3 #include "exec/gdbstub.h"
5 #include "qemu/host-utils.h"
6 #include "sysemu/arch_init.h"
7 #include "sysemu/sysemu.h"
8 #include "qemu/bitops.h"
9 #include "qemu/crc32c.h"
10 #include <zlib.h> /* For crc32 */
12 #ifndef CONFIG_USER_ONLY
13 #include "exec/softmmu_exec.h"
15 static inline int get_phys_addr(CPUARMState
*env
, target_ulong address
,
16 int access_type
, int is_user
,
17 hwaddr
*phys_ptr
, int *prot
,
18 target_ulong
*page_size
);
20 /* Definitions for the PMCCNTR and PMCR registers */
26 static int vfp_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
30 /* VFP data registers are always little-endian. */
31 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
33 stfq_le_p(buf
, env
->vfp
.regs
[reg
]);
36 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
37 /* Aliases for Q regs. */
40 stfq_le_p(buf
, env
->vfp
.regs
[(reg
- 32) * 2]);
41 stfq_le_p(buf
+ 8, env
->vfp
.regs
[(reg
- 32) * 2 + 1]);
45 switch (reg
- nregs
) {
46 case 0: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSID
]); return 4;
47 case 1: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSCR
]); return 4;
48 case 2: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPEXC
]); return 4;
53 static int vfp_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
57 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
59 env
->vfp
.regs
[reg
] = ldfq_le_p(buf
);
62 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
65 env
->vfp
.regs
[(reg
- 32) * 2] = ldfq_le_p(buf
);
66 env
->vfp
.regs
[(reg
- 32) * 2 + 1] = ldfq_le_p(buf
+ 8);
70 switch (reg
- nregs
) {
71 case 0: env
->vfp
.xregs
[ARM_VFP_FPSID
] = ldl_p(buf
); return 4;
72 case 1: env
->vfp
.xregs
[ARM_VFP_FPSCR
] = ldl_p(buf
); return 4;
73 case 2: env
->vfp
.xregs
[ARM_VFP_FPEXC
] = ldl_p(buf
) & (1 << 30); return 4;
78 static int aarch64_fpu_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
82 /* 128 bit FP register */
83 stfq_le_p(buf
, env
->vfp
.regs
[reg
* 2]);
84 stfq_le_p(buf
+ 8, env
->vfp
.regs
[reg
* 2 + 1]);
88 stl_p(buf
, vfp_get_fpsr(env
));
92 stl_p(buf
, vfp_get_fpcr(env
));
99 static int aarch64_fpu_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
103 /* 128 bit FP register */
104 env
->vfp
.regs
[reg
* 2] = ldfq_le_p(buf
);
105 env
->vfp
.regs
[reg
* 2 + 1] = ldfq_le_p(buf
+ 8);
109 vfp_set_fpsr(env
, ldl_p(buf
));
113 vfp_set_fpcr(env
, ldl_p(buf
));
120 static uint64_t raw_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
122 if (cpreg_field_is_64bit(ri
)) {
123 return CPREG_FIELD64(env
, ri
);
125 return CPREG_FIELD32(env
, ri
);
129 static void raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
132 if (cpreg_field_is_64bit(ri
)) {
133 CPREG_FIELD64(env
, ri
) = value
;
135 CPREG_FIELD32(env
, ri
) = value
;
139 static uint64_t read_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
141 /* Raw read of a coprocessor register (as needed for migration, etc). */
142 if (ri
->type
& ARM_CP_CONST
) {
143 return ri
->resetvalue
;
144 } else if (ri
->raw_readfn
) {
145 return ri
->raw_readfn(env
, ri
);
146 } else if (ri
->readfn
) {
147 return ri
->readfn(env
, ri
);
149 return raw_read(env
, ri
);
153 static void write_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
156 /* Raw write of a coprocessor register (as needed for migration, etc).
157 * Note that constant registers are treated as write-ignored; the
158 * caller should check for success by whether a readback gives the
161 if (ri
->type
& ARM_CP_CONST
) {
163 } else if (ri
->raw_writefn
) {
164 ri
->raw_writefn(env
, ri
, v
);
165 } else if (ri
->writefn
) {
166 ri
->writefn(env
, ri
, v
);
168 raw_write(env
, ri
, v
);
172 bool write_cpustate_to_list(ARMCPU
*cpu
)
174 /* Write the coprocessor state from cpu->env to the (index,value) list. */
178 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
179 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
180 const ARMCPRegInfo
*ri
;
182 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
187 if (ri
->type
& ARM_CP_NO_MIGRATE
) {
190 cpu
->cpreg_values
[i
] = read_raw_cp_reg(&cpu
->env
, ri
);
195 bool write_list_to_cpustate(ARMCPU
*cpu
)
200 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
201 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
202 uint64_t v
= cpu
->cpreg_values
[i
];
203 const ARMCPRegInfo
*ri
;
205 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
210 if (ri
->type
& ARM_CP_NO_MIGRATE
) {
213 /* Write value and confirm it reads back as written
214 * (to catch read-only registers and partially read-only
215 * registers where the incoming migration value doesn't match)
217 write_raw_cp_reg(&cpu
->env
, ri
, v
);
218 if (read_raw_cp_reg(&cpu
->env
, ri
) != v
) {
225 static void add_cpreg_to_list(gpointer key
, gpointer opaque
)
227 ARMCPU
*cpu
= opaque
;
229 const ARMCPRegInfo
*ri
;
231 regidx
= *(uint32_t *)key
;
232 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
234 if (!(ri
->type
& ARM_CP_NO_MIGRATE
)) {
235 cpu
->cpreg_indexes
[cpu
->cpreg_array_len
] = cpreg_to_kvm_id(regidx
);
236 /* The value array need not be initialized at this point */
237 cpu
->cpreg_array_len
++;
241 static void count_cpreg(gpointer key
, gpointer opaque
)
243 ARMCPU
*cpu
= opaque
;
245 const ARMCPRegInfo
*ri
;
247 regidx
= *(uint32_t *)key
;
248 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
250 if (!(ri
->type
& ARM_CP_NO_MIGRATE
)) {
251 cpu
->cpreg_array_len
++;
255 static gint
cpreg_key_compare(gconstpointer a
, gconstpointer b
)
257 uint64_t aidx
= cpreg_to_kvm_id(*(uint32_t *)a
);
258 uint64_t bidx
= cpreg_to_kvm_id(*(uint32_t *)b
);
269 static void cpreg_make_keylist(gpointer key
, gpointer value
, gpointer udata
)
271 GList
**plist
= udata
;
273 *plist
= g_list_prepend(*plist
, key
);
276 void init_cpreg_list(ARMCPU
*cpu
)
278 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
279 * Note that we require cpreg_tuples[] to be sorted by key ID.
284 g_hash_table_foreach(cpu
->cp_regs
, cpreg_make_keylist
, &keys
);
286 keys
= g_list_sort(keys
, cpreg_key_compare
);
288 cpu
->cpreg_array_len
= 0;
290 g_list_foreach(keys
, count_cpreg
, cpu
);
292 arraylen
= cpu
->cpreg_array_len
;
293 cpu
->cpreg_indexes
= g_new(uint64_t, arraylen
);
294 cpu
->cpreg_values
= g_new(uint64_t, arraylen
);
295 cpu
->cpreg_vmstate_indexes
= g_new(uint64_t, arraylen
);
296 cpu
->cpreg_vmstate_values
= g_new(uint64_t, arraylen
);
297 cpu
->cpreg_vmstate_array_len
= cpu
->cpreg_array_len
;
298 cpu
->cpreg_array_len
= 0;
300 g_list_foreach(keys
, add_cpreg_to_list
, cpu
);
302 assert(cpu
->cpreg_array_len
== arraylen
);
307 /* Return true if extended addresses are enabled.
308 * This is always the case if our translation regime is 64 bit,
309 * but depends on TTBCR.EAE for 32 bit.
311 static inline bool extended_addresses_enabled(CPUARMState
*env
)
313 return arm_el_is_aa64(env
, 1)
314 || ((arm_feature(env
, ARM_FEATURE_LPAE
)
315 && (env
->cp15
.c2_control
& (1U << 31))));
318 static void dacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
320 ARMCPU
*cpu
= arm_env_get_cpu(env
);
322 env
->cp15
.c3
= value
;
323 tlb_flush(CPU(cpu
), 1); /* Flush TLB as domain not tracked in TLB */
326 static void fcse_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
328 ARMCPU
*cpu
= arm_env_get_cpu(env
);
330 if (env
->cp15
.c13_fcse
!= value
) {
331 /* Unlike real hardware the qemu TLB uses virtual addresses,
332 * not modified virtual addresses, so this causes a TLB flush.
334 tlb_flush(CPU(cpu
), 1);
335 env
->cp15
.c13_fcse
= value
;
339 static void contextidr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
342 ARMCPU
*cpu
= arm_env_get_cpu(env
);
344 if (env
->cp15
.contextidr_el1
!= value
&& !arm_feature(env
, ARM_FEATURE_MPU
)
345 && !extended_addresses_enabled(env
)) {
346 /* For VMSA (when not using the LPAE long descriptor page table
347 * format) this register includes the ASID, so do a TLB flush.
348 * For PMSA it is purely a process ID and no action is needed.
350 tlb_flush(CPU(cpu
), 1);
352 env
->cp15
.contextidr_el1
= value
;
355 static void tlbiall_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
358 /* Invalidate all (TLBIALL) */
359 ARMCPU
*cpu
= arm_env_get_cpu(env
);
361 tlb_flush(CPU(cpu
), 1);
364 static void tlbimva_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
367 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
368 ARMCPU
*cpu
= arm_env_get_cpu(env
);
370 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
373 static void tlbiasid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
376 /* Invalidate by ASID (TLBIASID) */
377 ARMCPU
*cpu
= arm_env_get_cpu(env
);
379 tlb_flush(CPU(cpu
), value
== 0);
382 static void tlbimvaa_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
385 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
386 ARMCPU
*cpu
= arm_env_get_cpu(env
);
388 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
391 static const ARMCPRegInfo cp_reginfo
[] = {
392 /* DBGDIDR: just RAZ. In particular this means the "debug architecture
393 * version" bits will read as a reserved value, which should cause
394 * Linux to not try to use the debug hardware.
396 { .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
397 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
398 { .name
= "FCSEIDR", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 0,
399 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c13_fcse
),
400 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
401 { .name
= "CONTEXTIDR", .state
= ARM_CP_STATE_BOTH
,
402 .opc0
= 3, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 1,
404 .fieldoffset
= offsetof(CPUARMState
, cp15
.contextidr_el1
),
405 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
409 static const ARMCPRegInfo not_v8_cp_reginfo
[] = {
410 /* NB: Some of these registers exist in v8 but with more precise
411 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
413 /* MMU Domain access control / MPU write buffer control */
414 { .name
= "DACR", .cp
= 15,
415 .crn
= 3, .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
416 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c3
),
417 .resetvalue
= 0, .writefn
= dacr_write
, .raw_writefn
= raw_write
, },
418 /* ??? This covers not just the impdef TLB lockdown registers but also
419 * some v7VMSA registers relating to TEX remap, so it is overly broad.
421 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= CP_ANY
,
422 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
423 /* MMU TLB control. Note that the wildcarding means we cover not just
424 * the unified TLB ops but also the dside/iside/inner-shareable variants.
426 { .name
= "TLBIALL", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
427 .opc1
= CP_ANY
, .opc2
= 0, .access
= PL1_W
, .writefn
= tlbiall_write
,
428 .type
= ARM_CP_NO_MIGRATE
},
429 { .name
= "TLBIMVA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
430 .opc1
= CP_ANY
, .opc2
= 1, .access
= PL1_W
, .writefn
= tlbimva_write
,
431 .type
= ARM_CP_NO_MIGRATE
},
432 { .name
= "TLBIASID", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
433 .opc1
= CP_ANY
, .opc2
= 2, .access
= PL1_W
, .writefn
= tlbiasid_write
,
434 .type
= ARM_CP_NO_MIGRATE
},
435 { .name
= "TLBIMVAA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
436 .opc1
= CP_ANY
, .opc2
= 3, .access
= PL1_W
, .writefn
= tlbimvaa_write
,
437 .type
= ARM_CP_NO_MIGRATE
},
438 /* Cache maintenance ops; some of this space may be overridden later. */
439 { .name
= "CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
440 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
441 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
},
445 static const ARMCPRegInfo not_v6_cp_reginfo
[] = {
446 /* Not all pre-v6 cores implemented this WFI, so this is slightly
449 { .name
= "WFI_v5", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= 2,
450 .access
= PL1_W
, .type
= ARM_CP_WFI
},
454 static const ARMCPRegInfo not_v7_cp_reginfo
[] = {
455 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
456 * is UNPREDICTABLE; we choose to NOP as most implementations do).
458 { .name
= "WFI_v6", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
459 .access
= PL1_W
, .type
= ARM_CP_WFI
},
460 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
461 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
462 * OMAPCP will override this space.
464 { .name
= "DLOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 0,
465 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_data
),
467 { .name
= "ILOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 1,
468 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_insn
),
470 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
471 { .name
= "DUMMY", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= CP_ANY
,
472 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
477 static void cpacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
480 if (env
->cp15
.c1_coproc
!= value
) {
481 env
->cp15
.c1_coproc
= value
;
482 /* ??? Is this safe when called from within a TB? */
487 static const ARMCPRegInfo v6_cp_reginfo
[] = {
488 /* prefetch by MVA in v6, NOP in v7 */
489 { .name
= "MVA_prefetch",
490 .cp
= 15, .crn
= 7, .crm
= 13, .opc1
= 0, .opc2
= 1,
491 .access
= PL1_W
, .type
= ARM_CP_NOP
},
492 { .name
= "ISB", .cp
= 15, .crn
= 7, .crm
= 5, .opc1
= 0, .opc2
= 4,
493 .access
= PL0_W
, .type
= ARM_CP_NOP
},
494 { .name
= "DSB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 4,
495 .access
= PL0_W
, .type
= ARM_CP_NOP
},
496 { .name
= "DMB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 5,
497 .access
= PL0_W
, .type
= ARM_CP_NOP
},
498 { .name
= "IFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 2,
500 .fieldoffset
= offsetofhigh32(CPUARMState
, cp15
.far_el1
),
502 /* Watchpoint Fault Address Register : should actually only be present
503 * for 1136, 1176, 11MPCore.
505 { .name
= "WFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 1,
506 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0, },
507 { .name
= "CPACR", .state
= ARM_CP_STATE_BOTH
, .opc0
= 3,
508 .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 2,
509 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_coproc
),
510 .resetvalue
= 0, .writefn
= cpacr_write
},
514 static CPAccessResult
pmreg_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
516 /* Performance monitor registers user accessibility is controlled
519 if (arm_current_pl(env
) == 0 && !env
->cp15
.c9_pmuserenr
) {
520 return CP_ACCESS_TRAP
;
525 #ifndef CONFIG_USER_ONLY
526 static void pmcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
529 /* Don't computer the number of ticks in user mode */
532 temp_ticks
= qemu_clock_get_us(QEMU_CLOCK_VIRTUAL
) *
533 get_ticks_per_sec() / 1000000;
535 if (env
->cp15
.c9_pmcr
& PMCRE
) {
536 /* If the counter is enabled */
537 if (env
->cp15
.c9_pmcr
& PMCRD
) {
538 /* Increment once every 64 processor clock cycles */
539 env
->cp15
.c15_ccnt
= (temp_ticks
/64) - env
->cp15
.c15_ccnt
;
541 env
->cp15
.c15_ccnt
= temp_ticks
- env
->cp15
.c15_ccnt
;
546 /* The counter has been reset */
547 env
->cp15
.c15_ccnt
= 0;
550 /* only the DP, X, D and E bits are writable */
551 env
->cp15
.c9_pmcr
&= ~0x39;
552 env
->cp15
.c9_pmcr
|= (value
& 0x39);
554 if (env
->cp15
.c9_pmcr
& PMCRE
) {
555 if (env
->cp15
.c9_pmcr
& PMCRD
) {
556 /* Increment once every 64 processor clock cycles */
559 env
->cp15
.c15_ccnt
= temp_ticks
- env
->cp15
.c15_ccnt
;
563 static uint64_t pmccntr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
565 uint32_t total_ticks
;
567 if (!(env
->cp15
.c9_pmcr
& PMCRE
)) {
568 /* Counter is disabled, do not change value */
569 return env
->cp15
.c15_ccnt
;
572 total_ticks
= qemu_clock_get_us(QEMU_CLOCK_VIRTUAL
) *
573 get_ticks_per_sec() / 1000000;
575 if (env
->cp15
.c9_pmcr
& PMCRD
) {
576 /* Increment once every 64 processor clock cycles */
579 return total_ticks
- env
->cp15
.c15_ccnt
;
582 static void pmccntr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
585 uint32_t total_ticks
;
587 if (!(env
->cp15
.c9_pmcr
& PMCRE
)) {
588 /* Counter is disabled, set the absolute value */
589 env
->cp15
.c15_ccnt
= value
;
593 total_ticks
= qemu_clock_get_us(QEMU_CLOCK_VIRTUAL
) *
594 get_ticks_per_sec() / 1000000;
596 if (env
->cp15
.c9_pmcr
& PMCRD
) {
597 /* Increment once every 64 processor clock cycles */
600 env
->cp15
.c15_ccnt
= total_ticks
- value
;
604 static void pmcntenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
608 env
->cp15
.c9_pmcnten
|= value
;
611 static void pmcntenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
615 env
->cp15
.c9_pmcnten
&= ~value
;
618 static void pmovsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
621 env
->cp15
.c9_pmovsr
&= ~value
;
624 static void pmxevtyper_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
627 env
->cp15
.c9_pmxevtyper
= value
& 0xff;
630 static void pmuserenr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
633 env
->cp15
.c9_pmuserenr
= value
& 1;
636 static void pmintenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
639 /* We have no event counters so only the C bit can be changed */
641 env
->cp15
.c9_pminten
|= value
;
644 static void pmintenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
648 env
->cp15
.c9_pminten
&= ~value
;
651 static void vbar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
654 /* Note that even though the AArch64 view of this register has bits
655 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
656 * architectural requirements for bits which are RES0 only in some
657 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
658 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
660 env
->cp15
.c12_vbar
= value
& ~0x1FULL
;
663 static uint64_t ccsidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
665 ARMCPU
*cpu
= arm_env_get_cpu(env
);
666 return cpu
->ccsidr
[env
->cp15
.c0_cssel
];
669 static void csselr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
672 env
->cp15
.c0_cssel
= value
& 0xf;
675 static uint64_t isr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
677 CPUState
*cs
= ENV_GET_CPU(env
);
680 if (cs
->interrupt_request
& CPU_INTERRUPT_HARD
) {
683 if (cs
->interrupt_request
& CPU_INTERRUPT_FIQ
) {
686 /* External aborts are not possible in QEMU so A bit is always clear */
690 static const ARMCPRegInfo v7_cp_reginfo
[] = {
691 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
694 { .name
= "DBGDRAR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 0,
695 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
696 { .name
= "DBGDSAR", .cp
= 14, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
697 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
698 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
699 { .name
= "NOP", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
700 .access
= PL1_W
, .type
= ARM_CP_NOP
},
701 /* Performance monitors are implementation defined in v7,
702 * but with an ARM recommended set of registers, which we
703 * follow (although we don't actually implement any counters)
705 * Performance registers fall into three categories:
706 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
707 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
708 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
709 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
710 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
712 { .name
= "PMCNTENSET", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 1,
713 .access
= PL0_RW
, .resetvalue
= 0,
714 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
),
715 .writefn
= pmcntenset_write
,
716 .accessfn
= pmreg_access
,
717 .raw_writefn
= raw_write
},
718 { .name
= "PMCNTENCLR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 2,
719 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
),
720 .accessfn
= pmreg_access
,
721 .writefn
= pmcntenclr_write
,
722 .type
= ARM_CP_NO_MIGRATE
},
723 { .name
= "PMOVSR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 3,
724 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmovsr
),
725 .accessfn
= pmreg_access
,
726 .writefn
= pmovsr_write
,
727 .raw_writefn
= raw_write
},
728 /* Unimplemented so WI. */
729 { .name
= "PMSWINC", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 4,
730 .access
= PL0_W
, .accessfn
= pmreg_access
, .type
= ARM_CP_NOP
},
731 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
732 * We choose to RAZ/WI.
734 { .name
= "PMSELR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 5,
735 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
736 .accessfn
= pmreg_access
},
737 #ifndef CONFIG_USER_ONLY
738 { .name
= "PMCCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 0,
739 .access
= PL0_RW
, .resetvalue
= 0, .type
= ARM_CP_IO
,
740 .readfn
= pmccntr_read
, .writefn
= pmccntr_write
,
741 .accessfn
= pmreg_access
},
743 { .name
= "PMXEVTYPER", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 1,
745 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmxevtyper
),
746 .accessfn
= pmreg_access
, .writefn
= pmxevtyper_write
,
747 .raw_writefn
= raw_write
},
748 /* Unimplemented, RAZ/WI. */
749 { .name
= "PMXEVCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 2,
750 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
751 .accessfn
= pmreg_access
},
752 { .name
= "PMUSERENR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 0,
753 .access
= PL0_R
| PL1_RW
,
754 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmuserenr
),
756 .writefn
= pmuserenr_write
, .raw_writefn
= raw_write
},
757 { .name
= "PMINTENSET", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 1,
759 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
761 .writefn
= pmintenset_write
, .raw_writefn
= raw_write
},
762 { .name
= "PMINTENCLR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 2,
763 .access
= PL1_RW
, .type
= ARM_CP_NO_MIGRATE
,
764 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
765 .resetvalue
= 0, .writefn
= pmintenclr_write
, },
766 { .name
= "VBAR", .state
= ARM_CP_STATE_BOTH
,
767 .opc0
= 3, .crn
= 12, .crm
= 0, .opc1
= 0, .opc2
= 0,
768 .access
= PL1_RW
, .writefn
= vbar_write
,
769 .fieldoffset
= offsetof(CPUARMState
, cp15
.c12_vbar
),
771 { .name
= "SCR", .cp
= 15, .crn
= 1, .crm
= 1, .opc1
= 0, .opc2
= 0,
772 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_scr
),
774 { .name
= "CCSIDR", .state
= ARM_CP_STATE_BOTH
,
775 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 0,
776 .access
= PL1_R
, .readfn
= ccsidr_read
, .type
= ARM_CP_NO_MIGRATE
},
777 { .name
= "CSSELR", .state
= ARM_CP_STATE_BOTH
,
778 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 2, .opc2
= 0,
779 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cssel
),
780 .writefn
= csselr_write
, .resetvalue
= 0 },
781 /* Auxiliary ID register: this actually has an IMPDEF value but for now
782 * just RAZ for all cores:
784 { .name
= "AIDR", .state
= ARM_CP_STATE_BOTH
,
785 .opc0
= 3, .opc1
= 1, .crn
= 0, .crm
= 0, .opc2
= 7,
786 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
787 /* Auxiliary fault status registers: these also are IMPDEF, and we
788 * choose to RAZ/WI for all cores.
