2 * AArch64 specific helpers
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
22 #include "exec/gdbstub.h"
23 #include "exec/helper-proto.h"
24 #include "qemu/host-utils.h"
25 #include "sysemu/sysemu.h"
26 #include "qemu/bitops.h"
27 #include "internals.h"
28 #include "qemu/crc32c.h"
29 #include <zlib.h> /* For crc32 */
31 /* C2.4.7 Multiply and divide */
32 /* special cases for 0 and LLONG_MIN are mandated by the standard */
33 uint64_t HELPER(udiv64
)(uint64_t num
, uint64_t den
)
41 int64_t HELPER(sdiv64
)(int64_t num
, int64_t den
)
46 if (num
== LLONG_MIN
&& den
== -1) {
52 uint64_t HELPER(clz64
)(uint64_t x
)
57 uint64_t HELPER(cls64
)(uint64_t x
)
62 uint32_t HELPER(cls32
)(uint32_t x
)
67 uint32_t HELPER(clz32
)(uint32_t x
)
72 uint64_t HELPER(rbit64
)(uint64_t x
)
77 /* Convert a softfloat float_relation_ (as returned by
78 * the float*_compare functions) to the correct ARM
81 static inline uint32_t float_rel_to_flags(int res
)
85 case float_relation_equal
:
86 flags
= PSTATE_Z
| PSTATE_C
;
88 case float_relation_less
:
91 case float_relation_greater
:
94 case float_relation_unordered
:
96 flags
= PSTATE_C
| PSTATE_V
;
102 uint64_t HELPER(vfp_cmps_a64
)(float32 x
, float32 y
, void *fp_status
)
104 return float_rel_to_flags(float32_compare_quiet(x
, y
, fp_status
));
107 uint64_t HELPER(vfp_cmpes_a64
)(float32 x
, float32 y
, void *fp_status
)
109 return float_rel_to_flags(float32_compare(x
, y
, fp_status
));
112 uint64_t HELPER(vfp_cmpd_a64
)(float64 x
, float64 y
, void *fp_status
)
114 return float_rel_to_flags(float64_compare_quiet(x
, y
, fp_status
));
117 uint64_t HELPER(vfp_cmped_a64
)(float64 x
, float64 y
, void *fp_status
)
119 return float_rel_to_flags(float64_compare(x
, y
, fp_status
));
122 float32
HELPER(vfp_mulxs
)(float32 a
, float32 b
, void *fpstp
)
124 float_status
*fpst
= fpstp
;
126 a
= float32_squash_input_denormal(a
, fpst
);
127 b
= float32_squash_input_denormal(b
, fpst
);
129 if ((float32_is_zero(a
) && float32_is_infinity(b
)) ||
130 (float32_is_infinity(a
) && float32_is_zero(b
))) {
131 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
132 return make_float32((1U << 30) |
133 ((float32_val(a
) ^ float32_val(b
)) & (1U << 31)));
135 return float32_mul(a
, b
, fpst
);
138 float64
HELPER(vfp_mulxd
)(float64 a
, float64 b
, void *fpstp
)
140 float_status
*fpst
= fpstp
;
142 a
= float64_squash_input_denormal(a
, fpst
);
143 b
= float64_squash_input_denormal(b
, fpst
);
145 if ((float64_is_zero(a
) && float64_is_infinity(b
)) ||
146 (float64_is_infinity(a
) && float64_is_zero(b
))) {
147 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
148 return make_float64((1ULL << 62) |
149 ((float64_val(a
) ^ float64_val(b
)) & (1ULL << 63)));
151 return float64_mul(a
, b
, fpst
);
154 uint64_t HELPER(simd_tbl
)(CPUARMState
*env
, uint64_t result
, uint64_t indices
,
155 uint32_t rn
, uint32_t numregs
)
157 /* Helper function for SIMD TBL and TBX. We have to do the table
158 * lookup part for the 64 bits worth of indices we're passed in.
159 * result is the initial results vector (either zeroes for TBL
160 * or some guest values for TBX), rn the register number where
161 * the table starts, and numregs the number of registers in the table.
162 * We return the results of the lookups.
166 for (shift
= 0; shift
< 64; shift
+= 8) {
167 int index
= extract64(indices
, shift
, 8);
168 if (index
< 16 * numregs
) {
169 /* Convert index (a byte offset into the virtual table
170 * which is a series of 128-bit vectors concatenated)
171 * into the correct vfp.regs[] element plus a bit offset
172 * into that element, bearing in mind that the table
173 * can wrap around from V31 to V0.
