libqos/ahci: Force all NCQ commands to be LBA48
[qemu/ar7.git] / hw / block / nvme.c
blobc6a6a0e49ac4add68a528caaa91317db230c3cbc
1 /*
2 * QEMU NVM Express Controller
4 * Copyright (c) 2012, Intel Corporation
6 * Written by Keith Busch <keith.busch@intel.com>
8 * This code is licensed under the GNU GPL v2 or later.
9 */
11 /**
12 * Reference Specs: http://www.nvmexpress.org, 1.1, 1.0e
14 * http://www.nvmexpress.org/resources/
17 /**
18 * Usage: add options:
19 * -drive file=<file>,if=none,id=<drive_id>
20 * -device nvme,drive=<drive_id>,serial=<serial>,id=<id[optional]>
23 #include <hw/block/block.h>
24 #include <hw/hw.h>
25 #include <hw/pci/msix.h>
26 #include <hw/pci/pci.h>
27 #include "sysemu/sysemu.h"
28 #include "qapi/visitor.h"
29 #include "sysemu/block-backend.h"
31 #include "nvme.h"
33 static void nvme_process_sq(void *opaque);
35 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
37 return sqid < n->num_queues && n->sq[sqid] != NULL ? 0 : -1;
40 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
42 return cqid < n->num_queues && n->cq[cqid] != NULL ? 0 : -1;
45 static void nvme_inc_cq_tail(NvmeCQueue *cq)
47 cq->tail++;
48 if (cq->tail >= cq->size) {
49 cq->tail = 0;
50 cq->phase = !cq->phase;
54 static void nvme_inc_sq_head(NvmeSQueue *sq)
56 sq->head = (sq->head + 1) % sq->size;
59 static uint8_t nvme_cq_full(NvmeCQueue *cq)
61 return (cq->tail + 1) % cq->size == cq->head;
64 static uint8_t nvme_sq_empty(NvmeSQueue *sq)
66 return sq->head == sq->tail;
69 static void nvme_isr_notify(NvmeCtrl *n, NvmeCQueue *cq)
71 if (cq->irq_enabled) {
72 if (msix_enabled(&(n->parent_obj))) {
73 msix_notify(&(n->parent_obj), cq->vector);
74 } else {
75 pci_irq_pulse(&n->parent_obj);
80 static uint16_t nvme_map_prp(QEMUSGList *qsg, uint64_t prp1, uint64_t prp2,
81 uint32_t len, NvmeCtrl *n)
83 hwaddr trans_len = n->page_size - (prp1 % n->page_size);
84 trans_len = MIN(len, trans_len);
85 int num_prps = (len >> n->page_bits) + 1;
87 if (!prp1) {
88 return NVME_INVALID_FIELD | NVME_DNR;
91 pci_dma_sglist_init(qsg, &n->parent_obj, num_prps);
92 qemu_sglist_add(qsg, prp1, trans_len);
93 len -= trans_len;
94 if (len) {
95 if (!prp2) {
96 goto unmap;
98 if (len > n->page_size) {
99 uint64_t prp_list[n->max_prp_ents];
100 uint32_t nents, prp_trans;
101 int i = 0;
103 nents = (len + n->page_size - 1) >> n->page_bits;
104 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
105 pci_dma_read(&n->parent_obj, prp2, (void *)prp_list, prp_trans);
106 while (len != 0) {
107 uint64_t prp_ent = le64_to_cpu(prp_list[i]);
109 if (i == n->max_prp_ents - 1 && len > n->page_size) {
110 if (!prp_ent || prp_ent & (n->page_size - 1)) {
111 goto unmap;
114 i = 0;
115 nents = (len + n->page_size - 1) >> n->page_bits;
116 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
117 pci_dma_read(&n->parent_obj, prp_ent, (void *)prp_list,
118 prp_trans);
119 prp_ent = le64_to_cpu(prp_list[i]);
122 if (!prp_ent || prp_ent & (n->page_size - 1)) {
123 goto unmap;
126 trans_len = MIN(len, n->page_size);
127 qemu_sglist_add(qsg, prp_ent, trans_len);