790 { .name
= "AFSR0_EL1", .state
= ARM_CP_STATE_BOTH
,
791 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 0,
792 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
793 { .name
= "AFSR1_EL1", .state
= ARM_CP_STATE_BOTH
,
794 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 1,
795 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
796 /* MAIR can just read-as-written because we don't implement caches
797 * and so don't need to care about memory attributes.
799 { .name
= "MAIR_EL1", .state
= ARM_CP_STATE_AA64
,
800 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0,
801 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el1
),
803 /* For non-long-descriptor page tables these are PRRR and NMRR;
804 * regardless they still act as reads-as-written for QEMU.
805 * The override is necessary because of the overly-broad TLB_LOCKDOWN
808 { .name
= "MAIR0", .state
= ARM_CP_STATE_AA32
, .type
= ARM_CP_OVERRIDE
,
809 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0, .access
= PL1_RW
,
810 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.mair_el1
),
811 .resetfn
= arm_cp_reset_ignore
},
812 { .name
= "MAIR1", .state
= ARM_CP_STATE_AA32
, .type
= ARM_CP_OVERRIDE
,
813 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 1, .access
= PL1_RW
,
814 .fieldoffset
= offsetofhigh32(CPUARMState
, cp15
.mair_el1
),
815 .resetfn
= arm_cp_reset_ignore
},
816 { .name
= "ISR_EL1", .state
= ARM_CP_STATE_BOTH
,
817 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 1, .opc2
= 0,
818 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_R
, .readfn
= isr_read
},
822 static void teecr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
829 static CPAccessResult
teehbr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
831 if (arm_current_pl(env
) == 0 && (env
->teecr
& 1)) {
832 return CP_ACCESS_TRAP
;
837 static const ARMCPRegInfo t2ee_cp_reginfo
[] = {
838 { .name
= "TEECR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 6, .opc2
= 0,
839 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, teecr
),
841 .writefn
= teecr_write
},
842 { .name
= "TEEHBR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 6, .opc2
= 0,
843 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, teehbr
),
844 .accessfn
= teehbr_access
, .resetvalue
= 0 },
848 static const ARMCPRegInfo v6k_cp_reginfo
[] = {
849 { .name
= "TPIDR_EL0", .state
= ARM_CP_STATE_AA64
,
850 .opc0
= 3, .opc1
= 3, .opc2
= 2, .crn
= 13, .crm
= 0,
852 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el0
), .resetvalue
= 0 },
853 { .name
= "TPIDRURW", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 2,
855 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.tpidr_el0
),
856 .resetfn
= arm_cp_reset_ignore
},
857 { .name
= "TPIDRRO_EL0", .state
= ARM_CP_STATE_AA64
,
858 .opc0
= 3, .opc1
= 3, .opc2
= 3, .crn
= 13, .crm
= 0,
859 .access
= PL0_R
|PL1_W
,
860 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidrro_el0
), .resetvalue
= 0 },
861 { .name
= "TPIDRURO", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 3,
862 .access
= PL0_R
|PL1_W
,
863 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.tpidrro_el0
),
864 .resetfn
= arm_cp_reset_ignore
},
865 { .name
= "TPIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
866 .opc0
= 3, .opc1
= 0, .opc2
= 4, .crn
= 13, .crm
= 0,
868 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el1
), .resetvalue
= 0 },
872 #ifndef CONFIG_USER_ONLY
874 static CPAccessResult
gt_cntfrq_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
876 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
877 if (arm_current_pl(env
) == 0 && !extract32(env
->cp15
.c14_cntkctl
, 0, 2)) {
878 return CP_ACCESS_TRAP
;
883 static CPAccessResult
gt_counter_access(CPUARMState
*env
, int timeridx
)
885 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
886 if (arm_current_pl(env
) == 0 &&
887 !extract32(env
->cp15
.c14_cntkctl
, timeridx
, 1)) {
888 return CP_ACCESS_TRAP
;
893 static CPAccessResult
gt_timer_access(CPUARMState
*env
, int timeridx
)
895 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
896 * EL0[PV]TEN is zero.
898 if (arm_current_pl(env
) == 0 &&
899 !extract32(env
->cp15
.c14_cntkctl
, 9 - timeridx
, 1)) {
900 return CP_ACCESS_TRAP
;
905 static CPAccessResult
gt_pct_access(CPUARMState
*env
,
906 const ARMCPRegInfo
*ri
)
908 return gt_counter_access(env
, GTIMER_PHYS
);
911 static CPAccessResult
gt_vct_access(CPUARMState
*env
,
912 const ARMCPRegInfo
*ri
)
914 return gt_counter_access(env
, GTIMER_VIRT
);
917 static CPAccessResult
gt_ptimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
919 return gt_timer_access(env
, GTIMER_PHYS
);
922 static CPAccessResult
gt_vtimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
924 return gt_timer_access(env
, GTIMER_VIRT
);
927 static uint64_t gt_get_countervalue(CPUARMState
*env
)
929 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) / GTIMER_SCALE
;
932 static void gt_recalc_timer(ARMCPU
*cpu
, int timeridx
)
934 ARMGenericTimer
*gt
= &cpu
->env
.cp15
.c14_timer
[timeridx
];
937 /* Timer enabled: calculate and set current ISTATUS, irq, and
938 * reset timer to when ISTATUS next has to change
940 uint64_t count
= gt_get_countervalue(&cpu
->env
);
941 /* Note that this must be unsigned 64 bit arithmetic: */
942 int istatus
= count
>= gt
->cval
;
945 gt
->ctl
= deposit32(gt
->ctl
, 2, 1, istatus
);
946 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
],
947 (istatus
&& !(gt
->ctl
& 2)));
949 /* Next transition is when count rolls back over to zero */
950 nexttick
= UINT64_MAX
;
952 /* Next transition is when we hit cval */
955 /* Note that the desired next expiry time might be beyond the
956 * signed-64-bit range of a QEMUTimer -- in this case we just
957 * set the timer for as far in the future as possible. When the
958 * timer expires we will reset the timer for any remaining period.
960 if (nexttick
> INT64_MAX
/ GTIMER_SCALE
) {
961 nexttick
= INT64_MAX
/ GTIMER_SCALE
;
963 timer_mod(cpu
->gt_timer
[timeridx
], nexttick
);
965 /* Timer disabled: ISTATUS and timer output always clear */
967 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
], 0);
968 timer_del(cpu
->gt_timer
[timeridx
]);
972 static void gt_cnt_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
974 ARMCPU
*cpu
= arm_env_get_cpu(env
);
975 int timeridx
= ri
->opc1
& 1;
977 timer_del(cpu
->gt_timer
[timeridx
]);
980 static uint64_t gt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
982 return gt_get_countervalue(env
);
985 static void gt_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
988 int timeridx
= ri
->opc1
& 1;
990 env
->cp15
.c14_timer
[timeridx
].cval
= value
;
991 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
994 static uint64_t gt_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
996 int timeridx
= ri
->crm
& 1;
998 return (uint32_t)(env
->cp15
.c14_timer
[timeridx
].cval
-
999 gt_get_countervalue(env
));
1002 static void gt_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1005 int timeridx
= ri
->crm
& 1;
1007 env
->cp15
.c14_timer
[timeridx
].cval
= gt_get_countervalue(env
) +
1008 + sextract64(value
, 0, 32);
1009 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
1012 static void gt_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1015 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1016 int timeridx
= ri
->crm
& 1;
1017 uint32_t oldval
= env
->cp15
.c14_timer
[timeridx
].ctl
;
1019 env
->cp15
.c14_timer
[timeridx
].ctl
= value
& 3;
1020 if ((oldval
^ value
) & 1) {
1021 /* Enable toggled */
1022 gt_recalc_timer(cpu
, timeridx
);
1023 } else if ((oldval
& value
) & 2) {
1024 /* IMASK toggled: don't need to recalculate,
1025 * just set the interrupt line based on ISTATUS
1027 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
],
1028 (oldval
& 4) && (value
& 2));
1032 void arm_gt_ptimer_cb(void *opaque
)
1034 ARMCPU
*cpu
= opaque
;
1036 gt_recalc_timer(cpu
, GTIMER_PHYS
);
1039 void arm_gt_vtimer_cb(void *opaque
)
1041 ARMCPU
*cpu
= opaque
;
1043 gt_recalc_timer(cpu
, GTIMER_VIRT
);
1046 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
1047 /* Note that CNTFRQ is purely reads-as-written for the benefit
1048 * of software; writing it doesn't actually change the timer frequency.
1049 * Our reset value matches the fixed frequency we implement the timer at.
1051 { .name
= "CNTFRQ", .cp
= 15, .crn
= 14, .crm
= 0, .opc1
= 0, .opc2
= 0,
1052 .type
= ARM_CP_NO_MIGRATE
,
1053 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
1054 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c14_cntfrq
),
1055 .resetfn
= arm_cp_reset_ignore
,
1057 { .name
= "CNTFRQ_EL0", .state
= ARM_CP_STATE_AA64
,
1058 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 0,
1059 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
1060 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntfrq
),
1061 .resetvalue
= (1000 * 1000 * 1000) / GTIMER_SCALE
,
1063 /* overall control: mostly access permissions */
1064 { .name
= "CNTKCTL", .state
= ARM_CP_STATE_BOTH
,
1065 .opc0
= 3, .opc1
= 0, .crn
= 14, .crm
= 1, .opc2
= 0,
1067 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntkctl
),
1070 /* per-timer control */
1071 { .name
= "CNTP_CTL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 1,
1072 .type
= ARM_CP_IO
| ARM_CP_NO_MIGRATE
, .access
= PL1_RW
| PL0_R
,
1073 .accessfn
= gt_ptimer_access
,
1074 .fieldoffset
= offsetoflow32(CPUARMState
,
1075 cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
1076 .resetfn
= arm_cp_reset_ignore
,
1077 .writefn
= gt_ctl_write
, .raw_writefn
= raw_write
,
1079 { .name
= "CNTP_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
1080 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 1,
1081 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1082 .accessfn
= gt_ptimer_access
,
1083 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
1085 .writefn
= gt_ctl_write
, .raw_writefn
= raw_write
,
1087 { .name
= "CNTV_CTL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 1,
1088 .type
= ARM_CP_IO
| ARM_CP_NO_MIGRATE
, .access
= PL1_RW
| PL0_R
,
1089 .accessfn
= gt_vtimer_access
,
1090 .fieldoffset
= offsetoflow32(CPUARMState
,
1091 cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
1092 .resetfn
= arm_cp_reset_ignore
,
1093 .writefn
= gt_ctl_write
, .raw_writefn
= raw_write
,
1095 { .name
= "CNTV_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
1096 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 1,
1097 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1098 .accessfn
= gt_vtimer_access
,
1099 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
1101 .writefn
= gt_ctl_write
, .raw_writefn
= raw_write
,
1103 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1104 { .name
= "CNTP_TVAL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 0,
1105 .type
= ARM_CP_NO_MIGRATE
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1106 .accessfn
= gt_ptimer_access
,
1107 .readfn
= gt_tval_read
, .writefn
= gt_tval_write
,
1109 { .name
= "CNTP_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1110 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 0,
1111 .type
= ARM_CP_NO_MIGRATE
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1112 .readfn
= gt_tval_read
, .writefn
= gt_tval_write
,
1114 { .name
= "CNTV_TVAL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 0,
1115 .type
= ARM_CP_NO_MIGRATE
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1116 .accessfn
= gt_vtimer_access
,
1117 .readfn
= gt_tval_read
, .writefn
= gt_tval_write
,
1119 { .name
= "CNTV_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1120 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 0,
1121 .type
= ARM_CP_NO_MIGRATE
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1122 .readfn
= gt_tval_read
, .writefn
= gt_tval_write
,
1124 /* The counter itself */
1125 { .name
= "CNTPCT", .cp
= 15, .crm
= 14, .opc1
= 0,
1126 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_MIGRATE
| ARM_CP_IO
,
1127 .accessfn
= gt_pct_access
,
1128 .readfn
= gt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
1130 { .name
= "CNTPCT_EL0", .state
= ARM_CP_STATE_AA64
,
1131 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 1,
1132 .access
= PL0_R
, .type
= ARM_CP_NO_MIGRATE
| ARM_CP_IO
,
1133 .accessfn
= gt_pct_access
,
1134 .readfn
= gt_cnt_read
, .resetfn
= gt_cnt_reset
,
1136 { .name
= "CNTVCT", .cp
= 15, .crm
= 14, .opc1
= 1,
1137 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_MIGRATE
| ARM_CP_IO
,
1138 .accessfn
= gt_vct_access
,
1139 .readfn
= gt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
1141 { .name
= "CNTVCT_EL0", .state
= ARM_CP_STATE_AA64
,
1142 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 2,
1143 .access
= PL0_R
, .type
= ARM_CP_NO_MIGRATE
| ARM_CP_IO
,
1144 .accessfn
= gt_vct_access
,
1145 .readfn
= gt_cnt_read
, .resetfn
= gt_cnt_reset
,
1147 /* Comparison value, indicating when the timer goes off */
1148 { .name
= "CNTP_CVAL", .cp
= 15, .crm
= 14, .opc1
= 2,
1149 .access
= PL1_RW
| PL0_R
,
1150 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_NO_MIGRATE
,
1151 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
1152 .accessfn
= gt_ptimer_access
, .resetfn
= arm_cp_reset_ignore
,
1153 .writefn
= gt_cval_write
, .raw_writefn
= raw_write
,
1155 { .name
= "CNTP_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1156 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 2,
1157 .access
= PL1_RW
| PL0_R
,
1159 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
1160 .resetvalue
= 0, .accessfn
= gt_vtimer_access
,
1161 .writefn
= gt_cval_write
, .raw_writefn
= raw_write
,
1163 { .name
= "CNTV_CVAL", .cp
= 15, .crm
= 14, .opc1
= 3,
1164 .access
= PL1_RW
| PL0_R
,
1165 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_NO_MIGRATE
,
1166 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
1167 .accessfn
= gt_vtimer_access
, .resetfn
= arm_cp_reset_ignore
,
1168 .writefn
= gt_cval_write
, .raw_writefn
= raw_write
,
1170 { .name
= "CNTV_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1171 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 2,
1172 .access
= PL1_RW
| PL0_R
,
1174 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
1175 .resetvalue
= 0, .accessfn
= gt_vtimer_access
,
1176 .writefn
= gt_cval_write
, .raw_writefn
= raw_write
,
1182 /* In user-mode none of the generic timer registers are accessible,
1183 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1184 * so instead just don't register any of them.
1186 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
1192 static void par_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1194 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1195 env
->cp15
.par_el1
= value
;
1196 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
1197 env
->cp15
.par_el1
= value
& 0xfffff6ff;
1199 env
->cp15
.par_el1
= value
& 0xfffff1ff;
1203 #ifndef CONFIG_USER_ONLY
1204 /* get_phys_addr() isn't present for user-mode-only targets */
1206 static CPAccessResult
ats_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1209 /* Other states are only available with TrustZone; in
1210 * a non-TZ implementation these registers don't exist
1211 * at all, which is an Uncategorized trap. This underdecoding
1212 * is safe because the reginfo is NO_MIGRATE.
1214 return CP_ACCESS_TRAP_UNCATEGORIZED
;
1216 return CP_ACCESS_OK
;
1219 static void ats_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1222 target_ulong page_size
;
1224 int ret
, is_user
= ri
->opc2
& 2;
1225 int access_type
= ri
->opc2
& 1;
1227 ret
= get_phys_addr(env
, value
, access_type
, is_user
,
1228 &phys_addr
, &prot
, &page_size
);
1229 if (extended_addresses_enabled(env
)) {
1230 /* ret is a DFSR/IFSR value for the long descriptor
1231 * translation table format, but with WnR always clear.
1232 * Convert it to a 64-bit PAR.
1234 uint64_t par64
= (1 << 11); /* LPAE bit always set */
1236 par64
|= phys_addr
& ~0xfffULL
;
1237 /* We don't set the ATTR or SH fields in the PAR. */
1240 par64
|= (ret
& 0x3f) << 1; /* FS */
1241 /* Note that S2WLK and FSTAGE are always zero, because we don't
1242 * implement virtualization and therefore there can't be a stage 2
1246 env
->cp15
.par_el1
= par64
;
1248 /* ret is a DFSR/IFSR value for the short descriptor
1249 * translation table format (with WnR always clear).
1250 * Convert it to a 32-bit PAR.
1253 /* We do not set any attribute bits in the PAR */
1254 if (page_size
== (1 << 24)
1255 && arm_feature(env
, ARM_FEATURE_V7
)) {
1256 env
->cp15
.par_el1
= (phys_addr
& 0xff000000) | 1 << 1;
1258 env
->cp15
.par_el1
= phys_addr
& 0xfffff000;
1261 env
->cp15
.par_el1
= ((ret
& (1 << 10)) >> 5) |
1262 ((ret
& (1 << 12)) >> 6) |
1263 ((ret
& 0xf) << 1) | 1;
1269 static const ARMCPRegInfo vapa_cp_reginfo
[] = {
1270 { .name
= "PAR", .cp
= 15, .crn
= 7, .crm
= 4, .opc1
= 0, .opc2
= 0,
1271 .access
= PL1_RW
, .resetvalue
= 0,
1272 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.par_el1
),
1273 .writefn
= par_write
},
1274 #ifndef CONFIG_USER_ONLY
1275 { .name
= "ATS", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= CP_ANY
,
1276 .access
= PL1_W
, .accessfn
= ats_access
,
1277 .writefn
= ats_write
, .type
= ARM_CP_NO_MIGRATE
},
1282 /* Return basic MPU access permission bits. */
1283 static uint32_t simple_mpu_ap_bits(uint32_t val
)
1290 for (i
= 0; i
< 16; i
+= 2) {
1291 ret
|= (val
>> i
) & mask
;
1297 /* Pad basic MPU access permission bits to extended format. */
1298 static uint32_t extended_mpu_ap_bits(uint32_t val
)
1305 for (i
= 0; i
< 16; i
+= 2) {
1306 ret
|= (val
& mask
) << i
;
1312 static void pmsav5_data_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1315 env
->cp15
.pmsav5_data_ap
= extended_mpu_ap_bits(value
);
1318 static uint64_t pmsav5_data_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1320 return simple_mpu_ap_bits(env
->cp15
.pmsav5_data_ap
);
1323 static void pmsav5_insn_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1326 env
->cp15
.pmsav5_insn_ap
= extended_mpu_ap_bits(value
);
1329 static uint64_t pmsav5_insn_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1331 return simple_mpu_ap_bits(env
->cp15
.pmsav5_insn_ap
);
1334 static const ARMCPRegInfo pmsav5_cp_reginfo
[] = {
1335 { .name
= "DATA_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
1336 .access
= PL1_RW
, .type
= ARM_CP_NO_MIGRATE
,
1337 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
1339 .readfn
= pmsav5_data_ap_read
, .writefn
= pmsav5_data_ap_write
, },
1340 { .name
= "INSN_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
1341 .access
= PL1_RW
, .type
= ARM_CP_NO_MIGRATE
,
1342 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
1344 .readfn
= pmsav5_insn_ap_read
, .writefn
= pmsav5_insn_ap_write
, },
1345 { .name
= "DATA_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 2,
1347 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
1349 { .name
= "INSN_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 3,
1351 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
1353 { .name
= "DCACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
1355 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_data
), .resetvalue
= 0, },
1356 { .name
= "ICACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 1,
1358 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_insn
), .resetvalue
= 0, },
1359 /* Protection region base and size registers */
1360 { .name
= "946_PRBS0", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0,
1361 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1362 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[0]) },
1363 { .name
= "946_PRBS1", .cp
= 15, .crn
= 6, .crm
= 1, .opc1
= 0,
1364 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1365 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[1]) },
1366 { .name
= "946_PRBS2", .cp
= 15, .crn
= 6, .crm
= 2, .opc1
= 0,
1367 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1368 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[2]) },
1369 { .name
= "946_PRBS3", .cp
= 15, .crn
= 6, .crm
= 3, .opc1
= 0,
1370 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1371 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[3]) },
1372 { .name
= "946_PRBS4", .cp
= 15, .crn
= 6, .crm
= 4, .opc1
= 0,
1373 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1374 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[4]) },
1375 { .name
= "946_PRBS5", .cp
= 15, .crn
= 6, .crm
= 5, .opc1
= 0,
1376 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1377 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[5]) },
1378 { .name
= "946_PRBS6", .cp
= 15, .crn
= 6, .crm
= 6, .opc1
= 0,
1379 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1380 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[6]) },
1381 { .name
= "946_PRBS7", .cp
= 15, .crn
= 6, .crm
= 7, .opc1
= 0,
1382 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1383 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[7]) },
1387 static void vmsa_ttbcr_raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1390 int maskshift
= extract32(value
, 0, 3);
1392 if (arm_feature(env
, ARM_FEATURE_LPAE
) && (value
& (1 << 31))) {
1393 value
&= ~((7 << 19) | (3 << 14) | (0xf << 3));
1397 /* Note that we always calculate c2_mask and c2_base_mask, but
1398 * they are only used for short-descriptor tables (ie if EAE is 0);
1399 * for long-descriptor tables the TTBCR fields are used differently
1400 * and the c2_mask and c2_base_mask values are meaningless.
