hw: Add support for LSI SAS1068 (mptsas) device
[qemu/ar7.git] / target-arm / translate-a64.c
blobd780e09900147293859cd061ee9c8fe815c18a5f
1 /*
2 * AArch64 translation
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "tcg-op.h"
23 #include "qemu/log.h"
24 #include "arm_ldst.h"
25 #include "translate.h"
26 #include "internals.h"
27 #include "qemu/host-utils.h"
29 #include "exec/semihost.h"
30 #include "exec/gen-icount.h"
32 #include "exec/helper-proto.h"
33 #include "exec/helper-gen.h"
34 #include "exec/log.h"
36 #include "trace-tcg.h"
38 static TCGv_i64 cpu_X[32];
39 static TCGv_i64 cpu_pc;
41 /* Load/store exclusive handling */
42 static TCGv_i64 cpu_exclusive_high;
44 static const char *regnames[] = {
45 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
46 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
47 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
48 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
51 enum a64_shift_type {
52 A64_SHIFT_TYPE_LSL = 0,
53 A64_SHIFT_TYPE_LSR = 1,
54 A64_SHIFT_TYPE_ASR = 2,
55 A64_SHIFT_TYPE_ROR = 3
58 /* Table based decoder typedefs - used when the relevant bits for decode
59 * are too awkwardly scattered across the instruction (eg SIMD).
61 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
63 typedef struct AArch64DecodeTable {
64 uint32_t pattern;
65 uint32_t mask;
66 AArch64DecodeFn *disas_fn;
67 } AArch64DecodeTable;
69 /* Function prototype for gen_ functions for calling Neon helpers */
70 typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32);
71 typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32);
72 typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
73 typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64);
74 typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64);
75 typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64);
76 typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64);
77 typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32);
78 typedef void NeonGenTwoSingleOPFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
79 typedef void NeonGenTwoDoubleOPFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
80 typedef void NeonGenOneOpFn(TCGv_i64, TCGv_i64);
81 typedef void CryptoTwoOpEnvFn(TCGv_ptr, TCGv_i32, TCGv_i32);
82 typedef void CryptoThreeOpEnvFn(TCGv_ptr, TCGv_i32, TCGv_i32, TCGv_i32);
84 /* initialize TCG globals. */
85 void a64_translate_init(void)
87 int i;
89 cpu_pc = tcg_global_mem_new_i64(cpu_env,
90 offsetof(CPUARMState, pc),
91 "pc");
92 for (i = 0; i < 32; i++) {
93 cpu_X[i] = tcg_global_mem_new_i64(cpu_env,
94 offsetof(CPUARMState, xregs[i]),
95 regnames[i]);
98 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env,
99 offsetof(CPUARMState, exclusive_high), "exclusive_high");
102 static inline ARMMMUIdx get_a64_user_mem_index(DisasContext *s)
104 /* Return the mmu_idx to use for A64 "unprivileged load/store" insns:
105 * if EL1, access as if EL0; otherwise access at current EL
107 switch (s->mmu_idx) {
108 case ARMMMUIdx_S12NSE1:
109 return ARMMMUIdx_S12NSE0;
110 case ARMMMUIdx_S1SE1:
111 return ARMMMUIdx_S1SE0;
112 case ARMMMUIdx_S2NS:
113 g_assert_not_reached();
114 default:
115 return s->mmu_idx;
119 void aarch64_cpu_dump_state(CPUState *cs, FILE *f,
120 fprintf_function cpu_fprintf, int flags)
122 ARMCPU *cpu = ARM_CPU(cs);
123 CPUARMState *env = &cpu->env;
124 uint32_t psr = pstate_read(env);
125 int i;
126 int el = arm_current_el(env);
127 const char *ns_status;
129 cpu_fprintf(f, "PC=%016"PRIx64" SP=%016"PRIx64"\n",
130 env->pc, env->xregs[31]);
131 for (i = 0; i < 31; i++) {
132 cpu_fprintf(f, "X%02d=%016"PRIx64, i, env->xregs[i]);
133 if ((i % 4) == 3) {
134 cpu_fprintf(f, "\n");
135 } else {
136 cpu_fprintf(f, " ");
140 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
141 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
142 } else {
143 ns_status = "";
146 cpu_fprintf(f, "\nPSTATE=%08x %c%c%c%c %sEL%d%c\n",
147 psr,
148 psr & PSTATE_N ? 'N' : '-',
149 psr & PSTATE_Z ? 'Z' : '-',
150 psr & PSTATE_C ? 'C' : '-',
151 psr & PSTATE_V ? 'V' : '-',
152 ns_status,
154 psr & PSTATE_SP ? 'h' : 't');
156 if (flags & CPU_DUMP_FPU) {
157 int numvfpregs = 32;
158 for (i = 0; i < numvfpregs; i += 2) {
159 uint64_t vlo = float64_val(env->vfp.regs[i * 2]);
160 uint64_t vhi = float64_val(env->vfp.regs[(i * 2) + 1]);
161 cpu_fprintf(f, "q%02d=%016" PRIx64 ":%016" PRIx64 " ",
162 i, vhi, vlo);
163 vlo = float64_val(env->vfp.regs[(i + 1) * 2]);
164 vhi = float64_val(env->vfp.regs[((i + 1) * 2) + 1]);
165 cpu_fprintf(f, "q%02d=%016" PRIx64 ":%016" PRIx64 "\n",
166 i + 1, vhi, vlo);
168 cpu_fprintf(f, "FPCR: %08x FPSR: %08x\n",
169 vfp_get_fpcr(env), vfp_get_fpsr(env));
173 void gen_a64_set_pc_im(uint64_t val)
175 tcg_gen_movi_i64(cpu_pc, val);
178 typedef struct DisasCompare64 {
179 TCGCond cond;
180 TCGv_i64 value;
181 } DisasCompare64;
183 static void a64_test_cc(DisasCompare64 *c64, int cc)
185 DisasCompare c32;
187 arm_test_cc(&c32, cc);
189 /* Sign-extend the 32-bit value so that the GE/LT comparisons work
190 * properly. The NE/EQ comparisons are also fine with this choice. */
191 c64->cond = c32.cond;
192 c64->value = tcg_temp_new_i64();
193 tcg_gen_ext_i32_i64(c64->value, c32.value);
195 arm_free_cc(&c32);
198 static void a64_free_cc(DisasCompare64 *c64)
200 tcg_temp_free_i64(c64->value);
203 static void gen_exception_internal(int excp)
205 TCGv_i32 tcg_excp = tcg_const_i32(excp);
207 assert(excp_is_internal(excp));
208 gen_helper_exception_internal(cpu_env, tcg_excp);
209 tcg_temp_free_i32(tcg_excp);
212 static void gen_exception(int excp, uint32_t syndrome, uint32_t target_el)
214 TCGv_i32 tcg_excp = tcg_const_i32(excp);
215 TCGv_i32 tcg_syn = tcg_const_i32(syndrome);
216 TCGv_i32 tcg_el = tcg_const_i32(target_el);
218 gen_helper_exception_with_syndrome(cpu_env, tcg_excp,
219 tcg_syn, tcg_el);
220 tcg_temp_free_i32(tcg_el);
221 tcg_temp_free_i32(tcg_syn);
222 tcg_temp_free_i32(tcg_excp);
225 static void gen_exception_internal_insn(DisasContext *s, int offset, int excp)
227 gen_a64_set_pc_im(s->pc - offset);
228 gen_exception_internal(excp);
229 s->is_jmp = DISAS_EXC;
232 static void gen_exception_insn(DisasContext *s, int offset, int excp,
233 uint32_t syndrome, uint32_t target_el)
235 gen_a64_set_pc_im(s->pc - offset);
236 gen_exception(excp, syndrome, target_el);
237 s->is_jmp = DISAS_EXC;
240 static void gen_ss_advance(DisasContext *s)
242 /* If the singlestep state is Active-not-pending, advance to
243 * Active-pending.
245 if (s->ss_active) {
246 s->pstate_ss = 0;
247 gen_helper_clear_pstate_ss(cpu_env);
251 static void gen_step_complete_exception(DisasContext *s)
253 /* We just completed step of an insn. Move from Active-not-pending
254 * to Active-pending, and then also take the swstep exception.
255 * This corresponds to making the (IMPDEF) choice to prioritize
256 * swstep exceptions over asynchronous exceptions taken to an exception
257 * level where debug is disabled. This choice has the advantage that
258 * we do not need to maintain internal state corresponding to the
259 * ISV/EX syndrome bits between completion of the step and generation
260 * of the exception, and our syndrome information is always correct.
262 gen_ss_advance(s);
263 gen_exception(EXCP_UDEF, syn_swstep(s->ss_same_el, 1, s->is_ldex),
264 default_exception_el(s));
265 s->is_jmp = DISAS_EXC;
268 static inline bool use_goto_tb(DisasContext *s, int n, uint64_t dest)
270 /* No direct tb linking with singlestep (either QEMU's or the ARM
271 * debug architecture kind) or deterministic io
273 if (s->singlestep_enabled || s->ss_active || (s->tb->cflags & CF_LAST_IO)) {
274 return false;
277 /* Only link tbs from inside the same guest page */
278 if ((s->tb->pc & TARGET_PAGE_MASK) != (dest & TARGET_PAGE_MASK)) {
279 return false;
282 return true;
285 static inline void gen_goto_tb(DisasContext *s, int n, uint64_t dest)
287 TranslationBlock *tb;
289 tb = s->tb;
290 if (use_goto_tb(s, n, dest)) {
291 tcg_gen_goto_tb(n);
292 gen_a64_set_pc_im(dest);
293 tcg_gen_exit_tb((intptr_t)tb + n);
294 s->is_jmp = DISAS_TB_JUMP;
295 } else {
296 gen_a64_set_pc_im(dest);
297 if (s->ss_active) {
298 gen_step_complete_exception(s);
299 } else if (s->singlestep_enabled) {
300 gen_exception_internal(EXCP_DEBUG);
301 } else {
302 tcg_gen_exit_tb(0);
303 s->is_jmp = DISAS_TB_JUMP;
308 static void unallocated_encoding(DisasContext *s)
310 /* Unallocated and reserved encodings are uncategorized */
311 gen_exception_insn(s, 4, EXCP_UDEF, syn_uncategorized(),
312 default_exception_el(s));
315 #define unsupported_encoding(s, insn) \
316 do { \
317 qemu_log_mask(LOG_UNIMP, \
318 "%s:%d: unsupported instruction encoding 0x%08x " \
319 "at pc=%016" PRIx64 "\n", \
320 __FILE__, __LINE__, insn, s->pc - 4); \
321 unallocated_encoding(s); \
322 } while (0);
324 static void init_tmp_a64_array(DisasContext *s)
326 #ifdef CONFIG_DEBUG_TCG
327 int i;
328 for (i = 0; i < ARRAY_SIZE(s->tmp_a64); i++) {
329 TCGV_UNUSED_I64(s->tmp_a64[i]);
331 #endif
332 s->tmp_a64_count = 0;
335 static void free_tmp_a64(DisasContext *s)
337 int i;
338 for (i = 0; i < s->tmp_a64_count; i++) {
339 tcg_temp_free_i64(s->tmp_a64[i]);
341 init_tmp_a64_array(s);
344 static TCGv_i64 new_tmp_a64(DisasContext *s)
346 assert(s->tmp_a64_count < TMP_A64_MAX);
347 return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_new_i64();
350 static TCGv_i64 new_tmp_a64_zero(DisasContext *s)
352 TCGv_i64 t = new_tmp_a64(s);
353 tcg_gen_movi_i64(t, 0);
354 return t;
358 * Register access functions
360 * These functions are used for directly accessing a register in where
361 * changes to the final register value are likely to be made. If you
362 * need to use a register for temporary calculation (e.g. index type
363 * operations) use the read_* form.
365 * B1.2.1 Register mappings
367 * In instruction register encoding 31 can refer to ZR (zero register) or
368 * the SP (stack pointer) depending on context. In QEMU's case we map SP
369 * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
370 * This is the point of the _sp forms.
372 static TCGv_i64 cpu_reg(DisasContext *s, int reg)
374 if (reg == 31) {
375 return new_tmp_a64_zero(s);
376 } else {
377 return cpu_X[reg];
381 /* register access for when 31 == SP */
382 static TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
384 return cpu_X[reg];
387 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
388 * representing the register contents. This TCGv is an auto-freed
389 * temporary so it need not be explicitly freed, and may be modified.
391 static TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
393 TCGv_i64 v = new_tmp_a64(s);
394 if (reg != 31) {
395 if (sf) {
396 tcg_gen_mov_i64(v, cpu_X[reg]);
397 } else {
398 tcg_gen_ext32u_i64(v, cpu_X[reg]);
400 } else {
401 tcg_gen_movi_i64(v, 0);
403 return v;
406 static TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
408 TCGv_i64 v = new_tmp_a64(s);
409 if (sf) {
410 tcg_gen_mov_i64(v, cpu_X[reg]);
411 } else {
412 tcg_gen_ext32u_i64(v, cpu_X[reg]);
414 return v;
417 /* We should have at some point before trying to access an FP register
418 * done the necessary access check, so assert that
419 * (a) we did the check and
420 * (b) we didn't then just plough ahead anyway if it failed.
421 * Print the instruction pattern in the abort message so we can figure
422 * out what we need to fix if a user encounters this problem in the wild.
424 static inline void assert_fp_access_checked(DisasContext *s)
426 #ifdef CONFIG_DEBUG_TCG
427 if (unlikely(!s->fp_access_checked || s->fp_excp_el)) {
428 fprintf(stderr, "target-arm: FP access check missing for "
429 "instruction 0x%08x\n", s->insn);
430 abort();
432 #endif
435 /* Return the offset into CPUARMState of an element of specified
436 * size, 'element' places in from the least significant end of
437 * the FP/vector register Qn.
439 static inline int vec_reg_offset(DisasContext *s, int regno,
440 int element, TCGMemOp size)
442 int offs = offsetof(CPUARMState, vfp.regs[regno * 2]);
443 #ifdef HOST_WORDS_BIGENDIAN
444 /* This is complicated slightly because vfp.regs[2n] is
445 * still the low half and vfp.regs[2n+1] the high half
446 * of the 128 bit vector, even on big endian systems.
447 * Calculate the offset assuming a fully bigendian 128 bits,
448 * then XOR to account for the order of the two 64 bit halves.
450 offs += (16 - ((element + 1) * (1 << size)));
451 offs ^= 8;
452 #else
453 offs += element * (1 << size);
454 #endif
455 assert_fp_access_checked(s);
456 return offs;
459 /* Return the offset into CPUARMState of a slice (from
460 * the least significant end) of FP register Qn (ie
461 * Dn, Sn, Hn or Bn).
462 * (Note that this is not the same mapping as for A32; see cpu.h)
464 static inline int fp_reg_offset(DisasContext *s, int regno, TCGMemOp size)
466 int offs = offsetof(CPUARMState, vfp.regs[regno * 2]);
467 #ifdef HOST_WORDS_BIGENDIAN
468 offs += (8 - (1 << size));
469 #endif
470 assert_fp_access_checked(s);
471 return offs;
474 /* Offset of the high half of the 128 bit vector Qn */
475 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
477 assert_fp_access_checked(s);
478 return offsetof(CPUARMState, vfp.regs[regno * 2 + 1]);
481 /* Convenience accessors for reading and writing single and double
482 * FP registers. Writing clears the upper parts of the associated
483 * 128 bit vector register, as required by the architecture.
484 * Note that unlike the GP register accessors, the values returned
485 * by the read functions must be manually freed.