128 len -= trans_len;
129 i++;
131 } else {
132 if (prp2 & (n->page_size - 1)) {
133 goto unmap;
135 qemu_sglist_add(qsg, prp2, len);
138 return NVME_SUCCESS;
140 unmap:
141 qemu_sglist_destroy(qsg);
142 return NVME_INVALID_FIELD | NVME_DNR;
145 static uint16_t nvme_dma_read_prp(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
146 uint64_t prp1, uint64_t prp2)
148 QEMUSGList qsg;
150 if (nvme_map_prp(&qsg, prp1, prp2, len, n)) {
151 return NVME_INVALID_FIELD | NVME_DNR;
153 if (dma_buf_read(ptr, len, &qsg)) {
154 qemu_sglist_destroy(&qsg);
155 return NVME_INVALID_FIELD | NVME_DNR;
157 qemu_sglist_destroy(&qsg);
158 return NVME_SUCCESS;
161 static void nvme_post_cqes(void *opaque)
163 NvmeCQueue *cq = opaque;
164 NvmeCtrl *n = cq->ctrl;
165 NvmeRequest *req, *next;
167 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
168 NvmeSQueue *sq;
169 hwaddr addr;
171 if (nvme_cq_full(cq)) {
172 break;
175 QTAILQ_REMOVE(&cq->req_list, req, entry);
176 sq = req->sq;
177 req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
178 req->cqe.sq_id = cpu_to_le16(sq->sqid);
179 req->cqe.sq_head = cpu_to_le16(sq->head);
180 addr = cq->dma_addr + cq->tail * n->cqe_size;
181 nvme_inc_cq_tail(cq);
182 pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
183 sizeof(req->cqe));
184 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
186 nvme_isr_notify(n, cq);
189 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
191 assert(cq->cqid == req->sq->cqid);
192 QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
193 QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
194 timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
197 static void nvme_rw_cb(void *opaque, int ret)
199 NvmeRequest *req = opaque;
200 NvmeSQueue *sq = req->sq;
201 NvmeCtrl *n = sq->ctrl;
202 NvmeCQueue *cq = n->cq[sq->cqid];
204 block_acct_done(blk_get_stats(n->conf.blk), &req->acct);
205 if (!ret) {
206 req->status = NVME_SUCCESS;
207 } else {
208 req->status = NVME_INTERNAL_DEV_ERROR;
211 qemu_sglist_destroy(&req->qsg);
212 nvme_enqueue_req_completion(cq, req);
215 static uint16_t nvme_rw(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
216 NvmeRequest *req)
218 NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
219 uint32_t nlb = le32_to_cpu(rw->nlb) + 1;
220 uint64_t slba = le64_to_cpu(rw->slba);
221 uint64_t prp1 = le64_to_cpu(rw->prp1);
222 uint64_t prp2 = le64_to_cpu(rw->prp2);
224 uint8_t lba_index = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
225 uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
226 uint64_t data_size = (uint64_t)nlb << data_shift;
227 uint64_t aio_slba = slba << (data_shift - BDRV_SECTOR_BITS);
228 int is_write = rw->opcode == NVME_CMD_WRITE ? 1 : 0;
230 if ((slba + nlb) > ns->id_ns.nsze) {
231 return NVME_LBA_RANGE | NVME_DNR;
233 if (nvme_map_prp(&req->qsg, prp1, prp2, data_size, n)) {
234 return NVME_INVALID_FIELD | NVME_DNR;
236 assert((nlb << data_shift) == req->qsg.size);
238 dma_acct_start(n->conf.blk, &req->acct, &req->qsg,
239 is_write ? BLOCK_ACCT_WRITE : BLOCK_ACCT_READ);
240 req->aiocb = is_write ?