1402 env
->cp15
.c2_control
= value
;
1403 env
->cp15
.c2_mask
= ~(((uint32_t)0xffffffffu
) >> maskshift
);
1404 env
->cp15
.c2_base_mask
= ~((uint32_t)0x3fffu
>> maskshift
);
1407 static void vmsa_ttbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1410 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1412 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1413 /* With LPAE the TTBCR could result in a change of ASID
1414 * via the TTBCR.A1 bit, so do a TLB flush.
1416 tlb_flush(CPU(cpu
), 1);
1418 vmsa_ttbcr_raw_write(env
, ri
, value
);
1421 static void vmsa_ttbcr_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1423 env
->cp15
.c2_base_mask
= 0xffffc000u
;
1424 env
->cp15
.c2_control
= 0;
1425 env
->cp15
.c2_mask
= 0;
1428 static void vmsa_tcr_el1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1431 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1433 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
1434 tlb_flush(CPU(cpu
), 1);
1435 env
->cp15
.c2_control
= value
;
1438 static void vmsa_ttbr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1441 /* 64 bit accesses to the TTBRs can change the ASID and so we
1442 * must flush the TLB.
1444 if (cpreg_field_is_64bit(ri
)) {
1445 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1447 tlb_flush(CPU(cpu
), 1);
1449 raw_write(env
, ri
, value
);
1452 static const ARMCPRegInfo vmsa_cp_reginfo
[] = {
1453 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
1454 .access
= PL1_RW
, .type
= ARM_CP_NO_MIGRATE
,
1455 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.esr_el1
),
1456 .resetfn
= arm_cp_reset_ignore
, },
1457 { .name
= "IFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
1459 .fieldoffset
= offsetof(CPUARMState
, cp15
.ifsr_el2
), .resetvalue
= 0, },
1460 { .name
= "ESR_EL1", .state
= ARM_CP_STATE_AA64
,
1461 .opc0
= 3, .crn
= 5, .crm
= 2, .opc1
= 0, .opc2
= 0,
1463 .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el1
), .resetvalue
= 0, },
1464 { .name
= "TTBR0_EL1", .state
= ARM_CP_STATE_BOTH
,
1465 .opc0
= 3, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
1466 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el1
),
1467 .writefn
= vmsa_ttbr_write
, .resetvalue
= 0 },
1468 { .name
= "TTBR1_EL1", .state
= ARM_CP_STATE_BOTH
,
1469 .opc0
= 3, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 1,
1470 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr1_el1
),
1471 .writefn
= vmsa_ttbr_write
, .resetvalue
= 0 },
1472 { .name
= "TCR_EL1", .state
= ARM_CP_STATE_AA64
,
1473 .opc0
= 3, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
1474 .access
= PL1_RW
, .writefn
= vmsa_tcr_el1_write
,
1475 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= raw_write
,
1476 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_control
) },
1477 { .name
= "TTBCR", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
1478 .access
= PL1_RW
, .type
= ARM_CP_NO_MIGRATE
, .writefn
= vmsa_ttbcr_write
,
1479 .resetfn
= arm_cp_reset_ignore
, .raw_writefn
= vmsa_ttbcr_raw_write
,
1480 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c2_control
) },
1481 /* 64-bit FAR; this entry also gives us the AArch32 DFAR */
1482 { .name
= "FAR_EL1", .state
= ARM_CP_STATE_BOTH
,
1483 .opc0
= 3, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 0,
1484 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el1
),
1489 static void omap_ticonfig_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1492 env
->cp15
.c15_ticonfig
= value
& 0xe7;
1493 /* The OS_TYPE bit in this register changes the reported CPUID! */
1494 env
->cp15
.c0_cpuid
= (value
& (1 << 5)) ?
1495 ARM_CPUID_TI915T
: ARM_CPUID_TI925T
;
1498 static void omap_threadid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1501 env
->cp15
.c15_threadid
= value
& 0xffff;
1504 static void omap_wfi_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1507 /* Wait-for-interrupt (deprecated) */
1508 cpu_interrupt(CPU(arm_env_get_cpu(env
)), CPU_INTERRUPT_HALT
);
1511 static void omap_cachemaint_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1514 /* On OMAP there are registers indicating the max/min index of dcache lines
1515 * containing a dirty line; cache flush operations have to reset these.
1517 env
->cp15
.c15_i_max
= 0x000;
1518 env
->cp15
.c15_i_min
= 0xff0;
1521 static const ARMCPRegInfo omap_cp_reginfo
[] = {
1522 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= CP_ANY
,
1523 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_OVERRIDE
,
1524 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.esr_el1
),
1526 { .name
= "", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 0,
1527 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
1528 { .name
= "TICONFIG", .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0,
1530 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_ticonfig
), .resetvalue
= 0,
1531 .writefn
= omap_ticonfig_write
},
1532 { .name
= "IMAX", .cp
= 15, .crn
= 15, .crm
= 2, .opc1
= 0, .opc2
= 0,
1534 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_max
), .resetvalue
= 0, },
1535 { .name
= "IMIN", .cp
= 15, .crn
= 15, .crm
= 3, .opc1
= 0, .opc2
= 0,
1536 .access
= PL1_RW
, .resetvalue
= 0xff0,
1537 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_min
) },
1538 { .name
= "THREADID", .cp
= 15, .crn
= 15, .crm
= 4, .opc1
= 0, .opc2
= 0,
1540 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_threadid
), .resetvalue
= 0,
1541 .writefn
= omap_threadid_write
},
1542 { .name
= "TI925T_STATUS", .cp
= 15, .crn
= 15,
1543 .crm
= 8, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
1544 .type
= ARM_CP_NO_MIGRATE
,
1545 .readfn
= arm_cp_read_zero
, .writefn
= omap_wfi_write
, },
1546 /* TODO: Peripheral port remap register:
1547 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
1548 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
1551 { .name
= "OMAP_CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
1552 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
1553 .type
= ARM_CP_OVERRIDE
| ARM_CP_NO_MIGRATE
,
1554 .writefn
= omap_cachemaint_write
},
1555 { .name
= "C9", .cp
= 15, .crn
= 9,
1556 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
,
1557 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
, .resetvalue
= 0 },
1561 static void xscale_cpar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1565 if (env
->cp15
.c15_cpar
!= value
) {
1566 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1568 env
->cp15
.c15_cpar
= value
;
1572 static const ARMCPRegInfo xscale_cp_reginfo
[] = {
1573 { .name
= "XSCALE_CPAR",
1574 .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
1575 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_cpar
), .resetvalue
= 0,
1576 .writefn
= xscale_cpar_write
, },
1577 { .name
= "XSCALE_AUXCR",
1578 .cp
= 15, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 1, .access
= PL1_RW
,
1579 .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_xscaleauxcr
),
1581 /* XScale specific cache-lockdown: since we have no cache we NOP these
1582 * and hope the guest does not really rely on cache behaviour.
1584 { .name
= "XSCALE_LOCK_ICACHE_LINE",
1585 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 0,
1586 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1587 { .name
= "XSCALE_UNLOCK_ICACHE",
1588 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 1,
1589 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1590 { .name
= "XSCALE_DCACHE_LOCK",
1591 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 0,
1592 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
1593 { .name
= "XSCALE_UNLOCK_DCACHE",
1594 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 1,
1595 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1599 static const ARMCPRegInfo dummy_c15_cp_reginfo
[] = {
1600 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
1601 * implementation of this implementation-defined space.
1602 * Ideally this should eventually disappear in favour of actually
1603 * implementing the correct behaviour for all cores.
1605 { .name
= "C15_IMPDEF", .cp
= 15, .crn
= 15,
1606 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
1608 .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
| ARM_CP_OVERRIDE
,
1613 static const ARMCPRegInfo cache_dirty_status_cp_reginfo
[] = {
1614 /* Cache status: RAZ because we have no cache so it's always clean */
1615 { .name
= "CDSR", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 6,
1616 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
1621 static const ARMCPRegInfo cache_block_ops_cp_reginfo
[] = {
1622 /* We never have a a block transfer operation in progress */
1623 { .name
= "BXSR", .cp
= 15, .crn
= 7, .crm
= 12, .opc1
= 0, .opc2
= 4,
1624 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
1626 /* The cache ops themselves: these all NOP for QEMU */
1627 { .name
= "IICR", .cp
= 15, .crm
= 5, .opc1
= 0,
1628 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1629 { .name
= "IDCR", .cp
= 15, .crm
= 6, .opc1
= 0,
1630 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1631 { .name
= "CDCR", .cp
= 15, .crm
= 12, .opc1
= 0,
1632 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1633 { .name
= "PIR", .cp
= 15, .crm
= 12, .opc1
= 1,
1634 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1635 { .name
= "PDR", .cp
= 15, .crm
= 12, .opc1
= 2,
1636 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1637 { .name
= "CIDCR", .cp
= 15, .crm
= 14, .opc1
= 0,
1638 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1642 static const ARMCPRegInfo cache_test_clean_cp_reginfo
[] = {
1643 /* The cache test-and-clean instructions always return (1 << 30)
1644 * to indicate that there are no dirty cache lines.
1646 { .name
= "TC_DCACHE", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 3,
1647 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
1648 .resetvalue
= (1 << 30) },
1649 { .name
= "TCI_DCACHE", .cp
= 15, .crn
= 7, .crm
= 14, .opc1
= 0, .opc2
= 3,
1650 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
1651 .resetvalue
= (1 << 30) },
1655 static const ARMCPRegInfo strongarm_cp_reginfo
[] = {
1656 /* Ignore ReadBuffer accesses */
1657 { .name
= "C9_READBUFFER", .cp
= 15, .crn
= 9,
1658 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
1659 .access
= PL1_RW
, .resetvalue
= 0,
1660 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
| ARM_CP_NO_MIGRATE
},
1664 static uint64_t mpidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1666 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
1667 uint32_t mpidr
= cs
->cpu_index
;
1668 /* We don't support setting cluster ID ([8..11]) (known as Aff1
1669 * in later ARM ARM versions), or any of the higher affinity level fields,
1670 * so these bits always RAZ.
1672 if (arm_feature(env
, ARM_FEATURE_V7MP
)) {
1673 mpidr
|= (1U << 31);
1674 /* Cores which are uniprocessor (non-coherent)
1675 * but still implement the MP extensions set
1676 * bit 30. (For instance, A9UP.) However we do
1677 * not currently model any of those cores.
1683 static const ARMCPRegInfo mpidr_cp_reginfo
[] = {
1684 { .name
= "MPIDR", .state
= ARM_CP_STATE_BOTH
,
1685 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 5,
1686 .access
= PL1_R
, .readfn
= mpidr_read
, .type
= ARM_CP_NO_MIGRATE
},
1690 static const ARMCPRegInfo lpae_cp_reginfo
[] = {
1691 /* NOP AMAIR0/1: the override is because these clash with the rather
1692 * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
1694 { .name
= "AMAIR0", .state
= ARM_CP_STATE_BOTH
,
1695 .opc0
= 3, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 0,
1696 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
,
1698 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
1699 { .name
= "AMAIR1", .cp
= 15, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 1,
1700 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
,
1702 /* 64 bit access versions of the (dummy) debug registers */
1703 { .name
= "DBGDRAR", .cp
= 14, .crm
= 1, .opc1
= 0,
1704 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
1705 { .name
= "DBGDSAR", .cp
= 14, .crm
= 2, .opc1
= 0,
1706 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
1707 { .name
= "PAR", .cp
= 15, .crm
= 7, .opc1
= 0,
1708 .access
= PL1_RW
, .type
= ARM_CP_64BIT
,
1709 .fieldoffset
= offsetof(CPUARMState
, cp15
.par_el1
), .resetvalue
= 0 },
1710 { .name
= "TTBR0", .cp
= 15, .crm
= 2, .opc1
= 0,
1711 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_NO_MIGRATE
,
1712 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el1
),
1713 .writefn
= vmsa_ttbr_write
, .resetfn
= arm_cp_reset_ignore
},
1714 { .name
= "TTBR1", .cp
= 15, .crm
= 2, .opc1
= 1,
1715 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_NO_MIGRATE
,
1716 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr1_el1
),
1717 .writefn
= vmsa_ttbr_write
, .resetfn
= arm_cp_reset_ignore
},
1721 static uint64_t aa64_fpcr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1723 return vfp_get_fpcr(env
);
1726 static void aa64_fpcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1729 vfp_set_fpcr(env
, value
);
1732 static uint64_t aa64_fpsr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1734 return vfp_get_fpsr(env
);
1737 static void aa64_fpsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1740 vfp_set_fpsr(env
, value
);
1743 static CPAccessResult
aa64_daif_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1745 if (arm_current_pl(env
) == 0 && !(env
->cp15
.c1_sys
& SCTLR_UMA
)) {
1746 return CP_ACCESS_TRAP
;
1748 return CP_ACCESS_OK
;
1751 static void aa64_daif_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1754 env
->daif
= value
& PSTATE_DAIF
;
1757 static CPAccessResult
aa64_cacheop_access(CPUARMState
*env
,
1758 const ARMCPRegInfo
*ri
)
1760 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
1761 * SCTLR_EL1.UCI is set.
1763 if (arm_current_pl(env
) == 0 && !(env
->cp15
.c1_sys
& SCTLR_UCI
)) {
1764 return CP_ACCESS_TRAP
;
1766 return CP_ACCESS_OK
;
1769 static void tlbi_aa64_va_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1772 /* Invalidate by VA (AArch64 version) */
1773 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1774 uint64_t pageaddr
= value
<< 12;
1775 tlb_flush_page(CPU(cpu
), pageaddr
);
1778 static void tlbi_aa64_vaa_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1781 /* Invalidate by VA, all ASIDs (AArch64 version) */
1782 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1783 uint64_t pageaddr
= value
<< 12;
1784 tlb_flush_page(CPU(cpu
), pageaddr
);
1787 static void tlbi_aa64_asid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1790 /* Invalidate by ASID (AArch64 version) */
1791 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1792 int asid
= extract64(value
, 48, 16);
1793 tlb_flush(CPU(cpu
), asid
== 0);
1796 static CPAccessResult
aa64_zva_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1798 /* We don't implement EL2, so the only control on DC ZVA is the
1799 * bit in the SCTLR which can prohibit access for EL0.
1801 if (arm_current_pl(env
) == 0 && !(env
->cp15
.c1_sys
& SCTLR_DZE
)) {
1802 return CP_ACCESS_TRAP
;
1804 return CP_ACCESS_OK
;
1807 static uint64_t aa64_dczid_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1809 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1810 int dzp_bit
= 1 << 4;
1812 /* DZP indicates whether DC ZVA access is allowed */
1813 if (aa64_zva_access(env
, NULL
) != CP_ACCESS_OK
) {
1816 return cpu
->dcz_blocksize
| dzp_bit
;
1819 static CPAccessResult
sp_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1821 if (!env
->pstate
& PSTATE_SP
) {
1822 /* Access to SP_EL0 is undefined if it's being used as
1823 * the stack pointer.
1825 return CP_ACCESS_TRAP_UNCATEGORIZED
;
1827 return CP_ACCESS_OK
;
1830 static uint64_t spsel_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1832 return env
->pstate
& PSTATE_SP
;
1835 static void spsel_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t val
)
1837 update_spsel(env
, val
);
1840 static const ARMCPRegInfo v8_cp_reginfo
[] = {
1841 /* Minimal set of EL0-visible registers. This will need to be expanded
1842 * significantly for system emulation of AArch64 CPUs.
1844 { .name
= "NZCV", .state
= ARM_CP_STATE_AA64
,
1845 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 2,
1846 .access
= PL0_RW
, .type
= ARM_CP_NZCV
},
1847 { .name
= "DAIF", .state
= ARM_CP_STATE_AA64
,
1848 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 2,
1849 .type
= ARM_CP_NO_MIGRATE
,
1850 .access
= PL0_RW
, .accessfn
= aa64_daif_access
,
1851 .fieldoffset
= offsetof(CPUARMState
, daif
),
1852 .writefn
= aa64_daif_write
, .resetfn
= arm_cp_reset_ignore
},
1853 { .name
= "FPCR", .state
= ARM_CP_STATE_AA64
,
1854 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 4,
1855 .access
= PL0_RW
, .readfn
= aa64_fpcr_read
, .writefn
= aa64_fpcr_write
},
1856 { .name
= "FPSR", .state
= ARM_CP_STATE_AA64
,
1857 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 4,
1858 .access
= PL0_RW
, .readfn
= aa64_fpsr_read
, .writefn
= aa64_fpsr_write
},
1859 { .name
= "DCZID_EL0", .state
= ARM_CP_STATE_AA64
,
1860 .opc0
= 3, .opc1
= 3, .opc2
= 7, .crn
= 0, .crm
= 0,
1861 .access
= PL0_R
, .type
= ARM_CP_NO_MIGRATE
,
1862 .readfn
= aa64_dczid_read
},
1863 { .name
= "DC_ZVA", .state
= ARM_CP_STATE_AA64
,
1864 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 4, .opc2
= 1,
1865 .access
= PL0_W
, .type
= ARM_CP_DC_ZVA
,
1866 #ifndef CONFIG_USER_ONLY
1867 /* Avoid overhead of an access check that always passes in user-mode */
1868 .accessfn
= aa64_zva_access
,
1871 { .name
= "CURRENTEL", .state
= ARM_CP_STATE_AA64
,
1872 .opc0
= 3, .opc1
= 0, .opc2
= 2, .crn
= 4, .crm
= 2,
1873 .access
= PL1_R
, .type
= ARM_CP_CURRENTEL
},
1874 /* Cache ops: all NOPs since we don't emulate caches */
1875 { .name
= "IC_IALLUIS", .state
= ARM_CP_STATE_AA64
,
1876 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
1877 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1878 { .name
= "IC_IALLU", .state
= ARM_CP_STATE_AA64
,
1879 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
1880 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1881 { .name
= "IC_IVAU", .state
= ARM_CP_STATE_AA64
,
1882 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 5, .opc2
= 1,
1883 .access
= PL0_W
, .type
= ARM_CP_NOP
,
1884 .accessfn
= aa64_cacheop_access
},
1885 { .name
= "DC_IVAC", .state
= ARM_CP_STATE_AA64
,
1886 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
1887 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1888 { .name
= "DC_ISW", .state
= ARM_CP_STATE_AA64
,
1889 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
1890 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1891 { .name
= "DC_CVAC", .state
= ARM_CP_STATE_AA64
,
1892 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 10, .opc2
= 1,
1893 .access
= PL0_W
, .type
= ARM_CP_NOP
,
1894 .accessfn
= aa64_cacheop_access
},
1895 { .name
= "DC_CSW", .state
= ARM_CP_STATE_AA64
,
1896 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
1897 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1898 { .name
= "DC_CVAU", .state
= ARM_CP_STATE_AA64
,
1899 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 11, .opc2
= 1,
1900 .access
= PL0_W
, .type
= ARM_CP_NOP
,
1901 .accessfn
= aa64_cacheop_access
},
1902 { .name
= "DC_CIVAC", .state
= ARM_CP_STATE_AA64
,
1903 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 14, .opc2
= 1,
1904 .access
= PL0_W
, .type
= ARM_CP_NOP
,
1905 .accessfn
= aa64_cacheop_access
},
1906 { .name
= "DC_CISW", .state
= ARM_CP_STATE_AA64
,
1907 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
1908 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1909 /* TLBI operations */
1910 { .name
= "TLBI_VMALLE1IS", .state
= ARM_CP_STATE_AA64
,
1911 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
1912 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
1913 .writefn
= tlbiall_write
},
1914 { .name
= "TLBI_VAE1IS", .state
= ARM_CP_STATE_AA64
,
1915 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
1916 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
1917 .writefn
= tlbi_aa64_va_write
},
1918 { .name
= "TLBI_ASIDE1IS", .state
= ARM_CP_STATE_AA64
,
1919 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
1920 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
1921 .writefn
= tlbi_aa64_asid_write
},
1922 { .name
= "TLBI_VAAE1IS", .state
= ARM_CP_STATE_AA64
,
1923 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
1924 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
1925 .writefn
= tlbi_aa64_vaa_write
},
1926 { .name
= "TLBI_VALE1IS", .state
= ARM_CP_STATE_AA64
,
1927 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
1928 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
1929 .writefn
= tlbi_aa64_va_write
},
1930 { .name
= "TLBI_VAALE1IS", .state
= ARM_CP_STATE_AA64
,
1931 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
1932 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
1933 .writefn
= tlbi_aa64_vaa_write
},
1934 { .name
= "TLBI_VMALLE1", .state
= ARM_CP_STATE_AA64
,
1935 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
1936 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
1937 .writefn
= tlbiall_write
},
1938 { .name
= "TLBI_VAE1", .state
= ARM_CP_STATE_AA64
,
1939 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
1940 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
1941 .writefn
= tlbi_aa64_va_write
},
1942 { .name
= "TLBI_ASIDE1", .state
= ARM_CP_STATE_AA64
,
1943 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
1944 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
1945 .writefn
= tlbi_aa64_asid_write
},
1946 { .name
= "TLBI_VAAE1", .state
= ARM_CP_STATE_AA64
,
1947 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
1948 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
1949 .writefn
= tlbi_aa64_vaa_write
},
1950 { .name
= "TLBI_VALE1", .state
= ARM_CP_STATE_AA64
,
1951 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
1952 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
1953 .writefn
= tlbi_aa64_va_write
},
1954 { .name
= "TLBI_VAALE1", .state
= ARM_CP_STATE_AA64
,
1955 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
1956 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
1957 .writefn
= tlbi_aa64_vaa_write
},
1958 #ifndef CONFIG_USER_ONLY
1959 /* 64 bit address translation operations */
1960 { .name
= "AT_S1E1R", .state
= ARM_CP_STATE_AA64
,
1961 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 0,
1962 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
, .writefn
= ats_write
},
1963 { .name
= "AT_S1E1W", .state
= ARM_CP_STATE_AA64
,
1964 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 1,
1965 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
, .writefn
= ats_write
},
1966 { .name
= "AT_S1E0R", .state
= ARM_CP_STATE_AA64
,
1967 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 2,
1968 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
, .writefn
= ats_write
},
1969 { .name
= "AT_S1E0W", .state
= ARM_CP_STATE_AA64
,
1970 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 3,
1971 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
, .writefn
= ats_write
},
1973 /* 32 bit TLB invalidates, Inner Shareable */
1974 { .name
= "TLBIALLIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
1975 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1976 { .name
= "TLBIMVAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
1977 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1978 { .name
= "TLBIASIDIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
1979 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1980 { .name
= "TLBIMVAAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
1981 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
1982 { .name
= "TLBIMVALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
1983 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1984 { .name
= "TLBIMVAALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
1985 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
1986 /* 32 bit ITLB invalidates */
1987 { .name
= "ITLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 0,
1988 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1989 { .name
= "ITLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 1,
1990 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1991 { .name
= "ITLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 2,
1992 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1993 /* 32 bit DTLB invalidates */
1994 { .name
= "DTLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 0,
1995 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1996 { .name
= "DTLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 1,
1997 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1998 { .name
= "DTLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 2,
1999 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
2000 /* 32 bit TLB invalidates */
2001 { .name
= "TLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
2002 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbiall_write
},
2003 { .name
= "TLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
2004 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimva_write
},
2005 { .name
= "TLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
2006 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
2007 { .name
= "TLBIMVAA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
2008 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
2009 { .name
= "TLBIMVAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
2010 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimva_write
},
2011 { .name
= "TLBIMVAAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
2012 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
2013 /* 32 bit cache operations */
2014 { .name
= "ICIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
2015 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2016 { .name
= "BPIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 6,
2017 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2018 { .name
= "ICIALLU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
2019 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2020 { .name
= "ICIMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 1,
2021 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2022 { .name
= "BPIALL", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 6,
2023 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2024 { .name
= "BPIMVA", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 7,
2025 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2026 { .name
= "DCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
2027 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2028 { .name
= "DCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
2029 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2030 { .name
= "DCCMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 1,
2031 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2032 { .name
= "DCCSW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
2033 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2034 { .name
= "DCCMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 11, .opc2
= 1,
2035 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2036 { .name
= "DCCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 1,
2037 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2038 { .name
= "DCCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
2039 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2040 /* MMU Domain access control / MPU write buffer control */
2041 { .name
= "DACR", .cp
= 15,
2042 .opc1
= 0, .crn
= 3, .crm
= 0, .opc2
= 0,
2043 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c3
),
2044 .resetvalue
= 0, .writefn
= dacr_write
, .raw_writefn
= raw_write
, },
2045 /* Dummy implementation of monitor debug system control register:
2046 * we don't support debug.
