target/arm: fix TCG temp leak in aarch64 rev16
[qemu/ar7.git] / target / arm / translate-a64.c
blob58ed4c6d05759b73e5da22121c864c0d89c112e4
1 /*
2 * AArch64 translation
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "tcg-op.h"
24 #include "qemu/log.h"
25 #include "arm_ldst.h"
26 #include "translate.h"
27 #include "internals.h"
28 #include "qemu/host-utils.h"
30 #include "exec/semihost.h"
31 #include "exec/gen-icount.h"
33 #include "exec/helper-proto.h"
34 #include "exec/helper-gen.h"
35 #include "exec/log.h"
37 #include "trace-tcg.h"
39 static TCGv_i64 cpu_X[32];
40 static TCGv_i64 cpu_pc;
42 /* Load/store exclusive handling */
43 static TCGv_i64 cpu_exclusive_high;
44 static TCGv_i64 cpu_reg(DisasContext *s, int reg);
46 static const char *regnames[] = {
47 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
48 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
49 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
50 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
53 enum a64_shift_type {
54 A64_SHIFT_TYPE_LSL = 0,
55 A64_SHIFT_TYPE_LSR = 1,
56 A64_SHIFT_TYPE_ASR = 2,
57 A64_SHIFT_TYPE_ROR = 3
60 /* Table based decoder typedefs - used when the relevant bits for decode
61 * are too awkwardly scattered across the instruction (eg SIMD).
63 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
65 typedef struct AArch64DecodeTable {
66 uint32_t pattern;
67 uint32_t mask;
68 AArch64DecodeFn *disas_fn;
69 } AArch64DecodeTable;
71 /* Function prototype for gen_ functions for calling Neon helpers */
72 typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32);
73 typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32);
74 typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
75 typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64);
76 typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64);
77 typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64);
78 typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64);
79 typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32);
80 typedef void NeonGenTwoSingleOPFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
81 typedef void NeonGenTwoDoubleOPFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
82 typedef void NeonGenOneOpFn(TCGv_i64, TCGv_i64);
83 typedef void CryptoTwoOpEnvFn(TCGv_ptr, TCGv_i32, TCGv_i32);
84 typedef void CryptoThreeOpEnvFn(TCGv_ptr, TCGv_i32, TCGv_i32, TCGv_i32);
86 /* initialize TCG globals. */
87 void a64_translate_init(void)
89 int i;
91 cpu_pc = tcg_global_mem_new_i64(cpu_env,
92 offsetof(CPUARMState, pc),
93 "pc");
94 for (i = 0; i < 32; i++) {
95 cpu_X[i] = tcg_global_mem_new_i64(cpu_env,
96 offsetof(CPUARMState, xregs[i]),
97 regnames[i]);
100 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env,
101 offsetof(CPUARMState, exclusive_high), "exclusive_high");
104 static inline int get_a64_user_mem_index(DisasContext *s)
106 /* Return the core mmu_idx to use for A64 "unprivileged load/store" insns:
107 * if EL1, access as if EL0; otherwise access at current EL
109 ARMMMUIdx useridx;
111 switch (s->mmu_idx) {
112 case ARMMMUIdx_S12NSE1:
113 useridx = ARMMMUIdx_S12NSE0;
114 break;
115 case ARMMMUIdx_S1SE1:
116 useridx = ARMMMUIdx_S1SE0;
117 break;
118 case ARMMMUIdx_S2NS:
119 g_assert_not_reached();
120 default:
121 useridx = s->mmu_idx;
122 break;
124 return arm_to_core_mmu_idx(useridx);
127 void aarch64_cpu_dump_state(CPUState *cs, FILE *f,
128 fprintf_function cpu_fprintf, int flags)
130 ARMCPU *cpu = ARM_CPU(cs);
131 CPUARMState *env = &cpu->env;
132 uint32_t psr = pstate_read(env);
133 int i;
134 int el = arm_current_el(env);
135 const char *ns_status;
137 cpu_fprintf(f, "PC=%016"PRIx64" SP=%016"PRIx64"\n",
138 env->pc, env->xregs[31]);
139 for (i = 0; i < 31; i++) {
140 cpu_fprintf(f, "X%02d=%016"PRIx64, i, env->xregs[i]);
141 if ((i % 4) == 3) {
142 cpu_fprintf(f, "\n");
143 } else {
144 cpu_fprintf(f, " ");
148 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
149 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
150 } else {
151 ns_status = "";
154 cpu_fprintf(f, "\nPSTATE=%08x %c%c%c%c %sEL%d%c\n",
155 psr,
156 psr & PSTATE_N ? 'N' : '-',
157 psr & PSTATE_Z ? 'Z' : '-',
158 psr & PSTATE_C ? 'C' : '-',
159 psr & PSTATE_V ? 'V' : '-',
160 ns_status,
162 psr & PSTATE_SP ? 'h' : 't');
164 if (flags & CPU_DUMP_FPU) {
165 int numvfpregs = 32;
166 for (i = 0; i < numvfpregs; i += 2) {
167 uint64_t vlo = float64_val(env->vfp.regs[i * 2]);
168 uint64_t vhi = float64_val(env->vfp.regs[(i * 2) + 1]);
169 cpu_fprintf(f, "q%02d=%016" PRIx64 ":%016" PRIx64 " ",
170 i, vhi, vlo);
171 vlo = float64_val(env->vfp.regs[(i + 1) * 2]);
172 vhi = float64_val(env->vfp.regs[((i + 1) * 2) + 1]);
173 cpu_fprintf(f, "q%02d=%016" PRIx64 ":%016" PRIx64 "\n",
174 i + 1, vhi, vlo);
176 cpu_fprintf(f, "FPCR: %08x FPSR: %08x\n",
177 vfp_get_fpcr(env), vfp_get_fpsr(env));
181 void gen_a64_set_pc_im(uint64_t val)
183 tcg_gen_movi_i64(cpu_pc, val);
186 /* Load the PC from a generic TCG variable.
188 * If address tagging is enabled via the TCR TBI bits, then loading
189 * an address into the PC will clear out any tag in the it:
190 * + for EL2 and EL3 there is only one TBI bit, and if it is set
191 * then the address is zero-extended, clearing bits [63:56]
192 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
193 * and TBI1 controls addressses with bit 55 == 1.
194 * If the appropriate TBI bit is set for the address then
195 * the address is sign-extended from bit 55 into bits [63:56]
197 * We can avoid doing this for relative-branches, because the
198 * PC + offset can never overflow into the tag bits (assuming
199 * that virtual addresses are less than 56 bits wide, as they
200 * are currently), but we must handle it for branch-to-register.
202 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
205 if (s->current_el <= 1) {
206 /* Test if NEITHER or BOTH TBI values are set. If so, no need to
207 * examine bit 55 of address, can just generate code.
208 * If mixed, then test via generated code
210 if (s->tbi0 && s->tbi1) {
211 TCGv_i64 tmp_reg = tcg_temp_new_i64();
212 /* Both bits set, sign extension from bit 55 into [63:56] will
213 * cover both cases
215 tcg_gen_shli_i64(tmp_reg, src, 8);
216 tcg_gen_sari_i64(cpu_pc, tmp_reg, 8);
217 tcg_temp_free_i64(tmp_reg);
218 } else if (!s->tbi0 && !s->tbi1) {
219 /* Neither bit set, just load it as-is */
220 tcg_gen_mov_i64(cpu_pc, src);
221 } else {
222 TCGv_i64 tcg_tmpval = tcg_temp_new_i64();
223 TCGv_i64 tcg_bit55 = tcg_temp_new_i64();
224 TCGv_i64 tcg_zero = tcg_const_i64(0);
226 tcg_gen_andi_i64(tcg_bit55, src, (1ull << 55));
228 if (s->tbi0) {
229 /* tbi0==1, tbi1==0, so 0-fill upper byte if bit 55 = 0 */
230 tcg_gen_andi_i64(tcg_tmpval, src,
231 0x00FFFFFFFFFFFFFFull);
232 tcg_gen_movcond_i64(TCG_COND_EQ, cpu_pc, tcg_bit55, tcg_zero,
233 tcg_tmpval, src);
234 } else {
235 /* tbi0==0, tbi1==1, so 1-fill upper byte if bit 55 = 1 */
236 tcg_gen_ori_i64(tcg_tmpval, src,
237 0xFF00000000000000ull);
238 tcg_gen_movcond_i64(TCG_COND_NE, cpu_pc, tcg_bit55, tcg_zero,
239 tcg_tmpval, src);
241 tcg_temp_free_i64(tcg_zero);
242 tcg_temp_free_i64(tcg_bit55);
243 tcg_temp_free_i64(tcg_tmpval);
245 } else { /* EL > 1 */
246 if (s->tbi0) {
247 /* Force tag byte to all zero */
248 tcg_gen_andi_i64(cpu_pc, src, 0x00FFFFFFFFFFFFFFull);
249 } else {
250 /* Load unmodified address */
251 tcg_gen_mov_i64(cpu_pc, src);
256 typedef struct DisasCompare64 {
257 TCGCond cond;
258 TCGv_i64 value;
259 } DisasCompare64;
261 static void a64_test_cc(DisasCompare64 *c64, int cc)
263 DisasCompare c32;
265 arm_test_cc(&c32, cc);
267 /* Sign-extend the 32-bit value so that the GE/LT comparisons work
268 * properly. The NE/EQ comparisons are also fine with this choice. */
269 c64->cond = c32.cond;
270 c64->value = tcg_temp_new_i64();
271 tcg_gen_ext_i32_i64(c64->value, c32.value);
273 arm_free_cc(&c32);
276 static void a64_free_cc(DisasCompare64 *c64)
278 tcg_temp_free_i64(c64->value);
281 static void gen_exception_internal(int excp)
283 TCGv_i32 tcg_excp = tcg_const_i32(excp);
285 assert(excp_is_internal(excp));
286 gen_helper_exception_internal(cpu_env, tcg_excp);
287 tcg_temp_free_i32(tcg_excp);
290 static void gen_exception(int excp, uint32_t syndrome, uint32_t target_el)
292 TCGv_i32 tcg_excp = tcg_const_i32(excp);
293 TCGv_i32 tcg_syn = tcg_const_i32(syndrome);
294 TCGv_i32 tcg_el = tcg_const_i32(target_el);
296 gen_helper_exception_with_syndrome(cpu_env, tcg_excp,
297 tcg_syn, tcg_el);
298 tcg_temp_free_i32(tcg_el);
299 tcg_temp_free_i32(tcg_syn);
300 tcg_temp_free_i32(tcg_excp);
303 static void gen_exception_internal_insn(DisasContext *s, int offset, int excp)
305 gen_a64_set_pc_im(s->pc - offset);
306 gen_exception_internal(excp);
307 s->is_jmp = DISAS_EXC;
310 static void gen_exception_insn(DisasContext *s, int offset, int excp,
311 uint32_t syndrome, uint32_t target_el)
313 gen_a64_set_pc_im(s->pc - offset);
314 gen_exception(excp, syndrome, target_el);
315 s->is_jmp = DISAS_EXC;
318 static void gen_ss_advance(DisasContext *s)
320 /* If the singlestep state is Active-not-pending, advance to
321 * Active-pending.
323 if (s->ss_active) {
324 s->pstate_ss = 0;
325 gen_helper_clear_pstate_ss(cpu_env);
329 static void gen_step_complete_exception(DisasContext *s)
331 /* We just completed step of an insn. Move from Active-not-pending
332 * to Active-pending, and then also take the swstep exception.
333 * This corresponds to making the (IMPDEF) choice to prioritize
334 * swstep exceptions over asynchronous exceptions taken to an exception
335 * level where debug is disabled. This choice has the advantage that
336 * we do not need to maintain internal state corresponding to the
337 * ISV/EX syndrome bits between completion of the step and generation
338 * of the exception, and our syndrome information is always correct.
340 gen_ss_advance(s);
341 gen_exception(EXCP_UDEF, syn_swstep(s->ss_same_el, 1, s->is_ldex),
342 default_exception_el(s));
343 s->is_jmp = DISAS_EXC;
346 static inline bool use_goto_tb(DisasContext *s, int n, uint64_t dest)
348 /* No direct tb linking with singlestep (either QEMU's or the ARM
349 * debug architecture kind) or deterministic io
351 if (s->singlestep_enabled || s->ss_active || (s->tb->cflags & CF_LAST_IO)) {
352 return false;
355 #ifndef CONFIG_USER_ONLY
356 /* Only link tbs from inside the same guest page */
357 if ((s->tb->pc & TARGET_PAGE_MASK) != (dest & TARGET_PAGE_MASK)) {
358 return false;
360 #endif
362 return true;
365 static inline void gen_goto_tb(DisasContext *s, int n, uint64_t dest)
367 TranslationBlock *tb;
369 tb = s->tb;
370 if (use_goto_tb(s, n, dest)) {
371 tcg_gen_goto_tb(n);
372 gen_a64_set_pc_im(dest);
373 tcg_gen_exit_tb((intptr_t)tb + n);
374 s->is_jmp = DISAS_TB_JUMP;
375 } else {
376 gen_a64_set_pc_im(dest);
377 if (s->ss_active) {
378 gen_step_complete_exception(s);
379 } else if (s->singlestep_enabled) {
380 gen_exception_internal(EXCP_DEBUG);
381 } else {
382 tcg_gen_lookup_and_goto_ptr(cpu_pc);
383 s->is_jmp = DISAS_TB_JUMP;
388 static void unallocated_encoding(DisasContext *s)
390 /* Unallocated and reserved encodings are uncategorized */
391 gen_exception_insn(s, 4, EXCP_UDEF, syn_uncategorized(),
392 default_exception_el(s));
395 #define unsupported_encoding(s, insn) \
396 do { \
397 qemu_log_mask(LOG_UNIMP, \
398 "%s:%d: unsupported instruction encoding 0x%08x " \
399 "at pc=%016" PRIx64 "\n", \
400 __FILE__, __LINE__, insn, s->pc - 4); \
401 unallocated_encoding(s); \
402 } while (0);
404 static void init_tmp_a64_array(DisasContext *s)
406 #ifdef CONFIG_DEBUG_TCG
407 int i;
408 for (i = 0; i < ARRAY_SIZE(s->tmp_a64); i++) {
409 TCGV_UNUSED_I64(s->tmp_a64[i]);
411 #endif
412 s->tmp_a64_count = 0;
415 static void free_tmp_a64(DisasContext *s)
417 int i;
418 for (i = 0; i < s->tmp_a64_count; i++) {
419 tcg_temp_free_i64(s->tmp_a64[i]);
421 init_tmp_a64_array(s);
424 static TCGv_i64 new_tmp_a64(DisasContext *s)
426 assert(s->tmp_a64_count < TMP_A64_MAX);
427 return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_new_i64();
430 static TCGv_i64 new_tmp_a64_zero(DisasContext *s)
432 TCGv_i64 t = new_tmp_a64(s);
433 tcg_gen_movi_i64(t, 0);
434 return t;
438 * Register access functions
440 * These functions are used for directly accessing a register in where
441 * changes to the final register value are likely to be made. If you
442 * need to use a register for temporary calculation (e.g. index type
443 * operations) use the read_* form.
445 * B1.2.1 Register mappings
447 * In instruction register encoding 31 can refer to ZR (zero register) or
448 * the SP (stack pointer) depending on context. In QEMU's case we map SP
449 * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
450 * This is the point of the _sp forms.
452 static TCGv_i64 cpu_reg(DisasContext *s, int reg)
454 if (reg == 31) {
455 return new_tmp_a64_zero(s);
456 } else {
457 return cpu_X[reg];
461 /* register access for when 31 == SP */
462 static TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
464 return cpu_X[reg];
467 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
468 * representing the register contents. This TCGv is an auto-freed
469 * temporary so it need not be explicitly freed, and may be modified.
471 static TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
473 TCGv_i64 v = new_tmp_a64(s);
474 if (reg != 31) {
475 if (sf) {
476 tcg_gen_mov_i64(v, cpu_X[reg]);
477 } else {
478 tcg_gen_ext32u_i64(v, cpu_X[reg]);
480 } else {
481 tcg_gen_movi_i64(v, 0);
483 return v;
486 static TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
488 TCGv_i64 v = new_tmp_a64(s);
489 if (sf) {
490 tcg_gen_mov_i64(v, cpu_X[reg]);
491 } else {
492 tcg_gen_ext32u_i64(v, cpu_X[reg]);
494 return v;
497 /* We should have at some point before trying to access an FP register
498 * done the necessary access check, so assert that
499 * (a) we did the check and
500 * (b) we didn't then just plough ahead anyway if it failed.
501 * Print the instruction pattern in the abort message so we can figure
502 * out what we need to fix if a user encounters this problem in the wild.
504 static inline void assert_fp_access_checked(DisasContext *s)
506 #ifdef CONFIG_DEBUG_TCG
507 if (unlikely(!s->fp_access_checked || s->fp_excp_el)) {
508 fprintf(stderr, "target-arm: FP access check missing for "
509 "instruction 0x%08x\n", s->insn);
510 abort();
512 #endif
515 /* Return the offset into CPUARMState of an element of specified
516 * size, 'element' places in from the least significant end of
517 * the FP/vector register Qn.
519 static inline int vec_reg_offset(DisasContext *s, int regno,
520 int element, TCGMemOp size)
522 int offs = 0;
523 #ifdef HOST_WORDS_BIGENDIAN
524 /* This is complicated slightly because vfp.regs[2n] is
525 * still the low half and vfp.regs[2n+1] the high half
526 * of the 128 bit vector, even on big endian systems.
527 * Calculate the offset assuming a fully bigendian 128 bits,
528 * then XOR to account for the order of the two 64 bit halves.
530 offs += (16 - ((element + 1) * (1 << size)));
531 offs ^= 8;
532 #else
533 offs += element * (1 << size);
534 #endif
535 offs += offsetof(CPUARMState, vfp.regs[regno * 2]);
536 assert_fp_access_checked(s);
537 return offs;
540 /* Return the offset into CPUARMState of a slice (from
541 * the least significant end) of FP register Qn (ie
542 * Dn, Sn, Hn or Bn).
543 * (Note that this is not the same mapping as for A32; see cpu.h)
545 static inline int fp_reg_offset(DisasContext *s, int regno, TCGMemOp size)
547 int offs = offsetof(CPUARMState, vfp.regs[regno * 2]);
548 #ifdef HOST_WORDS_BIGENDIAN
549 offs += (8 - (1 << size));
550 #endif
551 assert_fp_access_checked(s);
552 return offs;
555 /* Offset of the high half of the 128 bit vector Qn */
556 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
558 assert_fp_access_checked(s);
559 return offsetof(CPUARMState, vfp.regs[regno * 2 + 1]);
562 /* Convenience accessors for reading and writing single and double
563 * FP registers. Writing clears the upper parts of the associated
564 * 128 bit vector register, as required by the architecture.
565 * Note that unlike the GP register accessors, the values returned
566 * by the read functions must be manually freed.
568 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
570 TCGv_i64 v = tcg_temp_new_i64();
572 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
573 return v;
576 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
578 TCGv_i32 v = tcg_temp_new_i32();
580 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32));
581 return v;
584 static void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
586 TCGv_i64 tcg_zero = tcg_const_i64(0);
588 tcg_gen_st_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
589 tcg_gen_st_i64(tcg_zero, cpu_env, fp_reg_hi_offset(s, reg));
590 tcg_temp_free_i64(tcg_zero);
593 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
595 TCGv_i64 tmp = tcg_temp_new_i64();
597 tcg_gen_extu_i32_i64(tmp, v);
598 write_fp_dreg(s, reg, tmp);
599 tcg_temp_free_i64(tmp);
602 static TCGv_ptr get_fpstatus_ptr(void)
604 TCGv_ptr statusptr = tcg_temp_new_ptr();
605 int offset;
607 /* In A64 all instructions (both FP and Neon) use the FPCR;
608 * there is no equivalent of the A32 Neon "standard FPSCR value"
609 * and all operations use vfp.fp_status.
611 offset = offsetof(CPUARMState, vfp.fp_status);
612 tcg_gen_addi_ptr(statusptr, cpu_env, offset);
613 return statusptr;
616 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
617 * than the 32 bit equivalent.
619 static inline void gen_set_NZ64(TCGv_i64 result)
621 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
622 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
625 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
626 static inline void gen_logic_CC(int sf, TCGv_i64 result)
628 if (sf) {
629 gen_set_NZ64(result);
630 } else {
631 tcg_gen_extrl_i64_i32(cpu_ZF, result);
632 tcg_gen_mov_i32(cpu_NF, cpu_ZF);
634 tcg_gen_movi_i32(cpu_CF, 0);
635 tcg_gen_movi_i32(cpu_VF, 0);
638 /* dest = T0 + T1; compute C, N, V and Z flags */
639 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
641 if (sf) {
642 TCGv_i64 result, flag, tmp;
643 result = tcg_temp_new_i64();
644 flag = tcg_temp_new_i64();
645 tmp = tcg_temp_new_i64();
647 tcg_gen_movi_i64(tmp, 0);
648 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
650 tcg_gen_extrl_i64_i32(cpu_CF, flag);
652 gen_set_NZ64(result);
654 tcg_gen_xor_i64(flag, result, t0);
655 tcg_gen_xor_i64(tmp, t0, t1);
656 tcg_gen_andc_i64(flag, flag, tmp);
657 tcg_temp_free_i64(tmp);
658 tcg_gen_extrh_i64_i32(cpu_VF, flag);
660 tcg_gen_mov_i64(dest, result);
661 tcg_temp_free_i64(result);
662 tcg_temp_free_i64(flag);
663 } else {
664 /* 32 bit arithmetic */
665 TCGv_i32 t0_32 = tcg_temp_new_i32();
666 TCGv_i32 t1_32 = tcg_temp_new_i32();
667 TCGv_i32 tmp = tcg_temp_new_i32();
669 tcg_gen_movi_i32(tmp, 0);
670 tcg_gen_extrl_i64_i32(t0_32, t0);
671 tcg_gen_extrl_i64_i32(t1_32, t1);
672 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
673 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
674 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
675 tcg_gen_xor_i32(tmp, t0_32, t1_32);
676 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
677 tcg_gen_extu_i32_i64(dest, cpu_NF);
679 tcg_temp_free_i32(tmp);
680 tcg_temp_free_i32(t0_32);
681 tcg_temp_free_i32(t1_32);
685 /* dest = T0 - T1; compute C, N, V and Z flags */
686 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
688 if (sf) {
689 /* 64 bit arithmetic */
690 TCGv_i64 result, flag, tmp;
692 result = tcg_temp_new_i64();
693 flag = tcg_temp_new_i64();
694 tcg_gen_sub_i64(result, t0, t1);
696 gen_set_NZ64(result);
698 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
699 tcg_gen_extrl_i64_i32(cpu_CF, flag);
701 tcg_gen_xor_i64(flag, result, t0);
702 tmp = tcg_temp_new_i64();
703 tcg_gen_xor_i64(tmp, t0, t1);
704 tcg_gen_and_i64(flag, flag, tmp);
705 tcg_temp_free_i64(tmp);
706 tcg_gen_extrh_i64_i32(cpu_VF, flag);
707 tcg_gen_mov_i64(dest, result);
708 tcg_temp_free_i64(flag);
709 tcg_temp_free_i64(result);
710 } else {
711 /* 32 bit arithmetic */
712 TCGv_i32 t0_32 = tcg_temp_new_i32();
713 TCGv_i32 t1_32 = tcg_temp_new_i32();
714 TCGv_i32 tmp;
716 tcg_gen_extrl_i64_i32(t0_32, t0);
717 tcg_gen_extrl_i64_i32(t1_32, t1);
718 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
719 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
720 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
721 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
722 tmp = tcg_temp_new_i32();
723 tcg_gen_xor_i32(tmp, t0_32, t1_32);
724 tcg_temp_free_i32(t0_32);
725 tcg_temp_free_i32(t1_32);
726 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
727 tcg_temp_free_i32(tmp);
728 tcg_gen_extu_i32_i64(dest, cpu_NF);
732 /* dest = T0 + T1 + CF; do not compute flags. */
733 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
735 TCGv_i64 flag = tcg_temp_new_i64();
736 tcg_gen_extu_i32_i64(flag, cpu_CF);
737 tcg_gen_add_i64(dest, t0, t1);
738 tcg_gen_add_i64(dest, dest, flag);
739 tcg_temp_free_i64(flag);
741 if (!sf) {
742 tcg_gen_ext32u_i64(dest, dest);
746 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
747 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
749 if (sf) {
750 TCGv_i64 result, cf_64, vf_64, tmp;
751 result = tcg_temp_new_i64();
752 cf_64 = tcg_temp_new_i64();
753 vf_64 = tcg_temp_new_i64();
754 tmp = tcg_const_i64(0);
756 tcg_gen_extu_i32_i64(cf_64, cpu_CF);
757 tcg_gen_add2_i64(result, cf_64, t0, tmp, cf_64, tmp);
758 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, tmp);
759 tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
760 gen_set_NZ64(result);
762 tcg_gen_xor_i64(vf_64, result, t0);
763 tcg_gen_xor_i64(tmp, t0, t1);
764 tcg_gen_andc_i64(vf_64, vf_64, tmp);
765 tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
767 tcg_gen_mov_i64(dest, result);
769 tcg_temp_free_i64(tmp);
770 tcg_temp_free_i64(vf_64);
771 tcg_temp_free_i64(cf_64);
772 tcg_temp_free_i64(result);
773 } else {
774 TCGv_i32 t0_32, t1_32, tmp;
775 t0_32 = tcg_temp_new_i32();
776 t1_32 = tcg_temp_new_i32();
777 tmp = tcg_const_i32(0);
779 tcg_gen_extrl_i64_i32(t0_32, t0);
780 tcg_gen_extrl_i64_i32(t1_32, t1);
781 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, cpu_CF, tmp);
782 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, tmp);
784 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
785 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
786 tcg_gen_xor_i32(tmp, t0_32, t1_32);
787 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
788 tcg_gen_extu_i32_i64(dest, cpu_NF);
790 tcg_temp_free_i32(tmp);
791 tcg_temp_free_i32(t1_32);
792 tcg_temp_free_i32(t0_32);
797 * Load/Store generators
801 * Store from GPR register to memory.
803 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
804 TCGv_i64 tcg_addr, int size, int memidx,
805 bool iss_valid,
806 unsigned int iss_srt,
807 bool iss_sf, bool iss_ar)
809 g_assert(size <= 3);
810 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, s->be_data + size);
812 if (iss_valid) {
813 uint32_t syn;
815 syn = syn_data_abort_with_iss(0,
816 size,
817 false,
818 iss_srt,
819 iss_sf,
820 iss_ar,
821 0, 0, 0, 0, 0, false);
822 disas_set_insn_syndrome(s, syn);
826 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
827 TCGv_i64 tcg_addr, int size,
828 bool iss_valid,
829 unsigned int iss_srt,
830 bool iss_sf, bool iss_ar)
832 do_gpr_st_memidx(s, source, tcg_addr, size, get_mem_index(s),
833 iss_valid, iss_srt, iss_sf, iss_ar);
837 * Load from memory to GPR register
839 static void do_gpr_ld_memidx(DisasContext *s,
840 TCGv_i64 dest, TCGv_i64 tcg_addr,
841 int size, bool is_signed,
842 bool extend, int memidx,
843 bool iss_valid, unsigned int iss_srt,
844 bool iss_sf, bool iss_ar)
846 TCGMemOp memop = s->be_data + size;
848 g_assert(size <= 3);
850 if (is_signed) {
851 memop += MO_SIGN;
854 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
856 if (extend && is_signed) {
857 g_assert(size < 3);
858 tcg_gen_ext32u_i64(dest, dest);
861 if (iss_valid) {
862 uint32_t syn;
864 syn = syn_data_abort_with_iss(0,
865 size,
866 is_signed,
867 iss_srt,
868 iss_sf,
869 iss_ar,
870 0, 0, 0, 0, 0, false);
871 disas_set_insn_syndrome(s, syn);
875 static void do_gpr_ld(DisasContext *s,
876 TCGv_i64 dest, TCGv_i64 tcg_addr,
877 int size, bool is_signed, bool extend,
878 bool iss_valid, unsigned int iss_srt,
879 bool iss_sf, bool iss_ar)
881 do_gpr_ld_memidx(s, dest, tcg_addr, size, is_signed, extend,
882 get_mem_index(s),
883 iss_valid, iss_srt, iss_sf, iss_ar);
887 * Store from FP register to memory
889 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size)
891 /* This writes the bottom N bits of a 128 bit wide vector to memory */
892 TCGv_i64 tmp = tcg_temp_new_i64();
893 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_offset(s, srcidx, MO_64));
894 if (size < 4) {
895 tcg_gen_qemu_st_i64(tmp, tcg_addr, get_mem_index(s),
896 s->be_data + size);
897 } else {
898 bool be = s->be_data == MO_BE;
899 TCGv_i64 tcg_hiaddr = tcg_temp_new_i64();
901 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
902 tcg_gen_qemu_st_i64(tmp, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
903 s->be_data | MO_Q);
904 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_hi_offset(s, srcidx));
905 tcg_gen_qemu_st_i64(tmp, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
906 s->be_data | MO_Q);
907 tcg_temp_free_i64(tcg_hiaddr);
910 tcg_temp_free_i64(tmp);
914 * Load from memory to FP register
916 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size)
918 /* This always zero-extends and writes to a full 128 bit wide vector */
919 TCGv_i64 tmplo = tcg_temp_new_i64();
920 TCGv_i64 tmphi;
922 if (size < 4) {
923 TCGMemOp memop = s->be_data + size;
924 tmphi = tcg_const_i64(0);
925 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), memop);
926 } else {
927 bool be = s->be_data == MO_BE;
928 TCGv_i64 tcg_hiaddr;
930 tmphi = tcg_temp_new_i64();
931 tcg_hiaddr = tcg_temp_new_i64();
933 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
934 tcg_gen_qemu_ld_i64(tmplo, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
935 s->be_data | MO_Q);
936 tcg_gen_qemu_ld_i64(tmphi, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
937 s->be_data | MO_Q);
938 tcg_temp_free_i64(tcg_hiaddr);
941 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64));
942 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx));
944 tcg_temp_free_i64(tmplo);
945 tcg_temp_free_i64(tmphi);
949 * Vector load/store helpers.
951 * The principal difference between this and a FP load is that we don't
952 * zero extend as we are filling a partial chunk of the vector register.
953 * These functions don't support 128 bit loads/stores, which would be
954 * normal load/store operations.
956 * The _i32 versions are useful when operating on 32 bit quantities
957 * (eg for floating point single or using Neon helper functions).
960 /* Get value of an element within a vector register */
961 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
962 int element, TCGMemOp memop)
964 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
965 switch (memop) {
966 case MO_8:
967 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
968 break;
969 case MO_16:
970 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
971 break;
972 case MO_32:
973 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
974 break;
975 case MO_8|MO_SIGN:
976 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
977 break;
978 case MO_16|MO_SIGN:
979 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
980 break;
981 case MO_32|MO_SIGN:
982 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
983 break;
984 case MO_64:
985 case MO_64|MO_SIGN:
986 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
987 break;
988 default:
989 g_assert_not_reached();
993 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
994 int element, TCGMemOp memop)
996 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
997 switch (memop) {
998 case MO_8:
999 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
1000 break;
1001 case MO_16:
1002 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
1003 break;
1004 case MO_8|MO_SIGN:
1005 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
1006 break;
1007 case MO_16|MO_SIGN:
1008 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
1009 break;
1010 case MO_32:
1011 case MO_32|MO_SIGN:
1012 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
1013 break;
1014 default:
1015 g_assert_not_reached();
1019 /* Set value of an element within a vector register */
1020 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1021 int element, TCGMemOp memop)
1023 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1024 switch (memop) {
1025 case MO_8:
1026 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
1027 break;
1028 case MO_16:
1029 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
1030 break;
1031 case MO_32:
1032 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
1033 break;
1034 case MO_64:
1035 tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
1036 break;
1037 default:
1038 g_assert_not_reached();
1042 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1043 int destidx, int element, TCGMemOp memop)
1045 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1046 switch (memop) {
1047 case MO_8:
1048 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
1049 break;
1050 case MO_16:
1051 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
1052 break;
1053 case MO_32:
1054 tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
1055 break;
1056 default:
1057 g_assert_not_reached();
1061 /* Clear the high 64 bits of a 128 bit vector (in general non-quad
1062 * vector ops all need to do this).
1064 static void clear_vec_high(DisasContext *s, int rd)
1066 TCGv_i64 tcg_zero = tcg_const_i64(0);
1068 write_vec_element(s, tcg_zero, rd, 1, MO_64);
1069 tcg_temp_free_i64(tcg_zero);
1072 /* Store from vector register to memory */
1073 static void do_vec_st(DisasContext *s, int srcidx, int element,
1074 TCGv_i64 tcg_addr, int size)
1076 TCGMemOp memop = s->be_data + size;
1077 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1079 read_vec_element(s, tcg_tmp, srcidx, element, size);
1080 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), memop);
1082 tcg_temp_free_i64(tcg_tmp);
1085 /* Load from memory to vector register */
1086 static void do_vec_ld(DisasContext *s, int destidx, int element,
1087 TCGv_i64 tcg_addr, int size)
1089 TCGMemOp memop = s->be_data + size;
1090 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1092 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), memop);
1093 write_vec_element(s, tcg_tmp, destidx, element, size);
1095 tcg_temp_free_i64(tcg_tmp);
1098 /* Check that FP/Neon access is enabled. If it is, return
1099 * true. If not, emit code to generate an appropriate exception,
1100 * and return false; the caller should not emit any code for
1101 * the instruction. Note that this check must happen after all
1102 * unallocated-encoding checks (otherwise the syndrome information
1103 * for the resulting exception will be incorrect).
1105 static inline bool fp_access_check(DisasContext *s)
1107 assert(!s->fp_access_checked);
1108 s->fp_access_checked = true;
1110 if (!s->fp_excp_el) {
1111 return true;
1114 gen_exception_insn(s, 4, EXCP_UDEF, syn_fp_access_trap(1, 0xe, false),
1115 s->fp_excp_el);
1116 return false;
1120 * This utility function is for doing register extension with an
1121 * optional shift. You will likely want to pass a temporary for the
1122 * destination register. See DecodeRegExtend() in the ARM ARM.
1124 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1125 int option, unsigned int shift)
1127 int extsize = extract32(option, 0, 2);
1128 bool is_signed = extract32(option, 2, 1);
1130 if (is_signed) {
1131 switch (extsize) {
1132 case 0:
1133 tcg_gen_ext8s_i64(tcg_out, tcg_in);
1134 break;
1135 case 1:
1136 tcg_gen_ext16s_i64(tcg_out, tcg_in);
1137 break;
1138 case 2:
1139 tcg_gen_ext32s_i64(tcg_out, tcg_in);
1140 break;
1141 case 3:
1142 tcg_gen_mov_i64(tcg_out, tcg_in);
1143 break;
1145 } else {
1146 switch (extsize) {
1147 case 0:
1148 tcg_gen_ext8u_i64(tcg_out, tcg_in);
1149 break;
1150 case 1:
1151 tcg_gen_ext16u_i64(tcg_out, tcg_in);
1152 break;
1153 case 2:
1154 tcg_gen_ext32u_i64(tcg_out, tcg_in);
1155 break;
1156 case 3:
1157 tcg_gen_mov_i64(tcg_out, tcg_in);
1158 break;
1162 if (shift) {
1163 tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1167 static inline void gen_check_sp_alignment(DisasContext *s)
1169 /* The AArch64 architecture mandates that (if enabled via PSTATE
1170 * or SCTLR bits) there is a check that SP is 16-aligned on every
1171 * SP-relative load or store (with an exception generated if it is not).
1172 * In line with general QEMU practice regarding misaligned accesses,
1173 * we omit these checks for the sake of guest program performance.
1174 * This function is provided as a hook so we can more easily add these
1175 * checks in future (possibly as a "favour catching guest program bugs
1176 * over speed" user selectable option).
1181 * This provides a simple table based table lookup decoder. It is
1182 * intended to be used when the relevant bits for decode are too
1183 * awkwardly placed and switch/if based logic would be confusing and
1184 * deeply nested. Since it's a linear search through the table, tables
1185 * should be kept small.
1187 * It returns the first handler where insn & mask == pattern, or
1188 * NULL if there is no match.
1189 * The table is terminated by an empty mask (i.e. 0)
1191 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1192 uint32_t insn)
1194 const AArch64DecodeTable *tptr = table;
1196 while (tptr->mask) {
1197 if ((insn & tptr->mask) == tptr->pattern) {
1198 return tptr->disas_fn;
1200 tptr++;
1202 return NULL;
1206 * the instruction disassembly implemented here matches
1207 * the instruction encoding classifications in chapter 3 (C3)
1208 * of the ARM Architecture Reference Manual (DDI0487A_a)
1211 /* C3.2.7 Unconditional branch (immediate)
1212 * 31 30 26 25 0
1213 * +----+-----------+-------------------------------------+
1214 * | op | 0 0 1 0 1 | imm26 |
1215 * +----+-----------+-------------------------------------+
1217 static void disas_uncond_b_imm(DisasContext *s, uint32_t insn)
1219 uint64_t addr = s->pc + sextract32(insn, 0, 26) * 4 - 4;
1221 if (insn & (1U << 31)) {
1222 /* C5.6.26 BL Branch with link */
1223 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
1226 /* C5.6.20 B Branch / C5.6.26 BL Branch with link */
1227 gen_goto_tb(s, 0, addr);
1230 /* C3.2.1 Compare & branch (immediate)
1231 * 31 30 25 24 23 5 4 0
1232 * +----+-------------+----+---------------------+--------+
1233 * | sf | 0 1 1 0 1 0 | op | imm19 | Rt |
1234 * +----+-------------+----+---------------------+--------+
1236 static void disas_comp_b_imm(DisasContext *s, uint32_t insn)
1238 unsigned int sf, op, rt;
1239 uint64_t addr;
1240 TCGLabel *label_match;
1241 TCGv_i64 tcg_cmp;
1243 sf = extract32(insn, 31, 1);
1244 op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */
1245 rt = extract32(insn, 0, 5);
1246 addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
1248 tcg_cmp = read_cpu_reg(s, rt, sf);
1249 label_match = gen_new_label();
1251 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1252 tcg_cmp, 0, label_match);
1254 gen_goto_tb(s, 0, s->pc);
1255 gen_set_label(label_match);
1256 gen_goto_tb(s, 1, addr);
1259 /* C3.2.5 Test & branch (immediate)
1260 * 31 30 25 24 23 19 18 5 4 0
1261 * +----+-------------+----+-------+-------------+------+
1262 * | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt |
1263 * +----+-------------+----+-------+-------------+------+
1265 static void disas_test_b_imm(DisasContext *s, uint32_t insn)
1267 unsigned int bit_pos, op, rt;
1268 uint64_t addr;
1269 TCGLabel *label_match;
1270 TCGv_i64 tcg_cmp;
1272 bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5);
1273 op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */
1274 addr = s->pc + sextract32(insn, 5, 14) * 4 - 4;
1275 rt = extract32(insn, 0, 5);
1277 tcg_cmp = tcg_temp_new_i64();
1278 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos));
1279 label_match = gen_new_label();
1280 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1281 tcg_cmp, 0, label_match);
1282 tcg_temp_free_i64(tcg_cmp);
1283 gen_goto_tb(s, 0, s->pc);
1284 gen_set_label(label_match);
1285 gen_goto_tb(s, 1, addr);
1288 /* C3.2.2 / C5.6.19 Conditional branch (immediate)
1289 * 31 25 24 23 5 4 3 0
1290 * +---------------+----+---------------------+----+------+
1291 * | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond |
1292 * +---------------+----+---------------------+----+------+
1294 static void disas_cond_b_imm(DisasContext *s, uint32_t insn)
1296 unsigned int cond;
1297 uint64_t addr;
1299 if ((insn & (1 << 4)) || (insn & (1 << 24))) {
1300 unallocated_encoding(s);
1301 return;
1303 addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
1304 cond = extract32(insn, 0, 4);
1306 if (cond < 0x0e) {
1307 /* genuinely conditional branches */
1308 TCGLabel *label_match = gen_new_label();
1309 arm_gen_test_cc(cond, label_match);
1310 gen_goto_tb(s, 0, s->pc);
1311 gen_set_label(label_match);
1312 gen_goto_tb(s, 1, addr);
1313 } else {
1314 /* 0xe and 0xf are both "always" conditions */
1315 gen_goto_tb(s, 0, addr);
1319 /* C5.6.68 HINT */
1320 static void handle_hint(DisasContext *s, uint32_t insn,
1321 unsigned int op1, unsigned int op2, unsigned int crm)
1323 unsigned int selector = crm << 3 | op2;
1325 if (op1 != 3) {
1326 unallocated_encoding(s);
1327 return;
1330 switch (selector) {
1331 case 0: /* NOP */
1332 return;
1333 case 3: /* WFI */
1334 s->is_jmp = DISAS_WFI;
1335 return;
1336 case 1: /* YIELD */
1337 if (!parallel_cpus) {
1338 s->is_jmp = DISAS_YIELD;
1340 return;
1341 case 2: /* WFE */
1342 if (!parallel_cpus) {
1343 s->is_jmp = DISAS_WFE;
1345 return;
1346 case 4: /* SEV */
1347 case 5: /* SEVL */
1348 /* we treat all as NOP at least for now */
1349 return;
1350 default:
1351 /* default specified as NOP equivalent */
1352 return;
1356 static void gen_clrex(DisasContext *s, uint32_t insn)
1358 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1361 /* CLREX, DSB, DMB, ISB */
1362 static void handle_sync(DisasContext *s, uint32_t insn,
1363 unsigned int op1, unsigned int op2, unsigned int crm)
1365 TCGBar bar;
1367 if (op1 != 3) {
1368 unallocated_encoding(s);
1369 return;
1372 switch (op2) {
1373 case 2: /* CLREX */
1374 gen_clrex(s, insn);
1375 return;
1376 case 4: /* DSB */
1377 case 5: /* DMB */
1378 switch (crm & 3) {
1379 case 1: /* MBReqTypes_Reads */
1380 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1381 break;
1382 case 2: /* MBReqTypes_Writes */
1383 bar = TCG_BAR_SC | TCG_MO_ST_ST;
1384 break;
1385 default: /* MBReqTypes_All */
1386 bar = TCG_BAR_SC | TCG_MO_ALL;
1387 break;
1389 tcg_gen_mb(bar);
1390 return;
1391 case 6: /* ISB */
1392 /* We need to break the TB after this insn to execute
1393 * a self-modified code correctly and also to take
1394 * any pending interrupts immediately.
