tcg/optimize: Split out fold_addsub2_i32
[qemu/ar7.git] / migration / rdma.c
blob2a3c7889b9f3a8d01b5af98346d2ed5f79f73ceb
1 /*
2 * RDMA protocol and interfaces
4 * Copyright IBM, Corp. 2010-2013
5 * Copyright Red Hat, Inc. 2015-2016
7 * Authors:
8 * Michael R. Hines <mrhines@us.ibm.com>
9 * Jiuxing Liu <jl@us.ibm.com>
10 * Daniel P. Berrange <berrange@redhat.com>
12 * This work is licensed under the terms of the GNU GPL, version 2 or
13 * later. See the COPYING file in the top-level directory.
17 #include "qemu/osdep.h"
18 #include "qapi/error.h"
19 #include "qemu/cutils.h"
20 #include "rdma.h"
21 #include "migration.h"
22 #include "qemu-file.h"
23 #include "ram.h"
24 #include "qemu-file-channel.h"
25 #include "qemu/error-report.h"
26 #include "qemu/main-loop.h"
27 #include "qemu/module.h"
28 #include "qemu/rcu.h"
29 #include "qemu/sockets.h"
30 #include "qemu/bitmap.h"
31 #include "qemu/coroutine.h"
32 #include "exec/memory.h"
33 #include <sys/socket.h>
34 #include <netdb.h>
35 #include <arpa/inet.h>
36 #include <rdma/rdma_cma.h>
37 #include "trace.h"
38 #include "qom/object.h"
39 #include <poll.h>
42 * Print and error on both the Monitor and the Log file.
44 #define ERROR(errp, fmt, ...) \
45 do { \
46 fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
47 if (errp && (*(errp) == NULL)) { \
48 error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
49 } \
50 } while (0)
52 #define RDMA_RESOLVE_TIMEOUT_MS 10000
54 /* Do not merge data if larger than this. */
55 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
56 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
58 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
61 * This is only for non-live state being migrated.
62 * Instead of RDMA_WRITE messages, we use RDMA_SEND
63 * messages for that state, which requires a different
64 * delivery design than main memory.
66 #define RDMA_SEND_INCREMENT 32768
69 * Maximum size infiniband SEND message
71 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
72 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
74 #define RDMA_CONTROL_VERSION_CURRENT 1
76 * Capabilities for negotiation.
78 #define RDMA_CAPABILITY_PIN_ALL 0x01
81 * Add the other flags above to this list of known capabilities
82 * as they are introduced.
84 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
86 #define CHECK_ERROR_STATE() \
87 do { \
88 if (rdma->error_state) { \
89 if (!rdma->error_reported) { \
90 error_report("RDMA is in an error state waiting migration" \
91 " to abort!"); \
92 rdma->error_reported = 1; \
93 } \
94 return rdma->error_state; \
95 } \
96 } while (0)
99 * A work request ID is 64-bits and we split up these bits
100 * into 3 parts:
102 * bits 0-15 : type of control message, 2^16
103 * bits 16-29: ram block index, 2^14
104 * bits 30-63: ram block chunk number, 2^34
106 * The last two bit ranges are only used for RDMA writes,
107 * in order to track their completion and potentially
108 * also track unregistration status of the message.
110 #define RDMA_WRID_TYPE_SHIFT 0UL
111 #define RDMA_WRID_BLOCK_SHIFT 16UL
112 #define RDMA_WRID_CHUNK_SHIFT 30UL
114 #define RDMA_WRID_TYPE_MASK \
115 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
117 #define RDMA_WRID_BLOCK_MASK \
118 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
120 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
123 * RDMA migration protocol:
124 * 1. RDMA Writes (data messages, i.e. RAM)
125 * 2. IB Send/Recv (control channel messages)
127 enum {
128 RDMA_WRID_NONE = 0,
129 RDMA_WRID_RDMA_WRITE = 1,
130 RDMA_WRID_SEND_CONTROL = 2000,
131 RDMA_WRID_RECV_CONTROL = 4000,
134 static const char *wrid_desc[] = {
135 [RDMA_WRID_NONE] = "NONE",
136 [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
137 [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
138 [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
142 * Work request IDs for IB SEND messages only (not RDMA writes).
143 * This is used by the migration protocol to transmit
144 * control messages (such as device state and registration commands)
146 * We could use more WRs, but we have enough for now.
148 enum {
149 RDMA_WRID_READY = 0,
150 RDMA_WRID_DATA,
151 RDMA_WRID_CONTROL,
152 RDMA_WRID_MAX,
156 * SEND/RECV IB Control Messages.
158 enum {
159 RDMA_CONTROL_NONE = 0,
160 RDMA_CONTROL_ERROR,
161 RDMA_CONTROL_READY, /* ready to receive */
162 RDMA_CONTROL_QEMU_FILE, /* QEMUFile-transmitted bytes */
163 RDMA_CONTROL_RAM_BLOCKS_REQUEST, /* RAMBlock synchronization */
164 RDMA_CONTROL_RAM_BLOCKS_RESULT, /* RAMBlock synchronization */
165 RDMA_CONTROL_COMPRESS, /* page contains repeat values */
166 RDMA_CONTROL_REGISTER_REQUEST, /* dynamic page registration */
167 RDMA_CONTROL_REGISTER_RESULT, /* key to use after registration */
168 RDMA_CONTROL_REGISTER_FINISHED, /* current iteration finished */
169 RDMA_CONTROL_UNREGISTER_REQUEST, /* dynamic UN-registration */
170 RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
175 * Memory and MR structures used to represent an IB Send/Recv work request.
176 * This is *not* used for RDMA writes, only IB Send/Recv.
178 typedef struct {
179 uint8_t control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
180 struct ibv_mr *control_mr; /* registration metadata */
181 size_t control_len; /* length of the message */
182 uint8_t *control_curr; /* start of unconsumed bytes */
183 } RDMAWorkRequestData;
186 * Negotiate RDMA capabilities during connection-setup time.
188 typedef struct {
189 uint32_t version;
190 uint32_t flags;
191 } RDMACapabilities;
193 static void caps_to_network(RDMACapabilities *cap)
195 cap->version = htonl(cap->version);
196 cap->flags = htonl(cap->flags);
199 static void network_to_caps(RDMACapabilities *cap)
201 cap->version = ntohl(cap->version);
202 cap->flags = ntohl(cap->flags);
206 * Representation of a RAMBlock from an RDMA perspective.
207 * This is not transmitted, only local.
208 * This and subsequent structures cannot be linked lists
209 * because we're using a single IB message to transmit
210 * the information. It's small anyway, so a list is overkill.
212 typedef struct RDMALocalBlock {
213 char *block_name;
214 uint8_t *local_host_addr; /* local virtual address */
215 uint64_t remote_host_addr; /* remote virtual address */
216 uint64_t offset;
217 uint64_t length;
218 struct ibv_mr **pmr; /* MRs for chunk-level registration */
219 struct ibv_mr *mr; /* MR for non-chunk-level registration */
220 uint32_t *remote_keys; /* rkeys for chunk-level registration */
221 uint32_t remote_rkey; /* rkeys for non-chunk-level registration */
222 int index; /* which block are we */
223 unsigned int src_index; /* (Only used on dest) */
224 bool is_ram_block;
225 int nb_chunks;
226 unsigned long *transit_bitmap;
227 unsigned long *unregister_bitmap;
228 } RDMALocalBlock;
231 * Also represents a RAMblock, but only on the dest.
232 * This gets transmitted by the dest during connection-time
233 * to the source VM and then is used to populate the
234 * corresponding RDMALocalBlock with
235 * the information needed to perform the actual RDMA.
237 typedef struct QEMU_PACKED RDMADestBlock {
238 uint64_t remote_host_addr;
239 uint64_t offset;
240 uint64_t length;
241 uint32_t remote_rkey;
242 uint32_t padding;
243 } RDMADestBlock;
245 static const char *control_desc(unsigned int rdma_control)
247 static const char *strs[] = {
248 [RDMA_CONTROL_NONE] = "NONE",
249 [RDMA_CONTROL_ERROR] = "ERROR",
250 [RDMA_CONTROL_READY] = "READY",
251 [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
252 [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
253 [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
254 [RDMA_CONTROL_COMPRESS] = "COMPRESS",
255 [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
256 [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
257 [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
258 [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
259 [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
262 if (rdma_control > RDMA_CONTROL_UNREGISTER_FINISHED) {
263 return "??BAD CONTROL VALUE??";
266 return strs[rdma_control];
269 static uint64_t htonll(uint64_t v)
271 union { uint32_t lv[2]; uint64_t llv; } u;
272 u.lv[0] = htonl(v >> 32);
273 u.lv[1] = htonl(v & 0xFFFFFFFFULL);
274 return u.llv;
277 static uint64_t ntohll(uint64_t v)
279 union { uint32_t lv[2]; uint64_t llv; } u;
280 u.llv = v;
281 return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
284 static void dest_block_to_network(RDMADestBlock *db)
286 db->remote_host_addr = htonll(db->remote_host_addr);
287 db->offset = htonll(db->offset);
288 db->length = htonll(db->length);
289 db->remote_rkey = htonl(db->remote_rkey);
292 static void network_to_dest_block(RDMADestBlock *db)
294 db->remote_host_addr = ntohll(db->remote_host_addr);
295 db->offset = ntohll(db->offset);
296 db->length = ntohll(db->length);
297 db->remote_rkey = ntohl(db->remote_rkey);
301 * Virtual address of the above structures used for transmitting
302 * the RAMBlock descriptions at connection-time.
303 * This structure is *not* transmitted.
305 typedef struct RDMALocalBlocks {
306 int nb_blocks;
307 bool init; /* main memory init complete */
308 RDMALocalBlock *block;
309 } RDMALocalBlocks;
312 * Main data structure for RDMA state.
313 * While there is only one copy of this structure being allocated right now,
314 * this is the place where one would start if you wanted to consider
315 * having more than one RDMA connection open at the same time.
317 typedef struct RDMAContext {
318 char *host;
319 int port;
320 char *host_port;
322 RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
325 * This is used by *_exchange_send() to figure out whether or not
326 * the initial "READY" message has already been received or not.
327 * This is because other functions may potentially poll() and detect
328 * the READY message before send() does, in which case we need to
329 * know if it completed.
331 int control_ready_expected;
333 /* number of outstanding writes */
334 int nb_sent;
336 /* store info about current buffer so that we can
337 merge it with future sends */
338 uint64_t current_addr;
339 uint64_t current_length;
340 /* index of ram block the current buffer belongs to */
341 int current_index;
342 /* index of the chunk in the current ram block */
343 int current_chunk;
345 bool pin_all;
348 * infiniband-specific variables for opening the device
349 * and maintaining connection state and so forth.
351 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
352 * cm_id->verbs, cm_id->channel, and cm_id->qp.
354 struct rdma_cm_id *cm_id; /* connection manager ID */
355 struct rdma_cm_id *listen_id;
356 bool connected;
358 struct ibv_context *verbs;
359 struct rdma_event_channel *channel;
360 struct ibv_qp *qp; /* queue pair */
361 struct ibv_comp_channel *comp_channel; /* completion channel */
362 struct ibv_pd *pd; /* protection domain */
363 struct ibv_cq *cq; /* completion queue */
366 * If a previous write failed (perhaps because of a failed
367 * memory registration, then do not attempt any future work
368 * and remember the error state.
370 int error_state;
371 int error_reported;
372 int received_error;
375 * Description of ram blocks used throughout the code.
377 RDMALocalBlocks local_ram_blocks;
378 RDMADestBlock *dest_blocks;
380 /* Index of the next RAMBlock received during block registration */
381 unsigned int next_src_index;
384 * Migration on *destination* started.
385 * Then use coroutine yield function.
386 * Source runs in a thread, so we don't care.
388 int migration_started_on_destination;
390 int total_registrations;
391 int total_writes;
393 int unregister_current, unregister_next;
394 uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
396 GHashTable *blockmap;
398 /* the RDMAContext for return path */
399 struct RDMAContext *return_path;
400 bool is_return_path;
401 } RDMAContext;
403 #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
404 OBJECT_DECLARE_SIMPLE_TYPE(QIOChannelRDMA, QIO_CHANNEL_RDMA)
408 struct QIOChannelRDMA {
409 QIOChannel parent;
410 RDMAContext *rdmain;
411 RDMAContext *rdmaout;
412 QEMUFile *file;
413 bool blocking; /* XXX we don't actually honour this yet */
417 * Main structure for IB Send/Recv control messages.
418 * This gets prepended at the beginning of every Send/Recv.
420 typedef struct QEMU_PACKED {
421 uint32_t len; /* Total length of data portion */
422 uint32_t type; /* which control command to perform */
423 uint32_t repeat; /* number of commands in data portion of same type */
424 uint32_t padding;
425 } RDMAControlHeader;
427 static void control_to_network(RDMAControlHeader *control)
429 control->type = htonl(control->type);
430 control->len = htonl(control->len);
431 control->repeat = htonl(control->repeat);
434 static void network_to_control(RDMAControlHeader *control)
436 control->type = ntohl(control->type);
437 control->len = ntohl(control->len);
438 control->repeat = ntohl(control->repeat);
442 * Register a single Chunk.
443 * Information sent by the source VM to inform the dest
444 * to register an single chunk of memory before we can perform
445 * the actual RDMA operation.
447 typedef struct QEMU_PACKED {
448 union QEMU_PACKED {
449 uint64_t current_addr; /* offset into the ram_addr_t space */
450 uint64_t chunk; /* chunk to lookup if unregistering */
451 } key;
452 uint32_t current_index; /* which ramblock the chunk belongs to */
453 uint32_t padding;
454 uint64_t chunks; /* how many sequential chunks to register */
455 } RDMARegister;
457 static void register_to_network(RDMAContext *rdma, RDMARegister *reg)
459 RDMALocalBlock *local_block;
460 local_block = &rdma->local_ram_blocks.block[reg->current_index];
462 if (local_block->is_ram_block) {
464 * current_addr as passed in is an address in the local ram_addr_t
465 * space, we need to translate this for the destination
467 reg->key.current_addr -= local_block->offset;
468 reg->key.current_addr += rdma->dest_blocks[reg->current_index].offset;
470 reg->key.current_addr = htonll(reg->key.current_addr);
471 reg->current_index = htonl(reg->current_index);
472 reg->chunks = htonll(reg->chunks);
475 static void network_to_register(RDMARegister *reg)
477 reg->key.current_addr = ntohll(reg->key.current_addr);
478 reg->current_index = ntohl(reg->current_index);
479 reg->chunks = ntohll(reg->chunks);
482 typedef struct QEMU_PACKED {
483 uint32_t value; /* if zero, we will madvise() */
484 uint32_t block_idx; /* which ram block index */
485 uint64_t offset; /* Address in remote ram_addr_t space */
486 uint64_t length; /* length of the chunk */
487 } RDMACompress;
489 static void compress_to_network(RDMAContext *rdma, RDMACompress *comp)
491 comp->value = htonl(comp->value);
493 * comp->offset as passed in is an address in the local ram_addr_t
494 * space, we need to translate this for the destination
496 comp->offset -= rdma->local_ram_blocks.block[comp->block_idx].offset;
497 comp->offset += rdma->dest_blocks[comp->block_idx].offset;
498 comp->block_idx = htonl(comp->block_idx);
499 comp->offset = htonll(comp->offset);
500 comp->length = htonll(comp->length);
503 static void network_to_compress(RDMACompress *comp)
505 comp->value = ntohl(comp->value);
506 comp->block_idx = ntohl(comp->block_idx);
507 comp->offset = ntohll(comp->offset);
508 comp->length = ntohll(comp->length);
512 * The result of the dest's memory registration produces an "rkey"
513 * which the source VM must reference in order to perform
514 * the RDMA operation.