175 int elt
= (rn
* 2 + (index
>> 3)) % 64;
176 int bitidx
= (index
& 7) * 8;
177 uint64_t val
= extract64(env
->vfp
.regs
[elt
], bitidx
, 8);
179 result
= deposit64(result
, shift
, 8, val
);
185 /* 64bit/double versions of the neon float compare functions */
186 uint64_t HELPER(neon_ceq_f64
)(float64 a
, float64 b
, void *fpstp
)
188 float_status
*fpst
= fpstp
;
189 return -float64_eq_quiet(a
, b
, fpst
);
192 uint64_t HELPER(neon_cge_f64
)(float64 a
, float64 b
, void *fpstp
)
194 float_status
*fpst
= fpstp
;
195 return -float64_le(b
, a
, fpst
);
198 uint64_t HELPER(neon_cgt_f64
)(float64 a
, float64 b
, void *fpstp
)
200 float_status
*fpst
= fpstp
;
201 return -float64_lt(b
, a
, fpst
);
204 /* Reciprocal step and sqrt step. Note that unlike the A32/T32
205 * versions, these do a fully fused multiply-add or
206 * multiply-add-and-halve.
208 #define float32_two make_float32(0x40000000)
209 #define float32_three make_float32(0x40400000)
210 #define float32_one_point_five make_float32(0x3fc00000)
212 #define float64_two make_float64(0x4000000000000000ULL)
213 #define float64_three make_float64(0x4008000000000000ULL)
214 #define float64_one_point_five make_float64(0x3FF8000000000000ULL)
216 float32
HELPER(recpsf_f32
)(float32 a
, float32 b
, void *fpstp
)
218 float_status
*fpst
= fpstp
;
220 a
= float32_squash_input_denormal(a
, fpst
);
221 b
= float32_squash_input_denormal(b
, fpst
);
224 if ((float32_is_infinity(a
) && float32_is_zero(b
)) ||
225 (float32_is_infinity(b
) && float32_is_zero(a
))) {
228 return float32_muladd(a
, b
, float32_two
, 0, fpst
);
231 float64
HELPER(recpsf_f64
)(float64 a
, float64 b
, void *fpstp
)
233 float_status
*fpst
= fpstp
;
235 a
= float64_squash_input_denormal(a
, fpst
);
236 b
= float64_squash_input_denormal(b
, fpst
);
239 if ((float64_is_infinity(a
) && float64_is_zero(b
)) ||
240 (float64_is_infinity(b
) && float64_is_zero(a
))) {
243 return float64_muladd(a
, b
, float64_two
, 0, fpst
);
246 float32
HELPER(rsqrtsf_f32
)(float32 a
, float32 b
, void *fpstp
)
248 float_status
*fpst
= fpstp
;
250 a
= float32_squash_input_denormal(a
, fpst
);
251 b
= float32_squash_input_denormal(b
, fpst
);
254 if ((float32_is_infinity(a
) && float32_is_zero(b
)) ||
255 (float32_is_infinity(b
) && float32_is_zero(a
))) {
256 return float32_one_point_five
;
258 return float32_muladd(a
, b
, float32_three
, float_muladd_halve_result
, fpst
);
261 float64
HELPER(rsqrtsf_f64
)(float64 a
, float64 b
, void *fpstp
)
263 float_status
*fpst
= fpstp
;
265 a
= float64_squash_input_denormal(a
, fpst
);
266 b
= float64_squash_input_denormal(b
, fpst
);
269 if ((float64_is_infinity(a
) && float64_is_zero(b
)) ||
270 (float64_is_infinity(b
) && float64_is_zero(a
))) {
271 return float64_one_point_five
;
273 return float64_muladd(a
, b
, float64_three
, float_muladd_halve_result
, fpst
);
276 /* Pairwise long add: add pairs of adjacent elements into
277 * double-width elements in the result (eg _s8 is an 8x8->16 op)
279 uint64_t HELPER(neon_addlp_s8
)(uint64_t a
)
281 uint64_t nsignmask
= 0x0080008000800080ULL
;
282 uint64_t wsignmask
= 0x8000800080008000ULL
;
283 uint64_t elementmask
= 0x00ff00ff00ff00ffULL
;
285 uint64_t res
, signres
;
287 /* Extract odd elements, sign extend each to a 16 bit field */
288 tmp1
= a
& elementmask
;
291 tmp1
= (tmp1
- nsignmask
) ^ wsignmask
;
292 /* Ditto for the even elements */
293 tmp2
= (a
>> 8) & elementmask
;
296 tmp2
= (tmp2
- nsignmask
) ^ wsignmask
;
298 /* calculate the result by summing bits 0..14, 16..22, etc,
299 * and then adjusting the sign bits 15, 23, etc manually.