1396 gen_goto_tb(s, 0, s->pc);
1397 return;
1398 default:
1399 unallocated_encoding(s);
1400 return;
1404 /* C5.6.130 MSR (immediate) - move immediate to processor state field */
1405 static void handle_msr_i(DisasContext *s, uint32_t insn,
1406 unsigned int op1, unsigned int op2, unsigned int crm)
1408 int op = op1 << 3 | op2;
1409 switch (op) {
1410 case 0x05: /* SPSel */
1411 if (s->current_el == 0) {
1412 unallocated_encoding(s);
1413 return;
1415 /* fall through */
1416 case 0x1e: /* DAIFSet */
1417 case 0x1f: /* DAIFClear */
1419 TCGv_i32 tcg_imm = tcg_const_i32(crm);
1420 TCGv_i32 tcg_op = tcg_const_i32(op);
1421 gen_a64_set_pc_im(s->pc - 4);
1422 gen_helper_msr_i_pstate(cpu_env, tcg_op, tcg_imm);
1423 tcg_temp_free_i32(tcg_imm);
1424 tcg_temp_free_i32(tcg_op);
1425 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */
1426 gen_a64_set_pc_im(s->pc);
1427 s->is_jmp = (op == 0x1f ? DISAS_EXIT : DISAS_JUMP);
1428 break;
1430 default:
1431 unallocated_encoding(s);
1432 return;
1436 static void gen_get_nzcv(TCGv_i64 tcg_rt)
1438 TCGv_i32 tmp = tcg_temp_new_i32();
1439 TCGv_i32 nzcv = tcg_temp_new_i32();
1441 /* build bit 31, N */
1442 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
1443 /* build bit 30, Z */
1444 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
1445 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
1446 /* build bit 29, C */
1447 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
1448 /* build bit 28, V */
1449 tcg_gen_shri_i32(tmp, cpu_VF, 31);
1450 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
1451 /* generate result */
1452 tcg_gen_extu_i32_i64(tcg_rt, nzcv);
1454 tcg_temp_free_i32(nzcv);
1455 tcg_temp_free_i32(tmp);
1458 static void gen_set_nzcv(TCGv_i64 tcg_rt)
1461 TCGv_i32 nzcv = tcg_temp_new_i32();
1463 /* take NZCV from R[t] */
1464 tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
1466 /* bit 31, N */
1467 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
1468 /* bit 30, Z */
1469 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
1470 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
1471 /* bit 29, C */
1472 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
1473 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
1474 /* bit 28, V */
1475 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
1476 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
1477 tcg_temp_free_i32(nzcv);
1480 /* C5.6.129 MRS - move from system register
1481 * C5.6.131 MSR (register) - move to system register
1482 * C5.6.204 SYS
1483 * C5.6.205 SYSL
1484 * These are all essentially the same insn in 'read' and 'write'
1485 * versions, with varying op0 fields.
1487 static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
1488 unsigned int op0, unsigned int op1, unsigned int op2,
1489 unsigned int crn, unsigned int crm, unsigned int rt)
1491 const ARMCPRegInfo *ri;
1492 TCGv_i64 tcg_rt;
1494 ri = get_arm_cp_reginfo(s->cp_regs,
1495 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1496 crn, crm, op0, op1, op2));
1498 if (!ri) {
1499 /* Unknown register; this might be a guest error or a QEMU
1500 * unimplemented feature.
1502 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
1503 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
1504 isread ? "read" : "write", op0, op1, crn, crm, op2);
1505 unallocated_encoding(s);
1506 return;
1509 /* Check access permissions */
1510 if (!cp_access_ok(s->current_el, ri, isread)) {
1511 unallocated_encoding(s);
1512 return;
1515 if (ri->accessfn) {
1516 /* Emit code to perform further access permissions checks at
1517 * runtime; this may result in an exception.
1519 TCGv_ptr tmpptr;
1520 TCGv_i32 tcg_syn, tcg_isread;
1521 uint32_t syndrome;
1523 gen_a64_set_pc_im(s->pc - 4);
1524 tmpptr = tcg_const_ptr(ri);
1525 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
1526 tcg_syn = tcg_const_i32(syndrome);
1527 tcg_isread = tcg_const_i32(isread);
1528 gen_helper_access_check_cp_reg(cpu_env, tmpptr, tcg_syn, tcg_isread);
1529 tcg_temp_free_ptr(tmpptr);
1530 tcg_temp_free_i32(tcg_syn);
1531 tcg_temp_free_i32(tcg_isread);
1534 /* Handle special cases first */
1535 switch (ri->type & ~(ARM_CP_FLAG_MASK & ~ARM_CP_SPECIAL)) {
1536 case ARM_CP_NOP:
1537 return;
1538 case ARM_CP_NZCV:
1539 tcg_rt = cpu_reg(s, rt);
1540 if (isread) {
1541 gen_get_nzcv(tcg_rt);
1542 } else {
1543 gen_set_nzcv(tcg_rt);
1545 return;
1546 case ARM_CP_CURRENTEL:
1547 /* Reads as current EL value from pstate, which is
1548 * guaranteed to be constant by the tb flags.
1550 tcg_rt = cpu_reg(s, rt);
1551 tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
1552 return;
1553 case ARM_CP_DC_ZVA:
1554 /* Writes clear the aligned block of memory which rt points into. */
1555 tcg_rt = cpu_reg(s, rt);
1556 gen_helper_dc_zva(cpu_env, tcg_rt);
1557 return;
1558 default:
1559 break;
1562 if ((s->tb->cflags & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1563 gen_io_start();
1566 tcg_rt = cpu_reg(s, rt);
1568 if (isread) {
1569 if (ri->type & ARM_CP_CONST) {
1570 tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
1571 } else if (ri->readfn) {
1572 TCGv_ptr tmpptr;
1573 tmpptr = tcg_const_ptr(ri);
1574 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tmpptr);
1575 tcg_temp_free_ptr(tmpptr);
1576 } else {
1577 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset);
1579 } else {
1580 if (ri->type & ARM_CP_CONST) {
1581 /* If not forbidden by access permissions, treat as WI */
1582 return;
1583 } else if (ri->writefn) {
1584 TCGv_ptr tmpptr;
1585 tmpptr = tcg_const_ptr(ri);
1586 gen_helper_set_cp_reg64(cpu_env, tmpptr, tcg_rt);
1587 tcg_temp_free_ptr(tmpptr);
1588 } else {
1589 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset);
1593 if ((s->tb->cflags & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1594 /* I/O operations must end the TB here (whether read or write) */
1595 gen_io_end();
1596 s->is_jmp = DISAS_UPDATE;
1597 } else if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
1598 /* We default to ending the TB on a coprocessor register write,
1599 * but allow this to be suppressed by the register definition
1600 * (usually only necessary to work around guest bugs).
1602 s->is_jmp = DISAS_UPDATE;
1606 /* C3.2.4 System
1607 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0
1608 * +---------------------+---+-----+-----+-------+-------+-----+------+
1609 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt |
1610 * +---------------------+---+-----+-----+-------+-------+-----+------+
1612 static void disas_system(DisasContext *s, uint32_t insn)
1614 unsigned int l, op0, op1, crn, crm, op2, rt;
1615 l = extract32(insn, 21, 1);
1616 op0 = extract32(insn, 19, 2);
1617 op1 = extract32(insn, 16, 3);
1618 crn = extract32(insn, 12, 4);
1619 crm = extract32(insn, 8, 4);
1620 op2 = extract32(insn, 5, 3);
1621 rt = extract32(insn, 0, 5);
1623 if (op0 == 0) {
1624 if (l || rt != 31) {
1625 unallocated_encoding(s);
1626 return;
1628 switch (crn) {
1629 case 2: /* C5.6.68 HINT */
1630 handle_hint(s, insn, op1, op2, crm);
1631 break;
1632 case 3: /* CLREX, DSB, DMB, ISB */
1633 handle_sync(s, insn, op1, op2, crm);
1634 break;
1635 case 4: /* C5.6.130 MSR (immediate) */
1636 handle_msr_i(s, insn, op1, op2, crm);
1637 break;
1638 default:
1639 unallocated_encoding(s);
1640 break;
1642 return;
1644 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt);
1647 /* C3.2.3 Exception generation
1649 * 31 24 23 21 20 5 4 2 1 0
1650 * +-----------------+-----+------------------------+-----+----+
1651 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL |
1652 * +-----------------------+------------------------+----------+
1654 static void disas_exc(DisasContext *s, uint32_t insn)
1656 int opc = extract32(insn, 21, 3);
1657 int op2_ll = extract32(insn, 0, 5);
1658 int imm16 = extract32(insn, 5, 16);
1659 TCGv_i32 tmp;
1661 switch (opc) {
1662 case 0:
1663 /* For SVC, HVC and SMC we advance the single-step state
1664 * machine before taking the exception. This is architecturally
1665 * mandated, to ensure that single-stepping a system call
1666 * instruction works properly.
1668 switch (op2_ll) {
1669 case 1: /* SVC */
1670 gen_ss_advance(s);
1671 gen_exception_insn(s, 0, EXCP_SWI, syn_aa64_svc(imm16),
1672 default_exception_el(s));
1673 break;
1674 case 2: /* HVC */
1675 if (s->current_el == 0) {
1676 unallocated_encoding(s);
1677 break;
1679 /* The pre HVC helper handles cases when HVC gets trapped
1680 * as an undefined insn by runtime configuration.
1682 gen_a64_set_pc_im(s->pc - 4);
1683 gen_helper_pre_hvc(cpu_env);
1684 gen_ss_advance(s);
1685 gen_exception_insn(s, 0, EXCP_HVC, syn_aa64_hvc(imm16), 2);
1686 break;
1687 case 3: /* SMC */
1688 if (s->current_el == 0) {
1689 unallocated_encoding(s);
1690 break;
1692 gen_a64_set_pc_im(s->pc - 4);
1693 tmp = tcg_const_i32(syn_aa64_smc(imm16));
1694 gen_helper_pre_smc(cpu_env, tmp);
1695 tcg_temp_free_i32(tmp);
1696 gen_ss_advance(s);
1697 gen_exception_insn(s, 0, EXCP_SMC, syn_aa64_smc(imm16), 3);
1698 break;
1699 default:
1700 unallocated_encoding(s);
1701 break;
1703 break;
1704 case 1:
1705 if (op2_ll != 0) {
1706 unallocated_encoding(s);
1707 break;
1709 /* BRK */
1710 gen_exception_insn(s, 4, EXCP_BKPT, syn_aa64_bkpt(imm16),
1711 default_exception_el(s));
1712 break;
1713 case 2:
1714 if (op2_ll != 0) {
1715 unallocated_encoding(s);
1716 break;
1718 /* HLT. This has two purposes.
1719 * Architecturally, it is an external halting debug instruction.
1720 * Since QEMU doesn't implement external debug, we treat this as
1721 * it is required for halting debug disabled: it will UNDEF.
1722 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
1724 if (semihosting_enabled() && imm16 == 0xf000) {
1725 #ifndef CONFIG_USER_ONLY
1726 /* In system mode, don't allow userspace access to semihosting,
1727 * to provide some semblance of security (and for consistency
1728 * with our 32-bit semihosting).
1730 if (s->current_el == 0) {
1731 unsupported_encoding(s, insn);
1732 break;
1734 #endif
1735 gen_exception_internal_insn(s, 0, EXCP_SEMIHOST);
1736 } else {
1737 unsupported_encoding(s, insn);
1739 break;
1740 case 5:
1741 if (op2_ll < 1 || op2_ll > 3) {
1742 unallocated_encoding(s);
1743 break;
1745 /* DCPS1, DCPS2, DCPS3 */
1746 unsupported_encoding(s, insn);
1747 break;
1748 default:
1749 unallocated_encoding(s);
1750 break;
1754 /* C3.2.7 Unconditional branch (register)
1755 * 31 25 24 21 20 16 15 10 9 5 4 0
1756 * +---------------+-------+-------+-------+------+-------+
1757 * | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 |
1758 * +---------------+-------+-------+-------+------+-------+
1760 static void disas_uncond_b_reg(DisasContext *s, uint32_t insn)
1762 unsigned int opc, op2, op3, rn, op4;
1764 opc = extract32(insn, 21, 4);
1765 op2 = extract32(insn, 16, 5);
1766 op3 = extract32(insn, 10, 6);
1767 rn = extract32(insn, 5, 5);
1768 op4 = extract32(insn, 0, 5);
1770 if (op4 != 0x0 || op3 != 0x0 || op2 != 0x1f) {
1771 unallocated_encoding(s);
1772 return;
1775 switch (opc) {
1776 case 0: /* BR */
1777 case 1: /* BLR */
1778 case 2: /* RET */
1779 gen_a64_set_pc(s, cpu_reg(s, rn));
1780 /* BLR also needs to load return address */
1781 if (opc == 1) {
1782 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
1784 break;
1785 case 4: /* ERET */
1786 if (s->current_el == 0) {
1787 unallocated_encoding(s);
1788 return;
1790 gen_helper_exception_return(cpu_env);
1791 /* Must exit loop to check un-masked IRQs */
1792 s->is_jmp = DISAS_EXIT;
1793 return;
1794 case 5: /* DRPS */
1795 if (rn != 0x1f) {
1796 unallocated_encoding(s);
1797 } else {
1798 unsupported_encoding(s, insn);
1800 return;
1801 default:
1802 unallocated_encoding(s);
1803 return;
1806 s->is_jmp = DISAS_JUMP;
1809 /* C3.2 Branches, exception generating and system instructions */
1810 static void disas_b_exc_sys(DisasContext *s, uint32_t insn)
1812 switch (extract32(insn, 25, 7)) {
1813 case 0x0a: case 0x0b:
1814 case 0x4a: case 0x4b: /* Unconditional branch (immediate) */
1815 disas_uncond_b_imm(s, insn);
1816 break;
1817 case 0x1a: case 0x5a: /* Compare & branch (immediate) */
1818 disas_comp_b_imm(s, insn);
1819 break;
1820 case 0x1b: case 0x5b: /* Test & branch (immediate) */
1821 disas_test_b_imm(s, insn);
1822 break;
1823 case 0x2a: /* Conditional branch (immediate) */
1824 disas_cond_b_imm(s, insn);
1825 break;
1826 case 0x6a: /* Exception generation / System */
1827 if (insn & (1 << 24)) {
1828 disas_system(s, insn);
1829 } else {
1830 disas_exc(s, insn);
1832 break;
1833 case 0x6b: /* Unconditional branch (register) */
1834 disas_uncond_b_reg(s, insn);
1835 break;
1836 default:
1837 unallocated_encoding(s);
1838 break;
1843 * Load/Store exclusive instructions are implemented by remembering
1844 * the value/address loaded, and seeing if these are the same
1845 * when the store is performed. This is not actually the architecturally
1846 * mandated semantics, but it works for typical guest code sequences
1847 * and avoids having to monitor regular stores.
1849 * The store exclusive uses the atomic cmpxchg primitives to avoid
1850 * races in multi-threaded linux-user and when MTTCG softmmu is
1851 * enabled.
1853 static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
1854 TCGv_i64 addr, int size, bool is_pair)
1856 TCGv_i64 tmp = tcg_temp_new_i64();
1857 TCGMemOp memop = s->be_data + size;
1859 g_assert(size <= 3);
1860 tcg_gen_qemu_ld_i64(tmp, addr, get_mem_index(s), memop);
1862 if (is_pair) {
1863 TCGv_i64 addr2 = tcg_temp_new_i64();
1864 TCGv_i64 hitmp = tcg_temp_new_i64();
1866 g_assert(size >= 2);
1867 tcg_gen_addi_i64(addr2, addr, 1 << size);
1868 tcg_gen_qemu_ld_i64(hitmp, addr2, get_mem_index(s), memop);
1869 tcg_temp_free_i64(addr2);
1870 tcg_gen_mov_i64(cpu_exclusive_high, hitmp);
1871 tcg_gen_mov_i64(cpu_reg(s, rt2), hitmp);
1872 tcg_temp_free_i64(hitmp);
1875 tcg_gen_mov_i64(cpu_exclusive_val, tmp);
1876 tcg_gen_mov_i64(cpu_reg(s, rt), tmp);
1878 tcg_temp_free_i64(tmp);
1879 tcg_gen_mov_i64(cpu_exclusive_addr, addr);
1882 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
1883 TCGv_i64 inaddr, int size, int is_pair)
1885 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
1886 * && (!is_pair || env->exclusive_high == [addr + datasize])) {
1887 * [addr] = {Rt};
1888 * if (is_pair) {
1889 * [addr + datasize] = {Rt2};
1891 * {Rd} = 0;
1892 * } else {
1893 * {Rd} = 1;
1895 * env->exclusive_addr = -1;
1897 TCGLabel *fail_label = gen_new_label();
1898 TCGLabel *done_label = gen_new_label();
1899 TCGv_i64 addr = tcg_temp_local_new_i64();
1900 TCGv_i64 tmp;
1902 /* Copy input into a local temp so it is not trashed when the
1903 * basic block ends at the branch insn.
1905 tcg_gen_mov_i64(addr, inaddr);
1906 tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label);
1908 tmp = tcg_temp_new_i64();
1909 if (is_pair) {
1910 if (size == 2) {
1911 TCGv_i64 val = tcg_temp_new_i64();
1912 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
1913 tcg_gen_concat32_i64(val, cpu_exclusive_val, cpu_exclusive_high);
1914 tcg_gen_atomic_cmpxchg_i64(tmp, addr, val, tmp,
1915 get_mem_index(s),
1916 size | MO_ALIGN | s->be_data);
1917 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, val);
1918 tcg_temp_free_i64(val);
1919 } else if (s->be_data == MO_LE) {
1920 gen_helper_paired_cmpxchg64_le(tmp, cpu_env, addr, cpu_reg(s, rt),
1921 cpu_reg(s, rt2));
1922 } else {
1923 gen_helper_paired_cmpxchg64_be(tmp, cpu_env, addr, cpu_reg(s, rt),
1924 cpu_reg(s, rt2));
1926 } else {
1927 TCGv_i64 val = cpu_reg(s, rt);
1928 tcg_gen_atomic_cmpxchg_i64(tmp, addr, cpu_exclusive_val, val,
1929 get_mem_index(s),
1930 size | MO_ALIGN | s->be_data);
1931 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
1934 tcg_temp_free_i64(addr);
1936 tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
1937 tcg_temp_free_i64(tmp);
1938 tcg_gen_br(done_label);
1940 gen_set_label(fail_label);
1941 tcg_gen_movi_i64(cpu_reg(s, rd), 1);
1942 gen_set_label(done_label);
1943 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1946 /* Update the Sixty-Four bit (SF) registersize. This logic is derived
1947 * from the ARMv8 specs for LDR (Shared decode for all encodings).
1949 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc)
1951 int opc0 = extract32(opc, 0, 1);
1952 int regsize;
1954 if (is_signed) {
1955 regsize = opc0 ? 32 : 64;
1956 } else {
1957 regsize = size == 3 ? 64 : 32;
1959 return regsize == 64;
1962 /* C3.3.6 Load/store exclusive
1964 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0
1965 * +-----+-------------+----+---+----+------+----+-------+------+------+
1966 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt |
1967 * +-----+-------------+----+---+----+------+----+-------+------+------+
1969 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
1970 * L: 0 -> store, 1 -> load
1971 * o2: 0 -> exclusive, 1 -> not
1972 * o1: 0 -> single register, 1 -> register pair
1973 * o0: 1 -> load-acquire/store-release, 0 -> not
1975 static void disas_ldst_excl(DisasContext *s, uint32_t insn)
1977 int rt = extract32(insn, 0, 5);
1978 int rn = extract32(insn, 5, 5);
1979 int rt2 = extract32(insn, 10, 5);
1980 int is_lasr = extract32(insn, 15, 1);
1981 int rs = extract32(insn, 16, 5);
1982 int is_pair = extract32(insn, 21, 1);
1983 int is_store = !extract32(insn, 22, 1);
1984 int is_excl = !extract32(insn, 23, 1);
1985 int size = extract32(insn, 30, 2);
1986 TCGv_i64 tcg_addr;
1988 if ((!is_excl && !is_pair && !is_lasr) ||
1989 (!is_excl && is_pair) ||
1990 (is_pair && size < 2)) {
1991 unallocated_encoding(s);
1992 return;
1995 if (rn == 31) {
1996 gen_check_sp_alignment(s);
1998 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2000 /* Note that since TCG is single threaded load-acquire/store-release
2001 * semantics require no extra if (is_lasr) { ... } handling.
2004 if (is_excl) {
2005 if (!is_store) {
2006 s->is_ldex = true;
2007 gen_load_exclusive(s, rt, rt2, tcg_addr, size, is_pair);
2008 if (is_lasr) {
2009 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2011 } else {
2012 if (is_lasr) {
2013 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2015 gen_store_exclusive(s, rs, rt, rt2, tcg_addr, size, is_pair);
2017 } else {
2018 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2019 bool iss_sf = disas_ldst_compute_iss_sf(size, false, 0);
2021 /* Generate ISS for non-exclusive accesses including LASR. */
2022 if (is_store) {
2023 if (is_lasr) {
2024 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2026 do_gpr_st(s, tcg_rt, tcg_addr, size,
2027 true, rt, iss_sf, is_lasr);
2028 } else {
2029 do_gpr_ld(s, tcg_rt, tcg_addr, size, false, false,
2030 true, rt, iss_sf, is_lasr);
2031 if (is_lasr) {
2032 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2039 * C3.3.5 Load register (literal)
2041 * 31 30 29 27 26 25 24 23 5 4 0
2042 * +-----+-------+---+-----+-------------------+-------+
2043 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt |
2044 * +-----+-------+---+-----+-------------------+-------+
2046 * V: 1 -> vector (simd/fp)
2047 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit,
2048 * 10-> 32 bit signed, 11 -> prefetch
2049 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated)
2051 static void disas_ld_lit(DisasContext *s, uint32_t insn)
2053 int rt = extract32(insn, 0, 5);
2054 int64_t imm = sextract32(insn, 5, 19) << 2;
2055 bool is_vector = extract32(insn, 26, 1);
2056 int opc = extract32(insn, 30, 2);
2057 bool is_signed = false;
2058 int size = 2;
2059 TCGv_i64 tcg_rt, tcg_addr;
2061 if (is_vector) {
2062 if (opc == 3) {
2063 unallocated_encoding(s);
2064 return;
2066 size = 2 + opc;
2067 if (!fp_access_check(s)) {
2068 return;
2070 } else {
2071 if (opc == 3) {
2072 /* PRFM (literal) : prefetch */
2073 return;
2075 size = 2 + extract32(opc, 0, 1);
2076 is_signed = extract32(opc, 1, 1);
2079 tcg_rt = cpu_reg(s, rt);
2081 tcg_addr = tcg_const_i64((s->pc - 4) + imm);
2082 if (is_vector) {
2083 do_fp_ld(s, rt, tcg_addr, size);
2084 } else {
2085 /* Only unsigned 32bit loads target 32bit registers. */
2086 bool iss_sf = opc != 0;
2088 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, false,
2089 true, rt, iss_sf, false);
2091 tcg_temp_free_i64(tcg_addr);
2095 * C5.6.80 LDNP (Load Pair - non-temporal hint)
2096 * C5.6.81 LDP (Load Pair - non vector)
2097 * C5.6.82 LDPSW (Load Pair Signed Word - non vector)
2098 * C5.6.176 STNP (Store Pair - non-temporal hint)
2099 * C5.6.177 STP (Store Pair - non vector)
2100 * C6.3.165 LDNP (Load Pair of SIMD&FP - non-temporal hint)
2101 * C6.3.165 LDP (Load Pair of SIMD&FP)
2102 * C6.3.284 STNP (Store Pair of SIMD&FP - non-temporal hint)
2103 * C6.3.284 STP (Store Pair of SIMD&FP)
2105 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0
2106 * +-----+-------+---+---+-------+---+-----------------------------+
2107 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt |
2108 * +-----+-------+---+---+-------+---+-------+-------+------+------+
2110 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit
2111 * LDPSW 01
2112 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit
2113 * V: 0 -> GPR, 1 -> Vector
2114 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index,
2115 * 10 -> signed offset, 11 -> pre-index
2116 * L: 0 -> Store 1 -> Load
2118 * Rt, Rt2 = GPR or SIMD registers to be stored
2119 * Rn = general purpose register containing address
2120 * imm7 = signed offset (multiple of 4 or 8 depending on size)
2122 static void disas_ldst_pair(DisasContext *s, uint32_t insn)
2124 int rt = extract32(insn, 0, 5);
2125 int rn = extract32(insn, 5, 5);
2126 int rt2 = extract32(insn, 10, 5);
2127 uint64_t offset = sextract64(insn, 15, 7);
2128 int index = extract32(insn, 23, 2);
2129 bool is_vector = extract32(insn, 26, 1);
2130 bool is_load = extract32(insn, 22, 1);
2131 int opc = extract32(insn, 30, 2);
2133 bool is_signed = false;
2134 bool postindex = false;
2135 bool wback = false;
2137 TCGv_i64 tcg_addr; /* calculated address */
2138 int size;
2140 if (opc == 3) {
2141 unallocated_encoding(s);
2142 return;
2145 if (is_vector) {
2146 size = 2 + opc;
2147 } else {
2148 size = 2 + extract32(opc, 1, 1);
2149 is_signed = extract32(opc, 0, 1);
2150 if (!is_load && is_signed) {
2151 unallocated_encoding(s);
2152 return;
2156 switch (index) {
2157 case 1: /* post-index */
2158 postindex = true;
2159 wback = true;
2160 break;
2161 case 0:
2162 /* signed offset with "non-temporal" hint. Since we don't emulate
2163 * caches we don't care about hints to the cache system about
2164 * data access patterns, and handle this identically to plain
2165 * signed offset.
2167 if (is_signed) {
2168 /* There is no non-temporal-hint version of LDPSW */
2169 unallocated_encoding(s);
2170 return;
2172 postindex = false;
2173 break;
2174 case 2: /* signed offset, rn not updated */
2175 postindex = false;
2176 break;
2177 case 3: /* pre-index */
2178 postindex = false;
2179 wback = true;
2180 break;
2183 if (is_vector && !fp_access_check(s)) {
2184 return;
2187 offset <<= size;
2189 if (rn == 31) {
2190 gen_check_sp_alignment(s);
2193 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2195 if (!postindex) {
2196 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset);
2199 if (is_vector) {
2200 if (is_load) {
2201 do_fp_ld(s, rt, tcg_addr, size);
2202 } else {
2203 do_fp_st(s, rt, tcg_addr, size);
2205 } else {
2206 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2207 if (is_load) {
2208 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, false,
2209 false, 0, false, false);
2210 } else {
2211 do_gpr_st(s, tcg_rt, tcg_addr, size,
2212 false, 0, false, false);
2215 tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size);
2216 if (is_vector) {
2217 if (is_load) {
2218 do_fp_ld(s, rt2, tcg_addr, size);
2219 } else {
2220 do_fp_st(s, rt2, tcg_addr, size);
2222 } else {
2223 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2);
2224 if (is_load) {
2225 do_gpr_ld(s, tcg_rt2, tcg_addr, size, is_signed, false,
2226 false, 0, false, false);
2227 } else {
2228 do_gpr_st(s, tcg_rt2, tcg_addr, size,
2229 false, 0, false, false);
2233 if (wback) {
2234 if (postindex) {
2235 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset - (1 << size));
2236 } else {
2237 tcg_gen_subi_i64(tcg_addr, tcg_addr, 1 << size);
2239 tcg_gen_mov_i64(cpu_reg_sp(s, rn), tcg_addr);
2244 * C3.3.8 Load/store (immediate post-indexed)
2245 * C3.3.9 Load/store (immediate pre-indexed)
2246 * C3.3.12 Load/store (unscaled immediate)
2248 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
2249 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2250 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt |
2251 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2253 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback)
2254 10 -> unprivileged
2255 * V = 0 -> non-vector
2256 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit
2257 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2259 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn,
2260 int opc,
2261 int size,
2262 int rt,
2263 bool is_vector)
2265 int rn = extract32(insn, 5, 5);
2266 int imm9 = sextract32(insn, 12, 9);
2267 int idx = extract32(insn, 10, 2);
2268 bool is_signed = false;
2269 bool is_store = false;
2270 bool is_extended = false;
2271 bool is_unpriv = (idx == 2);
2272 bool iss_valid = !is_vector;
2273 bool post_index;
2274 bool writeback;
2276 TCGv_i64 tcg_addr;
2278 if (is_vector) {
2279 size |= (opc & 2) << 1;
2280 if (size > 4 || is_unpriv) {
2281 unallocated_encoding(s);
2282 return;
2284 is_store = ((opc & 1) == 0);
2285 if (!fp_access_check(s)) {
2286 return;
2288 } else {
2289 if (size == 3 && opc == 2) {
2290 /* PRFM - prefetch */
2291 if (is_unpriv) {
2292 unallocated_encoding(s);
2293 return;
2295 return;
2297 if (opc == 3 && size > 1) {
2298 unallocated_encoding(s);
2299 return;
2301 is_store = (opc == 0);
2302 is_signed = extract32(opc, 1, 1);
2303 is_extended = (size < 3) && extract32(opc, 0, 1);
2306 switch (idx) {
2307 case 0:
2308 case 2:
2309 post_index = false;
2310 writeback = false;
2311 break;
2312 case 1:
2313 post_index = true;
2314 writeback = true;
2315 break;
2316 case 3:
2317 post_index = false;
2318 writeback = true;
2319 break;
2322 if (rn == 31) {
2323 gen_check_sp_alignment(s);
2325 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2327 if (!post_index) {
2328 tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9);
2331 if (is_vector) {
2332 if (is_store) {
2333 do_fp_st(s, rt, tcg_addr, size);
2334 } else {
2335 do_fp_ld(s, rt, tcg_addr, size);
2337 } else {
2338 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2339 int memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
2340 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
2342 if (is_store) {
2343 do_gpr_st_memidx(s, tcg_rt, tcg_addr, size, memidx,
2344 iss_valid, rt, iss_sf, false);
2345 } else {
2346 do_gpr_ld_memidx(s, tcg_rt, tcg_addr, size,
2347 is_signed, is_extended, memidx,
2348 iss_valid, rt, iss_sf, false);
2352 if (writeback) {
2353 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
2354 if (post_index) {
2355 tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9);
2357 tcg_gen_mov_i64(tcg_rn, tcg_addr);
2362 * C3.3.10 Load/store (register offset)
2364 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2365 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2366 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt |
2367 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2369 * For non-vector:
2370 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
2371 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2372 * For vector:
2373 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
2374 * opc<0>: 0 -> store, 1 -> load
2375 * V: 1 -> vector/simd
2376 * opt: extend encoding (see DecodeRegExtend)
2377 * S: if S=1 then scale (essentially index by sizeof(size))
2378 * Rt: register to transfer into/out of
2379 * Rn: address register or SP for base
2380 * Rm: offset register or ZR for offset
2382 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn,
2383 int opc,
2384 int size,
2385 int rt,
2386 bool is_vector)
2388 int rn = extract32(insn, 5, 5);
2389 int shift = extract32(insn, 12, 1);
2390 int rm = extract32(insn, 16, 5);
2391 int opt = extract32(insn, 13, 3);
2392 bool is_signed = false;
2393 bool is_store = false;
2394 bool is_extended = false;
2396 TCGv_i64 tcg_rm;
2397 TCGv_i64 tcg_addr;
2399 if (extract32(opt, 1, 1) == 0) {
2400 unallocated_encoding(s);
2401 return;
2404 if (is_vector) {
2405 size |= (opc & 2) << 1;
2406 if (size > 4) {
2407 unallocated_encoding(s);
2408 return;
2410 is_store = !extract32(opc, 0, 1);
2411 if (!fp_access_check(s)) {
2412 return;
2414 } else {
2415 if (size == 3 && opc == 2) {
2416 /* PRFM - prefetch */
2417 return;
2419 if (opc == 3 && size > 1) {
2420 unallocated_encoding(s);
2421 return;
2423 is_store = (opc == 0);
2424 is_signed = extract32(opc, 1, 1);
2425 is_extended = (size < 3) && extract32(opc, 0, 1);
2428 if (rn == 31) {
2429 gen_check_sp_alignment(s);
2431 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2433 tcg_rm = read_cpu_reg(s, rm, 1);
2434 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0);
2436 tcg_gen_add_i64(tcg_addr, tcg_addr, tcg_rm);
2438 if (is_vector) {
2439 if (is_store) {
2440 do_fp_st(s, rt, tcg_addr, size);
2441 } else {
2442 do_fp_ld(s, rt, tcg_addr, size);
2444 } else {
2445 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2446 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
2447 if (is_store) {
2448 do_gpr_st(s, tcg_rt, tcg_addr, size,
2449 true, rt, iss_sf, false);
2450 } else {
2451 do_gpr_ld(s, tcg_rt, tcg_addr, size,
2452 is_signed, is_extended,
2453 true, rt, iss_sf, false);
2459 * C3.3.13 Load/store (unsigned immediate)
2461 * 31 30 29 27 26 25 24 23 22 21 10 9 5
2462 * +----+-------+---+-----+-----+------------+-------+------+
2463 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt |
2464 * +----+-------+---+-----+-----+------------+-------+------+
2466 * For non-vector:
2467 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
2468 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2469 * For vector:
2470 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
2471 * opc<0>: 0 -> store, 1 -> load
2472 * Rn: base address register (inc SP)
2473 * Rt: target register
2475 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn,
2476 int opc,
2477 int size,
2478 int rt,
2479 bool is_vector)
2481 int rn = extract32(insn, 5, 5);
2482 unsigned int imm12 = extract32(insn, 10, 12);
2483 unsigned int offset;
2485 TCGv_i64 tcg_addr;
2487 bool is_store;
2488 bool is_signed = false;
2489 bool is_extended = false;
2491 if (is_vector) {
2492 size |= (opc & 2) << 1;
2493 if (size > 4) {
2494 unallocated_encoding(s);
2495 return;
2497 is_store = !extract32(opc, 0, 1);
2498 if (!fp_access_check(s)) {
2499 return;
2501 } else {
2502 if (size == 3 && opc == 2) {
2503 /* PRFM - prefetch */
2504 return;
2506 if (opc == 3 && size > 1) {
2507 unallocated_encoding(s);
2508 return;
2510 is_store = (opc == 0);
2511 is_signed = extract32(opc, 1, 1);
2512 is_extended = (size < 3) && extract32(opc, 0, 1);
2515 if (rn == 31) {
2516 gen_check_sp_alignment(s);
2518 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2519 offset = imm12 << size;
2520 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset);
2522 if (is_vector) {
2523 if (is_store) {
2524 do_fp_st(s, rt, tcg_addr, size);
2525 } else {
2526 do_fp_ld(s, rt, tcg_addr, size);
2528 } else {
2529 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2530 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
2531 if (is_store) {
2532 do_gpr_st(s, tcg_rt, tcg_addr, size,
2533 true, rt, iss_sf, false);
2534 } else {
2535 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, is_extended,
2536 true, rt, iss_sf, false);
2541 /* Load/store register (all forms) */
2542 static void disas_ldst_reg(DisasContext *s, uint32_t insn)
2544 int rt = extract32(insn, 0, 5);
2545 int opc = extract32(insn, 22, 2);
2546 bool is_vector = extract32(insn, 26, 1);
2547 int size = extract32(insn, 30, 2);
2549 switch (extract32(insn, 24, 2)) {
2550 case 0:
2551 if (extract32(insn, 21, 1) == 1 && extract32(insn, 10, 2) == 2) {
2552 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector);
2553 } else {
2554 /* Load/store register (unscaled immediate)
2555 * Load/store immediate pre/post-indexed
2556 * Load/store register unprivileged
2558 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector);
2560 break;
2561 case 1:
2562 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector);
2563 break;
2564 default:
2565 unallocated_encoding(s);
2566 break;
2570 /* C3.3.1 AdvSIMD load/store multiple structures
2572 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0
2573 * +---+---+---------------+---+-------------+--------+------+------+------+
2574 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt |
2575 * +---+---+---------------+---+-------------+--------+------+------+------+
2577 * C3.3.2 AdvSIMD load/store multiple structures (post-indexed)
2579 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0
2580 * +---+---+---------------+---+---+---------+--------+------+------+------+
2581 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt |
2582 * +---+---+---------------+---+---+---------+--------+------+------+------+
2584 * Rt: first (or only) SIMD&FP register to be transferred
2585 * Rn: base address or SP
2586 * Rm (post-index only): post-index register (when !31) or size dependent #imm
2588 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
2590 int rt = extract32(insn, 0, 5);
2591 int rn = extract32(insn, 5, 5);
2592 int size = extract32(insn, 10, 2);
2593 int opcode = extract32(insn, 12, 4);
2594 bool is_store = !extract32(insn, 22, 1);
2595 bool is_postidx = extract32(insn, 23, 1);
2596 bool is_q = extract32(insn, 30, 1);
2597 TCGv_i64 tcg_addr, tcg_rn;
2599 int ebytes = 1 << size;
2600 int elements = (is_q ? 128 : 64) / (8 << size);
2601 int rpt; /* num iterations */
2602 int selem; /* structure elements */
2603 int r;
2605 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) {
2606 unallocated_encoding(s);
2607 return;
2610 /* From the shared decode logic */
2611 switch (opcode) {
2612 case 0x0:
2613 rpt = 1;
2614 selem = 4;
2615 break;
2616 case 0x2:
2617 rpt = 4;
2618 selem = 1;
2619 break;
2620 case 0x4:
2621 rpt = 1;
2622 selem = 3;
2623 break;
2624 case 0x6:
2625 rpt = 3;
2626 selem = 1;
2627 break;
2628 case 0x7:
2629 rpt = 1;
2630 selem = 1;
2631 break;
2632 case 0x8:
2633 rpt = 1;
2634 selem = 2;
2635 break;
2636 case 0xa:
2637 rpt = 2;
2638 selem = 1;
2639 break;
2640 default:
2641 unallocated_encoding(s);
2642 return;
2645 if (size == 3 && !is_q && selem != 1) {
2646 /* reserved */
2647 unallocated_encoding(s);
2648 return;
2651 if (!fp_access_check(s)) {
2652 return;
2655 if (rn == 31) {
2656 gen_check_sp_alignment(s);
2659 tcg_rn = cpu_reg_sp(s, rn);
2660 tcg_addr = tcg_temp_new_i64();
2661 tcg_gen_mov_i64(tcg_addr, tcg_rn);
2663 for (r = 0; r < rpt; r++) {
2664 int e;
2665 for (e = 0; e < elements; e++) {
2666 int tt = (rt + r) % 32;
2667 int xs;
2668 for (xs = 0; xs < selem; xs++) {
2669 if (is_store) {
2670 do_vec_st(s, tt, e, tcg_addr, size);
2671 } else {
2672 do_vec_ld(s, tt, e, tcg_addr, size);
2674 /* For non-quad operations, setting a slice of the low
2675 * 64 bits of the register clears the high 64 bits (in
2676 * the ARM ARM pseudocode this is implicit in the fact
2677 * that 'rval' is a 64 bit wide variable). We optimize
2678 * by noticing that we only need to do this the first
2679 * time we touch a register.