516 typedef struct QEMU_PACKED {
517 uint32_t rkey;
518 uint32_t padding;
519 uint64_t host_addr;
520 } RDMARegisterResult;
522 static void result_to_network(RDMARegisterResult *result)
524 result->rkey = htonl(result->rkey);
525 result->host_addr = htonll(result->host_addr);
528 static void network_to_result(RDMARegisterResult *result)
530 result->rkey = ntohl(result->rkey);
531 result->host_addr = ntohll(result->host_addr);
534 const char *print_wrid(int wrid);
535 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
536 uint8_t *data, RDMAControlHeader *resp,
537 int *resp_idx,
538 int (*callback)(RDMAContext *rdma));
540 static inline uint64_t ram_chunk_index(const uint8_t *start,
541 const uint8_t *host)
543 return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
546 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
547 uint64_t i)
549 return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr +
550 (i << RDMA_REG_CHUNK_SHIFT));
553 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
554 uint64_t i)
556 uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
557 (1UL << RDMA_REG_CHUNK_SHIFT);
559 if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
560 result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
563 return result;
566 static int rdma_add_block(RDMAContext *rdma, const char *block_name,
567 void *host_addr,
568 ram_addr_t block_offset, uint64_t length)
570 RDMALocalBlocks *local = &rdma->local_ram_blocks;
571 RDMALocalBlock *block;
572 RDMALocalBlock *old = local->block;
574 local->block = g_new0(RDMALocalBlock, local->nb_blocks + 1);
576 if (local->nb_blocks) {
577 int x;
579 if (rdma->blockmap) {
580 for (x = 0; x < local->nb_blocks; x++) {
581 g_hash_table_remove(rdma->blockmap,
582 (void *)(uintptr_t)old[x].offset);
583 g_hash_table_insert(rdma->blockmap,
584 (void *)(uintptr_t)old[x].offset,
585 &local->block[x]);
588 memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
589 g_free(old);
592 block = &local->block[local->nb_blocks];
594 block->block_name = g_strdup(block_name);
595 block->local_host_addr = host_addr;
596 block->offset = block_offset;
597 block->length = length;
598 block->index = local->nb_blocks;
599 block->src_index = ~0U; /* Filled in by the receipt of the block list */
600 block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
601 block->transit_bitmap = bitmap_new(block->nb_chunks);
602 bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
603 block->unregister_bitmap = bitmap_new(block->nb_chunks);
604 bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
605 block->remote_keys = g_new0(uint32_t, block->nb_chunks);
607 block->is_ram_block = local->init ? false : true;
609 if (rdma->blockmap) {
610 g_hash_table_insert(rdma->blockmap, (void *)(uintptr_t)block_offset, block);
613 trace_rdma_add_block(block_name, local->nb_blocks,
614 (uintptr_t) block->local_host_addr,
615 block->offset, block->length,
616 (uintptr_t) (block->local_host_addr + block->length),
617 BITS_TO_LONGS(block->nb_chunks) *
618 sizeof(unsigned long) * 8,
619 block->nb_chunks);
621 local->nb_blocks++;
623 return 0;
627 * Memory regions need to be registered with the device and queue pairs setup
628 * in advanced before the migration starts. This tells us where the RAM blocks
629 * are so that we can register them individually.
631 static int qemu_rdma_init_one_block(RAMBlock *rb, void *opaque)
633 const char *block_name = qemu_ram_get_idstr(rb);
634 void *host_addr = qemu_ram_get_host_addr(rb);
635 ram_addr_t block_offset = qemu_ram_get_offset(rb);
636 ram_addr_t length = qemu_ram_get_used_length(rb);
637 return rdma_add_block(opaque, block_name, host_addr, block_offset, length);
641 * Identify the RAMBlocks and their quantity. They will be references to
642 * identify chunk boundaries inside each RAMBlock and also be referenced
643 * during dynamic page registration.
645 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
647 RDMALocalBlocks *local = &rdma->local_ram_blocks;
648 int ret;
650 assert(rdma->blockmap == NULL);
651 memset(local, 0, sizeof *local);
652 ret = foreach_not_ignored_block(qemu_rdma_init_one_block, rdma);
653 if (ret) {
654 return ret;
656 trace_qemu_rdma_init_ram_blocks(local->nb_blocks);
657 rdma->dest_blocks = g_new0(RDMADestBlock,
658 rdma->local_ram_blocks.nb_blocks);
659 local->init = true;
660 return 0;
664 * Note: If used outside of cleanup, the caller must ensure that the destination
665 * block structures are also updated
667 static int rdma_delete_block(RDMAContext *rdma, RDMALocalBlock *block)
669 RDMALocalBlocks *local = &rdma->local_ram_blocks;
670 RDMALocalBlock *old = local->block;
671 int x;
673 if (rdma->blockmap) {
674 g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)block->offset);
676 if (block->pmr) {
677 int j;
679 for (j = 0; j < block->nb_chunks; j++) {
680 if (!block->pmr[j]) {
681 continue;
683 ibv_dereg_mr(block->pmr[j]);
684 rdma->total_registrations--;
686 g_free(block->pmr);
687 block->pmr = NULL;
690 if (block->mr) {
691 ibv_dereg_mr(block->mr);
692 rdma->total_registrations--;
693 block->mr = NULL;
696 g_free(block->transit_bitmap);
697 block->transit_bitmap = NULL;
699 g_free(block->unregister_bitmap);
700 block->unregister_bitmap = NULL;
702 g_free(block->remote_keys);
703 block->remote_keys = NULL;
705 g_free(block->block_name);
706 block->block_name = NULL;
708 if (rdma->blockmap) {
709 for (x = 0; x < local->nb_blocks; x++) {
710 g_hash_table_remove(rdma->blockmap,
711 (void *)(uintptr_t)old[x].offset);
715 if (local->nb_blocks > 1) {
717 local->block = g_new0(RDMALocalBlock, local->nb_blocks - 1);
719 if (block->index) {
720 memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
723 if (block->index < (local->nb_blocks - 1)) {
724 memcpy(local->block + block->index, old + (block->index + 1),
725 sizeof(RDMALocalBlock) *
726 (local->nb_blocks - (block->index + 1)));
727 for (x = block->index; x < local->nb_blocks - 1; x++) {
728 local->block[x].index--;
731 } else {
732 assert(block == local->block);
733 local->block = NULL;
736 trace_rdma_delete_block(block, (uintptr_t)block->local_host_addr,
737 block->offset, block->length,
738 (uintptr_t)(block->local_host_addr + block->length),
739 BITS_TO_LONGS(block->nb_chunks) *
740 sizeof(unsigned long) * 8, block->nb_chunks);
742 g_free(old);
744 local->nb_blocks--;
746 if (local->nb_blocks && rdma->blockmap) {
747 for (x = 0; x < local->nb_blocks; x++) {
748 g_hash_table_insert(rdma->blockmap,
749 (void *)(uintptr_t)local->block[x].offset,
750 &local->block[x]);
754 return 0;
758 * Put in the log file which RDMA device was opened and the details
759 * associated with that device.
761 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
763 struct ibv_port_attr port;
765 if (ibv_query_port(verbs, 1, &port)) {
766 error_report("Failed to query port information");
767 return;
770 printf("%s RDMA Device opened: kernel name %s "
771 "uverbs device name %s, "
772 "infiniband_verbs class device path %s, "
773 "infiniband class device path %s, "
774 "transport: (%d) %s\n",
775 who,
776 verbs->device->name,
777 verbs->device->dev_name,
778 verbs->device->dev_path,
779 verbs->device->ibdev_path,
780 port.link_layer,
781 (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" :
782 ((port.link_layer == IBV_LINK_LAYER_ETHERNET)
783 ? "Ethernet" : "Unknown"));
787 * Put in the log file the RDMA gid addressing information,
788 * useful for folks who have trouble understanding the
789 * RDMA device hierarchy in the kernel.
791 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
793 char sgid[33];
794 char dgid[33];
795 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
796 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
797 trace_qemu_rdma_dump_gid(who, sgid, dgid);
801 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
802 * We will try the next addrinfo struct, and fail if there are
803 * no other valid addresses to bind against.
805 * If user is listening on '[::]', then we will not have a opened a device
806 * yet and have no way of verifying if the device is RoCE or not.
808 * In this case, the source VM will throw an error for ALL types of
809 * connections (both IPv4 and IPv6) if the destination machine does not have
810 * a regular infiniband network available for use.
812 * The only way to guarantee that an error is thrown for broken kernels is
813 * for the management software to choose a *specific* interface at bind time
814 * and validate what time of hardware it is.
816 * Unfortunately, this puts the user in a fix:
818 * If the source VM connects with an IPv4 address without knowing that the
819 * destination has bound to '[::]' the migration will unconditionally fail
820 * unless the management software is explicitly listening on the IPv4
821 * address while using a RoCE-based device.
823 * If the source VM connects with an IPv6 address, then we're OK because we can
824 * throw an error on the source (and similarly on the destination).
826 * But in mixed environments, this will be broken for a while until it is fixed
827 * inside linux.
829 * We do provide a *tiny* bit of help in this function: We can list all of the
830 * devices in the system and check to see if all the devices are RoCE or
831 * Infiniband.
833 * If we detect that we have a *pure* RoCE environment, then we can safely
834 * thrown an error even if the management software has specified '[::]' as the
835 * bind address.
837 * However, if there is are multiple hetergeneous devices, then we cannot make
838 * this assumption and the user just has to be sure they know what they are
839 * doing.
841 * Patches are being reviewed on linux-rdma.
843 static int qemu_rdma_broken_ipv6_kernel(struct ibv_context *verbs, Error **errp)
845 /* This bug only exists in linux, to our knowledge. */
846 #ifdef CONFIG_LINUX
847 struct ibv_port_attr port_attr;
850 * Verbs are only NULL if management has bound to '[::]'.
852 * Let's iterate through all the devices and see if there any pure IB
853 * devices (non-ethernet).
855 * If not, then we can safely proceed with the migration.
856 * Otherwise, there are no guarantees until the bug is fixed in linux.
858 if (!verbs) {
859 int num_devices, x;
860 struct ibv_device **dev_list = ibv_get_device_list(&num_devices);
861 bool roce_found = false;
862 bool ib_found = false;
864 for (x = 0; x < num_devices; x++) {
865 verbs = ibv_open_device(dev_list[x]);
866 if (!verbs) {
867 if (errno == EPERM) {
868 continue;
869 } else {
870 return -EINVAL;
874 if (ibv_query_port(verbs, 1, &port_attr)) {
875 ibv_close_device(verbs);
876 ERROR(errp, "Could not query initial IB port");
877 return -EINVAL;
880 if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
881 ib_found = true;
882 } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
883 roce_found = true;
886 ibv_close_device(verbs);
890 if (roce_found) {
891 if (ib_found) {
892 fprintf(stderr, "WARN: migrations may fail:"
893 " IPv6 over RoCE / iWARP in linux"
894 " is broken. But since you appear to have a"
895 " mixed RoCE / IB environment, be sure to only"
896 " migrate over the IB fabric until the kernel "
897 " fixes the bug.\n");
898 } else {
899 ERROR(errp, "You only have RoCE / iWARP devices in your systems"
900 " and your management software has specified '[::]'"
901 ", but IPv6 over RoCE / iWARP is not supported in Linux.");
902 return -ENONET;
906 return 0;
910 * If we have a verbs context, that means that some other than '[::]' was
911 * used by the management software for binding. In which case we can
912 * actually warn the user about a potentially broken kernel.
915 /* IB ports start with 1, not 0 */
916 if (ibv_query_port(verbs, 1, &port_attr)) {
917 ERROR(errp, "Could not query initial IB port");
918 return -EINVAL;
921 if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
922 ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 "
923 "(but patches on linux-rdma in progress)");
924 return -ENONET;
927 #endif
929 return 0;
933 * Figure out which RDMA device corresponds to the requested IP hostname
934 * Also create the initial connection manager identifiers for opening
935 * the connection.
937 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
939 int ret;
940 struct rdma_addrinfo *res;
941 char port_str[16];
942 struct rdma_cm_event *cm_event;
943 char ip[40] = "unknown";
944 struct rdma_addrinfo *e;
946 if (rdma->host == NULL || !strcmp(rdma->host, "")) {
947 ERROR(errp, "RDMA hostname has not been set");
948 return -EINVAL;
951 /* create CM channel */
952 rdma->channel = rdma_create_event_channel();
953 if (!rdma->channel) {
954 ERROR(errp, "could not create CM channel");
955 return -EINVAL;
958 /* create CM id */
959 ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
960 if (ret) {
961 ERROR(errp, "could not create channel id");
962 goto err_resolve_create_id;
965 snprintf(port_str, 16, "%d", rdma->port);
966 port_str[15] = '\0';
968 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
969 if (ret < 0) {
970 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
971 goto err_resolve_get_addr;
974 for (e = res; e != NULL; e = e->ai_next) {
975 inet_ntop(e->ai_family,
976 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
977 trace_qemu_rdma_resolve_host_trying(rdma->host, ip);
979 ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
980 RDMA_RESOLVE_TIMEOUT_MS);
981 if (!ret) {
982 if (e->ai_family == AF_INET6) {
983 ret = qemu_rdma_broken_ipv6_kernel(rdma->cm_id->verbs, errp);
984 if (ret) {
985 continue;
988 goto route;
992 rdma_freeaddrinfo(res);
993 ERROR(errp, "could not resolve address %s", rdma->host);
994 goto err_resolve_get_addr;
996 route:
997 rdma_freeaddrinfo(res);
998 qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
1000 ret = rdma_get_cm_event(rdma->channel, &cm_event);
1001 if (ret) {
1002 ERROR(errp, "could not perform event_addr_resolved");
1003 goto err_resolve_get_addr;
1006 if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
1007 ERROR(errp, "result not equal to event_addr_resolved %s",
1008 rdma_event_str(cm_event->event));
1009 error_report("rdma_resolve_addr");
1010 rdma_ack_cm_event(cm_event);
1011 ret = -EINVAL;
1012 goto err_resolve_get_addr;
1014 rdma_ack_cm_event(cm_event);
1016 /* resolve route */
1017 ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
1018 if (ret) {
1019 ERROR(errp, "could not resolve rdma route");
1020 goto err_resolve_get_addr;
1023 ret = rdma_get_cm_event(rdma->channel, &cm_event);
1024 if (ret) {
1025 ERROR(errp, "could not perform event_route_resolved");
1026 goto err_resolve_get_addr;
1028 if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
1029 ERROR(errp, "result not equal to event_route_resolved: %s",
1030 rdma_event_str(cm_event->event));
1031 rdma_ack_cm_event(cm_event);
1032 ret = -EINVAL;
1033 goto err_resolve_get_addr;
1035 rdma_ack_cm_event(cm_event);
1036 rdma->verbs = rdma->cm_id->verbs;
1037 qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
1038 qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
1039 return 0;
1041 err_resolve_get_addr:
1042 rdma_destroy_id(rdma->cm_id);
1043 rdma->cm_id = NULL;
1044 err_resolve_create_id:
1045 rdma_destroy_event_channel(rdma->channel);
1046 rdma->channel = NULL;
1047 return ret;
1051 * Create protection domain and completion queues
1053 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
1055 /* allocate pd */
1056 rdma->pd = ibv_alloc_pd(rdma->verbs);
1057 if (!rdma->pd) {
1058 error_report("failed to allocate protection domain");
1059 return -1;
1062 /* create completion channel */
1063 rdma->comp_channel = ibv_create_comp_channel(rdma->verbs);
1064 if (!rdma->comp_channel) {
1065 error_report("failed to allocate completion channel");
1066 goto err_alloc_pd_cq;
1070 * Completion queue can be filled by both read and write work requests,
1071 * so must reflect the sum of both possible queue sizes.