2048 { .name
= "MDSCR_EL1", .state
= ARM_CP_STATE_AA64
,
2049 .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
2050 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2051 /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */
2052 { .name
= "OSLAR_EL1", .state
= ARM_CP_STATE_AA64
,
2053 .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 4,
2054 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2055 { .name
= "ELR_EL1", .state
= ARM_CP_STATE_AA64
,
2056 .type
= ARM_CP_NO_MIGRATE
,
2057 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 1,
2058 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, elr_el1
) },
2059 { .name
= "SPSR_EL1", .state
= ARM_CP_STATE_AA64
,
2060 .type
= ARM_CP_NO_MIGRATE
,
2061 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 0,
2062 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[0]) },
2063 /* We rely on the access checks not allowing the guest to write to the
2064 * state field when SPSel indicates that it's being used as the stack
2067 { .name
= "SP_EL0", .state
= ARM_CP_STATE_AA64
,
2068 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 1, .opc2
= 0,
2069 .access
= PL1_RW
, .accessfn
= sp_el0_access
,
2070 .type
= ARM_CP_NO_MIGRATE
,
2071 .fieldoffset
= offsetof(CPUARMState
, sp_el
[0]) },
2072 { .name
= "SPSel", .state
= ARM_CP_STATE_AA64
,
2073 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 2, .opc2
= 0,
2074 .type
= ARM_CP_NO_MIGRATE
,
2075 .access
= PL1_RW
, .readfn
= spsel_read
, .writefn
= spsel_write
},
2079 static void sctlr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2082 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2084 env
->cp15
.c1_sys
= value
;
2085 /* ??? Lots of these bits are not implemented. */
2086 /* This may enable/disable the MMU, so do a TLB flush. */
2087 tlb_flush(CPU(cpu
), 1);
2090 static CPAccessResult
ctr_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2092 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
2093 * but the AArch32 CTR has its own reginfo struct)
2095 if (arm_current_pl(env
) == 0 && !(env
->cp15
.c1_sys
& SCTLR_UCT
)) {
2096 return CP_ACCESS_TRAP
;
2098 return CP_ACCESS_OK
;
2101 static void define_aarch64_debug_regs(ARMCPU
*cpu
)
2103 /* Define breakpoint and watchpoint registers. These do nothing
2104 * but read as written, for now.
2108 for (i
= 0; i
< 16; i
++) {
2109 ARMCPRegInfo dbgregs
[] = {
2110 { .name
= "DBGBVR", .state
= ARM_CP_STATE_AA64
,
2111 .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 4,
2113 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbvr
[i
]) },
2114 { .name
= "DBGBCR", .state
= ARM_CP_STATE_AA64
,
2115 .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 5,
2117 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbcr
[i
]) },
2118 { .name
= "DBGWVR", .state
= ARM_CP_STATE_AA64
,
2119 .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 6,
2121 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwvr
[i
]) },
2122 { .name
= "DBGWCR", .state
= ARM_CP_STATE_AA64
,
2123 .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 7,
2125 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwcr
[i
]) },
2128 define_arm_cp_regs(cpu
, dbgregs
);
2132 void register_cp_regs_for_features(ARMCPU
*cpu
)
2134 /* Register all the coprocessor registers based on feature bits */
2135 CPUARMState
*env
= &cpu
->env
;
2136 if (arm_feature(env
, ARM_FEATURE_M
)) {
2137 /* M profile has no coprocessor registers */
2141 define_arm_cp_regs(cpu
, cp_reginfo
);
2142 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
2143 /* Must go early as it is full of wildcards that may be
2144 * overridden by later definitions.
2146 define_arm_cp_regs(cpu
, not_v8_cp_reginfo
);
2149 if (arm_feature(env
, ARM_FEATURE_V6
)) {
2150 /* The ID registers all have impdef reset values */
2151 ARMCPRegInfo v6_idregs
[] = {
2152 { .name
= "ID_PFR0", .state
= ARM_CP_STATE_BOTH
,
2153 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 0,
2154 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2155 .resetvalue
= cpu
->id_pfr0
},
2156 { .name
= "ID_PFR1", .state
= ARM_CP_STATE_BOTH
,
2157 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 1,
2158 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2159 .resetvalue
= cpu
->id_pfr1
},
2160 { .name
= "ID_DFR0", .state
= ARM_CP_STATE_BOTH
,
2161 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 2,
2162 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2163 .resetvalue
= cpu
->id_dfr0
},
2164 { .name
= "ID_AFR0", .state
= ARM_CP_STATE_BOTH
,
2165 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 3,
2166 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2167 .resetvalue
= cpu
->id_afr0
},
2168 { .name
= "ID_MMFR0", .state
= ARM_CP_STATE_BOTH
,
2169 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 4,
2170 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2171 .resetvalue
= cpu
->id_mmfr0
},
2172 { .name
= "ID_MMFR1", .state
= ARM_CP_STATE_BOTH
,
2173 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 5,
2174 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2175 .resetvalue
= cpu
->id_mmfr1
},
2176 { .name
= "ID_MMFR2", .state
= ARM_CP_STATE_BOTH
,
2177 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 6,
2178 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2179 .resetvalue
= cpu
->id_mmfr2
},
2180 { .name
= "ID_MMFR3", .state
= ARM_CP_STATE_BOTH
,
2181 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 7,
2182 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2183 .resetvalue
= cpu
->id_mmfr3
},
2184 { .name
= "ID_ISAR0", .state
= ARM_CP_STATE_BOTH
,
2185 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 0,
2186 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2187 .resetvalue
= cpu
->id_isar0
},
2188 { .name
= "ID_ISAR1", .state
= ARM_CP_STATE_BOTH
,
2189 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 1,
2190 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2191 .resetvalue
= cpu
->id_isar1
},
2192 { .name
= "ID_ISAR2", .state
= ARM_CP_STATE_BOTH
,
2193 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
2194 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2195 .resetvalue
= cpu
->id_isar2
},
2196 { .name
= "ID_ISAR3", .state
= ARM_CP_STATE_BOTH
,
2197 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 3,
2198 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2199 .resetvalue
= cpu
->id_isar3
},
2200 { .name
= "ID_ISAR4", .state
= ARM_CP_STATE_BOTH
,
2201 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 4,
2202 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2203 .resetvalue
= cpu
->id_isar4
},
2204 { .name
= "ID_ISAR5", .state
= ARM_CP_STATE_BOTH
,
2205 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 5,
2206 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2207 .resetvalue
= cpu
->id_isar5
},
2208 /* 6..7 are as yet unallocated and must RAZ */
2209 { .name
= "ID_ISAR6", .cp
= 15, .crn
= 0, .crm
= 2,
2210 .opc1
= 0, .opc2
= 6, .access
= PL1_R
, .type
= ARM_CP_CONST
,
2212 { .name
= "ID_ISAR7", .cp
= 15, .crn
= 0, .crm
= 2,
2213 .opc1
= 0, .opc2
= 7, .access
= PL1_R
, .type
= ARM_CP_CONST
,
2217 define_arm_cp_regs(cpu
, v6_idregs
);
2218 define_arm_cp_regs(cpu
, v6_cp_reginfo
);
2220 define_arm_cp_regs(cpu
, not_v6_cp_reginfo
);
2222 if (arm_feature(env
, ARM_FEATURE_V6K
)) {
2223 define_arm_cp_regs(cpu
, v6k_cp_reginfo
);
2225 if (arm_feature(env
, ARM_FEATURE_V7
)) {
2226 /* v7 performance monitor control register: same implementor
2227 * field as main ID register, and we implement only the cycle
2230 #ifndef CONFIG_USER_ONLY
2231 ARMCPRegInfo pmcr
= {
2232 .name
= "PMCR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 0,
2233 .access
= PL0_RW
, .resetvalue
= cpu
->midr
& 0xff000000,
2235 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcr
),
2236 .accessfn
= pmreg_access
, .writefn
= pmcr_write
,
2237 .raw_writefn
= raw_write
,
2239 define_one_arm_cp_reg(cpu
, &pmcr
);
2241 ARMCPRegInfo clidr
= {
2242 .name
= "CLIDR", .state
= ARM_CP_STATE_BOTH
,
2243 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 1,
2244 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->clidr
2246 define_one_arm_cp_reg(cpu
, &clidr
);
2247 define_arm_cp_regs(cpu
, v7_cp_reginfo
);
2249 define_arm_cp_regs(cpu
, not_v7_cp_reginfo
);
2251 if (arm_feature(env
, ARM_FEATURE_V8
)) {
2252 /* AArch64 ID registers, which all have impdef reset values */
2253 ARMCPRegInfo v8_idregs
[] = {
2254 { .name
= "ID_AA64PFR0_EL1", .state
= ARM_CP_STATE_AA64
,
2255 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 0,
2256 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2257 .resetvalue
= cpu
->id_aa64pfr0
},
2258 { .name
= "ID_AA64PFR1_EL1", .state
= ARM_CP_STATE_AA64
,
2259 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 1,
2260 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2261 .resetvalue
= cpu
->id_aa64pfr1
},
2262 { .name
= "ID_AA64DFR0_EL1", .state
= ARM_CP_STATE_AA64
,
2263 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 0,
2264 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2265 /* We mask out the PMUVer field, beacuse we don't currently
2266 * implement the PMU. Not advertising it prevents the guest
2267 * from trying to use it and getting UNDEFs on registers we
2270 .resetvalue
= cpu
->id_aa64dfr0
& ~0xf00 },
2271 { .name
= "ID_AA64DFR1_EL1", .state
= ARM_CP_STATE_AA64
,
2272 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 1,
2273 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2274 .resetvalue
= cpu
->id_aa64dfr1
},
2275 { .name
= "ID_AA64AFR0_EL1", .state
= ARM_CP_STATE_AA64
,
2276 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 4,
2277 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2278 .resetvalue
= cpu
->id_aa64afr0
},
2279 { .name
= "ID_AA64AFR1_EL1", .state
= ARM_CP_STATE_AA64
,
2280 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 5,
2281 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2282 .resetvalue
= cpu
->id_aa64afr1
},
2283 { .name
= "ID_AA64ISAR0_EL1", .state
= ARM_CP_STATE_AA64
,
2284 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 0,
2285 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2286 .resetvalue
= cpu
->id_aa64isar0
},
2287 { .name
= "ID_AA64ISAR1_EL1", .state
= ARM_CP_STATE_AA64
,
2288 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 1,
2289 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2290 .resetvalue
= cpu
->id_aa64isar1
},
2291 { .name
= "ID_AA64MMFR0_EL1", .state
= ARM_CP_STATE_AA64
,
2292 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 0,
2293 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2294 .resetvalue
= cpu
->id_aa64mmfr0
},
2295 { .name
= "ID_AA64MMFR1_EL1", .state
= ARM_CP_STATE_AA64
,
2296 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 1,
2297 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2298 .resetvalue
= cpu
->id_aa64mmfr1
},
2299 { .name
= "MVFR0_EL1", .state
= ARM_CP_STATE_AA64
,
2300 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 0,
2301 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2302 .resetvalue
= cpu
->mvfr0
},
2303 { .name
= "MVFR1_EL1", .state
= ARM_CP_STATE_AA64
,
2304 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 1,
2305 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2306 .resetvalue
= cpu
->mvfr1
},
2307 { .name
= "MVFR2_EL1", .state
= ARM_CP_STATE_AA64
,
2308 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 2,
2309 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2310 .resetvalue
= cpu
->mvfr2
},
2313 ARMCPRegInfo rvbar
= {
2314 .name
= "RVBAR_EL1", .state
= ARM_CP_STATE_AA64
,
2315 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 0, .opc2
= 2,
2316 .type
= ARM_CP_CONST
, .access
= PL1_R
, .resetvalue
= cpu
->rvbar
2318 define_one_arm_cp_reg(cpu
, &rvbar
);
2319 define_arm_cp_regs(cpu
, v8_idregs
);
2320 define_arm_cp_regs(cpu
, v8_cp_reginfo
);
2321 define_aarch64_debug_regs(cpu
);
2323 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
2324 /* These are the MPU registers prior to PMSAv6. Any new
2325 * PMSA core later than the ARM946 will require that we
2326 * implement the PMSAv6 or PMSAv7 registers, which are
2327 * completely different.
2329 assert(!arm_feature(env
, ARM_FEATURE_V6
));
2330 define_arm_cp_regs(cpu
, pmsav5_cp_reginfo
);
2332 define_arm_cp_regs(cpu
, vmsa_cp_reginfo
);
2334 if (arm_feature(env
, ARM_FEATURE_THUMB2EE
)) {
2335 define_arm_cp_regs(cpu
, t2ee_cp_reginfo
);
2337 if (arm_feature(env
, ARM_FEATURE_GENERIC_TIMER
)) {
2338 define_arm_cp_regs(cpu
, generic_timer_cp_reginfo
);
2340 if (arm_feature(env
, ARM_FEATURE_VAPA
)) {
2341 define_arm_cp_regs(cpu
, vapa_cp_reginfo
);
2343 if (arm_feature(env
, ARM_FEATURE_CACHE_TEST_CLEAN
)) {
2344 define_arm_cp_regs(cpu
, cache_test_clean_cp_reginfo
);
2346 if (arm_feature(env
, ARM_FEATURE_CACHE_DIRTY_REG
)) {
2347 define_arm_cp_regs(cpu
, cache_dirty_status_cp_reginfo
);
2349 if (arm_feature(env
, ARM_FEATURE_CACHE_BLOCK_OPS
)) {
2350 define_arm_cp_regs(cpu
, cache_block_ops_cp_reginfo
);
2352 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
2353 define_arm_cp_regs(cpu
, omap_cp_reginfo
);
2355 if (arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
2356 define_arm_cp_regs(cpu
, strongarm_cp_reginfo
);
2358 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
2359 define_arm_cp_regs(cpu
, xscale_cp_reginfo
);
2361 if (arm_feature(env
, ARM_FEATURE_DUMMY_C15_REGS
)) {
2362 define_arm_cp_regs(cpu
, dummy_c15_cp_reginfo
);
2364 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
2365 define_arm_cp_regs(cpu
, lpae_cp_reginfo
);
2367 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
2368 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
2369 * be read-only (ie write causes UNDEF exception).
2372 ARMCPRegInfo id_pre_v8_midr_cp_reginfo
[] = {
2373 /* Pre-v8 MIDR space.
2374 * Note that the MIDR isn't a simple constant register because
2375 * of the TI925 behaviour where writes to another register can
2376 * cause the MIDR value to change.
2378 * Unimplemented registers in the c15 0 0 0 space default to
2379 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
2380 * and friends override accordingly.
2383 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= CP_ANY
,
2384 .access
= PL1_R
, .resetvalue
= cpu
->midr
,
2385 .writefn
= arm_cp_write_ignore
, .raw_writefn
= raw_write
,
2386 .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cpuid
),
2387 .type
= ARM_CP_OVERRIDE
},
2388 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
2390 .cp
= 15, .crn
= 0, .crm
= 3, .opc1
= 0, .opc2
= CP_ANY
,
2391 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2393 .cp
= 15, .crn
= 0, .crm
= 4, .opc1
= 0, .opc2
= CP_ANY
,
2394 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2396 .cp
= 15, .crn
= 0, .crm
= 5, .opc1
= 0, .opc2
= CP_ANY
,
2397 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2399 .cp
= 15, .crn
= 0, .crm
= 6, .opc1
= 0, .opc2
= CP_ANY
,
2400 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2402 .cp
= 15, .crn
= 0, .crm
= 7, .opc1
= 0, .opc2
= CP_ANY
,
2403 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2406 ARMCPRegInfo id_v8_midr_cp_reginfo
[] = {
2407 /* v8 MIDR -- the wildcard isn't necessary, and nor is the
2408 * variable-MIDR TI925 behaviour. Instead we have a single
2409 * (strictly speaking IMPDEF) alias of the MIDR, REVIDR.
2411 { .name
= "MIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
2412 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 0,
2413 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->midr
},
2414 { .name
= "REVIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
2415 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 6,
2416 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->midr
},
2419 ARMCPRegInfo id_cp_reginfo
[] = {
2420 /* These are common to v8 and pre-v8 */
2422 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 1,
2423 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
2424 { .name
= "CTR_EL0", .state
= ARM_CP_STATE_AA64
,
2425 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 0, .crm
= 0,
2426 .access
= PL0_R
, .accessfn
= ctr_el0_access
,
2427 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
2428 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
2430 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 2,
2431 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2433 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 3,
2434 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2437 ARMCPRegInfo crn0_wi_reginfo
= {
2438 .name
= "CRN0_WI", .cp
= 15, .crn
= 0, .crm
= CP_ANY
,
2439 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_W
,
2440 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
2442 if (arm_feature(env
, ARM_FEATURE_OMAPCP
) ||
2443 arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
2445 /* Register the blanket "writes ignored" value first to cover the
2446 * whole space. Then update the specific ID registers to allow write
2447 * access, so that they ignore writes rather than causing them to
2450 define_one_arm_cp_reg(cpu
, &crn0_wi_reginfo
);
2451 for (r
= id_pre_v8_midr_cp_reginfo
;
2452 r
->type
!= ARM_CP_SENTINEL
; r
++) {
2455 for (r
= id_cp_reginfo
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
2459 if (arm_feature(env
, ARM_FEATURE_V8
)) {
2460 define_arm_cp_regs(cpu
, id_v8_midr_cp_reginfo
);
2462 define_arm_cp_regs(cpu
, id_pre_v8_midr_cp_reginfo
);
2464 define_arm_cp_regs(cpu
, id_cp_reginfo
);
2467 if (arm_feature(env
, ARM_FEATURE_MPIDR
)) {
2468 define_arm_cp_regs(cpu
, mpidr_cp_reginfo
);
2471 if (arm_feature(env
, ARM_FEATURE_AUXCR
)) {
2472 ARMCPRegInfo auxcr
= {
2473 .name
= "ACTLR_EL1", .state
= ARM_CP_STATE_BOTH
,
2474 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 1,
2475 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
2476 .resetvalue
= cpu
->reset_auxcr
2478 define_one_arm_cp_reg(cpu
, &auxcr
);
2481 if (arm_feature(env
, ARM_FEATURE_CBAR
)) {
2482 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
2483 /* 32 bit view is [31:18] 0...0 [43:32]. */
2484 uint32_t cbar32
= (extract64(cpu
->reset_cbar
, 18, 14) << 18)
2485 | extract64(cpu
->reset_cbar
, 32, 12);
2486 ARMCPRegInfo cbar_reginfo
[] = {
2488 .type
= ARM_CP_CONST
,
2489 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
2490 .access
= PL1_R
, .resetvalue
= cpu
->reset_cbar
},
2491 { .name
= "CBAR_EL1", .state
= ARM_CP_STATE_AA64
,
2492 .type
= ARM_CP_CONST
,
2493 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 3, .opc2
= 0,
2494 .access
= PL1_R
, .resetvalue
= cbar32
},
2497 /* We don't implement a r/w 64 bit CBAR currently */
2498 assert(arm_feature(env
, ARM_FEATURE_CBAR_RO
));
2499 define_arm_cp_regs(cpu
, cbar_reginfo
);
2501 ARMCPRegInfo cbar
= {
2503 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
2504 .access
= PL1_R
|PL3_W
, .resetvalue
= cpu
->reset_cbar
,
2505 .fieldoffset
= offsetof(CPUARMState
,
2506 cp15
.c15_config_base_address
)
2508 if (arm_feature(env
, ARM_FEATURE_CBAR_RO
)) {
2509 cbar
.access
= PL1_R
;
2510 cbar
.fieldoffset
= 0;
2511 cbar
.type
= ARM_CP_CONST
;
2513 define_one_arm_cp_reg(cpu
, &cbar
);
2517 /* Generic registers whose values depend on the implementation */
2519 ARMCPRegInfo sctlr
= {
2520 .name
= "SCTLR", .state
= ARM_CP_STATE_BOTH
,
2521 .opc0
= 3, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 0,
2522 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_sys
),
2523 .writefn
= sctlr_write
, .resetvalue
= cpu
->reset_sctlr
,
2524 .raw_writefn
= raw_write
,
2526 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
2527 /* Normally we would always end the TB on an SCTLR write, but Linux
2528 * arch/arm/mach-pxa/sleep.S expects two instructions following
2529 * an MMU enable to execute from cache. Imitate this behaviour.