241 dma_blk_write(n->conf.blk, &req->qsg, aio_slba, nvme_rw_cb, req) :
242 dma_blk_read(n->conf.blk, &req->qsg, aio_slba, nvme_rw_cb, req);
244 return NVME_NO_COMPLETE;
247 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
249 NvmeNamespace *ns;
250 uint32_t nsid = le32_to_cpu(cmd->nsid);
252 if (nsid == 0 || nsid > n->num_namespaces) {
253 return NVME_INVALID_NSID | NVME_DNR;
256 ns = &n->namespaces[nsid - 1];
257 switch (cmd->opcode) {
258 case NVME_CMD_FLUSH:
259 return NVME_SUCCESS;
260 case NVME_CMD_WRITE:
261 case NVME_CMD_READ:
262 return nvme_rw(n, ns, cmd, req);
263 default:
264 return NVME_INVALID_OPCODE | NVME_DNR;
268 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
270 n->sq[sq->sqid] = NULL;
271 timer_del(sq->timer);
272 timer_free(sq->timer);
273 g_free(sq->io_req);
274 if (sq->sqid) {
275 g_free(sq);
279 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeCmd *cmd)
281 NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
282 NvmeRequest *req, *next;
283 NvmeSQueue *sq;
284 NvmeCQueue *cq;
285 uint16_t qid = le16_to_cpu(c->qid);
287 if (!qid || nvme_check_sqid(n, qid)) {
288 return NVME_INVALID_QID | NVME_DNR;
291 sq = n->sq[qid];
292 while (!QTAILQ_EMPTY(&sq->out_req_list)) {
293 req = QTAILQ_FIRST(&sq->out_req_list);
294 assert(req->aiocb);
295 blk_aio_cancel(req->aiocb);
297 if (!nvme_check_cqid(n, sq->cqid)) {
298 cq = n->cq[sq->cqid];
299 QTAILQ_REMOVE(&cq->sq_list, sq, entry);
301 nvme_post_cqes(cq);
302 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
303 if (req->sq == sq) {
304 QTAILQ_REMOVE(&cq->req_list, req, entry);
305 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
310 nvme_free_sq(sq, n);
311 return NVME_SUCCESS;
314 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
315 uint16_t sqid, uint16_t cqid, uint16_t size)
317 int i;
318 NvmeCQueue *cq;
320 sq->ctrl = n;
321 sq->dma_addr = dma_addr;
322 sq->sqid = sqid;
323 sq->size = size;
324 sq->cqid = cqid;
325 sq->head = sq->tail = 0;
326 sq->io_req = g_new(NvmeRequest, sq->size);
328 QTAILQ_INIT(&sq->req_list);
329 QTAILQ_INIT(&sq->out_req_list);
330 for (i = 0; i < sq->size; i++) {
331 sq->io_req[i].sq = sq;
332 QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
334 sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);
336 assert(n->cq[cqid]);
337 cq = n->cq[cqid];
338 QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
339 n->sq[sqid] = sq;
342 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeCmd *cmd)
344 NvmeSQueue *sq;
345 NvmeCreateSq *c = (NvmeCreateSq *)cmd;
347 uint16_t cqid = le16_to_cpu(c->cqid);
348 uint16_t sqid = le16_to_cpu(c->sqid);
349 uint16_t qsize = le16_to_cpu(c->qsize);
350 uint16_t qflags = le16_to_cpu(c->sq_flags);
351 uint64_t prp1 = le64_to_cpu(c->prp1);
353 if (!cqid || nvme_check_cqid(n, cqid)) {
354 return NVME_INVALID_CQID | NVME_DNR;
356 if (!sqid || (sqid && !nvme_check_sqid(n, sqid))) {
357 return NVME_INVALID_QID | NVME_DNR;
359 if (!qsize || qsize > NVME_CAP_MQES(n->bar.cap)) {
360 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
