target/mips: Tidy control flow in mips_cpu_handle_mmu_fault
[qemu/ar7.git] / hw / timer / mc146818rtc.c
blob513f105e62f72769ea82870d6201ecc67706ac82
1 /*
2 * QEMU MC146818 RTC emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "qemu/cutils.h"
27 #include "qemu/bcd.h"
28 #include "hw/hw.h"
29 #include "qemu/timer.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/replay.h"
32 #include "hw/timer/mc146818rtc.h"
33 #include "qapi/error.h"
34 #include "qapi/qapi-commands-target.h"
35 #include "qapi/qapi-events-target.h"
36 #include "qapi/visitor.h"
37 #include "exec/address-spaces.h"
39 #ifdef TARGET_I386
40 #include "hw/i386/apic.h"
41 #endif
43 //#define DEBUG_CMOS
44 //#define DEBUG_COALESCED
46 #ifdef DEBUG_CMOS
47 # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
48 #else
49 # define CMOS_DPRINTF(format, ...) do { } while (0)
50 #endif
52 #ifdef DEBUG_COALESCED
53 # define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__)
54 #else
55 # define DPRINTF_C(format, ...) do { } while (0)
56 #endif
58 #define SEC_PER_MIN 60
59 #define MIN_PER_HOUR 60
60 #define SEC_PER_HOUR 3600
61 #define HOUR_PER_DAY 24
62 #define SEC_PER_DAY 86400
64 #define RTC_REINJECT_ON_ACK_COUNT 20
65 #define RTC_CLOCK_RATE 32768
66 #define UIP_HOLD_LENGTH (8 * NANOSECONDS_PER_SECOND / 32768)
68 #define MC146818_RTC(obj) OBJECT_CHECK(RTCState, (obj), TYPE_MC146818_RTC)
70 typedef struct RTCState {
71 ISADevice parent_obj;
73 MemoryRegion io;
74 MemoryRegion coalesced_io;
75 uint8_t cmos_data[128];
76 uint8_t cmos_index;
77 int32_t base_year;
78 uint64_t base_rtc;
79 uint64_t last_update;
80 int64_t offset;
81 qemu_irq irq;
82 int it_shift;
83 /* periodic timer */
84 QEMUTimer *periodic_timer;
85 int64_t next_periodic_time;
86 /* update-ended timer */
87 QEMUTimer *update_timer;
88 uint64_t next_alarm_time;
89 uint16_t irq_reinject_on_ack_count;
90 uint32_t irq_coalesced;
91 uint32_t period;
92 QEMUTimer *coalesced_timer;
93 Notifier clock_reset_notifier;
94 LostTickPolicy lost_tick_policy;
95 Notifier suspend_notifier;
96 QLIST_ENTRY(RTCState) link;
97 } RTCState;
99 static void rtc_set_time(RTCState *s);
100 static void rtc_update_time(RTCState *s);
101 static void rtc_set_cmos(RTCState *s, const struct tm *tm);
102 static inline int rtc_from_bcd(RTCState *s, int a);
103 static uint64_t get_next_alarm(RTCState *s);
105 static inline bool rtc_running(RTCState *s)
107 return (!(s->cmos_data[RTC_REG_B] & REG_B_SET) &&
108 (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20);
111 static uint64_t get_guest_rtc_ns(RTCState *s)
113 uint64_t guest_clock = qemu_clock_get_ns(rtc_clock);
115 return s->base_rtc * NANOSECONDS_PER_SECOND +
116 guest_clock - s->last_update + s->offset;
119 static void rtc_coalesced_timer_update(RTCState *s)
121 if (s->irq_coalesced == 0) {
122 timer_del(s->coalesced_timer);
123 } else {
124 /* divide each RTC interval to 2 - 8 smaller intervals */
125 int c = MIN(s->irq_coalesced, 7) + 1;
126 int64_t next_clock = qemu_clock_get_ns(rtc_clock) +
127 periodic_clock_to_ns(s->period / c);
128 timer_mod(s->coalesced_timer, next_clock);
132 static QLIST_HEAD(, RTCState) rtc_devices =
133 QLIST_HEAD_INITIALIZER(rtc_devices);
135 #ifdef TARGET_I386
136 void qmp_rtc_reset_reinjection(Error **errp)
138 RTCState *s;
140 QLIST_FOREACH(s, &rtc_devices, link) {
141 s->irq_coalesced = 0;
145 static bool rtc_policy_slew_deliver_irq(RTCState *s)
147 apic_reset_irq_delivered();
148 qemu_irq_raise(s->irq);
149 return apic_get_irq_delivered();
152 static void rtc_coalesced_timer(void *opaque)
154 RTCState *s = opaque;
156 if (s->irq_coalesced != 0) {
157 s->cmos_data[RTC_REG_C] |= 0xc0;
158 DPRINTF_C("cmos: injecting from timer\n");
159 if (rtc_policy_slew_deliver_irq(s)) {
160 s->irq_coalesced--;
161 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
162 s->irq_coalesced);
166 rtc_coalesced_timer_update(s);
168 #else