300 * This ensures the addition can't overflow the 16 bit field.
302 signres
= (tmp1
^ tmp2
) & wsignmask
;
303 res
= (tmp1
& ~wsignmask
) + (tmp2
& ~wsignmask
);
309 uint64_t HELPER(neon_addlp_u8
)(uint64_t a
)
313 tmp
= a
& 0x00ff00ff00ff00ffULL
;
314 tmp
+= (a
>> 8) & 0x00ff00ff00ff00ffULL
;
318 uint64_t HELPER(neon_addlp_s16
)(uint64_t a
)
320 int32_t reslo
, reshi
;
322 reslo
= (int32_t)(int16_t)a
+ (int32_t)(int16_t)(a
>> 16);
323 reshi
= (int32_t)(int16_t)(a
>> 32) + (int32_t)(int16_t)(a
>> 48);
325 return (uint32_t)reslo
| (((uint64_t)reshi
) << 32);
328 uint64_t HELPER(neon_addlp_u16
)(uint64_t a
)
332 tmp
= a
& 0x0000ffff0000ffffULL
;
333 tmp
+= (a
>> 16) & 0x0000ffff0000ffffULL
;
337 /* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */
338 float32
HELPER(frecpx_f32
)(float32 a
, void *fpstp
)
340 float_status
*fpst
= fpstp
;
341 uint32_t val32
, sbit
;
344 if (float32_is_any_nan(a
)) {
346 if (float32_is_signaling_nan(a
)) {
347 float_raise(float_flag_invalid
, fpst
);
348 nan
= float32_maybe_silence_nan(a
);
350 if (fpst
->default_nan_mode
) {
351 nan
= float32_default_nan
;
356 val32
= float32_val(a
);
357 sbit
= 0x80000000ULL
& val32
;
358 exp
= extract32(val32
, 23, 8);
361 return make_float32(sbit
| (0xfe << 23));
363 return make_float32(sbit
| (~exp
& 0xff) << 23);
367 float64
HELPER(frecpx_f64
)(float64 a
, void *fpstp
)
369 float_status
*fpst
= fpstp
;
370 uint64_t val64
, sbit
;
373 if (float64_is_any_nan(a
)) {
375 if (float64_is_signaling_nan(a
)) {
376 float_raise(float_flag_invalid
, fpst
);
377 nan
= float64_maybe_silence_nan(a
);
379 if (fpst
->default_nan_mode
) {
380 nan
= float64_default_nan
;
385 val64
= float64_val(a
);
386 sbit
= 0x8000000000000000ULL
& val64
;
387 exp
= extract64(float64_val(a
), 52, 11);
390 return make_float64(sbit
| (0x7feULL
<< 52));
392 return make_float64(sbit
| (~exp
& 0x7ffULL
) << 52);
396 float32
HELPER(fcvtx_f64_to_f32
)(float64 a
, CPUARMState
*env
)
398 /* Von Neumann rounding is implemented by using round-to-zero
399 * and then setting the LSB of the result if Inexact was raised.
402 float_status
*fpst
= &env
->vfp
.fp_status
;
403 float_status tstat
= *fpst
;
406 set_float_rounding_mode(float_round_to_zero
, &tstat
);
407 set_float_exception_flags(0, &tstat
);
408 r
= float64_to_float32(a
, &tstat
);
409 r
= float32_maybe_silence_nan(r
);
410 exflags
= get_float_exception_flags(&tstat
);
411 if (exflags
& float_flag_inexact
) {
412 r
= make_float32(float32_val(r
) | 1);
414 exflags
|= get_float_exception_flags(fpst
);
415 set_float_exception_flags(exflags
, fpst
);
419 /* 64-bit versions of the CRC helpers. Note that although the operation
420 * (and the prototypes of crc32c() and crc32() mean that only the bottom
421 * 32 bits of the accumulator and result are used, we pass and return
422 * uint64_t for convenience of the generated code. Unlike the 32-bit
423 * instruction set versions, val may genuinely have 64 bits of data in it.
424 * The upper bytes of val (above the number specified by 'bytes') must have
425 * been zeroed out by the caller.
427 uint64_t HELPER(crc32_64
)(uint64_t acc
, uint64_t val
, uint32_t bytes
)
433 /* zlib crc32 converts the accumulator and output to one's complement. */
434 return crc32(acc
^ 0xffffffff, buf
, bytes
) ^ 0xffffffff;
437 uint64_t HELPER(crc32c_64
)(uint64_t acc
, uint64_t val
, uint32_t bytes
)
443 /* Linux crc32c converts the output to one's complement. */
444 return crc32c(acc
, buf
, bytes
) ^ 0xffffffff;