487 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
489 TCGv_i64 v = tcg_temp_new_i64();
491 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
492 return v;
495 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
497 TCGv_i32 v = tcg_temp_new_i32();
499 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32));
500 return v;
503 static void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
505 TCGv_i64 tcg_zero = tcg_const_i64(0);
507 tcg_gen_st_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
508 tcg_gen_st_i64(tcg_zero, cpu_env, fp_reg_hi_offset(s, reg));
509 tcg_temp_free_i64(tcg_zero);
512 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
514 TCGv_i64 tmp = tcg_temp_new_i64();
516 tcg_gen_extu_i32_i64(tmp, v);
517 write_fp_dreg(s, reg, tmp);
518 tcg_temp_free_i64(tmp);
521 static TCGv_ptr get_fpstatus_ptr(void)
523 TCGv_ptr statusptr = tcg_temp_new_ptr();
524 int offset;
526 /* In A64 all instructions (both FP and Neon) use the FPCR;
527 * there is no equivalent of the A32 Neon "standard FPSCR value"
528 * and all operations use vfp.fp_status.
530 offset = offsetof(CPUARMState, vfp.fp_status);
531 tcg_gen_addi_ptr(statusptr, cpu_env, offset);
532 return statusptr;
535 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
536 * than the 32 bit equivalent.
538 static inline void gen_set_NZ64(TCGv_i64 result)
540 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
541 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
544 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
545 static inline void gen_logic_CC(int sf, TCGv_i64 result)
547 if (sf) {
548 gen_set_NZ64(result);
549 } else {
550 tcg_gen_extrl_i64_i32(cpu_ZF, result);
551 tcg_gen_mov_i32(cpu_NF, cpu_ZF);
553 tcg_gen_movi_i32(cpu_CF, 0);
554 tcg_gen_movi_i32(cpu_VF, 0);
557 /* dest = T0 + T1; compute C, N, V and Z flags */
558 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
560 if (sf) {
561 TCGv_i64 result, flag, tmp;
562 result = tcg_temp_new_i64();
563 flag = tcg_temp_new_i64();
564 tmp = tcg_temp_new_i64();
566 tcg_gen_movi_i64(tmp, 0);
567 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
569 tcg_gen_extrl_i64_i32(cpu_CF, flag);
571 gen_set_NZ64(result);
573 tcg_gen_xor_i64(flag, result, t0);
574 tcg_gen_xor_i64(tmp, t0, t1);
575 tcg_gen_andc_i64(flag, flag, tmp);
576 tcg_temp_free_i64(tmp);
577 tcg_gen_extrh_i64_i32(cpu_VF, flag);
579 tcg_gen_mov_i64(dest, result);
580 tcg_temp_free_i64(result);
581 tcg_temp_free_i64(flag);
582 } else {
583 /* 32 bit arithmetic */
584 TCGv_i32 t0_32 = tcg_temp_new_i32();
585 TCGv_i32 t1_32 = tcg_temp_new_i32();
586 TCGv_i32 tmp = tcg_temp_new_i32();
588 tcg_gen_movi_i32(tmp, 0);
589 tcg_gen_extrl_i64_i32(t0_32, t0);
590 tcg_gen_extrl_i64_i32(t1_32, t1);
591 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
592 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
593 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
594 tcg_gen_xor_i32(tmp, t0_32, t1_32);
595 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
596 tcg_gen_extu_i32_i64(dest, cpu_NF);
598 tcg_temp_free_i32(tmp);
599 tcg_temp_free_i32(t0_32);
600 tcg_temp_free_i32(t1_32);
604 /* dest = T0 - T1; compute C, N, V and Z flags */
605 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
607 if (sf) {
608 /* 64 bit arithmetic */
609 TCGv_i64 result, flag, tmp;
611 result = tcg_temp_new_i64();
612 flag = tcg_temp_new_i64();
613 tcg_gen_sub_i64(result, t0, t1);
615 gen_set_NZ64(result);
617 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
618 tcg_gen_extrl_i64_i32(cpu_CF, flag);
620 tcg_gen_xor_i64(flag, result, t0);
621 tmp = tcg_temp_new_i64();
622 tcg_gen_xor_i64(tmp, t0, t1);
623 tcg_gen_and_i64(flag, flag, tmp);
624 tcg_temp_free_i64(tmp);
625 tcg_gen_extrh_i64_i32(cpu_VF, flag);
626 tcg_gen_mov_i64(dest, result);
627 tcg_temp_free_i64(flag);
628 tcg_temp_free_i64(result);
629 } else {
630 /* 32 bit arithmetic */
631 TCGv_i32 t0_32 = tcg_temp_new_i32();
632 TCGv_i32 t1_32 = tcg_temp_new_i32();
633 TCGv_i32 tmp;
635 tcg_gen_extrl_i64_i32(t0_32, t0);
636 tcg_gen_extrl_i64_i32(t1_32, t1);
637 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
638 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
639 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
640 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
641 tmp = tcg_temp_new_i32();
642 tcg_gen_xor_i32(tmp, t0_32, t1_32);
643 tcg_temp_free_i32(t0_32);
644 tcg_temp_free_i32(t1_32);
645 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
646 tcg_temp_free_i32(tmp);
647 tcg_gen_extu_i32_i64(dest, cpu_NF);
651 /* dest = T0 + T1 + CF; do not compute flags. */
652 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
654 TCGv_i64 flag = tcg_temp_new_i64();
655 tcg_gen_extu_i32_i64(flag, cpu_CF);
656 tcg_gen_add_i64(dest, t0, t1);
657 tcg_gen_add_i64(dest, dest, flag);
658 tcg_temp_free_i64(flag);
660 if (!sf) {
661 tcg_gen_ext32u_i64(dest, dest);
665 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
666 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
668 if (sf) {
669 TCGv_i64 result, cf_64, vf_64, tmp;
670 result = tcg_temp_new_i64();
671 cf_64 = tcg_temp_new_i64();
672 vf_64 = tcg_temp_new_i64();
673 tmp = tcg_const_i64(0);
675 tcg_gen_extu_i32_i64(cf_64, cpu_CF);
676 tcg_gen_add2_i64(result, cf_64, t0, tmp, cf_64, tmp);
677 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, tmp);
678 tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
679 gen_set_NZ64(result);
681 tcg_gen_xor_i64(vf_64, result, t0);
682 tcg_gen_xor_i64(tmp, t0, t1);
683 tcg_gen_andc_i64(vf_64, vf_64, tmp);
684 tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
686 tcg_gen_mov_i64(dest, result);
688 tcg_temp_free_i64(tmp);
689 tcg_temp_free_i64(vf_64);
690 tcg_temp_free_i64(cf_64);
691 tcg_temp_free_i64(result);
692 } else {
693 TCGv_i32 t0_32, t1_32, tmp;
694 t0_32 = tcg_temp_new_i32();
695 t1_32 = tcg_temp_new_i32();
696 tmp = tcg_const_i32(0);
698 tcg_gen_extrl_i64_i32(t0_32, t0);
699 tcg_gen_extrl_i64_i32(t1_32, t1);
700 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, cpu_CF, tmp);
701 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, tmp);
703 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
704 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
705 tcg_gen_xor_i32(tmp, t0_32, t1_32);
706 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
707 tcg_gen_extu_i32_i64(dest, cpu_NF);
709 tcg_temp_free_i32(tmp);
710 tcg_temp_free_i32(t1_32);
711 tcg_temp_free_i32(t0_32);
716 * Load/Store generators
720 * Store from GPR register to memory.
722 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
723 TCGv_i64 tcg_addr, int size, int memidx)
725 g_assert(size <= 3);
726 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, MO_TE + size);
729 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
730 TCGv_i64 tcg_addr, int size)
732 do_gpr_st_memidx(s, source, tcg_addr, size, get_mem_index(s));
736 * Load from memory to GPR register
738 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
739 int size, bool is_signed, bool extend, int memidx)
741 TCGMemOp memop = MO_TE + size;
743 g_assert(size <= 3);
745 if (is_signed) {
746 memop += MO_SIGN;
749 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
751 if (extend && is_signed) {
752 g_assert(size < 3);
753 tcg_gen_ext32u_i64(dest, dest);
757 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
758 int size, bool is_signed, bool extend)
760 do_gpr_ld_memidx(s, dest, tcg_addr, size, is_signed, extend,
761 get_mem_index(s));
765 * Store from FP register to memory
767 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size)
769 /* This writes the bottom N bits of a 128 bit wide vector to memory */
770 TCGv_i64 tmp = tcg_temp_new_i64();
771 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_offset(s, srcidx, MO_64));
772 if (size < 4) {
773 tcg_gen_qemu_st_i64(tmp, tcg_addr, get_mem_index(s), MO_TE + size);
774 } else {
775 TCGv_i64 tcg_hiaddr = tcg_temp_new_i64();
776 tcg_gen_qemu_st_i64(tmp, tcg_addr, get_mem_index(s), MO_TEQ);
777 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_hi_offset(s, srcidx));
778 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
779 tcg_gen_qemu_st_i64(tmp, tcg_hiaddr, get_mem_index(s), MO_TEQ);
780 tcg_temp_free_i64(tcg_hiaddr);
783 tcg_temp_free_i64(tmp);
787 * Load from memory to FP register
789 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size)
791 /* This always zero-extends and writes to a full 128 bit wide vector */
792 TCGv_i64 tmplo = tcg_temp_new_i64();
793 TCGv_i64 tmphi;
795 if (size < 4) {
796 TCGMemOp memop = MO_TE + size;
797 tmphi = tcg_const_i64(0);
798 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), memop);
799 } else {
800 TCGv_i64 tcg_hiaddr;
801 tmphi = tcg_temp_new_i64();
802 tcg_hiaddr = tcg_temp_new_i64();
804 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), MO_TEQ);
805 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
806 tcg_gen_qemu_ld_i64(tmphi, tcg_hiaddr, get_mem_index(s), MO_TEQ);
807 tcg_temp_free_i64(tcg_hiaddr);
810 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64));
811 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx));
813 tcg_temp_free_i64(tmplo);
814 tcg_temp_free_i64(tmphi);
818 * Vector load/store helpers.
820 * The principal difference between this and a FP load is that we don't
821 * zero extend as we are filling a partial chunk of the vector register.
822 * These functions don't support 128 bit loads/stores, which would be
823 * normal load/store operations.
825 * The _i32 versions are useful when operating on 32 bit quantities
826 * (eg for floating point single or using Neon helper functions).
829 /* Get value of an element within a vector register */
830 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
831 int element, TCGMemOp memop)
833 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
834 switch (memop) {
835 case MO_8:
836 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
837 break;
838 case MO_16:
839 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
840 break;
841 case MO_32:
842 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
843 break;
844 case MO_8|MO_SIGN:
845 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
846 break;
847 case MO_16|MO_SIGN:
848 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
849 break;
850 case MO_32|MO_SIGN:
851 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
852 break;
853 case MO_64:
854 case MO_64|MO_SIGN:
855 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
856 break;
857 default:
858 g_assert_not_reached();
862 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
863 int element, TCGMemOp memop)
865 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
866 switch (memop) {
867 case MO_8:
868 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
869 break;
870 case MO_16:
871 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
872 break;
873 case MO_8|MO_SIGN:
874 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
875 break;
876 case MO_16|MO_SIGN:
877 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
878 break;
879 case MO_32:
880 case MO_32|MO_SIGN:
881 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
882 break;
883 default:
884 g_assert_not_reached();
888 /* Set value of an element within a vector register */
889 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
890 int element, TCGMemOp memop)
892 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
893 switch (memop) {
894 case MO_8:
895 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
896 break;
897 case MO_16:
898 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
899 break;
900 case MO_32:
901 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
902 break;
903 case MO_64:
904 tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
905 break;
906 default:
907 g_assert_not_reached();
911 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
912 int destidx, int element, TCGMemOp memop)
914 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
915 switch (memop) {
916 case MO_8:
917 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
918 break;
919 case MO_16:
920 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
921 break;
922 case MO_32:
923 tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
924 break;
925 default:
926 g_assert_not_reached();
930 /* Clear the high 64 bits of a 128 bit vector (in general non-quad
931 * vector ops all need to do this).
933 static void clear_vec_high(DisasContext *s, int rd)
935 TCGv_i64 tcg_zero = tcg_const_i64(0);
937 write_vec_element(s, tcg_zero, rd, 1, MO_64);
938 tcg_temp_free_i64(tcg_zero);
941 /* Store from vector register to memory */
942 static void do_vec_st(DisasContext *s, int srcidx, int element,
943 TCGv_i64 tcg_addr, int size)
945 TCGMemOp memop = MO_TE + size;
946 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
948 read_vec_element(s, tcg_tmp, srcidx, element, size);
949 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), memop);
951 tcg_temp_free_i64(tcg_tmp);
954 /* Load from memory to vector register */
955 static void do_vec_ld(DisasContext *s, int destidx, int element,
956 TCGv_i64 tcg_addr, int size)
958 TCGMemOp memop = MO_TE + size;
959 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
961 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), memop);
962 write_vec_element(s, tcg_tmp, destidx, element, size);
964 tcg_temp_free_i64(tcg_tmp);
967 /* Check that FP/Neon access is enabled. If it is, return
968 * true. If not, emit code to generate an appropriate exception,
969 * and return false; the caller should not emit any code for
970 * the instruction. Note that this check must happen after all
971 * unallocated-encoding checks (otherwise the syndrome information
972 * for the resulting exception will be incorrect).
974 static inline bool fp_access_check(DisasContext *s)
976 assert(!s->fp_access_checked);
977 s->fp_access_checked = true;
979 if (!s->fp_excp_el) {
980 return true;
983 gen_exception_insn(s, 4, EXCP_UDEF, syn_fp_access_trap(1, 0xe, false),
984 s->fp_excp_el);
985 return false;
989 * This utility function is for doing register extension with an
990 * optional shift. You will likely want to pass a temporary for the
991 * destination register. See DecodeRegExtend() in the ARM ARM.
993 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
994 int option, unsigned int shift)
996 int extsize = extract32(option, 0, 2);
997 bool is_signed = extract32(option, 2, 1);
999 if (is_signed) {
1000 switch (extsize) {
1001 case 0:
1002 tcg_gen_ext8s_i64(tcg_out, tcg_in);
1003 break;
1004 case 1:
1005 tcg_gen_ext16s_i64(tcg_out, tcg_in);
1006 break;
1007 case 2:
1008 tcg_gen_ext32s_i64(tcg_out, tcg_in);
1009 break;
1010 case 3:
1011 tcg_gen_mov_i64(tcg_out, tcg_in);
1012 break;
1014 } else {
1015 switch (extsize) {
1016 case 0:
1017 tcg_gen_ext8u_i64(tcg_out, tcg_in);
1018 break;
1019 case 1:
1020 tcg_gen_ext16u_i64(tcg_out, tcg_in);
1021 break;
1022 case 2:
1023 tcg_gen_ext32u_i64(tcg_out, tcg_in);
1024 break;
1025 case 3:
1026 tcg_gen_mov_i64(tcg_out, tcg_in);
1027 break;
1031 if (shift) {
1032 tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1036 static inline void gen_check_sp_alignment(DisasContext *s)
1038 /* The AArch64 architecture mandates that (if enabled via PSTATE
1039 * or SCTLR bits) there is a check that SP is 16-aligned on every
1040 * SP-relative load or store (with an exception generated if it is not).
1041 * In line with general QEMU practice regarding misaligned accesses,
1042 * we omit these checks for the sake of guest program performance.
1043 * This function is provided as a hook so we can more easily add these
1044 * checks in future (possibly as a "favour catching guest program bugs
1045 * over speed" user selectable option).
1050 * This provides a simple table based table lookup decoder. It is
1051 * intended to be used when the relevant bits for decode are too
1052 * awkwardly placed and switch/if based logic would be confusing and
1053 * deeply nested. Since it's a linear search through the table, tables
1054 * should be kept small.
1056 * It returns the first handler where insn & mask == pattern, or
1057 * NULL if there is no match.
