5 # This document describes all commands currently supported by QMP.
7 # Most of the time their usage is exactly the same as in the user Monitor, this
8 # means that any other document which also describe commands (the manpage,
9 # QEMU's manual, etc) can and should be consulted.
11 # QMP has two types of commands: regular and query commands. Regular commands
12 # usually change the Virtual Machine's state someway, while query commands just
13 # return information. The sections below are divided accordingly.
15 # It's important to observe that all communication examples are formatted in
16 # a reader-friendly way, so that they're easier to understand. However, in real
17 # protocol usage, they're emitted as a single line.
19 # Also, the following notation is used to denote data flow:
23 # | -> data issued by the Client
24 # | <- Server data response
26 # Please, refer to the QMP specification (docs/interop/qmp-spec.txt) for
27 # detailed information on the Server command and response formats.
29 # = Stability Considerations
31 # The current QMP command set (described in this file) may be useful for a
32 # number of use cases, however it's limited and several commands have bad
33 # defined semantics, specially with regard to command completion.
35 # These problems are going to be solved incrementally in the next QEMU releases
36 # and we're going to establish a deprecation policy for badly defined commands.
38 # If you're planning to adopt QMP, please observe the following:
40 # 1. The deprecation policy will take effect and be documented soon, please
41 # check the documentation of each used command as soon as a new release of
44 # 2. DO NOT rely on anything which is not explicit documented
46 # 3. Errors, in special, are not documented. Applications should NOT check
47 # for specific errors classes or data (it's strongly recommended to only
48 # check for the "error" key)
52 { 'pragma': { 'doc-required': true } }
54 # Whitelists to permit QAPI rule violations; think twice before you
57 # Commands allowed to return a non-dictionary:
58 'returns-whitelist': [
59 'human-monitor-command',
61 'query-migrate-cache-size',
65 'name-case-whitelist': [
66 'ACPISlotType', # DIMM, visible through query-acpi-ospm-status
67 'CpuInfoMIPS', # PC, visible through query-cpu
68 'CpuInfoTricore', # PC, visible through query-cpu
69 'QapiErrorClass', # all members, visible through errors
70 'UuidInfo', # UUID, visible through query-uuid
71 'X86CPURegister32', # all members, visible indirectly through qom-get
72 'q_obj_CpuInfo-base' # CPU, visible through query-cpu
75 # Documentation generated with qapi2texi.py is in source order, with
76 # included sub-schemas inserted at the first include directive
77 # (subsequent include directives have no effect). To get a sane and
78 # stable order, it's best to include each sub-schema just once, or
79 # include it first in qapi-schema.json.
81 { 'include': 'qapi/common.json' }
82 { 'include': 'qapi/sockets.json' }
83 { 'include': 'qapi/run-state.json' }
84 { 'include': 'qapi/crypto.json' }
85 { 'include': 'qapi/block.json' }
86 { 'include': 'qapi/char.json' }
87 { 'include': 'qapi/net.json' }
88 { 'include': 'qapi/rocker.json' }
89 { 'include': 'qapi/tpm.json' }
90 { 'include': 'qapi/ui.json' }
91 { 'include': 'qapi/migration.json' }
92 { 'include': 'qapi/transaction.json' }
93 { 'include': 'qapi/trace.json' }
94 { 'include': 'qapi/introspect.json' }
103 # Enable QMP capabilities.
109 # -> { "execute": "qmp_capabilities" }
110 # <- { "return": {} }
112 # Notes: This command is valid exactly when first connecting: it must be
113 # issued before any other command will be accepted, and will fail once the
114 # monitor is accepting other commands. (see qemu docs/interop/qmp-spec.txt)
119 { 'command': 'qmp_capabilities' }
124 # A three-part version number.
126 # @major: The major version number.
128 # @minor: The minor version number.
130 # @micro: The micro version number.
134 { 'struct': 'VersionTriple',
135 'data': {'major': 'int', 'minor': 'int', 'micro': 'int'} }
141 # A description of QEMU's version.
143 # @qemu: The version of QEMU. By current convention, a micro
144 # version of 50 signifies a development branch. A micro version
145 # greater than or equal to 90 signifies a release candidate for
146 # the next minor version. A micro version of less than 50
147 # signifies a stable release.
149 # @package: QEMU will always set this field to an empty string. Downstream
150 # versions of QEMU should set this to a non-empty string. The
151 # exact format depends on the downstream however it highly
152 # recommended that a unique name is used.
156 { 'struct': 'VersionInfo',
157 'data': {'qemu': 'VersionTriple', 'package': 'str'} }
162 # Returns the current version of QEMU.
164 # Returns: A @VersionInfo object describing the current version of QEMU.
170 # -> { "execute": "query-version" }
183 { 'command': 'query-version', 'returns': 'VersionInfo' }
188 # Information about a QMP command
190 # @name: The command name
194 { 'struct': 'CommandInfo', 'data': {'name': 'str'} }
199 # Return a list of supported QMP commands by this server
201 # Returns: A list of @CommandInfo for all supported commands
207 # -> { "execute": "query-commands" }
211 # "name":"query-balloon"
214 # "name":"system_powerdown"
219 # Note: This example has been shortened as the real response is too long.
222 { 'command': 'query-commands', 'returns': ['CommandInfo'] }
227 # Policy for handling lost ticks in timer devices.
229 # @discard: throw away the missed tick(s) and continue with future injection
230 # normally. Guest time may be delayed, unless the OS has explicit
231 # handling of lost ticks
233 # @delay: continue to deliver ticks at the normal rate. Guest time will be
234 # delayed due to the late tick
236 # @merge: merge the missed tick(s) into one tick and inject. Guest time
237 # may be delayed, depending on how the OS reacts to the merging
240 # @slew: deliver ticks at a higher rate to catch up with the missed tick. The
241 # guest time should not be delayed once catchup is complete.
245 { 'enum': 'LostTickPolicy',
246 'data': ['discard', 'delay', 'merge', 'slew' ] }
251 # Allow client connections for VNC, Spice and socket based
252 # character devices to be passed in to QEMU via SCM_RIGHTS.
254 # @protocol: protocol name. Valid names are "vnc", "spice" or the
255 # name of a character device (eg. from -chardev id=XXXX)
257 # @fdname: file descriptor name previously passed via 'getfd' command
259 # @skipauth: whether to skip authentication. Only applies
260 # to "vnc" and "spice" protocols
262 # @tls: whether to perform TLS. Only applies to the "spice"
265 # Returns: nothing on success.
271 # -> { "execute": "add_client", "arguments": { "protocol": "vnc",
272 # "fdname": "myclient" } }
273 # <- { "return": {} }
276 { 'command': 'add_client',
277 'data': { 'protocol': 'str', 'fdname': 'str', '*skipauth': 'bool',
283 # Guest name information.
285 # @name: The name of the guest
289 { 'struct': 'NameInfo', 'data': {'*name': 'str'} }
294 # Return the name information of a guest.
296 # Returns: @NameInfo of the guest
302 # -> { "execute": "query-name" }
303 # <- { "return": { "name": "qemu-name" } }
306 { 'command': 'query-name', 'returns': 'NameInfo' }
311 # Information about support for KVM acceleration
313 # @enabled: true if KVM acceleration is active
315 # @present: true if KVM acceleration is built into this executable
319 { 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
324 # Returns information about KVM acceleration
332 # -> { "execute": "query-kvm" }
333 # <- { "return": { "enabled": true, "present": true } }
336 { 'command': 'query-kvm', 'returns': 'KvmInfo' }
341 # Guest UUID information (Universally Unique Identifier).
343 # @UUID: the UUID of the guest
347 # Notes: If no UUID was specified for the guest, a null UUID is returned.
349 { 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
354 # Query the guest UUID information.
356 # Returns: The @UuidInfo for the guest
362 # -> { "execute": "query-uuid" }
363 # <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
366 { 'command': 'query-uuid', 'returns': 'UuidInfo' }
371 # Information about a QMP event
373 # @name: The event name
377 { 'struct': 'EventInfo', 'data': {'name': 'str'} }
382 # Return a list of supported QMP events by this server
384 # Returns: A list of @EventInfo for all supported events
390 # -> { "execute": "query-events" }
402 # Note: This example has been shortened as the real response is too long.
405 { 'command': 'query-events', 'returns': ['EventInfo'] }
410 # An enumeration of cpu types that enable additional information during
411 # @query-cpus and @query-cpus-fast.
417 { 'enum': 'CpuInfoArch',
418 'data': ['x86', 'sparc', 'ppc', 'mips', 'tricore', 's390', 'other' ] }
423 # Information about a virtual CPU
425 # @CPU: the index of the virtual CPU
427 # @current: this only exists for backwards compatibility and should be ignored
429 # @halted: true if the virtual CPU is in the halt state. Halt usually refers
430 # to a processor specific low power mode.