2681 if (!is_q && e == 0 && (r == 0 || xs == selem - 1)) {
2682 clear_vec_high(s, tt);
2685 tcg_gen_addi_i64(tcg_addr, tcg_addr, ebytes);
2686 tt = (tt + 1) % 32;
2691 if (is_postidx) {
2692 int rm = extract32(insn, 16, 5);
2693 if (rm == 31) {
2694 tcg_gen_mov_i64(tcg_rn, tcg_addr);
2695 } else {
2696 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
2699 tcg_temp_free_i64(tcg_addr);
2702 /* C3.3.3 AdvSIMD load/store single structure
2704 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2705 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2706 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt |
2707 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2709 * C3.3.4 AdvSIMD load/store single structure (post-indexed)
2711 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2712 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2713 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt |
2714 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2716 * Rt: first (or only) SIMD&FP register to be transferred
2717 * Rn: base address or SP
2718 * Rm (post-index only): post-index register (when !31) or size dependent #imm
2719 * index = encoded in Q:S:size dependent on size
2721 * lane_size = encoded in R, opc
2722 * transfer width = encoded in opc, S, size
2724 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
2726 int rt = extract32(insn, 0, 5);
2727 int rn = extract32(insn, 5, 5);
2728 int size = extract32(insn, 10, 2);
2729 int S = extract32(insn, 12, 1);
2730 int opc = extract32(insn, 13, 3);
2731 int R = extract32(insn, 21, 1);
2732 int is_load = extract32(insn, 22, 1);
2733 int is_postidx = extract32(insn, 23, 1);
2734 int is_q = extract32(insn, 30, 1);
2736 int scale = extract32(opc, 1, 2);
2737 int selem = (extract32(opc, 0, 1) << 1 | R) + 1;
2738 bool replicate = false;
2739 int index = is_q << 3 | S << 2 | size;
2740 int ebytes, xs;
2741 TCGv_i64 tcg_addr, tcg_rn;
2743 switch (scale) {
2744 case 3:
2745 if (!is_load || S) {
2746 unallocated_encoding(s);
2747 return;
2749 scale = size;
2750 replicate = true;
2751 break;
2752 case 0:
2753 break;
2754 case 1:
2755 if (extract32(size, 0, 1)) {
2756 unallocated_encoding(s);
2757 return;
2759 index >>= 1;
2760 break;
2761 case 2:
2762 if (extract32(size, 1, 1)) {
2763 unallocated_encoding(s);
2764 return;
2766 if (!extract32(size, 0, 1)) {
2767 index >>= 2;
2768 } else {
2769 if (S) {
2770 unallocated_encoding(s);
2771 return;
2773 index >>= 3;
2774 scale = 3;
2776 break;
2777 default:
2778 g_assert_not_reached();
2781 if (!fp_access_check(s)) {
2782 return;
2785 ebytes = 1 << scale;
2787 if (rn == 31) {
2788 gen_check_sp_alignment(s);
2791 tcg_rn = cpu_reg_sp(s, rn);
2792 tcg_addr = tcg_temp_new_i64();
2793 tcg_gen_mov_i64(tcg_addr, tcg_rn);
2795 for (xs = 0; xs < selem; xs++) {
2796 if (replicate) {
2797 /* Load and replicate to all elements */
2798 uint64_t mulconst;
2799 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
2801 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr,
2802 get_mem_index(s), s->be_data + scale);
2803 switch (scale) {
2804 case 0:
2805 mulconst = 0x0101010101010101ULL;
2806 break;
2807 case 1:
2808 mulconst = 0x0001000100010001ULL;
2809 break;
2810 case 2:
2811 mulconst = 0x0000000100000001ULL;
2812 break;
2813 case 3:
2814 mulconst = 0;
2815 break;
2816 default:
2817 g_assert_not_reached();
2819 if (mulconst) {
2820 tcg_gen_muli_i64(tcg_tmp, tcg_tmp, mulconst);
2822 write_vec_element(s, tcg_tmp, rt, 0, MO_64);
2823 if (is_q) {
2824 write_vec_element(s, tcg_tmp, rt, 1, MO_64);
2825 } else {
2826 clear_vec_high(s, rt);
2828 tcg_temp_free_i64(tcg_tmp);
2829 } else {
2830 /* Load/store one element per register */
2831 if (is_load) {
2832 do_vec_ld(s, rt, index, tcg_addr, scale);
2833 } else {
2834 do_vec_st(s, rt, index, tcg_addr, scale);
2837 tcg_gen_addi_i64(tcg_addr, tcg_addr, ebytes);
2838 rt = (rt + 1) % 32;
2841 if (is_postidx) {
2842 int rm = extract32(insn, 16, 5);
2843 if (rm == 31) {
2844 tcg_gen_mov_i64(tcg_rn, tcg_addr);
2845 } else {
2846 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
2849 tcg_temp_free_i64(tcg_addr);
2852 /* C3.3 Loads and stores */
2853 static void disas_ldst(DisasContext *s, uint32_t insn)
2855 switch (extract32(insn, 24, 6)) {
2856 case 0x08: /* Load/store exclusive */
2857 disas_ldst_excl(s, insn);
2858 break;
2859 case 0x18: case 0x1c: /* Load register (literal) */
2860 disas_ld_lit(s, insn);
2861 break;
2862 case 0x28: case 0x29:
2863 case 0x2c: case 0x2d: /* Load/store pair (all forms) */
2864 disas_ldst_pair(s, insn);
2865 break;
2866 case 0x38: case 0x39:
2867 case 0x3c: case 0x3d: /* Load/store register (all forms) */
2868 disas_ldst_reg(s, insn);
2869 break;
2870 case 0x0c: /* AdvSIMD load/store multiple structures */
2871 disas_ldst_multiple_struct(s, insn);
2872 break;
2873 case 0x0d: /* AdvSIMD load/store single structure */
2874 disas_ldst_single_struct(s, insn);
2875 break;
2876 default:
2877 unallocated_encoding(s);
2878 break;
2882 /* C3.4.6 PC-rel. addressing
2883 * 31 30 29 28 24 23 5 4 0
2884 * +----+-------+-----------+-------------------+------+
2885 * | op | immlo | 1 0 0 0 0 | immhi | Rd |
2886 * +----+-------+-----------+-------------------+------+
2888 static void disas_pc_rel_adr(DisasContext *s, uint32_t insn)
2890 unsigned int page, rd;
2891 uint64_t base;
2892 uint64_t offset;
2894 page = extract32(insn, 31, 1);
2895 /* SignExtend(immhi:immlo) -> offset */
2896 offset = sextract64(insn, 5, 19);
2897 offset = offset << 2 | extract32(insn, 29, 2);
2898 rd = extract32(insn, 0, 5);
2899 base = s->pc - 4;
2901 if (page) {
2902 /* ADRP (page based) */
2903 base &= ~0xfff;
2904 offset <<= 12;
2907 tcg_gen_movi_i64(cpu_reg(s, rd), base + offset);
2911 * C3.4.1 Add/subtract (immediate)
2913 * 31 30 29 28 24 23 22 21 10 9 5 4 0
2914 * +--+--+--+-----------+-----+-------------+-----+-----+
2915 * |sf|op| S| 1 0 0 0 1 |shift| imm12 | Rn | Rd |
2916 * +--+--+--+-----------+-----+-------------+-----+-----+
2918 * sf: 0 -> 32bit, 1 -> 64bit
2919 * op: 0 -> add , 1 -> sub
2920 * S: 1 -> set flags
2921 * shift: 00 -> LSL imm by 0, 01 -> LSL imm by 12
2923 static void disas_add_sub_imm(DisasContext *s, uint32_t insn)
2925 int rd = extract32(insn, 0, 5);
2926 int rn = extract32(insn, 5, 5);
2927 uint64_t imm = extract32(insn, 10, 12);
2928 int shift = extract32(insn, 22, 2);
2929 bool setflags = extract32(insn, 29, 1);
2930 bool sub_op = extract32(insn, 30, 1);
2931 bool is_64bit = extract32(insn, 31, 1);
2933 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
2934 TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd);
2935 TCGv_i64 tcg_result;
2937 switch (shift) {
2938 case 0x0:
2939 break;
2940 case 0x1:
2941 imm <<= 12;
2942 break;
2943 default:
2944 unallocated_encoding(s);
2945 return;
2948 tcg_result = tcg_temp_new_i64();
2949 if (!setflags) {
2950 if (sub_op) {
2951 tcg_gen_subi_i64(tcg_result, tcg_rn, imm);
2952 } else {
2953 tcg_gen_addi_i64(tcg_result, tcg_rn, imm);
2955 } else {
2956 TCGv_i64 tcg_imm = tcg_const_i64(imm);
2957 if (sub_op) {
2958 gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
2959 } else {
2960 gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
2962 tcg_temp_free_i64(tcg_imm);
2965 if (is_64bit) {
2966 tcg_gen_mov_i64(tcg_rd, tcg_result);
2967 } else {
2968 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
2971 tcg_temp_free_i64(tcg_result);
2974 /* The input should be a value in the bottom e bits (with higher
2975 * bits zero); returns that value replicated into every element
2976 * of size e in a 64 bit integer.
2978 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
2980 assert(e != 0);
2981 while (e < 64) {
2982 mask |= mask << e;
2983 e *= 2;
2985 return mask;
2988 /* Return a value with the bottom len bits set (where 0 < len <= 64) */
2989 static inline uint64_t bitmask64(unsigned int length)
2991 assert(length > 0 && length <= 64);
2992 return ~0ULL >> (64 - length);
2995 /* Simplified variant of pseudocode DecodeBitMasks() for the case where we
2996 * only require the wmask. Returns false if the imms/immr/immn are a reserved
2997 * value (ie should cause a guest UNDEF exception), and true if they are
2998 * valid, in which case the decoded bit pattern is written to result.
3000 static bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
3001 unsigned int imms, unsigned int immr)
3003 uint64_t mask;
3004 unsigned e, levels, s, r;
3005 int len;
3007 assert(immn < 2 && imms < 64 && immr < 64);
3009 /* The bit patterns we create here are 64 bit patterns which
3010 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
3011 * 64 bits each. Each element contains the same value: a run
3012 * of between 1 and e-1 non-zero bits, rotated within the
3013 * element by between 0 and e-1 bits.
3015 * The element size and run length are encoded into immn (1 bit)
3016 * and imms (6 bits) as follows:
3017 * 64 bit elements: immn = 1, imms = <length of run - 1>
3018 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
3019 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
3020 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
3021 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
3022 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
3023 * Notice that immn = 0, imms = 11111x is the only combination
3024 * not covered by one of the above options; this is reserved.
3025 * Further, <length of run - 1> all-ones is a reserved pattern.
3027 * In all cases the rotation is by immr % e (and immr is 6 bits).
3030 /* First determine the element size */
3031 len = 31 - clz32((immn << 6) | (~imms & 0x3f));
3032 if (len < 1) {
3033 /* This is the immn == 0, imms == 0x11111x case */
3034 return false;
3036 e = 1 << len;
3038 levels = e - 1;
3039 s = imms & levels;
3040 r = immr & levels;
3042 if (s == levels) {
3043 /* <length of run - 1> mustn't be all-ones. */
3044 return false;
3047 /* Create the value of one element: s+1 set bits rotated
3048 * by r within the element (which is e bits wide)...
3050 mask = bitmask64(s + 1);
3051 if (r) {
3052 mask = (mask >> r) | (mask << (e - r));
3053 mask &= bitmask64(e);
3055 /* ...then replicate the element over the whole 64 bit value */
3056 mask = bitfield_replicate(mask, e);
3057 *result = mask;
3058 return true;
3061 /* C3.4.4 Logical (immediate)
3062 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
3063 * +----+-----+-------------+---+------+------+------+------+
3064 * | sf | opc | 1 0 0 1 0 0 | N | immr | imms | Rn | Rd |
3065 * +----+-----+-------------+---+------+------+------+------+
3067 static void disas_logic_imm(DisasContext *s, uint32_t insn)
3069 unsigned int sf, opc, is_n, immr, imms, rn, rd;
3070 TCGv_i64 tcg_rd, tcg_rn;
3071 uint64_t wmask;
3072 bool is_and = false;
3074 sf = extract32(insn, 31, 1);
3075 opc = extract32(insn, 29, 2);
3076 is_n = extract32(insn, 22, 1);
3077 immr = extract32(insn, 16, 6);
3078 imms = extract32(insn, 10, 6);
3079 rn = extract32(insn, 5, 5);
3080 rd = extract32(insn, 0, 5);
3082 if (!sf && is_n) {
3083 unallocated_encoding(s);
3084 return;
3087 if (opc == 0x3) { /* ANDS */
3088 tcg_rd = cpu_reg(s, rd);
3089 } else {
3090 tcg_rd = cpu_reg_sp(s, rd);
3092 tcg_rn = cpu_reg(s, rn);
3094 if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) {
3095 /* some immediate field values are reserved */
3096 unallocated_encoding(s);
3097 return;
3100 if (!sf) {
3101 wmask &= 0xffffffff;
3104 switch (opc) {
3105 case 0x3: /* ANDS */
3106 case 0x0: /* AND */
3107 tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask);
3108 is_and = true;
3109 break;
3110 case 0x1: /* ORR */
3111 tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask);
3112 break;
3113 case 0x2: /* EOR */
3114 tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask);
3115 break;
3116 default:
3117 assert(FALSE); /* must handle all above */
3118 break;
3121 if (!sf && !is_and) {
3122 /* zero extend final result; we know we can skip this for AND
3123 * since the immediate had the high 32 bits clear.
3125 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3128 if (opc == 3) { /* ANDS */
3129 gen_logic_CC(sf, tcg_rd);
3134 * C3.4.5 Move wide (immediate)
3136 * 31 30 29 28 23 22 21 20 5 4 0
3137 * +--+-----+-------------+-----+----------------+------+
3138 * |sf| opc | 1 0 0 1 0 1 | hw | imm16 | Rd |
3139 * +--+-----+-------------+-----+----------------+------+
3141 * sf: 0 -> 32 bit, 1 -> 64 bit
3142 * opc: 00 -> N, 10 -> Z, 11 -> K
3143 * hw: shift/16 (0,16, and sf only 32, 48)
3145 static void disas_movw_imm(DisasContext *s, uint32_t insn)
3147 int rd = extract32(insn, 0, 5);
3148 uint64_t imm = extract32(insn, 5, 16);
3149 int sf = extract32(insn, 31, 1);
3150 int opc = extract32(insn, 29, 2);
3151 int pos = extract32(insn, 21, 2) << 4;
3152 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3153 TCGv_i64 tcg_imm;
3155 if (!sf && (pos >= 32)) {
3156 unallocated_encoding(s);
3157 return;
3160 switch (opc) {
3161 case 0: /* MOVN */
3162 case 2: /* MOVZ */
3163 imm <<= pos;
3164 if (opc == 0) {
3165 imm = ~imm;
3167 if (!sf) {
3168 imm &= 0xffffffffu;
3170 tcg_gen_movi_i64(tcg_rd, imm);
3171 break;
3172 case 3: /* MOVK */
3173 tcg_imm = tcg_const_i64(imm);
3174 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_imm, pos, 16);
3175 tcg_temp_free_i64(tcg_imm);
3176 if (!sf) {
3177 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3179 break;
3180 default:
3181 unallocated_encoding(s);
3182 break;
3186 /* C3.4.2 Bitfield
3187 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
3188 * +----+-----+-------------+---+------+------+------+------+
3189 * | sf | opc | 1 0 0 1 1 0 | N | immr | imms | Rn | Rd |
3190 * +----+-----+-------------+---+------+------+------+------+
3192 static void disas_bitfield(DisasContext *s, uint32_t insn)
3194 unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len;
3195 TCGv_i64 tcg_rd, tcg_tmp;
3197 sf = extract32(insn, 31, 1);
3198 opc = extract32(insn, 29, 2);
3199 n = extract32(insn, 22, 1);
3200 ri = extract32(insn, 16, 6);
3201 si = extract32(insn, 10, 6);
3202 rn = extract32(insn, 5, 5);
3203 rd = extract32(insn, 0, 5);
3204 bitsize = sf ? 64 : 32;
3206 if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) {
3207 unallocated_encoding(s);
3208 return;
3211 tcg_rd = cpu_reg(s, rd);
3213 /* Suppress the zero-extend for !sf. Since RI and SI are constrained
3214 to be smaller than bitsize, we'll never reference data outside the
3215 low 32-bits anyway. */
3216 tcg_tmp = read_cpu_reg(s, rn, 1);
3218 /* Recognize simple(r) extractions. */
3219 if (si >= ri) {
3220 /* Wd<s-r:0> = Wn<s:r> */
3221 len = (si - ri) + 1;
3222 if (opc == 0) { /* SBFM: ASR, SBFX, SXTB, SXTH, SXTW */
3223 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
3224 goto done;
3225 } else if (opc == 2) { /* UBFM: UBFX, LSR, UXTB, UXTH */
3226 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
3227 return;
3229 /* opc == 1, BXFIL fall through to deposit */
3230 tcg_gen_extract_i64(tcg_tmp, tcg_tmp, ri, len);
3231 pos = 0;
3232 } else {
3233 /* Handle the ri > si case with a deposit
3234 * Wd<32+s-r,32-r> = Wn<s:0>
3236 len = si + 1;
3237 pos = (bitsize - ri) & (bitsize - 1);
3240 if (opc == 0 && len < ri) {
3241 /* SBFM: sign extend the destination field from len to fill
3242 the balance of the word. Let the deposit below insert all
3243 of those sign bits. */
3244 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
3245 len = ri;
3248 if (opc == 1) { /* BFM, BXFIL */
3249 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
3250 } else {
3251 /* SBFM or UBFM: We start with zero, and we haven't modified
3252 any bits outside bitsize, therefore the zero-extension
3253 below is unneeded. */
3254 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
3255 return;
3258 done:
3259 if (!sf) { /* zero extend final result */
3260 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3264 /* C3.4.3 Extract
3265 * 31 30 29 28 23 22 21 20 16 15 10 9 5 4 0
3266 * +----+------+-------------+---+----+------+--------+------+------+
3267 * | sf | op21 | 1 0 0 1 1 1 | N | o0 | Rm | imms | Rn | Rd |
3268 * +----+------+-------------+---+----+------+--------+------+------+
3270 static void disas_extract(DisasContext *s, uint32_t insn)
3272 unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0;
3274 sf = extract32(insn, 31, 1);
3275 n = extract32(insn, 22, 1);
3276 rm = extract32(insn, 16, 5);
3277 imm = extract32(insn, 10, 6);
3278 rn = extract32(insn, 5, 5);
3279 rd = extract32(insn, 0, 5);
3280 op21 = extract32(insn, 29, 2);
3281 op0 = extract32(insn, 21, 1);
3282 bitsize = sf ? 64 : 32;
3284 if (sf != n || op21 || op0 || imm >= bitsize) {
3285 unallocated_encoding(s);
3286 } else {
3287 TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
3289 tcg_rd = cpu_reg(s, rd);
3291 if (unlikely(imm == 0)) {
3292 /* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
3293 * so an extract from bit 0 is a special case.
3295 if (sf) {
3296 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm));
3297 } else {
3298 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm));
3300 } else if (rm == rn) { /* ROR */
3301 tcg_rm = cpu_reg(s, rm);
3302 if (sf) {
3303 tcg_gen_rotri_i64(tcg_rd, tcg_rm, imm);
3304 } else {
3305 TCGv_i32 tmp = tcg_temp_new_i32();
3306 tcg_gen_extrl_i64_i32(tmp, tcg_rm);
3307 tcg_gen_rotri_i32(tmp, tmp, imm);
3308 tcg_gen_extu_i32_i64(tcg_rd, tmp);
3309 tcg_temp_free_i32(tmp);
3311 } else {
3312 tcg_rm = read_cpu_reg(s, rm, sf);
3313 tcg_rn = read_cpu_reg(s, rn, sf);
3314 tcg_gen_shri_i64(tcg_rm, tcg_rm, imm);
3315 tcg_gen_shli_i64(tcg_rn, tcg_rn, bitsize - imm);
3316 tcg_gen_or_i64(tcg_rd, tcg_rm, tcg_rn);
3317 if (!sf) {
3318 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3324 /* C3.4 Data processing - immediate */
3325 static void disas_data_proc_imm(DisasContext *s, uint32_t insn)
3327 switch (extract32(insn, 23, 6)) {
3328 case 0x20: case 0x21: /* PC-rel. addressing */
3329 disas_pc_rel_adr(s, insn);
3330 break;
3331 case 0x22: case 0x23: /* Add/subtract (immediate) */
3332 disas_add_sub_imm(s, insn);
3333 break;
3334 case 0x24: /* Logical (immediate) */
3335 disas_logic_imm(s, insn);
3336 break;
3337 case 0x25: /* Move wide (immediate) */
3338 disas_movw_imm(s, insn);
3339 break;
3340 case 0x26: /* Bitfield */
3341 disas_bitfield(s, insn);
3342 break;
3343 case 0x27: /* Extract */
3344 disas_extract(s, insn);
3345 break;
3346 default:
3347 unallocated_encoding(s);
3348 break;
3352 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
3353 * Note that it is the caller's responsibility to ensure that the
3354 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
3355 * mandated semantics for out of range shifts.
3357 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
3358 enum a64_shift_type shift_type, TCGv_i64 shift_amount)
3360 switch (shift_type) {
3361 case A64_SHIFT_TYPE_LSL:
3362 tcg_gen_shl_i64(dst, src, shift_amount);
3363 break;
3364 case A64_SHIFT_TYPE_LSR:
3365 tcg_gen_shr_i64(dst, src, shift_amount);
3366 break;
3367 case A64_SHIFT_TYPE_ASR:
3368 if (!sf) {
3369 tcg_gen_ext32s_i64(dst, src);
3371 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
3372 break;
3373 case A64_SHIFT_TYPE_ROR:
3374 if (sf) {
3375 tcg_gen_rotr_i64(dst, src, shift_amount);
3376 } else {
3377 TCGv_i32 t0, t1;
3378 t0 = tcg_temp_new_i32();
3379 t1 = tcg_temp_new_i32();
3380 tcg_gen_extrl_i64_i32(t0, src);
3381 tcg_gen_extrl_i64_i32(t1, shift_amount);
3382 tcg_gen_rotr_i32(t0, t0, t1);
3383 tcg_gen_extu_i32_i64(dst, t0);
3384 tcg_temp_free_i32(t0);
3385 tcg_temp_free_i32(t1);
3387 break;
3388 default:
3389 assert(FALSE); /* all shift types should be handled */
3390 break;
3393 if (!sf) { /* zero extend final result */
3394 tcg_gen_ext32u_i64(dst, dst);
3398 /* Shift a TCGv src by immediate, put result in dst.
3399 * The shift amount must be in range (this should always be true as the
3400 * relevant instructions will UNDEF on bad shift immediates).
3402 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
3403 enum a64_shift_type shift_type, unsigned int shift_i)
3405 assert(shift_i < (sf ? 64 : 32));
3407 if (shift_i == 0) {
3408 tcg_gen_mov_i64(dst, src);
3409 } else {
3410 TCGv_i64 shift_const;
3412 shift_const = tcg_const_i64(shift_i);
3413 shift_reg(dst, src, sf, shift_type, shift_const);
3414 tcg_temp_free_i64(shift_const);
3418 /* C3.5.10 Logical (shifted register)
3419 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
3420 * +----+-----+-----------+-------+---+------+--------+------+------+
3421 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
3422 * +----+-----+-----------+-------+---+------+--------+------+------+
3424 static void disas_logic_reg(DisasContext *s, uint32_t insn)
3426 TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
3427 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
3429 sf = extract32(insn, 31, 1);
3430 opc = extract32(insn, 29, 2);
3431 shift_type = extract32(insn, 22, 2);
3432 invert = extract32(insn, 21, 1);
3433 rm = extract32(insn, 16, 5);
3434 shift_amount = extract32(insn, 10, 6);
3435 rn = extract32(insn, 5, 5);
3436 rd = extract32(insn, 0, 5);
3438 if (!sf && (shift_amount & (1 << 5))) {
3439 unallocated_encoding(s);
3440 return;
3443 tcg_rd = cpu_reg(s, rd);
3445 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
3446 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
3447 * register-register MOV and MVN, so it is worth special casing.
3449 tcg_rm = cpu_reg(s, rm);
3450 if (invert) {
3451 tcg_gen_not_i64(tcg_rd, tcg_rm);
3452 if (!sf) {
3453 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3455 } else {
3456 if (sf) {
3457 tcg_gen_mov_i64(tcg_rd, tcg_rm);
3458 } else {
3459 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
3462 return;
3465 tcg_rm = read_cpu_reg(s, rm, sf);
3467 if (shift_amount) {
3468 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
3471 tcg_rn = cpu_reg(s, rn);
3473 switch (opc | (invert << 2)) {
3474 case 0: /* AND */
3475 case 3: /* ANDS */
3476 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
3477 break;
3478 case 1: /* ORR */
3479 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
3480 break;
3481 case 2: /* EOR */
3482 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
3483 break;
3484 case 4: /* BIC */
3485 case 7: /* BICS */
3486 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
3487 break;
3488 case 5: /* ORN */
3489 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
3490 break;
3491 case 6: /* EON */
3492 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
3493 break;
3494 default:
3495 assert(FALSE);
3496 break;
3499 if (!sf) {
3500 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3503 if (opc == 3) {
3504 gen_logic_CC(sf, tcg_rd);
3509 * C3.5.1 Add/subtract (extended register)
3511 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
3512 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
3513 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
3514 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
3516 * sf: 0 -> 32bit, 1 -> 64bit
3517 * op: 0 -> add , 1 -> sub
3518 * S: 1 -> set flags
3519 * opt: 00
3520 * option: extension type (see DecodeRegExtend)
3521 * imm3: optional shift to Rm
3523 * Rd = Rn + LSL(extend(Rm), amount)
3525 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
3527 int rd = extract32(insn, 0, 5);
3528 int rn = extract32(insn, 5, 5);
3529 int imm3 = extract32(insn, 10, 3);
3530 int option = extract32(insn, 13, 3);
3531 int rm = extract32(insn, 16, 5);
3532 bool setflags = extract32(insn, 29, 1);
3533 bool sub_op = extract32(insn, 30, 1);
3534 bool sf = extract32(insn, 31, 1);
3536 TCGv_i64 tcg_rm, tcg_rn; /* temps */
3537 TCGv_i64 tcg_rd;
3538 TCGv_i64 tcg_result;
3540 if (imm3 > 4) {
3541 unallocated_encoding(s);
3542 return;
3545 /* non-flag setting ops may use SP */
3546 if (!setflags) {
3547 tcg_rd = cpu_reg_sp(s, rd);
3548 } else {
3549 tcg_rd = cpu_reg(s, rd);
3551 tcg_rn = read_cpu_reg_sp(s, rn, sf);
3553 tcg_rm = read_cpu_reg(s, rm, sf);
3554 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
3556 tcg_result = tcg_temp_new_i64();
3558 if (!setflags) {
3559 if (sub_op) {
3560 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
3561 } else {
3562 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
3564 } else {
3565 if (sub_op) {
3566 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
3567 } else {
3568 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
3572 if (sf) {
3573 tcg_gen_mov_i64(tcg_rd, tcg_result);
3574 } else {
3575 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
3578 tcg_temp_free_i64(tcg_result);
3582 * C3.5.2 Add/subtract (shifted register)
3584 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
3585 * +--+--+--+-----------+-----+--+-------+---------+------+------+
3586 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
3587 * +--+--+--+-----------+-----+--+-------+---------+------+------+
3589 * sf: 0 -> 32bit, 1 -> 64bit
3590 * op: 0 -> add , 1 -> sub
3591 * S: 1 -> set flags
3592 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
3593 * imm6: Shift amount to apply to Rm before the add/sub
3595 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
3597 int rd = extract32(insn, 0, 5);
3598 int rn = extract32(insn, 5, 5);
3599 int imm6 = extract32(insn, 10, 6);
3600 int rm = extract32(insn, 16, 5);
3601 int shift_type = extract32(insn, 22, 2);
3602 bool setflags = extract32(insn, 29, 1);
3603 bool sub_op = extract32(insn, 30, 1);
3604 bool sf = extract32(insn, 31, 1);
3606 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3607 TCGv_i64 tcg_rn, tcg_rm;
3608 TCGv_i64 tcg_result;
3610 if ((shift_type == 3) || (!sf && (imm6 > 31))) {
3611 unallocated_encoding(s);
3612 return;
3615 tcg_rn = read_cpu_reg(s, rn, sf);
3616 tcg_rm = read_cpu_reg(s, rm, sf);
3618 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
3620 tcg_result = tcg_temp_new_i64();
3622 if (!setflags) {
3623 if (sub_op) {
3624 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
3625 } else {
3626 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
3628 } else {
3629 if (sub_op) {
3630 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
3631 } else {
3632 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
3636 if (sf) {
3637 tcg_gen_mov_i64(tcg_rd, tcg_result);
3638 } else {
3639 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
3642 tcg_temp_free_i64(tcg_result);
3645 /* C3.5.9 Data-processing (3 source)
3647 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
3648 +--+------+-----------+------+------+----+------+------+------+
3649 |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
3650 +--+------+-----------+------+------+----+------+------+------+
3653 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
3655 int rd = extract32(insn, 0, 5);
3656 int rn = extract32(insn, 5, 5);
3657 int ra = extract32(insn, 10, 5);
3658 int rm = extract32(insn, 16, 5);
3659 int op_id = (extract32(insn, 29, 3) << 4) |
3660 (extract32(insn, 21, 3) << 1) |
3661 extract32(insn, 15, 1);
3662 bool sf = extract32(insn, 31, 1);
3663 bool is_sub = extract32(op_id, 0, 1);
3664 bool is_high = extract32(op_id, 2, 1);
3665 bool is_signed = false;
3666 TCGv_i64 tcg_op1;
3667 TCGv_i64 tcg_op2;
3668 TCGv_i64 tcg_tmp;
3670 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
3671 switch (op_id) {
3672 case 0x42: /* SMADDL */
3673 case 0x43: /* SMSUBL */
3674 case 0x44: /* SMULH */
3675 is_signed = true;
3676 break;
3677 case 0x0: /* MADD (32bit) */
3678 case 0x1: /* MSUB (32bit) */
3679 case 0x40: /* MADD (64bit) */
3680 case 0x41: /* MSUB (64bit) */
3681 case 0x4a: /* UMADDL */
3682 case 0x4b: /* UMSUBL */
3683 case 0x4c: /* UMULH */
3684 break;
3685 default:
3686 unallocated_encoding(s);
3687 return;
3690 if (is_high) {
3691 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
3692 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3693 TCGv_i64 tcg_rn = cpu_reg(s, rn);
3694 TCGv_i64 tcg_rm = cpu_reg(s, rm);
3696 if (is_signed) {
3697 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
3698 } else {
3699 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
3702 tcg_temp_free_i64(low_bits);
3703 return;
3706 tcg_op1 = tcg_temp_new_i64();
3707 tcg_op2 = tcg_temp_new_i64();
3708 tcg_tmp = tcg_temp_new_i64();
3710 if (op_id < 0x42) {
3711 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
3712 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
3713 } else {
3714 if (is_signed) {
3715 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
3716 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
3717 } else {
3718 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
3719 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
3723 if (ra == 31 && !is_sub) {
3724 /* Special-case MADD with rA == XZR; it is the standard MUL alias */
3725 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
3726 } else {
3727 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
3728 if (is_sub) {
3729 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
3730 } else {
3731 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
3735 if (!sf) {
3736 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
3739 tcg_temp_free_i64(tcg_op1);
3740 tcg_temp_free_i64(tcg_op2);
3741 tcg_temp_free_i64(tcg_tmp);
3744 /* C3.5.3 - Add/subtract (with carry)
3745 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
3746 * +--+--+--+------------------------+------+---------+------+-----+
3747 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | opcode2 | Rn | Rd |
3748 * +--+--+--+------------------------+------+---------+------+-----+
3749 * [000000]
3752 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
3754 unsigned int sf, op, setflags, rm, rn, rd;
3755 TCGv_i64 tcg_y, tcg_rn, tcg_rd;
3757 if (extract32(insn, 10, 6) != 0) {
3758 unallocated_encoding(s);
3759 return;
3762 sf = extract32(insn, 31, 1);
3763 op = extract32(insn, 30, 1);
3764 setflags = extract32(insn, 29, 1);
3765 rm = extract32(insn, 16, 5);
3766 rn = extract32(insn, 5, 5);
3767 rd = extract32(insn, 0, 5);
3769 tcg_rd = cpu_reg(s, rd);
3770 tcg_rn = cpu_reg(s, rn);
3772 if (op) {
3773 tcg_y = new_tmp_a64(s);
3774 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
3775 } else {
3776 tcg_y = cpu_reg(s, rm);
3779 if (setflags) {
3780 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
3781 } else {
3782 gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
3786 /* C3.5.4 - C3.5.5 Conditional compare (immediate / register)
3787 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
3788 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
3789 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
3790 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
3791 * [1] y [0] [0]
3793 static void disas_cc(DisasContext *s, uint32_t insn)
3795 unsigned int sf, op, y, cond, rn, nzcv, is_imm;
3796 TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
3797 TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
3798 DisasCompare c;
3800 if (!extract32(insn, 29, 1)) {
3801 unallocated_encoding(s);
3802 return;
3804 if (insn & (1 << 10 | 1 << 4)) {
3805 unallocated_encoding(s);
3806 return;
3808 sf = extract32(insn, 31, 1);
3809 op = extract32(insn, 30, 1);
3810 is_imm = extract32(insn, 11, 1);
3811 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
3812 cond = extract32(insn, 12, 4);
3813 rn = extract32(insn, 5, 5);
3814 nzcv = extract32(insn, 0, 4);
3816 /* Set T0 = !COND. */
3817 tcg_t0 = tcg_temp_new_i32();
3818 arm_test_cc(&c, cond);
3819 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
3820 arm_free_cc(&c);
3822 /* Load the arguments for the new comparison. */
3823 if (is_imm) {
3824 tcg_y = new_tmp_a64(s);
3825 tcg_gen_movi_i64(tcg_y, y);
3826 } else {
3827 tcg_y = cpu_reg(s, y);
3829 tcg_rn = cpu_reg(s, rn);
3831 /* Set the flags for the new comparison. */
3832 tcg_tmp = tcg_temp_new_i64();
3833 if (op) {
3834 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
3835 } else {
3836 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
3838 tcg_temp_free_i64(tcg_tmp);
3840 /* If COND was false, force the flags to #nzcv. Compute two masks
3841 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
3842 * For tcg hosts that support ANDC, we can make do with just T1.
3843 * In either case, allow the tcg optimizer to delete any unused mask.