362 if (!prp1 || prp1 & (n->page_size - 1)) {
363 return NVME_INVALID_FIELD | NVME_DNR;
365 if (!(NVME_SQ_FLAGS_PC(qflags))) {
366 return NVME_INVALID_FIELD | NVME_DNR;
368 sq = g_malloc0(sizeof(*sq));
369 nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
370 return NVME_SUCCESS;
373 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
375 n->cq[cq->cqid] = NULL;
376 timer_del(cq->timer);
377 timer_free(cq->timer);
378 msix_vector_unuse(&n->parent_obj, cq->vector);
379 if (cq->cqid) {
380 g_free(cq);
384 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeCmd *cmd)
386 NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
387 NvmeCQueue *cq;
388 uint16_t qid = le16_to_cpu(c->qid);
390 if (!qid || nvme_check_cqid(n, qid)) {
391 return NVME_INVALID_CQID | NVME_DNR;
394 cq = n->cq[qid];
395 if (!QTAILQ_EMPTY(&cq->sq_list)) {
396 return NVME_INVALID_QUEUE_DEL;
398 nvme_free_cq(cq, n);
399 return NVME_SUCCESS;
402 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
403 uint16_t cqid, uint16_t vector, uint16_t size, uint16_t irq_enabled)
405 cq->ctrl = n;
406 cq->cqid = cqid;
407 cq->size = size;
408 cq->dma_addr = dma_addr;
409 cq->phase = 1;
410 cq->irq_enabled = irq_enabled;
411 cq->vector = vector;
412 cq->head = cq->tail = 0;
413 QTAILQ_INIT(&cq->req_list);
414 QTAILQ_INIT(&cq->sq_list);
415 msix_vector_use(&n->parent_obj, cq->vector);
416 n->cq[cqid] = cq;
417 cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
420 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeCmd *cmd)
422 NvmeCQueue *cq;
423 NvmeCreateCq *c = (NvmeCreateCq *)cmd;
424 uint16_t cqid = le16_to_cpu(c->cqid);
425 uint16_t vector = le16_to_cpu(c->irq_vector);
426 uint16_t qsize = le16_to_cpu(c->qsize);
427 uint16_t qflags = le16_to_cpu(c->cq_flags);
428 uint64_t prp1 = le64_to_cpu(c->prp1);
430 if (!cqid || (cqid && !nvme_check_cqid(n, cqid))) {
431 return NVME_INVALID_CQID | NVME_DNR;
433 if (!qsize || qsize > NVME_CAP_MQES(n->bar.cap)) {
434 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
436 if (!prp1) {
437 return NVME_INVALID_FIELD | NVME_DNR;
439 if (vector > n->num_queues) {
440 return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
442 if (!(NVME_CQ_FLAGS_PC(qflags))) {
443 return NVME_INVALID_FIELD | NVME_DNR;
446 cq = g_malloc0(sizeof(*cq));
447 nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
448 NVME_CQ_FLAGS_IEN(qflags));
449 return NVME_SUCCESS;
452 static uint16_t nvme_identify(NvmeCtrl *n, NvmeCmd *cmd)
454 NvmeNamespace *ns;
455 NvmeIdentify *c = (NvmeIdentify *)cmd;
456 uint32_t cns = le32_to_cpu(c->cns);
457 uint32_t nsid = le32_to_cpu(c->nsid);
458 uint64_t prp1 = le64_to_cpu(c->prp1);
459 uint64_t prp2 = le64_to_cpu(c->prp2);
461 if (cns) {
462 return nvme_dma_read_prp(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl),
463 prp1, prp2);
465 if (nsid == 0 || nsid > n->num_namespaces) {
466 return NVME_INVALID_NSID | NVME_DNR;
469 ns = &n->namespaces[nsid - 1];
470 return nvme_dma_read_prp(n, (uint8_t *)&ns->id_ns, sizeof(ns->id_ns),