432 # @qom_path: path to the CPU object in the QOM tree (since 2.4)
434 # @thread_id: ID of the underlying host thread
436 # @props: properties describing to which node/socket/core/thread
437 # virtual CPU belongs to, provided if supported by board (since 2.10)
439 # @arch: architecture of the cpu, which determines which additional fields
440 # will be listed (since 2.6)
444 # Notes: @halted is a transient state that changes frequently. By the time the
445 # data is sent to the client, the guest may no longer be halted.
447 { 'union': 'CpuInfo',
448 'base': {'CPU': 'int', 'current': 'bool', 'halted': 'bool',
449 'qom_path': 'str', 'thread_id': 'int',
450 '*props': 'CpuInstanceProperties', 'arch': 'CpuInfoArch' },
451 'discriminator': 'arch',
452 'data': { 'x86': 'CpuInfoX86',
453 'sparc': 'CpuInfoSPARC',
455 'mips': 'CpuInfoMIPS',
456 'tricore': 'CpuInfoTricore',
457 's390': 'CpuInfoS390',
458 'other': 'CpuInfoOther' } }
463 # Additional information about a virtual i386 or x86_64 CPU
465 # @pc: the 64-bit instruction pointer
469 { 'struct': 'CpuInfoX86', 'data': { 'pc': 'int' } }
474 # Additional information about a virtual SPARC CPU
476 # @pc: the PC component of the instruction pointer
478 # @npc: the NPC component of the instruction pointer
482 { 'struct': 'CpuInfoSPARC', 'data': { 'pc': 'int', 'npc': 'int' } }
487 # Additional information about a virtual PPC CPU
489 # @nip: the instruction pointer
493 { 'struct': 'CpuInfoPPC', 'data': { 'nip': 'int' } }
498 # Additional information about a virtual MIPS CPU
500 # @PC: the instruction pointer
504 { 'struct': 'CpuInfoMIPS', 'data': { 'PC': 'int' } }
509 # Additional information about a virtual Tricore CPU
511 # @PC: the instruction pointer
515 { 'struct': 'CpuInfoTricore', 'data': { 'PC': 'int' } }
520 # No additional information is available about the virtual CPU
525 { 'struct': 'CpuInfoOther', 'data': { } }
530 # An enumeration of cpu states that can be assumed by a virtual
535 { 'enum': 'CpuS390State',
536 'prefix': 'S390_CPU_STATE',
537 'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
542 # Additional information about a virtual S390 CPU
544 # @cpu-state: the virtual CPU's state
548 { 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State' } }
553 # Returns a list of information about each virtual CPU.
555 # This command causes vCPU threads to exit to userspace, which causes
556 # a small interruption to guest CPU execution. This will have a negative
557 # impact on realtime guests and other latency sensitive guest workloads.
558 # It is recommended to use @query-cpus-fast instead of this command to
559 # avoid the vCPU interruption.
561 # Returns: a list of @CpuInfo for each virtual CPU
567 # -> { "execute": "query-cpus" }
573 # "qom_path":"/machine/unattached/device[0]",
582 # "qom_path":"/machine/unattached/device[2]",
590 # Notes: This interface is deprecated (since 2.12.0), and it is strongly
591 # recommended that you avoid using it. Use @query-cpus-fast to
592 # obtain information about virtual CPUs.
595 { 'command': 'query-cpus', 'returns': ['CpuInfo'] }
600 # Information about a virtual CPU
602 # @cpu-index: index of the virtual CPU
604 # @qom-path: path to the CPU object in the QOM tree
606 # @thread-id: ID of the underlying host thread
608 # @props: properties describing to which node/socket/core/thread
609 # virtual CPU belongs to, provided if supported by board
611 # @arch: architecture of the cpu, which determines which additional fields
617 { 'union': 'CpuInfoFast',
618 'base': {'cpu-index': 'int', 'qom-path': 'str',
619 'thread-id': 'int', '*props': 'CpuInstanceProperties',
620 'arch': 'CpuInfoArch' },
621 'discriminator': 'arch',
622 'data': { 'x86': 'CpuInfoOther',
623 'sparc': 'CpuInfoOther',
624 'ppc': 'CpuInfoOther',
625 'mips': 'CpuInfoOther',
626 'tricore': 'CpuInfoOther',
627 's390': 'CpuInfoS390',
628 'other': 'CpuInfoOther' } }
633 # Returns information about all virtual CPUs. This command does not
634 # incur a performance penalty and should be used in production
635 # instead of query-cpus.
637 # Returns: list of @CpuInfoFast
643 # -> { "execute": "query-cpus-fast" }
646 # "thread-id": 25627,
652 # "qom-path": "/machine/unattached/device[0]",
657 # "thread-id": 25628,
663 # "qom-path": "/machine/unattached/device[2]",
670 { 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
675 # Information about an iothread
677 # @id: the identifier of the iothread
679 # @thread-id: ID of the underlying host thread
681 # @poll-max-ns: maximum polling time in ns, 0 means polling is disabled
684 # @poll-grow: how many ns will be added to polling time, 0 means that it's not
685 # configured (since 2.9)
687 # @poll-shrink: how many ns will be removed from polling time, 0 means that
688 # it's not configured (since 2.9)
692 { 'struct': 'IOThreadInfo',
693 'data': {'id': 'str',
695 'poll-max-ns': 'int',
697 'poll-shrink': 'int' } }
702 # Returns a list of information about each iothread.
704 # Note: this list excludes the QEMU main loop thread, which is not declared
705 # using the -object iothread command-line option. It is always the main thread
708 # Returns: a list of @IOThreadInfo for each iothread
714 # -> { "execute": "query-iothreads" }
728 { 'command': 'query-iothreads', 'returns': ['IOThreadInfo'] }
733 # Information about the guest balloon device.
735 # @actual: the number of bytes the balloon currently contains
740 { 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
745 # Return information about the balloon device.
747 # Returns: @BalloonInfo on success
749 # If the balloon driver is enabled but not functional because the KVM
750 # kernel module cannot support it, KvmMissingCap
752 # If no balloon device is present, DeviceNotActive
758 # -> { "execute": "query-balloon" }
760 # "actual": 1073741824,
765 { 'command': 'query-balloon', 'returns': 'BalloonInfo' }
770 # Emitted when the guest changes the actual BALLOON level. This value is
771 # equivalent to the @actual field return by the 'query-balloon' command
773 # @actual: actual level of the guest memory balloon in bytes
775 # Note: this event is rate-limited.
781 # <- { "event": "BALLOON_CHANGE",
782 # "data": { "actual": 944766976 },
783 # "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
786 { 'event': 'BALLOON_CHANGE',
787 'data': { 'actual': 'int' } }
792 # A PCI device memory region
794 # @base: the starting address (guest physical)
796 # @limit: the ending address (guest physical)
800 { 'struct': 'PciMemoryRange', 'data': {'base': 'int', 'limit': 'int'} }
805 # Information about a PCI device I/O region.
807 # @bar: the index of the Base Address Register for this region
809 # @type: 'io' if the region is a PIO region
810 # 'memory' if the region is a MMIO region
814 # @prefetch: if @type is 'memory', true if the memory is prefetchable
816 # @mem_type_64: if @type is 'memory', true if the BAR is 64-bit
820 { 'struct': 'PciMemoryRegion',
821 'data': {'bar': 'int', 'type': 'str', 'address': 'int', 'size': 'int',
822 '*prefetch': 'bool', '*mem_type_64': 'bool' } }
827 # Information about a bus of a PCI Bridge device
829 # @number: primary bus interface number. This should be the number of the
830 # bus the device resides on.
832 # @secondary: secondary bus interface number. This is the number of the
833 # main bus for the bridge
835 # @subordinate: This is the highest number bus that resides below the
838 # @io_range: The PIO range for all devices on this bridge
840 # @memory_range: The MMIO range for all devices on this bridge
842 # @prefetchable_range: The range of prefetchable MMIO for all devices on
847 { 'struct': 'PciBusInfo',
848 'data': {'number': 'int', 'secondary': 'int', 'subordinate': 'int',
849 'io_range': 'PciMemoryRange',
850 'memory_range': 'PciMemoryRange',
851 'prefetchable_range': 'PciMemoryRange' } }
856 # Information about a PCI Bridge device
858 # @bus: information about the bus the device resides on
860 # @devices: a list of @PciDeviceInfo for each device on this bridge
864 { 'struct': 'PciBridgeInfo',
865 'data': {'bus': 'PciBusInfo', '*devices': ['PciDeviceInfo']} }
870 # Information about the Class of a PCI device
872 # @desc: a string description of the device's class
874 # @class: the class code of the device
878 { 'struct': 'PciDeviceClass',
879 'data': {'*desc': 'str', 'class': 'int'} }
884 # Information about the Id of a PCI device
886 # @device: the PCI device id
888 # @vendor: the PCI vendor id
892 { 'struct': 'PciDeviceId',
893 'data': {'device': 'int', 'vendor': 'int'} }
898 # Information about a PCI device
900 # @bus: the bus number of the device
902 # @slot: the slot the device is located in
904 # @function: the function of the slot used by the device
906 # @class_info: the class of the device
908 # @id: the PCI device id
910 # @irq: if an IRQ is assigned to the device, the IRQ number
912 # @qdev_id: the device name of the PCI device
914 # @pci_bridge: if the device is a PCI bridge, the bridge information
916 # @regions: a list of the PCI I/O regions associated with the device
918 # Notes: the contents of @class_info.desc are not stable and should only be
919 # treated as informational.