3845 tcg_t1 = tcg_temp_new_i32();
3846 tcg_t2 = tcg_temp_new_i32();
3847 tcg_gen_neg_i32(tcg_t1, tcg_t0);
3848 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
3850 if (nzcv & 8) { /* N */
3851 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
3852 } else {
3853 if (TCG_TARGET_HAS_andc_i32) {
3854 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
3855 } else {
3856 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
3859 if (nzcv & 4) { /* Z */
3860 if (TCG_TARGET_HAS_andc_i32) {
3861 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
3862 } else {
3863 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
3865 } else {
3866 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
3868 if (nzcv & 2) { /* C */
3869 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
3870 } else {
3871 if (TCG_TARGET_HAS_andc_i32) {
3872 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
3873 } else {
3874 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
3877 if (nzcv & 1) { /* V */
3878 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
3879 } else {
3880 if (TCG_TARGET_HAS_andc_i32) {
3881 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
3882 } else {
3883 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
3886 tcg_temp_free_i32(tcg_t0);
3887 tcg_temp_free_i32(tcg_t1);
3888 tcg_temp_free_i32(tcg_t2);
3891 /* C3.5.6 Conditional select
3892 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
3893 * +----+----+---+-----------------+------+------+-----+------+------+
3894 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
3895 * +----+----+---+-----------------+------+------+-----+------+------+
3897 static void disas_cond_select(DisasContext *s, uint32_t insn)
3899 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
3900 TCGv_i64 tcg_rd, zero;
3901 DisasCompare64 c;
3903 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
3904 /* S == 1 or op2<1> == 1 */
3905 unallocated_encoding(s);
3906 return;
3908 sf = extract32(insn, 31, 1);
3909 else_inv = extract32(insn, 30, 1);
3910 rm = extract32(insn, 16, 5);
3911 cond = extract32(insn, 12, 4);
3912 else_inc = extract32(insn, 10, 1);
3913 rn = extract32(insn, 5, 5);
3914 rd = extract32(insn, 0, 5);
3916 tcg_rd = cpu_reg(s, rd);
3918 a64_test_cc(&c, cond);
3919 zero = tcg_const_i64(0);
3921 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
3922 /* CSET & CSETM. */
3923 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero);
3924 if (else_inv) {
3925 tcg_gen_neg_i64(tcg_rd, tcg_rd);
3927 } else {
3928 TCGv_i64 t_true = cpu_reg(s, rn);
3929 TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
3930 if (else_inv && else_inc) {
3931 tcg_gen_neg_i64(t_false, t_false);
3932 } else if (else_inv) {
3933 tcg_gen_not_i64(t_false, t_false);
3934 } else if (else_inc) {
3935 tcg_gen_addi_i64(t_false, t_false, 1);
3937 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
3940 tcg_temp_free_i64(zero);
3941 a64_free_cc(&c);
3943 if (!sf) {
3944 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3948 static void handle_clz(DisasContext *s, unsigned int sf,
3949 unsigned int rn, unsigned int rd)
3951 TCGv_i64 tcg_rd, tcg_rn;
3952 tcg_rd = cpu_reg(s, rd);
3953 tcg_rn = cpu_reg(s, rn);
3955 if (sf) {
3956 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
3957 } else {
3958 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
3959 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
3960 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
3961 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
3962 tcg_temp_free_i32(tcg_tmp32);
3966 static void handle_cls(DisasContext *s, unsigned int sf,
3967 unsigned int rn, unsigned int rd)
3969 TCGv_i64 tcg_rd, tcg_rn;
3970 tcg_rd = cpu_reg(s, rd);
3971 tcg_rn = cpu_reg(s, rn);
3973 if (sf) {
3974 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
3975 } else {
3976 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
3977 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
3978 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
3979 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
3980 tcg_temp_free_i32(tcg_tmp32);
3984 static void handle_rbit(DisasContext *s, unsigned int sf,
3985 unsigned int rn, unsigned int rd)
3987 TCGv_i64 tcg_rd, tcg_rn;
3988 tcg_rd = cpu_reg(s, rd);
3989 tcg_rn = cpu_reg(s, rn);
3991 if (sf) {
3992 gen_helper_rbit64(tcg_rd, tcg_rn);
3993 } else {
3994 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
3995 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
3996 gen_helper_rbit(tcg_tmp32, tcg_tmp32);
3997 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
3998 tcg_temp_free_i32(tcg_tmp32);
4002 /* C5.6.149 REV with sf==1, opcode==3 ("REV64") */
4003 static void handle_rev64(DisasContext *s, unsigned int sf,
4004 unsigned int rn, unsigned int rd)
4006 if (!sf) {
4007 unallocated_encoding(s);
4008 return;
4010 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
4013 /* C5.6.149 REV with sf==0, opcode==2
4014 * C5.6.151 REV32 (sf==1, opcode==2)
4016 static void handle_rev32(DisasContext *s, unsigned int sf,
4017 unsigned int rn, unsigned int rd)
4019 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4021 if (sf) {
4022 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
4023 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4025 /* bswap32_i64 requires zero high word */
4026 tcg_gen_ext32u_i64(tcg_tmp, tcg_rn);
4027 tcg_gen_bswap32_i64(tcg_rd, tcg_tmp);
4028 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 32);
4029 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
4030 tcg_gen_concat32_i64(tcg_rd, tcg_rd, tcg_tmp);
4032 tcg_temp_free_i64(tcg_tmp);
4033 } else {
4034 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rn));
4035 tcg_gen_bswap32_i64(tcg_rd, tcg_rd);
4039 /* C5.6.150 REV16 (opcode==1) */
4040 static void handle_rev16(DisasContext *s, unsigned int sf,
4041 unsigned int rn, unsigned int rd)
4043 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4044 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
4045 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4046 TCGv_i64 mask = tcg_const_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
4048 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
4049 tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
4050 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
4051 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
4052 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
4054 tcg_temp_free_i64(mask);
4055 tcg_temp_free_i64(tcg_tmp);
4058 /* C3.5.7 Data-processing (1 source)
4059 * 31 30 29 28 21 20 16 15 10 9 5 4 0
4060 * +----+---+---+-----------------+---------+--------+------+------+
4061 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
4062 * +----+---+---+-----------------+---------+--------+------+------+
4064 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
4066 unsigned int sf, opcode, rn, rd;
4068 if (extract32(insn, 29, 1) || extract32(insn, 16, 5)) {
4069 unallocated_encoding(s);
4070 return;
4073 sf = extract32(insn, 31, 1);
4074 opcode = extract32(insn, 10, 6);
4075 rn = extract32(insn, 5, 5);
4076 rd = extract32(insn, 0, 5);
4078 switch (opcode) {
4079 case 0: /* RBIT */
4080 handle_rbit(s, sf, rn, rd);
4081 break;
4082 case 1: /* REV16 */
4083 handle_rev16(s, sf, rn, rd);
4084 break;
4085 case 2: /* REV32 */
4086 handle_rev32(s, sf, rn, rd);
4087 break;
4088 case 3: /* REV64 */
4089 handle_rev64(s, sf, rn, rd);
4090 break;
4091 case 4: /* CLZ */
4092 handle_clz(s, sf, rn, rd);
4093 break;
4094 case 5: /* CLS */
4095 handle_cls(s, sf, rn, rd);
4096 break;
4100 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
4101 unsigned int rm, unsigned int rn, unsigned int rd)
4103 TCGv_i64 tcg_n, tcg_m, tcg_rd;
4104 tcg_rd = cpu_reg(s, rd);
4106 if (!sf && is_signed) {
4107 tcg_n = new_tmp_a64(s);
4108 tcg_m = new_tmp_a64(s);
4109 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
4110 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
4111 } else {
4112 tcg_n = read_cpu_reg(s, rn, sf);
4113 tcg_m = read_cpu_reg(s, rm, sf);
4116 if (is_signed) {
4117 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
4118 } else {
4119 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
4122 if (!sf) { /* zero extend final result */
4123 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4127 /* C5.6.115 LSLV, C5.6.118 LSRV, C5.6.17 ASRV, C5.6.154 RORV */
4128 static void handle_shift_reg(DisasContext *s,
4129 enum a64_shift_type shift_type, unsigned int sf,
4130 unsigned int rm, unsigned int rn, unsigned int rd)
4132 TCGv_i64 tcg_shift = tcg_temp_new_i64();
4133 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4134 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4136 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
4137 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
4138 tcg_temp_free_i64(tcg_shift);
4141 /* CRC32[BHWX], CRC32C[BHWX] */
4142 static void handle_crc32(DisasContext *s,
4143 unsigned int sf, unsigned int sz, bool crc32c,
4144 unsigned int rm, unsigned int rn, unsigned int rd)
4146 TCGv_i64 tcg_acc, tcg_val;
4147 TCGv_i32 tcg_bytes;
4149 if (!arm_dc_feature(s, ARM_FEATURE_CRC)
4150 || (sf == 1 && sz != 3)
4151 || (sf == 0 && sz == 3)) {
4152 unallocated_encoding(s);
4153 return;
4156 if (sz == 3) {
4157 tcg_val = cpu_reg(s, rm);
4158 } else {
4159 uint64_t mask;
4160 switch (sz) {
4161 case 0:
4162 mask = 0xFF;
4163 break;
4164 case 1:
4165 mask = 0xFFFF;
4166 break;
4167 case 2:
4168 mask = 0xFFFFFFFF;
4169 break;
4170 default:
4171 g_assert_not_reached();
4173 tcg_val = new_tmp_a64(s);
4174 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
4177 tcg_acc = cpu_reg(s, rn);
4178 tcg_bytes = tcg_const_i32(1 << sz);
4180 if (crc32c) {
4181 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
4182 } else {
4183 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
4186 tcg_temp_free_i32(tcg_bytes);
4189 /* C3.5.8 Data-processing (2 source)
4190 * 31 30 29 28 21 20 16 15 10 9 5 4 0
4191 * +----+---+---+-----------------+------+--------+------+------+
4192 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
4193 * +----+---+---+-----------------+------+--------+------+------+
4195 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
4197 unsigned int sf, rm, opcode, rn, rd;
4198 sf = extract32(insn, 31, 1);
4199 rm = extract32(insn, 16, 5);
4200 opcode = extract32(insn, 10, 6);
4201 rn = extract32(insn, 5, 5);
4202 rd = extract32(insn, 0, 5);
4204 if (extract32(insn, 29, 1)) {
4205 unallocated_encoding(s);
4206 return;
4209 switch (opcode) {
4210 case 2: /* UDIV */
4211 handle_div(s, false, sf, rm, rn, rd);
4212 break;
4213 case 3: /* SDIV */
4214 handle_div(s, true, sf, rm, rn, rd);
4215 break;
4216 case 8: /* LSLV */
4217 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
4218 break;
4219 case 9: /* LSRV */
4220 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
4221 break;
4222 case 10: /* ASRV */
4223 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
4224 break;
4225 case 11: /* RORV */
4226 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
4227 break;
4228 case 16:
4229 case 17:
4230 case 18:
4231 case 19:
4232 case 20:
4233 case 21:
4234 case 22:
4235 case 23: /* CRC32 */
4237 int sz = extract32(opcode, 0, 2);
4238 bool crc32c = extract32(opcode, 2, 1);
4239 handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
4240 break;
4242 default:
4243 unallocated_encoding(s);
4244 break;
4248 /* C3.5 Data processing - register */
4249 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
4251 switch (extract32(insn, 24, 5)) {
4252 case 0x0a: /* Logical (shifted register) */
4253 disas_logic_reg(s, insn);
4254 break;
4255 case 0x0b: /* Add/subtract */
4256 if (insn & (1 << 21)) { /* (extended register) */
4257 disas_add_sub_ext_reg(s, insn);
4258 } else {
4259 disas_add_sub_reg(s, insn);
4261 break;
4262 case 0x1b: /* Data-processing (3 source) */
4263 disas_data_proc_3src(s, insn);
4264 break;
4265 case 0x1a:
4266 switch (extract32(insn, 21, 3)) {
4267 case 0x0: /* Add/subtract (with carry) */
4268 disas_adc_sbc(s, insn);
4269 break;
4270 case 0x2: /* Conditional compare */
4271 disas_cc(s, insn); /* both imm and reg forms */
4272 break;
4273 case 0x4: /* Conditional select */
4274 disas_cond_select(s, insn);
4275 break;
4276 case 0x6: /* Data-processing */
4277 if (insn & (1 << 30)) { /* (1 source) */
4278 disas_data_proc_1src(s, insn);
4279 } else { /* (2 source) */
4280 disas_data_proc_2src(s, insn);
4282 break;
4283 default:
4284 unallocated_encoding(s);
4285 break;
4287 break;
4288 default:
4289 unallocated_encoding(s);
4290 break;
4294 static void handle_fp_compare(DisasContext *s, bool is_double,
4295 unsigned int rn, unsigned int rm,
4296 bool cmp_with_zero, bool signal_all_nans)
4298 TCGv_i64 tcg_flags = tcg_temp_new_i64();
4299 TCGv_ptr fpst = get_fpstatus_ptr();
4301 if (is_double) {
4302 TCGv_i64 tcg_vn, tcg_vm;
4304 tcg_vn = read_fp_dreg(s, rn);
4305 if (cmp_with_zero) {
4306 tcg_vm = tcg_const_i64(0);
4307 } else {
4308 tcg_vm = read_fp_dreg(s, rm);
4310 if (signal_all_nans) {
4311 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4312 } else {
4313 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4315 tcg_temp_free_i64(tcg_vn);
4316 tcg_temp_free_i64(tcg_vm);
4317 } else {
4318 TCGv_i32 tcg_vn, tcg_vm;
4320 tcg_vn = read_fp_sreg(s, rn);
4321 if (cmp_with_zero) {
4322 tcg_vm = tcg_const_i32(0);
4323 } else {
4324 tcg_vm = read_fp_sreg(s, rm);
4326 if (signal_all_nans) {
4327 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4328 } else {
4329 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4331 tcg_temp_free_i32(tcg_vn);
4332 tcg_temp_free_i32(tcg_vm);
4335 tcg_temp_free_ptr(fpst);
4337 gen_set_nzcv(tcg_flags);
4339 tcg_temp_free_i64(tcg_flags);
4342 /* C3.6.22 Floating point compare
4343 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
4344 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
4345 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
4346 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
4348 static void disas_fp_compare(DisasContext *s, uint32_t insn)
4350 unsigned int mos, type, rm, op, rn, opc, op2r;
4352 mos = extract32(insn, 29, 3);
4353 type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
4354 rm = extract32(insn, 16, 5);
4355 op = extract32(insn, 14, 2);
4356 rn = extract32(insn, 5, 5);
4357 opc = extract32(insn, 3, 2);
4358 op2r = extract32(insn, 0, 3);
4360 if (mos || op || op2r || type > 1) {
4361 unallocated_encoding(s);
4362 return;
4365 if (!fp_access_check(s)) {
4366 return;
4369 handle_fp_compare(s, type, rn, rm, opc & 1, opc & 2);
4372 /* C3.6.23 Floating point conditional compare
4373 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
4374 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
4375 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
4376 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
4378 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
4380 unsigned int mos, type, rm, cond, rn, op, nzcv;
4381 TCGv_i64 tcg_flags;
4382 TCGLabel *label_continue = NULL;
4384 mos = extract32(insn, 29, 3);
4385 type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
4386 rm = extract32(insn, 16, 5);
4387 cond = extract32(insn, 12, 4);
4388 rn = extract32(insn, 5, 5);
4389 op = extract32(insn, 4, 1);
4390 nzcv = extract32(insn, 0, 4);
4392 if (mos || type > 1) {
4393 unallocated_encoding(s);
4394 return;
4397 if (!fp_access_check(s)) {
4398 return;
4401 if (cond < 0x0e) { /* not always */
4402 TCGLabel *label_match = gen_new_label();
4403 label_continue = gen_new_label();
4404 arm_gen_test_cc(cond, label_match);
4405 /* nomatch: */
4406 tcg_flags = tcg_const_i64(nzcv << 28);
4407 gen_set_nzcv(tcg_flags);
4408 tcg_temp_free_i64(tcg_flags);
4409 tcg_gen_br(label_continue);
4410 gen_set_label(label_match);
4413 handle_fp_compare(s, type, rn, rm, false, op);
4415 if (cond < 0x0e) {
4416 gen_set_label(label_continue);
4420 /* C3.6.24 Floating point conditional select
4421 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
4422 * +---+---+---+-----------+------+---+------+------+-----+------+------+
4423 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd |
4424 * +---+---+---+-----------+------+---+------+------+-----+------+------+
4426 static void disas_fp_csel(DisasContext *s, uint32_t insn)
4428 unsigned int mos, type, rm, cond, rn, rd;
4429 TCGv_i64 t_true, t_false, t_zero;
4430 DisasCompare64 c;
4432 mos = extract32(insn, 29, 3);
4433 type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
4434 rm = extract32(insn, 16, 5);
4435 cond = extract32(insn, 12, 4);
4436 rn = extract32(insn, 5, 5);
4437 rd = extract32(insn, 0, 5);
4439 if (mos || type > 1) {
4440 unallocated_encoding(s);
4441 return;
4444 if (!fp_access_check(s)) {
4445 return;
4448 /* Zero extend sreg inputs to 64 bits now. */
4449 t_true = tcg_temp_new_i64();
4450 t_false = tcg_temp_new_i64();
4451 read_vec_element(s, t_true, rn, 0, type ? MO_64 : MO_32);
4452 read_vec_element(s, t_false, rm, 0, type ? MO_64 : MO_32);
4454 a64_test_cc(&c, cond);
4455 t_zero = tcg_const_i64(0);
4456 tcg_gen_movcond_i64(c.cond, t_true, c.value, t_zero, t_true, t_false);
4457 tcg_temp_free_i64(t_zero);
4458 tcg_temp_free_i64(t_false);
4459 a64_free_cc(&c);
4461 /* Note that sregs write back zeros to the high bits,
4462 and we've already done the zero-extension. */
4463 write_fp_dreg(s, rd, t_true);
4464 tcg_temp_free_i64(t_true);
4467 /* C3.6.25 Floating-point data-processing (1 source) - single precision */
4468 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
4470 TCGv_ptr fpst;
4471 TCGv_i32 tcg_op;
4472 TCGv_i32 tcg_res;
4474 fpst = get_fpstatus_ptr();
4475 tcg_op = read_fp_sreg(s, rn);
4476 tcg_res = tcg_temp_new_i32();
4478 switch (opcode) {
4479 case 0x0: /* FMOV */
4480 tcg_gen_mov_i32(tcg_res, tcg_op);
4481 break;
4482 case 0x1: /* FABS */
4483 gen_helper_vfp_abss(tcg_res, tcg_op);
4484 break;
4485 case 0x2: /* FNEG */
4486 gen_helper_vfp_negs(tcg_res, tcg_op);
4487 break;
4488 case 0x3: /* FSQRT */
4489 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
4490 break;
4491 case 0x8: /* FRINTN */
4492 case 0x9: /* FRINTP */
4493 case 0xa: /* FRINTM */
4494 case 0xb: /* FRINTZ */
4495 case 0xc: /* FRINTA */
4497 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
4499 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4500 gen_helper_rints(tcg_res, tcg_op, fpst);
4502 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4503 tcg_temp_free_i32(tcg_rmode);
4504 break;
4506 case 0xe: /* FRINTX */
4507 gen_helper_rints_exact(tcg_res, tcg_op, fpst);
4508 break;
4509 case 0xf: /* FRINTI */
4510 gen_helper_rints(tcg_res, tcg_op, fpst);
4511 break;
4512 default:
4513 abort();
4516 write_fp_sreg(s, rd, tcg_res);
4518 tcg_temp_free_ptr(fpst);
4519 tcg_temp_free_i32(tcg_op);
4520 tcg_temp_free_i32(tcg_res);
4523 /* C3.6.25 Floating-point data-processing (1 source) - double precision */
4524 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
4526 TCGv_ptr fpst;
4527 TCGv_i64 tcg_op;
4528 TCGv_i64 tcg_res;
4530 fpst = get_fpstatus_ptr();
4531 tcg_op = read_fp_dreg(s, rn);
4532 tcg_res = tcg_temp_new_i64();
4534 switch (opcode) {
4535 case 0x0: /* FMOV */
4536 tcg_gen_mov_i64(tcg_res, tcg_op);
4537 break;
4538 case 0x1: /* FABS */
4539 gen_helper_vfp_absd(tcg_res, tcg_op);
4540 break;
4541 case 0x2: /* FNEG */
4542 gen_helper_vfp_negd(tcg_res, tcg_op);
4543 break;
4544 case 0x3: /* FSQRT */
4545 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env);
4546 break;
4547 case 0x8: /* FRINTN */
4548 case 0x9: /* FRINTP */
4549 case 0xa: /* FRINTM */
4550 case 0xb: /* FRINTZ */
4551 case 0xc: /* FRINTA */
4553 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
4555 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4556 gen_helper_rintd(tcg_res, tcg_op, fpst);
4558 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4559 tcg_temp_free_i32(tcg_rmode);
4560 break;
4562 case 0xe: /* FRINTX */
4563 gen_helper_rintd_exact(tcg_res, tcg_op, fpst);
4564 break;
4565 case 0xf: /* FRINTI */
4566 gen_helper_rintd(tcg_res, tcg_op, fpst);
4567 break;
4568 default:
4569 abort();
4572 write_fp_dreg(s, rd, tcg_res);
4574 tcg_temp_free_ptr(fpst);
4575 tcg_temp_free_i64(tcg_op);
4576 tcg_temp_free_i64(tcg_res);
4579 static void handle_fp_fcvt(DisasContext *s, int opcode,
4580 int rd, int rn, int dtype, int ntype)
4582 switch (ntype) {
4583 case 0x0:
4585 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
4586 if (dtype == 1) {
4587 /* Single to double */
4588 TCGv_i64 tcg_rd = tcg_temp_new_i64();
4589 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env);
4590 write_fp_dreg(s, rd, tcg_rd);
4591 tcg_temp_free_i64(tcg_rd);
4592 } else {
4593 /* Single to half */
4594 TCGv_i32 tcg_rd = tcg_temp_new_i32();
4595 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, cpu_env);
4596 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
4597 write_fp_sreg(s, rd, tcg_rd);
4598 tcg_temp_free_i32(tcg_rd);
4600 tcg_temp_free_i32(tcg_rn);
4601 break;
4603 case 0x1:
4605 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
4606 TCGv_i32 tcg_rd = tcg_temp_new_i32();
4607 if (dtype == 0) {
4608 /* Double to single */
4609 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env);
4610 } else {
4611 /* Double to half */
4612 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, cpu_env);
4613 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
4615 write_fp_sreg(s, rd, tcg_rd);
4616 tcg_temp_free_i32(tcg_rd);
4617 tcg_temp_free_i64(tcg_rn);
4618 break;
4620 case 0x3:
4622 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
4623 tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
4624 if (dtype == 0) {
4625 /* Half to single */
4626 TCGv_i32 tcg_rd = tcg_temp_new_i32();
4627 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, cpu_env);
4628 write_fp_sreg(s, rd, tcg_rd);
4629 tcg_temp_free_i32(tcg_rd);
4630 } else {
4631 /* Half to double */
4632 TCGv_i64 tcg_rd = tcg_temp_new_i64();
4633 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, cpu_env);
4634 write_fp_dreg(s, rd, tcg_rd);
4635 tcg_temp_free_i64(tcg_rd);
4637 tcg_temp_free_i32(tcg_rn);
4638 break;
4640 default:
4641 abort();
4645 /* C3.6.25 Floating point data-processing (1 source)
4646 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
4647 * +---+---+---+-----------+------+---+--------+-----------+------+------+
4648 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
4649 * +---+---+---+-----------+------+---+--------+-----------+------+------+
4651 static void disas_fp_1src(DisasContext *s, uint32_t insn)
4653 int type = extract32(insn, 22, 2);
4654 int opcode = extract32(insn, 15, 6);
4655 int rn = extract32(insn, 5, 5);
4656 int rd = extract32(insn, 0, 5);
4658 switch (opcode) {
4659 case 0x4: case 0x5: case 0x7:
4661 /* FCVT between half, single and double precision */
4662 int dtype = extract32(opcode, 0, 2);
4663 if (type == 2 || dtype == type) {
4664 unallocated_encoding(s);
4665 return;
4667 if (!fp_access_check(s)) {
4668 return;
4671 handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
4672 break;
4674 case 0x0 ... 0x3:
4675 case 0x8 ... 0xc:
4676 case 0xe ... 0xf:
4677 /* 32-to-32 and 64-to-64 ops */
4678 switch (type) {
4679 case 0:
4680 if (!fp_access_check(s)) {
4681 return;
4684 handle_fp_1src_single(s, opcode, rd, rn);
4685 break;
4686 case 1:
4687 if (!fp_access_check(s)) {
4688 return;
4691 handle_fp_1src_double(s, opcode, rd, rn);
4692 break;
4693 default:
4694 unallocated_encoding(s);
4696 break;
4697 default:
4698 unallocated_encoding(s);
4699 break;
4703 /* C3.6.26 Floating-point data-processing (2 source) - single precision */
4704 static void handle_fp_2src_single(DisasContext *s, int opcode,
4705 int rd, int rn, int rm)
4707 TCGv_i32 tcg_op1;
4708 TCGv_i32 tcg_op2;
4709 TCGv_i32 tcg_res;
4710 TCGv_ptr fpst;
4712 tcg_res = tcg_temp_new_i32();
4713 fpst = get_fpstatus_ptr();
4714 tcg_op1 = read_fp_sreg(s, rn);
4715 tcg_op2 = read_fp_sreg(s, rm);
4717 switch (opcode) {
4718 case 0x0: /* FMUL */
4719 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
4720 break;
4721 case 0x1: /* FDIV */
4722 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
4723 break;
4724 case 0x2: /* FADD */
4725 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
4726 break;
4727 case 0x3: /* FSUB */
4728 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
4729 break;
4730 case 0x4: /* FMAX */
4731 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
4732 break;
4733 case 0x5: /* FMIN */
4734 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
4735 break;
4736 case 0x6: /* FMAXNM */
4737 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
4738 break;
4739 case 0x7: /* FMINNM */
4740 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
4741 break;
4742 case 0x8: /* FNMUL */
4743 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
4744 gen_helper_vfp_negs(tcg_res, tcg_res);
4745 break;
4748 write_fp_sreg(s, rd, tcg_res);
4750 tcg_temp_free_ptr(fpst);
4751 tcg_temp_free_i32(tcg_op1);
4752 tcg_temp_free_i32(tcg_op2);
4753 tcg_temp_free_i32(tcg_res);
4756 /* C3.6.26 Floating-point data-processing (2 source) - double precision */
4757 static void handle_fp_2src_double(DisasContext *s, int opcode,
4758 int rd, int rn, int rm)
4760 TCGv_i64 tcg_op1;
4761 TCGv_i64 tcg_op2;
4762 TCGv_i64 tcg_res;
4763 TCGv_ptr fpst;
4765 tcg_res = tcg_temp_new_i64();
4766 fpst = get_fpstatus_ptr();
4767 tcg_op1 = read_fp_dreg(s, rn);
4768 tcg_op2 = read_fp_dreg(s, rm);
4770 switch (opcode) {
4771 case 0x0: /* FMUL */
4772 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
4773 break;
4774 case 0x1: /* FDIV */
4775 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
4776 break;
4777 case 0x2: /* FADD */
4778 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
4779 break;
4780 case 0x3: /* FSUB */
4781 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
4782 break;
4783 case 0x4: /* FMAX */
4784 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
4785 break;
4786 case 0x5: /* FMIN */
4787 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
4788 break;
4789 case 0x6: /* FMAXNM */
4790 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
4791 break;
4792 case 0x7: /* FMINNM */
4793 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
4794 break;
4795 case 0x8: /* FNMUL */
4796 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
4797 gen_helper_vfp_negd(tcg_res, tcg_res);
4798 break;
4801 write_fp_dreg(s, rd, tcg_res);
4803 tcg_temp_free_ptr(fpst);
4804 tcg_temp_free_i64(tcg_op1);
4805 tcg_temp_free_i64(tcg_op2);
4806 tcg_temp_free_i64(tcg_res);
4809 /* C3.6.26 Floating point data-processing (2 source)
4810 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
4811 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
4812 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd |
4813 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
4815 static void disas_fp_2src(DisasContext *s, uint32_t insn)
4817 int type = extract32(insn, 22, 2);
4818 int rd = extract32(insn, 0, 5);
4819 int rn = extract32(insn, 5, 5);
4820 int rm = extract32(insn, 16, 5);
4821 int opcode = extract32(insn, 12, 4);
4823 if (opcode > 8) {
4824 unallocated_encoding(s);
4825 return;
4828 switch (type) {
4829 case 0:
4830 if (!fp_access_check(s)) {
4831 return;
4833 handle_fp_2src_single(s, opcode, rd, rn, rm);
4834 break;
4835 case 1:
4836 if (!fp_access_check(s)) {
4837 return;
4839 handle_fp_2src_double(s, opcode, rd, rn, rm);
4840 break;
4841 default:
4842 unallocated_encoding(s);
4846 /* C3.6.27 Floating-point data-processing (3 source) - single precision */
4847 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
4848 int rd, int rn, int rm, int ra)
4850 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
4851 TCGv_i32 tcg_res = tcg_temp_new_i32();
4852 TCGv_ptr fpst = get_fpstatus_ptr();
4854 tcg_op1 = read_fp_sreg(s, rn);
4855 tcg_op2 = read_fp_sreg(s, rm);
4856 tcg_op3 = read_fp_sreg(s, ra);
4858 /* These are fused multiply-add, and must be done as one
4859 * floating point operation with no rounding between the
4860 * multiplication and addition steps.
4861 * NB that doing the negations here as separate steps is
4862 * correct : an input NaN should come out with its sign bit
4863 * flipped if it is a negated-input.
4865 if (o1 == true) {
4866 gen_helper_vfp_negs(tcg_op3, tcg_op3);
4869 if (o0 != o1) {
4870 gen_helper_vfp_negs(tcg_op1, tcg_op1);
4873 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
4875 write_fp_sreg(s, rd, tcg_res);
4877 tcg_temp_free_ptr(fpst);
4878 tcg_temp_free_i32(tcg_op1);
4879 tcg_temp_free_i32(tcg_op2);
4880 tcg_temp_free_i32(tcg_op3);
4881 tcg_temp_free_i32(tcg_res);
4884 /* C3.6.27 Floating-point data-processing (3 source) - double precision */
4885 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
4886 int rd, int rn, int rm, int ra)
4888 TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
4889 TCGv_i64 tcg_res = tcg_temp_new_i64();
4890 TCGv_ptr fpst = get_fpstatus_ptr();
4892 tcg_op1 = read_fp_dreg(s, rn);
4893 tcg_op2 = read_fp_dreg(s, rm);
4894 tcg_op3 = read_fp_dreg(s, ra);
4896 /* These are fused multiply-add, and must be done as one
4897 * floating point operation with no rounding between the
4898 * multiplication and addition steps.
4899 * NB that doing the negations here as separate steps is
4900 * correct : an input NaN should come out with its sign bit
4901 * flipped if it is a negated-input.
4903 if (o1 == true) {
4904 gen_helper_vfp_negd(tcg_op3, tcg_op3);
4907 if (o0 != o1) {
4908 gen_helper_vfp_negd(tcg_op1, tcg_op1);
4911 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
4913 write_fp_dreg(s, rd, tcg_res);
4915 tcg_temp_free_ptr(fpst);
4916 tcg_temp_free_i64(tcg_op1);
4917 tcg_temp_free_i64(tcg_op2);
4918 tcg_temp_free_i64(tcg_op3);
4919 tcg_temp_free_i64(tcg_res);
4922 /* C3.6.27 Floating point data-processing (3 source)
4923 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0
4924 * +---+---+---+-----------+------+----+------+----+------+------+------+
4925 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd |
4926 * +---+---+---+-----------+------+----+------+----+------+------+------+
4928 static void disas_fp_3src(DisasContext *s, uint32_t insn)
4930 int type = extract32(insn, 22, 2);
4931 int rd = extract32(insn, 0, 5);
4932 int rn = extract32(insn, 5, 5);
4933 int ra = extract32(insn, 10, 5);
4934 int rm = extract32(insn, 16, 5);
4935 bool o0 = extract32(insn, 15, 1);
4936 bool o1 = extract32(insn, 21, 1);
4938 switch (type) {
4939 case 0:
4940 if (!fp_access_check(s)) {
4941 return;
4943 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
4944 break;
4945 case 1:
4946 if (!fp_access_check(s)) {
4947 return;
4949 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
4950 break;
4951 default:
4952 unallocated_encoding(s);
4956 /* C3.6.28 Floating point immediate
4957 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
4958 * +---+---+---+-----------+------+---+------------+-------+------+------+
4959 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
4960 * +---+---+---+-----------+------+---+------------+-------+------+------+
4962 static void disas_fp_imm(DisasContext *s, uint32_t insn)
4964 int rd = extract32(insn, 0, 5);
4965 int imm8 = extract32(insn, 13, 8);
4966 int is_double = extract32(insn, 22, 2);
4967 uint64_t imm;
4968 TCGv_i64 tcg_res;
4970 if (is_double > 1) {
4971 unallocated_encoding(s);
4972 return;
4975 if (!fp_access_check(s)) {
4976 return;
4979 /* The imm8 encodes the sign bit, enough bits to represent
4980 * an exponent in the range 01....1xx to 10....0xx,
4981 * and the most significant 4 bits of the mantissa; see
4982 * VFPExpandImm() in the v8 ARM ARM.
4984 if (is_double) {
4985 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
4986 (extract32(imm8, 6, 1) ? 0x3fc0 : 0x4000) |
4987 extract32(imm8, 0, 6);
4988 imm <<= 48;
4989 } else {
4990 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
4991 (extract32(imm8, 6, 1) ? 0x3e00 : 0x4000) |
4992 (extract32(imm8, 0, 6) << 3);
4993 imm <<= 16;
4996 tcg_res = tcg_const_i64(imm);
4997 write_fp_dreg(s, rd, tcg_res);
4998 tcg_temp_free_i64(tcg_res);
5001 /* Handle floating point <=> fixed point conversions. Note that we can
5002 * also deal with fp <=> integer conversions as a special case (scale == 64)
5003 * OPTME: consider handling that special case specially or at least skipping
5004 * the call to scalbn in the helpers for zero shifts.
5006 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
5007 bool itof, int rmode, int scale, int sf, int type)
5009 bool is_signed = !(opcode & 1);
5010 bool is_double = type;
5011 TCGv_ptr tcg_fpstatus;
5012 TCGv_i32 tcg_shift;
5014 tcg_fpstatus = get_fpstatus_ptr();
5016 tcg_shift = tcg_const_i32(64 - scale);
5018 if (itof) {
5019 TCGv_i64 tcg_int = cpu_reg(s, rn);
5020 if (!sf) {
5021 TCGv_i64 tcg_extend = new_tmp_a64(s);
5023 if (is_signed) {
5024 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
5025 } else {
5026 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
5029 tcg_int = tcg_extend;
5032 if (is_double) {
5033 TCGv_i64 tcg_double = tcg_temp_new_i64();
5034 if (is_signed) {
5035 gen_helper_vfp_sqtod(tcg_double, tcg_int,
5036 tcg_shift, tcg_fpstatus);
5037 } else {
5038 gen_helper_vfp_uqtod(tcg_double, tcg_int,
5039 tcg_shift, tcg_fpstatus);
5041 write_fp_dreg(s, rd, tcg_double);
5042 tcg_temp_free_i64(tcg_double);
5043 } else {
5044 TCGv_i32 tcg_single = tcg_temp_new_i32();
5045 if (is_signed) {
5046 gen_helper_vfp_sqtos(tcg_single, tcg_int,
5047 tcg_shift, tcg_fpstatus);
5048 } else {
5049 gen_helper_vfp_uqtos(tcg_single, tcg_int,
5050 tcg_shift, tcg_fpstatus);
5052 write_fp_sreg(s, rd, tcg_single);
5053 tcg_temp_free_i32(tcg_single);
5055 } else {
5056 TCGv_i64 tcg_int = cpu_reg(s, rd);
5057 TCGv_i32 tcg_rmode;
5059 if (extract32(opcode, 2, 1)) {
5060 /* There are too many rounding modes to all fit into rmode,
5061 * so FCVTA[US] is a special case.
5063 rmode = FPROUNDING_TIEAWAY;
5066 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
5068 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
5070 if (is_double) {
5071 TCGv_i64 tcg_double = read_fp_dreg(s, rn);
5072 if (is_signed) {
5073 if (!sf) {
5074 gen_helper_vfp_tosld(tcg_int, tcg_double,
5075 tcg_shift, tcg_fpstatus);
5076 } else {
5077 gen_helper_vfp_tosqd(tcg_int, tcg_double,
5078 tcg_shift, tcg_fpstatus);
5080 } else {
5081 if (!sf) {
5082 gen_helper_vfp_tould(tcg_int, tcg_double,
5083 tcg_shift, tcg_fpstatus);
5084 } else {
5085 gen_helper_vfp_touqd(tcg_int, tcg_double,
5086 tcg_shift, tcg_fpstatus);
5089 tcg_temp_free_i64(tcg_double);
5090 } else {
5091 TCGv_i32 tcg_single = read_fp_sreg(s, rn);
5092 if (sf) {
5093 if (is_signed) {
5094 gen_helper_vfp_tosqs(tcg_int, tcg_single,
5095 tcg_shift, tcg_fpstatus);
5096 } else {
5097 gen_helper_vfp_touqs(tcg_int, tcg_single,
5098 tcg_shift, tcg_fpstatus);
5100 } else {
5101 TCGv_i32 tcg_dest = tcg_temp_new_i32();
5102 if (is_signed) {
5103 gen_helper_vfp_tosls(tcg_dest, tcg_single,
5104 tcg_shift, tcg_fpstatus);
5105 } else {
5106 gen_helper_vfp_touls(tcg_dest, tcg_single,
5107 tcg_shift, tcg_fpstatus);
5109 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
5110 tcg_temp_free_i32(tcg_dest);
5112 tcg_temp_free_i32(tcg_single);
5115 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
5116 tcg_temp_free_i32(tcg_rmode);
5118 if (!sf) {
5119 tcg_gen_ext32u_i64(tcg_int, tcg_int);
5123 tcg_temp_free_ptr(tcg_fpstatus);
5124 tcg_temp_free_i32(tcg_shift);
5127 /* C3.6.29 Floating point <-> fixed point conversions
5128 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
5129 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
5130 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
5131 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
5133 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
5135 int rd = extract32(insn, 0, 5);
5136 int rn = extract32(insn, 5, 5);
5137 int scale = extract32(insn, 10, 6);
5138 int opcode = extract32(insn, 16, 3);
5139 int rmode = extract32(insn, 19, 2);
5140 int type = extract32(insn, 22, 2);
5141 bool sbit = extract32(insn, 29, 1);
5142 bool sf = extract32(insn, 31, 1);
5143 bool itof;
5145 if (sbit || (type > 1)
5146 || (!sf && scale < 32)) {
5147 unallocated_encoding(s);
5148 return;
5151 switch ((rmode << 3) | opcode) {
5152 case 0x2: /* SCVTF */
5153 case 0x3: /* UCVTF */
5154 itof = true;
5155 break;
5156 case 0x18: /* FCVTZS */
5157 case 0x19: /* FCVTZU */
5158 itof = false;
5159 break;
5160 default:
5161 unallocated_encoding(s);
5162 return;
5165 if (!fp_access_check(s)) {
5166 return;
5169 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
5172 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
5174 /* FMOV: gpr to or from float, double, or top half of quad fp reg,
5175 * without conversion.
5178 if (itof) {
5179 TCGv_i64 tcg_rn = cpu_reg(s, rn);
5181 switch (type) {
5182 case 0:
5184 /* 32 bit */
5185 TCGv_i64 tmp = tcg_temp_new_i64();
5186 tcg_gen_ext32u_i64(tmp, tcg_rn);
5187 tcg_gen_st_i64(tmp, cpu_env, fp_reg_offset(s, rd, MO_64));
5188 tcg_gen_movi_i64(tmp, 0);
5189 tcg_gen_st_i64(tmp, cpu_env, fp_reg_hi_offset(s, rd));
5190 tcg_temp_free_i64(tmp);
5191 break;
5193 case 1:
5195 /* 64 bit */
5196 TCGv_i64 tmp = tcg_const_i64(0);
5197 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_offset(s, rd, MO_64));
5198 tcg_gen_st_i64(tmp, cpu_env, fp_reg_hi_offset(s, rd));
5199 tcg_temp_free_i64(tmp);
5200 break;
5202 case 2:
5203 /* 64 bit to top half. */
5204 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd));
5205 break;
5207 } else {
5208 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5210 switch (type) {
5211 case 0:
5212 /* 32 bit */
5213 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32));
5214 break;
5215 case 1:
5216 /* 64 bit */
5217 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64));
5218 break;
5219 case 2:
5220 /* 64 bits from top half */
5221 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn));
5222 break;
5227 /* C3.6.30 Floating point <-> integer conversions
5228 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
5229 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
5230 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
5231 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
5233 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
5235 int rd = extract32(insn, 0, 5);
5236 int rn = extract32(insn, 5, 5);
5237 int opcode = extract32(insn, 16, 3);
5238 int rmode = extract32(insn, 19, 2);
5239 int type = extract32(insn, 22, 2);
5240 bool sbit = extract32(insn, 29, 1);
5241 bool sf = extract32(insn, 31, 1);
5243 if (sbit) {
5244 unallocated_encoding(s);
5245 return;
5248 if (opcode > 5) {
5249 /* FMOV */
5250 bool itof = opcode & 1;
5252 if (rmode >= 2) {
5253 unallocated_encoding(s);
5254 return;
5257 switch (sf << 3 | type << 1 | rmode) {
5258 case 0x0: /* 32 bit */
5259 case 0xa: /* 64 bit */
5260 case 0xd: /* 64 bit to top half of quad */
5261 break;
5262 default:
5263 /* all other sf/type/rmode combinations are invalid */
5264 unallocated_encoding(s);
5265 break;
5268 if (!fp_access_check(s)) {
5269 return;
5271 handle_fmov(s, rd, rn, type, itof);
5272 } else {
5273 /* actual FP conversions */
5274 bool itof = extract32(opcode, 1, 1);
5276 if (type > 1 || (rmode != 0 && opcode > 1)) {
5277 unallocated_encoding(s);
5278 return;
5281 if (!fp_access_check(s)) {
5282 return;
5284 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
5288 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
5289 * 31 30 29 28 25 24 0
5290 * +---+---+---+---------+-----------------------------+
5291 * | | 0 | | 1 1 1 1 | |
5292 * +---+---+---+---------+-----------------------------+
5294 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
5296 if (extract32(insn, 24, 1)) {
5297 /* Floating point data-processing (3 source) */
5298 disas_fp_3src(s, insn);
5299 } else if (extract32(insn, 21, 1) == 0) {
5300 /* Floating point to fixed point conversions */
5301 disas_fp_fixed_conv(s, insn);
5302 } else {
5303 switch (extract32(insn, 10, 2)) {
5304 case 1:
5305 /* Floating point conditional compare */
5306 disas_fp_ccomp(s, insn);
5307 break;
5308 case 2:
5309 /* Floating point data-processing (2 source) */
5310 disas_fp_2src(s, insn);
5311 break;
5312 case 3:
5313 /* Floating point conditional select */
5314 disas_fp_csel(s, insn);
5315 break;
5316 case 0:
5317 switch (ctz32(extract32(insn, 12, 4))) {
5318 case 0: /* [15:12] == xxx1 */
5319 /* Floating point immediate */
5320 disas_fp_imm(s, insn);
5321 break;
5322 case 1: /* [15:12] == xx10 */
5323 /* Floating point compare */
5324 disas_fp_compare(s, insn);
5325 break;
5326 case 2: /* [15:12] == x100 */
5327 /* Floating point data-processing (1 source) */
5328 disas_fp_1src(s, insn);
5329 break;
5330 case 3: /* [15:12] == 1000 */
5331 unallocated_encoding(s);
5332 break;
5333 default: /* [15:12] == 0000 */
5334 /* Floating point <-> integer conversions */
5335 disas_fp_int_conv(s, insn);
5336 break;
5338 break;
5343 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
5344 int pos)
5346 /* Extract 64 bits from the middle of two concatenated 64 bit
5347 * vector register slices left:right. The extracted bits start
5348 * at 'pos' bits into the right (least significant) side.
5349 * We return the result in tcg_right, and guarantee not to
5350 * trash tcg_left.
5352 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
5353 assert(pos > 0 && pos < 64);
5355 tcg_gen_shri_i64(tcg_right, tcg_right, pos);
5356 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
5357 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
5359 tcg_temp_free_i64(tcg_tmp);
5362 /* C3.6.1 EXT
5363 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
5364 * +---+---+-------------+-----+---+------+---+------+---+------+------+
5365 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
5366 * +---+---+-------------+-----+---+------+---+------+---+------+------+
5368 static void disas_simd_ext(DisasContext *s, uint32_t insn)
5370 int is_q = extract32(insn, 30, 1);
5371 int op2 = extract32(insn, 22, 2);
5372 int imm4 = extract32(insn, 11, 4);
5373 int rm = extract32(insn, 16, 5);
5374 int rn = extract32(insn, 5, 5);
5375 int rd = extract32(insn, 0, 5);
5376 int pos = imm4 << 3;
5377 TCGv_i64 tcg_resl, tcg_resh;
5379 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
5380 unallocated_encoding(s);
5381 return;
5384 if (!fp_access_check(s)) {
5385 return;
5388 tcg_resh = tcg_temp_new_i64();
5389 tcg_resl = tcg_temp_new_i64();
5391 /* Vd gets bits starting at pos bits into Vm:Vn. This is
5392 * either extracting 128 bits from a 128:128 concatenation, or
5393 * extracting 64 bits from a 64:64 concatenation.
5395 if (!is_q) {
5396 read_vec_element(s, tcg_resl, rn, 0, MO_64);
5397 if (pos != 0) {
5398 read_vec_element(s, tcg_resh, rm, 0, MO_64);
5399 do_ext64(s, tcg_resh, tcg_resl, pos);
5401 tcg_gen_movi_i64(tcg_resh, 0);
5402 } else {
5403 TCGv_i64 tcg_hh;
5404 typedef struct {
5405 int reg;
5406 int elt;
5407 } EltPosns;
5408 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
5409 EltPosns *elt = eltposns;
5411 if (pos >= 64) {
5412 elt++;
5413 pos -= 64;
5416 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
5417 elt++;
5418 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
5419 elt++;
5420 if (pos != 0) {
5421 do_ext64(s, tcg_resh, tcg_resl, pos);
5422 tcg_hh = tcg_temp_new_i64();
5423 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
5424 do_ext64(s, tcg_hh, tcg_resh, pos);
5425 tcg_temp_free_i64(tcg_hh);
5429 write_vec_element(s, tcg_resl, rd, 0, MO_64);
5430 tcg_temp_free_i64(tcg_resl);
5431 write_vec_element(s, tcg_resh, rd, 1, MO_64);
5432 tcg_temp_free_i64(tcg_resh);
5435 /* C3.6.2 TBL/TBX
5436 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
5437 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
5438 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
5439 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
5441 static void disas_simd_tb(DisasContext *s, uint32_t insn)
5443 int op2 = extract32(insn, 22, 2);
5444 int is_q = extract32(insn, 30, 1);
5445 int rm = extract32(insn, 16, 5);
5446 int rn = extract32(insn, 5, 5);
5447 int rd = extract32(insn, 0, 5);
5448 int is_tblx = extract32(insn, 12, 1);
5449 int len = extract32(insn, 13, 2);
5450 TCGv_i64 tcg_resl, tcg_resh, tcg_idx;
5451 TCGv_i32 tcg_regno, tcg_numregs;
5453 if (op2 != 0) {
5454 unallocated_encoding(s);
5455 return;
5458 if (!fp_access_check(s)) {
5459 return;
5462 /* This does a table lookup: for every byte element in the input
5463 * we index into a table formed from up to four vector registers,
5464 * and then the output is the result of the lookups. Our helper
5465 * function does the lookup operation for a single 64 bit part of
5466 * the input.
5468 tcg_resl = tcg_temp_new_i64();
5469 tcg_resh = tcg_temp_new_i64();
5471 if (is_tblx) {
5472 read_vec_element(s, tcg_resl, rd, 0, MO_64);
5473 } else {
5474 tcg_gen_movi_i64(tcg_resl, 0);
5476 if (is_tblx && is_q) {
5477 read_vec_element(s, tcg_resh, rd, 1, MO_64);
5478 } else {
5479 tcg_gen_movi_i64(tcg_resh, 0);
5482 tcg_idx = tcg_temp_new_i64();
5483 tcg_regno = tcg_const_i32(rn);
5484 tcg_numregs = tcg_const_i32(len + 1);
5485 read_vec_element(s, tcg_idx, rm, 0, MO_64);
5486 gen_helper_simd_tbl(tcg_resl, cpu_env, tcg_resl, tcg_idx,
5487 tcg_regno, tcg_numregs);
5488 if (is_q) {
5489 read_vec_element(s, tcg_idx, rm, 1, MO_64);
5490 gen_helper_simd_tbl(tcg_resh, cpu_env, tcg_resh, tcg_idx,
5491 tcg_regno, tcg_numregs);
5493 tcg_temp_free_i64(tcg_idx);
5494 tcg_temp_free_i32(tcg_regno);
5495 tcg_temp_free_i32(tcg_numregs);
5497 write_vec_element(s, tcg_resl, rd, 0, MO_64);
5498 tcg_temp_free_i64(tcg_resl);
5499 write_vec_element(s, tcg_resh, rd, 1, MO_64);
5500 tcg_temp_free_i64(tcg_resh);
5503 /* C3.6.3 ZIP/UZP/TRN
5504 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
5505 * +---+---+-------------+------+---+------+---+------------------+------+
5506 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
5507 * +---+---+-------------+------+---+------+---+------------------+------+
5509 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
5511 int rd = extract32(insn, 0, 5);
5512 int rn = extract32(insn, 5, 5);
5513 int rm = extract32(insn, 16, 5);
5514 int size = extract32(insn, 22, 2);
5515 /* opc field bits [1:0] indicate ZIP/UZP/TRN;
5516 * bit 2 indicates 1 vs 2 variant of the insn.
5518 int opcode = extract32(insn, 12, 2);
5519 bool part = extract32(insn, 14, 1);
5520 bool is_q = extract32(insn, 30, 1);
5521 int esize = 8 << size;
5522 int i, ofs;
5523 int datasize = is_q ? 128 : 64;
5524 int elements = datasize / esize;
5525 TCGv_i64 tcg_res, tcg_resl, tcg_resh;
5527 if (opcode == 0 || (size == 3 && !is_q)) {
5528 unallocated_encoding(s);
5529 return;
5532 if (!fp_access_check(s)) {
5533 return;
5536 tcg_resl = tcg_const_i64(0);
5537 tcg_resh = tcg_const_i64(0);
5538 tcg_res = tcg_temp_new_i64();
5540 for (i = 0; i < elements; i++) {
5541 switch (opcode) {
5542 case 1: /* UZP1/2 */
5544 int midpoint = elements / 2;
5545 if (i < midpoint) {
5546 read_vec_element(s, tcg_res, rn, 2 * i + part, size);
5547 } else {
5548 read_vec_element(s, tcg_res, rm,
5549 2 * (i - midpoint) + part, size);
5551 break;
5553 case 2: /* TRN1/2 */
5554 if (i & 1) {
5555 read_vec_element(s, tcg_res, rm, (i & ~1) + part, size);
5556 } else {
5557 read_vec_element(s, tcg_res, rn, (i & ~1) + part, size);
5559 break;
5560 case 3: /* ZIP1/2 */
5562 int base = part * elements / 2;
5563 if (i & 1) {
5564 read_vec_element(s, tcg_res, rm, base + (i >> 1), size);
5565 } else {
5566 read_vec_element(s, tcg_res, rn, base + (i >> 1), size);
5568 break;
5570 default:
5571 g_assert_not_reached();
5574 ofs = i * esize;
5575 if (ofs < 64) {
5576 tcg_gen_shli_i64(tcg_res, tcg_res, ofs);
5577 tcg_gen_or_i64(tcg_resl, tcg_resl, tcg_res);
5578 } else {
5579 tcg_gen_shli_i64(tcg_res, tcg_res, ofs - 64);
5580 tcg_gen_or_i64(tcg_resh, tcg_resh, tcg_res);
5584 tcg_temp_free_i64(tcg_res);
5586 write_vec_element(s, tcg_resl, rd, 0, MO_64);
5587 tcg_temp_free_i64(tcg_resl);
5588 write_vec_element(s, tcg_resh, rd, 1, MO_64);
5589 tcg_temp_free_i64(tcg_resh);
5592 static void do_minmaxop(DisasContext *s, TCGv_i32 tcg_elt1, TCGv_i32 tcg_elt2,
5593 int opc, bool is_min, TCGv_ptr fpst)
5595 /* Helper function for disas_simd_across_lanes: do a single precision
5596 * min/max operation on the specified two inputs,
5597 * and return the result in tcg_elt1.
5599 if (opc == 0xc) {
5600 if (is_min) {
5601 gen_helper_vfp_minnums(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
5602 } else {
5603 gen_helper_vfp_maxnums(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
5605 } else {
5606 assert(opc == 0xf);
5607 if (is_min) {
5608 gen_helper_vfp_mins(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
5609 } else {
5610 gen_helper_vfp_maxs(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
5615 /* C3.6.4 AdvSIMD across lanes
5616 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
5617 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
5618 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
5619 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
5621 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
5623 int rd = extract32(insn, 0, 5);
5624 int rn = extract32(insn, 5, 5);
5625 int size = extract32(insn, 22, 2);
5626 int opcode = extract32(insn, 12, 5);
5627 bool is_q = extract32(insn, 30, 1);
5628 bool is_u = extract32(insn, 29, 1);
5629 bool is_fp = false;
5630 bool is_min = false;
5631 int esize;
5632 int elements;
5633 int i;
5634 TCGv_i64 tcg_res, tcg_elt;
5636 switch (opcode) {
5637 case 0x1b: /* ADDV */
5638 if (is_u) {
5639 unallocated_encoding(s);
5640 return;
5642 /* fall through */
5643 case 0x3: /* SADDLV, UADDLV */
5644 case 0xa: /* SMAXV, UMAXV */
5645 case 0x1a: /* SMINV, UMINV */
5646 if (size == 3 || (size == 2 && !is_q)) {
5647 unallocated_encoding(s);
5648 return;
5650 break;
5651 case 0xc: /* FMAXNMV, FMINNMV */
5652 case 0xf: /* FMAXV, FMINV */
5653 if (!is_u || !is_q || extract32(size, 0, 1)) {
5654 unallocated_encoding(s);
5655 return;
5657 /* Bit 1 of size field encodes min vs max, and actual size is always
5658 * 32 bits: adjust the size variable so following code can rely on it
5660 is_min = extract32(size, 1, 1);
5661 is_fp = true;
5662 size = 2;
5663 break;
5664 default:
5665 unallocated_encoding(s);
5666 return;
5669 if (!fp_access_check(s)) {
5670 return;
5673 esize = 8 << size;
5674 elements = (is_q ? 128 : 64) / esize;
5676 tcg_res = tcg_temp_new_i64();
5677 tcg_elt = tcg_temp_new_i64();
5679 /* These instructions operate across all lanes of a vector
5680 * to produce a single result. We can guarantee that a 64
5681 * bit intermediate is sufficient:
5682 * + for [US]ADDLV the maximum element size is 32 bits, and
5683 * the result type is 64 bits
5684 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the
5685 * same as the element size, which is 32 bits at most
5686 * For the integer operations we can choose to work at 64
5687 * or 32 bits and truncate at the end; for simplicity
5688 * we use 64 bits always. The floating point
5689 * ops do require 32 bit intermediates, though.