1073 rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1074 NULL, rdma->comp_channel, 0);
1075 if (!rdma->cq) {
1076 error_report("failed to allocate completion queue");
1077 goto err_alloc_pd_cq;
1080 return 0;
1082 err_alloc_pd_cq:
1083 if (rdma->pd) {
1084 ibv_dealloc_pd(rdma->pd);
1086 if (rdma->comp_channel) {
1087 ibv_destroy_comp_channel(rdma->comp_channel);
1089 rdma->pd = NULL;
1090 rdma->comp_channel = NULL;
1091 return -1;
1096 * Create queue pairs.
1098 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1100 struct ibv_qp_init_attr attr = { 0 };
1101 int ret;
1103 attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1104 attr.cap.max_recv_wr = 3;
1105 attr.cap.max_send_sge = 1;
1106 attr.cap.max_recv_sge = 1;
1107 attr.send_cq = rdma->cq;
1108 attr.recv_cq = rdma->cq;
1109 attr.qp_type = IBV_QPT_RC;
1111 ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
1112 if (ret) {
1113 return -1;
1116 rdma->qp = rdma->cm_id->qp;
1117 return 0;
1120 /* Check whether On-Demand Paging is supported by RDAM device */
1121 static bool rdma_support_odp(struct ibv_context *dev)
1123 struct ibv_device_attr_ex attr = {0};
1124 int ret = ibv_query_device_ex(dev, NULL, &attr);
1125 if (ret) {
1126 return false;
1129 if (attr.odp_caps.general_caps & IBV_ODP_SUPPORT) {
1130 return true;
1133 return false;
1137 * ibv_advise_mr to avoid RNR NAK error as far as possible.
1138 * The responder mr registering with ODP will sent RNR NAK back to
1139 * the requester in the face of the page fault.
1141 static void qemu_rdma_advise_prefetch_mr(struct ibv_pd *pd, uint64_t addr,
1142 uint32_t len, uint32_t lkey,
1143 const char *name, bool wr)
1145 #ifdef HAVE_IBV_ADVISE_MR
1146 int ret;
1147 int advice = wr ? IBV_ADVISE_MR_ADVICE_PREFETCH_WRITE :
1148 IBV_ADVISE_MR_ADVICE_PREFETCH;
1149 struct ibv_sge sg_list = {.lkey = lkey, .addr = addr, .length = len};
1151 ret = ibv_advise_mr(pd, advice,
1152 IBV_ADVISE_MR_FLAG_FLUSH, &sg_list, 1);
1153 /* ignore the error */
1154 if (ret) {
1155 trace_qemu_rdma_advise_mr(name, len, addr, strerror(errno));
1156 } else {
1157 trace_qemu_rdma_advise_mr(name, len, addr, "successed");
1159 #endif
1162 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
1164 int i;
1165 RDMALocalBlocks *local = &rdma->local_ram_blocks;
1167 for (i = 0; i < local->nb_blocks; i++) {
1168 int access = IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE;
1170 local->block[i].mr =
1171 ibv_reg_mr(rdma->pd,
1172 local->block[i].local_host_addr,
1173 local->block[i].length, access
1176 if (!local->block[i].mr &&
1177 errno == ENOTSUP && rdma_support_odp(rdma->verbs)) {
1178 access |= IBV_ACCESS_ON_DEMAND;
1179 /* register ODP mr */
1180 local->block[i].mr =
1181 ibv_reg_mr(rdma->pd,
1182 local->block[i].local_host_addr,
1183 local->block[i].length, access);
1184 trace_qemu_rdma_register_odp_mr(local->block[i].block_name);
1186 if (local->block[i].mr) {
1187 qemu_rdma_advise_prefetch_mr(rdma->pd,
1188 (uintptr_t)local->block[i].local_host_addr,
1189 local->block[i].length,
1190 local->block[i].mr->lkey,
1191 local->block[i].block_name,
1192 true);
1196 if (!local->block[i].mr) {
1197 perror("Failed to register local dest ram block!");
1198 break;
1200 rdma->total_registrations++;
1203 if (i >= local->nb_blocks) {
1204 return 0;
1207 for (i--; i >= 0; i--) {
1208 ibv_dereg_mr(local->block[i].mr);
1209 local->block[i].mr = NULL;
1210 rdma->total_registrations--;
1213 return -1;
1218 * Find the ram block that corresponds to the page requested to be
1219 * transmitted by QEMU.
1221 * Once the block is found, also identify which 'chunk' within that
1222 * block that the page belongs to.
1224 * This search cannot fail or the migration will fail.
1226 static int qemu_rdma_search_ram_block(RDMAContext *rdma,
1227 uintptr_t block_offset,
1228 uint64_t offset,
1229 uint64_t length,
1230 uint64_t *block_index,
1231 uint64_t *chunk_index)
1233 uint64_t current_addr = block_offset + offset;
1234 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1235 (void *) block_offset);
1236 assert(block);
1237 assert(current_addr >= block->offset);
1238 assert((current_addr + length) <= (block->offset + block->length));
1240 *block_index = block->index;
1241 *chunk_index = ram_chunk_index(block->local_host_addr,
1242 block->local_host_addr + (current_addr - block->offset));
1244 return 0;
1248 * Register a chunk with IB. If the chunk was already registered
1249 * previously, then skip.
1251 * Also return the keys associated with the registration needed
1252 * to perform the actual RDMA operation.
1254 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1255 RDMALocalBlock *block, uintptr_t host_addr,
1256 uint32_t *lkey, uint32_t *rkey, int chunk,
1257 uint8_t *chunk_start, uint8_t *chunk_end)
1259 if (block->mr) {
1260 if (lkey) {
1261 *lkey = block->mr->lkey;
1263 if (rkey) {
1264 *rkey = block->mr->rkey;
1266 return 0;
1269 /* allocate memory to store chunk MRs */
1270 if (!block->pmr) {
1271 block->pmr = g_new0(struct ibv_mr *, block->nb_chunks);
1275 * If 'rkey', then we're the destination, so grant access to the source.
1277 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1279 if (!block->pmr[chunk]) {
1280 uint64_t len = chunk_end - chunk_start;
1281 int access = rkey ? IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE :
1284 trace_qemu_rdma_register_and_get_keys(len, chunk_start);
1286 block->pmr[chunk] = ibv_reg_mr(rdma->pd, chunk_start, len, access);
1287 if (!block->pmr[chunk] &&
1288 errno == ENOTSUP && rdma_support_odp(rdma->verbs)) {
1289 access |= IBV_ACCESS_ON_DEMAND;
1290 /* register ODP mr */
1291 block->pmr[chunk] = ibv_reg_mr(rdma->pd, chunk_start, len, access);
1292 trace_qemu_rdma_register_odp_mr(block->block_name);
1294 if (block->pmr[chunk]) {
1295 qemu_rdma_advise_prefetch_mr(rdma->pd, (uintptr_t)chunk_start,
1296 len, block->pmr[chunk]->lkey,
1297 block->block_name, rkey);
1302 if (!block->pmr[chunk]) {
1303 perror("Failed to register chunk!");
1304 fprintf(stderr, "Chunk details: block: %d chunk index %d"
1305 " start %" PRIuPTR " end %" PRIuPTR
1306 " host %" PRIuPTR
1307 " local %" PRIuPTR " registrations: %d\n",
1308 block->index, chunk, (uintptr_t)chunk_start,
1309 (uintptr_t)chunk_end, host_addr,
1310 (uintptr_t)block->local_host_addr,
1311 rdma->total_registrations);
1312 return -1;
1314 rdma->total_registrations++;
1316 if (lkey) {
1317 *lkey = block->pmr[chunk]->lkey;
1319 if (rkey) {
1320 *rkey = block->pmr[chunk]->rkey;
1322 return 0;
1326 * Register (at connection time) the memory used for control
1327 * channel messages.
1329 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1331 rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1332 rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1333 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1334 if (rdma->wr_data[idx].control_mr) {
1335 rdma->total_registrations++;
1336 return 0;
1338 error_report("qemu_rdma_reg_control failed");
1339 return -1;
1342 const char *print_wrid(int wrid)
1344 if (wrid >= RDMA_WRID_RECV_CONTROL) {
1345 return wrid_desc[RDMA_WRID_RECV_CONTROL];
1347 return wrid_desc[wrid];
1351 * RDMA requires memory registration (mlock/pinning), but this is not good for
1352 * overcommitment.
1354 * In preparation for the future where LRU information or workload-specific
1355 * writable writable working set memory access behavior is available to QEMU
1356 * it would be nice to have in place the ability to UN-register/UN-pin
1357 * particular memory regions from the RDMA hardware when it is determine that
1358 * those regions of memory will likely not be accessed again in the near future.
1360 * While we do not yet have such information right now, the following
1361 * compile-time option allows us to perform a non-optimized version of this
1362 * behavior.
1364 * By uncommenting this option, you will cause *all* RDMA transfers to be
1365 * unregistered immediately after the transfer completes on both sides of the
1366 * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1368 * This will have a terrible impact on migration performance, so until future
1369 * workload information or LRU information is available, do not attempt to use
1370 * this feature except for basic testing.
1372 /* #define RDMA_UNREGISTRATION_EXAMPLE */
1375 * Perform a non-optimized memory unregistration after every transfer
1376 * for demonstration purposes, only if pin-all is not requested.
1378 * Potential optimizations:
1379 * 1. Start a new thread to run this function continuously
1380 - for bit clearing
1381 - and for receipt of unregister messages
1382 * 2. Use an LRU.
1383 * 3. Use workload hints.
1385 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1387 while (rdma->unregistrations[rdma->unregister_current]) {
1388 int ret;
1389 uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1390 uint64_t chunk =
1391 (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1392 uint64_t index =
1393 (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1394 RDMALocalBlock *block =
1395 &(rdma->local_ram_blocks.block[index]);
1396 RDMARegister reg = { .current_index = index };
1397 RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1399 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1400 .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1401 .repeat = 1,
1404 trace_qemu_rdma_unregister_waiting_proc(chunk,
1405 rdma->unregister_current);
1407 rdma->unregistrations[rdma->unregister_current] = 0;
1408 rdma->unregister_current++;
1410 if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1411 rdma->unregister_current = 0;
1416 * Unregistration is speculative (because migration is single-threaded
1417 * and we cannot break the protocol's inifinband message ordering).
1418 * Thus, if the memory is currently being used for transmission,
1419 * then abort the attempt to unregister and try again
1420 * later the next time a completion is received for this memory.
1422 clear_bit(chunk, block->unregister_bitmap);
1424 if (test_bit(chunk, block->transit_bitmap)) {
1425 trace_qemu_rdma_unregister_waiting_inflight(chunk);
1426 continue;
1429 trace_qemu_rdma_unregister_waiting_send(chunk);
1431 ret = ibv_dereg_mr(block->pmr[chunk]);
1432 block->pmr[chunk] = NULL;
1433 block->remote_keys[chunk] = 0;
1435 if (ret != 0) {
1436 perror("unregistration chunk failed");
1437 return -ret;
1439 rdma->total_registrations--;
1441 reg.key.chunk = chunk;
1442 register_to_network(rdma, &reg);
1443 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1444 &resp, NULL, NULL);
1445 if (ret < 0) {
1446 return ret;
1449 trace_qemu_rdma_unregister_waiting_complete(chunk);
1452 return 0;
1455 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1456 uint64_t chunk)
1458 uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1460 result |= (index << RDMA_WRID_BLOCK_SHIFT);
1461 result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1463 return result;
1467 * Set bit for unregistration in the next iteration.
1468 * We cannot transmit right here, but will unpin later.
1470 static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index,
1471 uint64_t chunk, uint64_t wr_id)
1473 if (rdma->unregistrations[rdma->unregister_next] != 0) {
1474 error_report("rdma migration: queue is full");
1475 } else {
1476 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1478 if (!test_and_set_bit(chunk, block->unregister_bitmap)) {
1479 trace_qemu_rdma_signal_unregister_append(chunk,
1480 rdma->unregister_next);
1482 rdma->unregistrations[rdma->unregister_next++] =
1483 qemu_rdma_make_wrid(wr_id, index, chunk);
1485 if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) {
1486 rdma->unregister_next = 0;
1488 } else {
1489 trace_qemu_rdma_signal_unregister_already(chunk);
1495 * Consult the connection manager to see a work request
1496 * (of any kind) has completed.
1497 * Return the work request ID that completed.
1499 static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out,
1500 uint32_t *byte_len)
1502 int ret;
1503 struct ibv_wc wc;
1504 uint64_t wr_id;
1506 ret = ibv_poll_cq(rdma->cq, 1, &wc);
1508 if (!ret) {
1509 *wr_id_out = RDMA_WRID_NONE;
1510 return 0;
1513 if (ret < 0) {
1514 error_report("ibv_poll_cq return %d", ret);
1515 return ret;
1518 wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1520 if (wc.status != IBV_WC_SUCCESS) {
1521 fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1522 wc.status, ibv_wc_status_str(wc.status));
1523 fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1525 return -1;
1528 if (rdma->control_ready_expected &&
1529 (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1530 trace_qemu_rdma_poll_recv(wrid_desc[RDMA_WRID_RECV_CONTROL],
1531 wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1532 rdma->control_ready_expected = 0;
1535 if (wr_id == RDMA_WRID_RDMA_WRITE) {
1536 uint64_t chunk =
1537 (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1538 uint64_t index =
1539 (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1540 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1542 trace_qemu_rdma_poll_write(print_wrid(wr_id), wr_id, rdma->nb_sent,
1543 index, chunk, block->local_host_addr,
1544 (void *)(uintptr_t)block->remote_host_addr);
1546 clear_bit(chunk, block->transit_bitmap);
1548 if (rdma->nb_sent > 0) {
1549 rdma->nb_sent--;
1552 if (!rdma->pin_all) {
1554 * FYI: If one wanted to signal a specific chunk to be unregistered
1555 * using LRU or workload-specific information, this is the function
1556 * you would call to do so. That chunk would then get asynchronously
1557 * unregistered later.