923 { 'struct': 'PciDeviceInfo',
924 'data': {'bus': 'int', 'slot': 'int', 'function': 'int',
925 'class_info': 'PciDeviceClass', 'id': 'PciDeviceId',
926 '*irq': 'int', 'qdev_id': 'str', '*pci_bridge': 'PciBridgeInfo',
927 'regions': ['PciMemoryRegion']} }
932 # Information about a PCI bus
934 # @bus: the bus index
936 # @devices: a list of devices on this bus
940 { 'struct': 'PciInfo', 'data': {'bus': 'int', 'devices': ['PciDeviceInfo']} }
945 # Return information about the PCI bus topology of the guest.
947 # Returns: a list of @PciInfo for each PCI bus. Each bus is
948 # represented by a json-object, which has a key with a json-array of
949 # all PCI devices attached to it. Each device is represented by a
956 # -> { "execute": "query-pci" }
967 # "desc": "Host bridge"
983 # "desc": "ISA bridge"
999 # "desc": "IDE controller"
1021 # "desc": "VGA controller"
1031 # "mem_type_64": false,
1034 # "address": 4026531840,
1038 # "prefetch": false,
1039 # "mem_type_64": false,
1042 # "address": 4060086272,
1046 # "prefetch": false,
1047 # "mem_type_64": false,
1062 # "desc": "RAM controller"
1083 # Note: This example has been shortened as the real response is too long.
1086 { 'command': 'query-pci', 'returns': ['PciInfo'] }
1091 # This command will cause the QEMU process to exit gracefully. While every
1092 # attempt is made to send the QMP response before terminating, this is not
1093 # guaranteed. When using this interface, a premature EOF would not be
1100 # -> { "execute": "quit" }
1101 # <- { "return": {} }
1103 { 'command': 'quit' }
1108 # Stop all guest VCPU execution.
1112 # Notes: This function will succeed even if the guest is already in the stopped
1113 # state. In "inmigrate" state, it will ensure that the guest
1114 # remains paused once migration finishes, as if the -S option was
1115 # passed on the command line.
1119 # -> { "execute": "stop" }
1120 # <- { "return": {} }
1123 { 'command': 'stop' }
1128 # Performs a hard reset of a guest.
1134 # -> { "execute": "system_reset" }
1135 # <- { "return": {} }
1138 { 'command': 'system_reset' }
1141 # @system_powerdown:
1143 # Requests that a guest perform a powerdown operation.
1147 # Notes: A guest may or may not respond to this command. This command
1148 # returning does not indicate that a guest has accepted the request or
1149 # that it has shut down. Many guests will respond to this command by
1150 # prompting the user in some way.
1153 # -> { "execute": "system_powerdown" }
1154 # <- { "return": {} }
1157 { 'command': 'system_powerdown' }
1162 # Adds CPU with specified ID
1164 # @id: ID of CPU to be created, valid values [0..max_cpus)
1166 # Returns: Nothing on success
1172 # -> { "execute": "cpu-add", "arguments": { "id": 2 } }
1173 # <- { "return": {} }
1176 { 'command': 'cpu-add', 'data': {'id': 'int'} }
1181 # Save a portion of guest memory to a file.
1183 # @val: the virtual address of the guest to start from
1185 # @size: the size of memory region to save
1187 # @filename: the file to save the memory to as binary data
1189 # @cpu-index: the index of the virtual CPU to use for translating the
1190 # virtual address (defaults to CPU 0)
1192 # Returns: Nothing on success
1196 # Notes: Errors were not reliably returned until 1.1
1200 # -> { "execute": "memsave",
1201 # "arguments": { "val": 10,
1203 # "filename": "/tmp/virtual-mem-dump" } }
1204 # <- { "return": {} }
1207 { 'command': 'memsave',
1208 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
1213 # Save a portion of guest physical memory to a file.
1215 # @val: the physical address of the guest to start from
1217 # @size: the size of memory region to save
1219 # @filename: the file to save the memory to as binary data
1221 # Returns: Nothing on success
1225 # Notes: Errors were not reliably returned until 1.1
1229 # -> { "execute": "pmemsave",
1230 # "arguments": { "val": 10,
1232 # "filename": "/tmp/physical-mem-dump" } }
1233 # <- { "return": {} }
1236 { 'command': 'pmemsave',
1237 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
1242 # Resume guest VCPU execution.
1246 # Returns: If successful, nothing
1248 # Notes: This command will succeed if the guest is currently running. It
1249 # will also succeed if the guest is in the "inmigrate" state; in
1250 # this case, the effect of the command is to make sure the guest
1251 # starts once migration finishes, removing the effect of the -S
1252 # command line option if it was passed.
1256 # -> { "execute": "cont" }
1257 # <- { "return": {} }
1260 { 'command': 'cont' }
1265 # Wakeup guest from suspend. Does nothing in case the guest isn't suspended.
1273 # -> { "execute": "system_wakeup" }
1274 # <- { "return": {} }
1277 { 'command': 'system_wakeup' }
1282 # Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64).
1283 # The command fails when the guest doesn't support injecting.
1285 # Returns: If successful, nothing
1289 # Note: prior to 2.1, this command was only supported for x86 and s390 VMs
1293 # -> { "execute": "inject-nmi" }
1294 # <- { "return": {} }
1297 { 'command': 'inject-nmi' }
1302 # Request the balloon driver to change its balloon size.
1304 # @value: the target size of the balloon in bytes
1306 # Returns: Nothing on success
1307 # If the balloon driver is enabled but not functional because the KVM
1308 # kernel module cannot support it, KvmMissingCap
1309 # If no balloon device is present, DeviceNotActive
1311 # Notes: This command just issues a request to the guest. When it returns,
1312 # the balloon size may not have changed. A guest can change the balloon
1313 # size independent of this command.
1319 # -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1320 # <- { "return": {} }
1323 { 'command': 'balloon', 'data': {'value': 'int'} }
1326 # @human-monitor-command:
1328 # Execute a command on the human monitor and return the output.
1330 # @command-line: the command to execute in the human monitor
1332 # @cpu-index: The CPU to use for commands that require an implicit CPU
1334 # Returns: the output of the command as a string
1338 # Notes: This command only exists as a stop-gap. Its use is highly
1339 # discouraged. The semantics of this command are not
1340 # guaranteed: this means that command names, arguments and
1341 # responses can change or be removed at ANY time. Applications
1342 # that rely on long term stability guarantees should NOT
1345 # Known limitations:
1347 # * This command is stateless, this means that commands that depend
1348 # on state information (such as getfd) might not work
1350 # * Commands that prompt the user for data don't currently work
1354 # -> { "execute": "human-monitor-command",
1355 # "arguments": { "command-line": "info kvm" } }
1356 # <- { "return": "kvm support: enabled\r\n" }
1359 { 'command': 'human-monitor-command',
1360 'data': {'command-line': 'str', '*cpu-index': 'int'},
1364 # @ObjectPropertyInfo:
1366 # @name: the name of the property
1368 # @type: the type of the property. This will typically come in one of four
1371 # 1) A primitive type such as 'u8', 'u16', 'bool', 'str', or 'double'.
1372 # These types are mapped to the appropriate JSON type.
1374 # 2) A child type in the form 'child<subtype>' where subtype is a qdev
1375 # device type name. Child properties create the composition tree.
1377 # 3) A link type in the form 'link<subtype>' where subtype is a qdev
1378 # device type name. Link properties form the device model graph.
1382 { 'struct': 'ObjectPropertyInfo',
1383 'data': { 'name': 'str', 'type': 'str' } }
1388 # This command will list any properties of a object given a path in the object
1391 # @path: the path within the object model. See @qom-get for a description of
1394 # Returns: a list of @ObjectPropertyInfo that describe the properties of the
1399 { 'command': 'qom-list',
1400 'data': { 'path': 'str' },
1401 'returns': [ 'ObjectPropertyInfo' ] }
1406 # This command will get a property from a object model path and return the
1409 # @path: The path within the object model. There are two forms of supported
1410 # paths--absolute and partial paths.
1412 # Absolute paths are derived from the root object and can follow child<>
1413 # or link<> properties. Since they can follow link<> properties, they
1414 # can be arbitrarily long. Absolute paths look like absolute filenames
1415 # and are prefixed with a leading slash.
1417 # Partial paths look like relative filenames. They do not begin
1418 # with a prefix. The matching rules for partial paths are subtle but
1419 # designed to make specifying objects easy. At each level of the
1420 # composition tree, the partial path is matched as an absolute path.
1421 # The first match is not returned. At least two matches are searched
1422 # for. A successful result is only returned if only one match is
1423 # found. If more than one match is found, a flag is return to
1424 # indicate that the match was ambiguous.