5691 if (!is_fp) {
5692 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
5694 for (i = 1; i < elements; i++) {
5695 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
5697 switch (opcode) {
5698 case 0x03: /* SADDLV / UADDLV */
5699 case 0x1b: /* ADDV */
5700 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
5701 break;
5702 case 0x0a: /* SMAXV / UMAXV */
5703 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
5704 tcg_res,
5705 tcg_res, tcg_elt, tcg_res, tcg_elt);
5706 break;
5707 case 0x1a: /* SMINV / UMINV */
5708 tcg_gen_movcond_i64(is_u ? TCG_COND_LEU : TCG_COND_LE,
5709 tcg_res,
5710 tcg_res, tcg_elt, tcg_res, tcg_elt);
5711 break;
5712 break;
5713 default:
5714 g_assert_not_reached();
5718 } else {
5719 /* Floating point ops which work on 32 bit (single) intermediates.
5720 * Note that correct NaN propagation requires that we do these
5721 * operations in exactly the order specified by the pseudocode.
5723 TCGv_i32 tcg_elt1 = tcg_temp_new_i32();
5724 TCGv_i32 tcg_elt2 = tcg_temp_new_i32();
5725 TCGv_i32 tcg_elt3 = tcg_temp_new_i32();
5726 TCGv_ptr fpst = get_fpstatus_ptr();
5728 assert(esize == 32);
5729 assert(elements == 4);
5731 read_vec_element(s, tcg_elt, rn, 0, MO_32);
5732 tcg_gen_extrl_i64_i32(tcg_elt1, tcg_elt);
5733 read_vec_element(s, tcg_elt, rn, 1, MO_32);
5734 tcg_gen_extrl_i64_i32(tcg_elt2, tcg_elt);
5736 do_minmaxop(s, tcg_elt1, tcg_elt2, opcode, is_min, fpst);
5738 read_vec_element(s, tcg_elt, rn, 2, MO_32);
5739 tcg_gen_extrl_i64_i32(tcg_elt2, tcg_elt);
5740 read_vec_element(s, tcg_elt, rn, 3, MO_32);
5741 tcg_gen_extrl_i64_i32(tcg_elt3, tcg_elt);
5743 do_minmaxop(s, tcg_elt2, tcg_elt3, opcode, is_min, fpst);
5745 do_minmaxop(s, tcg_elt1, tcg_elt2, opcode, is_min, fpst);
5747 tcg_gen_extu_i32_i64(tcg_res, tcg_elt1);
5748 tcg_temp_free_i32(tcg_elt1);
5749 tcg_temp_free_i32(tcg_elt2);
5750 tcg_temp_free_i32(tcg_elt3);
5751 tcg_temp_free_ptr(fpst);
5754 tcg_temp_free_i64(tcg_elt);
5756 /* Now truncate the result to the width required for the final output */
5757 if (opcode == 0x03) {
5758 /* SADDLV, UADDLV: result is 2*esize */
5759 size++;
5762 switch (size) {
5763 case 0:
5764 tcg_gen_ext8u_i64(tcg_res, tcg_res);
5765 break;
5766 case 1:
5767 tcg_gen_ext16u_i64(tcg_res, tcg_res);
5768 break;
5769 case 2:
5770 tcg_gen_ext32u_i64(tcg_res, tcg_res);
5771 break;
5772 case 3:
5773 break;
5774 default:
5775 g_assert_not_reached();
5778 write_fp_dreg(s, rd, tcg_res);
5779 tcg_temp_free_i64(tcg_res);
5782 /* C6.3.31 DUP (Element, Vector)
5784 * 31 30 29 21 20 16 15 10 9 5 4 0
5785 * +---+---+-------------------+--------+-------------+------+------+
5786 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
5787 * +---+---+-------------------+--------+-------------+------+------+
5789 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5791 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
5792 int imm5)
5794 int size = ctz32(imm5);
5795 int esize = 8 << size;
5796 int elements = (is_q ? 128 : 64) / esize;
5797 int index, i;
5798 TCGv_i64 tmp;
5800 if (size > 3 || (size == 3 && !is_q)) {
5801 unallocated_encoding(s);
5802 return;
5805 if (!fp_access_check(s)) {
5806 return;
5809 index = imm5 >> (size + 1);
5811 tmp = tcg_temp_new_i64();
5812 read_vec_element(s, tmp, rn, index, size);
5814 for (i = 0; i < elements; i++) {
5815 write_vec_element(s, tmp, rd, i, size);
5818 if (!is_q) {
5819 clear_vec_high(s, rd);
5822 tcg_temp_free_i64(tmp);
5825 /* C6.3.31 DUP (element, scalar)
5826 * 31 21 20 16 15 10 9 5 4 0
5827 * +-----------------------+--------+-------------+------+------+
5828 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
5829 * +-----------------------+--------+-------------+------+------+
5831 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
5832 int imm5)
5834 int size = ctz32(imm5);
5835 int index;
5836 TCGv_i64 tmp;
5838 if (size > 3) {
5839 unallocated_encoding(s);
5840 return;
5843 if (!fp_access_check(s)) {
5844 return;
5847 index = imm5 >> (size + 1);
5849 /* This instruction just extracts the specified element and
5850 * zero-extends it into the bottom of the destination register.
5852 tmp = tcg_temp_new_i64();
5853 read_vec_element(s, tmp, rn, index, size);
5854 write_fp_dreg(s, rd, tmp);
5855 tcg_temp_free_i64(tmp);
5858 /* C6.3.32 DUP (General)
5860 * 31 30 29 21 20 16 15 10 9 5 4 0
5861 * +---+---+-------------------+--------+-------------+------+------+
5862 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd |
5863 * +---+---+-------------------+--------+-------------+------+------+
5865 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5867 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
5868 int imm5)
5870 int size = ctz32(imm5);
5871 int esize = 8 << size;
5872 int elements = (is_q ? 128 : 64)/esize;
5873 int i = 0;
5875 if (size > 3 || ((size == 3) && !is_q)) {
5876 unallocated_encoding(s);
5877 return;
5880 if (!fp_access_check(s)) {
5881 return;
5884 for (i = 0; i < elements; i++) {
5885 write_vec_element(s, cpu_reg(s, rn), rd, i, size);
5887 if (!is_q) {
5888 clear_vec_high(s, rd);
5892 /* C6.3.150 INS (Element)
5894 * 31 21 20 16 15 14 11 10 9 5 4 0
5895 * +-----------------------+--------+------------+---+------+------+
5896 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
5897 * +-----------------------+--------+------------+---+------+------+
5899 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5900 * index: encoded in imm5<4:size+1>
5902 static void handle_simd_inse(DisasContext *s, int rd, int rn,
5903 int imm4, int imm5)
5905 int size = ctz32(imm5);
5906 int src_index, dst_index;
5907 TCGv_i64 tmp;
5909 if (size > 3) {
5910 unallocated_encoding(s);
5911 return;
5914 if (!fp_access_check(s)) {
5915 return;
5918 dst_index = extract32(imm5, 1+size, 5);
5919 src_index = extract32(imm4, size, 4);
5921 tmp = tcg_temp_new_i64();
5923 read_vec_element(s, tmp, rn, src_index, size);
5924 write_vec_element(s, tmp, rd, dst_index, size);
5926 tcg_temp_free_i64(tmp);
5930 /* C6.3.151 INS (General)
5932 * 31 21 20 16 15 10 9 5 4 0
5933 * +-----------------------+--------+-------------+------+------+
5934 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd |
5935 * +-----------------------+--------+-------------+------+------+
5937 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5938 * index: encoded in imm5<4:size+1>
5940 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
5942 int size = ctz32(imm5);
5943 int idx;
5945 if (size > 3) {
5946 unallocated_encoding(s);
5947 return;
5950 if (!fp_access_check(s)) {
5951 return;
5954 idx = extract32(imm5, 1 + size, 4 - size);
5955 write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
5959 * C6.3.321 UMOV (General)
5960 * C6.3.237 SMOV (General)
5962 * 31 30 29 21 20 16 15 12 10 9 5 4 0
5963 * +---+---+-------------------+--------+-------------+------+------+
5964 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd |
5965 * +---+---+-------------------+--------+-------------+------+------+
5967 * U: unsigned when set
5968 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5970 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
5971 int rn, int rd, int imm5)
5973 int size = ctz32(imm5);
5974 int element;
5975 TCGv_i64 tcg_rd;
5977 /* Check for UnallocatedEncodings */
5978 if (is_signed) {
5979 if (size > 2 || (size == 2 && !is_q)) {
5980 unallocated_encoding(s);
5981 return;
5983 } else {
5984 if (size > 3
5985 || (size < 3 && is_q)
5986 || (size == 3 && !is_q)) {
5987 unallocated_encoding(s);
5988 return;
5992 if (!fp_access_check(s)) {
5993 return;
5996 element = extract32(imm5, 1+size, 4);
5998 tcg_rd = cpu_reg(s, rd);
5999 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
6000 if (is_signed && !is_q) {
6001 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6005 /* C3.6.5 AdvSIMD copy
6006 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
6007 * +---+---+----+-----------------+------+---+------+---+------+------+
6008 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
6009 * +---+---+----+-----------------+------+---+------+---+------+------+
6011 static void disas_simd_copy(DisasContext *s, uint32_t insn)
6013 int rd = extract32(insn, 0, 5);
6014 int rn = extract32(insn, 5, 5);
6015 int imm4 = extract32(insn, 11, 4);
6016 int op = extract32(insn, 29, 1);
6017 int is_q = extract32(insn, 30, 1);
6018 int imm5 = extract32(insn, 16, 5);
6020 if (op) {
6021 if (is_q) {
6022 /* INS (element) */
6023 handle_simd_inse(s, rd, rn, imm4, imm5);
6024 } else {
6025 unallocated_encoding(s);
6027 } else {
6028 switch (imm4) {
6029 case 0:
6030 /* DUP (element - vector) */
6031 handle_simd_dupe(s, is_q, rd, rn, imm5);
6032 break;
6033 case 1:
6034 /* DUP (general) */
6035 handle_simd_dupg(s, is_q, rd, rn, imm5);
6036 break;
6037 case 3:
6038 if (is_q) {
6039 /* INS (general) */
6040 handle_simd_insg(s, rd, rn, imm5);
6041 } else {
6042 unallocated_encoding(s);
6044 break;
6045 case 5:
6046 case 7:
6047 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
6048 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
6049 break;
6050 default:
6051 unallocated_encoding(s);
6052 break;
6057 /* C3.6.6 AdvSIMD modified immediate
6058 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
6059 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
6060 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
6061 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
6063 * There are a number of operations that can be carried out here:
6064 * MOVI - move (shifted) imm into register
6065 * MVNI - move inverted (shifted) imm into register
6066 * ORR - bitwise OR of (shifted) imm with register
6067 * BIC - bitwise clear of (shifted) imm with register
6069 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
6071 int rd = extract32(insn, 0, 5);
6072 int cmode = extract32(insn, 12, 4);
6073 int cmode_3_1 = extract32(cmode, 1, 3);
6074 int cmode_0 = extract32(cmode, 0, 1);
6075 int o2 = extract32(insn, 11, 1);
6076 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
6077 bool is_neg = extract32(insn, 29, 1);
6078 bool is_q = extract32(insn, 30, 1);
6079 uint64_t imm = 0;
6080 TCGv_i64 tcg_rd, tcg_imm;
6081 int i;
6083 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
6084 unallocated_encoding(s);
6085 return;
6088 if (!fp_access_check(s)) {
6089 return;
6092 /* See AdvSIMDExpandImm() in ARM ARM */
6093 switch (cmode_3_1) {
6094 case 0: /* Replicate(Zeros(24):imm8, 2) */
6095 case 1: /* Replicate(Zeros(16):imm8:Zeros(8), 2) */
6096 case 2: /* Replicate(Zeros(8):imm8:Zeros(16), 2) */
6097 case 3: /* Replicate(imm8:Zeros(24), 2) */
6099 int shift = cmode_3_1 * 8;
6100 imm = bitfield_replicate(abcdefgh << shift, 32);
6101 break;
6103 case 4: /* Replicate(Zeros(8):imm8, 4) */
6104 case 5: /* Replicate(imm8:Zeros(8), 4) */
6106 int shift = (cmode_3_1 & 0x1) * 8;
6107 imm = bitfield_replicate(abcdefgh << shift, 16);
6108 break;
6110 case 6:
6111 if (cmode_0) {
6112 /* Replicate(Zeros(8):imm8:Ones(16), 2) */
6113 imm = (abcdefgh << 16) | 0xffff;
6114 } else {
6115 /* Replicate(Zeros(16):imm8:Ones(8), 2) */
6116 imm = (abcdefgh << 8) | 0xff;
6118 imm = bitfield_replicate(imm, 32);
6119 break;
6120 case 7:
6121 if (!cmode_0 && !is_neg) {
6122 imm = bitfield_replicate(abcdefgh, 8);
6123 } else if (!cmode_0 && is_neg) {
6124 int i;
6125 imm = 0;
6126 for (i = 0; i < 8; i++) {
6127 if ((abcdefgh) & (1 << i)) {
6128 imm |= 0xffULL << (i * 8);
6131 } else if (cmode_0) {
6132 if (is_neg) {
6133 imm = (abcdefgh & 0x3f) << 48;
6134 if (abcdefgh & 0x80) {
6135 imm |= 0x8000000000000000ULL;
6137 if (abcdefgh & 0x40) {
6138 imm |= 0x3fc0000000000000ULL;
6139 } else {
6140 imm |= 0x4000000000000000ULL;
6142 } else {
6143 imm = (abcdefgh & 0x3f) << 19;
6144 if (abcdefgh & 0x80) {
6145 imm |= 0x80000000;
6147 if (abcdefgh & 0x40) {
6148 imm |= 0x3e000000;
6149 } else {
6150 imm |= 0x40000000;
6152 imm |= (imm << 32);
6155 break;
6158 if (cmode_3_1 != 7 && is_neg) {
6159 imm = ~imm;
6162 tcg_imm = tcg_const_i64(imm);
6163 tcg_rd = new_tmp_a64(s);
6165 for (i = 0; i < 2; i++) {
6166 int foffs = i ? fp_reg_hi_offset(s, rd) : fp_reg_offset(s, rd, MO_64);
6168 if (i == 1 && !is_q) {
6169 /* non-quad ops clear high half of vector */
6170 tcg_gen_movi_i64(tcg_rd, 0);
6171 } else if ((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9) {
6172 tcg_gen_ld_i64(tcg_rd, cpu_env, foffs);
6173 if (is_neg) {
6174 /* AND (BIC) */
6175 tcg_gen_and_i64(tcg_rd, tcg_rd, tcg_imm);
6176 } else {
6177 /* ORR */
6178 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_imm);
6180 } else {
6181 /* MOVI */
6182 tcg_gen_mov_i64(tcg_rd, tcg_imm);
6184 tcg_gen_st_i64(tcg_rd, cpu_env, foffs);
6187 tcg_temp_free_i64(tcg_imm);
6190 /* C3.6.7 AdvSIMD scalar copy
6191 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
6192 * +-----+----+-----------------+------+---+------+---+------+------+
6193 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
6194 * +-----+----+-----------------+------+---+------+---+------+------+
6196 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
6198 int rd = extract32(insn, 0, 5);
6199 int rn = extract32(insn, 5, 5);
6200 int imm4 = extract32(insn, 11, 4);
6201 int imm5 = extract32(insn, 16, 5);
6202 int op = extract32(insn, 29, 1);
6204 if (op != 0 || imm4 != 0) {
6205 unallocated_encoding(s);
6206 return;
6209 /* DUP (element, scalar) */
6210 handle_simd_dupes(s, rd, rn, imm5);
6213 /* C3.6.8 AdvSIMD scalar pairwise
6214 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
6215 * +-----+---+-----------+------+-----------+--------+-----+------+------+
6216 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
6217 * +-----+---+-----------+------+-----------+--------+-----+------+------+
6219 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
6221 int u = extract32(insn, 29, 1);
6222 int size = extract32(insn, 22, 2);
6223 int opcode = extract32(insn, 12, 5);
6224 int rn = extract32(insn, 5, 5);
6225 int rd = extract32(insn, 0, 5);
6226 TCGv_ptr fpst;
6228 /* For some ops (the FP ones), size[1] is part of the encoding.
6229 * For ADDP strictly it is not but size[1] is always 1 for valid
6230 * encodings.
6232 opcode |= (extract32(size, 1, 1) << 5);
6234 switch (opcode) {
6235 case 0x3b: /* ADDP */
6236 if (u || size != 3) {
6237 unallocated_encoding(s);
6238 return;
6240 if (!fp_access_check(s)) {
6241 return;
6244 TCGV_UNUSED_PTR(fpst);
6245 break;
6246 case 0xc: /* FMAXNMP */
6247 case 0xd: /* FADDP */
6248 case 0xf: /* FMAXP */
6249 case 0x2c: /* FMINNMP */
6250 case 0x2f: /* FMINP */
6251 /* FP op, size[0] is 32 or 64 bit */
6252 if (!u) {
6253 unallocated_encoding(s);
6254 return;
6256 if (!fp_access_check(s)) {
6257 return;
6260 size = extract32(size, 0, 1) ? 3 : 2;
6261 fpst = get_fpstatus_ptr();
6262 break;
6263 default:
6264 unallocated_encoding(s);
6265 return;
6268 if (size == 3) {
6269 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
6270 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
6271 TCGv_i64 tcg_res = tcg_temp_new_i64();
6273 read_vec_element(s, tcg_op1, rn, 0, MO_64);
6274 read_vec_element(s, tcg_op2, rn, 1, MO_64);
6276 switch (opcode) {
6277 case 0x3b: /* ADDP */
6278 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
6279 break;
6280 case 0xc: /* FMAXNMP */
6281 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6282 break;
6283 case 0xd: /* FADDP */
6284 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
6285 break;
6286 case 0xf: /* FMAXP */
6287 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
6288 break;
6289 case 0x2c: /* FMINNMP */
6290 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6291 break;
6292 case 0x2f: /* FMINP */
6293 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
6294 break;
6295 default:
6296 g_assert_not_reached();
6299 write_fp_dreg(s, rd, tcg_res);
6301 tcg_temp_free_i64(tcg_op1);
6302 tcg_temp_free_i64(tcg_op2);
6303 tcg_temp_free_i64(tcg_res);
6304 } else {
6305 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
6306 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
6307 TCGv_i32 tcg_res = tcg_temp_new_i32();
6309 read_vec_element_i32(s, tcg_op1, rn, 0, MO_32);
6310 read_vec_element_i32(s, tcg_op2, rn, 1, MO_32);
6312 switch (opcode) {
6313 case 0xc: /* FMAXNMP */
6314 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
6315 break;
6316 case 0xd: /* FADDP */
6317 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
6318 break;
6319 case 0xf: /* FMAXP */
6320 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
6321 break;
6322 case 0x2c: /* FMINNMP */
6323 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
6324 break;
6325 case 0x2f: /* FMINP */
6326 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
6327 break;
6328 default:
6329 g_assert_not_reached();
6332 write_fp_sreg(s, rd, tcg_res);
6334 tcg_temp_free_i32(tcg_op1);
6335 tcg_temp_free_i32(tcg_op2);
6336 tcg_temp_free_i32(tcg_res);
6339 if (!TCGV_IS_UNUSED_PTR(fpst)) {
6340 tcg_temp_free_ptr(fpst);
6345 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
6347 * This code is handles the common shifting code and is used by both
6348 * the vector and scalar code.
6350 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
6351 TCGv_i64 tcg_rnd, bool accumulate,
6352 bool is_u, int size, int shift)
6354 bool extended_result = false;
6355 bool round = !TCGV_IS_UNUSED_I64(tcg_rnd);
6356 int ext_lshift = 0;
6357 TCGv_i64 tcg_src_hi;
6359 if (round && size == 3) {
6360 extended_result = true;
6361 ext_lshift = 64 - shift;
6362 tcg_src_hi = tcg_temp_new_i64();
6363 } else if (shift == 64) {
6364 if (!accumulate && is_u) {
6365 /* result is zero */
6366 tcg_gen_movi_i64(tcg_res, 0);
6367 return;
6371 /* Deal with the rounding step */
6372 if (round) {
6373 if (extended_result) {
6374 TCGv_i64 tcg_zero = tcg_const_i64(0);
6375 if (!is_u) {
6376 /* take care of sign extending tcg_res */
6377 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
6378 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
6379 tcg_src, tcg_src_hi,
6380 tcg_rnd, tcg_zero);
6381 } else {
6382 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
6383 tcg_src, tcg_zero,
6384 tcg_rnd, tcg_zero);
6386 tcg_temp_free_i64(tcg_zero);
6387 } else {
6388 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
6392 /* Now do the shift right */
6393 if (round && extended_result) {
6394 /* extended case, >64 bit precision required */
6395 if (ext_lshift == 0) {
6396 /* special case, only high bits matter */
6397 tcg_gen_mov_i64(tcg_src, tcg_src_hi);
6398 } else {
6399 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
6400 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
6401 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
6403 } else {
6404 if (is_u) {
6405 if (shift == 64) {
6406 /* essentially shifting in 64 zeros */
6407 tcg_gen_movi_i64(tcg_src, 0);
6408 } else {
6409 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
6411 } else {
6412 if (shift == 64) {
6413 /* effectively extending the sign-bit */
6414 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
6415 } else {
6416 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
6421 if (accumulate) {
6422 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
6423 } else {
6424 tcg_gen_mov_i64(tcg_res, tcg_src);
6427 if (extended_result) {
6428 tcg_temp_free_i64(tcg_src_hi);
6432 /* Common SHL/SLI - Shift left with an optional insert */
6433 static void handle_shli_with_ins(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
6434 bool insert, int shift)
6436 if (insert) { /* SLI */
6437 tcg_gen_deposit_i64(tcg_res, tcg_res, tcg_src, shift, 64 - shift);
6438 } else { /* SHL */
6439 tcg_gen_shli_i64(tcg_res, tcg_src, shift);
6443 /* SRI: shift right with insert */
6444 static void handle_shri_with_ins(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
6445 int size, int shift)
6447 int esize = 8 << size;
6449 /* shift count same as element size is valid but does nothing;
6450 * special case to avoid potential shift by 64.
6452 if (shift != esize) {
6453 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
6454 tcg_gen_deposit_i64(tcg_res, tcg_res, tcg_src, 0, esize - shift);
6458 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
6459 static void handle_scalar_simd_shri(DisasContext *s,
6460 bool is_u, int immh, int immb,
6461 int opcode, int rn, int rd)
6463 const int size = 3;
6464 int immhb = immh << 3 | immb;
6465 int shift = 2 * (8 << size) - immhb;
6466 bool accumulate = false;
6467 bool round = false;
6468 bool insert = false;
6469 TCGv_i64 tcg_rn;
6470 TCGv_i64 tcg_rd;
6471 TCGv_i64 tcg_round;
6473 if (!extract32(immh, 3, 1)) {
6474 unallocated_encoding(s);
6475 return;
6478 if (!fp_access_check(s)) {
6479 return;
6482 switch (opcode) {
6483 case 0x02: /* SSRA / USRA (accumulate) */
6484 accumulate = true;
6485 break;
6486 case 0x04: /* SRSHR / URSHR (rounding) */
6487 round = true;
6488 break;
6489 case 0x06: /* SRSRA / URSRA (accum + rounding) */
6490 accumulate = round = true;
6491 break;
6492 case 0x08: /* SRI */
6493 insert = true;
6494 break;
6497 if (round) {
6498 uint64_t round_const = 1ULL << (shift - 1);
6499 tcg_round = tcg_const_i64(round_const);
6500 } else {
6501 TCGV_UNUSED_I64(tcg_round);
6504 tcg_rn = read_fp_dreg(s, rn);
6505 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
6507 if (insert) {
6508 handle_shri_with_ins(tcg_rd, tcg_rn, size, shift);
6509 } else {
6510 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
6511 accumulate, is_u, size, shift);
6514 write_fp_dreg(s, rd, tcg_rd);
6516 tcg_temp_free_i64(tcg_rn);
6517 tcg_temp_free_i64(tcg_rd);
6518 if (round) {
6519 tcg_temp_free_i64(tcg_round);
6523 /* SHL/SLI - Scalar shift left */
6524 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
6525 int immh, int immb, int opcode,
6526 int rn, int rd)
6528 int size = 32 - clz32(immh) - 1;
6529 int immhb = immh << 3 | immb;
6530 int shift = immhb - (8 << size);
6531 TCGv_i64 tcg_rn = new_tmp_a64(s);
6532 TCGv_i64 tcg_rd = new_tmp_a64(s);
6534 if (!extract32(immh, 3, 1)) {
6535 unallocated_encoding(s);
6536 return;
6539 if (!fp_access_check(s)) {
6540 return;
6543 tcg_rn = read_fp_dreg(s, rn);
6544 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
6546 handle_shli_with_ins(tcg_rd, tcg_rn, insert, shift);
6548 write_fp_dreg(s, rd, tcg_rd);
6550 tcg_temp_free_i64(tcg_rn);
6551 tcg_temp_free_i64(tcg_rd);
6554 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
6555 * (signed/unsigned) narrowing */
6556 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
6557 bool is_u_shift, bool is_u_narrow,
6558 int immh, int immb, int opcode,
6559 int rn, int rd)
6561 int immhb = immh << 3 | immb;
6562 int size = 32 - clz32(immh) - 1;
6563 int esize = 8 << size;
6564 int shift = (2 * esize) - immhb;
6565 int elements = is_scalar ? 1 : (64 / esize);
6566 bool round = extract32(opcode, 0, 1);
6567 TCGMemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
6568 TCGv_i64 tcg_rn, tcg_rd, tcg_round;
6569 TCGv_i32 tcg_rd_narrowed;
6570 TCGv_i64 tcg_final;
6572 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
6573 { gen_helper_neon_narrow_sat_s8,
6574 gen_helper_neon_unarrow_sat8 },
6575 { gen_helper_neon_narrow_sat_s16,
6576 gen_helper_neon_unarrow_sat16 },
6577 { gen_helper_neon_narrow_sat_s32,
6578 gen_helper_neon_unarrow_sat32 },
6579 { NULL, NULL },
6581 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
6582 gen_helper_neon_narrow_sat_u8,
6583 gen_helper_neon_narrow_sat_u16,
6584 gen_helper_neon_narrow_sat_u32,
6585 NULL
6587 NeonGenNarrowEnvFn *narrowfn;
6589 int i;
6591 assert(size < 4);
6593 if (extract32(immh, 3, 1)) {
6594 unallocated_encoding(s);
6595 return;
6598 if (!fp_access_check(s)) {
6599 return;
6602 if (is_u_shift) {
6603 narrowfn = unsigned_narrow_fns[size];
6604 } else {
6605 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
6608 tcg_rn = tcg_temp_new_i64();
6609 tcg_rd = tcg_temp_new_i64();
6610 tcg_rd_narrowed = tcg_temp_new_i32();
6611 tcg_final = tcg_const_i64(0);
6613 if (round) {
6614 uint64_t round_const = 1ULL << (shift - 1);
6615 tcg_round = tcg_const_i64(round_const);
6616 } else {
6617 TCGV_UNUSED_I64(tcg_round);
6620 for (i = 0; i < elements; i++) {
6621 read_vec_element(s, tcg_rn, rn, i, ldop);
6622 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
6623 false, is_u_shift, size+1, shift);
6624 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd);
6625 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
6626 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
6629 if (!is_q) {
6630 clear_vec_high(s, rd);
6631 write_vec_element(s, tcg_final, rd, 0, MO_64);
6632 } else {
6633 write_vec_element(s, tcg_final, rd, 1, MO_64);
6636 if (round) {
6637 tcg_temp_free_i64(tcg_round);
6639 tcg_temp_free_i64(tcg_rn);
6640 tcg_temp_free_i64(tcg_rd);
6641 tcg_temp_free_i32(tcg_rd_narrowed);
6642 tcg_temp_free_i64(tcg_final);
6643 return;
6646 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
6647 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
6648 bool src_unsigned, bool dst_unsigned,
6649 int immh, int immb, int rn, int rd)
6651 int immhb = immh << 3 | immb;
6652 int size = 32 - clz32(immh) - 1;
6653 int shift = immhb - (8 << size);
6654 int pass;
6656 assert(immh != 0);
6657 assert(!(scalar && is_q));
6659 if (!scalar) {
6660 if (!is_q && extract32(immh, 3, 1)) {
6661 unallocated_encoding(s);
6662 return;
6665 /* Since we use the variable-shift helpers we must
6666 * replicate the shift count into each element of
6667 * the tcg_shift value.
6669 switch (size) {
6670 case 0:
6671 shift |= shift << 8;
6672 /* fall through */
6673 case 1:
6674 shift |= shift << 16;
6675 break;
6676 case 2:
6677 case 3:
6678 break;
6679 default:
6680 g_assert_not_reached();
6684 if (!fp_access_check(s)) {
6685 return;
6688 if (size == 3) {
6689 TCGv_i64 tcg_shift = tcg_const_i64(shift);
6690 static NeonGenTwo64OpEnvFn * const fns[2][2] = {
6691 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
6692 { NULL, gen_helper_neon_qshl_u64 },
6694 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
6695 int maxpass = is_q ? 2 : 1;
6697 for (pass = 0; pass < maxpass; pass++) {
6698 TCGv_i64 tcg_op = tcg_temp_new_i64();
6700 read_vec_element(s, tcg_op, rn, pass, MO_64);
6701 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
6702 write_vec_element(s, tcg_op, rd, pass, MO_64);
6704 tcg_temp_free_i64(tcg_op);
6706 tcg_temp_free_i64(tcg_shift);
6708 if (!is_q) {
6709 clear_vec_high(s, rd);
6711 } else {
6712 TCGv_i32 tcg_shift = tcg_const_i32(shift);
6713 static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
6715 { gen_helper_neon_qshl_s8,
6716 gen_helper_neon_qshl_s16,
6717 gen_helper_neon_qshl_s32 },
6718 { gen_helper_neon_qshlu_s8,
6719 gen_helper_neon_qshlu_s16,
6720 gen_helper_neon_qshlu_s32 }
6721 }, {
6722 { NULL, NULL, NULL },
6723 { gen_helper_neon_qshl_u8,
6724 gen_helper_neon_qshl_u16,
6725 gen_helper_neon_qshl_u32 }
6728 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
6729 TCGMemOp memop = scalar ? size : MO_32;
6730 int maxpass = scalar ? 1 : is_q ? 4 : 2;
6732 for (pass = 0; pass < maxpass; pass++) {
6733 TCGv_i32 tcg_op = tcg_temp_new_i32();
6735 read_vec_element_i32(s, tcg_op, rn, pass, memop);
6736 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
6737 if (scalar) {
6738 switch (size) {
6739 case 0:
6740 tcg_gen_ext8u_i32(tcg_op, tcg_op);
6741 break;
6742 case 1:
6743 tcg_gen_ext16u_i32(tcg_op, tcg_op);
6744 break;
6745 case 2:
6746 break;
6747 default:
6748 g_assert_not_reached();
6750 write_fp_sreg(s, rd, tcg_op);
6751 } else {
6752 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
6755 tcg_temp_free_i32(tcg_op);
6757 tcg_temp_free_i32(tcg_shift);
6759 if (!is_q && !scalar) {
6760 clear_vec_high(s, rd);
6765 /* Common vector code for handling integer to FP conversion */
6766 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
6767 int elements, int is_signed,
6768 int fracbits, int size)
6770 bool is_double = size == 3 ? true : false;
6771 TCGv_ptr tcg_fpst = get_fpstatus_ptr();
6772 TCGv_i32 tcg_shift = tcg_const_i32(fracbits);
6773 TCGv_i64 tcg_int = tcg_temp_new_i64();
6774 TCGMemOp mop = size | (is_signed ? MO_SIGN : 0);
6775 int pass;
6777 for (pass = 0; pass < elements; pass++) {
6778 read_vec_element(s, tcg_int, rn, pass, mop);
6780 if (is_double) {
6781 TCGv_i64 tcg_double = tcg_temp_new_i64();
6782 if (is_signed) {
6783 gen_helper_vfp_sqtod(tcg_double, tcg_int,
6784 tcg_shift, tcg_fpst);
6785 } else {
6786 gen_helper_vfp_uqtod(tcg_double, tcg_int,
6787 tcg_shift, tcg_fpst);
6789 if (elements == 1) {
6790 write_fp_dreg(s, rd, tcg_double);
6791 } else {
6792 write_vec_element(s, tcg_double, rd, pass, MO_64);
6794 tcg_temp_free_i64(tcg_double);
6795 } else {
6796 TCGv_i32 tcg_single = tcg_temp_new_i32();
6797 if (is_signed) {
6798 gen_helper_vfp_sqtos(tcg_single, tcg_int,
6799 tcg_shift, tcg_fpst);
6800 } else {
6801 gen_helper_vfp_uqtos(tcg_single, tcg_int,
6802 tcg_shift, tcg_fpst);
6804 if (elements == 1) {
6805 write_fp_sreg(s, rd, tcg_single);
6806 } else {
6807 write_vec_element_i32(s, tcg_single, rd, pass, MO_32);
6809 tcg_temp_free_i32(tcg_single);
6813 if (!is_double && elements == 2) {
6814 clear_vec_high(s, rd);
6817 tcg_temp_free_i64(tcg_int);
6818 tcg_temp_free_ptr(tcg_fpst);
6819 tcg_temp_free_i32(tcg_shift);
6822 /* UCVTF/SCVTF - Integer to FP conversion */
6823 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
6824 bool is_q, bool is_u,
6825 int immh, int immb, int opcode,
6826 int rn, int rd)
6828 bool is_double = extract32(immh, 3, 1);
6829 int size = is_double ? MO_64 : MO_32;
6830 int elements;
6831 int immhb = immh << 3 | immb;
6832 int fracbits = (is_double ? 128 : 64) - immhb;
6834 if (!extract32(immh, 2, 2)) {
6835 unallocated_encoding(s);
6836 return;
6839 if (is_scalar) {
6840 elements = 1;
6841 } else {
6842 elements = is_double ? 2 : is_q ? 4 : 2;
6843 if (is_double && !is_q) {
6844 unallocated_encoding(s);
6845 return;
6849 if (!fp_access_check(s)) {
6850 return;
6853 /* immh == 0 would be a failure of the decode logic */
6854 g_assert(immh);
6856 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
6859 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
6860 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
6861 bool is_q, bool is_u,
6862 int immh, int immb, int rn, int rd)
6864 bool is_double = extract32(immh, 3, 1);
6865 int immhb = immh << 3 | immb;
6866 int fracbits = (is_double ? 128 : 64) - immhb;
6867 int pass;
6868 TCGv_ptr tcg_fpstatus;
6869 TCGv_i32 tcg_rmode, tcg_shift;
6871 if (!extract32(immh, 2, 2)) {
6872 unallocated_encoding(s);
6873 return;
6876 if (!is_scalar && !is_q && is_double) {
6877 unallocated_encoding(s);
6878 return;
6881 if (!fp_access_check(s)) {
6882 return;
6885 assert(!(is_scalar && is_q));
6887 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(FPROUNDING_ZERO));
6888 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
6889 tcg_fpstatus = get_fpstatus_ptr();
6890 tcg_shift = tcg_const_i32(fracbits);
6892 if (is_double) {
6893 int maxpass = is_scalar ? 1 : 2;
6895 for (pass = 0; pass < maxpass; pass++) {
6896 TCGv_i64 tcg_op = tcg_temp_new_i64();
6898 read_vec_element(s, tcg_op, rn, pass, MO_64);
6899 if (is_u) {
6900 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
6901 } else {
6902 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
6904 write_vec_element(s, tcg_op, rd, pass, MO_64);
6905 tcg_temp_free_i64(tcg_op);
6907 if (!is_q) {
6908 clear_vec_high(s, rd);
6910 } else {
6911 int maxpass = is_scalar ? 1 : is_q ? 4 : 2;
6912 for (pass = 0; pass < maxpass; pass++) {
6913 TCGv_i32 tcg_op = tcg_temp_new_i32();
6915 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
6916 if (is_u) {
6917 gen_helper_vfp_touls(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
6918 } else {
6919 gen_helper_vfp_tosls(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
6921 if (is_scalar) {
6922 write_fp_sreg(s, rd, tcg_op);
6923 } else {
6924 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
6926 tcg_temp_free_i32(tcg_op);
6928 if (!is_q && !is_scalar) {
6929 clear_vec_high(s, rd);
6933 tcg_temp_free_ptr(tcg_fpstatus);
6934 tcg_temp_free_i32(tcg_shift);
6935 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
6936 tcg_temp_free_i32(tcg_rmode);
6939 /* C3.6.9 AdvSIMD scalar shift by immediate
6940 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
6941 * +-----+---+-------------+------+------+--------+---+------+------+
6942 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
6943 * +-----+---+-------------+------+------+--------+---+------+------+
6945 * This is the scalar version so it works on a fixed sized registers
6947 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
6949 int rd = extract32(insn, 0, 5);
6950 int rn = extract32(insn, 5, 5);
6951 int opcode = extract32(insn, 11, 5);
6952 int immb = extract32(insn, 16, 3);
6953 int immh = extract32(insn, 19, 4);
6954 bool is_u = extract32(insn, 29, 1);
6956 if (immh == 0) {
6957 unallocated_encoding(s);
6958 return;
6961 switch (opcode) {
6962 case 0x08: /* SRI */
6963 if (!is_u) {
6964 unallocated_encoding(s);
6965 return;
6967 /* fall through */
6968 case 0x00: /* SSHR / USHR */
6969 case 0x02: /* SSRA / USRA */
6970 case 0x04: /* SRSHR / URSHR */
6971 case 0x06: /* SRSRA / URSRA */
6972 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
6973 break;
6974 case 0x0a: /* SHL / SLI */
6975 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
6976 break;
6977 case 0x1c: /* SCVTF, UCVTF */
6978 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
6979 opcode, rn, rd);
6980 break;
6981 case 0x10: /* SQSHRUN, SQSHRUN2 */
6982 case 0x11: /* SQRSHRUN, SQRSHRUN2 */
6983 if (!is_u) {
6984 unallocated_encoding(s);
6985 return;
6987 handle_vec_simd_sqshrn(s, true, false, false, true,
6988 immh, immb, opcode, rn, rd);
6989 break;
6990 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
6991 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
6992 handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
6993 immh, immb, opcode, rn, rd);
6994 break;
6995 case 0xc: /* SQSHLU */
6996 if (!is_u) {
6997 unallocated_encoding(s);
6998 return;
7000 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
7001 break;
7002 case 0xe: /* SQSHL, UQSHL */
7003 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
7004 break;
7005 case 0x1f: /* FCVTZS, FCVTZU */
7006 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
7007 break;
7008 default:
7009 unallocated_encoding(s);
7010 break;
7014 /* C3.6.10 AdvSIMD scalar three different
7015 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
7016 * +-----+---+-----------+------+---+------+--------+-----+------+------+
7017 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
7018 * +-----+---+-----------+------+---+------+--------+-----+------+------+
7020 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
7022 bool is_u = extract32(insn, 29, 1);
7023 int size = extract32(insn, 22, 2);
7024 int opcode = extract32(insn, 12, 4);
7025 int rm = extract32(insn, 16, 5);
7026 int rn = extract32(insn, 5, 5);
7027 int rd = extract32(insn, 0, 5);
7029 if (is_u) {
7030 unallocated_encoding(s);
7031 return;
7034 switch (opcode) {
7035 case 0x9: /* SQDMLAL, SQDMLAL2 */
7036 case 0xb: /* SQDMLSL, SQDMLSL2 */
7037 case 0xd: /* SQDMULL, SQDMULL2 */
7038 if (size == 0 || size == 3) {
7039 unallocated_encoding(s);
7040 return;
7042 break;
7043 default:
7044 unallocated_encoding(s);
7045 return;
7048 if (!fp_access_check(s)) {
7049 return;
7052 if (size == 2) {
7053 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
7054 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
7055 TCGv_i64 tcg_res = tcg_temp_new_i64();
7057 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
7058 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
7060 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
7061 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res);
7063 switch (opcode) {
7064 case 0xd: /* SQDMULL, SQDMULL2 */
7065 break;
7066 case 0xb: /* SQDMLSL, SQDMLSL2 */
7067 tcg_gen_neg_i64(tcg_res, tcg_res);
7068 /* fall through */
7069 case 0x9: /* SQDMLAL, SQDMLAL2 */
7070 read_vec_element(s, tcg_op1, rd, 0, MO_64);
7071 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env,
7072 tcg_res, tcg_op1);
7073 break;
7074 default:
7075 g_assert_not_reached();
7078 write_fp_dreg(s, rd, tcg_res);
7080 tcg_temp_free_i64(tcg_op1);
7081 tcg_temp_free_i64(tcg_op2);
7082 tcg_temp_free_i64(tcg_res);
7083 } else {
7084 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
7085 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
7086 TCGv_i64 tcg_res = tcg_temp_new_i64();
7088 read_vec_element_i32(s, tcg_op1, rn, 0, MO_16);
7089 read_vec_element_i32(s, tcg_op2, rm, 0, MO_16);
7091 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
7092 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res);
7094 switch (opcode) {
7095 case 0xd: /* SQDMULL, SQDMULL2 */
7096 break;
7097 case 0xb: /* SQDMLSL, SQDMLSL2 */
7098 gen_helper_neon_negl_u32(tcg_res, tcg_res);
7099 /* fall through */
7100 case 0x9: /* SQDMLAL, SQDMLAL2 */
7102 TCGv_i64 tcg_op3 = tcg_temp_new_i64();
7103 read_vec_element(s, tcg_op3, rd, 0, MO_32);
7104 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env,
7105 tcg_res, tcg_op3);
7106 tcg_temp_free_i64(tcg_op3);
7107 break;
7109 default:
7110 g_assert_not_reached();
7113 tcg_gen_ext32u_i64(tcg_res, tcg_res);
7114 write_fp_dreg(s, rd, tcg_res);
7116 tcg_temp_free_i32(tcg_op1);
7117 tcg_temp_free_i32(tcg_op2);
7118 tcg_temp_free_i64(tcg_res);
7122 static void handle_3same_64(DisasContext *s, int opcode, bool u,
7123 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
7125 /* Handle 64x64->64 opcodes which are shared between the scalar
7126 * and vector 3-same groups. We cover every opcode where size == 3
7127 * is valid in either the three-reg-same (integer, not pairwise)
7128 * or scalar-three-reg-same groups. (Some opcodes are not yet
7129 * implemented.)