1058 * The table is terminated by an empty mask (i.e. 0)
1060 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1061 uint32_t insn)
1063 const AArch64DecodeTable *tptr = table;
1065 while (tptr->mask) {
1066 if ((insn & tptr->mask) == tptr->pattern) {
1067 return tptr->disas_fn;
1069 tptr++;
1071 return NULL;
1075 * the instruction disassembly implemented here matches
1076 * the instruction encoding classifications in chapter 3 (C3)
1077 * of the ARM Architecture Reference Manual (DDI0487A_a)
1080 /* C3.2.7 Unconditional branch (immediate)
1081 * 31 30 26 25 0
1082 * +----+-----------+-------------------------------------+
1083 * | op | 0 0 1 0 1 | imm26 |
1084 * +----+-----------+-------------------------------------+
1086 static void disas_uncond_b_imm(DisasContext *s, uint32_t insn)
1088 uint64_t addr = s->pc + sextract32(insn, 0, 26) * 4 - 4;
1090 if (insn & (1U << 31)) {
1091 /* C5.6.26 BL Branch with link */
1092 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
1095 /* C5.6.20 B Branch / C5.6.26 BL Branch with link */
1096 gen_goto_tb(s, 0, addr);
1099 /* C3.2.1 Compare & branch (immediate)
1100 * 31 30 25 24 23 5 4 0
1101 * +----+-------------+----+---------------------+--------+
1102 * | sf | 0 1 1 0 1 0 | op | imm19 | Rt |
1103 * +----+-------------+----+---------------------+--------+
1105 static void disas_comp_b_imm(DisasContext *s, uint32_t insn)
1107 unsigned int sf, op, rt;
1108 uint64_t addr;
1109 TCGLabel *label_match;
1110 TCGv_i64 tcg_cmp;
1112 sf = extract32(insn, 31, 1);
1113 op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */
1114 rt = extract32(insn, 0, 5);
1115 addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
1117 tcg_cmp = read_cpu_reg(s, rt, sf);
1118 label_match = gen_new_label();
1120 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1121 tcg_cmp, 0, label_match);
1123 gen_goto_tb(s, 0, s->pc);
1124 gen_set_label(label_match);
1125 gen_goto_tb(s, 1, addr);
1128 /* C3.2.5 Test & branch (immediate)
1129 * 31 30 25 24 23 19 18 5 4 0
1130 * +----+-------------+----+-------+-------------+------+
1131 * | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt |
1132 * +----+-------------+----+-------+-------------+------+
1134 static void disas_test_b_imm(DisasContext *s, uint32_t insn)
1136 unsigned int bit_pos, op, rt;
1137 uint64_t addr;
1138 TCGLabel *label_match;
1139 TCGv_i64 tcg_cmp;
1141 bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5);
1142 op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */
1143 addr = s->pc + sextract32(insn, 5, 14) * 4 - 4;
1144 rt = extract32(insn, 0, 5);
1146 tcg_cmp = tcg_temp_new_i64();
1147 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos));
1148 label_match = gen_new_label();
1149 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1150 tcg_cmp, 0, label_match);
1151 tcg_temp_free_i64(tcg_cmp);
1152 gen_goto_tb(s, 0, s->pc);
1153 gen_set_label(label_match);
1154 gen_goto_tb(s, 1, addr);
1157 /* C3.2.2 / C5.6.19 Conditional branch (immediate)
1158 * 31 25 24 23 5 4 3 0
1159 * +---------------+----+---------------------+----+------+
1160 * | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond |
1161 * +---------------+----+---------------------+----+------+
1163 static void disas_cond_b_imm(DisasContext *s, uint32_t insn)
1165 unsigned int cond;
1166 uint64_t addr;
1168 if ((insn & (1 << 4)) || (insn & (1 << 24))) {
1169 unallocated_encoding(s);
1170 return;
1172 addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
1173 cond = extract32(insn, 0, 4);
1175 if (cond < 0x0e) {
1176 /* genuinely conditional branches */
1177 TCGLabel *label_match = gen_new_label();
1178 arm_gen_test_cc(cond, label_match);
1179 gen_goto_tb(s, 0, s->pc);
1180 gen_set_label(label_match);
1181 gen_goto_tb(s, 1, addr);
1182 } else {
1183 /* 0xe and 0xf are both "always" conditions */
1184 gen_goto_tb(s, 0, addr);
1188 /* C5.6.68 HINT */
1189 static void handle_hint(DisasContext *s, uint32_t insn,
1190 unsigned int op1, unsigned int op2, unsigned int crm)
1192 unsigned int selector = crm << 3 | op2;
1194 if (op1 != 3) {
1195 unallocated_encoding(s);
1196 return;
1199 switch (selector) {
1200 case 0: /* NOP */
1201 return;
1202 case 3: /* WFI */
1203 s->is_jmp = DISAS_WFI;
1204 return;
1205 case 1: /* YIELD */
1206 s->is_jmp = DISAS_YIELD;
1207 return;
1208 case 2: /* WFE */
1209 s->is_jmp = DISAS_WFE;
1210 return;
1211 case 4: /* SEV */
1212 case 5: /* SEVL */
1213 /* we treat all as NOP at least for now */
1214 return;
1215 default:
1216 /* default specified as NOP equivalent */
1217 return;
1221 static void gen_clrex(DisasContext *s, uint32_t insn)
1223 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1226 /* CLREX, DSB, DMB, ISB */
1227 static void handle_sync(DisasContext *s, uint32_t insn,
1228 unsigned int op1, unsigned int op2, unsigned int crm)
1230 if (op1 != 3) {
1231 unallocated_encoding(s);
1232 return;
1235 switch (op2) {
1236 case 2: /* CLREX */
1237 gen_clrex(s, insn);
1238 return;
1239 case 4: /* DSB */
1240 case 5: /* DMB */
1241 /* We don't emulate caches so barriers are no-ops */
1242 return;
1243 case 6: /* ISB */
1244 /* We need to break the TB after this insn to execute
1245 * a self-modified code correctly and also to take
1246 * any pending interrupts immediately.
1248 s->is_jmp = DISAS_UPDATE;
1249 return;
1250 default:
1251 unallocated_encoding(s);
1252 return;
1256 /* C5.6.130 MSR (immediate) - move immediate to processor state field */
1257 static void handle_msr_i(DisasContext *s, uint32_t insn,
1258 unsigned int op1, unsigned int op2, unsigned int crm)
1260 int op = op1 << 3 | op2;
1261 switch (op) {
1262 case 0x05: /* SPSel */
1263 if (s->current_el == 0) {
1264 unallocated_encoding(s);
1265 return;
1267 /* fall through */
1268 case 0x1e: /* DAIFSet */
1269 case 0x1f: /* DAIFClear */
1271 TCGv_i32 tcg_imm = tcg_const_i32(crm);
1272 TCGv_i32 tcg_op = tcg_const_i32(op);
1273 gen_a64_set_pc_im(s->pc - 4);
1274 gen_helper_msr_i_pstate(cpu_env, tcg_op, tcg_imm);
1275 tcg_temp_free_i32(tcg_imm);
1276 tcg_temp_free_i32(tcg_op);
1277 s->is_jmp = DISAS_UPDATE;
1278 break;
1280 default:
1281 unallocated_encoding(s);
1282 return;
1286 static void gen_get_nzcv(TCGv_i64 tcg_rt)
1288 TCGv_i32 tmp = tcg_temp_new_i32();
1289 TCGv_i32 nzcv = tcg_temp_new_i32();
1291 /* build bit 31, N */
1292 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
1293 /* build bit 30, Z */
1294 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
1295 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
1296 /* build bit 29, C */
1297 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
1298 /* build bit 28, V */
1299 tcg_gen_shri_i32(tmp, cpu_VF, 31);
1300 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
1301 /* generate result */
1302 tcg_gen_extu_i32_i64(tcg_rt, nzcv);
1304 tcg_temp_free_i32(nzcv);
1305 tcg_temp_free_i32(tmp);
1308 static void gen_set_nzcv(TCGv_i64 tcg_rt)
1311 TCGv_i32 nzcv = tcg_temp_new_i32();
1313 /* take NZCV from R[t] */
1314 tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
1316 /* bit 31, N */
1317 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
1318 /* bit 30, Z */
1319 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
1320 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
1321 /* bit 29, C */
1322 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
1323 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
1324 /* bit 28, V */
1325 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
1326 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
1327 tcg_temp_free_i32(nzcv);
1330 /* C5.6.129 MRS - move from system register
1331 * C5.6.131 MSR (register) - move to system register
1332 * C5.6.204 SYS
1333 * C5.6.205 SYSL
1334 * These are all essentially the same insn in 'read' and 'write'
1335 * versions, with varying op0 fields.
1337 static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
1338 unsigned int op0, unsigned int op1, unsigned int op2,
1339 unsigned int crn, unsigned int crm, unsigned int rt)
1341 const ARMCPRegInfo *ri;
1342 TCGv_i64 tcg_rt;
1344 ri = get_arm_cp_reginfo(s->cp_regs,
1345 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1346 crn, crm, op0, op1, op2));
1348 if (!ri) {
1349 /* Unknown register; this might be a guest error or a QEMU
1350 * unimplemented feature.
1352 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
1353 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
1354 isread ? "read" : "write", op0, op1, crn, crm, op2);
1355 unallocated_encoding(s);
1356 return;
1359 /* Check access permissions */
1360 if (!cp_access_ok(s->current_el, ri, isread)) {
1361 unallocated_encoding(s);
1362 return;
1365 if (ri->accessfn) {
1366 /* Emit code to perform further access permissions checks at
1367 * runtime; this may result in an exception.
1369 TCGv_ptr tmpptr;
1370 TCGv_i32 tcg_syn;
1371 uint32_t syndrome;
1373 gen_a64_set_pc_im(s->pc - 4);
1374 tmpptr = tcg_const_ptr(ri);
1375 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
1376 tcg_syn = tcg_const_i32(syndrome);
1377 gen_helper_access_check_cp_reg(cpu_env, tmpptr, tcg_syn);
1378 tcg_temp_free_ptr(tmpptr);
1379 tcg_temp_free_i32(tcg_syn);
1382 /* Handle special cases first */
1383 switch (ri->type & ~(ARM_CP_FLAG_MASK & ~ARM_CP_SPECIAL)) {
1384 case ARM_CP_NOP:
1385 return;
1386 case ARM_CP_NZCV:
1387 tcg_rt = cpu_reg(s, rt);
1388 if (isread) {
1389 gen_get_nzcv(tcg_rt);
1390 } else {
1391 gen_set_nzcv(tcg_rt);
1393 return;
1394 case ARM_CP_CURRENTEL:
1395 /* Reads as current EL value from pstate, which is
1396 * guaranteed to be constant by the tb flags.
1398 tcg_rt = cpu_reg(s, rt);
1399 tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
1400 return;
1401 case ARM_CP_DC_ZVA:
1402 /* Writes clear the aligned block of memory which rt points into. */
1403 tcg_rt = cpu_reg(s, rt);
1404 gen_helper_dc_zva(cpu_env, tcg_rt);
1405 return;
1406 default:
1407 break;
1410 if ((s->tb->cflags & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1411 gen_io_start();
1414 tcg_rt = cpu_reg(s, rt);
1416 if (isread) {
1417 if (ri->type & ARM_CP_CONST) {
1418 tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
1419 } else if (ri->readfn) {
1420 TCGv_ptr tmpptr;
1421 tmpptr = tcg_const_ptr(ri);
1422 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tmpptr);
1423 tcg_temp_free_ptr(tmpptr);
1424 } else {
1425 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset);
1427 } else {
1428 if (ri->type & ARM_CP_CONST) {
1429 /* If not forbidden by access permissions, treat as WI */
1430 return;
1431 } else if (ri->writefn) {
1432 TCGv_ptr tmpptr;
1433 tmpptr = tcg_const_ptr(ri);
1434 gen_helper_set_cp_reg64(cpu_env, tmpptr, tcg_rt);
1435 tcg_temp_free_ptr(tmpptr);
1436 } else {
1437 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset);
1441 if ((s->tb->cflags & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1442 /* I/O operations must end the TB here (whether read or write) */
1443 gen_io_end();
1444 s->is_jmp = DISAS_UPDATE;
1445 } else if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
1446 /* We default to ending the TB on a coprocessor register write,
1447 * but allow this to be suppressed by the register definition
1448 * (usually only necessary to work around guest bugs).
1450 s->is_jmp = DISAS_UPDATE;
1454 /* C3.2.4 System
1455 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0
1456 * +---------------------+---+-----+-----+-------+-------+-----+------+
1457 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt |
1458 * +---------------------+---+-----+-----+-------+-------+-----+------+
1460 static void disas_system(DisasContext *s, uint32_t insn)
1462 unsigned int l, op0, op1, crn, crm, op2, rt;
1463 l = extract32(insn, 21, 1);
1464 op0 = extract32(insn, 19, 2);
1465 op1 = extract32(insn, 16, 3);
1466 crn = extract32(insn, 12, 4);
1467 crm = extract32(insn, 8, 4);
1468 op2 = extract32(insn, 5, 3);
1469 rt = extract32(insn, 0, 5);
1471 if (op0 == 0) {
1472 if (l || rt != 31) {
1473 unallocated_encoding(s);
1474 return;
1476 switch (crn) {
1477 case 2: /* C5.6.68 HINT */
1478 handle_hint(s, insn, op1, op2, crm);
1479 break;
1480 case 3: /* CLREX, DSB, DMB, ISB */
1481 handle_sync(s, insn, op1, op2, crm);
1482 break;
1483 case 4: /* C5.6.130 MSR (immediate) */
1484 handle_msr_i(s, insn, op1, op2, crm);
1485 break;
1486 default:
1487 unallocated_encoding(s);
1488 break;
1490 return;
1492 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt);
1495 /* C3.2.3 Exception generation
1497 * 31 24 23 21 20 5 4 2 1 0
1498 * +-----------------+-----+------------------------+-----+----+
1499 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL |
1500 * +-----------------------+------------------------+----------+
1502 static void disas_exc(DisasContext *s, uint32_t insn)
1504 int opc = extract32(insn, 21, 3);
1505 int op2_ll = extract32(insn, 0, 5);
1506 int imm16 = extract32(insn, 5, 16);
1507 TCGv_i32 tmp;
1509 switch (opc) {
1510 case 0:
1511 /* For SVC, HVC and SMC we advance the single-step state
1512 * machine before taking the exception. This is architecturally
1513 * mandated, to ensure that single-stepping a system call
1514 * instruction works properly.
1516 switch (op2_ll) {
1517 case 1:
1518 gen_ss_advance(s);
1519 gen_exception_insn(s, 0, EXCP_SWI, syn_aa64_svc(imm16),
1520 default_exception_el(s));
1521 break;
1522 case 2:
1523 if (s->current_el == 0) {
1524 unallocated_encoding(s);
1525 break;
1527 /* The pre HVC helper handles cases when HVC gets trapped
1528 * as an undefined insn by runtime configuration.
1530 gen_a64_set_pc_im(s->pc - 4);
1531 gen_helper_pre_hvc(cpu_env);
1532 gen_ss_advance(s);
1533 gen_exception_insn(s, 0, EXCP_HVC, syn_aa64_hvc(imm16), 2);
1534 break;
1535 case 3:
1536 if (s->current_el == 0) {
1537 unallocated_encoding(s);
1538 break;
1540 gen_a64_set_pc_im(s->pc - 4);
1541 tmp = tcg_const_i32(syn_aa64_smc(imm16));
1542 gen_helper_pre_smc(cpu_env, tmp);
1543 tcg_temp_free_i32(tmp);
1544 gen_ss_advance(s);
1545 gen_exception_insn(s, 0, EXCP_SMC, syn_aa64_smc(imm16), 3);
1546 break;
1547 default:
1548 unallocated_encoding(s);
1549 break;
1551 break;
1552 case 1:
1553 if (op2_ll != 0) {
1554 unallocated_encoding(s);
1555 break;
1557 /* BRK */
1558 gen_exception_insn(s, 4, EXCP_BKPT, syn_aa64_bkpt(imm16),
1559 default_exception_el(s));
1560 break;
1561 case 2:
1562 if (op2_ll != 0) {
1563 unallocated_encoding(s);
1564 break;
1566 /* HLT. This has two purposes.
