target/mips: Tidy control flow in mips_cpu_handle_mmu_fault
[qemu/ar7.git] / hw / timer / hpet.c
blob41024f39fbce296c9ceb34dcc756db721bae3eb2
1 /*
2 * High Precision Event Timer emulation
4 * Copyright (c) 2007 Alexander Graf
5 * Copyright (c) 2008 IBM Corporation
7 * Authors: Beth Kon <bkon@us.ibm.com>
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2 of the License, or (at your option) any later version.
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 * *****************************************************************
24 * This driver attempts to emulate an HPET device in software.
27 #include "qemu/osdep.h"
28 #include "hw/hw.h"
29 #include "hw/i386/pc.h"
30 #include "ui/console.h"
31 #include "qapi/error.h"
32 #include "qemu/error-report.h"
33 #include "qemu/timer.h"
34 #include "hw/timer/hpet.h"
35 #include "hw/sysbus.h"
36 #include "hw/timer/mc146818rtc.h"
37 #include "hw/timer/i8254.h"
39 //#define HPET_DEBUG
40 #ifdef HPET_DEBUG
41 #define DPRINTF printf
42 #else
43 #define DPRINTF(...)
44 #endif
46 #define HPET_MSI_SUPPORT 0
48 #define HPET(obj) OBJECT_CHECK(HPETState, (obj), TYPE_HPET)
50 struct HPETState;
51 typedef struct HPETTimer { /* timers */
52 uint8_t tn; /*timer number*/
53 QEMUTimer *qemu_timer;
54 struct HPETState *state;
55 /* Memory-mapped, software visible timer registers */
56 uint64_t config; /* configuration/cap */
57 uint64_t cmp; /* comparator */
58 uint64_t fsb; /* FSB route */
59 /* Hidden register state */
60 uint64_t period; /* Last value written to comparator */
61 uint8_t wrap_flag; /* timer pop will indicate wrap for one-shot 32-bit
62 * mode. Next pop will be actual timer expiration.
64 } HPETTimer;
66 typedef struct HPETState {
67 /*< private >*/
68 SysBusDevice parent_obj;
69 /*< public >*/
71 MemoryRegion iomem;
72 uint64_t hpet_offset;
73 bool hpet_offset_saved;
74 qemu_irq irqs[HPET_NUM_IRQ_ROUTES];
75 uint32_t flags;
76 uint8_t rtc_irq_level;
77 qemu_irq pit_enabled;
78 uint8_t num_timers;
79 uint32_t intcap;
80 HPETTimer timer[HPET_MAX_TIMERS];
82 /* Memory-mapped, software visible registers */
83 uint64_t capability; /* capabilities */
84 uint64_t config; /* configuration */
85 uint64_t isr; /* interrupt status reg */
86 uint64_t hpet_counter; /* main counter */
87 uint8_t hpet_id; /* instance id */
88 } HPETState;
90 static uint32_t hpet_in_legacy_mode(HPETState *s)
92 return s->config & HPET_CFG_LEGACY;
95 static uint32_t timer_int_route(struct HPETTimer *timer)
97 return (timer->config & HPET_TN_INT_ROUTE_MASK) >> HPET_TN_INT_ROUTE_SHIFT;
100 static uint32_t timer_fsb_route(HPETTimer *t)
102 return t->config & HPET_TN_FSB_ENABLE;
105 static uint32_t hpet_enabled(HPETState *s)
107 return s->config & HPET_CFG_ENABLE;
110 static uint32_t timer_is_periodic(HPETTimer *t)
112 return t->config & HPET_TN_PERIODIC;
115 static uint32_t timer_enabled(HPETTimer *t)
117 return t->config & HPET_TN_ENABLE;
120 static uint32_t hpet_time_after(uint64_t a, uint64_t b)
122 return ((int32_t)(b - a) < 0);
125 static uint32_t hpet_time_after64(uint64_t a, uint64_t b)
127 return ((int64_t)(b - a) < 0);
130 static uint64_t ticks_to_ns(uint64_t value)
132 return value * HPET_CLK_PERIOD;
135 static uint64_t ns_to_ticks(uint64_t value)
137 return value / HPET_CLK_PERIOD;
140 static uint64_t hpet_fixup_reg(uint64_t new, uint64_t old, uint64_t mask)
142 new &= mask;