1426 # @property: The property name to read
1428 # Returns: The property value. The type depends on the property
1429 # type. child<> and link<> properties are returned as #str
1430 # pathnames. All integer property types (u8, u16, etc) are
1435 { 'command': 'qom-get',
1436 'data': { 'path': 'str', 'property': 'str' },
1442 # This command will set a property from a object model path.
1444 # @path: see @qom-get for a description of this parameter
1446 # @property: the property name to set
1448 # @value: a value who's type is appropriate for the property type. See @qom-get
1449 # for a description of type mapping.
1453 { 'command': 'qom-set',
1454 'data': { 'path': 'str', 'property': 'str', 'value': 'any' } }
1459 # This command is multiple commands multiplexed together.
1461 # @device: This is normally the name of a block device but it may also be 'vnc'.
1462 # when it's 'vnc', then sub command depends on @target
1464 # @target: If @device is a block device, then this is the new filename.
1465 # If @device is 'vnc', then if the value 'password' selects the vnc
1466 # change password command. Otherwise, this specifies a new server URI
1467 # address to listen to for VNC connections.
1469 # @arg: If @device is a block device, then this is an optional format to open
1471 # If @device is 'vnc' and @target is 'password', this is the new VNC
1472 # password to set. See change-vnc-password for additional notes.
1474 # Returns: Nothing on success.
1475 # If @device is not a valid block device, DeviceNotFound
1477 # Notes: This interface is deprecated, and it is strongly recommended that you
1478 # avoid using it. For changing block devices, use
1479 # blockdev-change-medium; for changing VNC parameters, use
1480 # change-vnc-password.
1486 # 1. Change a removable medium
1488 # -> { "execute": "change",
1489 # "arguments": { "device": "ide1-cd0",
1490 # "target": "/srv/images/Fedora-12-x86_64-DVD.iso" } }
1491 # <- { "return": {} }
1493 # 2. Change VNC password
1495 # -> { "execute": "change",
1496 # "arguments": { "device": "vnc", "target": "password",
1497 # "arg": "foobar1" } }
1498 # <- { "return": {} }
1501 { 'command': 'change',
1502 'data': {'device': 'str', 'target': 'str', '*arg': 'str'} }
1507 # This structure describes a search result from @qom-list-types
1509 # @name: the type name found in the search
1511 # @abstract: the type is abstract and can't be directly instantiated.
1512 # Omitted if false. (since 2.10)
1514 # @parent: Name of parent type, if any (since 2.10)
1518 { 'struct': 'ObjectTypeInfo',
1519 'data': { 'name': 'str', '*abstract': 'bool', '*parent': 'str' } }
1524 # This command will return a list of types given search parameters
1526 # @implements: if specified, only return types that implement this type name
1528 # @abstract: if true, include abstract types in the results
1530 # Returns: a list of @ObjectTypeInfo or an empty list if no results are found
1534 { 'command': 'qom-list-types',
1535 'data': { '*implements': 'str', '*abstract': 'bool' },
1536 'returns': [ 'ObjectTypeInfo' ] }
1539 # @DevicePropertyInfo:
1541 # Information about device properties.
1543 # @name: the name of the property
1544 # @type: the typename of the property
1545 # @description: if specified, the description of the property.
1550 { 'struct': 'DevicePropertyInfo',
1551 'data': { 'name': 'str', 'type': 'str', '*description': 'str' } }
1554 # @device-list-properties:
1556 # List properties associated with a device.
1558 # @typename: the type name of a device
1560 # Returns: a list of DevicePropertyInfo describing a devices properties
1564 { 'command': 'device-list-properties',
1565 'data': { 'typename': 'str'},
1566 'returns': [ 'DevicePropertyInfo' ] }
1569 # @xen-set-global-dirty-log:
1571 # Enable or disable the global dirty log mode.
1573 # @enable: true to enable, false to disable.
1581 # -> { "execute": "xen-set-global-dirty-log",
1582 # "arguments": { "enable": true } }
1583 # <- { "return": {} }
1586 { 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1591 # @driver: the name of the new device's driver
1593 # @bus: the device's parent bus (device tree path)
1595 # @id: the device's ID, must be unique
1597 # Additional arguments depend on the type.
1602 # 1. For detailed information about this command, please refer to the
1603 # 'docs/qdev-device-use.txt' file.
1605 # 2. It's possible to list device properties by running QEMU with the
1606 # "-device DEVICE,help" command-line argument, where DEVICE is the
1611 # -> { "execute": "device_add",
1612 # "arguments": { "driver": "e1000", "id": "net1",
1614 # "mac": "52:54:00:12:34:56" } }
1615 # <- { "return": {} }
1617 # TODO: This command effectively bypasses QAPI completely due to its
1618 # "additional arguments" business. It shouldn't have been added to
1619 # the schema in this form. It should be qapified properly, or
1620 # replaced by a properly qapified command.
1624 { 'command': 'device_add',
1625 'data': {'driver': 'str', '*bus': 'str', '*id': 'str'},
1626 'gen': false } # so we can get the additional arguments
1631 # Remove a device from a guest
1633 # @id: the device's ID or QOM path
1635 # Returns: Nothing on success
1636 # If @id is not a valid device, DeviceNotFound
1638 # Notes: When this command completes, the device may not be removed from the
1639 # guest. Hot removal is an operation that requires guest cooperation.
1640 # This command merely requests that the guest begin the hot removal
1641 # process. Completion of the device removal process is signaled with a
1642 # DEVICE_DELETED event. Guest reset will automatically complete removal
1649 # -> { "execute": "device_del",
1650 # "arguments": { "id": "net1" } }
1651 # <- { "return": {} }
1653 # -> { "execute": "device_del",
1654 # "arguments": { "id": "/machine/peripheral-anon/device[0]" } }
1655 # <- { "return": {} }
1658 { 'command': 'device_del', 'data': {'id': 'str'} }
1663 # Emitted whenever the device removal completion is acknowledged by the guest.
1664 # At this point, it's safe to reuse the specified device ID. Device removal can
1665 # be initiated by the guest or by HMP/QMP commands.
1667 # @device: device name
1669 # @path: device path
1675 # <- { "event": "DEVICE_DELETED",
1676 # "data": { "device": "virtio-net-pci-0",
1677 # "path": "/machine/peripheral/virtio-net-pci-0" },
1678 # "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1681 { 'event': 'DEVICE_DELETED',
1682 'data': { '*device': 'str', 'path': 'str' } }
1685 # @DumpGuestMemoryFormat:
1687 # An enumeration of guest-memory-dump's format.
1691 # @kdump-zlib: kdump-compressed format with zlib-compressed
1693 # @kdump-lzo: kdump-compressed format with lzo-compressed
1695 # @kdump-snappy: kdump-compressed format with snappy-compressed
1699 { 'enum': 'DumpGuestMemoryFormat',
1700 'data': [ 'elf', 'kdump-zlib', 'kdump-lzo', 'kdump-snappy' ] }
1703 # @dump-guest-memory:
1705 # Dump guest's memory to vmcore. It is a synchronous operation that can take
1706 # very long depending on the amount of guest memory.
1708 # @paging: if true, do paging to get guest's memory mapping. This allows
1709 # using gdb to process the core file.
1711 # IMPORTANT: this option can make QEMU allocate several gigabytes
1712 # of RAM. This can happen for a large guest, or a
1713 # malicious guest pretending to be large.
1715 # Also, paging=true has the following limitations:
1717 # 1. The guest may be in a catastrophic state or can have corrupted
1718 # memory, which cannot be trusted
1719 # 2. The guest can be in real-mode even if paging is enabled. For
1720 # example, the guest uses ACPI to sleep, and ACPI sleep state
1722 # 3. Currently only supported on i386 and x86_64.
1724 # @protocol: the filename or file descriptor of the vmcore. The supported
1727 # 1. file: the protocol starts with "file:", and the following
1728 # string is the file's path.
1729 # 2. fd: the protocol starts with "fd:", and the following string
1732 # @detach: if true, QMP will return immediately rather than
1733 # waiting for the dump to finish. The user can track progress
1734 # using "query-dump". (since 2.6).
1736 # @begin: if specified, the starting physical address.
1738 # @length: if specified, the memory size, in bytes. If you don't
1739 # want to dump all guest's memory, please specify the start @begin
1742 # @format: if specified, the format of guest memory dump. But non-elf
1743 # format is conflict with paging and filter, ie. @paging, @begin and
1744 # @length is not allowed to be specified with non-elf @format at the
1745 # same time (since 2.0)
1747 # Note: All boolean arguments default to false
1749 # Returns: nothing on success
1755 # -> { "execute": "dump-guest-memory",
1756 # "arguments": { "protocol": "fd:dump" } }
1757 # <- { "return": {} }
1760 { 'command': 'dump-guest-memory',
1761 'data': { 'paging': 'bool', 'protocol': 'str', '*detach': 'bool',
1762 '*begin': 'int', '*length': 'int',
1763 '*format': 'DumpGuestMemoryFormat'} }
1768 # Describe the status of a long-running background guest memory dump.
1770 # @none: no dump-guest-memory has started yet.
1772 # @active: there is one dump running in background.