7131 TCGCond cond;
7133 switch (opcode) {
7134 case 0x1: /* SQADD */
7135 if (u) {
7136 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7137 } else {
7138 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7140 break;
7141 case 0x5: /* SQSUB */
7142 if (u) {
7143 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7144 } else {
7145 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7147 break;
7148 case 0x6: /* CMGT, CMHI */
7149 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
7150 * We implement this using setcond (test) and then negating.
7152 cond = u ? TCG_COND_GTU : TCG_COND_GT;
7153 do_cmop:
7154 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
7155 tcg_gen_neg_i64(tcg_rd, tcg_rd);
7156 break;
7157 case 0x7: /* CMGE, CMHS */
7158 cond = u ? TCG_COND_GEU : TCG_COND_GE;
7159 goto do_cmop;
7160 case 0x11: /* CMTST, CMEQ */
7161 if (u) {
7162 cond = TCG_COND_EQ;
7163 goto do_cmop;
7165 /* CMTST : test is "if (X & Y != 0)". */
7166 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
7167 tcg_gen_setcondi_i64(TCG_COND_NE, tcg_rd, tcg_rd, 0);
7168 tcg_gen_neg_i64(tcg_rd, tcg_rd);
7169 break;
7170 case 0x8: /* SSHL, USHL */
7171 if (u) {
7172 gen_helper_neon_shl_u64(tcg_rd, tcg_rn, tcg_rm);
7173 } else {
7174 gen_helper_neon_shl_s64(tcg_rd, tcg_rn, tcg_rm);
7176 break;
7177 case 0x9: /* SQSHL, UQSHL */
7178 if (u) {
7179 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7180 } else {
7181 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7183 break;
7184 case 0xa: /* SRSHL, URSHL */
7185 if (u) {
7186 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
7187 } else {
7188 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
7190 break;
7191 case 0xb: /* SQRSHL, UQRSHL */
7192 if (u) {
7193 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7194 } else {
7195 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7197 break;
7198 case 0x10: /* ADD, SUB */
7199 if (u) {
7200 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
7201 } else {
7202 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
7204 break;
7205 default:
7206 g_assert_not_reached();
7210 /* Handle the 3-same-operands float operations; shared by the scalar
7211 * and vector encodings. The caller must filter out any encodings
7212 * not allocated for the encoding it is dealing with.
7214 static void handle_3same_float(DisasContext *s, int size, int elements,
7215 int fpopcode, int rd, int rn, int rm)
7217 int pass;
7218 TCGv_ptr fpst = get_fpstatus_ptr();
7220 for (pass = 0; pass < elements; pass++) {
7221 if (size) {
7222 /* Double */
7223 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
7224 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
7225 TCGv_i64 tcg_res = tcg_temp_new_i64();
7227 read_vec_element(s, tcg_op1, rn, pass, MO_64);
7228 read_vec_element(s, tcg_op2, rm, pass, MO_64);
7230 switch (fpopcode) {
7231 case 0x39: /* FMLS */
7232 /* As usual for ARM, separate negation for fused multiply-add */
7233 gen_helper_vfp_negd(tcg_op1, tcg_op1);
7234 /* fall through */
7235 case 0x19: /* FMLA */
7236 read_vec_element(s, tcg_res, rd, pass, MO_64);
7237 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
7238 tcg_res, fpst);
7239 break;
7240 case 0x18: /* FMAXNM */
7241 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7242 break;
7243 case 0x1a: /* FADD */
7244 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
7245 break;
7246 case 0x1b: /* FMULX */
7247 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
7248 break;
7249 case 0x1c: /* FCMEQ */
7250 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7251 break;
7252 case 0x1e: /* FMAX */
7253 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
7254 break;
7255 case 0x1f: /* FRECPS */
7256 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7257 break;
7258 case 0x38: /* FMINNM */
7259 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7260 break;
7261 case 0x3a: /* FSUB */
7262 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
7263 break;
7264 case 0x3e: /* FMIN */
7265 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
7266 break;
7267 case 0x3f: /* FRSQRTS */
7268 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7269 break;
7270 case 0x5b: /* FMUL */
7271 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
7272 break;
7273 case 0x5c: /* FCMGE */
7274 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7275 break;
7276 case 0x5d: /* FACGE */
7277 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7278 break;
7279 case 0x5f: /* FDIV */
7280 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
7281 break;
7282 case 0x7a: /* FABD */
7283 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
7284 gen_helper_vfp_absd(tcg_res, tcg_res);
7285 break;
7286 case 0x7c: /* FCMGT */
7287 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7288 break;
7289 case 0x7d: /* FACGT */
7290 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7291 break;
7292 default:
7293 g_assert_not_reached();
7296 write_vec_element(s, tcg_res, rd, pass, MO_64);
7298 tcg_temp_free_i64(tcg_res);
7299 tcg_temp_free_i64(tcg_op1);
7300 tcg_temp_free_i64(tcg_op2);
7301 } else {
7302 /* Single */
7303 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
7304 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
7305 TCGv_i32 tcg_res = tcg_temp_new_i32();
7307 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
7308 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
7310 switch (fpopcode) {
7311 case 0x39: /* FMLS */
7312 /* As usual for ARM, separate negation for fused multiply-add */
7313 gen_helper_vfp_negs(tcg_op1, tcg_op1);
7314 /* fall through */
7315 case 0x19: /* FMLA */
7316 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
7317 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
7318 tcg_res, fpst);
7319 break;
7320 case 0x1a: /* FADD */
7321 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
7322 break;
7323 case 0x1b: /* FMULX */
7324 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
7325 break;
7326 case 0x1c: /* FCMEQ */
7327 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7328 break;
7329 case 0x1e: /* FMAX */
7330 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
7331 break;
7332 case 0x1f: /* FRECPS */
7333 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7334 break;
7335 case 0x18: /* FMAXNM */
7336 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
7337 break;
7338 case 0x38: /* FMINNM */
7339 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
7340 break;
7341 case 0x3a: /* FSUB */
7342 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
7343 break;
7344 case 0x3e: /* FMIN */
7345 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
7346 break;
7347 case 0x3f: /* FRSQRTS */
7348 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7349 break;
7350 case 0x5b: /* FMUL */
7351 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
7352 break;
7353 case 0x5c: /* FCMGE */
7354 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7355 break;
7356 case 0x5d: /* FACGE */
7357 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7358 break;
7359 case 0x5f: /* FDIV */
7360 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
7361 break;
7362 case 0x7a: /* FABD */
7363 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
7364 gen_helper_vfp_abss(tcg_res, tcg_res);
7365 break;
7366 case 0x7c: /* FCMGT */
7367 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7368 break;
7369 case 0x7d: /* FACGT */
7370 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7371 break;
7372 default:
7373 g_assert_not_reached();
7376 if (elements == 1) {
7377 /* scalar single so clear high part */
7378 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7380 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
7381 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
7382 tcg_temp_free_i64(tcg_tmp);
7383 } else {
7384 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
7387 tcg_temp_free_i32(tcg_res);
7388 tcg_temp_free_i32(tcg_op1);
7389 tcg_temp_free_i32(tcg_op2);
7393 tcg_temp_free_ptr(fpst);
7395 if ((elements << size) < 4) {
7396 /* scalar, or non-quad vector op */
7397 clear_vec_high(s, rd);
7401 /* C3.6.11 AdvSIMD scalar three same
7402 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
7403 * +-----+---+-----------+------+---+------+--------+---+------+------+
7404 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
7405 * +-----+---+-----------+------+---+------+--------+---+------+------+
7407 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
7409 int rd = extract32(insn, 0, 5);
7410 int rn = extract32(insn, 5, 5);
7411 int opcode = extract32(insn, 11, 5);
7412 int rm = extract32(insn, 16, 5);
7413 int size = extract32(insn, 22, 2);
7414 bool u = extract32(insn, 29, 1);
7415 TCGv_i64 tcg_rd;
7417 if (opcode >= 0x18) {
7418 /* Floating point: U, size[1] and opcode indicate operation */
7419 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
7420 switch (fpopcode) {
7421 case 0x1b: /* FMULX */
7422 case 0x1f: /* FRECPS */
7423 case 0x3f: /* FRSQRTS */
7424 case 0x5d: /* FACGE */
7425 case 0x7d: /* FACGT */
7426 case 0x1c: /* FCMEQ */
7427 case 0x5c: /* FCMGE */
7428 case 0x7c: /* FCMGT */
7429 case 0x7a: /* FABD */
7430 break;
7431 default:
7432 unallocated_encoding(s);
7433 return;
7436 if (!fp_access_check(s)) {
7437 return;
7440 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
7441 return;
7444 switch (opcode) {
7445 case 0x1: /* SQADD, UQADD */
7446 case 0x5: /* SQSUB, UQSUB */
7447 case 0x9: /* SQSHL, UQSHL */
7448 case 0xb: /* SQRSHL, UQRSHL */
7449 break;
7450 case 0x8: /* SSHL, USHL */
7451 case 0xa: /* SRSHL, URSHL */
7452 case 0x6: /* CMGT, CMHI */
7453 case 0x7: /* CMGE, CMHS */
7454 case 0x11: /* CMTST, CMEQ */
7455 case 0x10: /* ADD, SUB (vector) */
7456 if (size != 3) {
7457 unallocated_encoding(s);
7458 return;
7460 break;
7461 case 0x16: /* SQDMULH, SQRDMULH (vector) */
7462 if (size != 1 && size != 2) {
7463 unallocated_encoding(s);
7464 return;
7466 break;
7467 default:
7468 unallocated_encoding(s);
7469 return;
7472 if (!fp_access_check(s)) {
7473 return;
7476 tcg_rd = tcg_temp_new_i64();
7478 if (size == 3) {
7479 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
7480 TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
7482 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
7483 tcg_temp_free_i64(tcg_rn);
7484 tcg_temp_free_i64(tcg_rm);
7485 } else {
7486 /* Do a single operation on the lowest element in the vector.
7487 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
7488 * no side effects for all these operations.
7489 * OPTME: special-purpose helpers would avoid doing some
7490 * unnecessary work in the helper for the 8 and 16 bit cases.
7492 NeonGenTwoOpEnvFn *genenvfn;
7493 TCGv_i32 tcg_rn = tcg_temp_new_i32();
7494 TCGv_i32 tcg_rm = tcg_temp_new_i32();
7495 TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
7497 read_vec_element_i32(s, tcg_rn, rn, 0, size);
7498 read_vec_element_i32(s, tcg_rm, rm, 0, size);
7500 switch (opcode) {
7501 case 0x1: /* SQADD, UQADD */
7503 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7504 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
7505 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
7506 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
7508 genenvfn = fns[size][u];
7509 break;
7511 case 0x5: /* SQSUB, UQSUB */
7513 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7514 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
7515 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
7516 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
7518 genenvfn = fns[size][u];
7519 break;
7521 case 0x9: /* SQSHL, UQSHL */
7523 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7524 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
7525 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
7526 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
7528 genenvfn = fns[size][u];
7529 break;
7531 case 0xb: /* SQRSHL, UQRSHL */
7533 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7534 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
7535 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
7536 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
7538 genenvfn = fns[size][u];
7539 break;
7541 case 0x16: /* SQDMULH, SQRDMULH */
7543 static NeonGenTwoOpEnvFn * const fns[2][2] = {
7544 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
7545 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
7547 assert(size == 1 || size == 2);
7548 genenvfn = fns[size - 1][u];
7549 break;
7551 default:
7552 g_assert_not_reached();
7555 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm);
7556 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
7557 tcg_temp_free_i32(tcg_rd32);
7558 tcg_temp_free_i32(tcg_rn);
7559 tcg_temp_free_i32(tcg_rm);
7562 write_fp_dreg(s, rd, tcg_rd);
7564 tcg_temp_free_i64(tcg_rd);
7567 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
7568 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
7569 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
7571 /* Handle 64->64 opcodes which are shared between the scalar and
7572 * vector 2-reg-misc groups. We cover every integer opcode where size == 3
7573 * is valid in either group and also the double-precision fp ops.
7574 * The caller only need provide tcg_rmode and tcg_fpstatus if the op
7575 * requires them.
7577 TCGCond cond;
7579 switch (opcode) {
7580 case 0x4: /* CLS, CLZ */
7581 if (u) {
7582 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
7583 } else {
7584 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
7586 break;
7587 case 0x5: /* NOT */
7588 /* This opcode is shared with CNT and RBIT but we have earlier
7589 * enforced that size == 3 if and only if this is the NOT insn.
7591 tcg_gen_not_i64(tcg_rd, tcg_rn);
7592 break;
7593 case 0x7: /* SQABS, SQNEG */
7594 if (u) {
7595 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn);
7596 } else {
7597 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn);
7599 break;
7600 case 0xa: /* CMLT */
7601 /* 64 bit integer comparison against zero, result is
7602 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and
7603 * subtracting 1.
7605 cond = TCG_COND_LT;
7606 do_cmop:
7607 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0);
7608 tcg_gen_neg_i64(tcg_rd, tcg_rd);
7609 break;
7610 case 0x8: /* CMGT, CMGE */
7611 cond = u ? TCG_COND_GE : TCG_COND_GT;
7612 goto do_cmop;
7613 case 0x9: /* CMEQ, CMLE */
7614 cond = u ? TCG_COND_LE : TCG_COND_EQ;
7615 goto do_cmop;
7616 case 0xb: /* ABS, NEG */
7617 if (u) {
7618 tcg_gen_neg_i64(tcg_rd, tcg_rn);
7619 } else {
7620 TCGv_i64 tcg_zero = tcg_const_i64(0);
7621 tcg_gen_neg_i64(tcg_rd, tcg_rn);
7622 tcg_gen_movcond_i64(TCG_COND_GT, tcg_rd, tcg_rn, tcg_zero,
7623 tcg_rn, tcg_rd);
7624 tcg_temp_free_i64(tcg_zero);
7626 break;
7627 case 0x2f: /* FABS */
7628 gen_helper_vfp_absd(tcg_rd, tcg_rn);
7629 break;
7630 case 0x6f: /* FNEG */
7631 gen_helper_vfp_negd(tcg_rd, tcg_rn);
7632 break;
7633 case 0x7f: /* FSQRT */
7634 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env);
7635 break;
7636 case 0x1a: /* FCVTNS */
7637 case 0x1b: /* FCVTMS */
7638 case 0x1c: /* FCVTAS */
7639 case 0x3a: /* FCVTPS */
7640 case 0x3b: /* FCVTZS */
7642 TCGv_i32 tcg_shift = tcg_const_i32(0);
7643 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
7644 tcg_temp_free_i32(tcg_shift);
7645 break;
7647 case 0x5a: /* FCVTNU */
7648 case 0x5b: /* FCVTMU */
7649 case 0x5c: /* FCVTAU */
7650 case 0x7a: /* FCVTPU */
7651 case 0x7b: /* FCVTZU */
7653 TCGv_i32 tcg_shift = tcg_const_i32(0);
7654 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
7655 tcg_temp_free_i32(tcg_shift);
7656 break;
7658 case 0x18: /* FRINTN */
7659 case 0x19: /* FRINTM */
7660 case 0x38: /* FRINTP */
7661 case 0x39: /* FRINTZ */
7662 case 0x58: /* FRINTA */
7663 case 0x79: /* FRINTI */
7664 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
7665 break;
7666 case 0x59: /* FRINTX */
7667 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
7668 break;
7669 default:
7670 g_assert_not_reached();
7674 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
7675 bool is_scalar, bool is_u, bool is_q,
7676 int size, int rn, int rd)
7678 bool is_double = (size == 3);
7679 TCGv_ptr fpst;
7681 if (!fp_access_check(s)) {
7682 return;
7685 fpst = get_fpstatus_ptr();
7687 if (is_double) {
7688 TCGv_i64 tcg_op = tcg_temp_new_i64();
7689 TCGv_i64 tcg_zero = tcg_const_i64(0);
7690 TCGv_i64 tcg_res = tcg_temp_new_i64();
7691 NeonGenTwoDoubleOPFn *genfn;
7692 bool swap = false;
7693 int pass;
7695 switch (opcode) {
7696 case 0x2e: /* FCMLT (zero) */
7697 swap = true;
7698 /* fallthrough */
7699 case 0x2c: /* FCMGT (zero) */
7700 genfn = gen_helper_neon_cgt_f64;
7701 break;
7702 case 0x2d: /* FCMEQ (zero) */
7703 genfn = gen_helper_neon_ceq_f64;
7704 break;
7705 case 0x6d: /* FCMLE (zero) */
7706 swap = true;
7707 /* fall through */
7708 case 0x6c: /* FCMGE (zero) */
7709 genfn = gen_helper_neon_cge_f64;
7710 break;
7711 default:
7712 g_assert_not_reached();
7715 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
7716 read_vec_element(s, tcg_op, rn, pass, MO_64);
7717 if (swap) {
7718 genfn(tcg_res, tcg_zero, tcg_op, fpst);
7719 } else {
7720 genfn(tcg_res, tcg_op, tcg_zero, fpst);
7722 write_vec_element(s, tcg_res, rd, pass, MO_64);
7724 if (is_scalar) {
7725 clear_vec_high(s, rd);
7728 tcg_temp_free_i64(tcg_res);
7729 tcg_temp_free_i64(tcg_zero);
7730 tcg_temp_free_i64(tcg_op);
7731 } else {
7732 TCGv_i32 tcg_op = tcg_temp_new_i32();
7733 TCGv_i32 tcg_zero = tcg_const_i32(0);
7734 TCGv_i32 tcg_res = tcg_temp_new_i32();
7735 NeonGenTwoSingleOPFn *genfn;
7736 bool swap = false;
7737 int pass, maxpasses;
7739 switch (opcode) {
7740 case 0x2e: /* FCMLT (zero) */
7741 swap = true;
7742 /* fall through */
7743 case 0x2c: /* FCMGT (zero) */
7744 genfn = gen_helper_neon_cgt_f32;
7745 break;
7746 case 0x2d: /* FCMEQ (zero) */
7747 genfn = gen_helper_neon_ceq_f32;
7748 break;
7749 case 0x6d: /* FCMLE (zero) */
7750 swap = true;
7751 /* fall through */
7752 case 0x6c: /* FCMGE (zero) */
7753 genfn = gen_helper_neon_cge_f32;
7754 break;
7755 default:
7756 g_assert_not_reached();
7759 if (is_scalar) {
7760 maxpasses = 1;
7761 } else {
7762 maxpasses = is_q ? 4 : 2;
7765 for (pass = 0; pass < maxpasses; pass++) {
7766 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
7767 if (swap) {
7768 genfn(tcg_res, tcg_zero, tcg_op, fpst);
7769 } else {
7770 genfn(tcg_res, tcg_op, tcg_zero, fpst);
7772 if (is_scalar) {
7773 write_fp_sreg(s, rd, tcg_res);
7774 } else {
7775 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
7778 tcg_temp_free_i32(tcg_res);
7779 tcg_temp_free_i32(tcg_zero);
7780 tcg_temp_free_i32(tcg_op);
7781 if (!is_q && !is_scalar) {
7782 clear_vec_high(s, rd);
7786 tcg_temp_free_ptr(fpst);
7789 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
7790 bool is_scalar, bool is_u, bool is_q,
7791 int size, int rn, int rd)
7793 bool is_double = (size == 3);
7794 TCGv_ptr fpst = get_fpstatus_ptr();
7796 if (is_double) {
7797 TCGv_i64 tcg_op = tcg_temp_new_i64();
7798 TCGv_i64 tcg_res = tcg_temp_new_i64();
7799 int pass;
7801 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
7802 read_vec_element(s, tcg_op, rn, pass, MO_64);
7803 switch (opcode) {
7804 case 0x3d: /* FRECPE */
7805 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
7806 break;
7807 case 0x3f: /* FRECPX */
7808 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
7809 break;
7810 case 0x7d: /* FRSQRTE */
7811 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
7812 break;
7813 default:
7814 g_assert_not_reached();
7816 write_vec_element(s, tcg_res, rd, pass, MO_64);
7818 if (is_scalar) {
7819 clear_vec_high(s, rd);
7822 tcg_temp_free_i64(tcg_res);
7823 tcg_temp_free_i64(tcg_op);
7824 } else {
7825 TCGv_i32 tcg_op = tcg_temp_new_i32();
7826 TCGv_i32 tcg_res = tcg_temp_new_i32();
7827 int pass, maxpasses;
7829 if (is_scalar) {
7830 maxpasses = 1;
7831 } else {
7832 maxpasses = is_q ? 4 : 2;
7835 for (pass = 0; pass < maxpasses; pass++) {
7836 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
7838 switch (opcode) {
7839 case 0x3c: /* URECPE */
7840 gen_helper_recpe_u32(tcg_res, tcg_op, fpst);
7841 break;
7842 case 0x3d: /* FRECPE */
7843 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
7844 break;
7845 case 0x3f: /* FRECPX */
7846 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
7847 break;
7848 case 0x7d: /* FRSQRTE */
7849 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
7850 break;
7851 default:
7852 g_assert_not_reached();
7855 if (is_scalar) {
7856 write_fp_sreg(s, rd, tcg_res);
7857 } else {
7858 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
7861 tcg_temp_free_i32(tcg_res);
7862 tcg_temp_free_i32(tcg_op);
7863 if (!is_q && !is_scalar) {
7864 clear_vec_high(s, rd);
7867 tcg_temp_free_ptr(fpst);
7870 static void handle_2misc_narrow(DisasContext *s, bool scalar,
7871 int opcode, bool u, bool is_q,
7872 int size, int rn, int rd)
7874 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
7875 * in the source becomes a size element in the destination).
7877 int pass;
7878 TCGv_i32 tcg_res[2];
7879 int destelt = is_q ? 2 : 0;
7880 int passes = scalar ? 1 : 2;
7882 if (scalar) {
7883 tcg_res[1] = tcg_const_i32(0);
7886 for (pass = 0; pass < passes; pass++) {
7887 TCGv_i64 tcg_op = tcg_temp_new_i64();
7888 NeonGenNarrowFn *genfn = NULL;
7889 NeonGenNarrowEnvFn *genenvfn = NULL;
7891 if (scalar) {
7892 read_vec_element(s, tcg_op, rn, pass, size + 1);
7893 } else {
7894 read_vec_element(s, tcg_op, rn, pass, MO_64);
7896 tcg_res[pass] = tcg_temp_new_i32();
7898 switch (opcode) {
7899 case 0x12: /* XTN, SQXTUN */
7901 static NeonGenNarrowFn * const xtnfns[3] = {
7902 gen_helper_neon_narrow_u8,
7903 gen_helper_neon_narrow_u16,
7904 tcg_gen_extrl_i64_i32,
7906 static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
7907 gen_helper_neon_unarrow_sat8,
7908 gen_helper_neon_unarrow_sat16,
7909 gen_helper_neon_unarrow_sat32,
7911 if (u) {
7912 genenvfn = sqxtunfns[size];
7913 } else {
7914 genfn = xtnfns[size];
7916 break;
7918 case 0x14: /* SQXTN, UQXTN */
7920 static NeonGenNarrowEnvFn * const fns[3][2] = {
7921 { gen_helper_neon_narrow_sat_s8,
7922 gen_helper_neon_narrow_sat_u8 },
7923 { gen_helper_neon_narrow_sat_s16,
7924 gen_helper_neon_narrow_sat_u16 },
7925 { gen_helper_neon_narrow_sat_s32,
7926 gen_helper_neon_narrow_sat_u32 },
7928 genenvfn = fns[size][u];
7929 break;
7931 case 0x16: /* FCVTN, FCVTN2 */
7932 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
7933 if (size == 2) {
7934 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env);
7935 } else {
7936 TCGv_i32 tcg_lo = tcg_temp_new_i32();
7937 TCGv_i32 tcg_hi = tcg_temp_new_i32();
7938 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
7939 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, cpu_env);
7940 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, cpu_env);
7941 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
7942 tcg_temp_free_i32(tcg_lo);
7943 tcg_temp_free_i32(tcg_hi);
7945 break;
7946 case 0x56: /* FCVTXN, FCVTXN2 */
7947 /* 64 bit to 32 bit float conversion
7948 * with von Neumann rounding (round to odd)
7950 assert(size == 2);
7951 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env);
7952 break;
7953 default:
7954 g_assert_not_reached();
7957 if (genfn) {
7958 genfn(tcg_res[pass], tcg_op);
7959 } else if (genenvfn) {
7960 genenvfn(tcg_res[pass], cpu_env, tcg_op);
7963 tcg_temp_free_i64(tcg_op);
7966 for (pass = 0; pass < 2; pass++) {
7967 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
7968 tcg_temp_free_i32(tcg_res[pass]);
7970 if (!is_q) {
7971 clear_vec_high(s, rd);
7975 /* Remaining saturating accumulating ops */
7976 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
7977 bool is_q, int size, int rn, int rd)
7979 bool is_double = (size == 3);
7981 if (is_double) {
7982 TCGv_i64 tcg_rn = tcg_temp_new_i64();
7983 TCGv_i64 tcg_rd = tcg_temp_new_i64();
7984 int pass;
7986 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
7987 read_vec_element(s, tcg_rn, rn, pass, MO_64);
7988 read_vec_element(s, tcg_rd, rd, pass, MO_64);
7990 if (is_u) { /* USQADD */
7991 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
7992 } else { /* SUQADD */
7993 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
7995 write_vec_element(s, tcg_rd, rd, pass, MO_64);
7997 if (is_scalar) {
7998 clear_vec_high(s, rd);
8001 tcg_temp_free_i64(tcg_rd);
8002 tcg_temp_free_i64(tcg_rn);
8003 } else {
8004 TCGv_i32 tcg_rn = tcg_temp_new_i32();
8005 TCGv_i32 tcg_rd = tcg_temp_new_i32();
8006 int pass, maxpasses;
8008 if (is_scalar) {
8009 maxpasses = 1;
8010 } else {
8011 maxpasses = is_q ? 4 : 2;
8014 for (pass = 0; pass < maxpasses; pass++) {
8015 if (is_scalar) {
8016 read_vec_element_i32(s, tcg_rn, rn, pass, size);
8017 read_vec_element_i32(s, tcg_rd, rd, pass, size);
8018 } else {
8019 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
8020 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
8023 if (is_u) { /* USQADD */
8024 switch (size) {
8025 case 0:
8026 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8027 break;
8028 case 1:
8029 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8030 break;
8031 case 2:
8032 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8033 break;
8034 default:
8035 g_assert_not_reached();
8037 } else { /* SUQADD */
8038 switch (size) {
8039 case 0:
8040 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8041 break;
8042 case 1:
8043 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8044 break;
8045 case 2:
8046 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8047 break;
8048 default:
8049 g_assert_not_reached();
8053 if (is_scalar) {
8054 TCGv_i64 tcg_zero = tcg_const_i64(0);
8055 write_vec_element(s, tcg_zero, rd, 0, MO_64);
8056 tcg_temp_free_i64(tcg_zero);
8058 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
8061 if (!is_q) {
8062 clear_vec_high(s, rd);
8065 tcg_temp_free_i32(tcg_rd);
8066 tcg_temp_free_i32(tcg_rn);
8070 /* C3.6.12 AdvSIMD scalar two reg misc
8071 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
8072 * +-----+---+-----------+------+-----------+--------+-----+------+------+
8073 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
8074 * +-----+---+-----------+------+-----------+--------+-----+------+------+
8076 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
8078 int rd = extract32(insn, 0, 5);
8079 int rn = extract32(insn, 5, 5);
8080 int opcode = extract32(insn, 12, 5);
8081 int size = extract32(insn, 22, 2);
8082 bool u = extract32(insn, 29, 1);
8083 bool is_fcvt = false;
8084 int rmode;
8085 TCGv_i32 tcg_rmode;
8086 TCGv_ptr tcg_fpstatus;
8088 switch (opcode) {
8089 case 0x3: /* USQADD / SUQADD*/
8090 if (!fp_access_check(s)) {
8091 return;
8093 handle_2misc_satacc(s, true, u, false, size, rn, rd);
8094 return;
8095 case 0x7: /* SQABS / SQNEG */
8096 break;
8097 case 0xa: /* CMLT */
8098 if (u) {
8099 unallocated_encoding(s);
8100 return;
8102 /* fall through */
8103 case 0x8: /* CMGT, CMGE */
8104 case 0x9: /* CMEQ, CMLE */
8105 case 0xb: /* ABS, NEG */
8106 if (size != 3) {
8107 unallocated_encoding(s);
8108 return;
8110 break;
8111 case 0x12: /* SQXTUN */
8112 if (!u) {
8113 unallocated_encoding(s);
8114 return;
8116 /* fall through */
8117 case 0x14: /* SQXTN, UQXTN */
8118 if (size == 3) {
8119 unallocated_encoding(s);
8120 return;
8122 if (!fp_access_check(s)) {
8123 return;
8125 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
8126 return;
8127 case 0xc ... 0xf:
8128 case 0x16 ... 0x1d:
8129 case 0x1f:
8130 /* Floating point: U, size[1] and opcode indicate operation;
8131 * size[0] indicates single or double precision.
8133 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
8134 size = extract32(size, 0, 1) ? 3 : 2;
8135 switch (opcode) {
8136 case 0x2c: /* FCMGT (zero) */
8137 case 0x2d: /* FCMEQ (zero) */
8138 case 0x2e: /* FCMLT (zero) */
8139 case 0x6c: /* FCMGE (zero) */
8140 case 0x6d: /* FCMLE (zero) */
8141 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
8142 return;
8143 case 0x1d: /* SCVTF */
8144 case 0x5d: /* UCVTF */
8146 bool is_signed = (opcode == 0x1d);
8147 if (!fp_access_check(s)) {
8148 return;
8150 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
8151 return;
8153 case 0x3d: /* FRECPE */
8154 case 0x3f: /* FRECPX */
8155 case 0x7d: /* FRSQRTE */
8156 if (!fp_access_check(s)) {
8157 return;
8159 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
8160 return;
8161 case 0x1a: /* FCVTNS */
8162 case 0x1b: /* FCVTMS */
8163 case 0x3a: /* FCVTPS */
8164 case 0x3b: /* FCVTZS */
8165 case 0x5a: /* FCVTNU */
8166 case 0x5b: /* FCVTMU */
8167 case 0x7a: /* FCVTPU */
8168 case 0x7b: /* FCVTZU */
8169 is_fcvt = true;
8170 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
8171 break;
8172 case 0x1c: /* FCVTAS */
8173 case 0x5c: /* FCVTAU */
8174 /* TIEAWAY doesn't fit in the usual rounding mode encoding */
8175 is_fcvt = true;
8176 rmode = FPROUNDING_TIEAWAY;
8177 break;
8178 case 0x56: /* FCVTXN, FCVTXN2 */
8179 if (size == 2) {
8180 unallocated_encoding(s);
8181 return;
8183 if (!fp_access_check(s)) {
8184 return;
8186 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
8187 return;
8188 default:
8189 unallocated_encoding(s);
8190 return;
8192 break;
8193 default:
8194 unallocated_encoding(s);
8195 return;
8198 if (!fp_access_check(s)) {
8199 return;
8202 if (is_fcvt) {
8203 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
8204 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
8205 tcg_fpstatus = get_fpstatus_ptr();
8206 } else {
8207 TCGV_UNUSED_I32(tcg_rmode);
8208 TCGV_UNUSED_PTR(tcg_fpstatus);
8211 if (size == 3) {
8212 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
8213 TCGv_i64 tcg_rd = tcg_temp_new_i64();
8215 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
8216 write_fp_dreg(s, rd, tcg_rd);
8217 tcg_temp_free_i64(tcg_rd);
8218 tcg_temp_free_i64(tcg_rn);
8219 } else {
8220 TCGv_i32 tcg_rn = tcg_temp_new_i32();
8221 TCGv_i32 tcg_rd = tcg_temp_new_i32();
8223 read_vec_element_i32(s, tcg_rn, rn, 0, size);
8225 switch (opcode) {
8226 case 0x7: /* SQABS, SQNEG */
8228 NeonGenOneOpEnvFn *genfn;
8229 static NeonGenOneOpEnvFn * const fns[3][2] = {
8230 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
8231 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
8232 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
8234 genfn = fns[size][u];
8235 genfn(tcg_rd, cpu_env, tcg_rn);
8236 break;
8238 case 0x1a: /* FCVTNS */
8239 case 0x1b: /* FCVTMS */
8240 case 0x1c: /* FCVTAS */
8241 case 0x3a: /* FCVTPS */
8242 case 0x3b: /* FCVTZS */
8244 TCGv_i32 tcg_shift = tcg_const_i32(0);
8245 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
8246 tcg_temp_free_i32(tcg_shift);
8247 break;
8249 case 0x5a: /* FCVTNU */
8250 case 0x5b: /* FCVTMU */
8251 case 0x5c: /* FCVTAU */
8252 case 0x7a: /* FCVTPU */
8253 case 0x7b: /* FCVTZU */
8255 TCGv_i32 tcg_shift = tcg_const_i32(0);
8256 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
8257 tcg_temp_free_i32(tcg_shift);
8258 break;
8260 default:
8261 g_assert_not_reached();
8264 write_fp_sreg(s, rd, tcg_rd);
8265 tcg_temp_free_i32(tcg_rd);
8266 tcg_temp_free_i32(tcg_rn);
8269 if (is_fcvt) {
8270 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
8271 tcg_temp_free_i32(tcg_rmode);
8272 tcg_temp_free_ptr(tcg_fpstatus);
8276 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
8277 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
8278 int immh, int immb, int opcode, int rn, int rd)
8280 int size = 32 - clz32(immh) - 1;
8281 int immhb = immh << 3 | immb;
8282 int shift = 2 * (8 << size) - immhb;
8283 bool accumulate = false;
8284 bool round = false;
8285 bool insert = false;
8286 int dsize = is_q ? 128 : 64;
8287 int esize = 8 << size;
8288 int elements = dsize/esize;
8289 TCGMemOp memop = size | (is_u ? 0 : MO_SIGN);
8290 TCGv_i64 tcg_rn = new_tmp_a64(s);
8291 TCGv_i64 tcg_rd = new_tmp_a64(s);
8292 TCGv_i64 tcg_round;
8293 int i;
8295 if (extract32(immh, 3, 1) && !is_q) {
8296 unallocated_encoding(s);
8297 return;
8300 if (size > 3 && !is_q) {
8301 unallocated_encoding(s);
8302 return;
8305 if (!fp_access_check(s)) {
8306 return;
8309 switch (opcode) {
8310 case 0x02: /* SSRA / USRA (accumulate) */
8311 accumulate = true;
8312 break;
8313 case 0x04: /* SRSHR / URSHR (rounding) */
8314 round = true;
8315 break;
8316 case 0x06: /* SRSRA / URSRA (accum + rounding) */
8317 accumulate = round = true;
8318 break;
8319 case 0x08: /* SRI */
8320 insert = true;
8321 break;
8324 if (round) {
8325 uint64_t round_const = 1ULL << (shift - 1);
8326 tcg_round = tcg_const_i64(round_const);
8327 } else {
8328 TCGV_UNUSED_I64(tcg_round);
8331 for (i = 0; i < elements; i++) {
8332 read_vec_element(s, tcg_rn, rn, i, memop);
8333 if (accumulate || insert) {
8334 read_vec_element(s, tcg_rd, rd, i, memop);
8337 if (insert) {
8338 handle_shri_with_ins(tcg_rd, tcg_rn, size, shift);
8339 } else {
8340 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8341 accumulate, is_u, size, shift);
8344 write_vec_element(s, tcg_rd, rd, i, size);
8347 if (!is_q) {
8348 clear_vec_high(s, rd);
8351 if (round) {
8352 tcg_temp_free_i64(tcg_round);
8356 /* SHL/SLI - Vector shift left */
8357 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
8358 int immh, int immb, int opcode, int rn, int rd)
8360 int size = 32 - clz32(immh) - 1;
8361 int immhb = immh << 3 | immb;
8362 int shift = immhb - (8 << size);
8363 int dsize = is_q ? 128 : 64;
8364 int esize = 8 << size;
8365 int elements = dsize/esize;
8366 TCGv_i64 tcg_rn = new_tmp_a64(s);
8367 TCGv_i64 tcg_rd = new_tmp_a64(s);
8368 int i;
8370 if (extract32(immh, 3, 1) && !is_q) {
8371 unallocated_encoding(s);
8372 return;
8375 if (size > 3 && !is_q) {
8376 unallocated_encoding(s);
8377 return;
8380 if (!fp_access_check(s)) {
8381 return;
8384 for (i = 0; i < elements; i++) {
8385 read_vec_element(s, tcg_rn, rn, i, size);
8386 if (insert) {
8387 read_vec_element(s, tcg_rd, rd, i, size);
8390 handle_shli_with_ins(tcg_rd, tcg_rn, insert, shift);
8392 write_vec_element(s, tcg_rd, rd, i, size);
8395 if (!is_q) {
8396 clear_vec_high(s, rd);
8400 /* USHLL/SHLL - Vector shift left with widening */
8401 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
8402 int immh, int immb, int opcode, int rn, int rd)
8404 int size = 32 - clz32(immh) - 1;
8405 int immhb = immh << 3 | immb;
8406 int shift = immhb - (8 << size);
8407 int dsize = 64;
8408 int esize = 8 << size;
8409 int elements = dsize/esize;
8410 TCGv_i64 tcg_rn = new_tmp_a64(s);
8411 TCGv_i64 tcg_rd = new_tmp_a64(s);
8412 int i;
8414 if (size >= 3) {
8415 unallocated_encoding(s);
8416 return;
8419 if (!fp_access_check(s)) {
8420 return;
8423 /* For the LL variants the store is larger than the load,
8424 * so if rd == rn we would overwrite parts of our input.
8425 * So load everything right now and use shifts in the main loop.
8427 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
8429 for (i = 0; i < elements; i++) {
8430 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
8431 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
8432 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
8433 write_vec_element(s, tcg_rd, rd, i, size + 1);
8437 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
8438 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
8439 int immh, int immb, int opcode, int rn, int rd)
8441 int immhb = immh << 3 | immb;
8442 int size = 32 - clz32(immh) - 1;
8443 int dsize = 64;
8444 int esize = 8 << size;
8445 int elements = dsize/esize;
8446 int shift = (2 * esize) - immhb;
8447 bool round = extract32(opcode, 0, 1);
8448 TCGv_i64 tcg_rn, tcg_rd, tcg_final;
8449 TCGv_i64 tcg_round;
8450 int i;
8452 if (extract32(immh, 3, 1)) {
8453 unallocated_encoding(s);
8454 return;
8457 if (!fp_access_check(s)) {
8458 return;
8461 tcg_rn = tcg_temp_new_i64();
8462 tcg_rd = tcg_temp_new_i64();
8463 tcg_final = tcg_temp_new_i64();
8464 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
8466 if (round) {
8467 uint64_t round_const = 1ULL << (shift - 1);
8468 tcg_round = tcg_const_i64(round_const);
8469 } else {
8470 TCGV_UNUSED_I64(tcg_round);
8473 for (i = 0; i < elements; i++) {
8474 read_vec_element(s, tcg_rn, rn, i, size+1);
8475 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8476 false, true, size+1, shift);
8478 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8481 if (!is_q) {
8482 clear_vec_high(s, rd);
8483 write_vec_element(s, tcg_final, rd, 0, MO_64);
8484 } else {
8485 write_vec_element(s, tcg_final, rd, 1, MO_64);
8488 if (round) {
8489 tcg_temp_free_i64(tcg_round);
8491 tcg_temp_free_i64(tcg_rn);
8492 tcg_temp_free_i64(tcg_rd);
8493 tcg_temp_free_i64(tcg_final);
8494 return;
8498 /* C3.6.14 AdvSIMD shift by immediate
8499 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
8500 * +---+---+---+-------------+------+------+--------+---+------+------+
8501 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
8502 * +---+---+---+-------------+------+------+--------+---+------+------+
8504 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
8506 int rd = extract32(insn, 0, 5);
8507 int rn = extract32(insn, 5, 5);
8508 int opcode = extract32(insn, 11, 5);
8509 int immb = extract32(insn, 16, 3);
8510 int immh = extract32(insn, 19, 4);
8511 bool is_u = extract32(insn, 29, 1);
8512 bool is_q = extract32(insn, 30, 1);
8514 switch (opcode) {
8515 case 0x08: /* SRI */
8516 if (!is_u) {
8517 unallocated_encoding(s);
8518 return;
8520 /* fall through */
8521 case 0x00: /* SSHR / USHR */
8522 case 0x02: /* SSRA / USRA (accumulate) */
8523 case 0x04: /* SRSHR / URSHR (rounding) */
8524 case 0x06: /* SRSRA / URSRA (accum + rounding) */
8525 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
8526 break;
8527 case 0x0a: /* SHL / SLI */
8528 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
8529 break;
8530 case 0x10: /* SHRN */
8531 case 0x11: /* RSHRN / SQRSHRUN */
8532 if (is_u) {
8533 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
8534 opcode, rn, rd);
8535 } else {
8536 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
8538 break;
8539 case 0x12: /* SQSHRN / UQSHRN */
8540 case 0x13: /* SQRSHRN / UQRSHRN */
8541 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
8542 opcode, rn, rd);
8543 break;
8544 case 0x14: /* SSHLL / USHLL */
8545 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
8546 break;
8547 case 0x1c: /* SCVTF / UCVTF */
8548 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
8549 opcode, rn, rd);
8550 break;
8551 case 0xc: /* SQSHLU */
8552 if (!is_u) {
8553 unallocated_encoding(s);
8554 return;
8556 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
8557 break;
8558 case 0xe: /* SQSHL, UQSHL */
8559 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
8560 break;
8561 case 0x1f: /* FCVTZS/ FCVTZU */
8562 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
8563 return;
8564 default:
8565 unallocated_encoding(s);
8566 return;
8570 /* Generate code to do a "long" addition or subtraction, ie one done in
8571 * TCGv_i64 on vector lanes twice the width specified by size.