471 prp1, prp2);
474 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
476 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
478 switch (dw10) {
479 case NVME_NUMBER_OF_QUEUES:
480 req->cqe.result =
481 cpu_to_le32((n->num_queues - 1) | ((n->num_queues - 1) << 16));
482 break;
483 case NVME_VOLATILE_WRITE_CACHE:
484 req->cqe.result = cpu_to_le32(1);
485 break;
486 default:
487 return NVME_INVALID_FIELD | NVME_DNR;
489 return NVME_SUCCESS;
492 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
494 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
496 switch (dw10) {
497 case NVME_NUMBER_OF_QUEUES:
498 req->cqe.result =
499 cpu_to_le32((n->num_queues - 1) | ((n->num_queues - 1) << 16));
500 break;
501 default:
502 return NVME_INVALID_FIELD | NVME_DNR;
504 return NVME_SUCCESS;
507 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
509 switch (cmd->opcode) {
510 case NVME_ADM_CMD_DELETE_SQ:
511 return nvme_del_sq(n, cmd);
512 case NVME_ADM_CMD_CREATE_SQ:
513 return nvme_create_sq(n, cmd);
514 case NVME_ADM_CMD_DELETE_CQ:
515 return nvme_del_cq(n, cmd);
516 case NVME_ADM_CMD_CREATE_CQ:
517 return nvme_create_cq(n, cmd);
518 case NVME_ADM_CMD_IDENTIFY:
519 return nvme_identify(n, cmd);
520 case NVME_ADM_CMD_SET_FEATURES:
521 return nvme_set_feature(n, cmd, req);
522 case NVME_ADM_CMD_GET_FEATURES:
523 return nvme_get_feature(n, cmd, req);
524 default:
525 return NVME_INVALID_OPCODE | NVME_DNR;
529 static void nvme_process_sq(void *opaque)
531 NvmeSQueue *sq = opaque;
532 NvmeCtrl *n = sq->ctrl;
533 NvmeCQueue *cq = n->cq[sq->cqid];
535 uint16_t status;
536 hwaddr addr;
537 NvmeCmd cmd;
538 NvmeRequest *req;
540 while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
541 addr = sq->dma_addr + sq->head * n->sqe_size;
542 pci_dma_read(&n->parent_obj, addr, (void *)&cmd, sizeof(cmd));
543 nvme_inc_sq_head(sq);
545 req = QTAILQ_FIRST(&sq->req_list);
546 QTAILQ_REMOVE(&sq->req_list, req, entry);
547 QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
548 memset(&req->cqe, 0, sizeof(req->cqe));
549 req->cqe.cid = cmd.cid;
551 status = sq->sqid ? nvme_io_cmd(n, &cmd, req) :
552 nvme_admin_cmd(n, &cmd, req);
553 if (status != NVME_NO_COMPLETE) {
554 req->status = status;
555 nvme_enqueue_req_completion(cq, req);
560 static void nvme_clear_ctrl(NvmeCtrl *n)
562 int i;
564 for (i = 0; i < n->num_queues; i++) {
565 if (n->sq[i] != NULL) {
566 nvme_free_sq(n->sq[i], n);
569 for (i = 0; i < n->num_queues; i++) {
570 if (n->cq[i] != NULL) {
571 nvme_free_cq(n->cq[i], n);
575 blk_flush(n->conf.blk);
576 n->bar.cc = 0;
579 static int nvme_start_ctrl(NvmeCtrl *n)
581 uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12;
582 uint32_t page_size = 1 << page_bits;
584 if (n->cq[0] || n->sq[0] || !n->bar.asq || !n->bar.acq ||
585 n->bar.asq & (page_size - 1) || n->bar.acq & (page_size - 1) ||
586 NVME_CC_MPS(n->bar.cc) < NVME_CAP_MPSMIN(n->bar.cap) ||
587 NVME_CC_MPS(n->bar.cc) > NVME_CAP_MPSMAX(n->bar.cap) ||