1774 # @completed: the last dump has finished successfully.
1776 # @failed: the last dump has failed.
1780 { 'enum': 'DumpStatus',
1781 'data': [ 'none', 'active', 'completed', 'failed' ] }
1786 # The result format for 'query-dump'.
1788 # @status: enum of @DumpStatus, which shows current dump status
1790 # @completed: bytes written in latest dump (uncompressed)
1792 # @total: total bytes to be written in latest dump (uncompressed)
1796 { 'struct': 'DumpQueryResult',
1797 'data': { 'status': 'DumpStatus',
1804 # Query latest dump status.
1806 # Returns: A @DumpStatus object showing the dump status.
1812 # -> { "execute": "query-dump" }
1813 # <- { "return": { "status": "active", "completed": 1024000,
1814 # "total": 2048000 } }
1817 { 'command': 'query-dump', 'returns': 'DumpQueryResult' }
1822 # Emitted when background dump has completed
1824 # @result: DumpQueryResult type described in qapi-schema.json.
1826 # @error: human-readable error string that provides
1827 # hint on why dump failed. Only presents on failure. The
1828 # user should not try to interpret the error string.
1834 # { "event": "DUMP_COMPLETED",
1835 # "data": {"result": {"total": 1090650112, "status": "completed",
1836 # "completed": 1090650112} } }
1839 { 'event': 'DUMP_COMPLETED' ,
1840 'data': { 'result': 'DumpQueryResult', '*error': 'str' } }
1843 # @DumpGuestMemoryCapability:
1845 # A list of the available formats for dump-guest-memory
1849 { 'struct': 'DumpGuestMemoryCapability',
1851 'formats': ['DumpGuestMemoryFormat'] } }
1854 # @query-dump-guest-memory-capability:
1856 # Returns the available formats for dump-guest-memory
1858 # Returns: A @DumpGuestMemoryCapability object listing available formats for
1865 # -> { "execute": "query-dump-guest-memory-capability" }
1866 # <- { "return": { "formats":
1867 # ["elf", "kdump-zlib", "kdump-lzo", "kdump-snappy"] }
1870 { 'command': 'query-dump-guest-memory-capability',
1871 'returns': 'DumpGuestMemoryCapability' }
1876 # Dump guest's storage keys
1878 # @filename: the path to the file to dump to
1880 # This command is only supported on s390 architecture.
1886 # -> { "execute": "dump-skeys",
1887 # "arguments": { "filename": "/tmp/skeys" } }
1888 # <- { "return": {} }
1891 { 'command': 'dump-skeys',
1892 'data': { 'filename': 'str' } }
1897 # Create a QOM object.
1899 # @qom-type: the class name for the object to be created
1901 # @id: the name of the new object
1903 # @props: a dictionary of properties to be passed to the backend
1905 # Returns: Nothing on success
1906 # Error if @qom-type is not a valid class name
1912 # -> { "execute": "object-add",
1913 # "arguments": { "qom-type": "rng-random", "id": "rng1",
1914 # "props": { "filename": "/dev/hwrng" } } }
1915 # <- { "return": {} }
1918 { 'command': 'object-add',
1919 'data': {'qom-type': 'str', 'id': 'str', '*props': 'any'} }
1924 # Remove a QOM object.
1926 # @id: the name of the QOM object to remove
1928 # Returns: Nothing on success
1929 # Error if @id is not a valid id for a QOM object
1935 # -> { "execute": "object-del", "arguments": { "id": "rng1" } }
1936 # <- { "return": {} }
1939 { 'command': 'object-del', 'data': {'id': 'str'} }
1944 # Receive a file descriptor via SCM rights and assign it a name
1946 # @fdname: file descriptor name
1948 # Returns: Nothing on success
1952 # Notes: If @fdname already exists, the file descriptor assigned to
1953 # it will be closed and replaced by the received file
1956 # The 'closefd' command can be used to explicitly close the
1957 # file descriptor when it is no longer needed.
1961 # -> { "execute": "getfd", "arguments": { "fdname": "fd1" } }
1962 # <- { "return": {} }
1965 { 'command': 'getfd', 'data': {'fdname': 'str'} }
1970 # Close a file descriptor previously passed via SCM rights
1972 # @fdname: file descriptor name
1974 # Returns: Nothing on success
1980 # -> { "execute": "closefd", "arguments": { "fdname": "fd1" } }
1981 # <- { "return": {} }
1984 { 'command': 'closefd', 'data': {'fdname': 'str'} }
1989 # Information describing a machine.
1991 # @name: the name of the machine
1993 # @alias: an alias for the machine name
1995 # @is-default: whether the machine is default
1997 # @cpu-max: maximum number of CPUs supported by the machine type
2000 # @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7.0)
2004 { 'struct': 'MachineInfo',
2005 'data': { 'name': 'str', '*alias': 'str',
2006 '*is-default': 'bool', 'cpu-max': 'int',
2007 'hotpluggable-cpus': 'bool'} }
2012 # Return a list of supported machines
2014 # Returns: a list of MachineInfo
2018 { 'command': 'query-machines', 'returns': ['MachineInfo'] }
2021 # @CpuDefinitionInfo:
2023 # Virtual CPU definition.
2025 # @name: the name of the CPU definition
2027 # @migration-safe: whether a CPU definition can be safely used for
2028 # migration in combination with a QEMU compatibility machine
2029 # when migrating between different QMU versions and between
2030 # hosts with different sets of (hardware or software)
2031 # capabilities. If not provided, information is not available
2032 # and callers should not assume the CPU definition to be
2033 # migration-safe. (since 2.8)
2035 # @static: whether a CPU definition is static and will not change depending on
2036 # QEMU version, machine type, machine options and accelerator options.
2037 # A static model is always migration-safe. (since 2.8)
2039 # @unavailable-features: List of properties that prevent
2040 # the CPU model from running in the current
2042 # @typename: Type name that can be used as argument to @device-list-properties,
2043 # to introspect properties configurable using -cpu or -global.
2046 # @unavailable-features is a list of QOM property names that
2047 # represent CPU model attributes that prevent the CPU from running.
2048 # If the QOM property is read-only, that means there's no known
2049 # way to make the CPU model run in the current host. Implementations
2050 # that choose not to provide specific information return the
2051 # property name "type".
2052 # If the property is read-write, it means that it MAY be possible
2053 # to run the CPU model in the current host if that property is
2054 # changed. Management software can use it as hints to suggest or
2055 # choose an alternative for the user, or just to generate meaningful
2056 # error messages explaining why the CPU model can't be used.
2057 # If @unavailable-features is an empty list, the CPU model is
2058 # runnable using the current host and machine-type.
2059 # If @unavailable-features is not present, runnability
2060 # information for the CPU is not available.
2064 { 'struct': 'CpuDefinitionInfo',
2065 'data': { 'name': 'str', '*migration-safe': 'bool', 'static': 'bool',
2066 '*unavailable-features': [ 'str' ], 'typename': 'str' } }
2071 # Actual memory information in bytes.
2073 # @base-memory: size of "base" memory specified with command line
2076 # @plugged-memory: size of memory that can be hot-unplugged. This field
2077 # is omitted if target doesn't support memory hotplug
2078 # (i.e. CONFIG_MEM_HOTPLUG not defined on build time).
2082 { 'struct': 'MemoryInfo',
2083 'data' : { 'base-memory': 'size', '*plugged-memory': 'size' } }
2086 # @query-memory-size-summary:
2088 # Return the amount of initially allocated and present hotpluggable (if
2089 # enabled) memory in bytes.
2093 # -> { "execute": "query-memory-size-summary" }
2094 # <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
2098 { 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
2101 # @query-cpu-definitions:
2103 # Return a list of supported virtual CPU definitions
2105 # Returns: a list of CpuDefInfo
2109 { 'command': 'query-cpu-definitions', 'returns': ['CpuDefinitionInfo'] }
2114 # Virtual CPU model.
2116 # A CPU model consists of the name of a CPU definition, to which
2117 # delta changes are applied (e.g. features added/removed). Most magic values
2118 # that an architecture might require should be hidden behind the name.
2119 # However, if required, architectures can expose relevant properties.
2121 # @name: the name of the CPU definition the model is based on
2122 # @props: a dictionary of QOM properties to be applied
2126 { 'struct': 'CpuModelInfo',
2127 'data': { 'name': 'str',
2131 # @CpuModelExpansionType:
2133 # An enumeration of CPU model expansion types.
2135 # @static: Expand to a static CPU model, a combination of a static base
2136 # model name and property delta changes. As the static base model will
2137 # never change, the expanded CPU model will be the same, independent of
2138 # independent of QEMU version, machine type, machine options, and
2139 # accelerator options. Therefore, the resulting model can be used by
2140 # tooling without having to specify a compatibility machine - e.g. when
2141 # displaying the "host" model. static CPU models are migration-safe.