169 static bool rtc_policy_slew_deliver_irq(RTCState *s)
171 assert(0);
172 return false;
174 #endif
176 static uint32_t rtc_periodic_clock_ticks(RTCState *s)
178 int period_code;
180 if (!(s->cmos_data[RTC_REG_B] & REG_B_PIE)) {
181 return 0;
184 period_code = s->cmos_data[RTC_REG_A] & 0x0f;
186 return periodic_period_to_clock(period_code);
190 * handle periodic timer. @old_period indicates the periodic timer update
191 * is just due to period adjustment.
193 static void
194 periodic_timer_update(RTCState *s, int64_t current_time, uint32_t old_period)
196 uint32_t period;
197 int64_t cur_clock, next_irq_clock, lost_clock = 0;
199 period = rtc_periodic_clock_ticks(s);
201 if (period) {
202 /* compute 32 khz clock */
203 cur_clock =
204 muldiv64(current_time, RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND);
207 * if the periodic timer's update is due to period re-configuration,
208 * we should count the clock since last interrupt.
210 if (old_period) {
211 int64_t last_periodic_clock, next_periodic_clock;
213 next_periodic_clock = muldiv64(s->next_periodic_time,
214 RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND);
215 last_periodic_clock = next_periodic_clock - old_period;
216 lost_clock = cur_clock - last_periodic_clock;
217 assert(lost_clock >= 0);
221 * s->irq_coalesced can change for two reasons:
223 * a) if one or more periodic timer interrupts have been lost,
224 * lost_clock will be more that a period.
226 * b) when the period may be reconfigured, we expect the OS to
227 * treat delayed tick as the new period. So, when switching
228 * from a shorter to a longer period, scale down the missing,
229 * because the OS will treat past delayed ticks as longer
230 * (leftovers are put back into lost_clock). When switching
231 * to a shorter period, scale up the missing ticks since the
232 * OS handler will treat past delayed ticks as shorter.
234 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
235 uint32_t old_irq_coalesced = s->irq_coalesced;
237 s->period = period;
238 lost_clock += old_irq_coalesced * old_period;
239 s->irq_coalesced = lost_clock / s->period;
240 lost_clock %= s->period;
241 if (old_irq_coalesced != s->irq_coalesced ||
242 old_period != s->period) {
243 DPRINTF_C("cmos: coalesced irqs scaled from %d to %d, "
244 "period scaled from %d to %d\n", old_irq_coalesced,
245 s->irq_coalesced, old_period, s->period);
246 rtc_coalesced_timer_update(s);
248 } else {
250 * no way to compensate the interrupt if LOST_TICK_POLICY_SLEW
251 * is not used, we should make the time progress anyway.
253 lost_clock = MIN(lost_clock, period);
256 assert(lost_clock >= 0 && lost_clock <= period);
258 next_irq_clock = cur_clock + period - lost_clock;
259 s->next_periodic_time = periodic_clock_to_ns(next_irq_clock) + 1;
260 timer_mod(s->periodic_timer, s->next_periodic_time);
261 } else {
262 s->irq_coalesced = 0;
263 timer_del(s->periodic_timer);
267 static void rtc_periodic_timer(void *opaque)
269 RTCState *s = opaque;
271 periodic_timer_update(s, s->next_periodic_time, 0);
272 s->cmos_data[RTC_REG_C] |= REG_C_PF;
273 if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
274 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
275 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
276 if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT)
277 s->irq_reinject_on_ack_count = 0;
278 if (!rtc_policy_slew_deliver_irq(s)) {
279 s->irq_coalesced++;
280 rtc_coalesced_timer_update(s);
281 DPRINTF_C("cmos: coalesced irqs increased to %d\n",
282 s->irq_coalesced);
284 } else
285 qemu_irq_raise(s->irq);
289 /* handle update-ended timer */
290 static void check_update_timer(RTCState *s)
292 uint64_t next_update_time;
293 uint64_t guest_nsec;
294 int next_alarm_sec;
296 /* From the data sheet: "Holding the dividers in reset prevents
297 * interrupts from operating, while setting the SET bit allows"
298 * them to occur.