2531 sctlr
.type
|= ARM_CP_SUPPRESS_TB_END
;
2533 define_one_arm_cp_reg(cpu
, &sctlr
);
2537 ARMCPU
*cpu_arm_init(const char *cpu_model
)
2539 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU
, cpu_model
));
2542 void arm_cpu_register_gdb_regs_for_features(ARMCPU
*cpu
)
2544 CPUState
*cs
= CPU(cpu
);
2545 CPUARMState
*env
= &cpu
->env
;
2547 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
2548 gdb_register_coprocessor(cs
, aarch64_fpu_gdb_get_reg
,
2549 aarch64_fpu_gdb_set_reg
,
2550 34, "aarch64-fpu.xml", 0);
2551 } else if (arm_feature(env
, ARM_FEATURE_NEON
)) {
2552 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
2553 51, "arm-neon.xml", 0);
2554 } else if (arm_feature(env
, ARM_FEATURE_VFP3
)) {
2555 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
2556 35, "arm-vfp3.xml", 0);
2557 } else if (arm_feature(env
, ARM_FEATURE_VFP
)) {
2558 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
2559 19, "arm-vfp.xml", 0);
2563 /* Sort alphabetically by type name, except for "any". */
2564 static gint
arm_cpu_list_compare(gconstpointer a
, gconstpointer b
)
2566 ObjectClass
*class_a
= (ObjectClass
*)a
;
2567 ObjectClass
*class_b
= (ObjectClass
*)b
;
2568 const char *name_a
, *name_b
;
2570 name_a
= object_class_get_name(class_a
);
2571 name_b
= object_class_get_name(class_b
);
2572 if (strcmp(name_a
, "any-" TYPE_ARM_CPU
) == 0) {
2574 } else if (strcmp(name_b
, "any-" TYPE_ARM_CPU
) == 0) {
2577 return strcmp(name_a
, name_b
);
2581 static void arm_cpu_list_entry(gpointer data
, gpointer user_data
)
2583 ObjectClass
*oc
= data
;
2584 CPUListState
*s
= user_data
;
2585 const char *typename
;
2588 typename
= object_class_get_name(oc
);
2589 name
= g_strndup(typename
, strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
2590 (*s
->cpu_fprintf
)(s
->file
, " %s\n",
2595 void arm_cpu_list(FILE *f
, fprintf_function cpu_fprintf
)
2599 .cpu_fprintf
= cpu_fprintf
,
2603 list
= object_class_get_list(TYPE_ARM_CPU
, false);
2604 list
= g_slist_sort(list
, arm_cpu_list_compare
);
2605 (*cpu_fprintf
)(f
, "Available CPUs:\n");
2606 g_slist_foreach(list
, arm_cpu_list_entry
, &s
);
2609 /* The 'host' CPU type is dynamically registered only if KVM is
2610 * enabled, so we have to special-case it here:
2612 (*cpu_fprintf
)(f
, " host (only available in KVM mode)\n");
2616 static void arm_cpu_add_definition(gpointer data
, gpointer user_data
)
2618 ObjectClass
*oc
= data
;
2619 CpuDefinitionInfoList
**cpu_list
= user_data
;
2620 CpuDefinitionInfoList
*entry
;
2621 CpuDefinitionInfo
*info
;
2622 const char *typename
;
2624 typename
= object_class_get_name(oc
);
2625 info
= g_malloc0(sizeof(*info
));
2626 info
->name
= g_strndup(typename
,
2627 strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
2629 entry
= g_malloc0(sizeof(*entry
));
2630 entry
->value
= info
;
2631 entry
->next
= *cpu_list
;
2635 CpuDefinitionInfoList
*arch_query_cpu_definitions(Error
**errp
)
2637 CpuDefinitionInfoList
*cpu_list
= NULL
;
2640 list
= object_class_get_list(TYPE_ARM_CPU
, false);
2641 g_slist_foreach(list
, arm_cpu_add_definition
, &cpu_list
);
2647 static void add_cpreg_to_hashtable(ARMCPU
*cpu
, const ARMCPRegInfo
*r
,
2648 void *opaque
, int state
,
2649 int crm
, int opc1
, int opc2
)
2651 /* Private utility function for define_one_arm_cp_reg_with_opaque():
2652 * add a single reginfo struct to the hash table.
2654 uint32_t *key
= g_new(uint32_t, 1);
2655 ARMCPRegInfo
*r2
= g_memdup(r
, sizeof(ARMCPRegInfo
));
2656 int is64
= (r
->type
& ARM_CP_64BIT
) ? 1 : 0;
2657 if (r
->state
== ARM_CP_STATE_BOTH
&& state
== ARM_CP_STATE_AA32
) {
2658 /* The AArch32 view of a shared register sees the lower 32 bits
2659 * of a 64 bit backing field. It is not migratable as the AArch64
2660 * view handles that. AArch64 also handles reset.
2661 * We assume it is a cp15 register.
2664 r2
->type
|= ARM_CP_NO_MIGRATE
;
2665 r2
->resetfn
= arm_cp_reset_ignore
;
2666 #ifdef HOST_WORDS_BIGENDIAN
2667 if (r2
->fieldoffset
) {
2668 r2
->fieldoffset
+= sizeof(uint32_t);
2672 if (state
== ARM_CP_STATE_AA64
) {
2673 /* To allow abbreviation of ARMCPRegInfo
2674 * definitions, we treat cp == 0 as equivalent to
2675 * the value for "standard guest-visible sysreg".
2678 r2
->cp
= CP_REG_ARM64_SYSREG_CP
;
2680 *key
= ENCODE_AA64_CP_REG(r2
->cp
, r2
->crn
, crm
,
2681 r2
->opc0
, opc1
, opc2
);
2683 *key
= ENCODE_CP_REG(r2
->cp
, is64
, r2
->crn
, crm
, opc1
, opc2
);
2686 r2
->opaque
= opaque
;
2688 /* reginfo passed to helpers is correct for the actual access,
2689 * and is never ARM_CP_STATE_BOTH:
2692 /* Make sure reginfo passed to helpers for wildcarded regs
2693 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
2698 /* By convention, for wildcarded registers only the first
2699 * entry is used for migration; the others are marked as
2700 * NO_MIGRATE so we don't try to transfer the register
2701 * multiple times. Special registers (ie NOP/WFI) are
2704 if ((r
->type
& ARM_CP_SPECIAL
) ||
2705 ((r
->crm
== CP_ANY
) && crm
!= 0) ||
2706 ((r
->opc1
== CP_ANY
) && opc1
!= 0) ||
2707 ((r
->opc2
== CP_ANY
) && opc2
!= 0)) {
2708 r2
->type
|= ARM_CP_NO_MIGRATE
;
2711 /* Overriding of an existing definition must be explicitly
2714 if (!(r
->type
& ARM_CP_OVERRIDE
)) {
2715 ARMCPRegInfo
*oldreg
;
2716 oldreg
= g_hash_table_lookup(cpu
->cp_regs
, key
);
2717 if (oldreg
&& !(oldreg
->type
& ARM_CP_OVERRIDE
)) {
2718 fprintf(stderr
, "Register redefined: cp=%d %d bit "
2719 "crn=%d crm=%d opc1=%d opc2=%d, "
2720 "was %s, now %s\n", r2
->cp
, 32 + 32 * is64
,
2721 r2
->crn
, r2
->crm
, r2
->opc1
, r2
->opc2
,
2722 oldreg
->name
, r2
->name
);
2723 g_assert_not_reached();
2726 g_hash_table_insert(cpu
->cp_regs
, key
, r2
);
2730 void define_one_arm_cp_reg_with_opaque(ARMCPU
*cpu
,
2731 const ARMCPRegInfo
*r
, void *opaque
)
2733 /* Define implementations of coprocessor registers.
2734 * We store these in a hashtable because typically
2735 * there are less than 150 registers in a space which
2736 * is 16*16*16*8*8 = 262144 in size.
2737 * Wildcarding is supported for the crm, opc1 and opc2 fields.
2738 * If a register is defined twice then the second definition is
2739 * used, so this can be used to define some generic registers and
2740 * then override them with implementation specific variations.
2741 * At least one of the original and the second definition should
2742 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
2743 * against accidental use.
2745 * The state field defines whether the register is to be
2746 * visible in the AArch32 or AArch64 execution state. If the
2747 * state is set to ARM_CP_STATE_BOTH then we synthesise a
2748 * reginfo structure for the AArch32 view, which sees the lower
2749 * 32 bits of the 64 bit register.
2751 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
2752 * be wildcarded. AArch64 registers are always considered to be 64
2753 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
2754 * the register, if any.
2756 int crm
, opc1
, opc2
, state
;
2757 int crmmin
= (r
->crm
== CP_ANY
) ? 0 : r
->crm
;
2758 int crmmax
= (r
->crm
== CP_ANY
) ? 15 : r
->crm
;
2759 int opc1min
= (r
->opc1
== CP_ANY
) ? 0 : r
->opc1
;
2760 int opc1max
= (r
->opc1
== CP_ANY
) ? 7 : r
->opc1
;
2761 int opc2min
= (r
->opc2
== CP_ANY
) ? 0 : r
->opc2
;
2762 int opc2max
= (r
->opc2
== CP_ANY
) ? 7 : r
->opc2
;
2763 /* 64 bit registers have only CRm and Opc1 fields */
2764 assert(!((r
->type
& ARM_CP_64BIT
) && (r
->opc2
|| r
->crn
)));
2765 /* op0 only exists in the AArch64 encodings */
2766 assert((r
->state
!= ARM_CP_STATE_AA32
) || (r
->opc0
== 0));
2767 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
2768 assert((r
->state
!= ARM_CP_STATE_AA64
) || !(r
->type
& ARM_CP_64BIT
));
2769 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
2770 * encodes a minimum access level for the register. We roll this
2771 * runtime check into our general permission check code, so check
2772 * here that the reginfo's specified permissions are strict enough
2773 * to encompass the generic architectural permission check.
2775 if (r
->state
!= ARM_CP_STATE_AA32
) {
2778 case 0: case 1: case 2:
2791 /* unallocated encoding, so not possible */
2799 /* min_EL EL1, secure mode only (we don't check the latter) */
2803 /* broken reginfo with out-of-range opc1 */
2807 /* assert our permissions are not too lax (stricter is fine) */
2808 assert((r
->access
& ~mask
) == 0);
2811 /* Check that the register definition has enough info to handle
2812 * reads and writes if they are permitted.
2814 if (!(r
->type
& (ARM_CP_SPECIAL
|ARM_CP_CONST
))) {
2815 if (r
->access
& PL3_R
) {
2816 assert(r
->fieldoffset
|| r
->readfn
);
2818 if (r
->access
& PL3_W
) {
2819 assert(r
->fieldoffset
|| r
->writefn
);
2822 /* Bad type field probably means missing sentinel at end of reg list */
2823 assert(cptype_valid(r
->type
));
2824 for (crm
= crmmin
; crm
<= crmmax
; crm
++) {
2825 for (opc1
= opc1min
; opc1
<= opc1max
; opc1
++) {
2826 for (opc2
= opc2min
; opc2
<= opc2max
; opc2
++) {
2827 for (state
= ARM_CP_STATE_AA32
;
2828 state
<= ARM_CP_STATE_AA64
; state
++) {
2829 if (r
->state
!= state
&& r
->state
!= ARM_CP_STATE_BOTH
) {
2832 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
2840 void define_arm_cp_regs_with_opaque(ARMCPU
*cpu
,
2841 const ARMCPRegInfo
*regs
, void *opaque
)
2843 /* Define a whole list of registers */
2844 const ARMCPRegInfo
*r
;
2845 for (r
= regs
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
2846 define_one_arm_cp_reg_with_opaque(cpu
, r
, opaque
);
2850 const ARMCPRegInfo
*get_arm_cp_reginfo(GHashTable
*cpregs
, uint32_t encoded_cp
)
2852 return g_hash_table_lookup(cpregs
, &encoded_cp
);
2855 void arm_cp_write_ignore(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2858 /* Helper coprocessor write function for write-ignore registers */
2861 uint64_t arm_cp_read_zero(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2863 /* Helper coprocessor write function for read-as-zero registers */
2867 void arm_cp_reset_ignore(CPUARMState
*env
, const ARMCPRegInfo
*opaque
)
2869 /* Helper coprocessor reset function for do-nothing-on-reset registers */
2872 static int bad_mode_switch(CPUARMState
*env
, int mode
)
2874 /* Return true if it is not valid for us to switch to
2875 * this CPU mode (ie all the UNPREDICTABLE cases in
2876 * the ARM ARM CPSRWriteByInstr pseudocode).
2879 case ARM_CPU_MODE_USR
:
2880 case ARM_CPU_MODE_SYS
:
2881 case ARM_CPU_MODE_SVC
:
2882 case ARM_CPU_MODE_ABT
:
2883 case ARM_CPU_MODE_UND
:
2884 case ARM_CPU_MODE_IRQ
:
2885 case ARM_CPU_MODE_FIQ
:
2892 uint32_t cpsr_read(CPUARMState
*env
)
2895 ZF
= (env
->ZF
== 0);
2896 return env
->uncached_cpsr
| (env
->NF
& 0x80000000) | (ZF
<< 30) |
2897 (env
->CF
<< 29) | ((env
->VF
& 0x80000000) >> 3) | (env
->QF
<< 27)
2898 | (env
->thumb
<< 5) | ((env
->condexec_bits
& 3) << 25)
2899 | ((env
->condexec_bits
& 0xfc) << 8)
2900 | (env
->GE
<< 16) | (env
->daif
& CPSR_AIF
);
2903 void cpsr_write(CPUARMState
*env
, uint32_t val
, uint32_t mask
)
2905 if (mask
& CPSR_NZCV
) {
2906 env
->ZF
= (~val
) & CPSR_Z
;
2908 env
->CF
= (val
>> 29) & 1;
2909 env
->VF
= (val
<< 3) & 0x80000000;
2912 env
->QF
= ((val
& CPSR_Q
) != 0);
2914 env
->thumb
= ((val
& CPSR_T
) != 0);
2915 if (mask
& CPSR_IT_0_1
) {
2916 env
->condexec_bits
&= ~3;
2917 env
->condexec_bits
|= (val
>> 25) & 3;
2919 if (mask
& CPSR_IT_2_7
) {
2920 env
->condexec_bits
&= 3;
2921 env
->condexec_bits
|= (val
>> 8) & 0xfc;
2923 if (mask
& CPSR_GE
) {
2924 env
->GE
= (val
>> 16) & 0xf;
2927 env
->daif
&= ~(CPSR_AIF
& mask
);
2928 env
->daif
|= val
& CPSR_AIF
& mask
;
2930 if ((env
->uncached_cpsr
^ val
) & mask
& CPSR_M
) {
2931 if (bad_mode_switch(env
, val
& CPSR_M
)) {
2932 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
2933 * We choose to ignore the attempt and leave the CPSR M field
2938 switch_mode(env
, val
& CPSR_M
);
2941 mask
&= ~CACHED_CPSR_BITS
;
2942 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~mask
) | (val
& mask
);
2945 /* Sign/zero extend */
2946 uint32_t HELPER(sxtb16
)(uint32_t x
)
2949 res
= (uint16_t)(int8_t)x
;
2950 res
|= (uint32_t)(int8_t)(x
>> 16) << 16;
2954 uint32_t HELPER(uxtb16
)(uint32_t x
)
2957 res
= (uint16_t)(uint8_t)x
;
2958 res
|= (uint32_t)(uint8_t)(x
>> 16) << 16;
2962 uint32_t HELPER(clz
)(uint32_t x
)
2967 int32_t HELPER(sdiv
)(int32_t num
, int32_t den
)
2971 if (num
== INT_MIN
&& den
== -1)
2976 uint32_t HELPER(udiv
)(uint32_t num
, uint32_t den
)
2983 uint32_t HELPER(rbit
)(uint32_t x
)
2985 x
= ((x
& 0xff000000) >> 24)
2986 | ((x
& 0x00ff0000) >> 8)
2987 | ((x
& 0x0000ff00) << 8)
2988 | ((x
& 0x000000ff) << 24);
2989 x
= ((x
& 0xf0f0f0f0) >> 4)
2990 | ((x
& 0x0f0f0f0f) << 4);
2991 x
= ((x
& 0x88888888) >> 3)
2992 | ((x
& 0x44444444) >> 1)
2993 | ((x
& 0x22222222) << 1)
2994 | ((x
& 0x11111111) << 3);
2998 #if defined(CONFIG_USER_ONLY)
3000 void arm_cpu_do_interrupt(CPUState
*cs
)
3002 cs
->exception_index
= -1;
3005 int arm_cpu_handle_mmu_fault(CPUState
*cs
, vaddr address
, int rw
,
3008 ARMCPU
*cpu
= ARM_CPU(cs
);
3009 CPUARMState
*env
= &cpu
->env
;
3011 env
->exception
.vaddress
= address
;
3013 cs
->exception_index
= EXCP_PREFETCH_ABORT
;
3015 cs
->exception_index
= EXCP_DATA_ABORT
;
3020 /* These should probably raise undefined insn exceptions. */
3021 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
3023 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3025 cpu_abort(CPU(cpu
), "v7m_msr %d\n", reg
);
3028 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
3030 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3032 cpu_abort(CPU(cpu
), "v7m_mrs %d\n", reg
);
3036 void switch_mode(CPUARMState
*env
, int mode
)
3038 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3040 if (mode
!= ARM_CPU_MODE_USR
) {
3041 cpu_abort(CPU(cpu
), "Tried to switch out of user mode\n");
3045 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
3047 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3049 cpu_abort(CPU(cpu
), "banked r13 write\n");
3052 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
3054 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3056 cpu_abort(CPU(cpu
), "banked r13 read\n");
3062 /* Map CPU modes onto saved register banks. */
3063 int bank_number(int mode
)
3066 case ARM_CPU_MODE_USR
:
3067 case ARM_CPU_MODE_SYS
:
3069 case ARM_CPU_MODE_SVC
:
3071 case ARM_CPU_MODE_ABT
:
3073 case ARM_CPU_MODE_UND
:
3075 case ARM_CPU_MODE_IRQ
:
3077 case ARM_CPU_MODE_FIQ
:
3080 hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode
);
3083 void switch_mode(CPUARMState
*env
, int mode
)
3088 old_mode
= env
->uncached_cpsr
& CPSR_M
;
3089 if (mode
== old_mode
)
3092 if (old_mode
== ARM_CPU_MODE_FIQ
) {
3093 memcpy (env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
3094 memcpy (env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
3095 } else if (mode
== ARM_CPU_MODE_FIQ
) {
3096 memcpy (env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
3097 memcpy (env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
3100 i
= bank_number(old_mode
);
3101 env
->banked_r13
[i
] = env
->regs
[13];
3102 env
->banked_r14
[i
] = env
->regs
[14];
3103 env
->banked_spsr
[i
] = env
->spsr
;
3105 i
= bank_number(mode
);
3106 env
->regs
[13] = env
->banked_r13
[i
];
3107 env
->regs
[14] = env
->banked_r14
[i
];
3108 env
->spsr
= env
->banked_spsr
[i
];
3111 static void v7m_push(CPUARMState
*env
, uint32_t val
)
3113 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
3116 stl_phys(cs
->as
, env
->regs
[13], val
);
3119 static uint32_t v7m_pop(CPUARMState
*env
)
3121 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
3124 val
= ldl_phys(cs
->as
, env
->regs
[13]);
3129 /* Switch to V7M main or process stack pointer. */
3130 static void switch_v7m_sp(CPUARMState
*env
, int process
)
3133 if (env
->v7m
.current_sp
!= process
) {
3134 tmp
= env
->v7m
.other_sp
;
3135 env
->v7m
.other_sp
= env
->regs
[13];
3136 env
->regs
[13] = tmp
;
3137 env
->v7m
.current_sp
= process
;
3141 static void do_v7m_exception_exit(CPUARMState
*env
)
3146 type
= env
->regs
[15];
3147 if (env
->v7m
.exception
!= 0)
3148 armv7m_nvic_complete_irq(env
->nvic
, env
->v7m
.exception
);
3150 /* Switch to the target stack. */
3151 switch_v7m_sp(env
, (type
& 4) != 0);
3152 /* Pop registers. */
3153 env
->regs
[0] = v7m_pop(env
);
3154 env
->regs
[1] = v7m_pop(env
);
3155 env
->regs
[2] = v7m_pop(env
);
3156 env
->regs
[3] = v7m_pop(env
);
3157 env
->regs
[12] = v7m_pop(env
);
3158 env
->regs
[14] = v7m_pop(env
);
3159 env
->regs
[15] = v7m_pop(env
);
3160 xpsr
= v7m_pop(env
);
3161 xpsr_write(env
, xpsr
, 0xfffffdff);
3162 /* Undo stack alignment. */
3165 /* ??? The exception return type specifies Thread/Handler mode. However
3166 this is also implied by the xPSR value. Not sure what to do
3167 if there is a mismatch. */
3168 /* ??? Likewise for mismatches between the CONTROL register and the stack
3172 void arm_v7m_cpu_do_interrupt(CPUState
*cs
)
3174 ARMCPU
*cpu
= ARM_CPU(cs
);
3175 CPUARMState
*env
= &cpu
->env
;
3176 uint32_t xpsr
= xpsr_read(env
);
3180 arm_log_exception(cs
->exception_index
);
3183 if (env
->v7m
.current_sp
)
3185 if (env
->v7m
.exception
== 0)
3188 /* For exceptions we just mark as pending on the NVIC, and let that
3190 /* TODO: Need to escalate if the current priority is higher than the
3191 one we're raising. */
3192 switch (cs
->exception_index
) {
3194 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
);
3197 /* The PC already points to the next instruction. */
3198 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SVC
);
3200 case EXCP_PREFETCH_ABORT
:
3201 case EXCP_DATA_ABORT
:
3202 /* TODO: if we implemented the MPU registers, this is where we
3203 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
3205 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_MEM
);
3208 if (semihosting_enabled
) {
3210 nr
= arm_lduw_code(env
, env
->regs
[15], env
->bswap_code
) & 0xff;
3213 env
->regs
[0] = do_arm_semihosting(env
);
3214 qemu_log_mask(CPU_LOG_INT
, "...handled as semihosting call\n");
3218 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_DEBUG
);
3221 env
->v7m
.exception
= armv7m_nvic_acknowledge_irq(env
->nvic
);
3223 case EXCP_EXCEPTION_EXIT
:
3224 do_v7m_exception_exit(env
);
3227 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
3228 return; /* Never happens. Keep compiler happy. */
3231 /* Align stack pointer. */
3232 /* ??? Should only do this if Configuration Control Register
3233 STACKALIGN bit is set. */
3234 if (env
->regs
[13] & 4) {
3238 /* Switch to the handler mode. */
3239 v7m_push(env
, xpsr
);
3240 v7m_push(env
, env
->regs
[15]);
3241 v7m_push(env
, env
->regs
[14]);
3242 v7m_push(env
, env
->regs
[12]);
3243 v7m_push(env
, env
->regs
[3]);
3244 v7m_push(env
, env
->regs
[2]);
3245 v7m_push(env
, env
->regs
[1]);
3246 v7m_push(env
, env
->regs
[0]);
3247 switch_v7m_sp(env
, 0);
3249 env
->condexec_bits
= 0;
3251 addr
= ldl_phys(cs
->as
, env
->v7m
.vecbase
+ env
->v7m
.exception
* 4);
3252 env
->regs
[15] = addr
& 0xfffffffe;
3253 env
->thumb
= addr
& 1;
3256 /* Handle a CPU exception. */
3257 void arm_cpu_do_interrupt(CPUState
*cs
)
3259 ARMCPU
*cpu
= ARM_CPU(cs
);
3260 CPUARMState
*env
= &cpu
->env
;
3268 arm_log_exception(cs
->exception_index
);
3270 /* TODO: Vectored interrupt controller. */
3271 switch (cs
->exception_index
) {
3273 new_mode
= ARM_CPU_MODE_UND
;
3282 if (semihosting_enabled
) {
3283 /* Check for semihosting interrupt. */
3285 mask
= arm_lduw_code(env
, env
->regs
[15] - 2, env
->bswap_code
)
3288 mask
= arm_ldl_code(env
, env
->regs
[15] - 4, env
->bswap_code
)
3291 /* Only intercept calls from privileged modes, to provide some
3292 semblance of security. */
3293 if (((mask
== 0x123456 && !env
->thumb
)
3294 || (mask
== 0xab && env
->thumb
))
3295 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
3296 env
->regs
[0] = do_arm_semihosting(env
);
3297 qemu_log_mask(CPU_LOG_INT
, "...handled as semihosting call\n");
3301 new_mode
= ARM_CPU_MODE_SVC
;
3304 /* The PC already points to the next instruction. */
3308 /* See if this is a semihosting syscall. */
3309 if (env
->thumb
&& semihosting_enabled
) {
3310 mask
= arm_lduw_code(env
, env
->regs
[15], env
->bswap_code
) & 0xff;
3312 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
3314 env
->regs
[0] = do_arm_semihosting(env
);
3315 qemu_log_mask(CPU_LOG_INT
, "...handled as semihosting call\n");
3319 env
->exception
.fsr
= 2;
3320 /* Fall through to prefetch abort. */
3321 case EXCP_PREFETCH_ABORT
:
3322 env
->cp15
.ifsr_el2
= env
->exception
.fsr
;
3323 env
->cp15
.far_el1
= deposit64(env
->cp15
.far_el1
, 32, 32,
3324 env
->exception
.vaddress
);
3325 qemu_log_mask(CPU_LOG_INT
, "...with IFSR 0x%x IFAR 0x%x\n",
3326 env
->cp15
.ifsr_el2
, (uint32_t)env
->exception
.vaddress
);
3327 new_mode
= ARM_CPU_MODE_ABT
;
3329 mask
= CPSR_A
| CPSR_I
;
3332 case EXCP_DATA_ABORT
:
3333 env
->cp15
.esr_el1
= env
->exception
.fsr
;
3334 env
->cp15
.far_el1
= deposit64(env
->cp15
.far_el1
, 0, 32,
3335 env
->exception
.vaddress
);
3336 qemu_log_mask(CPU_LOG_INT
, "...with DFSR 0x%x DFAR 0x%x\n",
3337 (uint32_t)env
->cp15
.esr_el1
,
3338 (uint32_t)env
->exception
.vaddress
);
3339 new_mode
= ARM_CPU_MODE_ABT
;
3341 mask
= CPSR_A
| CPSR_I
;
3345 new_mode
= ARM_CPU_MODE_IRQ
;
3347 /* Disable IRQ and imprecise data aborts. */
3348 mask
= CPSR_A
| CPSR_I
;
3352 new_mode
= ARM_CPU_MODE_FIQ
;
3354 /* Disable FIQ, IRQ and imprecise data aborts. */
3355 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
3359 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
3360 return; /* Never happens. Keep compiler happy. */
3363 if (env
->cp15
.c1_sys
& SCTLR_V
) {
3364 /* when enabled, base address cannot be remapped. */
3367 /* ARM v7 architectures provide a vector base address register to remap
3368 * the interrupt vector table.