143 new |= old & ~mask;
144 return new;
147 static int activating_bit(uint64_t old, uint64_t new, uint64_t mask)
149 return (!(old & mask) && (new & mask));
152 static int deactivating_bit(uint64_t old, uint64_t new, uint64_t mask)
154 return ((old & mask) && !(new & mask));
157 static uint64_t hpet_get_ticks(HPETState *s)
159 return ns_to_ticks(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->hpet_offset);
163 * calculate diff between comparator value and current ticks
165 static inline uint64_t hpet_calculate_diff(HPETTimer *t, uint64_t current)
168 if (t->config & HPET_TN_32BIT) {
169 uint32_t diff, cmp;
171 cmp = (uint32_t)t->cmp;
172 diff = cmp - (uint32_t)current;
173 diff = (int32_t)diff > 0 ? diff : (uint32_t)1;
174 return (uint64_t)diff;
175 } else {
176 uint64_t diff, cmp;
178 cmp = t->cmp;
179 diff = cmp - current;
180 diff = (int64_t)diff > 0 ? diff : (uint64_t)1;
181 return diff;
185 static void update_irq(struct HPETTimer *timer, int set)
187 uint64_t mask;
188 HPETState *s;
189 int route;
191 if (timer->tn <= 1 && hpet_in_legacy_mode(timer->state)) {
192 /* if LegacyReplacementRoute bit is set, HPET specification requires
193 * timer0 be routed to IRQ0 in NON-APIC or IRQ2 in the I/O APIC,
194 * timer1 be routed to IRQ8 in NON-APIC or IRQ8 in the I/O APIC.
196 route = (timer->tn == 0) ? 0 : RTC_ISA_IRQ;
197 } else {
198 route = timer_int_route(timer);
200 s = timer->state;
201 mask = 1 << timer->tn;
202 if (!set || !timer_enabled(timer) || !hpet_enabled(timer->state)) {
203 s->isr &= ~mask;
204 if (!timer_fsb_route(timer)) {
205 qemu_irq_lower(s->irqs[route]);
207 } else if (timer_fsb_route(timer)) {
208 address_space_stl_le(&address_space_memory, timer->fsb >> 32,
209 timer->fsb & 0xffffffff, MEMTXATTRS_UNSPECIFIED,
210 NULL);
211 } else if (timer->config & HPET_TN_TYPE_LEVEL) {
212 s->isr |= mask;
213 qemu_irq_raise(s->irqs[route]);
214 } else {
215 s->isr &= ~mask;
216 qemu_irq_pulse(s->irqs[route]);
220 static int hpet_pre_save(void *opaque)
222 HPETState *s = opaque;
224 /* save current counter value */
225 if (hpet_enabled(s)) {
226 s->hpet_counter = hpet_get_ticks(s);
229 return 0;
232 static int hpet_pre_load(void *opaque)
234 HPETState *s = opaque;
236 /* version 1 only supports 3, later versions will load the actual value */
237 s->num_timers = HPET_MIN_TIMERS;
238 return 0;
241 static bool hpet_validate_num_timers(void *opaque, int version_id)
243 HPETState *s = opaque;
245 if (s->num_timers < HPET_MIN_TIMERS) {
246 return false;
247 } else if (s->num_timers > HPET_MAX_TIMERS) {
248 return false;
250 return true;
253 static int hpet_post_load(void *opaque, int version_id)
255 HPETState *s = opaque;
257 /* Recalculate the offset between the main counter and guest time */
258 if (!s->hpet_offset_saved) {
259 s->hpet_offset = ticks_to_ns(s->hpet_counter)
260 - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
263 /* Push number of timers into capability returned via HPET_ID */
264 s->capability &= ~HPET_ID_NUM_TIM_MASK;
265 s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT;
266 hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability;
268 /* Derive HPET_MSI_SUPPORT from the capability of the first timer. */
269 s->flags &= ~(1 << HPET_MSI_SUPPORT);
270 if (s->timer[0].config & HPET_TN_FSB_CAP) {
271 s->flags |= 1 << HPET_MSI_SUPPORT;
273 return 0;