1567 * Architecturally, it is an external halting debug instruction.
1568 * Since QEMU doesn't implement external debug, we treat this as
1569 * it is required for halting debug disabled: it will UNDEF.
1570 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
1572 if (semihosting_enabled() && imm16 == 0xf000) {
1573 #ifndef CONFIG_USER_ONLY
1574 /* In system mode, don't allow userspace access to semihosting,
1575 * to provide some semblance of security (and for consistency
1576 * with our 32-bit semihosting).
1578 if (s->current_el == 0) {
1579 unsupported_encoding(s, insn);
1580 break;
1582 #endif
1583 gen_exception_internal_insn(s, 0, EXCP_SEMIHOST);
1584 } else {
1585 unsupported_encoding(s, insn);
1587 break;
1588 case 5:
1589 if (op2_ll < 1 || op2_ll > 3) {
1590 unallocated_encoding(s);
1591 break;
1593 /* DCPS1, DCPS2, DCPS3 */
1594 unsupported_encoding(s, insn);
1595 break;
1596 default:
1597 unallocated_encoding(s);
1598 break;
1602 /* C3.2.7 Unconditional branch (register)
1603 * 31 25 24 21 20 16 15 10 9 5 4 0
1604 * +---------------+-------+-------+-------+------+-------+
1605 * | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 |
1606 * +---------------+-------+-------+-------+------+-------+
1608 static void disas_uncond_b_reg(DisasContext *s, uint32_t insn)
1610 unsigned int opc, op2, op3, rn, op4;
1612 opc = extract32(insn, 21, 4);
1613 op2 = extract32(insn, 16, 5);
1614 op3 = extract32(insn, 10, 6);
1615 rn = extract32(insn, 5, 5);
1616 op4 = extract32(insn, 0, 5);
1618 if (op4 != 0x0 || op3 != 0x0 || op2 != 0x1f) {
1619 unallocated_encoding(s);
1620 return;
1623 switch (opc) {
1624 case 0: /* BR */
1625 case 2: /* RET */
1626 tcg_gen_mov_i64(cpu_pc, cpu_reg(s, rn));
1627 break;
1628 case 1: /* BLR */
1629 tcg_gen_mov_i64(cpu_pc, cpu_reg(s, rn));
1630 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
1631 break;
1632 case 4: /* ERET */
1633 if (s->current_el == 0) {
1634 unallocated_encoding(s);
1635 return;
1637 gen_helper_exception_return(cpu_env);
1638 s->is_jmp = DISAS_JUMP;
1639 return;
1640 case 5: /* DRPS */
1641 if (rn != 0x1f) {
1642 unallocated_encoding(s);
1643 } else {
1644 unsupported_encoding(s, insn);
1646 return;
1647 default:
1648 unallocated_encoding(s);
1649 return;
1652 s->is_jmp = DISAS_JUMP;
1655 /* C3.2 Branches, exception generating and system instructions */
1656 static void disas_b_exc_sys(DisasContext *s, uint32_t insn)
1658 switch (extract32(insn, 25, 7)) {
1659 case 0x0a: case 0x0b:
1660 case 0x4a: case 0x4b: /* Unconditional branch (immediate) */
1661 disas_uncond_b_imm(s, insn);
1662 break;
1663 case 0x1a: case 0x5a: /* Compare & branch (immediate) */
1664 disas_comp_b_imm(s, insn);
1665 break;
1666 case 0x1b: case 0x5b: /* Test & branch (immediate) */
1667 disas_test_b_imm(s, insn);
1668 break;
1669 case 0x2a: /* Conditional branch (immediate) */
1670 disas_cond_b_imm(s, insn);
1671 break;
1672 case 0x6a: /* Exception generation / System */
1673 if (insn & (1 << 24)) {
1674 disas_system(s, insn);
1675 } else {
1676 disas_exc(s, insn);
1678 break;
1679 case 0x6b: /* Unconditional branch (register) */
1680 disas_uncond_b_reg(s, insn);
1681 break;
1682 default:
1683 unallocated_encoding(s);
1684 break;
1689 * Load/Store exclusive instructions are implemented by remembering
1690 * the value/address loaded, and seeing if these are the same
1691 * when the store is performed. This is not actually the architecturally
1692 * mandated semantics, but it works for typical guest code sequences
1693 * and avoids having to monitor regular stores.
1695 * In system emulation mode only one CPU will be running at once, so
1696 * this sequence is effectively atomic. In user emulation mode we
1697 * throw an exception and handle the atomic operation elsewhere.
1699 static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
1700 TCGv_i64 addr, int size, bool is_pair)
1702 TCGv_i64 tmp = tcg_temp_new_i64();
1703 TCGMemOp memop = MO_TE + size;
1705 g_assert(size <= 3);
1706 tcg_gen_qemu_ld_i64(tmp, addr, get_mem_index(s), memop);
1708 if (is_pair) {
1709 TCGv_i64 addr2 = tcg_temp_new_i64();
1710 TCGv_i64 hitmp = tcg_temp_new_i64();
1712 g_assert(size >= 2);
1713 tcg_gen_addi_i64(addr2, addr, 1 << size);
1714 tcg_gen_qemu_ld_i64(hitmp, addr2, get_mem_index(s), memop);
1715 tcg_temp_free_i64(addr2);
1716 tcg_gen_mov_i64(cpu_exclusive_high, hitmp);
1717 tcg_gen_mov_i64(cpu_reg(s, rt2), hitmp);
1718 tcg_temp_free_i64(hitmp);
1721 tcg_gen_mov_i64(cpu_exclusive_val, tmp);
1722 tcg_gen_mov_i64(cpu_reg(s, rt), tmp);
1724 tcg_temp_free_i64(tmp);
1725 tcg_gen_mov_i64(cpu_exclusive_addr, addr);
1728 #ifdef CONFIG_USER_ONLY
1729 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
1730 TCGv_i64 addr, int size, int is_pair)
1732 tcg_gen_mov_i64(cpu_exclusive_test, addr);
1733 tcg_gen_movi_i32(cpu_exclusive_info,
1734 size | is_pair << 2 | (rd << 4) | (rt << 9) | (rt2 << 14));
1735 gen_exception_internal_insn(s, 4, EXCP_STREX);
1737 #else
1738 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
1739 TCGv_i64 inaddr, int size, int is_pair)
1741 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
1742 * && (!is_pair || env->exclusive_high == [addr + datasize])) {
1743 * [addr] = {Rt};
1744 * if (is_pair) {
1745 * [addr + datasize] = {Rt2};
1747 * {Rd} = 0;
1748 * } else {
1749 * {Rd} = 1;
1751 * env->exclusive_addr = -1;
1753 TCGLabel *fail_label = gen_new_label();
1754 TCGLabel *done_label = gen_new_label();
1755 TCGv_i64 addr = tcg_temp_local_new_i64();
1756 TCGv_i64 tmp;
1758 /* Copy input into a local temp so it is not trashed when the
1759 * basic block ends at the branch insn.
1761 tcg_gen_mov_i64(addr, inaddr);
1762 tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label);
1764 tmp = tcg_temp_new_i64();
1765 tcg_gen_qemu_ld_i64(tmp, addr, get_mem_index(s), MO_TE + size);
1766 tcg_gen_brcond_i64(TCG_COND_NE, tmp, cpu_exclusive_val, fail_label);
1767 tcg_temp_free_i64(tmp);
1769 if (is_pair) {
1770 TCGv_i64 addrhi = tcg_temp_new_i64();
1771 TCGv_i64 tmphi = tcg_temp_new_i64();
1773 tcg_gen_addi_i64(addrhi, addr, 1 << size);
1774 tcg_gen_qemu_ld_i64(tmphi, addrhi, get_mem_index(s), MO_TE + size);
1775 tcg_gen_brcond_i64(TCG_COND_NE, tmphi, cpu_exclusive_high, fail_label);
1777 tcg_temp_free_i64(tmphi);
1778 tcg_temp_free_i64(addrhi);
1781 /* We seem to still have the exclusive monitor, so do the store */
1782 tcg_gen_qemu_st_i64(cpu_reg(s, rt), addr, get_mem_index(s), MO_TE + size);
1783 if (is_pair) {
1784 TCGv_i64 addrhi = tcg_temp_new_i64();
1786 tcg_gen_addi_i64(addrhi, addr, 1 << size);
1787 tcg_gen_qemu_st_i64(cpu_reg(s, rt2), addrhi,
1788 get_mem_index(s), MO_TE + size);
1789 tcg_temp_free_i64(addrhi);
1792 tcg_temp_free_i64(addr);
1794 tcg_gen_movi_i64(cpu_reg(s, rd), 0);
1795 tcg_gen_br(done_label);
1796 gen_set_label(fail_label);
1797 tcg_gen_movi_i64(cpu_reg(s, rd), 1);
1798 gen_set_label(done_label);
1799 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1802 #endif
1804 /* C3.3.6 Load/store exclusive
1806 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0
1807 * +-----+-------------+----+---+----+------+----+-------+------+------+
1808 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt |
1809 * +-----+-------------+----+---+----+------+----+-------+------+------+
1811 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
1812 * L: 0 -> store, 1 -> load
1813 * o2: 0 -> exclusive, 1 -> not
1814 * o1: 0 -> single register, 1 -> register pair
1815 * o0: 1 -> load-acquire/store-release, 0 -> not
1817 static void disas_ldst_excl(DisasContext *s, uint32_t insn)
1819 int rt = extract32(insn, 0, 5);
1820 int rn = extract32(insn, 5, 5);
1821 int rt2 = extract32(insn, 10, 5);
1822 int is_lasr = extract32(insn, 15, 1);
1823 int rs = extract32(insn, 16, 5);
1824 int is_pair = extract32(insn, 21, 1);
1825 int is_store = !extract32(insn, 22, 1);
1826 int is_excl = !extract32(insn, 23, 1);
1827 int size = extract32(insn, 30, 2);
1828 TCGv_i64 tcg_addr;
1830 if ((!is_excl && !is_pair && !is_lasr) ||
1831 (!is_excl && is_pair) ||
1832 (is_pair && size < 2)) {
1833 unallocated_encoding(s);
1834 return;
1837 if (rn == 31) {
1838 gen_check_sp_alignment(s);
1840 tcg_addr = read_cpu_reg_sp(s, rn, 1);
1842 /* Note that since TCG is single threaded load-acquire/store-release
1843 * semantics require no extra if (is_lasr) { ... } handling.
1846 if (is_excl) {
1847 if (!is_store) {
1848 s->is_ldex = true;
1849 gen_load_exclusive(s, rt, rt2, tcg_addr, size, is_pair);
1850 } else {
1851 gen_store_exclusive(s, rs, rt, rt2, tcg_addr, size, is_pair);
1853 } else {
1854 TCGv_i64 tcg_rt = cpu_reg(s, rt);
1855 if (is_store) {
1856 do_gpr_st(s, tcg_rt, tcg_addr, size);
1857 } else {
1858 do_gpr_ld(s, tcg_rt, tcg_addr, size, false, false);
1864 * C3.3.5 Load register (literal)
1866 * 31 30 29 27 26 25 24 23 5 4 0
1867 * +-----+-------+---+-----+-------------------+-------+
1868 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt |
1869 * +-----+-------+---+-----+-------------------+-------+
1871 * V: 1 -> vector (simd/fp)
1872 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit,
1873 * 10-> 32 bit signed, 11 -> prefetch
1874 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated)
1876 static void disas_ld_lit(DisasContext *s, uint32_t insn)
1878 int rt = extract32(insn, 0, 5);
1879 int64_t imm = sextract32(insn, 5, 19) << 2;
1880 bool is_vector = extract32(insn, 26, 1);
1881 int opc = extract32(insn, 30, 2);
1882 bool is_signed = false;
1883 int size = 2;
1884 TCGv_i64 tcg_rt, tcg_addr;
1886 if (is_vector) {
1887 if (opc == 3) {
1888 unallocated_encoding(s);
1889 return;
1891 size = 2 + opc;
1892 if (!fp_access_check(s)) {
1893 return;
1895 } else {
1896 if (opc == 3) {
1897 /* PRFM (literal) : prefetch */
1898 return;
1900 size = 2 + extract32(opc, 0, 1);
1901 is_signed = extract32(opc, 1, 1);
1904 tcg_rt = cpu_reg(s, rt);
1906 tcg_addr = tcg_const_i64((s->pc - 4) + imm);
1907 if (is_vector) {
1908 do_fp_ld(s, rt, tcg_addr, size);
1909 } else {
1910 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, false);
1912 tcg_temp_free_i64(tcg_addr);
1916 * C5.6.80 LDNP (Load Pair - non-temporal hint)
1917 * C5.6.81 LDP (Load Pair - non vector)
1918 * C5.6.82 LDPSW (Load Pair Signed Word - non vector)
1919 * C5.6.176 STNP (Store Pair - non-temporal hint)
1920 * C5.6.177 STP (Store Pair - non vector)
1921 * C6.3.165 LDNP (Load Pair of SIMD&FP - non-temporal hint)
1922 * C6.3.165 LDP (Load Pair of SIMD&FP)
1923 * C6.3.284 STNP (Store Pair of SIMD&FP - non-temporal hint)
1924 * C6.3.284 STP (Store Pair of SIMD&FP)
1926 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0
1927 * +-----+-------+---+---+-------+---+-----------------------------+
1928 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt |
1929 * +-----+-------+---+---+-------+---+-------+-------+------+------+
1931 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit
1932 * LDPSW 01
1933 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit
1934 * V: 0 -> GPR, 1 -> Vector
1935 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index,
1936 * 10 -> signed offset, 11 -> pre-index
1937 * L: 0 -> Store 1 -> Load
1939 * Rt, Rt2 = GPR or SIMD registers to be stored
1940 * Rn = general purpose register containing address
1941 * imm7 = signed offset (multiple of 4 or 8 depending on size)
1943 static void disas_ldst_pair(DisasContext *s, uint32_t insn)
1945 int rt = extract32(insn, 0, 5);
1946 int rn = extract32(insn, 5, 5);
1947 int rt2 = extract32(insn, 10, 5);
1948 uint64_t offset = sextract64(insn, 15, 7);
1949 int index = extract32(insn, 23, 2);
1950 bool is_vector = extract32(insn, 26, 1);
1951 bool is_load = extract32(insn, 22, 1);
1952 int opc = extract32(insn, 30, 2);
1954 bool is_signed = false;
1955 bool postindex = false;
1956 bool wback = false;
1958 TCGv_i64 tcg_addr; /* calculated address */
1959 int size;
1961 if (opc == 3) {
1962 unallocated_encoding(s);
1963 return;
1966 if (is_vector) {
1967 size = 2 + opc;
1968 } else {
1969 size = 2 + extract32(opc, 1, 1);
1970 is_signed = extract32(opc, 0, 1);
1971 if (!is_load && is_signed) {
1972 unallocated_encoding(s);
1973 return;
1977 switch (index) {
1978 case 1: /* post-index */
1979 postindex = true;
1980 wback = true;
1981 break;
1982 case 0:
1983 /* signed offset with "non-temporal" hint. Since we don't emulate
1984 * caches we don't care about hints to the cache system about
1985 * data access patterns, and handle this identically to plain
1986 * signed offset.
