @offset. The subregion may overlap with other
1056 * subregions. Conflicts are resolved by having a higher @priority hide a
1057 * lower @priority. Subregions without priority are taken as @priority 0.
1058 * A region may only be added once as a subregion (unless removed with
1059 * memory_region_del_subregion()); use memory_region_init_alias() if you
1060 * want a region to be a subregion in multiple locations.
1062 * @mr: the region to contain the new subregion; must be a container
1063 * initialized with memory_region_init().
1064 * @offset: the offset relative to @mr where @subregion is added.
1065 * @subregion: the subregion to be added.
1066 * @priority: used for resolving overlaps; highest priority wins.
1068 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1069 hwaddr offset,
1070 MemoryRegion *subregion,
1071 int priority);
1074 * memory_region_get_ram_addr: Get the ram address associated with a memory
1075 * region
1077 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1079 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1081 * memory_region_del_subregion: Remove a subregion.
1083 * Removes a subregion from its container.
1085 * @mr: the container to be updated.
1086 * @subregion: the region being removed; must be a current subregion of @mr.
1088 void memory_region_del_subregion(MemoryRegion *mr,
1089 MemoryRegion *subregion);
1092 * memory_region_set_enabled: dynamically enable or disable a region
1094 * Enables or disables a memory region. A disabled memory region
1095 * ignores all accesses to itself and its subregions. It does not
1096 * obscure sibling subregions with lower priority - it simply behaves as
1097 * if it was removed from the hierarchy.
1099 * Regions default to being enabled.
1101 * @mr: the region to be updated
1102 * @enabled: whether to enable or disable the region
1104 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1107 * memory_region_set_address: dynamically update the address of a region
1109 * Dynamically updates the address of a region, relative to its container.
1110 * May be used on regions are currently part of a memory hierarchy.
1112 * @mr: the region to be updated
1113 * @addr: new address, relative to container region
1115 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1118 * memory_region_set_size: dynamically update the size of a region.
1120 * Dynamically updates the size of a region.
1122 * @mr: the region to be updated
1123 * @size: used size of the region.
1125 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1128 * memory_region_set_alias_offset: dynamically update a memory alias's offset
1130 * Dynamically updates the offset into the target region that an alias points
1131 * to, as if the fourth argument to memory_region_init_alias() has changed.
1133 * @mr: the #MemoryRegion to be updated; should be an alias.
1134 * @offset: the new offset into the target memory region
1136 void memory_region_set_alias_offset(MemoryRegion *mr,
1137 hwaddr offset);
1140 * memory_region_present: checks if an address relative to a @container
1141 * translates into #MemoryRegion within @container
1143 * Answer whether a #MemoryRegion within @container covers the address
1144 * @addr.
1146 * @container: a #MemoryRegion within which @addr is a relative address
1147 * @addr: the area within @container to be searched
1149 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1152 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1153 * into any address space.
1155 * @mr: a #MemoryRegion which should be checked if it's mapped
1157 bool memory_region_is_mapped(MemoryRegion *mr);
1160 * memory_region_find: translate an address/size relative to a
1161 * MemoryRegion into a #MemoryRegionSection.
1163 * Locates the first #MemoryRegion within @mr that overlaps the range
1164 * given by @addr and @size.
1166 * Returns a #MemoryRegionSection that describes a contiguous overlap.
1167 * It will have the following characteristics:
1168 * .@size = 0 iff no overlap was found
1169 * .@mr is non-%NULL iff an overlap was found
1171 * Remember that in the return value the @offset_within_region is
1172 * relative to the returned region (in the .@mr field), not to the
1173 * @mr argument.
1175 * Similarly, the .@offset_within_address_space is relative to the
1176 * address space that contains both regions, the passed and the
1177 * returned one. However, in the special case where the @mr argument
1178 * has no container (and thus is the root of the address space), the
1179 * following will hold:
1180 * .@offset_within_address_space >= @addr
1181 * .@offset_within_address_space + .@size <= @addr + @size
1183 * @mr: a MemoryRegion within which @addr is a relative address
1184 * @addr: start of the area within @as to be searched
1185 * @size: size of the area to be searched
1187 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1188 hwaddr addr, uint64_t size);
1191 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1193 * Synchronizes the dirty page log for all address spaces.
1195 void memory_global_dirty_log_sync(void);
1198 * memory_region_transaction_begin: Start a transaction.
1200 * During a transaction, changes will be accumulated and made visible
1201 * only when the transaction ends (is committed).
1203 void memory_region_transaction_begin(void);
1206 * memory_region_transaction_commit: Commit a transaction and make changes
1207 * visible to the guest.