276 static bool hpet_offset_needed(void *opaque)
278 HPETState *s = opaque;
280 return hpet_enabled(s) && s->hpet_offset_saved;
283 static bool hpet_rtc_irq_level_needed(void *opaque)
285 HPETState *s = opaque;
287 return s->rtc_irq_level != 0;
290 static const VMStateDescription vmstate_hpet_rtc_irq_level = {
291 .name = "hpet/rtc_irq_level",
292 .version_id = 1,
293 .minimum_version_id = 1,
294 .needed = hpet_rtc_irq_level_needed,
295 .fields = (VMStateField[]) {
296 VMSTATE_UINT8(rtc_irq_level, HPETState),
297 VMSTATE_END_OF_LIST()
301 static const VMStateDescription vmstate_hpet_offset = {
302 .name = "hpet/offset",
303 .version_id = 1,
304 .minimum_version_id = 1,
305 .needed = hpet_offset_needed,
306 .fields = (VMStateField[]) {
307 VMSTATE_UINT64(hpet_offset, HPETState),
308 VMSTATE_END_OF_LIST()
312 static const VMStateDescription vmstate_hpet_timer = {
313 .name = "hpet_timer",
314 .version_id = 1,
315 .minimum_version_id = 1,
316 .fields = (VMStateField[]) {
317 VMSTATE_UINT8(tn, HPETTimer),
318 VMSTATE_UINT64(config, HPETTimer),
319 VMSTATE_UINT64(cmp, HPETTimer),
320 VMSTATE_UINT64(fsb, HPETTimer),
321 VMSTATE_UINT64(period, HPETTimer),
322 VMSTATE_UINT8(wrap_flag, HPETTimer),
323 VMSTATE_TIMER_PTR(qemu_timer, HPETTimer),
324 VMSTATE_END_OF_LIST()
328 static const VMStateDescription vmstate_hpet = {
329 .name = "hpet",
330 .version_id = 2,
331 .minimum_version_id = 1,
332 .pre_save = hpet_pre_save,
333 .pre_load = hpet_pre_load,
334 .post_load = hpet_post_load,
335 .fields = (VMStateField[]) {
336 VMSTATE_UINT64(config, HPETState),
337 VMSTATE_UINT64(isr, HPETState),
338 VMSTATE_UINT64(hpet_counter, HPETState),
339 VMSTATE_UINT8_V(num_timers, HPETState, 2),
340 VMSTATE_VALIDATE("num_timers in range", hpet_validate_num_timers),
341 VMSTATE_STRUCT_VARRAY_UINT8(timer, HPETState, num_timers, 0,
342 vmstate_hpet_timer, HPETTimer),
343 VMSTATE_END_OF_LIST()
345 .subsections = (const VMStateDescription*[]) {
346 &vmstate_hpet_rtc_irq_level,
347 &vmstate_hpet_offset,
348 NULL
353 * timer expiration callback
355 static void hpet_timer(void *opaque)
357 HPETTimer *t = opaque;
358 uint64_t diff;
360 uint64_t period = t->period;
361 uint64_t cur_tick = hpet_get_ticks(t->state);
363 if (timer_is_periodic(t) && period != 0) {
364 if (t->config & HPET_TN_32BIT) {
365 while (hpet_time_after(cur_tick, t->cmp)) {
366 t->cmp = (uint32_t)(t->cmp + t->period);
368 } else {
369 while (hpet_time_after64(cur_tick, t->cmp)) {
370 t->cmp += period;
373 diff = hpet_calculate_diff(t, cur_tick);
374 timer_mod(t->qemu_timer,
375 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (int64_t)ticks_to_ns(diff));
376 } else if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) {
377 if (t->wrap_flag) {
378 diff = hpet_calculate_diff(t, cur_tick);
379 timer_mod(t->qemu_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
380 (int64_t)ticks_to_ns(diff));
381 t->wrap_flag = 0;
384 update_irq(t, 1);
387 static void hpet_set_timer(HPETTimer *t)
389 uint64_t diff;
390 uint32_t wrap_diff; /* how many ticks until we wrap? */
391 uint64_t cur_tick = hpet_get_ticks(t->state);
393 /* whenever new timer is being set up, make sure wrap_flag is 0 */
394 t->wrap_flag = 0;
395 diff = hpet_calculate_diff(t, cur_tick);
397 /* hpet spec says in one-shot 32-bit mode, generate an interrupt when
398 * counter wraps in addition to an interrupt with comparator match.