8573 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
8574 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
8576 static NeonGenTwo64OpFn * const fns[3][2] = {
8577 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
8578 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
8579 { tcg_gen_add_i64, tcg_gen_sub_i64 },
8581 NeonGenTwo64OpFn *genfn;
8582 assert(size < 3);
8584 genfn = fns[size][is_sub];
8585 genfn(tcg_res, tcg_op1, tcg_op2);
8588 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
8589 int opcode, int rd, int rn, int rm)
8591 /* 3-reg-different widening insns: 64 x 64 -> 128 */
8592 TCGv_i64 tcg_res[2];
8593 int pass, accop;
8595 tcg_res[0] = tcg_temp_new_i64();
8596 tcg_res[1] = tcg_temp_new_i64();
8598 /* Does this op do an adding accumulate, a subtracting accumulate,
8599 * or no accumulate at all?
8601 switch (opcode) {
8602 case 5:
8603 case 8:
8604 case 9:
8605 accop = 1;
8606 break;
8607 case 10:
8608 case 11:
8609 accop = -1;
8610 break;
8611 default:
8612 accop = 0;
8613 break;
8616 if (accop != 0) {
8617 read_vec_element(s, tcg_res[0], rd, 0, MO_64);
8618 read_vec_element(s, tcg_res[1], rd, 1, MO_64);
8621 /* size == 2 means two 32x32->64 operations; this is worth special
8622 * casing because we can generally handle it inline.
8624 if (size == 2) {
8625 for (pass = 0; pass < 2; pass++) {
8626 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8627 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8628 TCGv_i64 tcg_passres;
8629 TCGMemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
8631 int elt = pass + is_q * 2;
8633 read_vec_element(s, tcg_op1, rn, elt, memop);
8634 read_vec_element(s, tcg_op2, rm, elt, memop);
8636 if (accop == 0) {
8637 tcg_passres = tcg_res[pass];
8638 } else {
8639 tcg_passres = tcg_temp_new_i64();
8642 switch (opcode) {
8643 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
8644 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
8645 break;
8646 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
8647 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
8648 break;
8649 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
8650 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
8652 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
8653 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
8655 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
8656 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
8657 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
8658 tcg_passres,
8659 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
8660 tcg_temp_free_i64(tcg_tmp1);
8661 tcg_temp_free_i64(tcg_tmp2);
8662 break;
8664 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
8665 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
8666 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
8667 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
8668 break;
8669 case 9: /* SQDMLAL, SQDMLAL2 */
8670 case 11: /* SQDMLSL, SQDMLSL2 */
8671 case 13: /* SQDMULL, SQDMULL2 */
8672 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
8673 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
8674 tcg_passres, tcg_passres);
8675 break;
8676 default:
8677 g_assert_not_reached();
8680 if (opcode == 9 || opcode == 11) {
8681 /* saturating accumulate ops */
8682 if (accop < 0) {
8683 tcg_gen_neg_i64(tcg_passres, tcg_passres);
8685 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
8686 tcg_res[pass], tcg_passres);
8687 } else if (accop > 0) {
8688 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
8689 } else if (accop < 0) {
8690 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
8693 if (accop != 0) {
8694 tcg_temp_free_i64(tcg_passres);
8697 tcg_temp_free_i64(tcg_op1);
8698 tcg_temp_free_i64(tcg_op2);
8700 } else {
8701 /* size 0 or 1, generally helper functions */
8702 for (pass = 0; pass < 2; pass++) {
8703 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8704 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8705 TCGv_i64 tcg_passres;
8706 int elt = pass + is_q * 2;
8708 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
8709 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
8711 if (accop == 0) {
8712 tcg_passres = tcg_res[pass];
8713 } else {
8714 tcg_passres = tcg_temp_new_i64();
8717 switch (opcode) {
8718 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
8719 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
8721 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
8722 static NeonGenWidenFn * const widenfns[2][2] = {
8723 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
8724 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
8726 NeonGenWidenFn *widenfn = widenfns[size][is_u];
8728 widenfn(tcg_op2_64, tcg_op2);
8729 widenfn(tcg_passres, tcg_op1);
8730 gen_neon_addl(size, (opcode == 2), tcg_passres,
8731 tcg_passres, tcg_op2_64);
8732 tcg_temp_free_i64(tcg_op2_64);
8733 break;
8735 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
8736 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
8737 if (size == 0) {
8738 if (is_u) {
8739 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
8740 } else {
8741 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
8743 } else {
8744 if (is_u) {
8745 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
8746 } else {
8747 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
8750 break;
8751 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
8752 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
8753 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
8754 if (size == 0) {
8755 if (is_u) {
8756 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
8757 } else {
8758 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
8760 } else {
8761 if (is_u) {
8762 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
8763 } else {
8764 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
8767 break;
8768 case 9: /* SQDMLAL, SQDMLAL2 */
8769 case 11: /* SQDMLSL, SQDMLSL2 */
8770 case 13: /* SQDMULL, SQDMULL2 */
8771 assert(size == 1);
8772 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
8773 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
8774 tcg_passres, tcg_passres);
8775 break;
8776 case 14: /* PMULL */
8777 assert(size == 0);
8778 gen_helper_neon_mull_p8(tcg_passres, tcg_op1, tcg_op2);
8779 break;
8780 default:
8781 g_assert_not_reached();
8783 tcg_temp_free_i32(tcg_op1);
8784 tcg_temp_free_i32(tcg_op2);
8786 if (accop != 0) {
8787 if (opcode == 9 || opcode == 11) {
8788 /* saturating accumulate ops */
8789 if (accop < 0) {
8790 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
8792 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
8793 tcg_res[pass],
8794 tcg_passres);
8795 } else {
8796 gen_neon_addl(size, (accop < 0), tcg_res[pass],
8797 tcg_res[pass], tcg_passres);
8799 tcg_temp_free_i64(tcg_passres);
8804 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
8805 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
8806 tcg_temp_free_i64(tcg_res[0]);
8807 tcg_temp_free_i64(tcg_res[1]);
8810 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
8811 int opcode, int rd, int rn, int rm)
8813 TCGv_i64 tcg_res[2];
8814 int part = is_q ? 2 : 0;
8815 int pass;
8817 for (pass = 0; pass < 2; pass++) {
8818 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8819 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8820 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
8821 static NeonGenWidenFn * const widenfns[3][2] = {
8822 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
8823 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
8824 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
8826 NeonGenWidenFn *widenfn = widenfns[size][is_u];
8828 read_vec_element(s, tcg_op1, rn, pass, MO_64);
8829 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
8830 widenfn(tcg_op2_wide, tcg_op2);
8831 tcg_temp_free_i32(tcg_op2);
8832 tcg_res[pass] = tcg_temp_new_i64();
8833 gen_neon_addl(size, (opcode == 3),
8834 tcg_res[pass], tcg_op1, tcg_op2_wide);
8835 tcg_temp_free_i64(tcg_op1);
8836 tcg_temp_free_i64(tcg_op2_wide);
8839 for (pass = 0; pass < 2; pass++) {
8840 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
8841 tcg_temp_free_i64(tcg_res[pass]);
8845 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
8847 tcg_gen_addi_i64(in, in, 1U << 31);
8848 tcg_gen_extrh_i64_i32(res, in);
8851 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
8852 int opcode, int rd, int rn, int rm)
8854 TCGv_i32 tcg_res[2];
8855 int part = is_q ? 2 : 0;
8856 int pass;
8858 for (pass = 0; pass < 2; pass++) {
8859 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8860 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8861 TCGv_i64 tcg_wideres = tcg_temp_new_i64();
8862 static NeonGenNarrowFn * const narrowfns[3][2] = {
8863 { gen_helper_neon_narrow_high_u8,
8864 gen_helper_neon_narrow_round_high_u8 },
8865 { gen_helper_neon_narrow_high_u16,
8866 gen_helper_neon_narrow_round_high_u16 },
8867 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
8869 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
8871 read_vec_element(s, tcg_op1, rn, pass, MO_64);
8872 read_vec_element(s, tcg_op2, rm, pass, MO_64);
8874 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
8876 tcg_temp_free_i64(tcg_op1);
8877 tcg_temp_free_i64(tcg_op2);
8879 tcg_res[pass] = tcg_temp_new_i32();
8880 gennarrow(tcg_res[pass], tcg_wideres);
8881 tcg_temp_free_i64(tcg_wideres);
8884 for (pass = 0; pass < 2; pass++) {
8885 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
8886 tcg_temp_free_i32(tcg_res[pass]);
8888 if (!is_q) {
8889 clear_vec_high(s, rd);
8893 static void handle_pmull_64(DisasContext *s, int is_q, int rd, int rn, int rm)
8895 /* PMULL of 64 x 64 -> 128 is an odd special case because it
8896 * is the only three-reg-diff instruction which produces a
8897 * 128-bit wide result from a single operation. However since
8898 * it's possible to calculate the two halves more or less
8899 * separately we just use two helper calls.
8901 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8902 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8903 TCGv_i64 tcg_res = tcg_temp_new_i64();
8905 read_vec_element(s, tcg_op1, rn, is_q, MO_64);
8906 read_vec_element(s, tcg_op2, rm, is_q, MO_64);
8907 gen_helper_neon_pmull_64_lo(tcg_res, tcg_op1, tcg_op2);
8908 write_vec_element(s, tcg_res, rd, 0, MO_64);
8909 gen_helper_neon_pmull_64_hi(tcg_res, tcg_op1, tcg_op2);
8910 write_vec_element(s, tcg_res, rd, 1, MO_64);
8912 tcg_temp_free_i64(tcg_op1);
8913 tcg_temp_free_i64(tcg_op2);
8914 tcg_temp_free_i64(tcg_res);
8917 /* C3.6.15 AdvSIMD three different
8918 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
8919 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
8920 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
8921 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
8923 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
8925 /* Instructions in this group fall into three basic classes
8926 * (in each case with the operation working on each element in
8927 * the input vectors):
8928 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
8929 * 128 bit input)
8930 * (2) wide 64 x 128 -> 128
8931 * (3) narrowing 128 x 128 -> 64
8932 * Here we do initial decode, catch unallocated cases and
8933 * dispatch to separate functions for each class.
8935 int is_q = extract32(insn, 30, 1);
8936 int is_u = extract32(insn, 29, 1);
8937 int size = extract32(insn, 22, 2);
8938 int opcode = extract32(insn, 12, 4);
8939 int rm = extract32(insn, 16, 5);
8940 int rn = extract32(insn, 5, 5);
8941 int rd = extract32(insn, 0, 5);
8943 switch (opcode) {
8944 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
8945 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
8946 /* 64 x 128 -> 128 */
8947 if (size == 3) {
8948 unallocated_encoding(s);
8949 return;
8951 if (!fp_access_check(s)) {
8952 return;
8954 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
8955 break;
8956 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
8957 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
8958 /* 128 x 128 -> 64 */
8959 if (size == 3) {
8960 unallocated_encoding(s);
8961 return;
8963 if (!fp_access_check(s)) {
8964 return;
8966 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
8967 break;
8968 case 14: /* PMULL, PMULL2 */
8969 if (is_u || size == 1 || size == 2) {
8970 unallocated_encoding(s);
8971 return;
8973 if (size == 3) {
8974 if (!arm_dc_feature(s, ARM_FEATURE_V8_PMULL)) {
8975 unallocated_encoding(s);
8976 return;
8978 if (!fp_access_check(s)) {
8979 return;
8981 handle_pmull_64(s, is_q, rd, rn, rm);
8982 return;
8984 goto is_widening;
8985 case 9: /* SQDMLAL, SQDMLAL2 */
8986 case 11: /* SQDMLSL, SQDMLSL2 */
8987 case 13: /* SQDMULL, SQDMULL2 */
8988 if (is_u || size == 0) {
8989 unallocated_encoding(s);
8990 return;
8992 /* fall through */
8993 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
8994 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
8995 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
8996 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
8997 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
8998 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
8999 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
9000 /* 64 x 64 -> 128 */
9001 if (size == 3) {
9002 unallocated_encoding(s);
9003 return;
9005 is_widening:
9006 if (!fp_access_check(s)) {
9007 return;
9010 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
9011 break;
9012 default:
9013 /* opcode 15 not allocated */
9014 unallocated_encoding(s);
9015 break;
9019 /* Logic op (opcode == 3) subgroup of C3.6.16. */
9020 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
9022 int rd = extract32(insn, 0, 5);
9023 int rn = extract32(insn, 5, 5);
9024 int rm = extract32(insn, 16, 5);
9025 int size = extract32(insn, 22, 2);
9026 bool is_u = extract32(insn, 29, 1);
9027 bool is_q = extract32(insn, 30, 1);
9028 TCGv_i64 tcg_op1, tcg_op2, tcg_res[2];
9029 int pass;
9031 if (!fp_access_check(s)) {
9032 return;
9035 tcg_op1 = tcg_temp_new_i64();
9036 tcg_op2 = tcg_temp_new_i64();
9037 tcg_res[0] = tcg_temp_new_i64();
9038 tcg_res[1] = tcg_temp_new_i64();
9040 for (pass = 0; pass < (is_q ? 2 : 1); pass++) {
9041 read_vec_element(s, tcg_op1, rn, pass, MO_64);
9042 read_vec_element(s, tcg_op2, rm, pass, MO_64);
9044 if (!is_u) {
9045 switch (size) {
9046 case 0: /* AND */
9047 tcg_gen_and_i64(tcg_res[pass], tcg_op1, tcg_op2);
9048 break;
9049 case 1: /* BIC */
9050 tcg_gen_andc_i64(tcg_res[pass], tcg_op1, tcg_op2);
9051 break;
9052 case 2: /* ORR */
9053 tcg_gen_or_i64(tcg_res[pass], tcg_op1, tcg_op2);
9054 break;
9055 case 3: /* ORN */
9056 tcg_gen_orc_i64(tcg_res[pass], tcg_op1, tcg_op2);
9057 break;
9059 } else {
9060 if (size != 0) {
9061 /* B* ops need res loaded to operate on */
9062 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
9065 switch (size) {
9066 case 0: /* EOR */
9067 tcg_gen_xor_i64(tcg_res[pass], tcg_op1, tcg_op2);
9068 break;
9069 case 1: /* BSL bitwise select */
9070 tcg_gen_xor_i64(tcg_op1, tcg_op1, tcg_op2);
9071 tcg_gen_and_i64(tcg_op1, tcg_op1, tcg_res[pass]);
9072 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op1);
9073 break;
9074 case 2: /* BIT, bitwise insert if true */
9075 tcg_gen_xor_i64(tcg_op1, tcg_op1, tcg_res[pass]);
9076 tcg_gen_and_i64(tcg_op1, tcg_op1, tcg_op2);
9077 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
9078 break;
9079 case 3: /* BIF, bitwise insert if false */
9080 tcg_gen_xor_i64(tcg_op1, tcg_op1, tcg_res[pass]);
9081 tcg_gen_andc_i64(tcg_op1, tcg_op1, tcg_op2);
9082 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
9083 break;
9088 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
9089 if (!is_q) {
9090 tcg_gen_movi_i64(tcg_res[1], 0);
9092 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
9094 tcg_temp_free_i64(tcg_op1);
9095 tcg_temp_free_i64(tcg_op2);
9096 tcg_temp_free_i64(tcg_res[0]);
9097 tcg_temp_free_i64(tcg_res[1]);
9100 /* Helper functions for 32 bit comparisons */
9101 static void gen_max_s32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
9103 tcg_gen_movcond_i32(TCG_COND_GE, res, op1, op2, op1, op2);
9106 static void gen_max_u32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
9108 tcg_gen_movcond_i32(TCG_COND_GEU, res, op1, op2, op1, op2);
9111 static void gen_min_s32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
9113 tcg_gen_movcond_i32(TCG_COND_LE, res, op1, op2, op1, op2);
9116 static void gen_min_u32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
9118 tcg_gen_movcond_i32(TCG_COND_LEU, res, op1, op2, op1, op2);
9121 /* Pairwise op subgroup of C3.6.16.
9123 * This is called directly or via the handle_3same_float for float pairwise
9124 * operations where the opcode and size are calculated differently.
9126 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
9127 int size, int rn, int rm, int rd)
9129 TCGv_ptr fpst;
9130 int pass;
9132 /* Floating point operations need fpst */
9133 if (opcode >= 0x58) {
9134 fpst = get_fpstatus_ptr();
9135 } else {
9136 TCGV_UNUSED_PTR(fpst);
9139 if (!fp_access_check(s)) {
9140 return;
9143 /* These operations work on the concatenated rm:rn, with each pair of
9144 * adjacent elements being operated on to produce an element in the result.
9146 if (size == 3) {
9147 TCGv_i64 tcg_res[2];
9149 for (pass = 0; pass < 2; pass++) {
9150 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9151 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9152 int passreg = (pass == 0) ? rn : rm;
9154 read_vec_element(s, tcg_op1, passreg, 0, MO_64);
9155 read_vec_element(s, tcg_op2, passreg, 1, MO_64);
9156 tcg_res[pass] = tcg_temp_new_i64();
9158 switch (opcode) {
9159 case 0x17: /* ADDP */
9160 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
9161 break;
9162 case 0x58: /* FMAXNMP */
9163 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9164 break;
9165 case 0x5a: /* FADDP */
9166 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9167 break;
9168 case 0x5e: /* FMAXP */
9169 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9170 break;
9171 case 0x78: /* FMINNMP */
9172 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9173 break;
9174 case 0x7e: /* FMINP */
9175 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9176 break;
9177 default:
9178 g_assert_not_reached();
9181 tcg_temp_free_i64(tcg_op1);
9182 tcg_temp_free_i64(tcg_op2);
9185 for (pass = 0; pass < 2; pass++) {
9186 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
9187 tcg_temp_free_i64(tcg_res[pass]);
9189 } else {
9190 int maxpass = is_q ? 4 : 2;
9191 TCGv_i32 tcg_res[4];
9193 for (pass = 0; pass < maxpass; pass++) {
9194 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9195 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9196 NeonGenTwoOpFn *genfn = NULL;
9197 int passreg = pass < (maxpass / 2) ? rn : rm;
9198 int passelt = (is_q && (pass & 1)) ? 2 : 0;
9200 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
9201 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
9202 tcg_res[pass] = tcg_temp_new_i32();
9204 switch (opcode) {
9205 case 0x17: /* ADDP */
9207 static NeonGenTwoOpFn * const fns[3] = {
9208 gen_helper_neon_padd_u8,
9209 gen_helper_neon_padd_u16,
9210 tcg_gen_add_i32,
9212 genfn = fns[size];
9213 break;
9215 case 0x14: /* SMAXP, UMAXP */
9217 static NeonGenTwoOpFn * const fns[3][2] = {
9218 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
9219 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
9220 { gen_max_s32, gen_max_u32 },
9222 genfn = fns[size][u];
9223 break;
9225 case 0x15: /* SMINP, UMINP */
9227 static NeonGenTwoOpFn * const fns[3][2] = {
9228 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
9229 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
9230 { gen_min_s32, gen_min_u32 },
9232 genfn = fns[size][u];
9233 break;
9235 /* The FP operations are all on single floats (32 bit) */
9236 case 0x58: /* FMAXNMP */
9237 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9238 break;
9239 case 0x5a: /* FADDP */
9240 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9241 break;
9242 case 0x5e: /* FMAXP */
9243 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9244 break;
9245 case 0x78: /* FMINNMP */
9246 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9247 break;
9248 case 0x7e: /* FMINP */
9249 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9250 break;
9251 default:
9252 g_assert_not_reached();
9255 /* FP ops called directly, otherwise call now */
9256 if (genfn) {
9257 genfn(tcg_res[pass], tcg_op1, tcg_op2);
9260 tcg_temp_free_i32(tcg_op1);
9261 tcg_temp_free_i32(tcg_op2);
9264 for (pass = 0; pass < maxpass; pass++) {
9265 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
9266 tcg_temp_free_i32(tcg_res[pass]);
9268 if (!is_q) {
9269 clear_vec_high(s, rd);
9273 if (!TCGV_IS_UNUSED_PTR(fpst)) {
9274 tcg_temp_free_ptr(fpst);
9278 /* Floating point op subgroup of C3.6.16. */
9279 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
9281 /* For floating point ops, the U, size[1] and opcode bits
9282 * together indicate the operation. size[0] indicates single
9283 * or double.
9285 int fpopcode = extract32(insn, 11, 5)
9286 | (extract32(insn, 23, 1) << 5)
9287 | (extract32(insn, 29, 1) << 6);
9288 int is_q = extract32(insn, 30, 1);
9289 int size = extract32(insn, 22, 1);
9290 int rm = extract32(insn, 16, 5);
9291 int rn = extract32(insn, 5, 5);
9292 int rd = extract32(insn, 0, 5);
9294 int datasize = is_q ? 128 : 64;
9295 int esize = 32 << size;
9296 int elements = datasize / esize;
9298 if (size == 1 && !is_q) {
9299 unallocated_encoding(s);
9300 return;
9303 switch (fpopcode) {
9304 case 0x58: /* FMAXNMP */
9305 case 0x5a: /* FADDP */
9306 case 0x5e: /* FMAXP */
9307 case 0x78: /* FMINNMP */
9308 case 0x7e: /* FMINP */
9309 if (size && !is_q) {
9310 unallocated_encoding(s);
9311 return;
9313 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
9314 rn, rm, rd);
9315 return;
9316 case 0x1b: /* FMULX */
9317 case 0x1f: /* FRECPS */
9318 case 0x3f: /* FRSQRTS */
9319 case 0x5d: /* FACGE */
9320 case 0x7d: /* FACGT */
9321 case 0x19: /* FMLA */
9322 case 0x39: /* FMLS */
9323 case 0x18: /* FMAXNM */
9324 case 0x1a: /* FADD */
9325 case 0x1c: /* FCMEQ */
9326 case 0x1e: /* FMAX */
9327 case 0x38: /* FMINNM */
9328 case 0x3a: /* FSUB */
9329 case 0x3e: /* FMIN */
9330 case 0x5b: /* FMUL */
9331 case 0x5c: /* FCMGE */
9332 case 0x5f: /* FDIV */
9333 case 0x7a: /* FABD */
9334 case 0x7c: /* FCMGT */
9335 if (!fp_access_check(s)) {
9336 return;
9339 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
9340 return;
9341 default:
9342 unallocated_encoding(s);
9343 return;
9347 /* Integer op subgroup of C3.6.16. */
9348 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
9350 int is_q = extract32(insn, 30, 1);
9351 int u = extract32(insn, 29, 1);
9352 int size = extract32(insn, 22, 2);
9353 int opcode = extract32(insn, 11, 5);
9354 int rm = extract32(insn, 16, 5);
9355 int rn = extract32(insn, 5, 5);
9356 int rd = extract32(insn, 0, 5);
9357 int pass;
9359 switch (opcode) {
9360 case 0x13: /* MUL, PMUL */
9361 if (u && size != 0) {
9362 unallocated_encoding(s);
9363 return;
9365 /* fall through */
9366 case 0x0: /* SHADD, UHADD */
9367 case 0x2: /* SRHADD, URHADD */
9368 case 0x4: /* SHSUB, UHSUB */
9369 case 0xc: /* SMAX, UMAX */
9370 case 0xd: /* SMIN, UMIN */
9371 case 0xe: /* SABD, UABD */
9372 case 0xf: /* SABA, UABA */
9373 case 0x12: /* MLA, MLS */
9374 if (size == 3) {
9375 unallocated_encoding(s);
9376 return;
9378 break;
9379 case 0x16: /* SQDMULH, SQRDMULH */
9380 if (size == 0 || size == 3) {
9381 unallocated_encoding(s);
9382 return;
9384 break;
9385 default:
9386 if (size == 3 && !is_q) {
9387 unallocated_encoding(s);
9388 return;
9390 break;
9393 if (!fp_access_check(s)) {
9394 return;
9397 if (size == 3) {
9398 assert(is_q);
9399 for (pass = 0; pass < 2; pass++) {
9400 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9401 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9402 TCGv_i64 tcg_res = tcg_temp_new_i64();
9404 read_vec_element(s, tcg_op1, rn, pass, MO_64);
9405 read_vec_element(s, tcg_op2, rm, pass, MO_64);
9407 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
9409 write_vec_element(s, tcg_res, rd, pass, MO_64);
9411 tcg_temp_free_i64(tcg_res);
9412 tcg_temp_free_i64(tcg_op1);
9413 tcg_temp_free_i64(tcg_op2);
9415 } else {
9416 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
9417 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9418 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9419 TCGv_i32 tcg_res = tcg_temp_new_i32();
9420 NeonGenTwoOpFn *genfn = NULL;
9421 NeonGenTwoOpEnvFn *genenvfn = NULL;
9423 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
9424 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
9426 switch (opcode) {
9427 case 0x0: /* SHADD, UHADD */
9429 static NeonGenTwoOpFn * const fns[3][2] = {
9430 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
9431 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
9432 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
9434 genfn = fns[size][u];
9435 break;
9437 case 0x1: /* SQADD, UQADD */
9439 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9440 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9441 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9442 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9444 genenvfn = fns[size][u];
9445 break;
9447 case 0x2: /* SRHADD, URHADD */
9449 static NeonGenTwoOpFn * const fns[3][2] = {
9450 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
9451 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
9452 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
9454 genfn = fns[size][u];
9455 break;
9457 case 0x4: /* SHSUB, UHSUB */
9459 static NeonGenTwoOpFn * const fns[3][2] = {
9460 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
9461 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
9462 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
9464 genfn = fns[size][u];
9465 break;
9467 case 0x5: /* SQSUB, UQSUB */
9469 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9470 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9471 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9472 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9474 genenvfn = fns[size][u];
9475 break;
9477 case 0x6: /* CMGT, CMHI */
9479 static NeonGenTwoOpFn * const fns[3][2] = {
9480 { gen_helper_neon_cgt_s8, gen_helper_neon_cgt_u8 },
9481 { gen_helper_neon_cgt_s16, gen_helper_neon_cgt_u16 },
9482 { gen_helper_neon_cgt_s32, gen_helper_neon_cgt_u32 },
9484 genfn = fns[size][u];
9485 break;
9487 case 0x7: /* CMGE, CMHS */
9489 static NeonGenTwoOpFn * const fns[3][2] = {
9490 { gen_helper_neon_cge_s8, gen_helper_neon_cge_u8 },
9491 { gen_helper_neon_cge_s16, gen_helper_neon_cge_u16 },
9492 { gen_helper_neon_cge_s32, gen_helper_neon_cge_u32 },
9494 genfn = fns[size][u];
9495 break;
9497 case 0x8: /* SSHL, USHL */
9499 static NeonGenTwoOpFn * const fns[3][2] = {
9500 { gen_helper_neon_shl_s8, gen_helper_neon_shl_u8 },
9501 { gen_helper_neon_shl_s16, gen_helper_neon_shl_u16 },
9502 { gen_helper_neon_shl_s32, gen_helper_neon_shl_u32 },
9504 genfn = fns[size][u];
9505 break;
9507 case 0x9: /* SQSHL, UQSHL */
9509 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9510 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9511 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9512 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9514 genenvfn = fns[size][u];
9515 break;
9517 case 0xa: /* SRSHL, URSHL */
9519 static NeonGenTwoOpFn * const fns[3][2] = {
9520 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
9521 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
9522 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
9524 genfn = fns[size][u];
9525 break;
9527 case 0xb: /* SQRSHL, UQRSHL */
9529 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9530 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9531 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9532 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9534 genenvfn = fns[size][u];
9535 break;
9537 case 0xc: /* SMAX, UMAX */
9539 static NeonGenTwoOpFn * const fns[3][2] = {
9540 { gen_helper_neon_max_s8, gen_helper_neon_max_u8 },
9541 { gen_helper_neon_max_s16, gen_helper_neon_max_u16 },
9542 { gen_max_s32, gen_max_u32 },
9544 genfn = fns[size][u];
9545 break;
9548 case 0xd: /* SMIN, UMIN */
9550 static NeonGenTwoOpFn * const fns[3][2] = {
9551 { gen_helper_neon_min_s8, gen_helper_neon_min_u8 },
9552 { gen_helper_neon_min_s16, gen_helper_neon_min_u16 },
9553 { gen_min_s32, gen_min_u32 },
9555 genfn = fns[size][u];
9556 break;
9558 case 0xe: /* SABD, UABD */
9559 case 0xf: /* SABA, UABA */
9561 static NeonGenTwoOpFn * const fns[3][2] = {
9562 { gen_helper_neon_abd_s8, gen_helper_neon_abd_u8 },
9563 { gen_helper_neon_abd_s16, gen_helper_neon_abd_u16 },
9564 { gen_helper_neon_abd_s32, gen_helper_neon_abd_u32 },
9566 genfn = fns[size][u];
9567 break;
9569 case 0x10: /* ADD, SUB */
9571 static NeonGenTwoOpFn * const fns[3][2] = {
9572 { gen_helper_neon_add_u8, gen_helper_neon_sub_u8 },
9573 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
9574 { tcg_gen_add_i32, tcg_gen_sub_i32 },
9576 genfn = fns[size][u];
9577 break;
9579 case 0x11: /* CMTST, CMEQ */
9581 static NeonGenTwoOpFn * const fns[3][2] = {
9582 { gen_helper_neon_tst_u8, gen_helper_neon_ceq_u8 },
9583 { gen_helper_neon_tst_u16, gen_helper_neon_ceq_u16 },
9584 { gen_helper_neon_tst_u32, gen_helper_neon_ceq_u32 },
9586 genfn = fns[size][u];
9587 break;
9589 case 0x13: /* MUL, PMUL */
9590 if (u) {
9591 /* PMUL */
9592 assert(size == 0);
9593 genfn = gen_helper_neon_mul_p8;
9594 break;
9596 /* fall through : MUL */
9597 case 0x12: /* MLA, MLS */
9599 static NeonGenTwoOpFn * const fns[3] = {
9600 gen_helper_neon_mul_u8,
9601 gen_helper_neon_mul_u16,
9602 tcg_gen_mul_i32,
9604 genfn = fns[size];
9605 break;
9607 case 0x16: /* SQDMULH, SQRDMULH */
9609 static NeonGenTwoOpEnvFn * const fns[2][2] = {
9610 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9611 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9613 assert(size == 1 || size == 2);
9614 genenvfn = fns[size - 1][u];
9615 break;
9617 default:
9618 g_assert_not_reached();
9621 if (genenvfn) {
9622 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2);
9623 } else {
9624 genfn(tcg_res, tcg_op1, tcg_op2);
9627 if (opcode == 0xf || opcode == 0x12) {
9628 /* SABA, UABA, MLA, MLS: accumulating ops */
9629 static NeonGenTwoOpFn * const fns[3][2] = {
9630 { gen_helper_neon_add_u8, gen_helper_neon_sub_u8 },
9631 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
9632 { tcg_gen_add_i32, tcg_gen_sub_i32 },
9634 bool is_sub = (opcode == 0x12 && u); /* MLS */
9636 genfn = fns[size][is_sub];
9637 read_vec_element_i32(s, tcg_op1, rd, pass, MO_32);
9638 genfn(tcg_res, tcg_op1, tcg_res);
9641 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9643 tcg_temp_free_i32(tcg_res);
9644 tcg_temp_free_i32(tcg_op1);
9645 tcg_temp_free_i32(tcg_op2);
9649 if (!is_q) {
9650 clear_vec_high(s, rd);
9654 /* C3.6.16 AdvSIMD three same
9655 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
9656 * +---+---+---+-----------+------+---+------+--------+---+------+------+
9657 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
9658 * +---+---+---+-----------+------+---+------+--------+---+------+------+
9660 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
9662 int opcode = extract32(insn, 11, 5);
9664 switch (opcode) {
9665 case 0x3: /* logic ops */
9666 disas_simd_3same_logic(s, insn);
9667 break;
9668 case 0x17: /* ADDP */
9669 case 0x14: /* SMAXP, UMAXP */
9670 case 0x15: /* SMINP, UMINP */
9672 /* Pairwise operations */
9673 int is_q = extract32(insn, 30, 1);
9674 int u = extract32(insn, 29, 1);
9675 int size = extract32(insn, 22, 2);
9676 int rm = extract32(insn, 16, 5);
9677 int rn = extract32(insn, 5, 5);
9678 int rd = extract32(insn, 0, 5);
9679 if (opcode == 0x17) {
9680 if (u || (size == 3 && !is_q)) {
9681 unallocated_encoding(s);
9682 return;
9684 } else {
9685 if (size == 3) {
9686 unallocated_encoding(s);
9687 return;
9690 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
9691 break;
9693 case 0x18 ... 0x31:
9694 /* floating point ops, sz[1] and U are part of opcode */
9695 disas_simd_3same_float(s, insn);
9696 break;
9697 default:
9698 disas_simd_3same_int(s, insn);
9699 break;
9703 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
9704 int size, int rn, int rd)
9706 /* Handle 2-reg-misc ops which are widening (so each size element
9707 * in the source becomes a 2*size element in the destination.
9708 * The only instruction like this is FCVTL.
9710 int pass;
9712 if (size == 3) {
9713 /* 32 -> 64 bit fp conversion */
9714 TCGv_i64 tcg_res[2];
9715 int srcelt = is_q ? 2 : 0;
9717 for (pass = 0; pass < 2; pass++) {
9718 TCGv_i32 tcg_op = tcg_temp_new_i32();
9719 tcg_res[pass] = tcg_temp_new_i64();
9721 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
9722 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env);
9723 tcg_temp_free_i32(tcg_op);
9725 for (pass = 0; pass < 2; pass++) {
9726 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
9727 tcg_temp_free_i64(tcg_res[pass]);
9729 } else {
9730 /* 16 -> 32 bit fp conversion */
9731 int srcelt = is_q ? 4 : 0;
9732 TCGv_i32 tcg_res[4];
9734 for (pass = 0; pass < 4; pass++) {
9735 tcg_res[pass] = tcg_temp_new_i32();
9737 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
9738 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
9739 cpu_env);
9741 for (pass = 0; pass < 4; pass++) {
9742 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
9743 tcg_temp_free_i32(tcg_res[pass]);
9748 static void handle_rev(DisasContext *s, int opcode, bool u,
9749 bool is_q, int size, int rn, int rd)
9751 int op = (opcode << 1) | u;
9752 int opsz = op + size;
9753 int grp_size = 3 - opsz;
9754 int dsize = is_q ? 128 : 64;
9755 int i;
9757 if (opsz >= 3) {
9758 unallocated_encoding(s);
9759 return;
9762 if (!fp_access_check(s)) {
9763 return;
9766 if (size == 0) {
9767 /* Special case bytes, use bswap op on each group of elements */
9768 int groups = dsize / (8 << grp_size);
9770 for (i = 0; i < groups; i++) {
9771 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
9773 read_vec_element(s, tcg_tmp, rn, i, grp_size);
9774 switch (grp_size) {
9775 case MO_16:
9776 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
9777 break;
9778 case MO_32:
9779 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
9780 break;
9781 case MO_64:
9782 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
9783 break;
9784 default:
9785 g_assert_not_reached();
9787 write_vec_element(s, tcg_tmp, rd, i, grp_size);
9788 tcg_temp_free_i64(tcg_tmp);
9790 if (!is_q) {
9791 clear_vec_high(s, rd);
9793 } else {
9794 int revmask = (1 << grp_size) - 1;
9795 int esize = 8 << size;
9796 int elements = dsize / esize;
9797 TCGv_i64 tcg_rn = tcg_temp_new_i64();
9798 TCGv_i64 tcg_rd = tcg_const_i64(0);
9799 TCGv_i64 tcg_rd_hi = tcg_const_i64(0);
9801 for (i = 0; i < elements; i++) {
9802 int e_rev = (i & 0xf) ^ revmask;
9803 int off = e_rev * esize;
9804 read_vec_element(s, tcg_rn, rn, i, size);
9805 if (off >= 64) {
9806 tcg_gen_deposit_i64(tcg_rd_hi, tcg_rd_hi,
9807 tcg_rn, off - 64, esize);
9808 } else {
9809 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, off, esize);
9812 write_vec_element(s, tcg_rd, rd, 0, MO_64);
9813 write_vec_element(s, tcg_rd_hi, rd, 1, MO_64);
9815 tcg_temp_free_i64(tcg_rd_hi);
9816 tcg_temp_free_i64(tcg_rd);
9817 tcg_temp_free_i64(tcg_rn);
9821 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
9822 bool is_q, int size, int rn, int rd)
9824 /* Implement the pairwise operations from 2-misc:
9825 * SADDLP, UADDLP, SADALP, UADALP.
9826 * These all add pairs of elements in the input to produce a
9827 * double-width result element in the output (possibly accumulating).
9829 bool accum = (opcode == 0x6);
9830 int maxpass = is_q ? 2 : 1;
9831 int pass;
9832 TCGv_i64 tcg_res[2];
9834 if (size == 2) {
9835 /* 32 + 32 -> 64 op */
9836 TCGMemOp memop = size + (u ? 0 : MO_SIGN);
9838 for (pass = 0; pass < maxpass; pass++) {
9839 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9840 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9842 tcg_res[pass] = tcg_temp_new_i64();
9844 read_vec_element(s, tcg_op1, rn, pass * 2, memop);
9845 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
9846 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
9847 if (accum) {
9848 read_vec_element(s, tcg_op1, rd, pass, MO_64);
9849 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
9852 tcg_temp_free_i64(tcg_op1);
9853 tcg_temp_free_i64(tcg_op2);
9855 } else {
9856 for (pass = 0; pass < maxpass; pass++) {
9857 TCGv_i64 tcg_op = tcg_temp_new_i64();
9858 NeonGenOneOpFn *genfn;
9859 static NeonGenOneOpFn * const fns[2][2] = {
9860 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 },
9861 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 },
9864 genfn = fns[size][u];
9866 tcg_res[pass] = tcg_temp_new_i64();
9868 read_vec_element(s, tcg_op, rn, pass, MO_64);
9869 genfn(tcg_res[pass], tcg_op);
9871 if (accum) {
9872 read_vec_element(s, tcg_op, rd, pass, MO_64);
9873 if (size == 0) {
9874 gen_helper_neon_addl_u16(tcg_res[pass],
9875 tcg_res[pass], tcg_op);
9876 } else {
9877 gen_helper_neon_addl_u32(tcg_res[pass],
9878 tcg_res[pass], tcg_op);
9881 tcg_temp_free_i64(tcg_op);
9884 if (!is_q) {
9885 tcg_res[1] = tcg_const_i64(0);
9887 for (pass = 0; pass < 2; pass++) {
9888 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
9889 tcg_temp_free_i64(tcg_res[pass]);
9893 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
9895 /* Implement SHLL and SHLL2 */
9896 int pass;
9897 int part = is_q ? 2 : 0;
9898 TCGv_i64 tcg_res[2];
9900 for (pass = 0; pass < 2; pass++) {
9901 static NeonGenWidenFn * const widenfns[3] = {
9902 gen_helper_neon_widen_u8,
9903 gen_helper_neon_widen_u16,
9904 tcg_gen_extu_i32_i64,
9906 NeonGenWidenFn *widenfn = widenfns[size];
9907 TCGv_i32 tcg_op = tcg_temp_new_i32();
9909 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
9910 tcg_res[pass] = tcg_temp_new_i64();
9911 widenfn(tcg_res[pass], tcg_op);
9912 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
9914 tcg_temp_free_i32(tcg_op);
9917 for (pass = 0; pass < 2; pass++) {
9918 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
9919 tcg_temp_free_i64(tcg_res[pass]);
9923 /* C3.6.17 AdvSIMD two reg misc
9924 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
9925 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
9926 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
9927 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
9929 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
9931 int size = extract32(insn, 22, 2);
9932 int opcode = extract32(insn, 12, 5);
9933 bool u = extract32(insn, 29, 1);
9934 bool is_q = extract32(insn, 30, 1);
9935 int rn = extract32(insn, 5, 5);
9936 int rd = extract32(insn, 0, 5);
9937 bool need_fpstatus = false;
9938 bool need_rmode = false;
9939 int rmode = -1;
9940 TCGv_i32 tcg_rmode;
9941 TCGv_ptr tcg_fpstatus;
9943 switch (opcode) {
9944 case 0x0: /* REV64, REV32 */
9945 case 0x1: /* REV16 */
9946 handle_rev(s, opcode, u, is_q, size, rn, rd);
9947 return;
9948 case 0x5: /* CNT, NOT, RBIT */
9949 if (u && size == 0) {
9950 /* NOT: adjust size so we can use the 64-bits-at-a-time loop. */
9951 size = 3;
9952 break;
9953 } else if (u && size == 1) {
9954 /* RBIT */
9955 break;
9956 } else if (!u && size == 0) {
9957 /* CNT */
9958 break;
9960 unallocated_encoding(s);
9961 return;
9962 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
9963 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
9964 if (size == 3) {
9965 unallocated_encoding(s);
9966 return;
9968 if (!fp_access_check(s)) {
9969 return;
9972 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
9973 return;
9974 case 0x4: /* CLS, CLZ */
9975 if (size == 3) {
9976 unallocated_encoding(s);
9977 return;
9979 break;
9980 case 0x2: /* SADDLP, UADDLP */
9981 case 0x6: /* SADALP, UADALP */
9982 if (size == 3) {
9983 unallocated_encoding(s);
9984 return;
9986 if (!fp_access_check(s)) {
9987 return;
9989 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
9990 return;
9991 case 0x13: /* SHLL, SHLL2 */
9992 if (u == 0 || size == 3) {
9993 unallocated_encoding(s);
9994 return;
9996 if (!fp_access_check(s)) {
9997 return;
9999 handle_shll(s, is_q, size, rn, rd);
10000 return;
10001 case 0xa: /* CMLT */
10002 if (u == 1) {
10003 unallocated_encoding(s);
10004 return;
10006 /* fall through */
10007 case 0x8: /* CMGT, CMGE */
10008 case 0x9: /* CMEQ, CMLE */
10009 case 0xb: /* ABS, NEG */
10010 if (size == 3 && !is_q) {
10011 unallocated_encoding(s);
10012 return;
10014 break;
10015 case 0x3: /* SUQADD, USQADD */
10016 if (size == 3 && !is_q) {
10017 unallocated_encoding(s);
10018 return;
10020 if (!fp_access_check(s)) {
10021 return;
10023 handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
10024 return;
10025 case 0x7: /* SQABS, SQNEG */
10026 if (size == 3 && !is_q) {
10027 unallocated_encoding(s);
10028 return;
10030 break;
10031 case 0xc ... 0xf:
10032 case 0x16 ... 0x1d:
10033 case 0x1f:
10035 /* Floating point: U, size[1] and opcode indicate operation;
10036 * size[0] indicates single or double precision.