1209 void memory_region_transaction_commit(void);
1212 * memory_listener_register: register callbacks to be called when memory
1213 * sections are mapped or unmapped into an address
1214 * space
1216 * @listener: an object containing the callbacks to be called
1217 * @filter: if non-%NULL, only regions in this address space will be observed
1219 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1222 * memory_listener_unregister: undo the effect of memory_listener_register()
1224 * @listener: an object containing the callbacks to be removed
1226 void memory_listener_unregister(MemoryListener *listener);
1229 * memory_global_dirty_log_start: begin dirty logging for all regions
1231 void memory_global_dirty_log_start(void);
1234 * memory_global_dirty_log_stop: end dirty logging for all regions
1236 void memory_global_dirty_log_stop(void);
1238 void mtree_info(fprintf_function mon_printf, void *f);
1241 * memory_region_dispatch_read: perform a read directly to the specified
1242 * MemoryRegion.
1244 * @mr: #MemoryRegion to access
1245 * @addr: address within that region
1246 * @pval: pointer to uint64_t which the data is written to
1247 * @size: size of the access in bytes
1248 * @attrs: memory transaction attributes to use for the access
1250 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1251 hwaddr addr,
1252 uint64_t *pval,
1253 unsigned size,
1254 MemTxAttrs attrs);
1256 * memory_region_dispatch_write: perform a write directly to the specified
1257 * MemoryRegion.
1259 * @mr: #MemoryRegion to access
1260 * @addr: address within that region
1261 * @data: data to write
1262 * @size: size of the access in bytes
1263 * @attrs: memory transaction attributes to use for the access
1265 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1266 hwaddr addr,
1267 uint64_t data,
1268 unsigned size,
1269 MemTxAttrs attrs);
1272 * address_space_init: initializes an address space
1274 * @as: an uninitialized #AddressSpace
1275 * @root: a #MemoryRegion that routes addresses for the address space
1276 * @name: an address space name. The name is only used for debugging
1277 * output.
1279 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1282 * address_space_init_shareable: return an address space for a memory region,
1283 * creating it if it does not already exist
1285 * @root: a #MemoryRegion that routes addresses for the address space
1286 * @name: an address space name. The name is only used for debugging
1287 * output.
1289 * This function will return a pointer to an existing AddressSpace
1290 * which was initialized with the specified MemoryRegion, or it will
1291 * create and initialize one if it does not already exist. The ASes
1292 * are reference-counted, so the memory will be freed automatically
1293 * when the AddressSpace is destroyed via address_space_destroy.
1295 AddressSpace *address_space_init_shareable(MemoryRegion *root,
1296 const char *name);
1299 * address_space_destroy: destroy an address space
1301 * Releases all resources associated with an address space. After an address space
1302 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1303 * as well.
1305 * @as: address space to be destroyed
1307 void address_space_destroy(AddressSpace *as);
1310 * address_space_rw: read from or write to an address space.
1312 * Return a MemTxResult indicating whether the operation succeeded
1313 * or failed (eg unassigned memory, device rejected the transaction,
1314 * IOMMU fault).
1316 * @as: #AddressSpace to be accessed
1317 * @addr: address within that address space
1318 * @attrs: memory transaction attributes
1319 * @buf: buffer with the data transferred
1320 * @is_write: indicates the transfer direction
1322 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1323 MemTxAttrs attrs, uint8_t *buf,
1324 int len, bool is_write);
1327 * address_space_write: write to address space.
1329 * Return a MemTxResult indicating whether the operation succeeded
1330 * or failed (eg unassigned memory, device rejected the transaction,
1331 * IOMMU fault).
1333 * @as: #AddressSpace to be accessed
1334 * @addr: address within that address space
1335 * @attrs: memory transaction attributes
1336 * @buf: buffer with the data transferred
1338 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1339 MemTxAttrs attrs,
1340 const uint8_t *buf, int len);
1342 /* address_space_ld*: load from an address space
1343 * address_space_st*: store to an address space
1345 * These functions perform a load or store of the byte, word,
1346 * longword or quad to the specified address within the AddressSpace.
1347 * The _le suffixed functions treat the data as little endian;
1348 * _be indicates big endian; no suffix indicates "same endianness
1349 * as guest CPU".
1351 * The "guest CPU endianness" accessors are deprecated for use outside
1352 * target-* code; devices should be CPU-agnostic and use either the LE
1353 * or the BE accessors.