588 NVME_CC_IOCQES(n->bar.cc) < NVME_CTRL_CQES_MIN(n->id_ctrl.cqes) ||
589 NVME_CC_IOCQES(n->bar.cc) > NVME_CTRL_CQES_MAX(n->id_ctrl.cqes) ||
590 NVME_CC_IOSQES(n->bar.cc) < NVME_CTRL_SQES_MIN(n->id_ctrl.sqes) ||
591 NVME_CC_IOSQES(n->bar.cc) > NVME_CTRL_SQES_MAX(n->id_ctrl.sqes) ||
592 !NVME_AQA_ASQS(n->bar.aqa) || !NVME_AQA_ACQS(n->bar.aqa)) {
593 return -1;
596 n->page_bits = page_bits;
597 n->page_size = page_size;
598 n->max_prp_ents = n->page_size / sizeof(uint64_t);
599 n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc);
600 n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc);
601 nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0,
602 NVME_AQA_ACQS(n->bar.aqa) + 1, 1);
603 nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0,
604 NVME_AQA_ASQS(n->bar.aqa) + 1);
606 return 0;
609 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
610 unsigned size)
612 switch (offset) {
613 case 0xc:
614 n->bar.intms |= data & 0xffffffff;
615 n->bar.intmc = n->bar.intms;
616 break;
617 case 0x10:
618 n->bar.intms &= ~(data & 0xffffffff);
619 n->bar.intmc = n->bar.intms;
620 break;
621 case 0x14:
622 /* Windows first sends data, then sends enable bit */
623 if (!NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc) &&
624 !NVME_CC_SHN(data) && !NVME_CC_SHN(n->bar.cc))
626 n->bar.cc = data;
629 if (NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc)) {
630 n->bar.cc = data;
631 if (nvme_start_ctrl(n)) {
632 n->bar.csts = NVME_CSTS_FAILED;
633 } else {
634 n->bar.csts = NVME_CSTS_READY;
636 } else if (!NVME_CC_EN(data) && NVME_CC_EN(n->bar.cc)) {
637 nvme_clear_ctrl(n);
638 n->bar.csts &= ~NVME_CSTS_READY;
640 if (NVME_CC_SHN(data) && !(NVME_CC_SHN(n->bar.cc))) {
641 nvme_clear_ctrl(n);
642 n->bar.cc = data;
643 n->bar.csts |= NVME_CSTS_SHST_COMPLETE;
644 } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(n->bar.cc)) {
645 n->bar.csts &= ~NVME_CSTS_SHST_COMPLETE;
646 n->bar.cc = data;
648 break;
649 case 0x24:
650 n->bar.aqa = data & 0xffffffff;
651 break;
652 case 0x28:
653 n->bar.asq = data;
654 break;
655 case 0x2c:
656 n->bar.asq |= data << 32;
657 break;
658 case 0x30:
659 n->bar.acq = data;
660 break;
661 case 0x34:
662 n->bar.acq |= data << 32;
663 break;
664 default:
665 break;
669 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
671 NvmeCtrl *n = (NvmeCtrl *)opaque;
672 uint8_t *ptr = (uint8_t *)&n->bar;
673 uint64_t val = 0;
675 if (addr < sizeof(n->bar)) {
676 memcpy(&val, ptr + addr, size);
678 return val;
681 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
683 uint32_t qid;
685 if (addr & ((1 << 2) - 1)) {
686 return;
689 if (((addr - 0x1000) >> 2) & 1) {
690 uint16_t new_head = val & 0xffff;
691 int start_sqs;
692 NvmeCQueue *cq;
694 qid = (addr - (0x1000 + (1 << 2))) >> 3;
695 if (nvme_check_cqid(n, qid)) {
696 return;
699 cq = n->cq[qid];
700 if (new_head >= cq->size) {
701 return;
704 start_sqs = nvme_cq_full(cq) ? 1 : 0;
705 cq->head = new_head;
706 if (start_sqs) {
707 NvmeSQueue *sq;
708 QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