2143 # @full: Expand all properties. The produced model is not guaranteed to be
2144 # migration-safe, but allows tooling to get an insight and work with
2147 # Note: When a non-migration-safe CPU model is expanded in static mode, some
2148 # features enabled by the CPU model may be omitted, because they can't be
2149 # implemented by a static CPU model definition (e.g. cache info passthrough and
2150 # PMU passthrough in x86). If you need an accurate representation of the
2151 # features enabled by a non-migration-safe CPU model, use @full. If you need a
2152 # static representation that will keep ABI compatibility even when changing QEMU
2153 # version or machine-type, use @static (but keep in mind that some features may
2158 { 'enum': 'CpuModelExpansionType',
2159 'data': [ 'static', 'full' ] }
2163 # @CpuModelExpansionInfo:
2165 # The result of a cpu model expansion.
2167 # @model: the expanded CpuModelInfo.
2171 { 'struct': 'CpuModelExpansionInfo',
2172 'data': { 'model': 'CpuModelInfo' } }
2176 # @query-cpu-model-expansion:
2178 # Expands a given CPU model (or a combination of CPU model + additional options)
2179 # to different granularities, allowing tooling to get an understanding what a
2180 # specific CPU model looks like in QEMU under a certain configuration.
2182 # This interface can be used to query the "host" CPU model.
2184 # The data returned by this command may be affected by:
2186 # * QEMU version: CPU models may look different depending on the QEMU version.
2187 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2188 # * machine-type: CPU model may look different depending on the machine-type.
2189 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2190 # * machine options (including accelerator): in some architectures, CPU models
2191 # may look different depending on machine and accelerator options. (Except for
2192 # CPU models reported as "static" in query-cpu-definitions.)
2193 # * "-cpu" arguments and global properties: arguments to the -cpu option and
2194 # global properties may affect expansion of CPU models. Using
2195 # query-cpu-model-expansion while using these is not advised.
2197 # Some architectures may not support all expansion types. s390x supports
2198 # "full" and "static".
2200 # Returns: a CpuModelExpansionInfo. Returns an error if expanding CPU models is
2201 # not supported, if the model cannot be expanded, if the model contains
2202 # an unknown CPU definition name, unknown properties or properties
2203 # with a wrong type. Also returns an error if an expansion type is
2208 { 'command': 'query-cpu-model-expansion',
2209 'data': { 'type': 'CpuModelExpansionType',
2210 'model': 'CpuModelInfo' },
2211 'returns': 'CpuModelExpansionInfo' }
2214 # @CpuModelCompareResult:
2216 # An enumeration of CPU model comparison results. The result is usually
2217 # calculated using e.g. CPU features or CPU generations.
2219 # @incompatible: If model A is incompatible to model B, model A is not
2220 # guaranteed to run where model B runs and the other way around.
2222 # @identical: If model A is identical to model B, model A is guaranteed to run
2223 # where model B runs and the other way around.
2225 # @superset: If model A is a superset of model B, model B is guaranteed to run
2226 # where model A runs. There are no guarantees about the other way.
2228 # @subset: If model A is a subset of model B, model A is guaranteed to run
2229 # where model B runs. There are no guarantees about the other way.
2233 { 'enum': 'CpuModelCompareResult',
2234 'data': [ 'incompatible', 'identical', 'superset', 'subset' ] }
2237 # @CpuModelCompareInfo:
2239 # The result of a CPU model comparison.
2241 # @result: The result of the compare operation.
2242 # @responsible-properties: List of properties that led to the comparison result
2243 # not being identical.
2245 # @responsible-properties is a list of QOM property names that led to
2246 # both CPUs not being detected as identical. For identical models, this
2248 # If a QOM property is read-only, that means there's no known way to make the
2249 # CPU models identical. If the special property name "type" is included, the
2250 # models are by definition not identical and cannot be made identical.
2254 { 'struct': 'CpuModelCompareInfo',
2255 'data': {'result': 'CpuModelCompareResult',
2256 'responsible-properties': ['str']
2261 # @query-cpu-model-comparison:
2263 # Compares two CPU models, returning how they compare in a specific
2264 # configuration. The results indicates how both models compare regarding
2265 # runnability. This result can be used by tooling to make decisions if a
2266 # certain CPU model will run in a certain configuration or if a compatible
2267 # CPU model has to be created by baselining.
2269 # Usually, a CPU model is compared against the maximum possible CPU model
2270 # of a certain configuration (e.g. the "host" model for KVM). If that CPU
2271 # model is identical or a subset, it will run in that configuration.
2273 # The result returned by this command may be affected by:
2275 # * QEMU version: CPU models may look different depending on the QEMU version.
2276 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2277 # * machine-type: CPU model may look different depending on the machine-type.
2278 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2279 # * machine options (including accelerator): in some architectures, CPU models
2280 # may look different depending on machine and accelerator options. (Except for
2281 # CPU models reported as "static" in query-cpu-definitions.)
2282 # * "-cpu" arguments and global properties: arguments to the -cpu option and
2283 # global properties may affect expansion of CPU models. Using
2284 # query-cpu-model-expansion while using these is not advised.
2286 # Some architectures may not support comparing CPU models. s390x supports
2287 # comparing CPU models.
2289 # Returns: a CpuModelBaselineInfo. Returns an error if comparing CPU models is
2290 # not supported, if a model cannot be used, if a model contains
2291 # an unknown cpu definition name, unknown properties or properties
2296 { 'command': 'query-cpu-model-comparison',
2297 'data': { 'modela': 'CpuModelInfo', 'modelb': 'CpuModelInfo' },
2298 'returns': 'CpuModelCompareInfo' }
2301 # @CpuModelBaselineInfo:
2303 # The result of a CPU model baseline.
2305 # @model: the baselined CpuModelInfo.
2309 { 'struct': 'CpuModelBaselineInfo',
2310 'data': { 'model': 'CpuModelInfo' } }
2313 # @query-cpu-model-baseline:
2315 # Baseline two CPU models, creating a compatible third model. The created
2316 # model will always be a static, migration-safe CPU model (see "static"
2317 # CPU model expansion for details).
2319 # This interface can be used by tooling to create a compatible CPU model out
2320 # two CPU models. The created CPU model will be identical to or a subset of
2321 # both CPU models when comparing them. Therefore, the created CPU model is
2322 # guaranteed to run where the given CPU models run.
2324 # The result returned by this command may be affected by:
2326 # * QEMU version: CPU models may look different depending on the QEMU version.
2327 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2328 # * machine-type: CPU model may look different depending on the machine-type.
2329 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2330 # * machine options (including accelerator): in some architectures, CPU models
2331 # may look different depending on machine and accelerator options. (Except for
2332 # CPU models reported as "static" in query-cpu-definitions.)
2333 # * "-cpu" arguments and global properties: arguments to the -cpu option and
2334 # global properties may affect expansion of CPU models. Using
2335 # query-cpu-model-expansion while using these is not advised.
2337 # Some architectures may not support baselining CPU models. s390x supports
2338 # baselining CPU models.
2340 # Returns: a CpuModelBaselineInfo. Returns an error if baselining CPU models is
2341 # not supported, if a model cannot be used, if a model contains
2342 # an unknown cpu definition name, unknown properties or properties
2347 { 'command': 'query-cpu-model-baseline',
2348 'data': { 'modela': 'CpuModelInfo',
2349 'modelb': 'CpuModelInfo' },
2350 'returns': 'CpuModelBaselineInfo' }
2355 # Information about a file descriptor that was added to an fd set.
2357 # @fdset-id: The ID of the fd set that @fd was added to.
2359 # @fd: The file descriptor that was received via SCM rights and
2360 # added to the fd set.
2364 { 'struct': 'AddfdInfo', 'data': {'fdset-id': 'int', 'fd': 'int'} }
2369 # Add a file descriptor, that was passed via SCM rights, to an fd set.
2371 # @fdset-id: The ID of the fd set to add the file descriptor to.
2373 # @opaque: A free-form string that can be used to describe the fd.
2375 # Returns: @AddfdInfo on success
2377 # If file descriptor was not received, FdNotSupplied
2379 # If @fdset-id is a negative value, InvalidParameterValue
2381 # Notes: The list of fd sets is shared by all monitor connections.
2383 # If @fdset-id is not specified, a new fd set will be created.
2389 # -> { "execute": "add-fd", "arguments": { "fdset-id": 1 } }
2390 # <- { "return": { "fdset-id": 1, "fd": 3 } }
2393 { 'command': 'add-fd', 'data': {'*fdset-id': 'int', '*opaque': 'str'},
2394 'returns': 'AddfdInfo' }
2399 # Remove a file descriptor from an fd set.
2401 # @fdset-id: The ID of the fd set that the file descriptor belongs to.
2403 # @fd: The file descriptor that is to be removed.
2405 # Returns: Nothing on success
2406 # If @fdset-id or @fd is not found, FdNotFound
2410 # Notes: The list of fd sets is shared by all monitor connections.
2412 # If @fd is not specified, all file descriptors in @fdset-id
2417 # -> { "execute": "remove-fd", "arguments": { "fdset-id": 1, "fd": 3 } }
2418 # <- { "return": {} }
2421 { 'command': 'remove-fd', 'data': {'fdset-id': 'int', '*fd': 'int'} }
2426 # Information about a file descriptor that belongs to an fd set.