300 if ((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) {
301 assert((s->cmos_data[RTC_REG_A] & REG_A_UIP) == 0);
302 timer_del(s->update_timer);
303 return;
306 guest_nsec = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND;
307 next_update_time = qemu_clock_get_ns(rtc_clock)
308 + NANOSECONDS_PER_SECOND - guest_nsec;
310 /* Compute time of next alarm. One second is already accounted
311 * for in next_update_time.
313 next_alarm_sec = get_next_alarm(s);
314 s->next_alarm_time = next_update_time +
315 (next_alarm_sec - 1) * NANOSECONDS_PER_SECOND;
317 /* If update_in_progress latched the UIP bit, we must keep the timer
318 * programmed to the next second, so that UIP is cleared. Otherwise,
319 * if UF is already set, we might be able to optimize.
321 if (!(s->cmos_data[RTC_REG_A] & REG_A_UIP) &&
322 (s->cmos_data[RTC_REG_C] & REG_C_UF)) {
323 /* If AF cannot change (i.e. either it is set already, or
324 * SET=1 and then the time is not updated), nothing to do.
326 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) ||
327 (s->cmos_data[RTC_REG_C] & REG_C_AF)) {
328 timer_del(s->update_timer);
329 return;
332 /* UF is set, but AF is clear. Program the timer to target
333 * the alarm time. */
334 next_update_time = s->next_alarm_time;
336 if (next_update_time != timer_expire_time_ns(s->update_timer)) {
337 timer_mod(s->update_timer, next_update_time);
341 static inline uint8_t convert_hour(RTCState *s, uint8_t hour)
343 if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
344 hour %= 12;
345 if (s->cmos_data[RTC_HOURS] & 0x80) {
346 hour += 12;
349 return hour;
352 static uint64_t get_next_alarm(RTCState *s)
354 int32_t alarm_sec, alarm_min, alarm_hour, cur_hour, cur_min, cur_sec;
355 int32_t hour, min, sec;
357 rtc_update_time(s);
359 alarm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]);
360 alarm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]);
361 alarm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]);
362 alarm_hour = alarm_hour == -1 ? -1 : convert_hour(s, alarm_hour);
364 cur_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
365 cur_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
366 cur_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS]);
367 cur_hour = convert_hour(s, cur_hour);
369 if (alarm_hour == -1) {
370 alarm_hour = cur_hour;
371 if (alarm_min == -1) {
372 alarm_min = cur_min;
373 if (alarm_sec == -1) {
374 alarm_sec = cur_sec + 1;
375 } else if (cur_sec > alarm_sec) {
376 alarm_min++;
378 } else if (cur_min == alarm_min) {
379 if (alarm_sec == -1) {
380 alarm_sec = cur_sec + 1;
381 } else {
382 if (cur_sec > alarm_sec) {
383 alarm_hour++;
386 if (alarm_sec == SEC_PER_MIN) {
387 /* wrap to next hour, minutes is not in don't care mode */
388 alarm_sec = 0;
389 alarm_hour++;
391 } else if (cur_min > alarm_min) {
392 alarm_hour++;
394 } else if (cur_hour == alarm_hour) {
395 if (alarm_min == -1) {
396 alarm_min = cur_min;
397 if (alarm_sec == -1) {
398 alarm_sec = cur_sec + 1;
399 } else if (cur_sec > alarm_sec) {