709 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
711 timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
714 if (cq->tail != cq->head) {
715 nvme_isr_notify(n, cq);
717 } else {
718 uint16_t new_tail = val & 0xffff;
719 NvmeSQueue *sq;
721 qid = (addr - 0x1000) >> 3;
722 if (nvme_check_sqid(n, qid)) {
723 return;
726 sq = n->sq[qid];
727 if (new_tail >= sq->size) {
728 return;
731 sq->tail = new_tail;
732 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
736 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
737 unsigned size)
739 NvmeCtrl *n = (NvmeCtrl *)opaque;
740 if (addr < sizeof(n->bar)) {
741 nvme_write_bar(n, addr, data, size);
742 } else if (addr >= 0x1000) {
743 nvme_process_db(n, addr, data);
747 static const MemoryRegionOps nvme_mmio_ops = {
748 .read = nvme_mmio_read,
749 .write = nvme_mmio_write,
750 .endianness = DEVICE_LITTLE_ENDIAN,
751 .impl = {
752 .min_access_size = 2,
753 .max_access_size = 8,
757 static int nvme_init(PCIDevice *pci_dev)
759 NvmeCtrl *n = NVME(pci_dev);
760 NvmeIdCtrl *id = &n->id_ctrl;
762 int i;
763 int64_t bs_size;
764 uint8_t *pci_conf;
766 if (!n->conf.blk) {
767 return -1;
770 bs_size = blk_getlength(n->conf.blk);
771 if (bs_size < 0) {
772 return -1;
775 blkconf_serial(&n->conf, &n->serial);
776 if (!n->serial) {
777 return -1;
779 blkconf_blocksizes(&n->conf);
781 pci_conf = pci_dev->config;
782 pci_conf[PCI_INTERRUPT_PIN] = 1;
783 pci_config_set_prog_interface(pci_dev->config, 0x2);
784 pci_config_set_class(pci_dev->config, PCI_CLASS_STORAGE_EXPRESS);
785 pcie_endpoint_cap_init(&n->parent_obj, 0x80);
787 n->num_namespaces = 1;
788 n->num_queues = 64;
789 n->reg_size = 1 << qemu_fls(0x1004 + 2 * (n->num_queues + 1) * 4);
790 n->ns_size = bs_size / (uint64_t)n->num_namespaces;
792 n->namespaces = g_new0(NvmeNamespace, n->num_namespaces);
793 n->sq = g_new0(NvmeSQueue *, n->num_queues);
794 n->cq = g_new0(NvmeCQueue *, n->num_queues);
796 memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n,
797 "nvme", n->reg_size);
798 pci_register_bar(&n->parent_obj, 0,
799 PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64,
800 &n->iomem);
801 msix_init_exclusive_bar(&n->parent_obj, n->num_queues, 4);
803 id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
804 id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
805 strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
806 strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' ');
807 strpadcpy((char *)id->sn, sizeof(id->sn), n->serial, ' ');
808 id->rab = 6;
809 id->ieee[0] = 0x00;
810 id->ieee[1] = 0x02;
811 id->ieee[2] = 0xb3;
812 id->oacs = cpu_to_le16(0);
813 id->frmw = 7 << 1;
814 id->lpa = 1 << 0;
815 id->sqes = (0x6 << 4) | 0x6;
816 id->cqes = (0x4 << 4) | 0x4;
817 id->nn = cpu_to_le32(n->num_namespaces);
818 id->psd[0].mp = cpu_to_le16(0x9c4);
819 id->psd[0].enlat = cpu_to_le32(0x10);
820 id->psd[0].exlat = cpu_to_le32(0x4);
822 n->bar.cap = 0;
823 NVME_CAP_SET_MQES(n->bar.cap, 0x7ff);
824 NVME_CAP_SET_CQR(n->bar.cap, 1);