2428 # @fd: The file descriptor value.
2430 # @opaque: A free-form string that can be used to describe the fd.
2434 { 'struct': 'FdsetFdInfo',
2435 'data': {'fd': 'int', '*opaque': 'str'} }
2440 # Information about an fd set.
2442 # @fdset-id: The ID of the fd set.
2444 # @fds: A list of file descriptors that belong to this fd set.
2448 { 'struct': 'FdsetInfo',
2449 'data': {'fdset-id': 'int', 'fds': ['FdsetFdInfo']} }
2454 # Return information describing all fd sets.
2456 # Returns: A list of @FdsetInfo
2460 # Note: The list of fd sets is shared by all monitor connections.
2464 # -> { "execute": "query-fdsets" }
2470 # "opaque": "rdonly:/path/to/file"
2474 # "opaque": "rdwr:/path/to/file"
2494 { 'command': 'query-fdsets', 'returns': ['FdsetInfo'] }
2499 # Information describing the QEMU target.
2501 # @arch: the target architecture (eg "x86_64", "i386", etc)
2505 { 'struct': 'TargetInfo',
2506 'data': { 'arch': 'str' } }
2511 # Return information about the target for this QEMU
2513 # Returns: TargetInfo
2517 { 'command': 'query-target', 'returns': 'TargetInfo' }
2520 # @AcpiTableOptions:
2522 # Specify an ACPI table on the command line to load.
2524 # At most one of @file and @data can be specified. The list of files specified
2525 # by any one of them is loaded and concatenated in order. If both are omitted,
2528 # Other fields / optargs can be used to override fields of the generic ACPI
2529 # table header; refer to the ACPI specification 5.0, section 5.2.6 System
2530 # Description Table Header. If a header field is not overridden, then the
2531 # corresponding value from the concatenated blob is used (in case of @file), or
2532 # it is filled in with a hard-coded value (in case of @data).
2534 # String fields are copied into the matching ACPI member from lowest address
2535 # upwards, and silently truncated / NUL-padded to length.
2537 # @sig: table signature / identifier (4 bytes)
2539 # @rev: table revision number (dependent on signature, 1 byte)
2541 # @oem_id: OEM identifier (6 bytes)
2543 # @oem_table_id: OEM table identifier (8 bytes)
2545 # @oem_rev: OEM-supplied revision number (4 bytes)
2547 # @asl_compiler_id: identifier of the utility that created the table
2550 # @asl_compiler_rev: revision number of the utility that created the
2553 # @file: colon (:) separated list of pathnames to load and
2554 # concatenate as table data. The resultant binary blob is expected to
2555 # have an ACPI table header. At least one file is required. This field
2558 # @data: colon (:) separated list of pathnames to load and
2559 # concatenate as table data. The resultant binary blob must not have an
2560 # ACPI table header. At least one file is required. This field excludes
2565 { 'struct': 'AcpiTableOptions',
2570 '*oem_table_id': 'str',
2571 '*oem_rev': 'uint32',
2572 '*asl_compiler_id': 'str',
2573 '*asl_compiler_rev': 'uint32',
2578 # @CommandLineParameterType:
2580 # Possible types for an option parameter.
2582 # @string: accepts a character string
2584 # @boolean: accepts "on" or "off"
2586 # @number: accepts a number
2588 # @size: accepts a number followed by an optional suffix (K)ilo,
2589 # (M)ega, (G)iga, (T)era
2593 { 'enum': 'CommandLineParameterType',
2594 'data': ['string', 'boolean', 'number', 'size'] }
2597 # @CommandLineParameterInfo:
2599 # Details about a single parameter of a command line option.
2601 # @name: parameter name
2603 # @type: parameter @CommandLineParameterType
2605 # @help: human readable text string, not suitable for parsing.
2607 # @default: default value string (since 2.1)
2611 { 'struct': 'CommandLineParameterInfo',
2612 'data': { 'name': 'str',
2613 'type': 'CommandLineParameterType',
2615 '*default': 'str' } }
2618 # @CommandLineOptionInfo:
2620 # Details about a command line option, including its list of parameter details
2622 # @option: option name
2624 # @parameters: an array of @CommandLineParameterInfo
2628 { 'struct': 'CommandLineOptionInfo',
2629 'data': { 'option': 'str', 'parameters': ['CommandLineParameterInfo'] } }
2632 # @query-command-line-options:
2634 # Query command line option schema.
2636 # @option: option name
2638 # Returns: list of @CommandLineOptionInfo for all options (or for the given
2639 # @option). Returns an error if the given @option doesn't exist.
2645 # -> { "execute": "query-command-line-options",
2646 # "arguments": { "option": "option-rom" } }
2651 # "name": "romfile",
2655 # "name": "bootindex",
2659 # "option": "option-rom"
2665 {'command': 'query-command-line-options', 'data': { '*option': 'str' },
2666 'returns': ['CommandLineOptionInfo'] }
2669 # @X86CPURegister32:
2671 # A X86 32-bit register
2675 { 'enum': 'X86CPURegister32',
2676 'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
2679 # @X86CPUFeatureWordInfo:
2681 # Information about a X86 CPU feature word
2683 # @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word
2685 # @cpuid-input-ecx: Input ECX value for CPUID instruction for that
2688 # @cpuid-register: Output register containing the feature bits
2690 # @features: value of output register, containing the feature bits
2694 { 'struct': 'X86CPUFeatureWordInfo',
2695 'data': { 'cpuid-input-eax': 'int',
2696 '*cpuid-input-ecx': 'int',
2697 'cpuid-register': 'X86CPURegister32',
2698 'features': 'int' } }
2701 # @DummyForceArrays:
2703 # Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally
2707 { 'struct': 'DummyForceArrays',
2708 'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
2714 # @node: NUMA nodes configuration
2716 # @dist: NUMA distance configuration (since 2.10)
2718 # @cpu: property based CPU(s) to node mapping (Since: 2.10)
2722 { 'enum': 'NumaOptionsType',
2723 'data': [ 'node', 'dist', 'cpu' ] }
2728 # A discriminated record of NUMA options. (for OptsVisitor)
2732 { 'union': 'NumaOptions',
2733 'base': { 'type': 'NumaOptionsType' },
2734 'discriminator': 'type',
2736 'node': 'NumaNodeOptions',
2737 'dist': 'NumaDistOptions',
2738 'cpu': 'NumaCpuOptions' }}
2743 # Create a guest NUMA node. (for OptsVisitor)
2745 # @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
2747 # @cpus: VCPUs belonging to this node (assign VCPUS round-robin
2750 # @mem: memory size of this node; mutually exclusive with @memdev.
2751 # Equally divide total memory among nodes if both @mem and @memdev are
2754 # @memdev: memory backend object. If specified for one node,
2755 # it must be specified for all nodes.
2759 { 'struct': 'NumaNodeOptions',
2761 '*nodeid': 'uint16',
2762 '*cpus': ['uint16'],
2769 # Set the distance between 2 NUMA nodes.
2771 # @src: source NUMA node.
2773 # @dst: destination NUMA node.
2775 # @val: NUMA distance from source node to destination node.
2776 # When a node is unreachable from another node, set the distance
2777 # between them to 255.
2781 { 'struct': 'NumaDistOptions',
2790 # Option "-numa cpu" overrides default cpu to node mapping.
2791 # It accepts the same set of cpu properties as returned by
2792 # query-hotpluggable-cpus[].props, where node-id could be used to
2793 # override default node mapping.
2797 { 'struct': 'NumaCpuOptions',
2798 'base': 'CpuInstanceProperties',
2804 # Host memory policy types
2806 # @default: restore default policy, remove any nondefault policy
2808 # @preferred: set the preferred host nodes for allocation
2810 # @bind: a strict policy that restricts memory allocation to the
2811 # host nodes specified
2813 # @interleave: memory allocations are interleaved across the set
2814 # of host nodes specified
2818 { 'enum': 'HostMemPolicy',
2819 'data': [ 'default', 'preferred', 'bind', 'interleave' ] }
2824 # Information about memory backend
2826 # @id: backend's ID if backend has 'id' property (since 2.9)
2828 # @size: memory backend size
2830 # @merge: enables or disables memory merge support
2832 # @dump: includes memory backend's memory in a core dump or not
2834 # @prealloc: enables or disables memory preallocation
2836 # @host-nodes: host nodes for its memory policy
2838 # @policy: memory policy of memory backend
2842 { 'struct': 'Memdev',
2849 'host-nodes': ['uint16'],
2850 'policy': 'HostMemPolicy' }}
2855 # Returns information for all memory backends.
2857 # Returns: a list of @Memdev.