400 alarm_min++;
403 if (alarm_sec == SEC_PER_MIN) {
404 alarm_sec = 0;
405 alarm_min++;
407 /* wrap to next day, hour is not in don't care mode */
408 alarm_min %= MIN_PER_HOUR;
409 } else if (cur_min == alarm_min) {
410 if (alarm_sec == -1) {
411 alarm_sec = cur_sec + 1;
413 /* wrap to next day, hours+minutes not in don't care mode */
414 alarm_sec %= SEC_PER_MIN;
418 /* values that are still don't care fire at the next min/sec */
419 if (alarm_min == -1) {
420 alarm_min = 0;
422 if (alarm_sec == -1) {
423 alarm_sec = 0;
426 /* keep values in range */
427 if (alarm_sec == SEC_PER_MIN) {
428 alarm_sec = 0;
429 alarm_min++;
431 if (alarm_min == MIN_PER_HOUR) {
432 alarm_min = 0;
433 alarm_hour++;
435 alarm_hour %= HOUR_PER_DAY;
437 hour = alarm_hour - cur_hour;
438 min = hour * MIN_PER_HOUR + alarm_min - cur_min;
439 sec = min * SEC_PER_MIN + alarm_sec - cur_sec;
440 return sec <= 0 ? sec + SEC_PER_DAY : sec;
443 static void rtc_update_timer(void *opaque)
445 RTCState *s = opaque;
446 int32_t irqs = REG_C_UF;
447 int32_t new_irqs;
449 assert((s->cmos_data[RTC_REG_A] & 0x60) != 0x60);
451 /* UIP might have been latched, update time and clear it. */
452 rtc_update_time(s);
453 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
455 if (qemu_clock_get_ns(rtc_clock) >= s->next_alarm_time) {
456 irqs |= REG_C_AF;
457 if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
458 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC, NULL);
462 new_irqs = irqs & ~s->cmos_data[RTC_REG_C];
463 s->cmos_data[RTC_REG_C] |= irqs;
464 if ((new_irqs & s->cmos_data[RTC_REG_B]) != 0) {
465 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
466 qemu_irq_raise(s->irq);
468 check_update_timer(s);
471 static void cmos_ioport_write(void *opaque, hwaddr addr,
472 uint64_t data, unsigned size)
474 RTCState *s = opaque;
475 uint32_t old_period;
476 bool update_periodic_timer;
478 if ((addr & 1) == 0) {
479 s->cmos_index = data & 0x7f;
480 } else {
481 CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02" PRIx64 "\n",
482 s->cmos_index, data);
483 switch(s->cmos_index) {
484 case RTC_SECONDS_ALARM:
485 case RTC_MINUTES_ALARM:
486 case RTC_HOURS_ALARM:
487 s->cmos_data[s->cmos_index] = data;
488 check_update_timer(s);
489 break;
490 case RTC_IBM_PS2_CENTURY_BYTE:
491 s->cmos_index = RTC_CENTURY;
492 /* fall through */
493 case RTC_CENTURY:
494 case RTC_SECONDS:
495 case RTC_MINUTES:
496 case RTC_HOURS:
497 case RTC_DAY_OF_WEEK:
498 case RTC_DAY_OF_MONTH:
499 case RTC_MONTH:
500 case RTC_YEAR:
501 s->cmos_data[s->cmos_index] = data;
502 /* if in set mode, do not update the time */
503 if (rtc_running(s)) {
504 rtc_set_time(s);
505 check_update_timer(s);
507 break;
508 case RTC_REG_A:
509 update_periodic_timer = (s->cmos_data[RTC_REG_A] ^ data) & 0x0f;
510 old_period = rtc_periodic_clock_ticks(s);
512 if ((data & 0x60) == 0x60) {
513 if (rtc_running(s)) {
514 rtc_update_time(s);
516 /* What happens to UIP when divider reset is enabled is
517 * unclear from the datasheet. Shouldn't matter much
518 * though.