1988 if (is_signed) {
1989 /* There is no non-temporal-hint version of LDPSW */
1990 unallocated_encoding(s);
1991 return;
1993 postindex = false;
1994 break;
1995 case 2: /* signed offset, rn not updated */
1996 postindex = false;
1997 break;
1998 case 3: /* pre-index */
1999 postindex = false;
2000 wback = true;
2001 break;
2004 if (is_vector && !fp_access_check(s)) {
2005 return;
2008 offset <<= size;
2010 if (rn == 31) {
2011 gen_check_sp_alignment(s);
2014 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2016 if (!postindex) {
2017 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset);
2020 if (is_vector) {
2021 if (is_load) {
2022 do_fp_ld(s, rt, tcg_addr, size);
2023 } else {
2024 do_fp_st(s, rt, tcg_addr, size);
2026 } else {
2027 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2028 if (is_load) {
2029 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, false);
2030 } else {
2031 do_gpr_st(s, tcg_rt, tcg_addr, size);
2034 tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size);
2035 if (is_vector) {
2036 if (is_load) {
2037 do_fp_ld(s, rt2, tcg_addr, size);
2038 } else {
2039 do_fp_st(s, rt2, tcg_addr, size);
2041 } else {
2042 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2);
2043 if (is_load) {
2044 do_gpr_ld(s, tcg_rt2, tcg_addr, size, is_signed, false);
2045 } else {
2046 do_gpr_st(s, tcg_rt2, tcg_addr, size);
2050 if (wback) {
2051 if (postindex) {
2052 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset - (1 << size));
2053 } else {
2054 tcg_gen_subi_i64(tcg_addr, tcg_addr, 1 << size);
2056 tcg_gen_mov_i64(cpu_reg_sp(s, rn), tcg_addr);
2061 * C3.3.8 Load/store (immediate post-indexed)
2062 * C3.3.9 Load/store (immediate pre-indexed)
2063 * C3.3.12 Load/store (unscaled immediate)
2065 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
2066 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2067 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt |
2068 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2070 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback)
2071 10 -> unprivileged
2072 * V = 0 -> non-vector
2073 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit
2074 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2076 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn)
2078 int rt = extract32(insn, 0, 5);
2079 int rn = extract32(insn, 5, 5);
2080 int imm9 = sextract32(insn, 12, 9);
2081 int opc = extract32(insn, 22, 2);
2082 int size = extract32(insn, 30, 2);
2083 int idx = extract32(insn, 10, 2);
2084 bool is_signed = false;
2085 bool is_store = false;
2086 bool is_extended = false;
2087 bool is_unpriv = (idx == 2);
2088 bool is_vector = extract32(insn, 26, 1);
2089 bool post_index;
2090 bool writeback;
2092 TCGv_i64 tcg_addr;
2094 if (is_vector) {
2095 size |= (opc & 2) << 1;
2096 if (size > 4 || is_unpriv) {
2097 unallocated_encoding(s);
2098 return;
2100 is_store = ((opc & 1) == 0);
2101 if (!fp_access_check(s)) {
2102 return;
2104 } else {
2105 if (size == 3 && opc == 2) {
2106 /* PRFM - prefetch */
2107 if (is_unpriv) {
2108 unallocated_encoding(s);
2109 return;
2111 return;
2113 if (opc == 3 && size > 1) {
2114 unallocated_encoding(s);
2115 return;
2117 is_store = (opc == 0);
2118 is_signed = opc & (1<<1);
2119 is_extended = (size < 3) && (opc & 1);
2122 switch (idx) {
2123 case 0:
2124 case 2:
2125 post_index = false;
2126 writeback = false;
2127 break;
2128 case 1:
2129 post_index = true;
2130 writeback = true;
2131 break;
2132 case 3:
2133 post_index = false;
2134 writeback = true;
2135 break;
2138 if (rn == 31) {
2139 gen_check_sp_alignment(s);
2141 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2143 if (!post_index) {
2144 tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9);
2147 if (is_vector) {
2148 if (is_store) {
2149 do_fp_st(s, rt, tcg_addr, size);
2150 } else {
2151 do_fp_ld(s, rt, tcg_addr, size);
2153 } else {
2154 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2155 int memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
2157 if (is_store) {
2158 do_gpr_st_memidx(s, tcg_rt, tcg_addr, size, memidx);
2159 } else {
2160 do_gpr_ld_memidx(s, tcg_rt, tcg_addr, size,
2161 is_signed, is_extended, memidx);
2165 if (writeback) {
2166 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
2167 if (post_index) {
2168 tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9);
2170 tcg_gen_mov_i64(tcg_rn, tcg_addr);
2175 * C3.3.10 Load/store (register offset)
2177 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2178 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2179 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt |
2180 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2182 * For non-vector:
2183 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
2184 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2185 * For vector:
2186 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
2187 * opc<0>: 0 -> store, 1 -> load
2188 * V: 1 -> vector/simd
2189 * opt: extend encoding (see DecodeRegExtend)
2190 * S: if S=1 then scale (essentially index by sizeof(size))
2191 * Rt: register to transfer into/out of
2192 * Rn: address register or SP for base
2193 * Rm: offset register or ZR for offset
2195 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn)
2197 int rt = extract32(insn, 0, 5);
2198 int rn = extract32(insn, 5, 5);
2199 int shift = extract32(insn, 12, 1);
2200 int rm = extract32(insn, 16, 5);
2201 int opc = extract32(insn, 22, 2);
2202 int opt = extract32(insn, 13, 3);
2203 int size = extract32(insn, 30, 2);
2204 bool is_signed = false;
2205 bool is_store = false;
2206 bool is_extended = false;
2207 bool is_vector = extract32(insn, 26, 1);
2209 TCGv_i64 tcg_rm;
2210 TCGv_i64 tcg_addr;
2212 if (extract32(opt, 1, 1) == 0) {
2213 unallocated_encoding(s);
2214 return;
2217 if (is_vector) {
2218 size |= (opc & 2) << 1;
2219 if (size > 4) {
2220 unallocated_encoding(s);
2221 return;
2223 is_store = !extract32(opc, 0, 1);
2224 if (!fp_access_check(s)) {
2225 return;
2227 } else {
2228 if (size == 3 && opc == 2) {
2229 /* PRFM - prefetch */
2230 return;
2232 if (opc == 3 && size > 1) {
2233 unallocated_encoding(s);
2234 return;
2236 is_store = (opc == 0);
2237 is_signed = extract32(opc, 1, 1);
2238 is_extended = (size < 3) && extract32(opc, 0, 1);
2241 if (rn == 31) {
2242 gen_check_sp_alignment(s);
2244 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2246 tcg_rm = read_cpu_reg(s, rm, 1);
2247 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0);
2249 tcg_gen_add_i64(tcg_addr, tcg_addr, tcg_rm);
2251 if (is_vector) {
2252 if (is_store) {
2253 do_fp_st(s, rt, tcg_addr, size);
2254 } else {
2255 do_fp_ld(s, rt, tcg_addr, size);
2257 } else {
2258 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2259 if (is_store) {
2260 do_gpr_st(s, tcg_rt, tcg_addr, size);
2261 } else {
2262 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, is_extended);
2268 * C3.3.13 Load/store (unsigned immediate)
2270 * 31 30 29 27 26 25 24 23 22 21 10 9 5
2271 * +----+-------+---+-----+-----+------------+-------+------+
2272 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt |
2273 * +----+-------+---+-----+-----+------------+-------+------+
2275 * For non-vector:
2276 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
2277 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2278 * For vector:
2279 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
2280 * opc<0>: 0 -> store, 1 -> load
2281 * Rn: base address register (inc SP)
2282 * Rt: target register
2284 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn)
2286 int rt = extract32(insn, 0, 5);
2287 int rn = extract32(insn, 5, 5);
2288 unsigned int imm12 = extract32(insn, 10, 12);
2289 bool is_vector = extract32(insn, 26, 1);
2290 int size = extract32(insn, 30, 2);
2291 int opc = extract32(insn, 22, 2);
2292 unsigned int offset;
2294 TCGv_i64 tcg_addr;
2296 bool is_store;
2297 bool is_signed = false;
2298 bool is_extended = false;
2300 if (is_vector) {
2301 size |= (opc & 2) << 1;
2302 if (size > 4) {
2303 unallocated_encoding(s);
2304 return;
2306 is_store = !extract32(opc, 0, 1);
2307 if (!fp_access_check(s)) {
2308 return;
2310 } else {
2311 if (size == 3 && opc == 2) {
2312 /* PRFM - prefetch */
2313 return;
2315 if (opc == 3 && size > 1) {
2316 unallocated_encoding(s);
2317 return;
2319 is_store = (opc == 0);
2320 is_signed = extract32(opc, 1, 1);
2321 is_extended = (size < 3) && extract32(opc, 0, 1);
2324 if (rn == 31) {
2325 gen_check_sp_alignment(s);
2327 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2328 offset = imm12 << size;
2329 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset);
2331 if (is_vector) {
2332 if (is_store) {
2333 do_fp_st(s, rt, tcg_addr, size);
2334 } else {
2335 do_fp_ld(s, rt, tcg_addr, size);
2337 } else {
2338 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2339 if (is_store) {
2340 do_gpr_st(s, tcg_rt, tcg_addr, size);
2341 } else {
2342 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, is_extended);
2347 /* Load/store register (all forms) */
2348 static void disas_ldst_reg(DisasContext *s, uint32_t insn)
2350 switch (extract32(insn, 24, 2)) {
2351 case 0:
2352 if (extract32(insn, 21, 1) == 1 && extract32(insn, 10, 2) == 2) {
2353 disas_ldst_reg_roffset(s, insn);
2354 } else {
2355 /* Load/store register (unscaled immediate)
2356 * Load/store immediate pre/post-indexed
2357 * Load/store register unprivileged
2359 disas_ldst_reg_imm9(s, insn);
2361 break;
2362 case 1:
2363 disas_ldst_reg_unsigned_imm(s, insn);
2364 break;
2365 default:
2366 unallocated_encoding(s);
2367 break;
2371 /* C3.3.1 AdvSIMD load/store multiple structures
2373 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0
2374 * +---+---+---------------+---+-------------+--------+------+------+------+
2375 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt |
2376 * +---+---+---------------+---+-------------+--------+------+------+------+
2378 * C3.3.2 AdvSIMD load/store multiple structures (post-indexed)
2380 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0
2381 * +---+---+---------------+---+---+---------+--------+------+------+------+
2382 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt |
2383 * +---+---+---------------+---+---+---------+--------+------+------+------+
2385 * Rt: first (or only) SIMD&FP register to be transferred
2386 * Rn: base address or SP
2387 * Rm (post-index only): post-index register (when !31) or size dependent #imm
2389 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
2391 int rt = extract32(insn, 0, 5);
2392 int rn = extract32(insn, 5, 5);
2393 int size = extract32(insn, 10, 2);
2394 int opcode = extract32(insn, 12, 4);
2395 bool is_store = !extract32(insn, 22, 1);
2396 bool is_postidx = extract32(insn, 23, 1);
2397 bool is_q = extract32(insn, 30, 1);
2398 TCGv_i64 tcg_addr, tcg_rn;
2400 int ebytes = 1 << size;
2401 int elements = (is_q ? 128 : 64) / (8 << size);
2402 int rpt; /* num iterations */
2403 int selem; /* structure elements */
2404 int r;
2406 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) {
2407 unallocated_encoding(s);
2408 return;
2411 /* From the shared decode logic */
2412 switch (opcode) {
2413 case 0x0:
2414 rpt = 1;
2415 selem = 4;
2416 break;
2417 case 0x2:
2418 rpt = 4;
2419 selem = 1;
2420 break;
2421 case 0x4:
2422 rpt = 1;
2423 selem = 3;
2424 break;
2425 case 0x6:
2426 rpt = 3;
2427 selem = 1;
2428 break;
2429 case 0x7:
2430 rpt = 1;
2431 selem = 1;
2432 break;
2433 case 0x8:
2434 rpt = 1;
2435 selem = 2;
2436 break;
2437 case 0xa:
2438 rpt = 2;
2439 selem = 1;
2440 break;
2441 default:
2442 unallocated_encoding(s);
2443 return;
2446 if (size == 3 && !is_q && selem != 1) {
2447 /* reserved */
2448 unallocated_encoding(s);
2449 return;
2452 if (!fp_access_check(s)) {
2453 return;
2456 if (rn == 31) {
2457 gen_check_sp_alignment(s);
2460 tcg_rn = cpu_reg_sp(s, rn);
2461 tcg_addr = tcg_temp_new_i64();
2462 tcg_gen_mov_i64(tcg_addr, tcg_rn);
2464 for (r = 0; r < rpt; r++) {
2465 int e;
2466 for (e = 0; e < elements; e++) {
2467 int tt = (rt + r) % 32;
2468 int xs;
2469 for (xs = 0; xs < selem; xs++) {
2470 if (is_store) {
2471 do_vec_st(s, tt, e, tcg_addr, size);
2472 } else {
2473 do_vec_ld(s, tt, e, tcg_addr, size);
2475 /* For non-quad operations, setting a slice of the low
2476 * 64 bits of the register clears the high 64 bits (in
2477 * the ARM ARM pseudocode this is implicit in the fact
2478 * that 'rval' is a 64 bit wide variable). We optimize
2479 * by noticing that we only need to do this the first
2480 * time we touch a register.