825 NVME_CAP_SET_AMS(n->bar.cap, 1);
826 NVME_CAP_SET_TO(n->bar.cap, 0xf);
827 NVME_CAP_SET_CSS(n->bar.cap, 1);
828 NVME_CAP_SET_MPSMAX(n->bar.cap, 4);
830 n->bar.vs = 0x00010100;
831 n->bar.intmc = n->bar.intms = 0;
833 for (i = 0; i < n->num_namespaces; i++) {
834 NvmeNamespace *ns = &n->namespaces[i];
835 NvmeIdNs *id_ns = &ns->id_ns;
836 id_ns->nsfeat = 0;
837 id_ns->nlbaf = 0;
838 id_ns->flbas = 0;
839 id_ns->mc = 0;
840 id_ns->dpc = 0;
841 id_ns->dps = 0;
842 id_ns->lbaf[0].ds = BDRV_SECTOR_BITS;
843 id_ns->ncap = id_ns->nuse = id_ns->nsze =
844 cpu_to_le64(n->ns_size >>
845 id_ns->lbaf[NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas)].ds);
847 return 0;
850 static void nvme_exit(PCIDevice *pci_dev)
852 NvmeCtrl *n = NVME(pci_dev);
854 nvme_clear_ctrl(n);
855 g_free(n->namespaces);
856 g_free(n->cq);
857 g_free(n->sq);
858 msix_uninit_exclusive_bar(pci_dev);
861 static Property nvme_props[] = {
862 DEFINE_BLOCK_PROPERTIES(NvmeCtrl, conf),
863 DEFINE_PROP_STRING("serial", NvmeCtrl, serial),
864 DEFINE_PROP_END_OF_LIST(),
867 static const VMStateDescription nvme_vmstate = {
868 .name = "nvme",
869 .unmigratable = 1,
872 static void nvme_class_init(ObjectClass *oc, void *data)
874 DeviceClass *dc = DEVICE_CLASS(oc);
875 PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
877 pc->init = nvme_init;
878 pc->exit = nvme_exit;
879 pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
880 pc->vendor_id = PCI_VENDOR_ID_INTEL;
881 pc->device_id = 0x5845;
882 pc->revision = 1;
883 pc->is_express = 1;
885 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
886 dc->desc = "Non-Volatile Memory Express";
887 dc->props = nvme_props;
888 dc->vmsd = &nvme_vmstate;
891 static void nvme_get_bootindex(Object *obj, Visitor *v, void *opaque,
892 const char *name, Error **errp)
894 NvmeCtrl *s = NVME(obj);
896 visit_type_int32(v, &s->conf.bootindex, name, errp);
899 static void nvme_set_bootindex(Object *obj, Visitor *v, void *opaque,
900 const char *name, Error **errp)
902 NvmeCtrl *s = NVME(obj);
903 int32_t boot_index;
904 Error *local_err = NULL;
906 visit_type_int32(v, &boot_index, name, &local_err);
907 if (local_err) {
908 goto out;
910 /* check whether bootindex is present in fw_boot_order list */
911 check_boot_index(boot_index, &local_err);
912 if (local_err) {
913 goto out;
915 /* change bootindex to a new one */
916 s->conf.bootindex = boot_index;
918 out:
919 if (local_err) {
920 error_propagate(errp, local_err);
924 static void nvme_instance_init(Object *obj)
926 object_property_add(obj, "bootindex", "int32",
927 nvme_get_bootindex,
928 nvme_set_bootindex, NULL, NULL, NULL);
929 object_property_set_int(obj, -1, "bootindex", NULL);
932 static const TypeInfo nvme_info = {
933 .name = "nvme",
934 .parent = TYPE_PCI_DEVICE,
935 .instance_size = sizeof(NvmeCtrl),
936 .class_init = nvme_class_init,
937 .instance_init = nvme_instance_init,
940 static void nvme_register_types(void)
942 type_register_static(&nvme_info);
945 type_init(nvme_register_types)