520 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
521 } else if (((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) &&
522 (data & 0x70) <= 0x20) {
523 /* when the divider reset is removed, the first update cycle
524 * begins one-half second later*/
525 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
526 s->offset = 500000000;
527 rtc_set_time(s);
529 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
531 /* UIP bit is read only */
532 s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
533 (s->cmos_data[RTC_REG_A] & REG_A_UIP);
535 if (update_periodic_timer) {
536 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock),
537 old_period);
540 check_update_timer(s);
541 break;
542 case RTC_REG_B:
543 update_periodic_timer = (s->cmos_data[RTC_REG_B] ^ data)
544 & REG_B_PIE;
545 old_period = rtc_periodic_clock_ticks(s);
547 if (data & REG_B_SET) {
548 /* update cmos to when the rtc was stopping */
549 if (rtc_running(s)) {
550 rtc_update_time(s);
552 /* set mode: reset UIP mode */
553 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
554 data &= ~REG_B_UIE;
555 } else {
556 /* if disabling set mode, update the time */
557 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) &&
558 (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20) {
559 s->offset = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND;
560 rtc_set_time(s);
563 /* if an interrupt flag is already set when the interrupt
564 * becomes enabled, raise an interrupt immediately. */
565 if (data & s->cmos_data[RTC_REG_C] & REG_C_MASK) {
566 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
567 qemu_irq_raise(s->irq);
568 } else {
569 s->cmos_data[RTC_REG_C] &= ~REG_C_IRQF;
570 qemu_irq_lower(s->irq);
572 s->cmos_data[RTC_REG_B] = data;
574 if (update_periodic_timer) {
575 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock),
576 old_period);
579 check_update_timer(s);
580 break;
581 case RTC_REG_C:
582 case RTC_REG_D:
583 /* cannot write to them */
584 break;
585 default:
586 s->cmos_data[s->cmos_index] = data;
587 break;
592 static inline int rtc_to_bcd(RTCState *s, int a)
594 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
595 return a;
596 } else {
597 return ((a / 10) << 4) | (a % 10);
601 static inline int rtc_from_bcd(RTCState *s, int a)
603 if ((a & 0xc0) == 0xc0) {
604 return -1;
606 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
607 return a;
608 } else {
609 return ((a >> 4) * 10) + (a & 0x0f);
613 static void rtc_get_time(RTCState *s, struct tm *tm)
615 tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
616 tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
617 tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
618 if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
619 tm->tm_hour %= 12;
620 if (s->cmos_data[RTC_HOURS] & 0x80) {
621 tm->tm_hour += 12;
624 tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
625 tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
626 tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
627 tm->tm_year =
628 rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year +
629 rtc_from_bcd(s, s->cmos_data[RTC_CENTURY]) * 100 - 1900;
632 static void rtc_set_time(RTCState *s)
634 struct tm tm;
636 rtc_get_time(s, &tm);
637 s->base_rtc = mktimegm(&tm);
638 s->last_update = qemu_clock_get_ns(rtc_clock);
640 qapi_event_send_rtc_change(qemu_timedate_diff(&tm));
643 static void rtc_set_cmos(RTCState *s, const struct tm *tm)
645 int year;
647 s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec);
648 s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min);
649 if (s->cmos_data[RTC_REG_B] & REG_B_24H) {
650 /* 24 hour format */
651 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour);
652 } else {
653 /* 12 hour format */
654 int h = (tm->tm_hour % 12) ? tm->tm_hour % 12 : 12;
655 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, h);
656 if (tm->tm_hour >= 12)
657 s->cmos_data[RTC_HOURS] |= 0x80;
659 s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1);