10038 int is_double = extract32(size, 0, 1);
10039 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10040 size = is_double ? 3 : 2;
10041 switch (opcode) {
10042 case 0x2f: /* FABS */
10043 case 0x6f: /* FNEG */
10044 if (size == 3 && !is_q) {
10045 unallocated_encoding(s);
10046 return;
10048 break;
10049 case 0x1d: /* SCVTF */
10050 case 0x5d: /* UCVTF */
10052 bool is_signed = (opcode == 0x1d) ? true : false;
10053 int elements = is_double ? 2 : is_q ? 4 : 2;
10054 if (is_double && !is_q) {
10055 unallocated_encoding(s);
10056 return;
10058 if (!fp_access_check(s)) {
10059 return;
10061 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
10062 return;
10064 case 0x2c: /* FCMGT (zero) */
10065 case 0x2d: /* FCMEQ (zero) */
10066 case 0x2e: /* FCMLT (zero) */
10067 case 0x6c: /* FCMGE (zero) */
10068 case 0x6d: /* FCMLE (zero) */
10069 if (size == 3 && !is_q) {
10070 unallocated_encoding(s);
10071 return;
10073 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
10074 return;
10075 case 0x7f: /* FSQRT */
10076 if (size == 3 && !is_q) {
10077 unallocated_encoding(s);
10078 return;
10080 break;
10081 case 0x1a: /* FCVTNS */
10082 case 0x1b: /* FCVTMS */
10083 case 0x3a: /* FCVTPS */
10084 case 0x3b: /* FCVTZS */
10085 case 0x5a: /* FCVTNU */
10086 case 0x5b: /* FCVTMU */
10087 case 0x7a: /* FCVTPU */
10088 case 0x7b: /* FCVTZU */
10089 need_fpstatus = true;
10090 need_rmode = true;
10091 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10092 if (size == 3 && !is_q) {
10093 unallocated_encoding(s);
10094 return;
10096 break;
10097 case 0x5c: /* FCVTAU */
10098 case 0x1c: /* FCVTAS */
10099 need_fpstatus = true;
10100 need_rmode = true;
10101 rmode = FPROUNDING_TIEAWAY;
10102 if (size == 3 && !is_q) {
10103 unallocated_encoding(s);
10104 return;
10106 break;
10107 case 0x3c: /* URECPE */
10108 if (size == 3) {
10109 unallocated_encoding(s);
10110 return;
10112 /* fall through */
10113 case 0x3d: /* FRECPE */
10114 case 0x7d: /* FRSQRTE */
10115 if (size == 3 && !is_q) {
10116 unallocated_encoding(s);
10117 return;
10119 if (!fp_access_check(s)) {
10120 return;
10122 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
10123 return;
10124 case 0x56: /* FCVTXN, FCVTXN2 */
10125 if (size == 2) {
10126 unallocated_encoding(s);
10127 return;
10129 /* fall through */
10130 case 0x16: /* FCVTN, FCVTN2 */
10131 /* handle_2misc_narrow does a 2*size -> size operation, but these
10132 * instructions encode the source size rather than dest size.
10134 if (!fp_access_check(s)) {
10135 return;
10137 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
10138 return;
10139 case 0x17: /* FCVTL, FCVTL2 */
10140 if (!fp_access_check(s)) {
10141 return;
10143 handle_2misc_widening(s, opcode, is_q, size, rn, rd);
10144 return;
10145 case 0x18: /* FRINTN */
10146 case 0x19: /* FRINTM */
10147 case 0x38: /* FRINTP */
10148 case 0x39: /* FRINTZ */
10149 need_rmode = true;
10150 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10151 /* fall through */
10152 case 0x59: /* FRINTX */
10153 case 0x79: /* FRINTI */
10154 need_fpstatus = true;
10155 if (size == 3 && !is_q) {
10156 unallocated_encoding(s);
10157 return;
10159 break;
10160 case 0x58: /* FRINTA */
10161 need_rmode = true;
10162 rmode = FPROUNDING_TIEAWAY;
10163 need_fpstatus = true;
10164 if (size == 3 && !is_q) {
10165 unallocated_encoding(s);
10166 return;
10168 break;
10169 case 0x7c: /* URSQRTE */
10170 if (size == 3) {
10171 unallocated_encoding(s);
10172 return;
10174 need_fpstatus = true;
10175 break;
10176 default:
10177 unallocated_encoding(s);
10178 return;
10180 break;
10182 default:
10183 unallocated_encoding(s);
10184 return;
10187 if (!fp_access_check(s)) {
10188 return;
10191 if (need_fpstatus) {
10192 tcg_fpstatus = get_fpstatus_ptr();
10193 } else {
10194 TCGV_UNUSED_PTR(tcg_fpstatus);
10196 if (need_rmode) {
10197 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
10198 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
10199 } else {
10200 TCGV_UNUSED_I32(tcg_rmode);
10203 if (size == 3) {
10204 /* All 64-bit element operations can be shared with scalar 2misc */
10205 int pass;
10207 for (pass = 0; pass < (is_q ? 2 : 1); pass++) {
10208 TCGv_i64 tcg_op = tcg_temp_new_i64();
10209 TCGv_i64 tcg_res = tcg_temp_new_i64();
10211 read_vec_element(s, tcg_op, rn, pass, MO_64);
10213 handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
10214 tcg_rmode, tcg_fpstatus);
10216 write_vec_element(s, tcg_res, rd, pass, MO_64);
10218 tcg_temp_free_i64(tcg_res);
10219 tcg_temp_free_i64(tcg_op);
10221 } else {
10222 int pass;
10224 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
10225 TCGv_i32 tcg_op = tcg_temp_new_i32();
10226 TCGv_i32 tcg_res = tcg_temp_new_i32();
10227 TCGCond cond;
10229 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
10231 if (size == 2) {
10232 /* Special cases for 32 bit elements */
10233 switch (opcode) {
10234 case 0xa: /* CMLT */
10235 /* 32 bit integer comparison against zero, result is
10236 * test ? (2^32 - 1) : 0. We implement via setcond(test)
10237 * and inverting.
10239 cond = TCG_COND_LT;
10240 do_cmop:
10241 tcg_gen_setcondi_i32(cond, tcg_res, tcg_op, 0);
10242 tcg_gen_neg_i32(tcg_res, tcg_res);
10243 break;
10244 case 0x8: /* CMGT, CMGE */
10245 cond = u ? TCG_COND_GE : TCG_COND_GT;
10246 goto do_cmop;
10247 case 0x9: /* CMEQ, CMLE */
10248 cond = u ? TCG_COND_LE : TCG_COND_EQ;
10249 goto do_cmop;
10250 case 0x4: /* CLS */
10251 if (u) {
10252 tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
10253 } else {
10254 tcg_gen_clrsb_i32(tcg_res, tcg_op);
10256 break;
10257 case 0x7: /* SQABS, SQNEG */
10258 if (u) {
10259 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op);
10260 } else {
10261 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op);
10263 break;
10264 case 0xb: /* ABS, NEG */
10265 if (u) {
10266 tcg_gen_neg_i32(tcg_res, tcg_op);
10267 } else {
10268 TCGv_i32 tcg_zero = tcg_const_i32(0);
10269 tcg_gen_neg_i32(tcg_res, tcg_op);
10270 tcg_gen_movcond_i32(TCG_COND_GT, tcg_res, tcg_op,
10271 tcg_zero, tcg_op, tcg_res);
10272 tcg_temp_free_i32(tcg_zero);
10274 break;
10275 case 0x2f: /* FABS */
10276 gen_helper_vfp_abss(tcg_res, tcg_op);
10277 break;
10278 case 0x6f: /* FNEG */
10279 gen_helper_vfp_negs(tcg_res, tcg_op);
10280 break;
10281 case 0x7f: /* FSQRT */
10282 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
10283 break;
10284 case 0x1a: /* FCVTNS */
10285 case 0x1b: /* FCVTMS */
10286 case 0x1c: /* FCVTAS */
10287 case 0x3a: /* FCVTPS */
10288 case 0x3b: /* FCVTZS */
10290 TCGv_i32 tcg_shift = tcg_const_i32(0);
10291 gen_helper_vfp_tosls(tcg_res, tcg_op,
10292 tcg_shift, tcg_fpstatus);
10293 tcg_temp_free_i32(tcg_shift);
10294 break;
10296 case 0x5a: /* FCVTNU */
10297 case 0x5b: /* FCVTMU */
10298 case 0x5c: /* FCVTAU */
10299 case 0x7a: /* FCVTPU */
10300 case 0x7b: /* FCVTZU */
10302 TCGv_i32 tcg_shift = tcg_const_i32(0);
10303 gen_helper_vfp_touls(tcg_res, tcg_op,
10304 tcg_shift, tcg_fpstatus);
10305 tcg_temp_free_i32(tcg_shift);
10306 break;
10308 case 0x18: /* FRINTN */
10309 case 0x19: /* FRINTM */
10310 case 0x38: /* FRINTP */
10311 case 0x39: /* FRINTZ */
10312 case 0x58: /* FRINTA */
10313 case 0x79: /* FRINTI */
10314 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
10315 break;
10316 case 0x59: /* FRINTX */
10317 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
10318 break;
10319 case 0x7c: /* URSQRTE */
10320 gen_helper_rsqrte_u32(tcg_res, tcg_op, tcg_fpstatus);
10321 break;
10322 default:
10323 g_assert_not_reached();
10325 } else {
10326 /* Use helpers for 8 and 16 bit elements */
10327 switch (opcode) {
10328 case 0x5: /* CNT, RBIT */
10329 /* For these two insns size is part of the opcode specifier
10330 * (handled earlier); they always operate on byte elements.
10332 if (u) {
10333 gen_helper_neon_rbit_u8(tcg_res, tcg_op);
10334 } else {
10335 gen_helper_neon_cnt_u8(tcg_res, tcg_op);
10337 break;
10338 case 0x7: /* SQABS, SQNEG */
10340 NeonGenOneOpEnvFn *genfn;
10341 static NeonGenOneOpEnvFn * const fns[2][2] = {
10342 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10343 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10345 genfn = fns[size][u];
10346 genfn(tcg_res, cpu_env, tcg_op);
10347 break;
10349 case 0x8: /* CMGT, CMGE */
10350 case 0x9: /* CMEQ, CMLE */
10351 case 0xa: /* CMLT */
10353 static NeonGenTwoOpFn * const fns[3][2] = {
10354 { gen_helper_neon_cgt_s8, gen_helper_neon_cgt_s16 },
10355 { gen_helper_neon_cge_s8, gen_helper_neon_cge_s16 },
10356 { gen_helper_neon_ceq_u8, gen_helper_neon_ceq_u16 },
10358 NeonGenTwoOpFn *genfn;
10359 int comp;
10360 bool reverse;
10361 TCGv_i32 tcg_zero = tcg_const_i32(0);
10363 /* comp = index into [CMGT, CMGE, CMEQ, CMLE, CMLT] */
10364 comp = (opcode - 0x8) * 2 + u;
10365 /* ...but LE, LT are implemented as reverse GE, GT */
10366 reverse = (comp > 2);
10367 if (reverse) {
10368 comp = 4 - comp;
10370 genfn = fns[comp][size];
10371 if (reverse) {
10372 genfn(tcg_res, tcg_zero, tcg_op);
10373 } else {
10374 genfn(tcg_res, tcg_op, tcg_zero);
10376 tcg_temp_free_i32(tcg_zero);
10377 break;
10379 case 0xb: /* ABS, NEG */
10380 if (u) {
10381 TCGv_i32 tcg_zero = tcg_const_i32(0);
10382 if (size) {
10383 gen_helper_neon_sub_u16(tcg_res, tcg_zero, tcg_op);
10384 } else {
10385 gen_helper_neon_sub_u8(tcg_res, tcg_zero, tcg_op);
10387 tcg_temp_free_i32(tcg_zero);
10388 } else {
10389 if (size) {
10390 gen_helper_neon_abs_s16(tcg_res, tcg_op);
10391 } else {
10392 gen_helper_neon_abs_s8(tcg_res, tcg_op);
10395 break;
10396 case 0x4: /* CLS, CLZ */
10397 if (u) {
10398 if (size == 0) {
10399 gen_helper_neon_clz_u8(tcg_res, tcg_op);
10400 } else {
10401 gen_helper_neon_clz_u16(tcg_res, tcg_op);
10403 } else {
10404 if (size == 0) {
10405 gen_helper_neon_cls_s8(tcg_res, tcg_op);
10406 } else {
10407 gen_helper_neon_cls_s16(tcg_res, tcg_op);
10410 break;
10411 default:
10412 g_assert_not_reached();
10416 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10418 tcg_temp_free_i32(tcg_res);
10419 tcg_temp_free_i32(tcg_op);
10422 if (!is_q) {
10423 clear_vec_high(s, rd);
10426 if (need_rmode) {
10427 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
10428 tcg_temp_free_i32(tcg_rmode);
10430 if (need_fpstatus) {
10431 tcg_temp_free_ptr(tcg_fpstatus);
10435 /* C3.6.13 AdvSIMD scalar x indexed element
10436 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
10437 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
10438 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
10439 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
10440 * C3.6.18 AdvSIMD vector x indexed element
10441 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
10442 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
10443 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
10444 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
10446 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
10448 /* This encoding has two kinds of instruction:
10449 * normal, where we perform elt x idxelt => elt for each
10450 * element in the vector
10451 * long, where we perform elt x idxelt and generate a result of
10452 * double the width of the input element
10453 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
10455 bool is_scalar = extract32(insn, 28, 1);
10456 bool is_q = extract32(insn, 30, 1);
10457 bool u = extract32(insn, 29, 1);
10458 int size = extract32(insn, 22, 2);
10459 int l = extract32(insn, 21, 1);
10460 int m = extract32(insn, 20, 1);
10461 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
10462 int rm = extract32(insn, 16, 4);
10463 int opcode = extract32(insn, 12, 4);
10464 int h = extract32(insn, 11, 1);
10465 int rn = extract32(insn, 5, 5);
10466 int rd = extract32(insn, 0, 5);
10467 bool is_long = false;
10468 bool is_fp = false;
10469 int index;
10470 TCGv_ptr fpst;
10472 switch (opcode) {
10473 case 0x0: /* MLA */
10474 case 0x4: /* MLS */
10475 if (!u || is_scalar) {
10476 unallocated_encoding(s);
10477 return;
10479 break;
10480 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10481 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10482 case 0xa: /* SMULL, SMULL2, UMULL, UMULL2 */
10483 if (is_scalar) {
10484 unallocated_encoding(s);
10485 return;
10487 is_long = true;
10488 break;
10489 case 0x3: /* SQDMLAL, SQDMLAL2 */
10490 case 0x7: /* SQDMLSL, SQDMLSL2 */
10491 case 0xb: /* SQDMULL, SQDMULL2 */
10492 is_long = true;
10493 /* fall through */
10494 case 0xc: /* SQDMULH */
10495 case 0xd: /* SQRDMULH */
10496 if (u) {
10497 unallocated_encoding(s);
10498 return;
10500 break;
10501 case 0x8: /* MUL */
10502 if (u || is_scalar) {
10503 unallocated_encoding(s);
10504 return;
10506 break;
10507 case 0x1: /* FMLA */
10508 case 0x5: /* FMLS */
10509 if (u) {
10510 unallocated_encoding(s);
10511 return;
10513 /* fall through */
10514 case 0x9: /* FMUL, FMULX */
10515 if (!extract32(size, 1, 1)) {
10516 unallocated_encoding(s);
10517 return;
10519 is_fp = true;
10520 break;
10521 default:
10522 unallocated_encoding(s);
10523 return;
10526 if (is_fp) {
10527 /* low bit of size indicates single/double */
10528 size = extract32(size, 0, 1) ? 3 : 2;
10529 if (size == 2) {
10530 index = h << 1 | l;
10531 } else {
10532 if (l || !is_q) {
10533 unallocated_encoding(s);
10534 return;
10536 index = h;
10538 rm |= (m << 4);
10539 } else {
10540 switch (size) {
10541 case 1:
10542 index = h << 2 | l << 1 | m;
10543 break;
10544 case 2:
10545 index = h << 1 | l;
10546 rm |= (m << 4);
10547 break;
10548 default:
10549 unallocated_encoding(s);
10550 return;
10554 if (!fp_access_check(s)) {
10555 return;
10558 if (is_fp) {
10559 fpst = get_fpstatus_ptr();
10560 } else {
10561 TCGV_UNUSED_PTR(fpst);
10564 if (size == 3) {
10565 TCGv_i64 tcg_idx = tcg_temp_new_i64();
10566 int pass;
10568 assert(is_fp && is_q && !is_long);
10570 read_vec_element(s, tcg_idx, rm, index, MO_64);
10572 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10573 TCGv_i64 tcg_op = tcg_temp_new_i64();
10574 TCGv_i64 tcg_res = tcg_temp_new_i64();
10576 read_vec_element(s, tcg_op, rn, pass, MO_64);
10578 switch (opcode) {
10579 case 0x5: /* FMLS */
10580 /* As usual for ARM, separate negation for fused multiply-add */
10581 gen_helper_vfp_negd(tcg_op, tcg_op);
10582 /* fall through */
10583 case 0x1: /* FMLA */
10584 read_vec_element(s, tcg_res, rd, pass, MO_64);
10585 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
10586 break;
10587 case 0x9: /* FMUL, FMULX */
10588 if (u) {
10589 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
10590 } else {
10591 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
10593 break;
10594 default:
10595 g_assert_not_reached();
10598 write_vec_element(s, tcg_res, rd, pass, MO_64);
10599 tcg_temp_free_i64(tcg_op);
10600 tcg_temp_free_i64(tcg_res);
10603 if (is_scalar) {
10604 clear_vec_high(s, rd);
10607 tcg_temp_free_i64(tcg_idx);
10608 } else if (!is_long) {
10609 /* 32 bit floating point, or 16 or 32 bit integer.
10610 * For the 16 bit scalar case we use the usual Neon helpers and
10611 * rely on the fact that 0 op 0 == 0 with no side effects.
10613 TCGv_i32 tcg_idx = tcg_temp_new_i32();
10614 int pass, maxpasses;
10616 if (is_scalar) {
10617 maxpasses = 1;
10618 } else {
10619 maxpasses = is_q ? 4 : 2;
10622 read_vec_element_i32(s, tcg_idx, rm, index, size);
10624 if (size == 1 && !is_scalar) {
10625 /* The simplest way to handle the 16x16 indexed ops is to duplicate
10626 * the index into both halves of the 32 bit tcg_idx and then use
10627 * the usual Neon helpers.
10629 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
10632 for (pass = 0; pass < maxpasses; pass++) {
10633 TCGv_i32 tcg_op = tcg_temp_new_i32();
10634 TCGv_i32 tcg_res = tcg_temp_new_i32();
10636 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
10638 switch (opcode) {
10639 case 0x0: /* MLA */
10640 case 0x4: /* MLS */
10641 case 0x8: /* MUL */
10643 static NeonGenTwoOpFn * const fns[2][2] = {
10644 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
10645 { tcg_gen_add_i32, tcg_gen_sub_i32 },
10647 NeonGenTwoOpFn *genfn;
10648 bool is_sub = opcode == 0x4;
10650 if (size == 1) {
10651 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
10652 } else {
10653 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
10655 if (opcode == 0x8) {
10656 break;
10658 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
10659 genfn = fns[size - 1][is_sub];
10660 genfn(tcg_res, tcg_op, tcg_res);
10661 break;
10663 case 0x5: /* FMLS */
10664 /* As usual for ARM, separate negation for fused multiply-add */
10665 gen_helper_vfp_negs(tcg_op, tcg_op);
10666 /* fall through */
10667 case 0x1: /* FMLA */
10668 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10669 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
10670 break;
10671 case 0x9: /* FMUL, FMULX */
10672 if (u) {
10673 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
10674 } else {
10675 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
10677 break;
10678 case 0xc: /* SQDMULH */
10679 if (size == 1) {
10680 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env,
10681 tcg_op, tcg_idx);
10682 } else {
10683 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env,
10684 tcg_op, tcg_idx);
10686 break;
10687 case 0xd: /* SQRDMULH */
10688 if (size == 1) {
10689 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env,
10690 tcg_op, tcg_idx);
10691 } else {
10692 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env,
10693 tcg_op, tcg_idx);
10695 break;
10696 default:
10697 g_assert_not_reached();
10700 if (is_scalar) {
10701 write_fp_sreg(s, rd, tcg_res);
10702 } else {
10703 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10706 tcg_temp_free_i32(tcg_op);
10707 tcg_temp_free_i32(tcg_res);
10710 tcg_temp_free_i32(tcg_idx);
10712 if (!is_q) {
10713 clear_vec_high(s, rd);
10715 } else {
10716 /* long ops: 16x16->32 or 32x32->64 */
10717 TCGv_i64 tcg_res[2];
10718 int pass;
10719 bool satop = extract32(opcode, 0, 1);
10720 TCGMemOp memop = MO_32;
10722 if (satop || !u) {
10723 memop |= MO_SIGN;
10726 if (size == 2) {
10727 TCGv_i64 tcg_idx = tcg_temp_new_i64();
10729 read_vec_element(s, tcg_idx, rm, index, memop);
10731 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10732 TCGv_i64 tcg_op = tcg_temp_new_i64();
10733 TCGv_i64 tcg_passres;
10734 int passelt;
10736 if (is_scalar) {
10737 passelt = 0;
10738 } else {
10739 passelt = pass + (is_q * 2);
10742 read_vec_element(s, tcg_op, rn, passelt, memop);
10744 tcg_res[pass] = tcg_temp_new_i64();
10746 if (opcode == 0xa || opcode == 0xb) {
10747 /* Non-accumulating ops */
10748 tcg_passres = tcg_res[pass];
10749 } else {
10750 tcg_passres = tcg_temp_new_i64();
10753 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
10754 tcg_temp_free_i64(tcg_op);
10756 if (satop) {
10757 /* saturating, doubling */
10758 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
10759 tcg_passres, tcg_passres);
10762 if (opcode == 0xa || opcode == 0xb) {
10763 continue;
10766 /* Accumulating op: handle accumulate step */
10767 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10769 switch (opcode) {
10770 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10771 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10772 break;
10773 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10774 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10775 break;
10776 case 0x7: /* SQDMLSL, SQDMLSL2 */
10777 tcg_gen_neg_i64(tcg_passres, tcg_passres);
10778 /* fall through */
10779 case 0x3: /* SQDMLAL, SQDMLAL2 */
10780 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
10781 tcg_res[pass],
10782 tcg_passres);
10783 break;
10784 default:
10785 g_assert_not_reached();
10787 tcg_temp_free_i64(tcg_passres);
10789 tcg_temp_free_i64(tcg_idx);
10791 if (is_scalar) {
10792 clear_vec_high(s, rd);
10794 } else {
10795 TCGv_i32 tcg_idx = tcg_temp_new_i32();
10797 assert(size == 1);
10798 read_vec_element_i32(s, tcg_idx, rm, index, size);
10800 if (!is_scalar) {
10801 /* The simplest way to handle the 16x16 indexed ops is to
10802 * duplicate the index into both halves of the 32 bit tcg_idx
10803 * and then use the usual Neon helpers.
10805 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
10808 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10809 TCGv_i32 tcg_op = tcg_temp_new_i32();
10810 TCGv_i64 tcg_passres;
10812 if (is_scalar) {
10813 read_vec_element_i32(s, tcg_op, rn, pass, size);
10814 } else {
10815 read_vec_element_i32(s, tcg_op, rn,
10816 pass + (is_q * 2), MO_32);
10819 tcg_res[pass] = tcg_temp_new_i64();
10821 if (opcode == 0xa || opcode == 0xb) {
10822 /* Non-accumulating ops */
10823 tcg_passres = tcg_res[pass];
10824 } else {
10825 tcg_passres = tcg_temp_new_i64();
10828 if (memop & MO_SIGN) {
10829 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
10830 } else {
10831 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
10833 if (satop) {
10834 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
10835 tcg_passres, tcg_passres);
10837 tcg_temp_free_i32(tcg_op);
10839 if (opcode == 0xa || opcode == 0xb) {
10840 continue;
10843 /* Accumulating op: handle accumulate step */
10844 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10846 switch (opcode) {
10847 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10848 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
10849 tcg_passres);
10850 break;
10851 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10852 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
10853 tcg_passres);
10854 break;
10855 case 0x7: /* SQDMLSL, SQDMLSL2 */
10856 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10857 /* fall through */
10858 case 0x3: /* SQDMLAL, SQDMLAL2 */
10859 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
10860 tcg_res[pass],
10861 tcg_passres);
10862 break;
10863 default:
10864 g_assert_not_reached();
10866 tcg_temp_free_i64(tcg_passres);
10868 tcg_temp_free_i32(tcg_idx);
10870 if (is_scalar) {
10871 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
10875 if (is_scalar) {
10876 tcg_res[1] = tcg_const_i64(0);
10879 for (pass = 0; pass < 2; pass++) {
10880 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10881 tcg_temp_free_i64(tcg_res[pass]);
10885 if (!TCGV_IS_UNUSED_PTR(fpst)) {
10886 tcg_temp_free_ptr(fpst);
10890 /* C3.6.19 Crypto AES
10891 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
10892 * +-----------------+------+-----------+--------+-----+------+------+
10893 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
10894 * +-----------------+------+-----------+--------+-----+------+------+
10896 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
10898 int size = extract32(insn, 22, 2);
10899 int opcode = extract32(insn, 12, 5);
10900 int rn = extract32(insn, 5, 5);
10901 int rd = extract32(insn, 0, 5);
10902 int decrypt;
10903 TCGv_i32 tcg_rd_regno, tcg_rn_regno, tcg_decrypt;
10904 CryptoThreeOpEnvFn *genfn;
10906 if (!arm_dc_feature(s, ARM_FEATURE_V8_AES)
10907 || size != 0) {
10908 unallocated_encoding(s);
10909 return;
10912 switch (opcode) {
10913 case 0x4: /* AESE */
10914 decrypt = 0;
10915 genfn = gen_helper_crypto_aese;
10916 break;
10917 case 0x6: /* AESMC */
10918 decrypt = 0;
10919 genfn = gen_helper_crypto_aesmc;
10920 break;
10921 case 0x5: /* AESD */
10922 decrypt = 1;
10923 genfn = gen_helper_crypto_aese;
10924 break;
10925 case 0x7: /* AESIMC */
10926 decrypt = 1;
10927 genfn = gen_helper_crypto_aesmc;
10928 break;
10929 default:
10930 unallocated_encoding(s);
10931 return;
10934 if (!fp_access_check(s)) {
10935 return;
10938 /* Note that we convert the Vx register indexes into the
10939 * index within the vfp.regs[] array, so we can share the
10940 * helper with the AArch32 instructions.
10942 tcg_rd_regno = tcg_const_i32(rd << 1);
10943 tcg_rn_regno = tcg_const_i32(rn << 1);
10944 tcg_decrypt = tcg_const_i32(decrypt);
10946 genfn(cpu_env, tcg_rd_regno, tcg_rn_regno, tcg_decrypt);
10948 tcg_temp_free_i32(tcg_rd_regno);
10949 tcg_temp_free_i32(tcg_rn_regno);
10950 tcg_temp_free_i32(tcg_decrypt);
10953 /* C3.6.20 Crypto three-reg SHA
10954 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
10955 * +-----------------+------+---+------+---+--------+-----+------+------+
10956 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd |
10957 * +-----------------+------+---+------+---+--------+-----+------+------+
10959 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
10961 int size = extract32(insn, 22, 2);
10962 int opcode = extract32(insn, 12, 3);
10963 int rm = extract32(insn, 16, 5);
10964 int rn = extract32(insn, 5, 5);
10965 int rd = extract32(insn, 0, 5);
10966 CryptoThreeOpEnvFn *genfn;
10967 TCGv_i32 tcg_rd_regno, tcg_rn_regno, tcg_rm_regno;
10968 int feature = ARM_FEATURE_V8_SHA256;
10970 if (size != 0) {
10971 unallocated_encoding(s);
10972 return;
10975 switch (opcode) {
10976 case 0: /* SHA1C */
10977 case 1: /* SHA1P */
10978 case 2: /* SHA1M */
10979 case 3: /* SHA1SU0 */
10980 genfn = NULL;
10981 feature = ARM_FEATURE_V8_SHA1;
10982 break;
10983 case 4: /* SHA256H */
10984 genfn = gen_helper_crypto_sha256h;
10985 break;
10986 case 5: /* SHA256H2 */
10987 genfn = gen_helper_crypto_sha256h2;
10988 break;
10989 case 6: /* SHA256SU1 */
10990 genfn = gen_helper_crypto_sha256su1;
10991 break;
10992 default:
10993 unallocated_encoding(s);
10994 return;
10997 if (!arm_dc_feature(s, feature)) {
10998 unallocated_encoding(s);
10999 return;
11002 if (!fp_access_check(s)) {
11003 return;
11006 tcg_rd_regno = tcg_const_i32(rd << 1);
11007 tcg_rn_regno = tcg_const_i32(rn << 1);
11008 tcg_rm_regno = tcg_const_i32(rm << 1);
11010 if (genfn) {
11011 genfn(cpu_env, tcg_rd_regno, tcg_rn_regno, tcg_rm_regno);
11012 } else {
11013 TCGv_i32 tcg_opcode = tcg_const_i32(opcode);
11015 gen_helper_crypto_sha1_3reg(cpu_env, tcg_rd_regno,
11016 tcg_rn_regno, tcg_rm_regno, tcg_opcode);
11017 tcg_temp_free_i32(tcg_opcode);
11020 tcg_temp_free_i32(tcg_rd_regno);
11021 tcg_temp_free_i32(tcg_rn_regno);
11022 tcg_temp_free_i32(tcg_rm_regno);
11025 /* C3.6.21 Crypto two-reg SHA
11026 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
11027 * +-----------------+------+-----------+--------+-----+------+------+
11028 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
11029 * +-----------------+------+-----------+--------+-----+------+------+
11031 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
11033 int size = extract32(insn, 22, 2);
11034 int opcode = extract32(insn, 12, 5);
11035 int rn = extract32(insn, 5, 5);
11036 int rd = extract32(insn, 0, 5);
11037 CryptoTwoOpEnvFn *genfn;
11038 int feature;
11039 TCGv_i32 tcg_rd_regno, tcg_rn_regno;
11041 if (size != 0) {
11042 unallocated_encoding(s);
11043 return;
11046 switch (opcode) {
11047 case 0: /* SHA1H */
11048 feature = ARM_FEATURE_V8_SHA1;
11049 genfn = gen_helper_crypto_sha1h;
11050 break;
11051 case 1: /* SHA1SU1 */
11052 feature = ARM_FEATURE_V8_SHA1;
11053 genfn = gen_helper_crypto_sha1su1;
11054 break;
11055 case 2: /* SHA256SU0 */
11056 feature = ARM_FEATURE_V8_SHA256;
11057 genfn = gen_helper_crypto_sha256su0;
11058 break;
11059 default:
11060 unallocated_encoding(s);
11061 return;
11064 if (!arm_dc_feature(s, feature)) {
11065 unallocated_encoding(s);
11066 return;
11069 if (!fp_access_check(s)) {
11070 return;
11073 tcg_rd_regno = tcg_const_i32(rd << 1);
11074 tcg_rn_regno = tcg_const_i32(rn << 1);
11076 genfn(cpu_env, tcg_rd_regno, tcg_rn_regno);
11078 tcg_temp_free_i32(tcg_rd_regno);
11079 tcg_temp_free_i32(tcg_rn_regno);
11082 /* C3.6 Data processing - SIMD, inc Crypto
11084 * As the decode gets a little complex we are using a table based
11085 * approach for this part of the decode.
11087 static const AArch64DecodeTable data_proc_simd[] = {
11088 /* pattern , mask , fn */
11089 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
11090 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
11091 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
11092 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
11093 { 0x0e000400, 0x9fe08400, disas_simd_copy },
11094 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
11095 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
11096 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
11097 { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
11098 { 0x0e000000, 0xbf208c00, disas_simd_tb },
11099 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
11100 { 0x2e000000, 0xbf208400, disas_simd_ext },
11101 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
11102 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
11103 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
11104 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
11105 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
11106 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
11107 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
11108 { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
11109 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
11110 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
11111 { 0x00000000, 0x00000000, NULL }
11114 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
11116 /* Note that this is called with all non-FP cases from
11117 * table C3-6 so it must UNDEF for entries not specifically
11118 * allocated to instructions in that table.
11120 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
11121 if (fn) {
11122 fn(s, insn);
11123 } else {
11124 unallocated_encoding(s);
11128 /* C3.6 Data processing - SIMD and floating point */
11129 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
11131 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
11132 disas_data_proc_fp(s, insn);
11133 } else {
11134 /* SIMD, including crypto */
11135 disas_data_proc_simd(s, insn);
11139 /* C3.1 A64 instruction index by encoding */
11140 static void disas_a64_insn(CPUARMState *env, DisasContext *s)
11142 uint32_t insn;
11144 insn = arm_ldl_code(env, s->pc, s->sctlr_b);
11145 s->insn = insn;
11146 s->pc += 4;
11148 s->fp_access_checked = false;
11150 switch (extract32(insn, 25, 4)) {
11151 case 0x0: case 0x1: case 0x2: case 0x3: /* UNALLOCATED */
11152 unallocated_encoding(s);
11153 break;
11154 case 0x8: case 0x9: /* Data processing - immediate */
11155 disas_data_proc_imm(s, insn);
11156 break;
11157 case 0xa: case 0xb: /* Branch, exception generation and system insns */
11158 disas_b_exc_sys(s, insn);
11159 break;
11160 case 0x4:
11161 case 0x6:
11162 case 0xc:
11163 case 0xe: /* Loads and stores */
11164 disas_ldst(s, insn);
11165 break;
11166 case 0x5:
11167 case 0xd: /* Data processing - register */
11168 disas_data_proc_reg(s, insn);
11169 break;
11170 case 0x7:
11171 case 0xf: /* Data processing - SIMD and floating point */
11172 disas_data_proc_simd_fp(s, insn);
11173 break;
11174 default:
11175 assert(FALSE); /* all 15 cases should be handled above */
11176 break;
11179 /* if we allocated any temporaries, free them here */
11180 free_tmp_a64(s);
11183 void gen_intermediate_code_a64(CPUState *cs, TranslationBlock *tb)
11185 CPUARMState *env = cs->env_ptr;
11186 ARMCPU *cpu = arm_env_get_cpu(env);
11187 DisasContext dc1, *dc = &dc1;
11188 target_ulong pc_start;
11189 target_ulong next_page_start;
11190 int num_insns;
11191 int max_insns;
11193 pc_start = tb->pc;
11195 dc->tb = tb;
11197 dc->is_jmp = DISAS_NEXT;
11198 dc->pc = pc_start;
11199 dc->singlestep_enabled = cs->singlestep_enabled;
11200 dc->condjmp = 0;
11202 dc->aarch64 = 1;
11203 /* If we are coming from secure EL0 in a system with a 32-bit EL3, then
11204 * there is no secure EL1, so we route exceptions to EL3.
11206 dc->secure_routed_to_el3 = arm_feature(env, ARM_FEATURE_EL3) &&
11207 !arm_el_is_aa64(env, 3);
11208 dc->thumb = 0;
11209 dc->sctlr_b = 0;
11210 dc->be_data = ARM_TBFLAG_BE_DATA(tb->flags) ? MO_BE : MO_LE;
11211 dc->condexec_mask = 0;
11212 dc->condexec_cond = 0;
11213 dc->mmu_idx = core_to_arm_mmu_idx(env, ARM_TBFLAG_MMUIDX(tb->flags));
11214 dc->tbi0 = ARM_TBFLAG_TBI0(tb->flags);
11215 dc->tbi1 = ARM_TBFLAG_TBI1(tb->flags);
11216 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
11217 #if !defined(CONFIG_USER_ONLY)
11218 dc->user = (dc->current_el == 0);
11219 #endif
11220 dc->fp_excp_el = ARM_TBFLAG_FPEXC_EL(tb->flags);
11221 dc->vec_len = 0;
11222 dc->vec_stride = 0;
11223 dc->cp_regs = cpu->cp_regs;
11224 dc->features = env->features;
11226 /* Single step state. The code-generation logic here is:
11227 * SS_ACTIVE == 0:
11228 * generate code with no special handling for single-stepping (except
11229 * that anything that can make us go to SS_ACTIVE == 1 must end the TB;
11230 * this happens anyway because those changes are all system register or
11231 * PSTATE writes).
11232 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
11233 * emit code for one insn
11234 * emit code to clear PSTATE.SS
11235 * emit code to generate software step exception for completed step
11236 * end TB (as usual for having generated an exception)
11237 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
11238 * emit code to generate a software step exception
11239 * end the TB
11241 dc->ss_active = ARM_TBFLAG_SS_ACTIVE(tb->flags);
11242 dc->pstate_ss = ARM_TBFLAG_PSTATE_SS(tb->flags);
11243 dc->is_ldex = false;
11244 dc->ss_same_el = (arm_debug_target_el(env) == dc->current_el);
11246 init_tmp_a64_array(dc);
11248 next_page_start = (pc_start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
11249 num_insns = 0;
11250 max_insns = tb->cflags & CF_COUNT_MASK;
11251 if (max_insns == 0) {
11252 max_insns = CF_COUNT_MASK;
11254 if (max_insns > TCG_MAX_INSNS) {
11255 max_insns = TCG_MAX_INSNS;
11258 gen_tb_start(tb);
11260 tcg_clear_temp_count();
11262 do {
11263 dc->insn_start_idx = tcg_op_buf_count();
11264 tcg_gen_insn_start(dc->pc, 0, 0);
11265 num_insns++;
11267 if (unlikely(!QTAILQ_EMPTY(&cs->breakpoints))) {
11268 CPUBreakpoint *bp;
11269 QTAILQ_FOREACH(bp, &cs->breakpoints, entry) {
11270 if (bp->pc == dc->pc) {
11271 if (bp->flags & BP_CPU) {
11272 gen_a64_set_pc_im(dc->pc);
11273 gen_helper_check_breakpoints(cpu_env);
11274 /* End the TB early; it likely won't be executed */
11275 dc->is_jmp = DISAS_UPDATE;
11276 } else {
11277 gen_exception_internal_insn(dc, 0, EXCP_DEBUG);
11278 /* The address covered by the breakpoint must be
11279 included in [tb->pc, tb->pc + tb->size) in order
11280 to for it to be properly cleared -- thus we
11281 increment the PC here so that the logic setting
11282 tb->size below does the right thing. */
11283 dc->pc += 4;
11284 goto done_generating;
11286 break;
11291 if (num_insns == max_insns && (tb->cflags & CF_LAST_IO)) {
11292 gen_io_start();
11295 if (dc->ss_active && !dc->pstate_ss) {
11296 /* Singlestep state is Active-pending.
11297 * If we're in this state at the start of a TB then either
11298 * a) we just took an exception to an EL which is being debugged
11299 * and this is the first insn in the exception handler
11300 * b) debug exceptions were masked and we just unmasked them
11301 * without changing EL (eg by clearing PSTATE.D)
11302 * In either case we're going to take a swstep exception in the
11303 * "did not step an insn" case, and so the syndrome ISV and EX
11304 * bits should be zero.
11306 assert(num_insns == 1);
11307 gen_exception(EXCP_UDEF, syn_swstep(dc->ss_same_el, 0, 0),
11308 default_exception_el(dc));
11309 dc->is_jmp = DISAS_EXC;
11310 break;
11313 disas_a64_insn(env, dc);
11315 if (tcg_check_temp_count()) {
11316 fprintf(stderr, "TCG temporary leak before "TARGET_FMT_lx"\n",
11317 dc->pc);
11320 /* Translation stops when a conditional branch is encountered.
11321 * Otherwise the subsequent code could get translated several times.
11322 * Also stop translation when a page boundary is reached. This
11323 * ensures prefetch aborts occur at the right place.
11325 } while (!dc->is_jmp && !tcg_op_buf_full() &&
11326 !cs->singlestep_enabled &&
11327 !singlestep &&
11328 !dc->ss_active &&
11329 dc->pc < next_page_start &&
11330 num_insns < max_insns);
11332 if (tb->cflags & CF_LAST_IO) {
11333 gen_io_end();
11336 if (unlikely(cs->singlestep_enabled || dc->ss_active)
11337 && dc->is_jmp != DISAS_EXC) {
11338 /* Note that this means single stepping WFI doesn't halt the CPU.
11339 * For conditional branch insns this is harmless unreachable code as
11340 * gen_goto_tb() has already handled emitting the debug exception
11341 * (and thus a tb-jump is not possible when singlestepping).
11343 assert(dc->is_jmp != DISAS_TB_JUMP);
11344 if (dc->is_jmp != DISAS_JUMP) {
11345 gen_a64_set_pc_im(dc->pc);
11347 if (cs->singlestep_enabled) {
11348 gen_exception_internal(EXCP_DEBUG);
11349 } else {
11350 gen_step_complete_exception(dc);
11352 } else {
11353 switch (dc->is_jmp) {
11354 case DISAS_NEXT:
11355 gen_goto_tb(dc, 1, dc->pc);
11356 break;
11357 case DISAS_JUMP:
11358 tcg_gen_lookup_and_goto_ptr(cpu_pc);
11359 break;
11360 case DISAS_TB_JUMP:
11361 case DISAS_EXC:
11362 case DISAS_SWI:
11363 break;
11364 case DISAS_WFE:
11365 gen_a64_set_pc_im(dc->pc);
11366 gen_helper_wfe(cpu_env);
11367 break;
11368 case DISAS_YIELD:
11369 gen_a64_set_pc_im(dc->pc);
11370 gen_helper_yield(cpu_env);
11371 break;
11372 case DISAS_WFI:
11373 /* This is a special case because we don't want to just halt the CPU
11374 * if trying to debug across a WFI.
11376 gen_a64_set_pc_im(dc->pc);
11377 gen_helper_wfi(cpu_env);
11378 /* The helper doesn't necessarily throw an exception, but we
11379 * must go back to the main loop to check for interrupts anyway.
11381 tcg_gen_exit_tb(0);
11382 break;
11383 case DISAS_UPDATE:
11384 gen_a64_set_pc_im(dc->pc);
11385 /* fall through */
11386 case DISAS_EXIT:
11387 default:
11388 tcg_gen_exit_tb(0);
11389 break;
11393 done_generating:
11394 gen_tb_end(tb, num_insns);
11396 #ifdef DEBUG_DISAS
11397 if (qemu_loglevel_mask(CPU_LOG_TB_IN_ASM) &&
11398 qemu_log_in_addr_range(pc_start)) {
11399 qemu_log_lock();
11400 qemu_log("----------------\n");
11401 qemu_log("IN: %s\n", lookup_symbol(pc_start));
11402 log_target_disas(cs, pc_start, dc->pc - pc_start,
11403 4 | (bswap_code(dc->sctlr_b) ? 2 : 0));
11404 qemu_log("\n");
11405 qemu_log_unlock();
11407 #endif
11408 tb->size = dc->pc - pc_start;
11409 tb->icount = num_insns;