2482 if (!is_q && e == 0 && (r == 0 || xs == selem - 1)) {
2483 clear_vec_high(s, tt);
2486 tcg_gen_addi_i64(tcg_addr, tcg_addr, ebytes);
2487 tt = (tt + 1) % 32;
2492 if (is_postidx) {
2493 int rm = extract32(insn, 16, 5);
2494 if (rm == 31) {
2495 tcg_gen_mov_i64(tcg_rn, tcg_addr);
2496 } else {
2497 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
2500 tcg_temp_free_i64(tcg_addr);
2503 /* C3.3.3 AdvSIMD load/store single structure
2505 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2506 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2507 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt |
2508 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2510 * C3.3.4 AdvSIMD load/store single structure (post-indexed)
2512 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2513 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2514 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt |
2515 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2517 * Rt: first (or only) SIMD&FP register to be transferred
2518 * Rn: base address or SP
2519 * Rm (post-index only): post-index register (when !31) or size dependent #imm
2520 * index = encoded in Q:S:size dependent on size
2522 * lane_size = encoded in R, opc
2523 * transfer width = encoded in opc, S, size
2525 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
2527 int rt = extract32(insn, 0, 5);
2528 int rn = extract32(insn, 5, 5);
2529 int size = extract32(insn, 10, 2);
2530 int S = extract32(insn, 12, 1);
2531 int opc = extract32(insn, 13, 3);
2532 int R = extract32(insn, 21, 1);
2533 int is_load = extract32(insn, 22, 1);
2534 int is_postidx = extract32(insn, 23, 1);
2535 int is_q = extract32(insn, 30, 1);
2537 int scale = extract32(opc, 1, 2);
2538 int selem = (extract32(opc, 0, 1) << 1 | R) + 1;
2539 bool replicate = false;
2540 int index = is_q << 3 | S << 2 | size;
2541 int ebytes, xs;
2542 TCGv_i64 tcg_addr, tcg_rn;
2544 switch (scale) {
2545 case 3:
2546 if (!is_load || S) {
2547 unallocated_encoding(s);
2548 return;
2550 scale = size;
2551 replicate = true;
2552 break;
2553 case 0:
2554 break;
2555 case 1:
2556 if (extract32(size, 0, 1)) {
2557 unallocated_encoding(s);
2558 return;
2560 index >>= 1;
2561 break;
2562 case 2:
2563 if (extract32(size, 1, 1)) {
2564 unallocated_encoding(s);
2565 return;
2567 if (!extract32(size, 0, 1)) {
2568 index >>= 2;
2569 } else {
2570 if (S) {
2571 unallocated_encoding(s);
2572 return;
2574 index >>= 3;
2575 scale = 3;
2577 break;
2578 default:
2579 g_assert_not_reached();
2582 if (!fp_access_check(s)) {
2583 return;
2586 ebytes = 1 << scale;
2588 if (rn == 31) {
2589 gen_check_sp_alignment(s);
2592 tcg_rn = cpu_reg_sp(s, rn);
2593 tcg_addr = tcg_temp_new_i64();
2594 tcg_gen_mov_i64(tcg_addr, tcg_rn);
2596 for (xs = 0; xs < selem; xs++) {
2597 if (replicate) {
2598 /* Load and replicate to all elements */
2599 uint64_t mulconst;
2600 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
2602 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr,
2603 get_mem_index(s), MO_TE + scale);
2604 switch (scale) {
2605 case 0:
2606 mulconst = 0x0101010101010101ULL;
2607 break;
2608 case 1:
2609 mulconst = 0x0001000100010001ULL;
2610 break;
2611 case 2:
2612 mulconst = 0x0000000100000001ULL;
2613 break;
2614 case 3:
2615 mulconst = 0;
2616 break;
2617 default:
2618 g_assert_not_reached();
2620 if (mulconst) {
2621 tcg_gen_muli_i64(tcg_tmp, tcg_tmp, mulconst);
2623 write_vec_element(s, tcg_tmp, rt, 0, MO_64);
2624 if (is_q) {
2625 write_vec_element(s, tcg_tmp, rt, 1, MO_64);
2626 } else {
2627 clear_vec_high(s, rt);
2629 tcg_temp_free_i64(tcg_tmp);
2630 } else {
2631 /* Load/store one element per register */
2632 if (is_load) {
2633 do_vec_ld(s, rt, index, tcg_addr, MO_TE + scale);
2634 } else {
2635 do_vec_st(s, rt, index, tcg_addr, MO_TE + scale);
2638 tcg_gen_addi_i64(tcg_addr, tcg_addr, ebytes);
2639 rt = (rt + 1) % 32;
2642 if (is_postidx) {
2643 int rm = extract32(insn, 16, 5);
2644 if (rm == 31) {
2645 tcg_gen_mov_i64(tcg_rn, tcg_addr);
2646 } else {
2647 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
2650 tcg_temp_free_i64(tcg_addr);
2653 /* C3.3 Loads and stores */
2654 static void disas_ldst(DisasContext *s, uint32_t insn)
2656 switch (extract32(insn, 24, 6)) {
2657 case 0x08: /* Load/store exclusive */
2658 disas_ldst_excl(s, insn);
2659 break;
2660 case 0x18: case 0x1c: /* Load register (literal) */
2661 disas_ld_lit(s, insn);
2662 break;
2663 case 0x28: case 0x29:
2664 case 0x2c: case 0x2d: /* Load/store pair (all forms) */
2665 disas_ldst_pair(s, insn);
2666 break;
2667 case 0x38: case 0x39:
2668 case 0x3c: case 0x3d: /* Load/store register (all forms) */
2669 disas_ldst_reg(s, insn);
2670 break;
2671 case 0x0c: /* AdvSIMD load/store multiple structures */
2672 disas_ldst_multiple_struct(s, insn);
2673 break;
2674 case 0x0d: /* AdvSIMD load/store single structure */
2675 disas_ldst_single_struct(s, insn);
2676 break;
2677 default:
2678 unallocated_encoding(s);
2679 break;
2683 /* C3.4.6 PC-rel. addressing
2684 * 31 30 29 28 24 23 5 4 0
2685 * +----+-------+-----------+-------------------+------+
2686 * | op | immlo | 1 0 0 0 0 | immhi | Rd |
2687 * +----+-------+-----------+-------------------+------+
2689 static void disas_pc_rel_adr(DisasContext *s, uint32_t insn)
2691 unsigned int page, rd;
2692 uint64_t base;
2693 uint64_t offset;
2695 page = extract32(insn, 31, 1);
2696 /* SignExtend(immhi:immlo) -> offset */
2697 offset = sextract64(insn, 5, 19);
2698 offset = offset << 2 | extract32(insn, 29, 2);
2699 rd = extract32(insn, 0, 5);
2700 base = s->pc - 4;
2702 if (page) {
2703 /* ADRP (page based) */
2704 base &= ~0xfff;
2705 offset <<= 12;
2708 tcg_gen_movi_i64(cpu_reg(s, rd), base + offset);
2712 * C3.4.1 Add/subtract (immediate)
2714 * 31 30 29 28 24 23 22 21 10 9 5 4 0
2715 * +--+--+--+-----------+-----+-------------+-----+-----+
2716 * |sf|op| S| 1 0 0 0 1 |shift| imm12 | Rn | Rd |
2717 * +--+--+--+-----------+-----+-------------+-----+-----+
2719 * sf: 0 -> 32bit, 1 -> 64bit
2720 * op: 0 -> add , 1 -> sub
2721 * S: 1 -> set flags
2722 * shift: 00 -> LSL imm by 0, 01 -> LSL imm by 12
2724 static void disas_add_sub_imm(DisasContext *s, uint32_t insn)
2726 int rd = extract32(insn, 0, 5);
2727 int rn = extract32(insn, 5, 5);
2728 uint64_t imm = extract32(insn, 10, 12);
2729 int shift = extract32(insn, 22, 2);
2730 bool setflags = extract32(insn, 29, 1);
2731 bool sub_op = extract32(insn, 30, 1);
2732 bool is_64bit = extract32(insn, 31, 1);
2734 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
2735 TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd);
2736 TCGv_i64 tcg_result;
2738 switch (shift) {
2739 case 0x0:
2740 break;
2741 case 0x1:
2742 imm <<= 12;
2743 break;
2744 default:
2745 unallocated_encoding(s);
2746 return;
2749 tcg_result = tcg_temp_new_i64();
2750 if (!setflags) {
2751 if (sub_op) {
2752 tcg_gen_subi_i64(tcg_result, tcg_rn, imm);
2753 } else {
2754 tcg_gen_addi_i64(tcg_result, tcg_rn, imm);
2756 } else {
2757 TCGv_i64 tcg_imm = tcg_const_i64(imm);
2758 if (sub_op) {
2759 gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
2760 } else {
2761 gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
2763 tcg_temp_free_i64(tcg_imm);
2766 if (is_64bit) {
2767 tcg_gen_mov_i64(tcg_rd, tcg_result);
2768 } else {
2769 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
2772 tcg_temp_free_i64(tcg_result);
2775 /* The input should be a value in the bottom e bits (with higher
2776 * bits zero); returns that value replicated into every element
2777 * of size e in a 64 bit integer.
2779 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
2781 assert(e != 0);
2782 while (e < 64) {
2783 mask |= mask << e;
2784 e *= 2;
2786 return mask;
2789 /* Return a value with the bottom len bits set (where 0 < len <= 64) */
2790 static inline uint64_t bitmask64(unsigned int length)
2792 assert(length > 0 && length <= 64);
2793 return ~0ULL >> (64 - length);
2796 /* Simplified variant of pseudocode DecodeBitMasks() for the case where we
2797 * only require the wmask. Returns false if the imms/immr/immn are a reserved
2798 * value (ie should cause a guest UNDEF exception), and true if they are
2799 * valid, in which case the decoded bit pattern is written to result.
2801 static bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
2802 unsigned int imms, unsigned int immr)
2804 uint64_t mask;
2805 unsigned e, levels, s, r;
2806 int len;
2808 assert(immn < 2 && imms < 64 && immr < 64);
2810 /* The bit patterns we create here are 64 bit patterns which
2811 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
2812 * 64 bits each. Each element contains the same value: a run
2813 * of between 1 and e-1 non-zero bits, rotated within the
2814 * element by between 0 and e-1 bits.
2816 * The element size and run length are encoded into immn (1 bit)
2817 * and imms (6 bits) as follows:
2818 * 64 bit elements: immn = 1, imms = <length of run - 1>
2819 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
2820 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
2821 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
2822 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
2823 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
2824 * Notice that immn = 0, imms = 11111x is the only combination
2825 * not covered by one of the above options; this is reserved.
2826 * Further, <length of run - 1> all-ones is a reserved pattern.
2828 * In all cases the rotation is by immr % e (and immr is 6 bits).
2831 /* First determine the element size */
2832 len = 31 - clz32((immn << 6) | (~imms & 0x3f));
2833 if (len < 1) {
2834 /* This is the immn == 0, imms == 0x11111x case */
2835 return false;
2837 e = 1 << len;
2839 levels = e - 1;
2840 s = imms & levels;
2841 r = immr & levels;
2843 if (s == levels) {
2844 /* <length of run - 1> mustn't be all-ones. */
2845 return false;
2848 /* Create the value of one element: s+1 set bits rotated
2849 * by r within the element (which is e bits wide)...
2851 mask = bitmask64(s + 1);
2852 if (r) {
2853 mask = (mask >> r) | (mask << (e - r));
2854 mask &= bitmask64(e);
2856 /* ...then replicate the element over the whole 64 bit value */
2857 mask = bitfield_replicate(mask, e);
2858 *result = mask;
2859 return true;
2862 /* C3.4.4 Logical (immediate)
2863 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
2864 * +----+-----+-------------+---+------+------+------+------+
2865 * | sf | opc | 1 0 0 1 0 0 | N | immr | imms | Rn | Rd |
2866 * +----+-----+-------------+---+------+------+------+------+
2868 static void disas_logic_imm(DisasContext *s, uint32_t insn)
2870 unsigned int sf, opc, is_n, immr, imms, rn, rd;
2871 TCGv_i64 tcg_rd, tcg_rn;
2872 uint64_t wmask;
2873 bool is_and = false;
2875 sf = extract32(insn, 31, 1);
2876 opc = extract32(insn, 29, 2);
2877 is_n = extract32(insn, 22, 1);
2878 immr = extract32(insn, 16, 6);
2879 imms = extract32(insn, 10, 6);
2880 rn = extract32(insn, 5, 5);
2881 rd = extract32(insn, 0, 5);
2883 if (!sf && is_n) {
2884 unallocated_encoding(s);
2885 return;
2888 if (opc == 0x3) { /* ANDS */
2889 tcg_rd = cpu_reg(s, rd);
2890 } else {
2891 tcg_rd = cpu_reg_sp(s, rd);
2893 tcg_rn = cpu_reg(s, rn);
2895 if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) {
2896 /* some immediate field values are reserved */
2897 unallocated_encoding(s);
2898 return;
2901 if (!sf) {
2902 wmask &= 0xffffffff;
2905 switch (opc) {
2906 case 0x3: /* ANDS */
2907 case 0x0: /* AND */
2908 tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask);
2909 is_and = true;
2910 break;
2911 case 0x1: /* ORR */
2912 tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask);
2913 break;
2914 case 0x2: /* EOR */
2915 tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask);
2916 break;
2917 default:
2918 assert(FALSE); /* must handle all above */
2919 break;
2922 if (!sf && !is_and) {
2923 /* zero extend final result; we know we can skip this for AND
2924 * since the immediate had the high 32 bits clear.
2926 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
2929 if (opc == 3) { /* ANDS */
2930 gen_logic_CC(sf, tcg_rd);
2935 * C3.4.5 Move wide (immediate)
2937 * 31 30 29 28 23 22 21 20 5 4 0
2938 * +--+-----+-------------+-----+----------------+------+
2939 * |sf| opc | 1 0 0 1 0 1 | hw | imm16 | Rd |
2940 * +--+-----+-------------+-----+----------------+------+
2942 * sf: 0 -> 32 bit, 1 -> 64 bit
2943 * opc: 00 -> N, 10 -> Z, 11 -> K
2944 * hw: shift/16 (0,16, and sf only 32, 48)
2946 static void disas_movw_imm(DisasContext *s, uint32_t insn)
2948 int rd = extract32(insn, 0, 5);
2949 uint64_t imm = extract32(insn, 5, 16);
2950 int sf = extract32(insn, 31, 1);
2951 int opc = extract32(insn, 29, 2);
2952 int pos = extract32(insn, 21, 2) << 4;
2953 TCGv_i64 tcg_rd = cpu_reg(s, rd);
2954 TCGv_i64 tcg_imm;
2956 if (!sf && (pos >= 32)) {
2957 unallocated_encoding(s);
2958 return;
2961 switch (opc) {
2962 case 0: /* MOVN */
2963 case 2: /* MOVZ */
2964 imm <<= pos;
2965 if (opc == 0) {
2966 imm = ~imm;
2968 if (!sf) {
2969 imm &= 0xffffffffu;
2971 tcg_gen_movi_i64(tcg_rd, imm);
2972 break;
2973 case 3: /* MOVK */
2974 tcg_imm = tcg_const_i64(imm);
2975 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_imm, pos, 16);
2976 tcg_temp_free_i64(tcg_imm);
2977 if (!sf) {
2978 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
2980 break;
2981 default:
2982 unallocated_encoding(s);
2983 break;
2987 /* C3.4.2 Bitfield
2988 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
2989 * +----+-----+-------------+---+------+------+------+------+
2990 * | sf | opc | 1 0 0 1 1 0 | N | immr | imms | Rn | Rd |
2991 * +----+-----+-------------+---+------+------+------+------+
2993 static void disas_bitfield(DisasContext *s, uint32_t insn)
2995 unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len;
2996 TCGv_i64 tcg_rd, tcg_tmp;
2998 sf = extract32(insn, 31, 1);
2999 opc = extract32(insn, 29, 2);
3000 n = extract32(insn, 22, 1);
3001 ri = extract32(insn, 16, 6);
3002 si = extract32(insn, 10, 6);
3003 rn = extract32(insn, 5, 5);
3004 rd = extract32(insn, 0, 5);
3005 bitsize = sf ? 64 : 32;
3007 if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) {
3008 unallocated_encoding(s);
3009 return;
3012 tcg_rd = cpu_reg(s, rd);
3014 /* Suppress the zero-extend for !sf. Since RI and SI are constrained
3015 to be smaller than bitsize, we'll never reference data outside the
3016 low 32-bits anyway. */
3017 tcg_tmp = read_cpu_reg(s, rn, 1);
3019 /* Recognize the common aliases. */
3020 if (opc == 0) { /* SBFM */
3021 if (ri == 0) {
3022 if (si == 7) { /* SXTB */
3023 tcg_gen_ext8s_i64(tcg_rd, tcg_tmp);
3024 goto done;
3025 } else if (si == 15) { /* SXTH */
3026 tcg_gen_ext16s_i64(tcg_rd, tcg_tmp);
3027 goto done;
3028 } else if (si == 31) { /* SXTW */
3029 tcg_gen_ext32s_i64(tcg_rd, tcg_tmp);
3030 goto done;
3033 if (si == 63 || (si == 31 && ri <= si)) { /* ASR */
3034 if (si == 31) {
3035 tcg_gen_ext32s_i64(tcg_tmp, tcg_tmp);
3037 tcg_gen_sari_i64(tcg_rd, tcg_tmp, ri);
3038 goto done;
3040 } else if (opc == 2) { /* UBFM */
3041 if (ri == 0) { /* UXTB, UXTH, plus non-canonical AND */
3042 tcg_gen_andi_i64(tcg_rd, tcg_tmp, bitmask64(si + 1));
3043 return;
3045 if (si == 63 || (si == 31 && ri <= si)) { /* LSR */
3046 if (si == 31) {
3047 tcg_gen_ext32u_i64(tcg_tmp, tcg_tmp);
3049 tcg_gen_shri_i64(tcg_rd, tcg_tmp, ri);
3050 return;
3052 if (si + 1 == ri && si != bitsize - 1) { /* LSL */
3053 int shift = bitsize - 1 - si;
3054 tcg_gen_shli_i64(tcg_rd, tcg_tmp, shift);
3055 goto done;
3059 if (opc != 1) { /* SBFM or UBFM */
3060 tcg_gen_movi_i64(tcg_rd, 0);
3063 /* do the bit move operation */
3064 if (si >= ri) {
3065 /* Wd<s-r:0> = Wn<s:r> */
3066 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
3067 pos = 0;
3068 len = (si - ri) + 1;
3069 } else {
3070 /* Wd<32+s-r,32-r> = Wn<s:0> */
3071 pos = bitsize - ri;
3072 len = si + 1;
3075 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
3077 if (opc == 0) { /* SBFM - sign extend the destination field */
3078 tcg_gen_shli_i64(tcg_rd, tcg_rd, 64 - (pos + len));
3079 tcg_gen_sari_i64(tcg_rd, tcg_rd, 64 - (pos + len));
3082 done:
3083 if (!sf) { /* zero extend final result */
3084 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3088 /* C3.4.3 Extract
3089 * 31 30 29 28 23 22 21 20 16 15 10 9 5 4 0
3090 * +----+------+-------------+---+----+------+--------+------+------+
3091 * | sf | op21 | 1 0 0 1 1 1 | N | o0 | Rm | imms | Rn | Rd |
3092 * +----+------+-------------+---+----+------+--------+------+------+
3094 static void disas_extract(DisasContext *s, uint32_t insn)
3096 unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0;
3098 sf = extract32(insn, 31, 1);
3099 n = extract32(insn, 22, 1);
3100 rm = extract32(insn, 16, 5);
3101 imm = extract32(insn, 10, 6);
3102 rn = extract32(insn, 5, 5);
3103 rd = extract32(insn, 0, 5);
3104 op21 = extract32(insn, 29, 2);
3105 op0 = extract32(insn, 21, 1);
3106 bitsize = sf ? 64 : 32;
3108 if (sf != n || op21 || op0 || imm >= bitsize) {
3109 unallocated_encoding(s);
3110 } else {
3111 TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
3113 tcg_rd = cpu_reg(s, rd);
3115 if (unlikely(imm == 0)) {
3116 /* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
3117 * so an extract from bit 0 is a special case.