1355 * @as #AddressSpace to be accessed
1356 * @addr: address within that address space
1357 * @val: data value, for stores
1358 * @attrs: memory transaction attributes
1359 * @result: location to write the success/failure of the transaction;
1360 * if NULL, this information is discarded
1362 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1363 MemTxAttrs attrs, MemTxResult *result);
1364 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1365 MemTxAttrs attrs, MemTxResult *result);
1366 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1367 MemTxAttrs attrs, MemTxResult *result);
1368 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1369 MemTxAttrs attrs, MemTxResult *result);
1370 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1371 MemTxAttrs attrs, MemTxResult *result);
1372 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1373 MemTxAttrs attrs, MemTxResult *result);
1374 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1375 MemTxAttrs attrs, MemTxResult *result);
1376 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1377 MemTxAttrs attrs, MemTxResult *result);
1378 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1379 MemTxAttrs attrs, MemTxResult *result);
1380 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1381 MemTxAttrs attrs, MemTxResult *result);
1382 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1383 MemTxAttrs attrs, MemTxResult *result);
1384 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1385 MemTxAttrs attrs, MemTxResult *result);
1386 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1387 MemTxAttrs attrs, MemTxResult *result);
1388 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1389 MemTxAttrs attrs, MemTxResult *result);
1391 /* address_space_translate: translate an address range into an address space
1392 * into a MemoryRegion and an address range into that section. Should be
1393 * called from an RCU critical section, to avoid that the last reference
1394 * to the returned region disappears after address_space_translate returns.
1396 * @as: #AddressSpace to be accessed
1397 * @addr: address within that address space
1398 * @xlat: pointer to address within the returned memory region section's
1399 * #MemoryRegion.
1400 * @len: pointer to length
1401 * @is_write: indicates the transfer direction
1403 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1404 hwaddr *xlat, hwaddr *len,
1405 bool is_write);
1407 /* address_space_access_valid: check for validity of accessing an address
1408 * space range
1410 * Check whether memory is assigned to the given address space range, and
1411 * access is permitted by any IOMMU regions that are active for the address
1412 * space.
1414 * For now, addr and len should be aligned to a page size. This limitation
1415 * will be lifted in the future.
1417 * @as: #AddressSpace to be accessed
1418 * @addr: address within that address space
1419 * @len: length of the area to be checked
1420 * @is_write: indicates the transfer direction
1422 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1424 /* address_space_map: map a physical memory region into a host virtual address
1426 * May map a subset of the requested range, given by and returned in @plen.
1427 * May return %NULL if resources needed to perform the mapping are exhausted.
1428 * Use only for reads OR writes - not for read-modify-write operations.
1429 * Use cpu_register_map_client() to know when retrying the map operation is
1430 * likely to succeed.
1432 * @as: #AddressSpace to be accessed
1433 * @addr: address within that address space
1434 * @plen: pointer to length of buffer; updated on return
1435 * @is_write: indicates the transfer direction
1437 void *address_space_map(AddressSpace *as, hwaddr addr,
1438 hwaddr *plen, bool is_write);
1440 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1442 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
1443 * the amount of memory that was actually read or written by the caller.
1445 * @as: #AddressSpace used
1446 * @addr: address within that address space
1447 * @len: buffer length as returned by address_space_map()
1448 * @access_len: amount of data actually transferred
1449 * @is_write: indicates the transfer direction
1451 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1452 int is_write, hwaddr access_len);
1455 /* Internal functions, part of the implementation of address_space_read. */
1456 MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
1457 MemTxAttrs attrs, uint8_t *buf,
1458 int len, hwaddr addr1, hwaddr l,
1459 MemoryRegion *mr);
1460 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
1461 MemTxAttrs attrs, uint8_t *buf, int len);
1462 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
1464 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1466 if (is_write) {
1467 return memory_region_is_ram(mr) && !mr->readonly;
1468 } else {
1469 return memory_region_is_ram(mr) || memory_region_is_romd(mr);
1474 * address_space_read: read from an address space.
1476 * Return a MemTxResult indicating whether the operation succeeded
1477 * or failed (eg unassigned memory, device rejected the transaction,
1478 * IOMMU fault).
1480 * @as: #AddressSpace to be accessed
1481 * @addr: address within that address space
1482 * @attrs: memory transaction attributes
1483 * @buf: buffer with the data transferred
1485 static inline __attribute__((__always_inline__))
1486 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
1487 uint8_t *buf, int len)
1489 MemTxResult result = MEMTX_OK;
1490 hwaddr l, addr1;
1491 void *ptr;
1492 MemoryRegion *mr;
1494 if (__builtin_constant_p(len)) {
1495 if (len) {
1496 rcu_read_lock();
1497 l = len;
1498 mr = address_space_translate(as, addr, &addr1, &l, false);
1499 if (len == l && memory_access_is_direct(mr, false)) {
1500 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
1501 memcpy(buf, ptr, len);
1502 } else {
1503 result = address_space_read_continue(as, addr, attrs, buf, len,
1504 addr1, l, mr);
1506 rcu_read_unlock();
1508 } else {
1509 result = address_space_read_full(as, addr, attrs, buf, len);
1511 return result;
1514 #endif
1516 #endif