400 if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) {
401 wrap_diff = 0xffffffff - (uint32_t)cur_tick;
402 if (wrap_diff < (uint32_t)diff) {
403 diff = wrap_diff;
404 t->wrap_flag = 1;
407 timer_mod(t->qemu_timer,
408 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (int64_t)ticks_to_ns(diff));
411 static void hpet_del_timer(HPETTimer *t)
413 timer_del(t->qemu_timer);
414 update_irq(t, 0);
417 #ifdef HPET_DEBUG
418 static uint32_t hpet_ram_readb(void *opaque, hwaddr addr)
420 printf("qemu: hpet_read b at %" PRIx64 "\n", addr);
421 return 0;
424 static uint32_t hpet_ram_readw(void *opaque, hwaddr addr)
426 printf("qemu: hpet_read w at %" PRIx64 "\n", addr);
427 return 0;
429 #endif
431 static uint64_t hpet_ram_read(void *opaque, hwaddr addr,
432 unsigned size)
434 HPETState *s = opaque;
435 uint64_t cur_tick, index;
437 DPRINTF("qemu: Enter hpet_ram_readl at %" PRIx64 "\n", addr);
438 index = addr;
439 /*address range of all TN regs*/
440 if (index >= 0x100 && index <= 0x3ff) {
441 uint8_t timer_id = (addr - 0x100) / 0x20;
442 HPETTimer *timer = &s->timer[timer_id];
444 if (timer_id > s->num_timers) {
445 DPRINTF("qemu: timer id out of range\n");
446 return 0;
449 switch ((addr - 0x100) % 0x20) {
450 case HPET_TN_CFG:
451 return timer->config;
452 case HPET_TN_CFG + 4: // Interrupt capabilities
453 return timer->config >> 32;
454 case HPET_TN_CMP: // comparator register
455 return timer->cmp;
456 case HPET_TN_CMP + 4:
457 return timer->cmp >> 32;
458 case HPET_TN_ROUTE:
459 return timer->fsb;
460 case HPET_TN_ROUTE + 4:
461 return timer->fsb >> 32;
462 default:
463 DPRINTF("qemu: invalid hpet_ram_readl\n");
464 break;
466 } else {
467 switch (index) {
468 case HPET_ID:
469 return s->capability;
470 case HPET_PERIOD:
471 return s->capability >> 32;
472 case HPET_CFG:
473 return s->config;
474 case HPET_CFG + 4:
475 DPRINTF("qemu: invalid HPET_CFG + 4 hpet_ram_readl\n");
476 return 0;
477 case HPET_COUNTER:
478 if (hpet_enabled(s)) {
479 cur_tick = hpet_get_ticks(s);
480 } else {
481 cur_tick = s->hpet_counter;
483 DPRINTF("qemu: reading counter = %" PRIx64 "\n", cur_tick);
484 return cur_tick;
485 case HPET_COUNTER + 4:
486 if (hpet_enabled(s)) {
487 cur_tick = hpet_get_ticks(s);
488 } else {
489 cur_tick = s->hpet_counter;
491 DPRINTF("qemu: reading counter + 4 = %" PRIx64 "\n", cur_tick);
492 return cur_tick >> 32;
493 case HPET_STATUS:
494 return s->isr;
495 default:
496 DPRINTF("qemu: invalid hpet_ram_readl\n");
497 break;
500 return 0;