1559 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1560 qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id);
1561 #endif
1563 } else {
1564 trace_qemu_rdma_poll_other(print_wrid(wr_id), wr_id, rdma->nb_sent);
1567 *wr_id_out = wc.wr_id;
1568 if (byte_len) {
1569 *byte_len = wc.byte_len;
1572 return 0;
1575 /* Wait for activity on the completion channel.
1576 * Returns 0 on success, none-0 on error.
1578 static int qemu_rdma_wait_comp_channel(RDMAContext *rdma)
1580 struct rdma_cm_event *cm_event;
1581 int ret = -1;
1584 * Coroutine doesn't start until migration_fd_process_incoming()
1585 * so don't yield unless we know we're running inside of a coroutine.
1587 if (rdma->migration_started_on_destination &&
1588 migration_incoming_get_current()->state == MIGRATION_STATUS_ACTIVE) {
1589 yield_until_fd_readable(rdma->comp_channel->fd);
1590 } else {
1591 /* This is the source side, we're in a separate thread
1592 * or destination prior to migration_fd_process_incoming()
1593 * after postcopy, the destination also in a separate thread.
1594 * we can't yield; so we have to poll the fd.
1595 * But we need to be able to handle 'cancel' or an error
1596 * without hanging forever.
1598 while (!rdma->error_state && !rdma->received_error) {
1599 GPollFD pfds[2];
1600 pfds[0].fd = rdma->comp_channel->fd;
1601 pfds[0].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1602 pfds[0].revents = 0;
1604 pfds[1].fd = rdma->channel->fd;
1605 pfds[1].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1606 pfds[1].revents = 0;
1608 /* 0.1s timeout, should be fine for a 'cancel' */
1609 switch (qemu_poll_ns(pfds, 2, 100 * 1000 * 1000)) {
1610 case 2:
1611 case 1: /* fd active */
1612 if (pfds[0].revents) {
1613 return 0;
1616 if (pfds[1].revents) {
1617 ret = rdma_get_cm_event(rdma->channel, &cm_event);
1618 if (ret) {
1619 error_report("failed to get cm event while wait "
1620 "completion channel");
1621 return -EPIPE;
1624 error_report("receive cm event while wait comp channel,"
1625 "cm event is %d", cm_event->event);
1626 if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
1627 cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
1628 rdma_ack_cm_event(cm_event);
1629 return -EPIPE;
1631 rdma_ack_cm_event(cm_event);
1633 break;
1635 case 0: /* Timeout, go around again */
1636 break;
1638 default: /* Error of some type -
1639 * I don't trust errno from qemu_poll_ns
1641 error_report("%s: poll failed", __func__);
1642 return -EPIPE;
1645 if (migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) {
1646 /* Bail out and let the cancellation happen */
1647 return -EPIPE;
1652 if (rdma->received_error) {
1653 return -EPIPE;
1655 return rdma->error_state;
1659 * Block until the next work request has completed.
1661 * First poll to see if a work request has already completed,
1662 * otherwise block.
1664 * If we encounter completed work requests for IDs other than
1665 * the one we're interested in, then that's generally an error.
1667 * The only exception is actual RDMA Write completions. These
1668 * completions only need to be recorded, but do not actually
1669 * need further processing.
1671 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested,
1672 uint32_t *byte_len)
1674 int num_cq_events = 0, ret = 0;
1675 struct ibv_cq *cq;
1676 void *cq_ctx;
1677 uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1679 if (ibv_req_notify_cq(rdma->cq, 0)) {
1680 return -1;
1682 /* poll cq first */
1683 while (wr_id != wrid_requested) {
1684 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1685 if (ret < 0) {
1686 return ret;
1689 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1691 if (wr_id == RDMA_WRID_NONE) {
1692 break;
1694 if (wr_id != wrid_requested) {
1695 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1696 wrid_requested, print_wrid(wr_id), wr_id);
1700 if (wr_id == wrid_requested) {
1701 return 0;
1704 while (1) {
1705 ret = qemu_rdma_wait_comp_channel(rdma);
1706 if (ret) {
1707 goto err_block_for_wrid;
1710 ret = ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx);
1711 if (ret) {
1712 perror("ibv_get_cq_event");
1713 goto err_block_for_wrid;
1716 num_cq_events++;
1718 ret = -ibv_req_notify_cq(cq, 0);
1719 if (ret) {
1720 goto err_block_for_wrid;
1723 while (wr_id != wrid_requested) {
1724 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1725 if (ret < 0) {
1726 goto err_block_for_wrid;
1729 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1731 if (wr_id == RDMA_WRID_NONE) {
1732 break;
1734 if (wr_id != wrid_requested) {
1735 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1736 wrid_requested, print_wrid(wr_id), wr_id);
1740 if (wr_id == wrid_requested) {
1741 goto success_block_for_wrid;
1745 success_block_for_wrid:
1746 if (num_cq_events) {
1747 ibv_ack_cq_events(cq, num_cq_events);
1749 return 0;
1751 err_block_for_wrid:
1752 if (num_cq_events) {
1753 ibv_ack_cq_events(cq, num_cq_events);
1756 rdma->error_state = ret;
1757 return ret;
1761 * Post a SEND message work request for the control channel
1762 * containing some data and block until the post completes.
1764 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1765 RDMAControlHeader *head)
1767 int ret = 0;
1768 RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1769 struct ibv_send_wr *bad_wr;
1770 struct ibv_sge sge = {
1771 .addr = (uintptr_t)(wr->control),
1772 .length = head->len + sizeof(RDMAControlHeader),
1773 .lkey = wr->control_mr->lkey,
1775 struct ibv_send_wr send_wr = {
1776 .wr_id = RDMA_WRID_SEND_CONTROL,
1777 .opcode = IBV_WR_SEND,
1778 .send_flags = IBV_SEND_SIGNALED,
1779 .sg_list = &sge,
1780 .num_sge = 1,
1783 trace_qemu_rdma_post_send_control(control_desc(head->type));
1786 * We don't actually need to do a memcpy() in here if we used
1787 * the "sge" properly, but since we're only sending control messages
1788 * (not RAM in a performance-critical path), then its OK for now.
1790 * The copy makes the RDMAControlHeader simpler to manipulate
1791 * for the time being.
1793 assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1794 memcpy(wr->control, head, sizeof(RDMAControlHeader));
1795 control_to_network((void *) wr->control);
1797 if (buf) {
1798 memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1802 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1804 if (ret > 0) {
1805 error_report("Failed to use post IB SEND for control");
1806 return -ret;
1809 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1810 if (ret < 0) {
1811 error_report("rdma migration: send polling control error");
1814 return ret;
1818 * Post a RECV work request in anticipation of some future receipt
1819 * of data on the control channel.
1821 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1823 struct ibv_recv_wr *bad_wr;
1824 struct ibv_sge sge = {
1825 .addr = (uintptr_t)(rdma->wr_data[idx].control),
1826 .length = RDMA_CONTROL_MAX_BUFFER,
1827 .lkey = rdma->wr_data[idx].control_mr->lkey,
1830 struct ibv_recv_wr recv_wr = {
1831 .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1832 .sg_list = &sge,
1833 .num_sge = 1,
1837 if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1838 return -1;
1841 return 0;
1845 * Block and wait for a RECV control channel message to arrive.
1847 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1848 RDMAControlHeader *head, int expecting, int idx)
1850 uint32_t byte_len;
1851 int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1852 &byte_len);
1854 if (ret < 0) {
1855 error_report("rdma migration: recv polling control error!");
1856 return ret;
1859 network_to_control((void *) rdma->wr_data[idx].control);
1860 memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1862 trace_qemu_rdma_exchange_get_response_start(control_desc(expecting));
1864 if (expecting == RDMA_CONTROL_NONE) {
1865 trace_qemu_rdma_exchange_get_response_none(control_desc(head->type),
1866 head->type);
1867 } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1868 error_report("Was expecting a %s (%d) control message"
1869 ", but got: %s (%d), length: %d",
1870 control_desc(expecting), expecting,
1871 control_desc(head->type), head->type, head->len);
1872 if (head->type == RDMA_CONTROL_ERROR) {
1873 rdma->received_error = true;
1875 return -EIO;
1877 if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1878 error_report("too long length: %d", head->len);
1879 return -EINVAL;
1881 if (sizeof(*head) + head->len != byte_len) {
1882 error_report("Malformed length: %d byte_len %d", head->len, byte_len);
1883 return -EINVAL;
1886 return 0;
1890 * When a RECV work request has completed, the work request's
1891 * buffer is pointed at the header.
1893 * This will advance the pointer to the data portion
1894 * of the control message of the work request's buffer that
1895 * was populated after the work request finished.
1897 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1898 RDMAControlHeader *head)
1900 rdma->wr_data[idx].control_len = head->len;
1901 rdma->wr_data[idx].control_curr =
1902 rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1906 * This is an 'atomic' high-level operation to deliver a single, unified
1907 * control-channel message.
1909 * Additionally, if the user is expecting some kind of reply to this message,
1910 * they can request a 'resp' response message be filled in by posting an
1911 * additional work request on behalf of the user and waiting for an additional
1912 * completion.
1914 * The extra (optional) response is used during registration to us from having
1915 * to perform an *additional* exchange of message just to provide a response by
1916 * instead piggy-backing on the acknowledgement.
1918 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1919 uint8_t *data, RDMAControlHeader *resp,
1920 int *resp_idx,
1921 int (*callback)(RDMAContext *rdma))
1923 int ret = 0;
1926 * Wait until the dest is ready before attempting to deliver the message
1927 * by waiting for a READY message.
1929 if (rdma->control_ready_expected) {
1930 RDMAControlHeader resp;
1931 ret = qemu_rdma_exchange_get_response(rdma,
1932 &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
1933 if (ret < 0) {
1934 return ret;
1939 * If the user is expecting a response, post a WR in anticipation of it.
1941 if (resp) {
1942 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1943 if (ret) {
1944 error_report("rdma migration: error posting"
1945 " extra control recv for anticipated result!");
1946 return ret;
1951 * Post a WR to replace the one we just consumed for the READY message.
1953 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1954 if (ret) {
1955 error_report("rdma migration: error posting first control recv!");
1956 return ret;
1960 * Deliver the control message that was requested.
1962 ret = qemu_rdma_post_send_control(rdma, data, head);
1964 if (ret < 0) {
1965 error_report("Failed to send control buffer!");
1966 return ret;
1970 * If we're expecting a response, block and wait for it.
1972 if (resp) {
1973 if (callback) {
1974 trace_qemu_rdma_exchange_send_issue_callback();
1975 ret = callback(rdma);
1976 if (ret < 0) {
1977 return ret;
1981 trace_qemu_rdma_exchange_send_waiting(control_desc(resp->type));
1982 ret = qemu_rdma_exchange_get_response(rdma, resp,
1983 resp->type, RDMA_WRID_DATA);
1985 if (ret < 0) {
1986 return ret;
1989 qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1990 if (resp_idx) {
1991 *resp_idx = RDMA_WRID_DATA;
1993 trace_qemu_rdma_exchange_send_received(control_desc(resp->type));
1996 rdma->control_ready_expected = 1;
1998 return 0;
2002 * This is an 'atomic' high-level operation to receive a single, unified
2003 * control-channel message.
2005 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
2006 int expecting)
2008 RDMAControlHeader ready = {
2009 .len = 0,
2010 .type = RDMA_CONTROL_READY,
2011 .repeat = 1,
2013 int ret;
2016 * Inform the source that we're ready to receive a message.
2018 ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
2020 if (ret < 0) {
2021 error_report("Failed to send control buffer!");
2022 return ret;
2026 * Block and wait for the message.
2028 ret = qemu_rdma_exchange_get_response(rdma, head,
2029 expecting, RDMA_WRID_READY);
2031 if (ret < 0) {
2032 return ret;
2035 qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
2038 * Post a new RECV work request to replace the one we just consumed.
2040 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2041 if (ret) {
2042 error_report("rdma migration: error posting second control recv!");
2043 return ret;
2046 return 0;
2050 * Write an actual chunk of memory using RDMA.
2052 * If we're using dynamic registration on the dest-side, we have to
2053 * send a registration command first.
2055 static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
2056 int current_index, uint64_t current_addr,
2057 uint64_t length)
2059 struct ibv_sge sge;
2060 struct ibv_send_wr send_wr = { 0 };
2061 struct ibv_send_wr *bad_wr;
2062 int reg_result_idx, ret, count = 0;
2063 uint64_t chunk, chunks;
2064 uint8_t *chunk_start, *chunk_end;
2065 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
2066 RDMARegister reg;
2067 RDMARegisterResult *reg_result;
2068 RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
2069 RDMAControlHeader head = { .len = sizeof(RDMARegister),
2070 .type = RDMA_CONTROL_REGISTER_REQUEST,
2071 .repeat = 1,
2074 retry:
2075 sge.addr = (uintptr_t)(block->local_host_addr +
2076 (current_addr - block->offset));
2077 sge.length = length;
2079 chunk = ram_chunk_index(block->local_host_addr,
2080 (uint8_t *)(uintptr_t)sge.addr);
2081 chunk_start = ram_chunk_start(block, chunk);
2083 if (block->is_ram_block) {
2084 chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
2086 if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2087 chunks--;
2089 } else {
2090 chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
2092 if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2093 chunks--;
2097 trace_qemu_rdma_write_one_top(chunks + 1,
2098 (chunks + 1) *
2099 (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
2101 chunk_end = ram_chunk_end(block, chunk + chunks);
2103 if (!rdma->pin_all) {
2104 #ifdef RDMA_UNREGISTRATION_EXAMPLE
2105 qemu_rdma_unregister_waiting(rdma);
2106 #endif
2109 while (test_bit(chunk, block->transit_bitmap)) {
2110 (void)count;
2111 trace_qemu_rdma_write_one_block(count++, current_index, chunk,
2112 sge.addr, length, rdma->nb_sent, block->nb_chunks);
2114 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2116 if (ret < 0) {
2117 error_report("Failed to Wait for previous write to complete "
2118 "block %d chunk %" PRIu64
2119 " current %" PRIu64 " len %" PRIu64 " %d",
2120 current_index, chunk, sge.addr, length, rdma->nb_sent);
2121 return ret;
2125 if (!rdma->pin_all || !block->is_ram_block) {
2126 if (!block->remote_keys[chunk]) {
2128 * This chunk has not yet been registered, so first check to see
2129 * if the entire chunk is zero. If so, tell the other size to
2130 * memset() + madvise() the entire chunk without RDMA.
2133 if (buffer_is_zero((void *)(uintptr_t)sge.addr, length)) {
2134 RDMACompress comp = {
2135 .offset = current_addr,
2136 .value = 0,
2137 .block_idx = current_index,
2138 .length = length,
2141 head.len = sizeof(comp);
2142 head.type = RDMA_CONTROL_COMPRESS;
2144 trace_qemu_rdma_write_one_zero(chunk, sge.length,
2145 current_index, current_addr);
2147 compress_to_network(rdma, &comp);
2148 ret = qemu_rdma_exchange_send(rdma, &head,
2149 (uint8_t *) &comp, NULL, NULL, NULL);
2151 if (ret < 0) {
2152 return -EIO;
2155 acct_update_position(f, sge.length, true);
2157 return 1;
2161 * Otherwise, tell other side to register.