3369 * This register is only followed in non-monitor mode, and has a secure
3370 * and un-secure copy. Since the cpu is always in a un-secure operation
3371 * and is never in monitor mode this feature is always active.
3372 * Note: only bits 31:5 are valid.
3374 addr
+= env
->cp15
.c12_vbar
;
3376 switch_mode (env
, new_mode
);
3377 env
->spsr
= cpsr_read(env
);
3378 /* Clear IT bits. */
3379 env
->condexec_bits
= 0;
3380 /* Switch to the new mode, and to the correct instruction set. */
3381 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~CPSR_M
) | new_mode
;
3383 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
3384 * and we should just guard the thumb mode on V4 */
3385 if (arm_feature(env
, ARM_FEATURE_V4T
)) {
3386 env
->thumb
= (env
->cp15
.c1_sys
& SCTLR_TE
) != 0;
3388 env
->regs
[14] = env
->regs
[15] + offset
;
3389 env
->regs
[15] = addr
;
3390 cs
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
3393 /* Check section/page access permissions.
3394 Returns the page protection flags, or zero if the access is not
3396 static inline int check_ap(CPUARMState
*env
, int ap
, int domain_prot
,
3397 int access_type
, int is_user
)
3401 if (domain_prot
== 3) {
3402 return PAGE_READ
| PAGE_WRITE
;
3405 if (access_type
== 1)
3408 prot_ro
= PAGE_READ
;
3412 if (arm_feature(env
, ARM_FEATURE_V7
)) {
3415 if (access_type
== 1)
3417 switch (env
->cp15
.c1_sys
& (SCTLR_S
| SCTLR_R
)) {
3419 return is_user
? 0 : PAGE_READ
;
3426 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
3431 return PAGE_READ
| PAGE_WRITE
;
3433 return PAGE_READ
| PAGE_WRITE
;
3434 case 4: /* Reserved. */
3437 return is_user
? 0 : prot_ro
;
3441 if (!arm_feature (env
, ARM_FEATURE_V6K
))
3449 static uint32_t get_level1_table_address(CPUARMState
*env
, uint32_t address
)
3453 if (address
& env
->cp15
.c2_mask
)
3454 table
= env
->cp15
.ttbr1_el1
& 0xffffc000;
3456 table
= env
->cp15
.ttbr0_el1
& env
->cp15
.c2_base_mask
;
3458 table
|= (address
>> 18) & 0x3ffc;
3462 static int get_phys_addr_v5(CPUARMState
*env
, uint32_t address
, int access_type
,
3463 int is_user
, hwaddr
*phys_ptr
,
3464 int *prot
, target_ulong
*page_size
)
3466 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
3476 /* Pagetable walk. */
3477 /* Lookup l1 descriptor. */
3478 table
= get_level1_table_address(env
, address
);
3479 desc
= ldl_phys(cs
->as
, table
);
3481 domain
= (desc
>> 5) & 0x0f;
3482 domain_prot
= (env
->cp15
.c3
>> (domain
* 2)) & 3;
3484 /* Section translation fault. */
3488 if (domain_prot
== 0 || domain_prot
== 2) {
3490 code
= 9; /* Section domain fault. */
3492 code
= 11; /* Page domain fault. */
3497 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
3498 ap
= (desc
>> 10) & 3;
3500 *page_size
= 1024 * 1024;
3502 /* Lookup l2 entry. */
3504 /* Coarse pagetable. */
3505 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
3507 /* Fine pagetable. */
3508 table
= (desc
& 0xfffff000) | ((address
>> 8) & 0xffc);
3510 desc
= ldl_phys(cs
->as
, table
);
3512 case 0: /* Page translation fault. */
3515 case 1: /* 64k page. */
3516 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
3517 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
3518 *page_size
= 0x10000;
3520 case 2: /* 4k page. */
3521 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
3522 ap
= (desc
>> (4 + ((address
>> 9) & 6))) & 3;
3523 *page_size
= 0x1000;
3525 case 3: /* 1k page. */
3527 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
3528 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
3530 /* Page translation fault. */
3535 phys_addr
= (desc
& 0xfffffc00) | (address
& 0x3ff);
3537 ap
= (desc
>> 4) & 3;
3541 /* Never happens, but compiler isn't smart enough to tell. */
3546 *prot
= check_ap(env
, ap
, domain_prot
, access_type
, is_user
);
3548 /* Access permission fault. */
3552 *phys_ptr
= phys_addr
;
3555 return code
| (domain
<< 4);
3558 static int get_phys_addr_v6(CPUARMState
*env
, uint32_t address
, int access_type
,
3559 int is_user
, hwaddr
*phys_ptr
,
3560 int *prot
, target_ulong
*page_size
)
3562 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
3574 /* Pagetable walk. */
3575 /* Lookup l1 descriptor. */
3576 table
= get_level1_table_address(env
, address
);
3577 desc
= ldl_phys(cs
->as
, table
);
3579 if (type
== 0 || (type
== 3 && !arm_feature(env
, ARM_FEATURE_PXN
))) {
3580 /* Section translation fault, or attempt to use the encoding
3581 * which is Reserved on implementations without PXN.
3586 if ((type
== 1) || !(desc
& (1 << 18))) {
3587 /* Page or Section. */
3588 domain
= (desc
>> 5) & 0x0f;
3590 domain_prot
= (env
->cp15
.c3
>> (domain
* 2)) & 3;
3591 if (domain_prot
== 0 || domain_prot
== 2) {
3593 code
= 9; /* Section domain fault. */
3595 code
= 11; /* Page domain fault. */
3600 if (desc
& (1 << 18)) {
3602 phys_addr
= (desc
& 0xff000000) | (address
& 0x00ffffff);
3603 *page_size
= 0x1000000;
3606 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
3607 *page_size
= 0x100000;
3609 ap
= ((desc
>> 10) & 3) | ((desc
>> 13) & 4);
3610 xn
= desc
& (1 << 4);
3614 if (arm_feature(env
, ARM_FEATURE_PXN
)) {
3615 pxn
= (desc
>> 2) & 1;
3617 /* Lookup l2 entry. */
3618 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
3619 desc
= ldl_phys(cs
->as
, table
);
3620 ap
= ((desc
>> 4) & 3) | ((desc
>> 7) & 4);
3622 case 0: /* Page translation fault. */
3625 case 1: /* 64k page. */
3626 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
3627 xn
= desc
& (1 << 15);
3628 *page_size
= 0x10000;
3630 case 2: case 3: /* 4k page. */
3631 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
3633 *page_size
= 0x1000;
3636 /* Never happens, but compiler isn't smart enough to tell. */
3641 if (domain_prot
== 3) {
3642 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
3644 if (pxn
&& !is_user
) {
3647 if (xn
&& access_type
== 2)
3650 /* The simplified model uses AP[0] as an access control bit. */
3651 if ((env
->cp15
.c1_sys
& SCTLR_AFE
) && (ap
& 1) == 0) {
3652 /* Access flag fault. */
3653 code
= (code
== 15) ? 6 : 3;
3656 *prot
= check_ap(env
, ap
, domain_prot
, access_type
, is_user
);
3658 /* Access permission fault. */
3665 *phys_ptr
= phys_addr
;
3668 return code
| (domain
<< 4);
3671 /* Fault type for long-descriptor MMU fault reporting; this corresponds
3672 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
3675 translation_fault
= 1,
3677 permission_fault
= 3,
3680 static int get_phys_addr_lpae(CPUARMState
*env
, target_ulong address
,
3681 int access_type
, int is_user
,
3682 hwaddr
*phys_ptr
, int *prot
,
3683 target_ulong
*page_size_ptr
)
3685 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
3686 /* Read an LPAE long-descriptor translation table. */
3687 MMUFaultType fault_type
= translation_fault
;
3694 hwaddr descaddr
, descmask
;
3695 uint32_t tableattrs
;
3696 target_ulong page_size
;
3698 int32_t granule_sz
= 9;
3699 int32_t va_size
= 32;
3702 if (arm_el_is_aa64(env
, 1)) {
3704 if (extract64(address
, 55, 1))
3705 tbi
= extract64(env
->cp15
.c2_control
, 38, 1);
3707 tbi
= extract64(env
->cp15
.c2_control
, 37, 1);
3711 /* Determine whether this address is in the region controlled by
3712 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
3713 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
3714 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
3716 uint32_t t0sz
= extract32(env
->cp15
.c2_control
, 0, 6);
3717 if (arm_el_is_aa64(env
, 1)) {
3718 t0sz
= MIN(t0sz
, 39);
3719 t0sz
= MAX(t0sz
, 16);
3721 uint32_t t1sz
= extract32(env
->cp15
.c2_control
, 16, 6);
3722 if (arm_el_is_aa64(env
, 1)) {
3723 t1sz
= MIN(t1sz
, 39);
3724 t1sz
= MAX(t1sz
, 16);
3726 if (t0sz
&& !extract64(address
, va_size
- t0sz
, t0sz
- tbi
)) {
3727 /* there is a ttbr0 region and we are in it (high bits all zero) */
3729 } else if (t1sz
&& !extract64(~address
, va_size
- t1sz
, t1sz
- tbi
)) {
3730 /* there is a ttbr1 region and we are in it (high bits all one) */
3733 /* ttbr0 region is "everything not in the ttbr1 region" */
3736 /* ttbr1 region is "everything not in the ttbr0 region" */
3739 /* in the gap between the two regions, this is a Translation fault */
3740 fault_type
= translation_fault
;
3744 /* Note that QEMU ignores shareability and cacheability attributes,
3745 * so we don't need to do anything with the SH, ORGN, IRGN fields
3746 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
3747 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
3748 * implement any ASID-like capability so we can ignore it (instead
3749 * we will always flush the TLB any time the ASID is changed).
3751 if (ttbr_select
== 0) {
3752 ttbr
= env
->cp15
.ttbr0_el1
;
3753 epd
= extract32(env
->cp15
.c2_control
, 7, 1);
3756 tg
= extract32(env
->cp15
.c2_control
, 14, 2);
3757 if (tg
== 1) { /* 64KB pages */
3760 if (tg
== 2) { /* 16KB pages */
3764 ttbr
= env
->cp15
.ttbr1_el1
;
3765 epd
= extract32(env
->cp15
.c2_control
, 23, 1);
3768 tg
= extract32(env
->cp15
.c2_control
, 30, 2);
3769 if (tg
== 3) { /* 64KB pages */
3772 if (tg
== 1) { /* 16KB pages */
3778 /* Translation table walk disabled => Translation fault on TLB miss */
3782 /* The starting level depends on the virtual address size which can be
3783 * up to 48-bits and the translation granule size.
3785 if ((va_size
- tsz
) > (granule_sz
* 4 + 3)) {
3787 } else if ((va_size
- tsz
) > (granule_sz
* 3 + 3)) {
3793 /* Clear the vaddr bits which aren't part of the within-region address,
3794 * so that we don't have to special case things when calculating the
3795 * first descriptor address.
3798 address
&= (1ULL << (va_size
- tsz
)) - 1;
3801 descmask
= (1ULL << (granule_sz
+ 3)) - 1;
3803 /* Now we can extract the actual base address from the TTBR */
3804 descaddr
= extract64(ttbr
, 0, 48);
3805 descaddr
&= ~((1ULL << (va_size
- tsz
- (granule_sz
* (4 - level
)))) - 1);
3809 uint64_t descriptor
;
3811 descaddr
|= (address
>> (granule_sz
* (4 - level
))) & descmask
;
3813 descriptor
= ldq_phys(cs
->as
, descaddr
);
3814 if (!(descriptor
& 1) ||
3815 (!(descriptor
& 2) && (level
== 3))) {
3816 /* Invalid, or the Reserved level 3 encoding */
3819 descaddr
= descriptor
& 0xfffffff000ULL
;
3821 if ((descriptor
& 2) && (level
< 3)) {
3822 /* Table entry. The top five bits are attributes which may
3823 * propagate down through lower levels of the table (and
3824 * which are all arranged so that 0 means "no effect", so
3825 * we can gather them up by ORing in the bits at each level).
3827 tableattrs
|= extract64(descriptor
, 59, 5);
3831 /* Block entry at level 1 or 2, or page entry at level 3.
3832 * These are basically the same thing, although the number
3833 * of bits we pull in from the vaddr varies.
3835 page_size
= (1 << ((granule_sz
* (4 - level
)) + 3));
3836 descaddr
|= (address
& (page_size
- 1));
3837 /* Extract attributes from the descriptor and merge with table attrs */
3838 if (arm_feature(env
, ARM_FEATURE_V8
)) {
3839 attrs
= extract64(descriptor
, 2, 10)
3840 | (extract64(descriptor
, 53, 11) << 10);
3842 attrs
= extract64(descriptor
, 2, 10)
3843 | (extract64(descriptor
, 52, 12) << 10);
3845 attrs
|= extract32(tableattrs
, 0, 2) << 11; /* XN, PXN */
3846 attrs
|= extract32(tableattrs
, 3, 1) << 5; /* APTable[1] => AP[2] */
3847 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
3848 * means "force PL1 access only", which means forcing AP[1] to 0.
3850 if (extract32(tableattrs
, 2, 1)) {
3853 /* Since we're always in the Non-secure state, NSTable is ignored. */
3856 /* Here descaddr is the final physical address, and attributes
3859 fault_type
= access_fault
;
3860 if ((attrs
& (1 << 8)) == 0) {
3864 fault_type
= permission_fault
;
3865 if (is_user
&& !(attrs
& (1 << 4))) {
3866 /* Unprivileged access not enabled */
3869 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
3870 if (attrs
& (1 << 12) || (!is_user
&& (attrs
& (1 << 11)))) {
3872 if (access_type
== 2) {
3875 *prot
&= ~PAGE_EXEC
;
3877 if (attrs
& (1 << 5)) {
3878 /* Write access forbidden */
3879 if (access_type
== 1) {
3882 *prot
&= ~PAGE_WRITE
;
3885 *phys_ptr
= descaddr
;
3886 *page_size_ptr
= page_size
;
3890 /* Long-descriptor format IFSR/DFSR value */
3891 return (1 << 9) | (fault_type
<< 2) | level
;
3894 static int get_phys_addr_mpu(CPUARMState
*env
, uint32_t address
,
3895 int access_type
, int is_user
,
3896 hwaddr
*phys_ptr
, int *prot
)
3902 *phys_ptr
= address
;
3903 for (n
= 7; n
>= 0; n
--) {
3904 base
= env
->cp15
.c6_region
[n
];
3905 if ((base
& 1) == 0)
3907 mask
= 1 << ((base
>> 1) & 0x1f);
3908 /* Keep this shift separate from the above to avoid an
3909 (undefined) << 32. */
3910 mask
= (mask
<< 1) - 1;
3911 if (((base
^ address
) & ~mask
) == 0)
3917 if (access_type
== 2) {
3918 mask
= env
->cp15
.pmsav5_insn_ap
;
3920 mask
= env
->cp15
.pmsav5_data_ap
;
3922 mask
= (mask
>> (n
* 4)) & 0xf;
3929 *prot
= PAGE_READ
| PAGE_WRITE
;
3934 *prot
|= PAGE_WRITE
;
3937 *prot
= PAGE_READ
| PAGE_WRITE
;
3948 /* Bad permission. */
3955 /* get_phys_addr - get the physical address for this virtual address
3957 * Find the physical address corresponding to the given virtual address,
3958 * by doing a translation table walk on MMU based systems or using the
3959 * MPU state on MPU based systems.
3961 * Returns 0 if the translation was successful. Otherwise, phys_ptr,
3962 * prot and page_size are not filled in, and the return value provides
3963 * information on why the translation aborted, in the format of a
3964 * DFSR/IFSR fault register, with the following caveats:
3965 * * we honour the short vs long DFSR format differences.
3966 * * the WnR bit is never set (the caller must do this).