660 s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday);
661 s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1);
662 year = tm->tm_year + 1900 - s->base_year;
663 s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year % 100);
664 s->cmos_data[RTC_CENTURY] = rtc_to_bcd(s, year / 100);
667 static void rtc_update_time(RTCState *s)
669 struct tm ret;
670 time_t guest_sec;
671 int64_t guest_nsec;
673 guest_nsec = get_guest_rtc_ns(s);
674 guest_sec = guest_nsec / NANOSECONDS_PER_SECOND;
675 gmtime_r(&guest_sec, &ret);
677 /* Is SET flag of Register B disabled? */
678 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) == 0) {
679 rtc_set_cmos(s, &ret);
683 static int update_in_progress(RTCState *s)
685 int64_t guest_nsec;
687 if (!rtc_running(s)) {
688 return 0;
690 if (timer_pending(s->update_timer)) {
691 int64_t next_update_time = timer_expire_time_ns(s->update_timer);
692 /* Latch UIP until the timer expires. */
693 if (qemu_clock_get_ns(rtc_clock) >=
694 (next_update_time - UIP_HOLD_LENGTH)) {
695 s->cmos_data[RTC_REG_A] |= REG_A_UIP;
696 return 1;
700 guest_nsec = get_guest_rtc_ns(s);
701 /* UIP bit will be set at last 244us of every second. */
702 if ((guest_nsec % NANOSECONDS_PER_SECOND) >=
703 (NANOSECONDS_PER_SECOND - UIP_HOLD_LENGTH)) {
704 return 1;
706 return 0;
709 static uint64_t cmos_ioport_read(void *opaque, hwaddr addr,
710 unsigned size)
712 RTCState *s = opaque;
713 int ret;
714 if ((addr & 1) == 0) {
715 return 0xff;
716 } else {
717 switch(s->cmos_index) {
718 case RTC_IBM_PS2_CENTURY_BYTE:
719 s->cmos_index = RTC_CENTURY;
720 /* fall through */
721 case RTC_CENTURY:
722 case RTC_SECONDS:
723 case RTC_MINUTES:
724 case RTC_HOURS:
725 case RTC_DAY_OF_WEEK:
726 case RTC_DAY_OF_MONTH:
727 case RTC_MONTH:
728 case RTC_YEAR:
729 /* if not in set mode, calibrate cmos before
730 * reading*/
731 if (rtc_running(s)) {
732 rtc_update_time(s);
734 ret = s->cmos_data[s->cmos_index];
735 break;
736 case RTC_REG_A:
737 ret = s->cmos_data[s->cmos_index];
738 if (update_in_progress(s)) {
739 ret |= REG_A_UIP;
741 break;
742 case RTC_REG_C:
743 ret = s->cmos_data[s->cmos_index];
744 qemu_irq_lower(s->irq);
745 s->cmos_data[RTC_REG_C] = 0x00;
746 if (ret & (REG_C_UF | REG_C_AF)) {
747 check_update_timer(s);
750 if(s->irq_coalesced &&
751 (s->cmos_data[RTC_REG_B] & REG_B_PIE) &&
752 s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) {
753 s->irq_reinject_on_ack_count++;
754 s->cmos_data[RTC_REG_C] |= REG_C_IRQF | REG_C_PF;
755 DPRINTF_C("cmos: injecting on ack\n");
756 if (rtc_policy_slew_deliver_irq(s)) {
757 s->irq_coalesced--;
758 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
759 s->irq_coalesced);
762 break;
763 default:
764 ret = s->cmos_data[s->cmos_index];
765 break;
767 CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
768 s->cmos_index, ret);
769 return ret;
773 void rtc_set_memory(ISADevice *dev, int addr, int val)
775 RTCState *s = MC146818_RTC(dev);
776 if (addr >= 0 && addr <= 127)
777 s->cmos_data[addr] = val;
780 int rtc_get_memory(ISADevice *dev, int addr)
782 RTCState *s = MC146818_RTC(dev);
783 assert(addr >= 0 && addr <= 127);
784 return s->cmos_data[addr];
787 static void rtc_set_date_from_host(ISADevice *dev)
789 RTCState *s = MC146818_RTC(dev);
790 struct tm tm;
792 qemu_get_timedate(&tm, 0);
794 s->base_rtc = mktimegm(&tm);
795 s->last_update = qemu_clock_get_ns(rtc_clock);
796 s->offset = 0;
798 /* set the CMOS date */
799 rtc_set_cmos(s, &tm);
802 static int rtc_pre_save(void *opaque)
804 RTCState *s = opaque;
806 rtc_update_time(s);
808 return 0;
811 static int rtc_post_load(void *opaque, int version_id)
813 RTCState *s = opaque;
815 if (version_id <= 2 || rtc_clock == QEMU_CLOCK_REALTIME) {
816 rtc_set_time(s);
817 s->offset = 0;
818 check_update_timer(s);
821 /* The periodic timer is deterministic in record/replay mode,
822 * so there is no need to update it after loading the vmstate.
823 * Reading RTC here would misalign record and replay.