2163 reg.current_index = current_index;
2164 if (block->is_ram_block) {
2165 reg.key.current_addr = current_addr;
2166 } else {
2167 reg.key.chunk = chunk;
2169 reg.chunks = chunks;
2171 trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index,
2172 current_addr);
2174 register_to_network(rdma, &reg);
2175 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
2176 &resp, &reg_result_idx, NULL);
2177 if (ret < 0) {
2178 return ret;
2181 /* try to overlap this single registration with the one we sent. */
2182 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2183 &sge.lkey, NULL, chunk,
2184 chunk_start, chunk_end)) {
2185 error_report("cannot get lkey");
2186 return -EINVAL;
2189 reg_result = (RDMARegisterResult *)
2190 rdma->wr_data[reg_result_idx].control_curr;
2192 network_to_result(reg_result);
2194 trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk],
2195 reg_result->rkey, chunk);
2197 block->remote_keys[chunk] = reg_result->rkey;
2198 block->remote_host_addr = reg_result->host_addr;
2199 } else {
2200 /* already registered before */
2201 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2202 &sge.lkey, NULL, chunk,
2203 chunk_start, chunk_end)) {
2204 error_report("cannot get lkey!");
2205 return -EINVAL;
2209 send_wr.wr.rdma.rkey = block->remote_keys[chunk];
2210 } else {
2211 send_wr.wr.rdma.rkey = block->remote_rkey;
2213 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2214 &sge.lkey, NULL, chunk,
2215 chunk_start, chunk_end)) {
2216 error_report("cannot get lkey!");
2217 return -EINVAL;
2222 * Encode the ram block index and chunk within this wrid.
2223 * We will use this information at the time of completion
2224 * to figure out which bitmap to check against and then which
2225 * chunk in the bitmap to look for.
2227 send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
2228 current_index, chunk);
2230 send_wr.opcode = IBV_WR_RDMA_WRITE;
2231 send_wr.send_flags = IBV_SEND_SIGNALED;
2232 send_wr.sg_list = &sge;
2233 send_wr.num_sge = 1;
2234 send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2235 (current_addr - block->offset);
2237 trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2238 sge.length);
2241 * ibv_post_send() does not return negative error numbers,
2242 * per the specification they are positive - no idea why.
2244 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2246 if (ret == ENOMEM) {
2247 trace_qemu_rdma_write_one_queue_full();
2248 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2249 if (ret < 0) {
2250 error_report("rdma migration: failed to make "
2251 "room in full send queue! %d", ret);
2252 return ret;
2255 goto retry;
2257 } else if (ret > 0) {
2258 perror("rdma migration: post rdma write failed");
2259 return -ret;
2262 set_bit(chunk, block->transit_bitmap);
2263 acct_update_position(f, sge.length, false);
2264 rdma->total_writes++;
2266 return 0;
2270 * Push out any unwritten RDMA operations.
2272 * We support sending out multiple chunks at the same time.
2273 * Not all of them need to get signaled in the completion queue.
2275 static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
2277 int ret;
2279 if (!rdma->current_length) {
2280 return 0;
2283 ret = qemu_rdma_write_one(f, rdma,
2284 rdma->current_index, rdma->current_addr, rdma->current_length);
2286 if (ret < 0) {
2287 return ret;
2290 if (ret == 0) {
2291 rdma->nb_sent++;
2292 trace_qemu_rdma_write_flush(rdma->nb_sent);
2295 rdma->current_length = 0;
2296 rdma->current_addr = 0;
2298 return 0;
2301 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
2302 uint64_t offset, uint64_t len)
2304 RDMALocalBlock *block;
2305 uint8_t *host_addr;
2306 uint8_t *chunk_end;
2308 if (rdma->current_index < 0) {
2309 return 0;
2312 if (rdma->current_chunk < 0) {
2313 return 0;
2316 block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2317 host_addr = block->local_host_addr + (offset - block->offset);
2318 chunk_end = ram_chunk_end(block, rdma->current_chunk);
2320 if (rdma->current_length == 0) {
2321 return 0;
2325 * Only merge into chunk sequentially.
2327 if (offset != (rdma->current_addr + rdma->current_length)) {
2328 return 0;
2331 if (offset < block->offset) {
2332 return 0;
2335 if ((offset + len) > (block->offset + block->length)) {
2336 return 0;
2339 if ((host_addr + len) > chunk_end) {
2340 return 0;
2343 return 1;
2347 * We're not actually writing here, but doing three things:
2349 * 1. Identify the chunk the buffer belongs to.
2350 * 2. If the chunk is full or the buffer doesn't belong to the current
2351 * chunk, then start a new chunk and flush() the old chunk.
2352 * 3. To keep the hardware busy, we also group chunks into batches
2353 * and only require that a batch gets acknowledged in the completion
2354 * queue instead of each individual chunk.
2356 static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
2357 uint64_t block_offset, uint64_t offset,
2358 uint64_t len)
2360 uint64_t current_addr = block_offset + offset;
2361 uint64_t index = rdma->current_index;
2362 uint64_t chunk = rdma->current_chunk;
2363 int ret;
2365 /* If we cannot merge it, we flush the current buffer first. */
2366 if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
2367 ret = qemu_rdma_write_flush(f, rdma);
2368 if (ret) {
2369 return ret;
2371 rdma->current_length = 0;
2372 rdma->current_addr = current_addr;
2374 ret = qemu_rdma_search_ram_block(rdma, block_offset,
2375 offset, len, &index, &chunk);
2376 if (ret) {
2377 error_report("ram block search failed");
2378 return ret;
2380 rdma->current_index = index;
2381 rdma->current_chunk = chunk;
2384 /* merge it */
2385 rdma->current_length += len;
2387 /* flush it if buffer is too large */
2388 if (rdma->current_length >= RDMA_MERGE_MAX) {
2389 return qemu_rdma_write_flush(f, rdma);
2392 return 0;
2395 static void qemu_rdma_cleanup(RDMAContext *rdma)
2397 int idx;
2399 if (rdma->cm_id && rdma->connected) {
2400 if ((rdma->error_state ||
2401 migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) &&
2402 !rdma->received_error) {
2403 RDMAControlHeader head = { .len = 0,
2404 .type = RDMA_CONTROL_ERROR,
2405 .repeat = 1,
2407 error_report("Early error. Sending error.");
2408 qemu_rdma_post_send_control(rdma, NULL, &head);
2411 rdma_disconnect(rdma->cm_id);
2412 trace_qemu_rdma_cleanup_disconnect();
2413 rdma->connected = false;
2416 if (rdma->channel) {
2417 qemu_set_fd_handler(rdma->channel->fd, NULL, NULL, NULL);
2419 g_free(rdma->dest_blocks);
2420 rdma->dest_blocks = NULL;
2422 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2423 if (rdma->wr_data[idx].control_mr) {
2424 rdma->total_registrations--;
2425 ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2427 rdma->wr_data[idx].control_mr = NULL;
2430 if (rdma->local_ram_blocks.block) {
2431 while (rdma->local_ram_blocks.nb_blocks) {
2432 rdma_delete_block(rdma, &rdma->local_ram_blocks.block[0]);
2436 if (rdma->qp) {
2437 rdma_destroy_qp(rdma->cm_id);
2438 rdma->qp = NULL;
2440 if (rdma->cq) {
2441 ibv_destroy_cq(rdma->cq);
2442 rdma->cq = NULL;
2444 if (rdma->comp_channel) {
2445 ibv_destroy_comp_channel(rdma->comp_channel);
2446 rdma->comp_channel = NULL;
2448 if (rdma->pd) {
2449 ibv_dealloc_pd(rdma->pd);
2450 rdma->pd = NULL;
2452 if (rdma->cm_id) {
2453 rdma_destroy_id(rdma->cm_id);
2454 rdma->cm_id = NULL;
2457 /* the destination side, listen_id and channel is shared */
2458 if (rdma->listen_id) {
2459 if (!rdma->is_return_path) {
2460 rdma_destroy_id(rdma->listen_id);
2462 rdma->listen_id = NULL;
2464 if (rdma->channel) {
2465 if (!rdma->is_return_path) {
2466 rdma_destroy_event_channel(rdma->channel);
2468 rdma->channel = NULL;
2472 if (rdma->channel) {
2473 rdma_destroy_event_channel(rdma->channel);
2474 rdma->channel = NULL;
2476 g_free(rdma->host);
2477 g_free(rdma->host_port);
2478 rdma->host = NULL;
2479 rdma->host_port = NULL;
2483 static int qemu_rdma_source_init(RDMAContext *rdma, bool pin_all, Error **errp)
2485 int ret, idx;
2486 Error *local_err = NULL, **temp = &local_err;
2489 * Will be validated against destination's actual capabilities
2490 * after the connect() completes.
2492 rdma->pin_all = pin_all;
2494 ret = qemu_rdma_resolve_host(rdma, temp);
2495 if (ret) {
2496 goto err_rdma_source_init;
2499 ret = qemu_rdma_alloc_pd_cq(rdma);
2500 if (ret) {
2501 ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2502 " limits may be too low. Please check $ ulimit -a # and "
2503 "search for 'ulimit -l' in the output");
2504 goto err_rdma_source_init;
2507 ret = qemu_rdma_alloc_qp(rdma);
2508 if (ret) {
2509 ERROR(temp, "rdma migration: error allocating qp!");
2510 goto err_rdma_source_init;
2513 ret = qemu_rdma_init_ram_blocks(rdma);
2514 if (ret) {
2515 ERROR(temp, "rdma migration: error initializing ram blocks!");
2516 goto err_rdma_source_init;
2519 /* Build the hash that maps from offset to RAMBlock */
2520 rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
2521 for (idx = 0; idx < rdma->local_ram_blocks.nb_blocks; idx++) {
2522 g_hash_table_insert(rdma->blockmap,
2523 (void *)(uintptr_t)rdma->local_ram_blocks.block[idx].offset,
2524 &rdma->local_ram_blocks.block[idx]);
2527 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2528 ret = qemu_rdma_reg_control(rdma, idx);
2529 if (ret) {
2530 ERROR(temp, "rdma migration: error registering %d control!",
2531 idx);
2532 goto err_rdma_source_init;
2536 return 0;
2538 err_rdma_source_init:
2539 error_propagate(errp, local_err);
2540 qemu_rdma_cleanup(rdma);
2541 return -1;
2544 static int qemu_get_cm_event_timeout(RDMAContext *rdma,
2545 struct rdma_cm_event **cm_event,
2546 long msec, Error **errp)
2548 int ret;
2549 struct pollfd poll_fd = {
2550 .fd = rdma->channel->fd,
2551 .events = POLLIN,
2552 .revents = 0
2555 do {
2556 ret = poll(&poll_fd, 1, msec);
2557 } while (ret < 0 && errno == EINTR);
2559 if (ret == 0) {
2560 ERROR(errp, "poll cm event timeout");
2561 return -1;
2562 } else if (ret < 0) {
2563 ERROR(errp, "failed to poll cm event, errno=%i", errno);
2564 return -1;
2565 } else if (poll_fd.revents & POLLIN) {
2566 return rdma_get_cm_event(rdma->channel, cm_event);
2567 } else {
2568 ERROR(errp, "no POLLIN event, revent=%x", poll_fd.revents);
2569 return -1;
2573 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp, bool return_path)
2575 RDMACapabilities cap = {
2576 .version = RDMA_CONTROL_VERSION_CURRENT,
2577 .flags = 0,
2579 struct rdma_conn_param conn_param = { .initiator_depth = 2,
2580 .retry_count = 5,
2581 .private_data = &cap,
2582 .private_data_len = sizeof(cap),
2584 struct rdma_cm_event *cm_event;
2585 int ret;
2588 * Only negotiate the capability with destination if the user
2589 * on the source first requested the capability.
2591 if (rdma->pin_all) {
2592 trace_qemu_rdma_connect_pin_all_requested();
2593 cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2596 caps_to_network(&cap);
2598 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2599 if (ret) {
2600 ERROR(errp, "posting second control recv");
2601 goto err_rdma_source_connect;
2604 ret = rdma_connect(rdma->cm_id, &conn_param);
2605 if (ret) {
2606 perror("rdma_connect");
2607 ERROR(errp, "connecting to destination!");
2608 goto err_rdma_source_connect;
2611 if (return_path) {
2612 ret = qemu_get_cm_event_timeout(rdma, &cm_event, 5000, errp);
2613 } else {
2614 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2616 if (ret) {
2617 perror("rdma_get_cm_event after rdma_connect");
2618 ERROR(errp, "connecting to destination!");
2619 goto err_rdma_source_connect;
2622 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2623 error_report("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2624 ERROR(errp, "connecting to destination!");
2625 rdma_ack_cm_event(cm_event);
2626 goto err_rdma_source_connect;
2628 rdma->connected = true;
2630 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2631 network_to_caps(&cap);
2634 * Verify that the *requested* capabilities are supported by the destination
2635 * and disable them otherwise.