3967 * * for MPU based systems we don't bother to return a full FSR format
3971 * @address: virtual address to get physical address for
3972 * @access_type: 0 for read, 1 for write, 2 for execute
3973 * @is_user: 0 for privileged access, 1 for user
3974 * @phys_ptr: set to the physical address corresponding to the virtual address
3975 * @prot: set to the permissions for the page containing phys_ptr
3976 * @page_size: set to the size of the page containing phys_ptr
3978 static inline int get_phys_addr(CPUARMState
*env
, target_ulong address
,
3979 int access_type
, int is_user
,
3980 hwaddr
*phys_ptr
, int *prot
,
3981 target_ulong
*page_size
)
3983 /* Fast Context Switch Extension. */
3984 if (address
< 0x02000000)
3985 address
+= env
->cp15
.c13_fcse
;
3987 if ((env
->cp15
.c1_sys
& SCTLR_M
) == 0) {
3988 /* MMU/MPU disabled. */
3989 *phys_ptr
= address
;
3990 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
3991 *page_size
= TARGET_PAGE_SIZE
;
3993 } else if (arm_feature(env
, ARM_FEATURE_MPU
)) {
3994 *page_size
= TARGET_PAGE_SIZE
;
3995 return get_phys_addr_mpu(env
, address
, access_type
, is_user
, phys_ptr
,
3997 } else if (extended_addresses_enabled(env
)) {
3998 return get_phys_addr_lpae(env
, address
, access_type
, is_user
, phys_ptr
,
4000 } else if (env
->cp15
.c1_sys
& SCTLR_XP
) {
4001 return get_phys_addr_v6(env
, address
, access_type
, is_user
, phys_ptr
,
4004 return get_phys_addr_v5(env
, address
, access_type
, is_user
, phys_ptr
,
4009 int arm_cpu_handle_mmu_fault(CPUState
*cs
, vaddr address
,
4010 int access_type
, int mmu_idx
)
4012 ARMCPU
*cpu
= ARM_CPU(cs
);
4013 CPUARMState
*env
= &cpu
->env
;
4015 target_ulong page_size
;
4019 bool same_el
= (arm_current_pl(env
) != 0);
4021 is_user
= mmu_idx
== MMU_USER_IDX
;
4022 ret
= get_phys_addr(env
, address
, access_type
, is_user
, &phys_addr
, &prot
,
4025 /* Map a single [sub]page. */
4026 phys_addr
&= ~(hwaddr
)0x3ff;
4027 address
&= ~(target_ulong
)0x3ff;
4028 tlb_set_page(cs
, address
, phys_addr
, prot
, mmu_idx
, page_size
);
4032 /* AArch64 syndrome does not have an LPAE bit */
4033 syn
= ret
& ~(1 << 9);
4035 /* For insn and data aborts we assume there is no instruction syndrome
4036 * information; this is always true for exceptions reported to EL1.
4038 if (access_type
== 2) {
4039 syn
= syn_insn_abort(same_el
, 0, 0, syn
);
4040 cs
->exception_index
= EXCP_PREFETCH_ABORT
;
4042 syn
= syn_data_abort(same_el
, 0, 0, 0, access_type
== 1, syn
);
4043 if (access_type
== 1 && arm_feature(env
, ARM_FEATURE_V6
)) {
4046 cs
->exception_index
= EXCP_DATA_ABORT
;
4049 env
->exception
.syndrome
= syn
;
4050 env
->exception
.vaddress
= address
;
4051 env
->exception
.fsr
= ret
;
4055 hwaddr
arm_cpu_get_phys_page_debug(CPUState
*cs
, vaddr addr
)
4057 ARMCPU
*cpu
= ARM_CPU(cs
);
4059 target_ulong page_size
;
4063 ret
= get_phys_addr(&cpu
->env
, addr
, 0, 0, &phys_addr
, &prot
, &page_size
);
4072 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
4074 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
4075 env
->regs
[13] = val
;
4077 env
->banked_r13
[bank_number(mode
)] = val
;
4081 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
4083 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
4084 return env
->regs
[13];
4086 return env
->banked_r13
[bank_number(mode
)];
4090 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
4092 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4096 return xpsr_read(env
) & 0xf8000000;
4098 return xpsr_read(env
) & 0xf80001ff;
4100 return xpsr_read(env
) & 0xff00fc00;
4102 return xpsr_read(env
) & 0xff00fdff;
4104 return xpsr_read(env
) & 0x000001ff;
4106 return xpsr_read(env
) & 0x0700fc00;
4108 return xpsr_read(env
) & 0x0700edff;
4110 return env
->v7m
.current_sp
? env
->v7m
.other_sp
: env
->regs
[13];
4112 return env
->v7m
.current_sp
? env
->regs
[13] : env
->v7m
.other_sp
;
4113 case 16: /* PRIMASK */
4114 return (env
->daif
& PSTATE_I
) != 0;
4115 case 17: /* BASEPRI */
4116 case 18: /* BASEPRI_MAX */
4117 return env
->v7m
.basepri
;
4118 case 19: /* FAULTMASK */
4119 return (env
->daif
& PSTATE_F
) != 0;
4120 case 20: /* CONTROL */
4121 return env
->v7m
.control
;
4123 /* ??? For debugging only. */
4124 cpu_abort(CPU(cpu
), "Unimplemented system register read (%d)\n", reg
);
4129 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
4131 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4135 xpsr_write(env
, val
, 0xf8000000);
4138 xpsr_write(env
, val
, 0xf8000000);
4141 xpsr_write(env
, val
, 0xfe00fc00);
4144 xpsr_write(env
, val
, 0xfe00fc00);
4147 /* IPSR bits are readonly. */
4150 xpsr_write(env
, val
, 0x0600fc00);
4153 xpsr_write(env
, val
, 0x0600fc00);
4156 if (env
->v7m
.current_sp
)
4157 env
->v7m
.other_sp
= val
;
4159 env
->regs
[13] = val
;
4162 if (env
->v7m
.current_sp
)
4163 env
->regs
[13] = val
;
4165 env
->v7m
.other_sp
= val
;
4167 case 16: /* PRIMASK */
4169 env
->daif
|= PSTATE_I
;
4171 env
->daif
&= ~PSTATE_I
;
4174 case 17: /* BASEPRI */
4175 env
->v7m
.basepri
= val
& 0xff;
4177 case 18: /* BASEPRI_MAX */
4179 if (val
!= 0 && (val
< env
->v7m
.basepri
|| env
->v7m
.basepri
== 0))
4180 env
->v7m
.basepri
= val
;
4182 case 19: /* FAULTMASK */
4184 env
->daif
|= PSTATE_F
;
4186 env
->daif
&= ~PSTATE_F
;
4189 case 20: /* CONTROL */
4190 env
->v7m
.control
= val
& 3;
4191 switch_v7m_sp(env
, (val
& 2) != 0);
4194 /* ??? For debugging only. */
4195 cpu_abort(CPU(cpu
), "Unimplemented system register write (%d)\n", reg
);
4202 void HELPER(dc_zva
)(CPUARMState
*env
, uint64_t vaddr_in
)
4204 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
4205 * Note that we do not implement the (architecturally mandated)
4206 * alignment fault for attempts to use this on Device memory
4207 * (which matches the usual QEMU behaviour of not implementing either
4208 * alignment faults or any memory attribute handling).
4211 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4212 uint64_t blocklen
= 4 << cpu
->dcz_blocksize
;
4213 uint64_t vaddr
= vaddr_in
& ~(blocklen
- 1);
4215 #ifndef CONFIG_USER_ONLY
4217 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
4218 * the block size so we might have to do more than one TLB lookup.
4219 * We know that in fact for any v8 CPU the page size is at least 4K
4220 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
4221 * 1K as an artefact of legacy v5 subpage support being present in the
4222 * same QEMU executable.
4224 int maxidx
= DIV_ROUND_UP(blocklen
, TARGET_PAGE_SIZE
);
4225 void *hostaddr
[maxidx
];
4228 for (try = 0; try < 2; try++) {
4230 for (i
= 0; i
< maxidx
; i
++) {
4231 hostaddr
[i
] = tlb_vaddr_to_host(env
,
4232 vaddr
+ TARGET_PAGE_SIZE
* i
,
4233 1, cpu_mmu_index(env
));
4239 /* If it's all in the TLB it's fair game for just writing to;
4240 * we know we don't need to update dirty status, etc.
4242 for (i
= 0; i
< maxidx
- 1; i
++) {
4243 memset(hostaddr
[i
], 0, TARGET_PAGE_SIZE
);
4245 memset(hostaddr
[i
], 0, blocklen
- (i
* TARGET_PAGE_SIZE
));
4248 /* OK, try a store and see if we can populate the tlb. This
4249 * might cause an exception if the memory isn't writable,
4250 * in which case we will longjmp out of here. We must for
4251 * this purpose use the actual register value passed to us
4252 * so that we get the fault address right.
4254 helper_ret_stb_mmu(env
, vaddr_in
, 0, cpu_mmu_index(env
), GETRA());
4255 /* Now we can populate the other TLB entries, if any */
4256 for (i
= 0; i
< maxidx
; i
++) {
4257 uint64_t va
= vaddr
+ TARGET_PAGE_SIZE
* i
;
4258 if (va
!= (vaddr_in
& TARGET_PAGE_MASK
)) {
4259 helper_ret_stb_mmu(env
, va
, 0, cpu_mmu_index(env
), GETRA());
4264 /* Slow path (probably attempt to do this to an I/O device or
4265 * similar, or clearing of a block of code we have translations
4266 * cached for). Just do a series of byte writes as the architecture
4267 * demands. It's not worth trying to use a cpu_physical_memory_map(),
4268 * memset(), unmap() sequence here because:
4269 * + we'd need to account for the blocksize being larger than a page
4270 * + the direct-RAM access case is almost always going to be dealt
4271 * with in the fastpath code above, so there's no speed benefit
4272 * + we would have to deal with the map returning NULL because the
4273 * bounce buffer was in use
4275 for (i
= 0; i
< blocklen
; i
++) {
4276 helper_ret_stb_mmu(env
, vaddr
+ i
, 0, cpu_mmu_index(env
), GETRA());
4280 memset(g2h(vaddr
), 0, blocklen
);
4284 /* Note that signed overflow is undefined in C. The following routines are
4285 careful to use unsigned types where modulo arithmetic is required.
4286 Failure to do so _will_ break on newer gcc. */
4288 /* Signed saturating arithmetic. */
4290 /* Perform 16-bit signed saturating addition. */
4291 static inline uint16_t add16_sat(uint16_t a
, uint16_t b
)
4296 if (((res
^ a
) & 0x8000) && !((a
^ b
) & 0x8000)) {
4305 /* Perform 8-bit signed saturating addition. */
4306 static inline uint8_t add8_sat(uint8_t a
, uint8_t b
)
4311 if (((res
^ a
) & 0x80) && !((a
^ b
) & 0x80)) {
4320 /* Perform 16-bit signed saturating subtraction. */
4321 static inline uint16_t sub16_sat(uint16_t a
, uint16_t b
)
4326 if (((res
^ a
) & 0x8000) && ((a
^ b
) & 0x8000)) {
4335 /* Perform 8-bit signed saturating subtraction. */
4336 static inline uint8_t sub8_sat(uint8_t a
, uint8_t b
)
4341 if (((res
^ a
) & 0x80) && ((a
^ b
) & 0x80)) {
4350 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
4351 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
4352 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
4353 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
4356 #include "op_addsub.h"
4358 /* Unsigned saturating arithmetic. */
4359 static inline uint16_t add16_usat(uint16_t a
, uint16_t b
)
4368 static inline uint16_t sub16_usat(uint16_t a
, uint16_t b
)
4376 static inline uint8_t add8_usat(uint8_t a
, uint8_t b
)
4385 static inline uint8_t sub8_usat(uint8_t a
, uint8_t b
)
4393 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
4394 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
4395 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
4396 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
4399 #include "op_addsub.h"
4401 /* Signed modulo arithmetic. */
4402 #define SARITH16(a, b, n, op) do { \
4404 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
4405 RESULT(sum, n, 16); \
4407 ge |= 3 << (n * 2); \
4410 #define SARITH8(a, b, n, op) do { \
4412 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
4413 RESULT(sum, n, 8); \
4419 #define ADD16(a, b, n) SARITH16(a, b, n, +)
4420 #define SUB16(a, b, n) SARITH16(a, b, n, -)
4421 #define ADD8(a, b, n) SARITH8(a, b, n, +)
4422 #define SUB8(a, b, n) SARITH8(a, b, n, -)
4426 #include "op_addsub.h"
4428 /* Unsigned modulo arithmetic. */
4429 #define ADD16(a, b, n) do { \
4431 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
4432 RESULT(sum, n, 16); \
4433 if ((sum >> 16) == 1) \
4434 ge |= 3 << (n * 2); \
4437 #define ADD8(a, b, n) do { \
4439 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
4440 RESULT(sum, n, 8); \
4441 if ((sum >> 8) == 1) \
4445 #define SUB16(a, b, n) do { \
4447 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
4448 RESULT(sum, n, 16); \
4449 if ((sum >> 16) == 0) \
4450 ge |= 3 << (n * 2); \
4453 #define SUB8(a, b, n) do { \
4455 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
4456 RESULT(sum, n, 8); \
4457 if ((sum >> 8) == 0) \
4464 #include "op_addsub.h"
4466 /* Halved signed arithmetic. */
4467 #define ADD16(a, b, n) \
4468 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
4469 #define SUB16(a, b, n) \
4470 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
4471 #define ADD8(a, b, n) \
4472 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
4473 #define SUB8(a, b, n) \
4474 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
4477 #include "op_addsub.h"
4479 /* Halved unsigned arithmetic. */
4480 #define ADD16(a, b, n) \
4481 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
4482 #define SUB16(a, b, n) \
4483 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
4484 #define ADD8(a, b, n) \
4485 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
4486 #define SUB8(a, b, n) \
4487 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
4490 #include "op_addsub.h"
4492 static inline uint8_t do_usad(uint8_t a
, uint8_t b
)
4500 /* Unsigned sum of absolute byte differences. */
4501 uint32_t HELPER(usad8
)(uint32_t a
, uint32_t b
)
4504 sum
= do_usad(a
, b
);
4505 sum
+= do_usad(a
>> 8, b
>> 8);
4506 sum
+= do_usad(a
>> 16, b
>>16);
4507 sum
+= do_usad(a
>> 24, b
>> 24);
4511 /* For ARMv6 SEL instruction. */
4512 uint32_t HELPER(sel_flags
)(uint32_t flags
, uint32_t a
, uint32_t b
)
4525 return (a
& mask
) | (b
& ~mask
);
4528 /* VFP support. We follow the convention used for VFP instructions:
4529 Single precision routines have a "s" suffix, double precision a
4532 /* Convert host exception flags to vfp form. */
4533 static inline int vfp_exceptbits_from_host(int host_bits
)
4535 int target_bits
= 0;
4537 if (host_bits
& float_flag_invalid
)
4539 if (host_bits
& float_flag_divbyzero
)
4541 if (host_bits
& float_flag_overflow
)
4543 if (host_bits
& (float_flag_underflow
| float_flag_output_denormal
))
4545 if (host_bits
& float_flag_inexact
)
4546 target_bits
|= 0x10;
4547 if (host_bits
& float_flag_input_denormal
)
4548 target_bits
|= 0x80;
4552 uint32_t HELPER(vfp_get_fpscr
)(CPUARMState
*env
)
4557 fpscr
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & 0xffc8ffff)
4558 | (env
->vfp
.vec_len
<< 16)
4559 | (env
->vfp
.vec_stride
<< 20);
4560 i
= get_float_exception_flags(&env
->vfp
.fp_status
);
4561 i
|= get_float_exception_flags(&env
->vfp
.standard_fp_status
);
4562 fpscr
|= vfp_exceptbits_from_host(i
);
4566 uint32_t vfp_get_fpscr(CPUARMState
*env
)
4568 return HELPER(vfp_get_fpscr
)(env
);
4571 /* Convert vfp exception flags to target form. */
4572 static inline int vfp_exceptbits_to_host(int target_bits
)
4576 if (target_bits
& 1)
4577 host_bits
|= float_flag_invalid
;
4578 if (target_bits
& 2)
4579 host_bits
|= float_flag_divbyzero
;
4580 if (target_bits
& 4)
4581 host_bits
|= float_flag_overflow
;
4582 if (target_bits
& 8)
4583 host_bits
|= float_flag_underflow
;
4584 if (target_bits
& 0x10)
4585 host_bits
|= float_flag_inexact
;
4586 if (target_bits
& 0x80)
4587 host_bits
|= float_flag_input_denormal
;
4591 void HELPER(vfp_set_fpscr
)(CPUARMState
*env
, uint32_t val
)
4596 changed
= env
->vfp
.xregs
[ARM_VFP_FPSCR
];
4597 env
->vfp
.xregs
[ARM_VFP_FPSCR
] = (val
& 0xffc8ffff);
4598 env
->vfp
.vec_len
= (val
>> 16) & 7;
4599 env
->vfp
.vec_stride
= (val
>> 20) & 3;
4602 if (changed
& (3 << 22)) {
4603 i
= (val
>> 22) & 3;
4605 case FPROUNDING_TIEEVEN
:
4606 i
= float_round_nearest_even
;
4608 case FPROUNDING_POSINF
:
4611 case FPROUNDING_NEGINF
:
4612 i
= float_round_down
;
4614 case FPROUNDING_ZERO
:
4615 i
= float_round_to_zero
;
4618 set_float_rounding_mode(i
, &env
->vfp
.fp_status
);
4620 if (changed
& (1 << 24)) {
4621 set_flush_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
4622 set_flush_inputs_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
4624 if (changed
& (1 << 25))
4625 set_default_nan_mode((val
& (1 << 25)) != 0, &env
->vfp
.fp_status
);
4627 i
= vfp_exceptbits_to_host(val
);
4628 set_float_exception_flags(i
, &env
->vfp
.fp_status
);
4629 set_float_exception_flags(0, &env
->vfp
.standard_fp_status
);
4632 void vfp_set_fpscr(CPUARMState
*env
, uint32_t val
)
4634 HELPER(vfp_set_fpscr
)(env
, val
);
4637 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
4639 #define VFP_BINOP(name) \
4640 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
4642 float_status *fpst = fpstp; \
4643 return float32_ ## name(a, b, fpst); \
4645 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
4647 float_status *fpst = fpstp; \
4648 return float64_ ## name(a, b, fpst); \
4660 float32
VFP_HELPER(neg
, s
)(float32 a
)
4662 return float32_chs(a
);
4665 float64
VFP_HELPER(neg
, d
)(float64 a
)
4667 return float64_chs(a
);
4670 float32
VFP_HELPER(abs
, s
)(float32 a
)
4672 return float32_abs(a
);
4675 float64
VFP_HELPER(abs
, d
)(float64 a
)
4677 return float64_abs(a
);
4680 float32
VFP_HELPER(sqrt
, s
)(float32 a
, CPUARMState
*env
)
4682 return float32_sqrt(a
, &env
->vfp
.fp_status
);
4685 float64
VFP_HELPER(sqrt
, d
)(float64 a
, CPUARMState
*env
)
4687 return float64_sqrt(a
, &env
->vfp
.fp_status
);
4690 /* XXX: check quiet/signaling case */
4691 #define DO_VFP_cmp(p, type) \
4692 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
4695 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
4696 case 0: flags = 0x6; break; \
4697 case -1: flags = 0x8; break; \
4698 case 1: flags = 0x2; break; \
4699 default: case 2: flags = 0x3; break; \
4701 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
4702 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
4704 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
4707 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
4708 case 0: flags = 0x6; break; \
4709 case -1: flags = 0x8; break; \
4710 case 1: flags = 0x2; break; \
4711 default: case 2: flags = 0x3; break; \
4713 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
4714 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
4716 DO_VFP_cmp(s
, float32
)
4717 DO_VFP_cmp(d
, float64
)
4720 /* Integer to float and float to integer conversions */
4722 #define CONV_ITOF(name, fsz, sign) \
4723 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
4725 float_status *fpst = fpstp; \
4726 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
4729 #define CONV_FTOI(name, fsz, sign, round) \
4730 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
4732 float_status *fpst = fpstp; \
4733 if (float##fsz##_is_any_nan(x)) { \
4734 float_raise(float_flag_invalid, fpst); \
4737 return float##fsz##_to_##sign##int32##round(x, fpst); \
4740 #define FLOAT_CONVS(name, p, fsz, sign) \
4741 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
4742 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
4743 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
4745 FLOAT_CONVS(si
, s
, 32, )
4746 FLOAT_CONVS(si
, d
, 64, )
4747 FLOAT_CONVS(ui
, s
, 32, u
)
4748 FLOAT_CONVS(ui
, d
, 64, u
)
4754 /* floating point conversion */
4755 float64
VFP_HELPER(fcvtd
, s
)(float32 x
, CPUARMState
*env
)
4757 float64 r
= float32_to_float64(x
, &env
->vfp
.fp_status
);
4758 /* ARM requires that S<->D conversion of any kind of NaN generates
4759 * a quiet NaN by forcing the most significant frac bit to 1.
4761 return float64_maybe_silence_nan(r
);
4764 float32
VFP_HELPER(fcvts
, d
)(float64 x
, CPUARMState
*env
)
4766 float32 r
= float64_to_float32(x
, &env
->vfp
.fp_status
);
4767 /* ARM requires that S<->D conversion of any kind of NaN generates
4768 * a quiet NaN by forcing the most significant frac bit to 1.
4770 return float32_maybe_silence_nan(r
);
4773 /* VFP3 fixed point conversion. */
4774 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
4775 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
4778 float_status *fpst = fpstp; \
4780 tmp = itype##_to_##float##fsz(x, fpst); \
4781 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
4784 /* Notice that we want only input-denormal exception flags from the
4785 * scalbn operation: the other possible flags (overflow+inexact if
4786 * we overflow to infinity, output-denormal) aren't correct for the
4787 * complete scale-and-convert operation.