3119 if (sf) {
3120 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm));
3121 } else {
3122 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm));
3124 } else if (rm == rn) { /* ROR */
3125 tcg_rm = cpu_reg(s, rm);
3126 if (sf) {
3127 tcg_gen_rotri_i64(tcg_rd, tcg_rm, imm);
3128 } else {
3129 TCGv_i32 tmp = tcg_temp_new_i32();
3130 tcg_gen_extrl_i64_i32(tmp, tcg_rm);
3131 tcg_gen_rotri_i32(tmp, tmp, imm);
3132 tcg_gen_extu_i32_i64(tcg_rd, tmp);
3133 tcg_temp_free_i32(tmp);
3135 } else {
3136 tcg_rm = read_cpu_reg(s, rm, sf);
3137 tcg_rn = read_cpu_reg(s, rn, sf);
3138 tcg_gen_shri_i64(tcg_rm, tcg_rm, imm);
3139 tcg_gen_shli_i64(tcg_rn, tcg_rn, bitsize - imm);
3140 tcg_gen_or_i64(tcg_rd, tcg_rm, tcg_rn);
3141 if (!sf) {
3142 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3148 /* C3.4 Data processing - immediate */
3149 static void disas_data_proc_imm(DisasContext *s, uint32_t insn)
3151 switch (extract32(insn, 23, 6)) {
3152 case 0x20: case 0x21: /* PC-rel. addressing */
3153 disas_pc_rel_adr(s, insn);
3154 break;
3155 case 0x22: case 0x23: /* Add/subtract (immediate) */
3156 disas_add_sub_imm(s, insn);
3157 break;
3158 case 0x24: /* Logical (immediate) */
3159 disas_logic_imm(s, insn);
3160 break;
3161 case 0x25: /* Move wide (immediate) */
3162 disas_movw_imm(s, insn);
3163 break;
3164 case 0x26: /* Bitfield */
3165 disas_bitfield(s, insn);
3166 break;
3167 case 0x27: /* Extract */
3168 disas_extract(s, insn);
3169 break;
3170 default:
3171 unallocated_encoding(s);
3172 break;
3176 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
3177 * Note that it is the caller's responsibility to ensure that the
3178 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
3179 * mandated semantics for out of range shifts.
3181 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
3182 enum a64_shift_type shift_type, TCGv_i64 shift_amount)
3184 switch (shift_type) {
3185 case A64_SHIFT_TYPE_LSL:
3186 tcg_gen_shl_i64(dst, src, shift_amount);
3187 break;
3188 case A64_SHIFT_TYPE_LSR:
3189 tcg_gen_shr_i64(dst, src, shift_amount);
3190 break;
3191 case A64_SHIFT_TYPE_ASR:
3192 if (!sf) {
3193 tcg_gen_ext32s_i64(dst, src);
3195 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
3196 break;
3197 case A64_SHIFT_TYPE_ROR:
3198 if (sf) {
3199 tcg_gen_rotr_i64(dst, src, shift_amount);
3200 } else {
3201 TCGv_i32 t0, t1;
3202 t0 = tcg_temp_new_i32();
3203 t1 = tcg_temp_new_i32();
3204 tcg_gen_extrl_i64_i32(t0, src);
3205 tcg_gen_extrl_i64_i32(t1, shift_amount);
3206 tcg_gen_rotr_i32(t0, t0, t1);
3207 tcg_gen_extu_i32_i64(dst, t0);
3208 tcg_temp_free_i32(t0);
3209 tcg_temp_free_i32(t1);
3211 break;
3212 default:
3213 assert(FALSE); /* all shift types should be handled */
3214 break;
3217 if (!sf) { /* zero extend final result */
3218 tcg_gen_ext32u_i64(dst, dst);
3222 /* Shift a TCGv src by immediate, put result in dst.
3223 * The shift amount must be in range (this should always be true as the
3224 * relevant instructions will UNDEF on bad shift immediates).
3226 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
3227 enum a64_shift_type shift_type, unsigned int shift_i)
3229 assert(shift_i < (sf ? 64 : 32));
3231 if (shift_i == 0) {
3232 tcg_gen_mov_i64(dst, src);
3233 } else {
3234 TCGv_i64 shift_const;
3236 shift_const = tcg_const_i64(shift_i);
3237 shift_reg(dst, src, sf, shift_type, shift_const);
3238 tcg_temp_free_i64(shift_const);
3242 /* C3.5.10 Logical (shifted register)
3243 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
3244 * +----+-----+-----------+-------+---+------+--------+------+------+
3245 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
3246 * +----+-----+-----------+-------+---+------+--------+------+------+
3248 static void disas_logic_reg(DisasContext *s, uint32_t insn)
3250 TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
3251 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
3253 sf = extract32(insn, 31, 1);
3254 opc = extract32(insn, 29, 2);
3255 shift_type = extract32(insn, 22, 2);
3256 invert = extract32(insn, 21, 1);
3257 rm = extract32(insn, 16, 5);
3258 shift_amount = extract32(insn, 10, 6);
3259 rn = extract32(insn, 5, 5);
3260 rd = extract32(insn, 0, 5);
3262 if (!sf && (shift_amount & (1 << 5))) {
3263 unallocated_encoding(s);
3264 return;
3267 tcg_rd = cpu_reg(s, rd);
3269 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
3270 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
3271 * register-register MOV and MVN, so it is worth special casing.
3273 tcg_rm = cpu_reg(s, rm);
3274 if (invert) {
3275 tcg_gen_not_i64(tcg_rd, tcg_rm);
3276 if (!sf) {
3277 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3279 } else {
3280 if (sf) {
3281 tcg_gen_mov_i64(tcg_rd, tcg_rm);
3282 } else {
3283 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
3286 return;
3289 tcg_rm = read_cpu_reg(s, rm, sf);
3291 if (shift_amount) {
3292 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
3295 tcg_rn = cpu_reg(s, rn);
3297 switch (opc | (invert << 2)) {
3298 case 0: /* AND */
3299 case 3: /* ANDS */
3300 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
3301 break;
3302 case 1: /* ORR */
3303 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
3304 break;
3305 case 2: /* EOR */
3306 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
3307 break;
3308 case 4: /* BIC */
3309 case 7: /* BICS */
3310 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
3311 break;
3312 case 5: /* ORN */
3313 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
3314 break;
3315 case 6: /* EON */
3316 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
3317 break;
3318 default:
3319 assert(FALSE);
3320 break;
3323 if (!sf) {
3324 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3327 if (opc == 3) {
3328 gen_logic_CC(sf, tcg_rd);
3333 * C3.5.1 Add/subtract (extended register)
3335 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
3336 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
3337 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
3338 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
3340 * sf: 0 -> 32bit, 1 -> 64bit
3341 * op: 0 -> add , 1 -> sub
3342 * S: 1 -> set flags
3343 * opt: 00
3344 * option: extension type (see DecodeRegExtend)
3345 * imm3: optional shift to Rm
3347 * Rd = Rn + LSL(extend(Rm), amount)
3349 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
3351 int rd = extract32(insn, 0, 5);
3352 int rn = extract32(insn, 5, 5);
3353 int imm3 = extract32(insn, 10, 3);
3354 int option = extract32(insn, 13, 3);
3355 int rm = extract32(insn, 16, 5);
3356 bool setflags = extract32(insn, 29, 1);
3357 bool sub_op = extract32(insn, 30, 1);
3358 bool sf = extract32(insn, 31, 1);
3360 TCGv_i64 tcg_rm, tcg_rn; /* temps */
3361 TCGv_i64 tcg_rd;
3362 TCGv_i64 tcg_result;
3364 if (imm3 > 4) {
3365 unallocated_encoding(s);
3366 return;
3369 /* non-flag setting ops may use SP */
3370 if (!setflags) {
3371 tcg_rd = cpu_reg_sp(s, rd);
3372 } else {
3373 tcg_rd = cpu_reg(s, rd);
3375 tcg_rn = read_cpu_reg_sp(s, rn, sf);
3377 tcg_rm = read_cpu_reg(s, rm, sf);
3378 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
3380 tcg_result = tcg_temp_new_i64();
3382 if (!setflags) {
3383 if (sub_op) {
3384 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
3385 } else {
3386 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
3388 } else {
3389 if (sub_op) {
3390 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
3391 } else {
3392 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
3396 if (sf) {
3397 tcg_gen_mov_i64(tcg_rd, tcg_result);
3398 } else {
3399 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
3402 tcg_temp_free_i64(tcg_result);
3406 * C3.5.2 Add/subtract (shifted register)
3408 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
3409 * +--+--+--+-----------+-----+--+-------+---------+------+------+
3410 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
3411 * +--+--+--+-----------+-----+--+-------+---------+------+------+
3413 * sf: 0 -> 32bit, 1 -> 64bit
3414 * op: 0 -> add , 1 -> sub
3415 * S: 1 -> set flags
3416 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
3417 * imm6: Shift amount to apply to Rm before the add/sub
3419 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
3421 int rd = extract32(insn, 0, 5);
3422 int rn = extract32(insn, 5, 5);
3423 int imm6 = extract32(insn, 10, 6);
3424 int rm = extract32(insn, 16, 5);
3425 int shift_type = extract32(insn, 22, 2);
3426 bool setflags = extract32(insn, 29, 1);
3427 bool sub_op = extract32(insn, 30, 1);
3428 bool sf = extract32(insn, 31, 1);
3430 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3431 TCGv_i64 tcg_rn, tcg_rm;
3432 TCGv_i64 tcg_result;
3434 if ((shift_type == 3) || (!sf && (imm6 > 31))) {
3435 unallocated_encoding(s);
3436 return;
3439 tcg_rn = read_cpu_reg(s, rn, sf);
3440 tcg_rm = read_cpu_reg(s, rm, sf);
3442 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
3444 tcg_result = tcg_temp_new_i64();
3446 if (!setflags) {
3447 if (sub_op) {
3448 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
3449 } else {
3450 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
3452 } else {
3453 if (sub_op) {
3454 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
3455 } else {
3456 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
3460 if (sf) {
3461 tcg_gen_mov_i64(tcg_rd, tcg_result);
3462 } else {
3463 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
3466 tcg_temp_free_i64(tcg_result);
3469 /* C3.5.9 Data-processing (3 source)
3471 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
3472 +--+------+-----------+------+------+----+------+------+------+
3473 |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
3474 +--+------+-----------+------+------+----+------+------+------+
3477 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
3479 int rd = extract32(insn, 0, 5);
3480 int rn = extract32(insn, 5, 5);
3481 int ra = extract32(insn, 10, 5);
3482 int rm = extract32(insn, 16, 5);
3483 int op_id = (extract32(insn, 29, 3) << 4) |
3484 (extract32(insn, 21, 3) << 1) |
3485 extract32(insn, 15, 1);
3486 bool sf = extract32(insn, 31, 1);
3487 bool is_sub = extract32(op_id, 0, 1);
3488 bool is_high = extract32(op_id, 2, 1);
3489 bool is_signed = false;
3490 TCGv_i64 tcg_op1;
3491 TCGv_i64 tcg_op2;
3492 TCGv_i64 tcg_tmp;
3494 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
3495 switch (op_id) {
3496 case 0x42: /* SMADDL */
3497 case 0x43: /* SMSUBL */
3498 case 0x44: /* SMULH */
3499 is_signed = true;
3500 break;
3501 case 0x0: /* MADD (32bit) */
3502 case 0x1: /* MSUB (32bit) */
3503 case 0x40: /* MADD (64bit) */
3504 case 0x41: /* MSUB (64bit) */
3505 case 0x4a: /* UMADDL */
3506 case 0x4b: /* UMSUBL */
3507 case 0x4c: /* UMULH */
3508 break;
3509 default:
3510 unallocated_encoding(s);
3511 return;
3514 if (is_high) {
3515 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
3516 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3517 TCGv_i64 tcg_rn = cpu_reg(s, rn);
3518 TCGv_i64 tcg_rm = cpu_reg(s, rm);
3520 if (is_signed) {
3521 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
3522 } else {
3523 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
3526 tcg_temp_free_i64(low_bits);
3527 return;
3530 tcg_op1 = tcg_temp_new_i64();
3531 tcg_op2 = tcg_temp_new_i64();
3532 tcg_tmp = tcg_temp_new_i64();
3534 if (op_id < 0x42) {
3535 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
3536 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
3537 } else {
3538 if (is_signed) {
3539 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
3540 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
3541 } else {
3542 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
3543 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
3547 if (ra == 31 && !is_sub) {
3548 /* Special-case MADD with rA == XZR; it is the standard MUL alias */
3549 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
3550 } else {
3551 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
3552 if (is_sub) {
3553 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
3554 } else {
3555 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
3559 if (!sf) {
3560 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
3563 tcg_temp_free_i64(tcg_op1);
3564 tcg_temp_free_i64(tcg_op2);
3565 tcg_temp_free_i64(tcg_tmp);
3568 /* C3.5.3 - Add/subtract (with carry)
3569 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
3570 * +--+--+--+------------------------+------+---------+------+-----+
3571 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | opcode2 | Rn | Rd |
3572 * +--+--+--+------------------------+------+---------+------+-----+
3573 * [000000]
3576 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
3578 unsigned int sf, op, setflags, rm, rn, rd;
3579 TCGv_i64 tcg_y, tcg_rn, tcg_rd;
3581 if (extract32(insn, 10, 6) != 0) {
3582 unallocated_encoding(s);
3583 return;
3586 sf = extract32(insn, 31, 1);
3587 op = extract32(insn, 30, 1);
3588 setflags = extract32(insn, 29, 1);
3589 rm = extract32(insn, 16, 5);
3590 rn = extract32(insn, 5, 5);
3591 rd = extract32(insn, 0, 5);
3593 tcg_rd = cpu_reg(s, rd);
3594 tcg_rn = cpu_reg(s, rn);
3596 if (op) {
3597 tcg_y = new_tmp_a64(s);
3598 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
3599 } else {
3600 tcg_y = cpu_reg(s, rm);
3603 if (setflags) {
3604 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
3605 } else {
3606 gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
3610 /* C3.5.4 - C3.5.5 Conditional compare (immediate / register)
3611 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
3612 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
3613 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
3614 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
3615 * [1] y [0] [0]
3617 static void disas_cc(DisasContext *s, uint32_t insn)
3619 unsigned int sf, op, y, cond, rn, nzcv, is_imm;
3620 TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
3621 TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
3622 DisasCompare c;
3624 if (!extract32(insn, 29, 1)) {
3625 unallocated_encoding(s);
3626 return;
3628 if (insn & (1 << 10 | 1 << 4)) {
3629 unallocated_encoding(s);
3630 return;
3632 sf = extract32(insn, 31, 1);
3633 op = extract32(insn, 30, 1);
3634 is_imm = extract32(insn, 11, 1);
3635 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
3636 cond = extract32(insn, 12, 4);
3637 rn = extract32(insn, 5, 5);
3638 nzcv = extract32(insn, 0, 4);
3640 /* Set T0 = !COND. */
3641 tcg_t0 = tcg_temp_new_i32();
3642 arm_test_cc(&c, cond);
3643 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
3644 arm_free_cc(&c);
3646 /* Load the arguments for the new comparison. */
3647 if (is_imm) {
3648 tcg_y = new_tmp_a64(s);
3649 tcg_gen_movi_i64(tcg_y, y);
3650 } else {
3651 tcg_y = cpu_reg(s, y);
3653 tcg_rn = cpu_reg(s, rn);
3655 /* Set the flags for the new comparison. */
3656 tcg_tmp = tcg_temp_new_i64();
3657 if (op) {
3658 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
3659 } else {
3660 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
3662 tcg_temp_free_i64(tcg_tmp);
3664 /* If COND was false, force the flags to #nzcv. Compute two masks
3665 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
3666 * For tcg hosts that support ANDC, we can make do with just T1.