2637 if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2638 ERROR(errp, "Server cannot support pinning all memory. "
2639 "Will register memory dynamically.");
2640 rdma->pin_all = false;
2643 trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all);
2645 rdma_ack_cm_event(cm_event);
2647 rdma->control_ready_expected = 1;
2648 rdma->nb_sent = 0;
2649 return 0;
2651 err_rdma_source_connect:
2652 qemu_rdma_cleanup(rdma);
2653 return -1;
2656 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2658 int ret, idx;
2659 struct rdma_cm_id *listen_id;
2660 char ip[40] = "unknown";
2661 struct rdma_addrinfo *res, *e;
2662 char port_str[16];
2664 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2665 rdma->wr_data[idx].control_len = 0;
2666 rdma->wr_data[idx].control_curr = NULL;
2669 if (!rdma->host || !rdma->host[0]) {
2670 ERROR(errp, "RDMA host is not set!");
2671 rdma->error_state = -EINVAL;
2672 return -1;
2674 /* create CM channel */
2675 rdma->channel = rdma_create_event_channel();
2676 if (!rdma->channel) {
2677 ERROR(errp, "could not create rdma event channel");
2678 rdma->error_state = -EINVAL;
2679 return -1;
2682 /* create CM id */
2683 ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2684 if (ret) {
2685 ERROR(errp, "could not create cm_id!");
2686 goto err_dest_init_create_listen_id;
2689 snprintf(port_str, 16, "%d", rdma->port);
2690 port_str[15] = '\0';
2692 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2693 if (ret < 0) {
2694 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
2695 goto err_dest_init_bind_addr;
2698 for (e = res; e != NULL; e = e->ai_next) {
2699 inet_ntop(e->ai_family,
2700 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2701 trace_qemu_rdma_dest_init_trying(rdma->host, ip);
2702 ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2703 if (ret) {
2704 continue;
2706 if (e->ai_family == AF_INET6) {
2707 ret = qemu_rdma_broken_ipv6_kernel(listen_id->verbs, errp);
2708 if (ret) {
2709 continue;
2712 break;
2715 rdma_freeaddrinfo(res);
2716 if (!e) {
2717 ERROR(errp, "Error: could not rdma_bind_addr!");
2718 goto err_dest_init_bind_addr;
2721 rdma->listen_id = listen_id;
2722 qemu_rdma_dump_gid("dest_init", listen_id);
2723 return 0;
2725 err_dest_init_bind_addr:
2726 rdma_destroy_id(listen_id);
2727 err_dest_init_create_listen_id:
2728 rdma_destroy_event_channel(rdma->channel);
2729 rdma->channel = NULL;
2730 rdma->error_state = ret;
2731 return ret;
2735 static void qemu_rdma_return_path_dest_init(RDMAContext *rdma_return_path,
2736 RDMAContext *rdma)
2738 int idx;
2740 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2741 rdma_return_path->wr_data[idx].control_len = 0;
2742 rdma_return_path->wr_data[idx].control_curr = NULL;
2745 /*the CM channel and CM id is shared*/
2746 rdma_return_path->channel = rdma->channel;
2747 rdma_return_path->listen_id = rdma->listen_id;
2749 rdma->return_path = rdma_return_path;
2750 rdma_return_path->return_path = rdma;
2751 rdma_return_path->is_return_path = true;
2754 static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2756 RDMAContext *rdma = NULL;
2757 InetSocketAddress *addr;
2759 if (host_port) {
2760 rdma = g_new0(RDMAContext, 1);
2761 rdma->current_index = -1;
2762 rdma->current_chunk = -1;
2764 addr = g_new(InetSocketAddress, 1);
2765 if (!inet_parse(addr, host_port, NULL)) {
2766 rdma->port = atoi(addr->port);
2767 rdma->host = g_strdup(addr->host);
2768 rdma->host_port = g_strdup(host_port);
2769 } else {
2770 ERROR(errp, "bad RDMA migration address '%s'", host_port);
2771 g_free(rdma);
2772 rdma = NULL;
2775 qapi_free_InetSocketAddress(addr);
2778 return rdma;
2782 * QEMUFile interface to the control channel.
2783 * SEND messages for control only.
2784 * VM's ram is handled with regular RDMA messages.
2786 static ssize_t qio_channel_rdma_writev(QIOChannel *ioc,
2787 const struct iovec *iov,
2788 size_t niov,
2789 int *fds,
2790 size_t nfds,
2791 Error **errp)
2793 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2794 QEMUFile *f = rioc->file;
2795 RDMAContext *rdma;
2796 int ret;
2797 ssize_t done = 0;
2798 size_t i;
2799 size_t len = 0;
2801 RCU_READ_LOCK_GUARD();
2802 rdma = qatomic_rcu_read(&rioc->rdmaout);
2804 if (!rdma) {
2805 return -EIO;
2808 CHECK_ERROR_STATE();
2811 * Push out any writes that
2812 * we're queued up for VM's ram.
2814 ret = qemu_rdma_write_flush(f, rdma);
2815 if (ret < 0) {
2816 rdma->error_state = ret;
2817 return ret;
2820 for (i = 0; i < niov; i++) {
2821 size_t remaining = iov[i].iov_len;
2822 uint8_t * data = (void *)iov[i].iov_base;
2823 while (remaining) {
2824 RDMAControlHeader head;
2826 len = MIN(remaining, RDMA_SEND_INCREMENT);
2827 remaining -= len;
2829 head.len = len;
2830 head.type = RDMA_CONTROL_QEMU_FILE;
2832 ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2834 if (ret < 0) {
2835 rdma->error_state = ret;
2836 return ret;
2839 data += len;
2840 done += len;
2844 return done;
2847 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2848 size_t size, int idx)
2850 size_t len = 0;
2852 if (rdma->wr_data[idx].control_len) {
2853 trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size);
2855 len = MIN(size, rdma->wr_data[idx].control_len);
2856 memcpy(buf, rdma->wr_data[idx].control_curr, len);
2857 rdma->wr_data[idx].control_curr += len;
2858 rdma->wr_data[idx].control_len -= len;
2861 return len;
2865 * QEMUFile interface to the control channel.
2866 * RDMA links don't use bytestreams, so we have to
2867 * return bytes to QEMUFile opportunistically.
2869 static ssize_t qio_channel_rdma_readv(QIOChannel *ioc,
2870 const struct iovec *iov,
2871 size_t niov,
2872 int **fds,
2873 size_t *nfds,
2874 Error **errp)
2876 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2877 RDMAContext *rdma;
2878 RDMAControlHeader head;
2879 int ret = 0;
2880 ssize_t i;
2881 size_t done = 0;
2883 RCU_READ_LOCK_GUARD();
2884 rdma = qatomic_rcu_read(&rioc->rdmain);
2886 if (!rdma) {
2887 return -EIO;
2890 CHECK_ERROR_STATE();
2892 for (i = 0; i < niov; i++) {
2893 size_t want = iov[i].iov_len;
2894 uint8_t *data = (void *)iov[i].iov_base;
2897 * First, we hold on to the last SEND message we
2898 * were given and dish out the bytes until we run
2899 * out of bytes.
2901 ret = qemu_rdma_fill(rdma, data, want, 0);
2902 done += ret;
2903 want -= ret;
2904 /* Got what we needed, so go to next iovec */
2905 if (want == 0) {
2906 continue;
2909 /* If we got any data so far, then don't wait
2910 * for more, just return what we have */
2911 if (done > 0) {
2912 break;
2916 /* We've got nothing at all, so lets wait for
2917 * more to arrive
2919 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2921 if (ret < 0) {
2922 rdma->error_state = ret;
2923 return ret;
2927 * SEND was received with new bytes, now try again.
2929 ret = qemu_rdma_fill(rdma, data, want, 0);
2930 done += ret;
2931 want -= ret;
2933 /* Still didn't get enough, so lets just return */
2934 if (want) {
2935 if (done == 0) {
2936 return QIO_CHANNEL_ERR_BLOCK;
2937 } else {
2938 break;
2942 return done;
2946 * Block until all the outstanding chunks have been delivered by the hardware.
2948 static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
2950 int ret;
2952 if (qemu_rdma_write_flush(f, rdma) < 0) {
2953 return -EIO;
2956 while (rdma->nb_sent) {
2957 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2958 if (ret < 0) {
2959 error_report("rdma migration: complete polling error!");
2960 return -EIO;
2964 qemu_rdma_unregister_waiting(rdma);
2966 return 0;
2970 static int qio_channel_rdma_set_blocking(QIOChannel *ioc,
2971 bool blocking,
2972 Error **errp)
2974 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2975 /* XXX we should make readv/writev actually honour this :-) */
2976 rioc->blocking = blocking;
2977 return 0;
2981 typedef struct QIOChannelRDMASource QIOChannelRDMASource;
2982 struct QIOChannelRDMASource {
2983 GSource parent;
2984 QIOChannelRDMA *rioc;
2985 GIOCondition condition;
2988 static gboolean
2989 qio_channel_rdma_source_prepare(GSource *source,
2990 gint *timeout)
2992 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2993 RDMAContext *rdma;
2994 GIOCondition cond = 0;
2995 *timeout = -1;
2997 RCU_READ_LOCK_GUARD();
2998 if (rsource->condition == G_IO_IN) {
2999 rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3000 } else {
3001 rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3004 if (!rdma) {
3005 error_report("RDMAContext is NULL when prepare Gsource");
3006 return FALSE;
3009 if (rdma->wr_data[0].control_len) {
3010 cond |= G_IO_IN;
3012 cond |= G_IO_OUT;
3014 return cond & rsource->condition;
3017 static gboolean
3018 qio_channel_rdma_source_check(GSource *source)
3020 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
3021 RDMAContext *rdma;
3022 GIOCondition cond = 0;
3024 RCU_READ_LOCK_GUARD();
3025 if (rsource->condition == G_IO_IN) {
3026 rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3027 } else {
3028 rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3031 if (!rdma) {
3032 error_report("RDMAContext is NULL when check Gsource");
3033 return FALSE;
3036 if (rdma->wr_data[0].control_len) {
3037 cond |= G_IO_IN;
3039 cond |= G_IO_OUT;
3041 return cond & rsource->condition;
3044 static gboolean
3045 qio_channel_rdma_source_dispatch(GSource *source,
3046 GSourceFunc callback,
3047 gpointer user_data)
3049 QIOChannelFunc func = (QIOChannelFunc)callback;
3050 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
3051 RDMAContext *rdma;
3052 GIOCondition cond = 0;
3054 RCU_READ_LOCK_GUARD();
3055 if (rsource->condition == G_IO_IN) {
3056 rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3057 } else {
3058 rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3061 if (!rdma) {
3062 error_report("RDMAContext is NULL when dispatch Gsource");
3063 return FALSE;
3066 if (rdma->wr_data[0].control_len) {
3067 cond |= G_IO_IN;
3069 cond |= G_IO_OUT;
3071 return (*func)(QIO_CHANNEL(rsource->rioc),
3072 (cond & rsource->condition),
3073 user_data);
3076 static void
3077 qio_channel_rdma_source_finalize(GSource *source)
3079 QIOChannelRDMASource *ssource = (QIOChannelRDMASource *)source;
3081 object_unref(OBJECT(ssource->rioc));
3084 GSourceFuncs qio_channel_rdma_source_funcs = {
3085 qio_channel_rdma_source_prepare,
3086 qio_channel_rdma_source_check,
3087 qio_channel_rdma_source_dispatch,
3088 qio_channel_rdma_source_finalize
3091 static GSource *qio_channel_rdma_create_watch(QIOChannel *ioc,
3092 GIOCondition condition)
3094 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3095 QIOChannelRDMASource *ssource;
3096 GSource *source;
3098 source = g_source_new(&qio_channel_rdma_source_funcs,
3099 sizeof(QIOChannelRDMASource));
3100 ssource = (QIOChannelRDMASource *)source;
3102 ssource->rioc = rioc;
3103 object_ref(OBJECT(rioc));
3105 ssource->condition = condition;
3107 return source;
3110 static void qio_channel_rdma_set_aio_fd_handler(QIOChannel *ioc,
3111 AioContext *ctx,
3112 IOHandler *io_read,
3113 IOHandler *io_write,
3114 void *opaque)
3116 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3117 if (io_read) {
3118 aio_set_fd_handler(ctx, rioc->rdmain->comp_channel->fd,
3119 false, io_read, io_write, NULL, opaque);
3120 } else {
3121 aio_set_fd_handler(ctx, rioc->rdmaout->comp_channel->fd,
3122 false, io_read, io_write, NULL, opaque);
3126 struct rdma_close_rcu {
3127 struct rcu_head rcu;
3128 RDMAContext *rdmain;
3129 RDMAContext *rdmaout;
3132 /* callback from qio_channel_rdma_close via call_rcu */
3133 static void qio_channel_rdma_close_rcu(struct rdma_close_rcu *rcu)
3135 if (rcu->rdmain) {
3136 qemu_rdma_cleanup(rcu->rdmain);
3139 if (rcu->rdmaout) {
3140 qemu_rdma_cleanup(rcu->rdmaout);
3143 g_free(rcu->rdmain);
3144 g_free(rcu->rdmaout);
3145 g_free(rcu);
3148 static int qio_channel_rdma_close(QIOChannel *ioc,
3149 Error **errp)
3151 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3152 RDMAContext *rdmain, *rdmaout;
3153 struct rdma_close_rcu *rcu = g_new(struct rdma_close_rcu, 1);
3155 trace_qemu_rdma_close();
3157 rdmain = rioc->rdmain;
3158 if (rdmain) {
3159 qatomic_rcu_set(&rioc->rdmain, NULL);
3162 rdmaout = rioc->rdmaout;
3163 if (rdmaout) {
3164 qatomic_rcu_set(&rioc->rdmaout, NULL);
3167 rcu->rdmain = rdmain;
3168 rcu->rdmaout = rdmaout;
3169 call_rcu(rcu, qio_channel_rdma_close_rcu, rcu);
3171 return 0;
3174 static int
3175 qio_channel_rdma_shutdown(QIOChannel *ioc,
3176 QIOChannelShutdown how,
3177 Error **errp)
3179 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3180 RDMAContext *rdmain, *rdmaout;
3182 RCU_READ_LOCK_GUARD();
3184 rdmain = qatomic_rcu_read(&rioc->rdmain);
3185 rdmaout = qatomic_rcu_read(&rioc->rdmain);
3187 switch (how) {
3188 case QIO_CHANNEL_SHUTDOWN_READ:
3189 if (rdmain) {
3190 rdmain->error_state = -1;
3192 break;
3193 case QIO_CHANNEL_SHUTDOWN_WRITE:
3194 if (rdmaout) {
3195 rdmaout->error_state = -1;
3197 break;
3198 case QIO_CHANNEL_SHUTDOWN_BOTH:
3199 default:
3200 if (rdmain) {
3201 rdmain->error_state = -1;
3203 if (rdmaout) {
3204 rdmaout->error_state = -1;
3206 break;
3209 return 0;
3213 * Parameters:
3214 * @offset == 0 :
3215 * This means that 'block_offset' is a full virtual address that does not
3216 * belong to a RAMBlock of the virtual machine and instead
3217 * represents a private malloc'd memory area that the caller wishes to
3218 * transfer.
3220 * @offset != 0 :
3221 * Offset is an offset to be added to block_offset and used
3222 * to also lookup the corresponding RAMBlock.
3224 * @size > 0 :
3225 * Initiate an transfer this size.
3227 * @size == 0 :
3228 * A 'hint' or 'advice' that means that we wish to speculatively
3229 * and asynchronously unregister this memory. In this case, there is no
3230 * guarantee that the unregister will actually happen, for example,
3231 * if the memory is being actively transmitted. Additionally, the memory
3232 * may be re-registered at any future time if a write within the same
3233 * chunk was requested again, even if you attempted to unregister it
3234 * here.
3236 * @size < 0 : TODO, not yet supported
3237 * Unregister the memory NOW. This means that the caller does not
3238 * expect there to be any future RDMA transfers and we just want to clean
3239 * things up. This is used in case the upper layer owns the memory and
3240 * cannot wait for qemu_fclose() to occur.
3242 * @bytes_sent : User-specificed pointer to indicate how many bytes were
3243 * sent. Usually, this will not be more than a few bytes of
3244 * the protocol because most transfers are sent asynchronously.
3246 static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque,
3247 ram_addr_t block_offset, ram_addr_t offset,
3248 size_t size, uint64_t *bytes_sent)
3250 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3251 RDMAContext *rdma;
3252 int ret;
3254 RCU_READ_LOCK_GUARD();
3255 rdma = qatomic_rcu_read(&rioc->rdmaout);
3257 if (!rdma) {
3258 return -EIO;
3261 CHECK_ERROR_STATE();
3263 if (migration_in_postcopy()) {
3264 return RAM_SAVE_CONTROL_NOT_SUPP;
3267 qemu_fflush(f);
3269 if (size > 0) {
3271 * Add this page to the current 'chunk'. If the chunk
3272 * is full, or the page doesn't belong to the current chunk,
3273 * an actual RDMA write will occur and a new chunk will be formed.