2863 # -> { "execute": "query-memdev" }
2867 # "size": 536870912,
2870 # "prealloc": false,
2871 # "host-nodes": [0, 1],
2875 # "size": 536870912,
2879 # "host-nodes": [2, 3],
2880 # "policy": "preferred"
2886 { 'command': 'query-memdev', 'returns': ['Memdev'] }
2889 # @PCDIMMDeviceInfo:
2891 # PCDIMMDevice state information
2895 # @addr: physical address, where device is mapped
2897 # @size: size of memory that the device provides
2899 # @slot: slot number at which device is plugged in
2901 # @node: NUMA node number where device is plugged in
2903 # @memdev: memory backend linked with device
2905 # @hotplugged: true if device was hotplugged
2907 # @hotpluggable: true if device if could be added/removed while machine is running
2911 { 'struct': 'PCDIMMDeviceInfo',
2912 'data': { '*id': 'str',
2918 'hotplugged': 'bool',
2919 'hotpluggable': 'bool'
2924 # @MemoryDeviceInfo:
2926 # Union containing information about a memory device
2930 { 'union': 'MemoryDeviceInfo', 'data': {'dimm': 'PCDIMMDeviceInfo'} }
2933 # @query-memory-devices:
2935 # Lists available memory devices and their state
2941 # -> { "execute": "query-memory-devices" }
2942 # <- { "return": [ { "data":
2943 # { "addr": 5368709120,
2944 # "hotpluggable": true,
2945 # "hotplugged": true,
2947 # "memdev": "/objects/memX",
2949 # "size": 1073741824,
2955 { 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
2958 # @MEM_UNPLUG_ERROR:
2960 # Emitted when memory hot unplug error occurs.
2962 # @device: device name
2964 # @msg: Informative message
2970 # <- { "event": "MEM_UNPLUG_ERROR"
2971 # "data": { "device": "dimm1",
2972 # "msg": "acpi: device unplug for unsupported device"
2974 # "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
2977 { 'event': 'MEM_UNPLUG_ERROR',
2978 'data': { 'device': 'str', 'msg': 'str' } }
2983 # @DIMM: memory slot
2984 # @CPU: logical CPU slot (since 2.7)
2986 { 'enum': 'ACPISlotType', 'data': [ 'DIMM', 'CPU' ] }
2991 # OSPM Status Indication for a device
2992 # For description of possible values of @source and @status fields
2993 # see "_OST (OSPM Status Indication)" chapter of ACPI5.0 spec.
2995 # @device: device ID associated with slot
2997 # @slot: slot ID, unique per slot of a given @slot-type
2999 # @slot-type: type of the slot
3001 # @source: an integer containing the source event
3003 # @status: an integer containing the status code
3007 { 'struct': 'ACPIOSTInfo',
3008 'data' : { '*device': 'str',
3010 'slot-type': 'ACPISlotType',
3015 # @query-acpi-ospm-status:
3017 # Return a list of ACPIOSTInfo for devices that support status
3018 # reporting via ACPI _OST method.
3024 # -> { "execute": "query-acpi-ospm-status" }
3025 # <- { "return": [ { "device": "d1", "slot": "0", "slot-type": "DIMM", "source": 1, "status": 0},
3026 # { "slot": "1", "slot-type": "DIMM", "source": 0, "status": 0},
3027 # { "slot": "2", "slot-type": "DIMM", "source": 0, "status": 0},
3028 # { "slot": "3", "slot-type": "DIMM", "source": 0, "status": 0}
3032 { 'command': 'query-acpi-ospm-status', 'returns': ['ACPIOSTInfo'] }
3037 # Emitted when guest executes ACPI _OST method.
3039 # @info: ACPIOSTInfo type as described in qapi-schema.json
3045 # <- { "event": "ACPI_DEVICE_OST",
3046 # "data": { "device": "d1", "slot": "0",
3047 # "slot-type": "DIMM", "source": 1, "status": 0 } }
3050 { 'event': 'ACPI_DEVICE_OST',
3051 'data': { 'info': 'ACPIOSTInfo' } }
3054 # @rtc-reset-reinjection:
3056 # This command will reset the RTC interrupt reinjection backlog.
3057 # Can be used if another mechanism to synchronize guest time
3058 # is in effect, for example QEMU guest agent's guest-set-time
3065 # -> { "execute": "rtc-reset-reinjection" }
3066 # <- { "return": {} }
3069 { 'command': 'rtc-reset-reinjection' }
3074 # Emitted when the guest changes the RTC time.
3076 # @offset: offset between base RTC clock (as specified by -rtc base), and
3077 # new RTC clock value
3079 # Note: This event is rate-limited.
3085 # <- { "event": "RTC_CHANGE",
3086 # "data": { "offset": 78 },
3087 # "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
3090 { 'event': 'RTC_CHANGE',
3091 'data': { 'offset': 'int' } }
3096 # Mode of the replay subsystem.
3098 # @none: normal execution mode. Replay or record are not enabled.
3100 # @record: record mode. All non-deterministic data is written into the
3103 # @play: replay mode. Non-deterministic data required for system execution
3104 # is read from the log.
3108 { 'enum': 'ReplayMode',
3109 'data': [ 'none', 'record', 'play' ] }
3112 # @xen-load-devices-state:
3114 # Load the state of all devices from file. The RAM and the block devices
3115 # of the VM are not loaded by this command.
3117 # @filename: the file to load the state of the devices from as binary
3118 # data. See xen-save-devices-state.txt for a description of the binary
3125 # -> { "execute": "xen-load-devices-state",
3126 # "arguments": { "filename": "/tmp/resume" } }
3127 # <- { "return": {} }
3130 { 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
3135 # The struct describes capability for a specific GIC (Generic
3136 # Interrupt Controller) version. These bits are not only decided by
3137 # QEMU/KVM software version, but also decided by the hardware that
3138 # the program is running upon.
3140 # @version: version of GIC to be described. Currently, only 2 and 3
3143 # @emulated: whether current QEMU/hardware supports emulated GIC
3144 # device in user space.
3146 # @kernel: whether current QEMU/hardware supports hardware
3147 # accelerated GIC device in kernel.
3151 { 'struct': 'GICCapability',
3152 'data': { 'version': 'int',
3154 'kernel': 'bool' } }
3157 # @query-gic-capabilities:
3159 # This command is ARM-only. It will return a list of GICCapability
3160 # objects that describe its capability bits.
3162 # Returns: a list of GICCapability objects.
3168 # -> { "execute": "query-gic-capabilities" }
3169 # <- { "return": [{ "version": 2, "emulated": true, "kernel": false },
3170 # { "version": 3, "emulated": false, "kernel": true } ] }
3173 { 'command': 'query-gic-capabilities', 'returns': ['GICCapability'] }
3176 # @CpuInstanceProperties:
3178 # List of properties to be used for hotplugging a CPU instance,
3179 # it should be passed by management with device_add command when
3180 # a CPU is being hotplugged.
3182 # @node-id: NUMA node ID the CPU belongs to
3183 # @socket-id: socket number within node/board the CPU belongs to
3184 # @core-id: core number within socket the CPU belongs to
3185 # @thread-id: thread number within core the CPU belongs to
3187 # Note: currently there are 4 properties that could be present
3188 # but management should be prepared to pass through other
3189 # properties with device_add command to allow for future
3190 # interface extension. This also requires the filed names to be kept in
3191 # sync with the properties passed to -device/device_add.
3195 { 'struct': 'CpuInstanceProperties',
3196 'data': { '*node-id': 'int',
3197 '*socket-id': 'int',
3206 # @type: CPU object type for usage with device_add command
3207 # @props: list of properties to be used for hotplugging CPU
3208 # @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides
3209 # @qom-path: link to existing CPU object if CPU is present or
3210 # omitted if CPU is not present.
3214 { 'struct': 'HotpluggableCPU',
3215 'data': { 'type': 'str',
3216 'vcpus-count': 'int',
3217 'props': 'CpuInstanceProperties',
3223 # @query-hotpluggable-cpus:
3225 # Returns: a list of HotpluggableCPU objects.
3231 # For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8:
3233 # -> { "execute": "query-hotpluggable-cpus" }
3235 # { "props": { "core": 8 }, "type": "POWER8-spapr-cpu-core",
3236 # "vcpus-count": 1 },
3237 # { "props": { "core": 0 }, "type": "POWER8-spapr-cpu-core",
3238 # "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
3241 # For pc machine type started with -smp 1,maxcpus=2:
3243 # -> { "execute": "query-hotpluggable-cpus" }
3246 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
3247 # "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
3250 # "qom-path": "/machine/unattached/device[0]",
3251 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
3252 # "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
3256 # For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu qemu
3259 # -> { "execute": "query-hotpluggable-cpus" }
3262 # "type": "qemu-s390x-cpu", "vcpus-count": 1,
3263 # "props": { "core-id": 1 }
3266 # "qom-path": "/machine/unattached/device[0]",
3267 # "type": "qemu-s390x-cpu", "vcpus-count": 1,
3268 # "props": { "core-id": 0 }
3273 { 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'] }
3280 # @guid: the globally unique identifier
3284 { 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
3287 # @query-vm-generation-id:
3289 # Show Virtual Machine Generation ID
3293 { 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
3296 # @watchdog-set-action:
3298 # Set watchdog action
3302 { 'command': 'watchdog-set-action', 'data' : {'action': 'WatchdogAction'} }