503 static void hpet_ram_write(void *opaque, hwaddr addr,
504 uint64_t value, unsigned size)
506 int i;
507 HPETState *s = opaque;
508 uint64_t old_val, new_val, val, index;
510 DPRINTF("qemu: Enter hpet_ram_writel at %" PRIx64 " = %#x\n", addr, value);
511 index = addr;
512 old_val = hpet_ram_read(opaque, addr, 4);
513 new_val = value;
515 /*address range of all TN regs*/
516 if (index >= 0x100 && index <= 0x3ff) {
517 uint8_t timer_id = (addr - 0x100) / 0x20;
518 HPETTimer *timer = &s->timer[timer_id];
520 DPRINTF("qemu: hpet_ram_writel timer_id = %#x\n", timer_id);
521 if (timer_id > s->num_timers) {
522 DPRINTF("qemu: timer id out of range\n");
523 return;
525 switch ((addr - 0x100) % 0x20) {
526 case HPET_TN_CFG:
527 DPRINTF("qemu: hpet_ram_writel HPET_TN_CFG\n");
528 if (activating_bit(old_val, new_val, HPET_TN_FSB_ENABLE)) {
529 update_irq(timer, 0);
531 val = hpet_fixup_reg(new_val, old_val, HPET_TN_CFG_WRITE_MASK);
532 timer->config = (timer->config & 0xffffffff00000000ULL) | val;
533 if (new_val & HPET_TN_32BIT) {
534 timer->cmp = (uint32_t)timer->cmp;
535 timer->period = (uint32_t)timer->period;
537 if (activating_bit(old_val, new_val, HPET_TN_ENABLE) &&
538 hpet_enabled(s)) {
539 hpet_set_timer(timer);
540 } else if (deactivating_bit(old_val, new_val, HPET_TN_ENABLE)) {
541 hpet_del_timer(timer);
543 break;
544 case HPET_TN_CFG + 4: // Interrupt capabilities
545 DPRINTF("qemu: invalid HPET_TN_CFG+4 write\n");
546 break;
547 case HPET_TN_CMP: // comparator register
548 DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP\n");
549 if (timer->config & HPET_TN_32BIT) {
550 new_val = (uint32_t)new_val;
552 if (!timer_is_periodic(timer)
553 || (timer->config & HPET_TN_SETVAL)) {
554 timer->cmp = (timer->cmp & 0xffffffff00000000ULL) | new_val;
556 if (timer_is_periodic(timer)) {
558 * FIXME: Clamp period to reasonable min value?
559 * Clamp period to reasonable max value
561 new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1;
562 timer->period =
563 (timer->period & 0xffffffff00000000ULL) | new_val;
565 timer->config &= ~HPET_TN_SETVAL;
566 if (hpet_enabled(s)) {
567 hpet_set_timer(timer);
569 break;
570 case HPET_TN_CMP + 4: // comparator register high order
571 DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP + 4\n");
572 if (!timer_is_periodic(timer)
573 || (timer->config & HPET_TN_SETVAL)) {
574 timer->cmp = (timer->cmp & 0xffffffffULL) | new_val << 32;
575 } else {
577 * FIXME: Clamp period to reasonable min value?