3275 ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
3276 if (ret < 0) {
3277 error_report("rdma migration: write error! %d", ret);
3278 goto err;
3282 * We always return 1 bytes because the RDMA
3283 * protocol is completely asynchronous. We do not yet know
3284 * whether an identified chunk is zero or not because we're
3285 * waiting for other pages to potentially be merged with
3286 * the current chunk. So, we have to call qemu_update_position()
3287 * later on when the actual write occurs.
3289 if (bytes_sent) {
3290 *bytes_sent = 1;
3292 } else {
3293 uint64_t index, chunk;
3295 /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
3296 if (size < 0) {
3297 ret = qemu_rdma_drain_cq(f, rdma);
3298 if (ret < 0) {
3299 fprintf(stderr, "rdma: failed to synchronously drain"
3300 " completion queue before unregistration.\n");
3301 goto err;
3306 ret = qemu_rdma_search_ram_block(rdma, block_offset,
3307 offset, size, &index, &chunk);
3309 if (ret) {
3310 error_report("ram block search failed");
3311 goto err;
3314 qemu_rdma_signal_unregister(rdma, index, chunk, 0);
3317 * TODO: Synchronous, guaranteed unregistration (should not occur during
3318 * fast-path). Otherwise, unregisters will process on the next call to
3319 * qemu_rdma_drain_cq()
3320 if (size < 0) {
3321 qemu_rdma_unregister_waiting(rdma);
3327 * Drain the Completion Queue if possible, but do not block,
3328 * just poll.
3330 * If nothing to poll, the end of the iteration will do this
3331 * again to make sure we don't overflow the request queue.
3333 while (1) {
3334 uint64_t wr_id, wr_id_in;
3335 int ret = qemu_rdma_poll(rdma, &wr_id_in, NULL);
3336 if (ret < 0) {
3337 error_report("rdma migration: polling error! %d", ret);
3338 goto err;
3341 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3343 if (wr_id == RDMA_WRID_NONE) {
3344 break;
3348 return RAM_SAVE_CONTROL_DELAYED;
3349 err:
3350 rdma->error_state = ret;
3351 return ret;
3354 static void rdma_accept_incoming_migration(void *opaque);
3356 static void rdma_cm_poll_handler(void *opaque)
3358 RDMAContext *rdma = opaque;
3359 int ret;
3360 struct rdma_cm_event *cm_event;
3361 MigrationIncomingState *mis = migration_incoming_get_current();
3363 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3364 if (ret) {
3365 error_report("get_cm_event failed %d", errno);
3366 return;
3369 if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
3370 cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
3371 if (!rdma->error_state &&
3372 migration_incoming_get_current()->state !=
3373 MIGRATION_STATUS_COMPLETED) {
3374 error_report("receive cm event, cm event is %d", cm_event->event);
3375 rdma->error_state = -EPIPE;
3376 if (rdma->return_path) {
3377 rdma->return_path->error_state = -EPIPE;
3380 rdma_ack_cm_event(cm_event);
3382 if (mis->migration_incoming_co) {
3383 qemu_coroutine_enter(mis->migration_incoming_co);
3385 return;
3387 rdma_ack_cm_event(cm_event);
3390 static int qemu_rdma_accept(RDMAContext *rdma)
3392 RDMACapabilities cap;
3393 struct rdma_conn_param conn_param = {
3394 .responder_resources = 2,
3395 .private_data = &cap,
3396 .private_data_len = sizeof(cap),
3398 RDMAContext *rdma_return_path = NULL;
3399 struct rdma_cm_event *cm_event;
3400 struct ibv_context *verbs;
3401 int ret = -EINVAL;
3402 int idx;
3404 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3405 if (ret) {
3406 goto err_rdma_dest_wait;
3409 if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
3410 rdma_ack_cm_event(cm_event);
3411 goto err_rdma_dest_wait;
3415 * initialize the RDMAContext for return path for postcopy after first
3416 * connection request reached.
3418 if (migrate_postcopy() && !rdma->is_return_path) {
3419 rdma_return_path = qemu_rdma_data_init(rdma->host_port, NULL);
3420 if (rdma_return_path == NULL) {
3421 rdma_ack_cm_event(cm_event);
3422 goto err_rdma_dest_wait;
3425 qemu_rdma_return_path_dest_init(rdma_return_path, rdma);
3428 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
3430 network_to_caps(&cap);
3432 if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
3433 error_report("Unknown source RDMA version: %d, bailing...",
3434 cap.version);
3435 rdma_ack_cm_event(cm_event);
3436 goto err_rdma_dest_wait;
3440 * Respond with only the capabilities this version of QEMU knows about.
3442 cap.flags &= known_capabilities;
3445 * Enable the ones that we do know about.
3446 * Add other checks here as new ones are introduced.
3448 if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
3449 rdma->pin_all = true;
3452 rdma->cm_id = cm_event->id;
3453 verbs = cm_event->id->verbs;
3455 rdma_ack_cm_event(cm_event);
3457 trace_qemu_rdma_accept_pin_state(rdma->pin_all);
3459 caps_to_network(&cap);
3461 trace_qemu_rdma_accept_pin_verbsc(verbs);
3463 if (!rdma->verbs) {
3464 rdma->verbs = verbs;
3465 } else if (rdma->verbs != verbs) {
3466 error_report("ibv context not matching %p, %p!", rdma->verbs,
3467 verbs);
3468 goto err_rdma_dest_wait;
3471 qemu_rdma_dump_id("dest_init", verbs);
3473 ret = qemu_rdma_alloc_pd_cq(rdma);
3474 if (ret) {
3475 error_report("rdma migration: error allocating pd and cq!");
3476 goto err_rdma_dest_wait;
3479 ret = qemu_rdma_alloc_qp(rdma);
3480 if (ret) {
3481 error_report("rdma migration: error allocating qp!");
3482 goto err_rdma_dest_wait;
3485 ret = qemu_rdma_init_ram_blocks(rdma);
3486 if (ret) {
3487 error_report("rdma migration: error initializing ram blocks!");
3488 goto err_rdma_dest_wait;
3491 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
3492 ret = qemu_rdma_reg_control(rdma, idx);
3493 if (ret) {
3494 error_report("rdma: error registering %d control", idx);
3495 goto err_rdma_dest_wait;
3499 /* Accept the second connection request for return path */
3500 if (migrate_postcopy() && !rdma->is_return_path) {
3501 qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
3502 NULL,
3503 (void *)(intptr_t)rdma->return_path);
3504 } else {
3505 qemu_set_fd_handler(rdma->channel->fd, rdma_cm_poll_handler,
3506 NULL, rdma);
3509 ret = rdma_accept(rdma->cm_id, &conn_param);
3510 if (ret) {
3511 error_report("rdma_accept returns %d", ret);
3512 goto err_rdma_dest_wait;
3515 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3516 if (ret) {
3517 error_report("rdma_accept get_cm_event failed %d", ret);
3518 goto err_rdma_dest_wait;
3521 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
3522 error_report("rdma_accept not event established");
3523 rdma_ack_cm_event(cm_event);
3524 goto err_rdma_dest_wait;
3527 rdma_ack_cm_event(cm_event);
3528 rdma->connected = true;
3530 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
3531 if (ret) {
3532 error_report("rdma migration: error posting second control recv");
3533 goto err_rdma_dest_wait;
3536 qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
3538 return 0;
3540 err_rdma_dest_wait:
3541 rdma->error_state = ret;
3542 qemu_rdma_cleanup(rdma);
3543 g_free(rdma_return_path);
3544 return ret;
3547 static int dest_ram_sort_func(const void *a, const void *b)
3549 unsigned int a_index = ((const RDMALocalBlock *)a)->src_index;
3550 unsigned int b_index = ((const RDMALocalBlock *)b)->src_index;
3552 return (a_index < b_index) ? -1 : (a_index != b_index);
3556 * During each iteration of the migration, we listen for instructions
3557 * by the source VM to perform dynamic page registrations before they
3558 * can perform RDMA operations.
3560 * We respond with the 'rkey'.
3562 * Keep doing this until the source tells us to stop.
3564 static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque)
3566 RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
3567 .type = RDMA_CONTROL_REGISTER_RESULT,
3568 .repeat = 0,
3570 RDMAControlHeader unreg_resp = { .len = 0,
3571 .type = RDMA_CONTROL_UNREGISTER_FINISHED,
3572 .repeat = 0,
3574 RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
3575 .repeat = 1 };
3576 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3577 RDMAContext *rdma;
3578 RDMALocalBlocks *local;
3579 RDMAControlHeader head;
3580 RDMARegister *reg, *registers;
3581 RDMACompress *comp;
3582 RDMARegisterResult *reg_result;
3583 static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
3584 RDMALocalBlock *block;
3585 void *host_addr;
3586 int ret = 0;
3587 int idx = 0;
3588 int count = 0;
3589 int i = 0;
3591 RCU_READ_LOCK_GUARD();
3592 rdma = qatomic_rcu_read(&rioc->rdmain);
3594 if (!rdma) {
3595 return -EIO;
3598 CHECK_ERROR_STATE();
3600 local = &rdma->local_ram_blocks;
3601 do {
3602 trace_qemu_rdma_registration_handle_wait();
3604 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
3606 if (ret < 0) {
3607 break;
3610 if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
3611 error_report("rdma: Too many requests in this message (%d)."
3612 "Bailing.", head.repeat);
3613 ret = -EIO;
3614 break;
3617 switch (head.type) {
3618 case RDMA_CONTROL_COMPRESS:
3619 comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
3620 network_to_compress(comp);
3622 trace_qemu_rdma_registration_handle_compress(comp->length,
3623 comp->block_idx,
3624 comp->offset);
3625 if (comp->block_idx >= rdma->local_ram_blocks.nb_blocks) {
3626 error_report("rdma: 'compress' bad block index %u (vs %d)",
3627 (unsigned int)comp->block_idx,
3628 rdma->local_ram_blocks.nb_blocks);
3629 ret = -EIO;
3630 goto out;
3632 block = &(rdma->local_ram_blocks.block[comp->block_idx]);
3634 host_addr = block->local_host_addr +
3635 (comp->offset - block->offset);
3637 ram_handle_compressed(host_addr, comp->value, comp->length);
3638 break;
3640 case RDMA_CONTROL_REGISTER_FINISHED:
3641 trace_qemu_rdma_registration_handle_finished();
3642 goto out;
3644 case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
3645 trace_qemu_rdma_registration_handle_ram_blocks();
3647 /* Sort our local RAM Block list so it's the same as the source,
3648 * we can do this since we've filled in a src_index in the list
3649 * as we received the RAMBlock list earlier.
3651 qsort(rdma->local_ram_blocks.block,
3652 rdma->local_ram_blocks.nb_blocks,
3653 sizeof(RDMALocalBlock), dest_ram_sort_func);
3654 for (i = 0; i < local->nb_blocks; i++) {
3655 local->block[i].index = i;
3658 if (rdma->pin_all) {
3659 ret = qemu_rdma_reg_whole_ram_blocks(rdma);
3660 if (ret) {
3661 error_report("rdma migration: error dest "
3662 "registering ram blocks");
3663 goto out;
3668 * Dest uses this to prepare to transmit the RAMBlock descriptions
3669 * to the source VM after connection setup.
3670 * Both sides use the "remote" structure to communicate and update
3671 * their "local" descriptions with what was sent.
3673 for (i = 0; i < local->nb_blocks; i++) {
3674 rdma->dest_blocks[i].remote_host_addr =
3675 (uintptr_t)(local->block[i].local_host_addr);
3677 if (rdma->pin_all) {
3678 rdma->dest_blocks[i].remote_rkey = local->block[i].mr->rkey;
3681 rdma->dest_blocks[i].offset = local->block[i].offset;
3682 rdma->dest_blocks[i].length = local->block[i].length;
3684 dest_block_to_network(&rdma->dest_blocks[i]);
3685 trace_qemu_rdma_registration_handle_ram_blocks_loop(
3686 local->block[i].block_name,
3687 local->block[i].offset,
3688 local->block[i].length,
3689 local->block[i].local_host_addr,
3690 local->block[i].src_index);
3693 blocks.len = rdma->local_ram_blocks.nb_blocks
3694 * sizeof(RDMADestBlock);
3697 ret = qemu_rdma_post_send_control(rdma,
3698 (uint8_t *) rdma->dest_blocks, &blocks);
3700 if (ret < 0) {
3701 error_report("rdma migration: error sending remote info");
3702 goto out;
3705 break;
3706 case RDMA_CONTROL_REGISTER_REQUEST:
3707 trace_qemu_rdma_registration_handle_register(head.repeat);
3709 reg_resp.repeat = head.repeat;
3710 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3712 for (count = 0; count < head.repeat; count++) {
3713 uint64_t chunk;
3714 uint8_t *chunk_start, *chunk_end;
3716 reg = &registers[count];
3717 network_to_register(reg);
3719 reg_result = &results[count];
3721 trace_qemu_rdma_registration_handle_register_loop(count,
3722 reg->current_index, reg->key.current_addr, reg->chunks);
3724 if (reg->current_index >= rdma->local_ram_blocks.nb_blocks) {
3725 error_report("rdma: 'register' bad block index %u (vs %d)",
3726 (unsigned int)reg->current_index,
3727 rdma->local_ram_blocks.nb_blocks);
3728 ret = -ENOENT;
3729 goto out;
3731 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3732 if (block->is_ram_block) {
3733 if (block->offset > reg->key.current_addr) {
3734 error_report("rdma: bad register address for block %s"
3735 " offset: %" PRIx64 " current_addr: %" PRIx64,
3736 block->block_name, block->offset,
3737 reg->key.current_addr);
3738 ret = -ERANGE;
3739 goto out;
3741 host_addr = (block->local_host_addr +
3742 (reg->key.current_addr - block->offset));
3743 chunk = ram_chunk_index(block->local_host_addr,
3744 (uint8_t *) host_addr);
3745 } else {
3746 chunk = reg->key.chunk;
3747 host_addr = block->local_host_addr +
3748 (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3749 /* Check for particularly bad chunk value */
3750 if (host_addr < (void *)block->local_host_addr) {
3751 error_report("rdma: bad chunk for block %s"
3752 " chunk: %" PRIx64,
3753 block->block_name, reg->key.chunk);
3754 ret = -ERANGE;
3755 goto out;
3758 chunk_start = ram_chunk_start(block, chunk);
3759 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3760 /* avoid "-Waddress-of-packed-member" warning */
3761 uint32_t tmp_rkey = 0;
3762 if (qemu_rdma_register_and_get_keys(rdma, block,
3763 (uintptr_t)host_addr, NULL, &tmp_rkey,
3764 chunk, chunk_start, chunk_end)) {
3765 error_report("cannot get rkey");
3766 ret = -EINVAL;
3767 goto out;
3769 reg_result->rkey = tmp_rkey;
3771 reg_result->host_addr = (uintptr_t)block->local_host_addr;
3773 trace_qemu_rdma_registration_handle_register_rkey(
3774 reg_result->rkey);
3776 result_to_network(reg_result);
3779 ret = qemu_rdma_post_send_control(rdma,
3780 (uint8_t *) results, &reg_resp);
3782 if (ret < 0) {
3783 error_report("Failed to send control buffer");
3784 goto out;
3786 break;
3787 case RDMA_CONTROL_UNREGISTER_REQUEST:
3788 trace_qemu_rdma_registration_handle_unregister(head.repeat);
3789 unreg_resp.repeat = head.repeat;
3790 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3792 for (count = 0; count < head.repeat; count++) {
3793 reg = &registers[count];
3794 network_to_register(reg);
3796 trace_qemu_rdma_registration_handle_unregister_loop(count,
3797 reg->current_index, reg->key.chunk);
3799 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3801 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3802 block->pmr[reg->key.chunk] = NULL;
3804 if (ret != 0) {
3805 perror("rdma unregistration chunk failed");
3806 ret = -ret;
3807 goto out;
3810 rdma->total_registrations--;
3812 trace_qemu_rdma_registration_handle_unregister_success(
3813 reg->key.chunk);
3816 ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
3818 if (ret < 0) {
3819 error_report("Failed to send control buffer");
3820 goto out;
3822 break;
3823 case RDMA_CONTROL_REGISTER_RESULT:
3824 error_report("Invalid RESULT message at dest.");
3825 ret = -EIO;
3826 goto out;
3827 default:
3828 error_report("Unknown control message %s", control_desc(head.type));
3829 ret = -EIO;
3830 goto out;
3832 } while (1);
3833 out:
3834 if (ret < 0) {
3835 rdma->error_state = ret;
3837 return ret;
3840 /* Destination:
3841 * Called via a ram_control_load_hook during the initial RAM load section which
3842 * lists the RAMBlocks by name. This lets us know the order of the RAMBlocks
3843 * on the source.