825 if (replay_mode == REPLAY_MODE_NONE) {
826 uint64_t now = qemu_clock_get_ns(rtc_clock);
827 if (now < s->next_periodic_time ||
828 now > (s->next_periodic_time + get_max_clock_jump())) {
829 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock), 0);
833 if (version_id >= 2) {
834 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
835 rtc_coalesced_timer_update(s);
838 return 0;
841 static bool rtc_irq_reinject_on_ack_count_needed(void *opaque)
843 RTCState *s = (RTCState *)opaque;
844 return s->irq_reinject_on_ack_count != 0;
847 static const VMStateDescription vmstate_rtc_irq_reinject_on_ack_count = {
848 .name = "mc146818rtc/irq_reinject_on_ack_count",
849 .version_id = 1,
850 .minimum_version_id = 1,
851 .needed = rtc_irq_reinject_on_ack_count_needed,
852 .fields = (VMStateField[]) {
853 VMSTATE_UINT16(irq_reinject_on_ack_count, RTCState),
854 VMSTATE_END_OF_LIST()
858 static const VMStateDescription vmstate_rtc = {
859 .name = "mc146818rtc",
860 .version_id = 3,
861 .minimum_version_id = 1,
862 .pre_save = rtc_pre_save,
863 .post_load = rtc_post_load,
864 .fields = (VMStateField[]) {
865 VMSTATE_BUFFER(cmos_data, RTCState),
866 VMSTATE_UINT8(cmos_index, RTCState),
867 VMSTATE_UNUSED(7*4),
868 VMSTATE_TIMER_PTR(periodic_timer, RTCState),
869 VMSTATE_INT64(next_periodic_time, RTCState),
870 VMSTATE_UNUSED(3*8),
871 VMSTATE_UINT32_V(irq_coalesced, RTCState, 2),
872 VMSTATE_UINT32_V(period, RTCState, 2),
873 VMSTATE_UINT64_V(base_rtc, RTCState, 3),
874 VMSTATE_UINT64_V(last_update, RTCState, 3),
875 VMSTATE_INT64_V(offset, RTCState, 3),
876 VMSTATE_TIMER_PTR_V(update_timer, RTCState, 3),
877 VMSTATE_UINT64_V(next_alarm_time, RTCState, 3),
878 VMSTATE_END_OF_LIST()
880 .subsections = (const VMStateDescription*[]) {
881 &vmstate_rtc_irq_reinject_on_ack_count,
882 NULL
886 static void rtc_notify_clock_reset(Notifier *notifier, void *data)
888 RTCState *s = container_of(notifier, RTCState, clock_reset_notifier);
889 int64_t now = *(int64_t *)data;
891 rtc_set_date_from_host(ISA_DEVICE(s));
892 periodic_timer_update(s, now, 0);
893 check_update_timer(s);
895 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
896 rtc_coalesced_timer_update(s);
900 /* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
901 BIOS will read it and start S3 resume at POST Entry */
902 static void rtc_notify_suspend(Notifier *notifier, void *data)
904 RTCState *s = container_of(notifier, RTCState, suspend_notifier);
905 rtc_set_memory(ISA_DEVICE(s), 0xF, 0xFE);
908 static void rtc_reset(void *opaque)
910 RTCState *s = opaque;
912 s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
913 s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
914 check_update_timer(s);
916 qemu_irq_lower(s->irq);
918 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
919 s->irq_coalesced = 0;
920 s->irq_reinject_on_ack_count = 0;
924 static const MemoryRegionOps cmos_ops = {
925 .read = cmos_ioport_read,
926 .write = cmos_ioport_write,
927 .impl = {
928 .min_access_size = 1,
929 .max_access_size = 1,
931 .endianness = DEVICE_LITTLE_ENDIAN,
934 static void rtc_get_date(Object *obj, struct tm *current_tm, Error **errp)
936 RTCState *s = MC146818_RTC(obj);
938 rtc_update_time(s);
939 rtc_get_time(s, current_tm);
942 static void rtc_realizefn(DeviceState *dev, Error **errp)
944 ISADevice *isadev = ISA_DEVICE(dev);
945 RTCState *s = MC146818_RTC(dev);
946 int base = 0x70;
948 s->cmos_data[RTC_REG_A] = 0x26;
949 s->cmos_data[RTC_REG_B] = 0x02;
950 s->cmos_data[RTC_REG_C] = 0x00;
951 s->cmos_data[RTC_REG_D] = 0x80;
953 /* This is for historical reasons. The default base year qdev property
954 * was set to 2000 for most machine types before the century byte was
955 * implemented.
957 * This if statement means that the century byte will be always 0
958 * (at least until 2079...) for base_year = 1980, but will be set
959 * correctly for base_year = 2000.