578 * Clamp period to reasonable max value
580 new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1;
581 timer->period =
582 (timer->period & 0xffffffffULL) | new_val << 32;
584 timer->config &= ~HPET_TN_SETVAL;
585 if (hpet_enabled(s)) {
586 hpet_set_timer(timer);
588 break;
589 case HPET_TN_ROUTE:
590 timer->fsb = (timer->fsb & 0xffffffff00000000ULL) | new_val;
591 break;
592 case HPET_TN_ROUTE + 4:
593 timer->fsb = (new_val << 32) | (timer->fsb & 0xffffffff);
594 break;
595 default:
596 DPRINTF("qemu: invalid hpet_ram_writel\n");
597 break;
599 return;
600 } else {
601 switch (index) {
602 case HPET_ID:
603 return;
604 case HPET_CFG:
605 val = hpet_fixup_reg(new_val, old_val, HPET_CFG_WRITE_MASK);
606 s->config = (s->config & 0xffffffff00000000ULL) | val;
607 if (activating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
608 /* Enable main counter and interrupt generation. */
609 s->hpet_offset =
610 ticks_to_ns(s->hpet_counter) - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
611 for (i = 0; i < s->num_timers; i++) {
612 if ((&s->timer[i])->cmp != ~0ULL) {
613 hpet_set_timer(&s->timer[i]);
616 } else if (deactivating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
617 /* Halt main counter and disable interrupt generation. */
618 s->hpet_counter = hpet_get_ticks(s);
619 for (i = 0; i < s->num_timers; i++) {
620 hpet_del_timer(&s->timer[i]);
623 /* i8254 and RTC output pins are disabled
624 * when HPET is in legacy mode */
625 if (activating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
626 qemu_set_irq(s->pit_enabled, 0);
627 qemu_irq_lower(s->irqs[0]);
628 qemu_irq_lower(s->irqs[RTC_ISA_IRQ]);
629 } else if (deactivating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
630 qemu_irq_lower(s->irqs[0]);
631 qemu_set_irq(s->pit_enabled, 1);
632 qemu_set_irq(s->irqs[RTC_ISA_IRQ], s->rtc_irq_level);
634 break;
635 case HPET_CFG + 4:
636 DPRINTF("qemu: invalid HPET_CFG+4 write\n");
637 break;
638 case HPET_STATUS:
639 val = new_val & s->isr;
640 for (i = 0; i < s->num_timers; i++) {
641 if (val & (1 << i)) {
642 update_irq(&s->timer[i], 0);
645 break;
646 case HPET_COUNTER:
647 if (hpet_enabled(s)) {
648 DPRINTF("qemu: Writing counter while HPET enabled!\n");
650 s->hpet_counter =
651 (s->hpet_counter & 0xffffffff00000000ULL) | value;
652 DPRINTF("qemu: HPET counter written. ctr = %#x -> %" PRIx64 "\n",
653 value, s->hpet_counter);
654 break;
655 case HPET_COUNTER + 4:
656 if (hpet_enabled(s)) {
657 DPRINTF("qemu: Writing counter while HPET enabled!\n");
659 s->hpet_counter =
660 (s->hpet_counter & 0xffffffffULL) | (((uint64_t)value) << 32);
661 DPRINTF("qemu: HPET counter + 4 written. ctr = %#x -> %" PRIx64 "\n",
662 value, s->hpet_counter);
663 break;
664 default:
665 DPRINTF("qemu: invalid hpet_ram_writel\n");
666 break;
671 static const MemoryRegionOps hpet_ram_ops = {
672 .read = hpet_ram_read,
673 .write = hpet_ram_write,
674 .valid = {
675 .min_access_size = 4,
676 .max_access_size = 4,
678 .endianness = DEVICE_NATIVE_ENDIAN,
681 static void hpet_reset(DeviceState *d)
683 HPETState *s = HPET(d);
684 SysBusDevice *sbd = SYS_BUS_DEVICE(d);
685 int i;
687 for (i = 0; i < s->num_timers; i++) {
688 HPETTimer *timer = &s->timer[i];
690 hpet_del_timer(timer);
691 timer->cmp = ~0ULL;
692 timer->config = HPET_TN_PERIODIC_CAP | HPET_TN_SIZE_CAP;