4789 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
4790 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
4794 float_status *fpst = fpstp; \
4795 int old_exc_flags = get_float_exception_flags(fpst); \
4797 if (float##fsz##_is_any_nan(x)) { \
4798 float_raise(float_flag_invalid, fpst); \
4801 tmp = float##fsz##_scalbn(x, shift, fpst); \
4802 old_exc_flags |= get_float_exception_flags(fpst) \
4803 & float_flag_input_denormal; \
4804 set_float_exception_flags(old_exc_flags, fpst); \
4805 return float##fsz##_to_##itype##round(tmp, fpst); \
4808 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
4809 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
4810 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
4811 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
4813 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
4814 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
4815 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
4817 VFP_CONV_FIX(sh
, d
, 64, 64, int16
)
4818 VFP_CONV_FIX(sl
, d
, 64, 64, int32
)
4819 VFP_CONV_FIX_A64(sq
, d
, 64, 64, int64
)
4820 VFP_CONV_FIX(uh
, d
, 64, 64, uint16
)
4821 VFP_CONV_FIX(ul
, d
, 64, 64, uint32
)
4822 VFP_CONV_FIX_A64(uq
, d
, 64, 64, uint64
)
4823 VFP_CONV_FIX(sh
, s
, 32, 32, int16
)
4824 VFP_CONV_FIX(sl
, s
, 32, 32, int32
)
4825 VFP_CONV_FIX_A64(sq
, s
, 32, 64, int64
)
4826 VFP_CONV_FIX(uh
, s
, 32, 32, uint16
)
4827 VFP_CONV_FIX(ul
, s
, 32, 32, uint32
)
4828 VFP_CONV_FIX_A64(uq
, s
, 32, 64, uint64
)
4830 #undef VFP_CONV_FIX_FLOAT
4831 #undef VFP_CONV_FLOAT_FIX_ROUND
4833 /* Set the current fp rounding mode and return the old one.
4834 * The argument is a softfloat float_round_ value.
4836 uint32_t HELPER(set_rmode
)(uint32_t rmode
, CPUARMState
*env
)
4838 float_status
*fp_status
= &env
->vfp
.fp_status
;
4840 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
4841 set_float_rounding_mode(rmode
, fp_status
);
4846 /* Set the current fp rounding mode in the standard fp status and return
4847 * the old one. This is for NEON instructions that need to change the
4848 * rounding mode but wish to use the standard FPSCR values for everything
4849 * else. Always set the rounding mode back to the correct value after
4851 * The argument is a softfloat float_round_ value.
4853 uint32_t HELPER(set_neon_rmode
)(uint32_t rmode
, CPUARMState
*env
)
4855 float_status
*fp_status
= &env
->vfp
.standard_fp_status
;
4857 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
4858 set_float_rounding_mode(rmode
, fp_status
);
4863 /* Half precision conversions. */
4864 static float32
do_fcvt_f16_to_f32(uint32_t a
, CPUARMState
*env
, float_status
*s
)
4866 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
4867 float32 r
= float16_to_float32(make_float16(a
), ieee
, s
);
4869 return float32_maybe_silence_nan(r
);
4874 static uint32_t do_fcvt_f32_to_f16(float32 a
, CPUARMState
*env
, float_status
*s
)
4876 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
4877 float16 r
= float32_to_float16(a
, ieee
, s
);
4879 r
= float16_maybe_silence_nan(r
);
4881 return float16_val(r
);
4884 float32
HELPER(neon_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
4886 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.standard_fp_status
);
4889 uint32_t HELPER(neon_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
4891 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.standard_fp_status
);
4894 float32
HELPER(vfp_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
4896 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.fp_status
);
4899 uint32_t HELPER(vfp_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
4901 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.fp_status
);
4904 float64
HELPER(vfp_fcvt_f16_to_f64
)(uint32_t a
, CPUARMState
*env
)
4906 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
4907 float64 r
= float16_to_float64(make_float16(a
), ieee
, &env
->vfp
.fp_status
);
4909 return float64_maybe_silence_nan(r
);
4914 uint32_t HELPER(vfp_fcvt_f64_to_f16
)(float64 a
, CPUARMState
*env
)
4916 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
4917 float16 r
= float64_to_float16(a
, ieee
, &env
->vfp
.fp_status
);
4919 r
= float16_maybe_silence_nan(r
);
4921 return float16_val(r
);
4924 #define float32_two make_float32(0x40000000)
4925 #define float32_three make_float32(0x40400000)
4926 #define float32_one_point_five make_float32(0x3fc00000)
4928 float32
HELPER(recps_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
4930 float_status
*s
= &env
->vfp
.standard_fp_status
;
4931 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
4932 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
4933 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
4934 float_raise(float_flag_input_denormal
, s
);
4938 return float32_sub(float32_two
, float32_mul(a
, b
, s
), s
);
4941 float32
HELPER(rsqrts_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
4943 float_status
*s
= &env
->vfp
.standard_fp_status
;
4945 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
4946 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
4947 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
4948 float_raise(float_flag_input_denormal
, s
);
4950 return float32_one_point_five
;
4952 product
= float32_mul(a
, b
, s
);
4953 return float32_div(float32_sub(float32_three
, product
, s
), float32_two
, s
);
4958 /* Constants 256 and 512 are used in some helpers; we avoid relying on
4959 * int->float conversions at run-time. */
4960 #define float64_256 make_float64(0x4070000000000000LL)
4961 #define float64_512 make_float64(0x4080000000000000LL)
4962 #define float32_maxnorm make_float32(0x7f7fffff)
4963 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
4965 /* Reciprocal functions
4967 * The algorithm that must be used to calculate the estimate
4968 * is specified by the ARM ARM, see FPRecipEstimate()
4971 static float64
recip_estimate(float64 a
, float_status
*real_fp_status
)
4973 /* These calculations mustn't set any fp exception flags,
4974 * so we use a local copy of the fp_status.
4976 float_status dummy_status
= *real_fp_status
;
4977 float_status
*s
= &dummy_status
;
4978 /* q = (int)(a * 512.0) */
4979 float64 q
= float64_mul(float64_512
, a
, s
);
4980 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
4982 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
4983 q
= int64_to_float64(q_int
, s
);
4984 q
= float64_add(q
, float64_half
, s
);
4985 q
= float64_div(q
, float64_512
, s
);
4986 q
= float64_div(float64_one
, q
, s
);
4988 /* s = (int)(256.0 * r + 0.5) */
4989 q
= float64_mul(q
, float64_256
, s
);
4990 q
= float64_add(q
, float64_half
, s
);
4991 q_int
= float64_to_int64_round_to_zero(q
, s
);
4993 /* return (double)s / 256.0 */
4994 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
4997 /* Common wrapper to call recip_estimate */
4998 static float64
call_recip_estimate(float64 num
, int off
, float_status
*fpst
)
5000 uint64_t val64
= float64_val(num
);
5001 uint64_t frac
= extract64(val64
, 0, 52);
5002 int64_t exp
= extract64(val64
, 52, 11);
5004 float64 scaled
, estimate
;
5006 /* Generate the scaled number for the estimate function */
5008 if (extract64(frac
, 51, 1) == 0) {
5010 frac
= extract64(frac
, 0, 50) << 2;
5012 frac
= extract64(frac
, 0, 51) << 1;
5016 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
5017 scaled
= make_float64((0x3feULL
<< 52)
5018 | extract64(frac
, 44, 8) << 44);
5020 estimate
= recip_estimate(scaled
, fpst
);
5022 /* Build new result */
5023 val64
= float64_val(estimate
);
5024 sbit
= 0x8000000000000000ULL
& val64
;
5026 frac
= extract64(val64
, 0, 52);
5029 frac
= 1ULL << 51 | extract64(frac
, 1, 51);
5030 } else if (exp
== -1) {
5031 frac
= 1ULL << 50 | extract64(frac
, 2, 50);
5035 return make_float64(sbit
| (exp
<< 52) | frac
);
5038 static bool round_to_inf(float_status
*fpst
, bool sign_bit
)
5040 switch (fpst
->float_rounding_mode
) {
5041 case float_round_nearest_even
: /* Round to Nearest */
5043 case float_round_up
: /* Round to +Inf */
5045 case float_round_down
: /* Round to -Inf */
5047 case float_round_to_zero
: /* Round to Zero */
5051 g_assert_not_reached();
5054 float32
HELPER(recpe_f32
)(float32 input
, void *fpstp
)
5056 float_status
*fpst
= fpstp
;
5057 float32 f32
= float32_squash_input_denormal(input
, fpst
);
5058 uint32_t f32_val
= float32_val(f32
);
5059 uint32_t f32_sbit
= 0x80000000ULL
& f32_val
;
5060 int32_t f32_exp
= extract32(f32_val
, 23, 8);
5061 uint32_t f32_frac
= extract32(f32_val
, 0, 23);
5067 if (float32_is_any_nan(f32
)) {
5069 if (float32_is_signaling_nan(f32
)) {
5070 float_raise(float_flag_invalid
, fpst
);
5071 nan
= float32_maybe_silence_nan(f32
);
5073 if (fpst
->default_nan_mode
) {
5074 nan
= float32_default_nan
;
5077 } else if (float32_is_infinity(f32
)) {
5078 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
5079 } else if (float32_is_zero(f32
)) {
5080 float_raise(float_flag_divbyzero
, fpst
);
5081 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
5082 } else if ((f32_val
& ~(1ULL << 31)) < (1ULL << 21)) {
5083 /* Abs(value) < 2.0^-128 */
5084 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
5085 if (round_to_inf(fpst
, f32_sbit
)) {
5086 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
5088 return float32_set_sign(float32_maxnorm
, float32_is_neg(f32
));
5090 } else if (f32_exp
>= 253 && fpst
->flush_to_zero
) {
5091 float_raise(float_flag_underflow
, fpst
);
5092 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
5096 f64
= make_float64(((int64_t)(f32_exp
) << 52) | (int64_t)(f32_frac
) << 29);
5097 r64
= call_recip_estimate(f64
, 253, fpst
);
5098 r64_val
= float64_val(r64
);
5099 r64_exp
= extract64(r64_val
, 52, 11);
5100 r64_frac
= extract64(r64_val
, 0, 52);
5102 /* result = sign : result_exp<7:0> : fraction<51:29>; */
5103 return make_float32(f32_sbit
|
5104 (r64_exp
& 0xff) << 23 |
5105 extract64(r64_frac
, 29, 24));
5108 float64
HELPER(recpe_f64
)(float64 input
, void *fpstp
)
5110 float_status
*fpst
= fpstp
;
5111 float64 f64
= float64_squash_input_denormal(input
, fpst
);
5112 uint64_t f64_val
= float64_val(f64
);
5113 uint64_t f64_sbit
= 0x8000000000000000ULL
& f64_val
;
5114 int64_t f64_exp
= extract64(f64_val
, 52, 11);
5120 /* Deal with any special cases */
5121 if (float64_is_any_nan(f64
)) {
5123 if (float64_is_signaling_nan(f64
)) {
5124 float_raise(float_flag_invalid
, fpst
);
5125 nan
= float64_maybe_silence_nan(f64
);
5127 if (fpst
->default_nan_mode
) {
5128 nan
= float64_default_nan
;
5131 } else if (float64_is_infinity(f64
)) {
5132 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
5133 } else if (float64_is_zero(f64
)) {
5134 float_raise(float_flag_divbyzero
, fpst
);
5135 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
5136 } else if ((f64_val
& ~(1ULL << 63)) < (1ULL << 50)) {
5137 /* Abs(value) < 2.0^-1024 */
5138 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
5139 if (round_to_inf(fpst
, f64_sbit
)) {
5140 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
5142 return float64_set_sign(float64_maxnorm
, float64_is_neg(f64
));
5144 } else if (f64_exp
>= 1023 && fpst
->flush_to_zero
) {
5145 float_raise(float_flag_underflow
, fpst
);
5146 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
5149 r64
= call_recip_estimate(f64
, 2045, fpst
);
5150 r64_val
= float64_val(r64
);
5151 r64_exp
= extract64(r64_val
, 52, 11);
5152 r64_frac
= extract64(r64_val
, 0, 52);
5154 /* result = sign : result_exp<10:0> : fraction<51:0> */
5155 return make_float64(f64_sbit
|
5156 ((r64_exp
& 0x7ff) << 52) |
5160 /* The algorithm that must be used to calculate the estimate
5161 * is specified by the ARM ARM.
5163 static float64
recip_sqrt_estimate(float64 a
, float_status
*real_fp_status
)
5165 /* These calculations mustn't set any fp exception flags,
5166 * so we use a local copy of the fp_status.
5168 float_status dummy_status
= *real_fp_status
;
5169 float_status
*s
= &dummy_status
;
5173 if (float64_lt(a
, float64_half
, s
)) {
5174 /* range 0.25 <= a < 0.5 */
5176 /* a in units of 1/512 rounded down */
5177 /* q0 = (int)(a * 512.0); */
5178 q
= float64_mul(float64_512
, a
, s
);
5179 q_int
= float64_to_int64_round_to_zero(q
, s
);
5181 /* reciprocal root r */
5182 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
5183 q
= int64_to_float64(q_int
, s
);
5184 q
= float64_add(q
, float64_half
, s
);
5185 q
= float64_div(q
, float64_512
, s
);
5186 q
= float64_sqrt(q
, s
);
5187 q
= float64_div(float64_one
, q
, s
);
5189 /* range 0.5 <= a < 1.0 */
5191 /* a in units of 1/256 rounded down */
5192 /* q1 = (int)(a * 256.0); */
5193 q
= float64_mul(float64_256
, a
, s
);
5194 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
5196 /* reciprocal root r */
5197 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
5198 q
= int64_to_float64(q_int
, s
);
5199 q
= float64_add(q
, float64_half
, s
);
5200 q
= float64_div(q
, float64_256
, s
);
5201 q
= float64_sqrt(q
, s
);
5202 q
= float64_div(float64_one
, q
, s
);
5204 /* r in units of 1/256 rounded to nearest */
5205 /* s = (int)(256.0 * r + 0.5); */
5207 q
= float64_mul(q
, float64_256
,s
);
5208 q
= float64_add(q
, float64_half
, s
);
5209 q_int
= float64_to_int64_round_to_zero(q
, s
);
5211 /* return (double)s / 256.0;*/
5212 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
5215 float32
HELPER(rsqrte_f32
)(float32 input
, void *fpstp
)
5217 float_status
*s
= fpstp
;
5218 float32 f32
= float32_squash_input_denormal(input
, s
);
5219 uint32_t val
= float32_val(f32
);
5220 uint32_t f32_sbit
= 0x80000000 & val
;
5221 int32_t f32_exp
= extract32(val
, 23, 8);
5222 uint32_t f32_frac
= extract32(val
, 0, 23);
5228 if (float32_is_any_nan(f32
)) {
5230 if (float32_is_signaling_nan(f32
)) {
5231 float_raise(float_flag_invalid
, s
);
5232 nan
= float32_maybe_silence_nan(f32
);
5234 if (s
->default_nan_mode
) {
5235 nan
= float32_default_nan
;
5238 } else if (float32_is_zero(f32
)) {
5239 float_raise(float_flag_divbyzero
, s
);
5240 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
5241 } else if (float32_is_neg(f32
)) {
5242 float_raise(float_flag_invalid
, s
);
5243 return float32_default_nan
;
5244 } else if (float32_is_infinity(f32
)) {
5245 return float32_zero
;
5248 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
5249 * preserving the parity of the exponent. */
5251 f64_frac
= ((uint64_t) f32_frac
) << 29;
5253 while (extract64(f64_frac
, 51, 1) == 0) {
5254 f64_frac
= f64_frac
<< 1;
5255 f32_exp
= f32_exp
-1;
5257 f64_frac
= extract64(f64_frac
, 0, 51) << 1;
5260 if (extract64(f32_exp
, 0, 1) == 0) {
5261 f64
= make_float64(((uint64_t) f32_sbit
) << 32
5265 f64
= make_float64(((uint64_t) f32_sbit
) << 32
5270 result_exp
= (380 - f32_exp
) / 2;
5272 f64
= recip_sqrt_estimate(f64
, s
);
5274 val64
= float64_val(f64
);
5276 val
= ((result_exp
& 0xff) << 23)
5277 | ((val64
>> 29) & 0x7fffff);
5278 return make_float32(val
);
5281 float64
HELPER(rsqrte_f64
)(float64 input
, void *fpstp
)
5283 float_status
*s
= fpstp
;
5284 float64 f64
= float64_squash_input_denormal(input
, s
);
5285 uint64_t val
= float64_val(f64
);
5286 uint64_t f64_sbit
= 0x8000000000000000ULL
& val
;
5287 int64_t f64_exp
= extract64(val
, 52, 11);
5288 uint64_t f64_frac
= extract64(val
, 0, 52);
5290 uint64_t result_frac
;
5292 if (float64_is_any_nan(f64
)) {
5294 if (float64_is_signaling_nan(f64
)) {
5295 float_raise(float_flag_invalid
, s
);
5296 nan
= float64_maybe_silence_nan(f64
);
5298 if (s
->default_nan_mode
) {
5299 nan
= float64_default_nan
;
5302 } else if (float64_is_zero(f64
)) {
5303 float_raise(float_flag_divbyzero
, s
);
5304 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
5305 } else if (float64_is_neg(f64
)) {
5306 float_raise(float_flag_invalid
, s
);
5307 return float64_default_nan
;
5308 } else if (float64_is_infinity(f64
)) {
5309 return float64_zero
;
5312 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
5313 * preserving the parity of the exponent. */
5316 while (extract64(f64_frac
, 51, 1) == 0) {
5317 f64_frac
= f64_frac
<< 1;
5318 f64_exp
= f64_exp
- 1;
5320 f64_frac
= extract64(f64_frac
, 0, 51) << 1;
5323 if (extract64(f64_exp
, 0, 1) == 0) {
5324 f64
= make_float64(f64_sbit
5328 f64
= make_float64(f64_sbit
5333 result_exp
= (3068 - f64_exp
) / 2;
5335 f64
= recip_sqrt_estimate(f64
, s
);
5337 result_frac
= extract64(float64_val(f64
), 0, 52);
5339 return make_float64(f64_sbit
|
5340 ((result_exp
& 0x7ff) << 52) |
5344 uint32_t HELPER(recpe_u32
)(uint32_t a
, void *fpstp
)
5346 float_status
*s
= fpstp
;
5349 if ((a
& 0x80000000) == 0) {
5353 f64
= make_float64((0x3feULL
<< 52)
5354 | ((int64_t)(a
& 0x7fffffff) << 21));
5356 f64
= recip_estimate(f64
, s
);
5358 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
5361 uint32_t HELPER(rsqrte_u32
)(uint32_t a
, void *fpstp
)
5363 float_status
*fpst
= fpstp
;
5366 if ((a
& 0xc0000000) == 0) {
5370 if (a
& 0x80000000) {
5371 f64
= make_float64((0x3feULL
<< 52)
5372 | ((uint64_t)(a
& 0x7fffffff) << 21));
5373 } else { /* bits 31-30 == '01' */
5374 f64
= make_float64((0x3fdULL
<< 52)
5375 | ((uint64_t)(a
& 0x3fffffff) << 22));
5378 f64
= recip_sqrt_estimate(f64
, fpst
);
5380 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
5383 /* VFPv4 fused multiply-accumulate */
5384 float32
VFP_HELPER(muladd
, s
)(float32 a
, float32 b
, float32 c
, void *fpstp
)
5386 float_status
*fpst
= fpstp
;
5387 return float32_muladd(a
, b
, c
, 0, fpst
);
5390 float64
VFP_HELPER(muladd
, d
)(float64 a
, float64 b
, float64 c
, void *fpstp
)
5392 float_status
*fpst
= fpstp
;
5393 return float64_muladd(a
, b
, c
, 0, fpst
);
5396 /* ARMv8 round to integral */
5397 float32
HELPER(rints_exact
)(float32 x
, void *fp_status
)
5399 return float32_round_to_int(x
, fp_status
);
5402 float64
HELPER(rintd_exact
)(float64 x
, void *fp_status
)
5404 return float64_round_to_int(x
, fp_status
);
5407 float32
HELPER(rints
)(float32 x
, void *fp_status
)
5409 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
5412 ret
= float32_round_to_int(x
, fp_status
);
5414 /* Suppress any inexact exceptions the conversion produced */
5415 if (!(old_flags
& float_flag_inexact
)) {
5416 new_flags
= get_float_exception_flags(fp_status
);
5417 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
5423 float64
HELPER(rintd
)(float64 x
, void *fp_status
)
5425 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
5428 ret
= float64_round_to_int(x
, fp_status
);
5430 new_flags
= get_float_exception_flags(fp_status
);
5432 /* Suppress any inexact exceptions the conversion produced */
5433 if (!(old_flags
& float_flag_inexact
)) {
5434 new_flags
= get_float_exception_flags(fp_status
);
5435 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
5441 /* Convert ARM rounding mode to softfloat */
5442 int arm_rmode_to_sf(int rmode
)
5445 case FPROUNDING_TIEAWAY
:
5446 rmode
= float_round_ties_away
;
5448 case FPROUNDING_ODD
:
5449 /* FIXME: add support for TIEAWAY and ODD */
5450 qemu_log_mask(LOG_UNIMP
, "arm: unimplemented rounding mode: %d\n",
5452 case FPROUNDING_TIEEVEN
:
5454 rmode
= float_round_nearest_even
;
5456 case FPROUNDING_POSINF
:
5457 rmode
= float_round_up
;
5459 case FPROUNDING_NEGINF
:
5460 rmode
= float_round_down
;
5462 case FPROUNDING_ZERO
:
5463 rmode
= float_round_to_zero
;
5469 static void crc_init_buffer(uint8_t *buf
, uint32_t val
, uint32_t bytes
)
5474 buf
[0] = val
& 0xff;
5475 } else if (bytes
== 2) {
5476 buf
[0] = val
& 0xff;
5477 buf
[1] = (val
>> 8) & 0xff;
5479 buf
[0] = val
& 0xff;
5480 buf
[1] = (val
>> 8) & 0xff;
5481 buf
[2] = (val
>> 16) & 0xff;
5482 buf
[3] = (val
>> 24) & 0xff;
5486 uint32_t HELPER(crc32
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
5490 crc_init_buffer(buf
, val
, bytes
);
5492 /* zlib crc32 converts the accumulator and output to one's complement. */
5493 return crc32(acc
^ 0xffffffff, buf
, bytes
) ^ 0xffffffff;
5496 uint32_t HELPER(crc32c
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
5500 crc_init_buffer(buf
, val
, bytes
);
5502 /* Linux crc32c converts the output to one's complement. */
5503 return crc32c(acc
, buf
, bytes
) ^ 0xffffffff;