961 if (s->base_year == 2000) {
962 s->base_year = 0;
965 rtc_set_date_from_host(isadev);
967 switch (s->lost_tick_policy) {
968 #ifdef TARGET_I386
969 case LOST_TICK_POLICY_SLEW:
970 s->coalesced_timer =
971 timer_new_ns(rtc_clock, rtc_coalesced_timer, s);
972 break;
973 #endif
974 case LOST_TICK_POLICY_DISCARD:
975 break;
976 default:
977 error_setg(errp, "Invalid lost tick policy.");
978 return;
981 s->periodic_timer = timer_new_ns(rtc_clock, rtc_periodic_timer, s);
982 s->update_timer = timer_new_ns(rtc_clock, rtc_update_timer, s);
983 check_update_timer(s);
985 s->clock_reset_notifier.notify = rtc_notify_clock_reset;
986 qemu_clock_register_reset_notifier(rtc_clock,
987 &s->clock_reset_notifier);
989 s->suspend_notifier.notify = rtc_notify_suspend;
990 qemu_register_suspend_notifier(&s->suspend_notifier);
992 memory_region_init_io(&s->io, OBJECT(s), &cmos_ops, s, "rtc", 2);
993 isa_register_ioport(isadev, &s->io, base);
995 /* register rtc 0x70 port for coalesced_pio */
996 memory_region_set_flush_coalesced(&s->io);
997 memory_region_init_io(&s->coalesced_io, OBJECT(s), &cmos_ops,
998 s, "rtc-index", 1);
999 memory_region_add_subregion(&s->io, 0, &s->coalesced_io);
1000 memory_region_add_coalescing(&s->coalesced_io, 0, 1);
1002 qdev_set_legacy_instance_id(dev, base, 3);
1003 qemu_register_reset(rtc_reset, s);
1005 object_property_add_tm(OBJECT(s), "date", rtc_get_date, NULL);
1007 qdev_init_gpio_out(dev, &s->irq, 1);
1010 ISADevice *mc146818_rtc_init(ISABus *bus, int base_year, qemu_irq intercept_irq)
1012 DeviceState *dev;
1013 ISADevice *isadev;
1014 RTCState *s;
1016 isadev = isa_create(bus, TYPE_MC146818_RTC);
1017 dev = DEVICE(isadev);
1018 s = MC146818_RTC(isadev);
1019 qdev_prop_set_int32(dev, "base_year", base_year);
1020 qdev_init_nofail(dev);
1021 if (intercept_irq) {
1022 qdev_connect_gpio_out(dev, 0, intercept_irq);
1023 } else {
1024 isa_connect_gpio_out(isadev, 0, RTC_ISA_IRQ);
1026 QLIST_INSERT_HEAD(&rtc_devices, s, link);
1028 object_property_add_alias(qdev_get_machine(), "rtc-time", OBJECT(s),
1029 "date", NULL);
1031 return isadev;
1034 static Property mc146818rtc_properties[] = {
1035 DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980),
1036 DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState,
1037 lost_tick_policy, LOST_TICK_POLICY_DISCARD),
1038 DEFINE_PROP_END_OF_LIST(),
1041 static void rtc_resetdev(DeviceState *d)
1043 RTCState *s = MC146818_RTC(d);
1045 /* Reason: VM do suspend self will set 0xfe
1046 * Reset any values other than 0xfe(Guest suspend case) */
1047 if (s->cmos_data[0x0f] != 0xfe) {
1048 s->cmos_data[0x0f] = 0x00;
1052 static void rtc_class_initfn(ObjectClass *klass, void *data)
1054 DeviceClass *dc = DEVICE_CLASS(klass);
1056 dc->realize = rtc_realizefn;
1057 dc->reset = rtc_resetdev;
1058 dc->vmsd = &vmstate_rtc;
1059 dc->props = mc146818rtc_properties;
1060 /* Reason: needs to be wired up by rtc_init() */
1061 dc->user_creatable = false;
1064 static const TypeInfo mc146818rtc_info = {
1065 .name = TYPE_MC146818_RTC,
1066 .parent = TYPE_ISA_DEVICE,
1067 .instance_size = sizeof(RTCState),
1068 .class_init = rtc_class_initfn,
1071 static void mc146818rtc_register_types(void)
1073 type_register_static(&mc146818rtc_info);
1076 type_init(mc146818rtc_register_types)