3844 * We've already built our local RAMBlock list, but not yet sent the list to
3845 * the source.
3847 static int
3848 rdma_block_notification_handle(QIOChannelRDMA *rioc, const char *name)
3850 RDMAContext *rdma;
3851 int curr;
3852 int found = -1;
3854 RCU_READ_LOCK_GUARD();
3855 rdma = qatomic_rcu_read(&rioc->rdmain);
3857 if (!rdma) {
3858 return -EIO;
3861 /* Find the matching RAMBlock in our local list */
3862 for (curr = 0; curr < rdma->local_ram_blocks.nb_blocks; curr++) {
3863 if (!strcmp(rdma->local_ram_blocks.block[curr].block_name, name)) {
3864 found = curr;
3865 break;
3869 if (found == -1) {
3870 error_report("RAMBlock '%s' not found on destination", name);
3871 return -ENOENT;
3874 rdma->local_ram_blocks.block[curr].src_index = rdma->next_src_index;
3875 trace_rdma_block_notification_handle(name, rdma->next_src_index);
3876 rdma->next_src_index++;
3878 return 0;
3881 static int rdma_load_hook(QEMUFile *f, void *opaque, uint64_t flags, void *data)
3883 switch (flags) {
3884 case RAM_CONTROL_BLOCK_REG:
3885 return rdma_block_notification_handle(opaque, data);
3887 case RAM_CONTROL_HOOK:
3888 return qemu_rdma_registration_handle(f, opaque);
3890 default:
3891 /* Shouldn't be called with any other values */
3892 abort();
3896 static int qemu_rdma_registration_start(QEMUFile *f, void *opaque,
3897 uint64_t flags, void *data)
3899 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3900 RDMAContext *rdma;
3902 RCU_READ_LOCK_GUARD();
3903 rdma = qatomic_rcu_read(&rioc->rdmaout);
3904 if (!rdma) {
3905 return -EIO;
3908 CHECK_ERROR_STATE();
3910 if (migration_in_postcopy()) {
3911 return 0;
3914 trace_qemu_rdma_registration_start(flags);
3915 qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3916 qemu_fflush(f);
3918 return 0;
3922 * Inform dest that dynamic registrations are done for now.
3923 * First, flush writes, if any.
3925 static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque,
3926 uint64_t flags, void *data)
3928 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3929 RDMAContext *rdma;
3930 RDMAControlHeader head = { .len = 0, .repeat = 1 };
3931 int ret = 0;
3933 RCU_READ_LOCK_GUARD();
3934 rdma = qatomic_rcu_read(&rioc->rdmaout);
3935 if (!rdma) {
3936 return -EIO;
3939 CHECK_ERROR_STATE();
3941 if (migration_in_postcopy()) {
3942 return 0;
3945 qemu_fflush(f);
3946 ret = qemu_rdma_drain_cq(f, rdma);
3948 if (ret < 0) {
3949 goto err;
3952 if (flags == RAM_CONTROL_SETUP) {
3953 RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3954 RDMALocalBlocks *local = &rdma->local_ram_blocks;
3955 int reg_result_idx, i, nb_dest_blocks;
3957 head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3958 trace_qemu_rdma_registration_stop_ram();
3961 * Make sure that we parallelize the pinning on both sides.
3962 * For very large guests, doing this serially takes a really
3963 * long time, so we have to 'interleave' the pinning locally
3964 * with the control messages by performing the pinning on this
3965 * side before we receive the control response from the other
3966 * side that the pinning has completed.
3968 ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3969 &reg_result_idx, rdma->pin_all ?
3970 qemu_rdma_reg_whole_ram_blocks : NULL);
3971 if (ret < 0) {
3972 fprintf(stderr, "receiving remote info!");
3973 return ret;
3976 nb_dest_blocks = resp.len / sizeof(RDMADestBlock);
3979 * The protocol uses two different sets of rkeys (mutually exclusive):
3980 * 1. One key to represent the virtual address of the entire ram block.
3981 * (dynamic chunk registration disabled - pin everything with one rkey.)
3982 * 2. One to represent individual chunks within a ram block.
3983 * (dynamic chunk registration enabled - pin individual chunks.)
3985 * Once the capability is successfully negotiated, the destination transmits
3986 * the keys to use (or sends them later) including the virtual addresses
3987 * and then propagates the remote ram block descriptions to his local copy.
3990 if (local->nb_blocks != nb_dest_blocks) {
3991 fprintf(stderr, "ram blocks mismatch (Number of blocks %d vs %d) "
3992 "Your QEMU command line parameters are probably "
3993 "not identical on both the source and destination.",
3994 local->nb_blocks, nb_dest_blocks);
3995 rdma->error_state = -EINVAL;
3996 return -EINVAL;
3999 qemu_rdma_move_header(rdma, reg_result_idx, &resp);
4000 memcpy(rdma->dest_blocks,
4001 rdma->wr_data[reg_result_idx].control_curr, resp.len);
4002 for (i = 0; i < nb_dest_blocks; i++) {
4003 network_to_dest_block(&rdma->dest_blocks[i]);
4005 /* We require that the blocks are in the same order */
4006 if (rdma->dest_blocks[i].length != local->block[i].length) {
4007 fprintf(stderr, "Block %s/%d has a different length %" PRIu64
4008 "vs %" PRIu64, local->block[i].block_name, i,
4009 local->block[i].length,
4010 rdma->dest_blocks[i].length);
4011 rdma->error_state = -EINVAL;
4012 return -EINVAL;
4014 local->block[i].remote_host_addr =
4015 rdma->dest_blocks[i].remote_host_addr;
4016 local->block[i].remote_rkey = rdma->dest_blocks[i].remote_rkey;
4020 trace_qemu_rdma_registration_stop(flags);
4022 head.type = RDMA_CONTROL_REGISTER_FINISHED;
4023 ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
4025 if (ret < 0) {
4026 goto err;
4029 return 0;
4030 err:
4031 rdma->error_state = ret;
4032 return ret;
4035 static const QEMUFileHooks rdma_read_hooks = {
4036 .hook_ram_load = rdma_load_hook,
4039 static const QEMUFileHooks rdma_write_hooks = {
4040 .before_ram_iterate = qemu_rdma_registration_start,
4041 .after_ram_iterate = qemu_rdma_registration_stop,
4042 .save_page = qemu_rdma_save_page,
4046 static void qio_channel_rdma_finalize(Object *obj)
4048 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(obj);
4049 if (rioc->rdmain) {
4050 qemu_rdma_cleanup(rioc->rdmain);
4051 g_free(rioc->rdmain);
4052 rioc->rdmain = NULL;
4054 if (rioc->rdmaout) {
4055 qemu_rdma_cleanup(rioc->rdmaout);
4056 g_free(rioc->rdmaout);
4057 rioc->rdmaout = NULL;
4061 static void qio_channel_rdma_class_init(ObjectClass *klass,
4062 void *class_data G_GNUC_UNUSED)
4064 QIOChannelClass *ioc_klass = QIO_CHANNEL_CLASS(klass);
4066 ioc_klass->io_writev = qio_channel_rdma_writev;
4067 ioc_klass->io_readv = qio_channel_rdma_readv;
4068 ioc_klass->io_set_blocking = qio_channel_rdma_set_blocking;
4069 ioc_klass->io_close = qio_channel_rdma_close;
4070 ioc_klass->io_create_watch = qio_channel_rdma_create_watch;
4071 ioc_klass->io_set_aio_fd_handler = qio_channel_rdma_set_aio_fd_handler;
4072 ioc_klass->io_shutdown = qio_channel_rdma_shutdown;
4075 static const TypeInfo qio_channel_rdma_info = {
4076 .parent = TYPE_QIO_CHANNEL,
4077 .name = TYPE_QIO_CHANNEL_RDMA,
4078 .instance_size = sizeof(QIOChannelRDMA),
4079 .instance_finalize = qio_channel_rdma_finalize,
4080 .class_init = qio_channel_rdma_class_init,
4083 static void qio_channel_rdma_register_types(void)
4085 type_register_static(&qio_channel_rdma_info);
4088 type_init(qio_channel_rdma_register_types);
4090 static QEMUFile *qemu_fopen_rdma(RDMAContext *rdma, const char *mode)
4092 QIOChannelRDMA *rioc;
4094 if (qemu_file_mode_is_not_valid(mode)) {
4095 return NULL;
4098 rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
4100 if (mode[0] == 'w') {
4101 rioc->file = qemu_fopen_channel_output(QIO_CHANNEL(rioc));
4102 rioc->rdmaout = rdma;
4103 rioc->rdmain = rdma->return_path;
4104 qemu_file_set_hooks(rioc->file, &rdma_write_hooks);
4105 } else {
4106 rioc->file = qemu_fopen_channel_input(QIO_CHANNEL(rioc));
4107 rioc->rdmain = rdma;
4108 rioc->rdmaout = rdma->return_path;
4109 qemu_file_set_hooks(rioc->file, &rdma_read_hooks);
4112 return rioc->file;
4115 static void rdma_accept_incoming_migration(void *opaque)
4117 RDMAContext *rdma = opaque;
4118 int ret;
4119 QEMUFile *f;
4120 Error *local_err = NULL;
4122 trace_qemu_rdma_accept_incoming_migration();
4123 ret = qemu_rdma_accept(rdma);
4125 if (ret) {
4126 fprintf(stderr, "RDMA ERROR: Migration initialization failed\n");
4127 return;
4130 trace_qemu_rdma_accept_incoming_migration_accepted();
4132 if (rdma->is_return_path) {
4133 return;
4136 f = qemu_fopen_rdma(rdma, "rb");
4137 if (f == NULL) {
4138 fprintf(stderr, "RDMA ERROR: could not qemu_fopen_rdma\n");
4139 qemu_rdma_cleanup(rdma);
4140 return;
4143 rdma->migration_started_on_destination = 1;
4144 migration_fd_process_incoming(f, &local_err);
4145 if (local_err) {
4146 error_reportf_err(local_err, "RDMA ERROR:");
4150 void rdma_start_incoming_migration(const char *host_port, Error **errp)
4152 int ret;
4153 RDMAContext *rdma, *rdma_return_path = NULL;
4154 Error *local_err = NULL;
4156 trace_rdma_start_incoming_migration();
4158 /* Avoid ram_block_discard_disable(), cannot change during migration. */
4159 if (ram_block_discard_is_required()) {
4160 error_setg(errp, "RDMA: cannot disable RAM discard");
4161 return;
4164 rdma = qemu_rdma_data_init(host_port, &local_err);
4165 if (rdma == NULL) {
4166 goto err;
4169 ret = qemu_rdma_dest_init(rdma, &local_err);
4171 if (ret) {
4172 goto err;
4175 trace_rdma_start_incoming_migration_after_dest_init();
4177 ret = rdma_listen(rdma->listen_id, 5);
4179 if (ret) {
4180 ERROR(errp, "listening on socket!");
4181 goto cleanup_rdma;
4184 trace_rdma_start_incoming_migration_after_rdma_listen();
4186 qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
4187 NULL, (void *)(intptr_t)rdma);
4188 return;
4190 cleanup_rdma:
4191 qemu_rdma_cleanup(rdma);
4192 err:
4193 error_propagate(errp, local_err);
4194 if (rdma) {
4195 g_free(rdma->host);
4196 g_free(rdma->host_port);
4198 g_free(rdma);
4199 g_free(rdma_return_path);
4202 void rdma_start_outgoing_migration(void *opaque,
4203 const char *host_port, Error **errp)
4205 MigrationState *s = opaque;
4206 RDMAContext *rdma_return_path = NULL;
4207 RDMAContext *rdma;
4208 int ret = 0;
4210 /* Avoid ram_block_discard_disable(), cannot change during migration. */
4211 if (ram_block_discard_is_required()) {
4212 error_setg(errp, "RDMA: cannot disable RAM discard");
4213 return;
4216 rdma = qemu_rdma_data_init(host_port, errp);
4217 if (rdma == NULL) {
4218 goto err;
4221 ret = qemu_rdma_source_init(rdma,
4222 s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL], errp);
4224 if (ret) {
4225 goto err;
4228 trace_rdma_start_outgoing_migration_after_rdma_source_init();
4229 ret = qemu_rdma_connect(rdma, errp, false);
4231 if (ret) {
4232 goto err;
4235 /* RDMA postcopy need a separate queue pair for return path */
4236 if (migrate_postcopy()) {
4237 rdma_return_path = qemu_rdma_data_init(host_port, errp);
4239 if (rdma_return_path == NULL) {
4240 goto return_path_err;
4243 ret = qemu_rdma_source_init(rdma_return_path,
4244 s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL], errp);
4246 if (ret) {
4247 goto return_path_err;
4250 ret = qemu_rdma_connect(rdma_return_path, errp, true);
4252 if (ret) {
4253 goto return_path_err;
4256 rdma->return_path = rdma_return_path;
4257 rdma_return_path->return_path = rdma;
4258 rdma_return_path->is_return_path = true;
4261 trace_rdma_start_outgoing_migration_after_rdma_connect();
4263 s->to_dst_file = qemu_fopen_rdma(rdma, "wb");
4264 migrate_fd_connect(s, NULL);
4265 return;
4266 return_path_err:
4267 qemu_rdma_cleanup(rdma);
4268 err:
4269 g_free(rdma);
4270 g_free(rdma_return_path);