693 if (s->flags & (1 << HPET_MSI_SUPPORT)) {
694 timer->config |= HPET_TN_FSB_CAP;
696 /* advertise availability of ioapic int */
697 timer->config |= (uint64_t)s->intcap << 32;
698 timer->period = 0ULL;
699 timer->wrap_flag = 0;
702 qemu_set_irq(s->pit_enabled, 1);
703 s->hpet_counter = 0ULL;
704 s->hpet_offset = 0ULL;
705 s->config = 0ULL;
706 hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability;
707 hpet_cfg.hpet[s->hpet_id].address = sbd->mmio[0].addr;
709 /* to document that the RTC lowers its output on reset as well */
710 s->rtc_irq_level = 0;
713 static void hpet_handle_legacy_irq(void *opaque, int n, int level)
715 HPETState *s = HPET(opaque);
717 if (n == HPET_LEGACY_PIT_INT) {
718 if (!hpet_in_legacy_mode(s)) {
719 qemu_set_irq(s->irqs[0], level);
721 } else {
722 s->rtc_irq_level = level;
723 if (!hpet_in_legacy_mode(s)) {
724 qemu_set_irq(s->irqs[RTC_ISA_IRQ], level);
729 static void hpet_init(Object *obj)
731 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
732 HPETState *s = HPET(obj);
734 /* HPET Area */
735 memory_region_init_io(&s->iomem, obj, &hpet_ram_ops, s, "hpet", HPET_LEN);
736 sysbus_init_mmio(sbd, &s->iomem);
739 static void hpet_realize(DeviceState *dev, Error **errp)
741 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
742 HPETState *s = HPET(dev);
743 int i;
744 HPETTimer *timer;
746 if (!s->intcap) {
747 warn_report("Hpet's intcap not initialized");
749 if (hpet_cfg.count == UINT8_MAX) {
750 /* first instance */
751 hpet_cfg.count = 0;
754 if (hpet_cfg.count == 8) {
755 error_setg(errp, "Only 8 instances of HPET is allowed");
756 return;
759 s->hpet_id = hpet_cfg.count++;
761 for (i = 0; i < HPET_NUM_IRQ_ROUTES; i++) {
762 sysbus_init_irq(sbd, &s->irqs[i]);
765 if (s->num_timers < HPET_MIN_TIMERS) {
766 s->num_timers = HPET_MIN_TIMERS;
767 } else if (s->num_timers > HPET_MAX_TIMERS) {
768 s->num_timers = HPET_MAX_TIMERS;
770 for (i = 0; i < HPET_MAX_TIMERS; i++) {
771 timer = &s->timer[i];
772 timer->qemu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, hpet_timer, timer);
773 timer->tn = i;
774 timer->state = s;
777 /* 64-bit main counter; LegacyReplacementRoute. */
778 s->capability = 0x8086a001ULL;
779 s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT;
780 s->capability |= ((uint64_t)(HPET_CLK_PERIOD * FS_PER_NS) << 32);
782 qdev_init_gpio_in(dev, hpet_handle_legacy_irq, 2);
783 qdev_init_gpio_out(dev, &s->pit_enabled, 1);
786 static Property hpet_device_properties[] = {
787 DEFINE_PROP_UINT8("timers", HPETState, num_timers, HPET_MIN_TIMERS),
788 DEFINE_PROP_BIT("msi", HPETState, flags, HPET_MSI_SUPPORT, false),
789 DEFINE_PROP_UINT32(HPET_INTCAP, HPETState, intcap, 0),
790 DEFINE_PROP_BOOL("hpet-offset-saved", HPETState, hpet_offset_saved, true),
791 DEFINE_PROP_END_OF_LIST(),
794 static void hpet_device_class_init(ObjectClass *klass, void *data)
796 DeviceClass *dc = DEVICE_CLASS(klass);
798 dc->realize = hpet_realize;
799 dc->reset = hpet_reset;
800 dc->vmsd = &vmstate_hpet;
801 dc->props = hpet_device_properties;
804 static const TypeInfo hpet_device_info = {
805 .name = TYPE_HPET,
806 .parent = TYPE_SYS_BUS_DEVICE,
807 .instance_size = sizeof(HPETState),
808 .instance_init = hpet_init,
809 .class_init = hpet_device_class_init,
812 static void hpet_register_types(void)
814 type_register_static(&hpet_device_info);
817 type_init(hpet_register_types)