3667 * In either case, allow the tcg optimizer to delete any unused mask.
3669 tcg_t1 = tcg_temp_new_i32();
3670 tcg_t2 = tcg_temp_new_i32();
3671 tcg_gen_neg_i32(tcg_t1, tcg_t0);
3672 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
3674 if (nzcv & 8) { /* N */
3675 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
3676 } else {
3677 if (TCG_TARGET_HAS_andc_i32) {
3678 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
3679 } else {
3680 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
3683 if (nzcv & 4) { /* Z */
3684 if (TCG_TARGET_HAS_andc_i32) {
3685 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
3686 } else {
3687 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
3689 } else {
3690 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
3692 if (nzcv & 2) { /* C */
3693 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
3694 } else {
3695 if (TCG_TARGET_HAS_andc_i32) {
3696 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
3697 } else {
3698 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
3701 if (nzcv & 1) { /* V */
3702 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
3703 } else {
3704 if (TCG_TARGET_HAS_andc_i32) {
3705 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
3706 } else {
3707 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
3710 tcg_temp_free_i32(tcg_t0);
3711 tcg_temp_free_i32(tcg_t1);
3712 tcg_temp_free_i32(tcg_t2);
3715 /* C3.5.6 Conditional select
3716 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
3717 * +----+----+---+-----------------+------+------+-----+------+------+
3718 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
3719 * +----+----+---+-----------------+------+------+-----+------+------+
3721 static void disas_cond_select(DisasContext *s, uint32_t insn)
3723 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
3724 TCGv_i64 tcg_rd, zero;
3725 DisasCompare64 c;
3727 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
3728 /* S == 1 or op2<1> == 1 */
3729 unallocated_encoding(s);
3730 return;
3732 sf = extract32(insn, 31, 1);
3733 else_inv = extract32(insn, 30, 1);
3734 rm = extract32(insn, 16, 5);
3735 cond = extract32(insn, 12, 4);
3736 else_inc = extract32(insn, 10, 1);
3737 rn = extract32(insn, 5, 5);
3738 rd = extract32(insn, 0, 5);
3740 tcg_rd = cpu_reg(s, rd);
3742 a64_test_cc(&c, cond);
3743 zero = tcg_const_i64(0);
3745 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
3746 /* CSET & CSETM. */
3747 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero);
3748 if (else_inv) {
3749 tcg_gen_neg_i64(tcg_rd, tcg_rd);
3751 } else {
3752 TCGv_i64 t_true = cpu_reg(s, rn);
3753 TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
3754 if (else_inv && else_inc) {
3755 tcg_gen_neg_i64(t_false, t_false);
3756 } else if (else_inv) {
3757 tcg_gen_not_i64(t_false, t_false);
3758 } else if (else_inc) {
3759 tcg_gen_addi_i64(t_false, t_false, 1);
3761 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
3764 tcg_temp_free_i64(zero);
3765 a64_free_cc(&c);
3767 if (!sf) {
3768 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3772 static void handle_clz(DisasContext *s, unsigned int sf,
3773 unsigned int rn, unsigned int rd)
3775 TCGv_i64 tcg_rd, tcg_rn;
3776 tcg_rd = cpu_reg(s, rd);
3777 tcg_rn = cpu_reg(s, rn);
3779 if (sf) {
3780 gen_helper_clz64(tcg_rd, tcg_rn);
3781 } else {
3782 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
3783 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
3784 gen_helper_clz(tcg_tmp32, tcg_tmp32);
3785 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
3786 tcg_temp_free_i32(tcg_tmp32);
3790 static void handle_cls(DisasContext *s, unsigned int sf,
3791 unsigned int rn, unsigned int rd)
3793 TCGv_i64 tcg_rd, tcg_rn;
3794 tcg_rd = cpu_reg(s, rd);
3795 tcg_rn = cpu_reg(s, rn);
3797 if (sf) {
3798 gen_helper_cls64(tcg_rd, tcg_rn);
3799 } else {
3800 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
3801 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
3802 gen_helper_cls32(tcg_tmp32, tcg_tmp32);
3803 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
3804 tcg_temp_free_i32(tcg_tmp32);
3808 static void handle_rbit(DisasContext *s, unsigned int sf,
3809 unsigned int rn, unsigned int rd)
3811 TCGv_i64 tcg_rd, tcg_rn;
3812 tcg_rd = cpu_reg(s, rd);
3813 tcg_rn = cpu_reg(s, rn);
3815 if (sf) {
3816 gen_helper_rbit64(tcg_rd, tcg_rn);
3817 } else {
3818 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
3819 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
3820 gen_helper_rbit(tcg_tmp32, tcg_tmp32);
3821 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
3822 tcg_temp_free_i32(tcg_tmp32);
3826 /* C5.6.149 REV with sf==1, opcode==3 ("REV64") */
3827 static void handle_rev64(DisasContext *s, unsigned int sf,
3828 unsigned int rn, unsigned int rd)
3830 if (!sf) {
3831 unallocated_encoding(s);
3832 return;
3834 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
3837 /* C5.6.149 REV with sf==0, opcode==2
3838 * C5.6.151 REV32 (sf==1, opcode==2)
3840 static void handle_rev32(DisasContext *s, unsigned int sf,
3841 unsigned int rn, unsigned int rd)
3843 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3845 if (sf) {
3846 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3847 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
3849 /* bswap32_i64 requires zero high word */
3850 tcg_gen_ext32u_i64(tcg_tmp, tcg_rn);
3851 tcg_gen_bswap32_i64(tcg_rd, tcg_tmp);
3852 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 32);
3853 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
3854 tcg_gen_concat32_i64(tcg_rd, tcg_rd, tcg_tmp);
3856 tcg_temp_free_i64(tcg_tmp);
3857 } else {
3858 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rn));
3859 tcg_gen_bswap32_i64(tcg_rd, tcg_rd);
3863 /* C5.6.150 REV16 (opcode==1) */
3864 static void handle_rev16(DisasContext *s, unsigned int sf,
3865 unsigned int rn, unsigned int rd)
3867 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3868 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3869 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
3871 tcg_gen_andi_i64(tcg_tmp, tcg_rn, 0xffff);
3872 tcg_gen_bswap16_i64(tcg_rd, tcg_tmp);
3874 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 16);
3875 tcg_gen_andi_i64(tcg_tmp, tcg_tmp, 0xffff);
3876 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
3877 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, 16, 16);
3879 if (sf) {
3880 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 32);
3881 tcg_gen_andi_i64(tcg_tmp, tcg_tmp, 0xffff);
3882 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
3883 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, 32, 16);
3885 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 48);
3886 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
3887 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, 48, 16);
3890 tcg_temp_free_i64(tcg_tmp);
3893 /* C3.5.7 Data-processing (1 source)
3894 * 31 30 29 28 21 20 16 15 10 9 5 4 0
3895 * +----+---+---+-----------------+---------+--------+------+------+
3896 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
3897 * +----+---+---+-----------------+---------+--------+------+------+
3899 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
3901 unsigned int sf, opcode, rn, rd;
3903 if (extract32(insn, 29, 1) || extract32(insn, 16, 5)) {
3904 unallocated_encoding(s);
3905 return;
3908 sf = extract32(insn, 31, 1);
3909 opcode = extract32(insn, 10, 6);
3910 rn = extract32(insn, 5, 5);
3911 rd = extract32(insn, 0, 5);
3913 switch (opcode) {
3914 case 0: /* RBIT */
3915 handle_rbit(s, sf, rn, rd);
3916 break;
3917 case 1: /* REV16 */
3918 handle_rev16(s, sf, rn, rd);
3919 break;
3920 case 2: /* REV32 */
3921 handle_rev32(s, sf, rn, rd);
3922 break;
3923 case 3: /* REV64 */
3924 handle_rev64(s, sf, rn, rd);
3925 break;
3926 case 4: /* CLZ */
3927 handle_clz(s, sf, rn, rd);
3928 break;
3929 case 5: /* CLS */
3930 handle_cls(s, sf, rn, rd);
3931 break;
3935 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
3936 unsigned int rm, unsigned int rn, unsigned int rd)
3938 TCGv_i64 tcg_n, tcg_m, tcg_rd;
3939 tcg_rd = cpu_reg(s, rd);
3941 if (!sf && is_signed) {
3942 tcg_n = new_tmp_a64(s);
3943 tcg_m = new_tmp_a64(s);
3944 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
3945 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
3946 } else {
3947 tcg_n = read_cpu_reg(s, rn, sf);
3948 tcg_m = read_cpu_reg(s, rm, sf);
3951 if (is_signed) {
3952 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
3953 } else {
3954 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
3957 if (!sf) { /* zero extend final result */
3958 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3962 /* C5.6.115 LSLV, C5.6.118 LSRV, C5.6.17 ASRV, C5.6.154 RORV */
3963 static void handle_shift_reg(DisasContext *s,
3964 enum a64_shift_type shift_type, unsigned int sf,
3965 unsigned int rm, unsigned int rn, unsigned int rd)
3967 TCGv_i64 tcg_shift = tcg_temp_new_i64();
3968 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3969 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
3971 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
3972 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
3973 tcg_temp_free_i64(tcg_shift);
3976 /* CRC32[BHWX], CRC32C[BHWX] */
3977 static void handle_crc32(DisasContext *s,
3978 unsigned int sf, unsigned int sz, bool crc32c,
3979 unsigned int rm, unsigned int rn, unsigned int rd)
3981 TCGv_i64 tcg_acc, tcg_val;
3982 TCGv_i32 tcg_bytes;
3984 if (!arm_dc_feature(s, ARM_FEATURE_CRC)
3985 || (sf == 1 && sz != 3)
3986 || (sf == 0 && sz == 3)) {
3987 unallocated_encoding(s);
3988 return;
3991 if (sz == 3) {
3992 tcg_val = cpu_reg(s, rm);
3993 } else {
3994 uint64_t mask;
3995 switch (sz) {
3996 case 0:
3997 mask = 0xFF;
3998 break;
3999 case 1:
4000 mask = 0xFFFF;
4001 break;
4002 case 2:
4003 mask = 0xFFFFFFFF;
4004 break;
4005 default:
4006 g_assert_not_reached();
4008 tcg_val = new_tmp_a64(s);
4009 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
4012 tcg_acc = cpu_reg(s, rn);
4013 tcg_bytes = tcg_const_i32(1 << sz);
4015 if (crc32c) {
4016 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
4017 } else {
4018 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
4021 tcg_temp_free_i32(tcg_bytes);
4024 /* C3.5.8 Data-processing (2 source)
4025 * 31 30 29 28 21 20 16 15 10 9 5 4 0
4026 * +----+---+---+-----------------+------+--------+------+------+
4027 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
4028 * +----+---+---+-----------------+------+--------+------+------+
4030 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
4032 unsigned int sf, rm, opcode, rn, rd;
4033 sf = extract32(insn, 31, 1);
4034 rm = extract32(insn, 16, 5);
4035 opcode = extract32(insn, 10, 6);
4036 rn = extract32(insn, 5, 5);
4037 rd = extract32(insn, 0, 5);
4039 if (extract32(insn, 29, 1)) {
4040 unallocated_encoding(s);
4041 return;
4044 switch (opcode) {
4045 case 2: /* UDIV */
4046 handle_div(s, false, sf, rm, rn, rd);
4047 break;
4048 case 3: /* SDIV */
4049 handle_div(s, true, sf, rm, rn, rd);
4050 break;
4051 case 8: /* LSLV */
4052 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
4053 break;
4054 case 9: /* LSRV */
4055 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
4056 break;
4057 case 10: /* ASRV */
4058 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
4059 break;
4060 case 11: /* RORV */
4061 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
4062 break;
4063 case 16:
4064 case 17:
4065 case 18:
4066 case 19:
4067 case 20:
4068 case 21:
4069 case 22:
4070 case 23: /* CRC32 */
4072 int sz = extract32(opcode, 0, 2);
4073 bool crc32c = extract32(opcode, 2, 1);
4074 handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
4075 break;
4077 default:
4078 unallocated_encoding(s);
4079 break;
4083 /* C3.5 Data processing - register */
4084 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
4086 switch (extract32(insn, 24, 5)) {
4087 case 0x0a: /* Logical (shifted register) */
4088 disas_logic_reg(s, insn);
4089 break;
4090 case 0x0b: /* Add/subtract */
4091 if (insn & (1 << 21)) { /* (extended register) */
4092 disas_add_sub_ext_reg(s, insn);
4093 } else {
4094 disas_add_sub_reg(s, insn);
4096 break;
4097 case 0x1b: /* Data-processing (3 source) */
4098 disas_data_proc_3src(s, insn);
4099 break;
4100 case 0x1a:
4101 switch (extract32(insn, 21, 3)) {
4102 case 0x0: /* Add/subtract (with carry) */
4103 disas_adc_sbc(s, insn);
4104 break;
4105 case 0x2: /* Conditional compare */
4106 disas_cc(s, insn); /* both imm and reg forms */
4107 break;
4108 case 0x4: /* Conditional select */
4109 disas_cond_select(s, insn);
4110 break;
4111 case 0x6: /* Data-processing */
4112 if (insn & (1 << 30)) { /* (1 source) */
4113 disas_data_proc_1src(s, insn);
4114 } else { /* (2 source) */
4115 disas_data_proc_2src(s, insn);
4117 break;
4118 default:
4119 unallocated_encoding(s);
4120 break;
4122 break;
4123 default:
4124 unallocated_encoding(s);
4125 break;
4129 static void handle_fp_compare(DisasContext *s, bool is_double,
4130 unsigned int rn, unsigned int rm,
4131 bool cmp_with_zero, bool signal_all_nans)
4133 TCGv_i64 tcg_flags = tcg_temp_new_i64();
4134 TCGv_ptr fpst = get_fpstatus_ptr();
4136 if (is_double) {
4137 TCGv_i64 tcg_vn, tcg_vm;
4139 tcg_vn = read_fp_dreg(s, rn);
4140 if (cmp_with_zero) {
4141 tcg_vm = tcg_const_i64(0);
4142 } else {
4143 tcg_vm = read_fp_dreg(s, rm);
4145 if (signal_all_nans) {
4146 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4147 } else {
4148 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4150 tcg_temp_free_i64(tcg_vn);
4151 tcg_temp_free_i64(tcg_vm);
4152 } else {
4153 TCGv_i32 tcg_vn, tcg_vm;
4155 tcg_vn = read_fp_sreg(s, rn);
4156 if (cmp_with_zero) {
4157 tcg_vm = tcg_const_i32(0);
4158 } else {
4159 tcg_vm = read_fp_sreg(s, rm);
4161 if (signal_all_nans) {
4162 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4163 } else {
4164 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4166 tcg_temp_free_i32(tcg_vn);
4167 tcg_temp_free_i32(tcg_vm);
4170 tcg_temp_free_ptr(fpst);
4172 gen_set_nzcv(tcg_flags);
4174 tcg_temp_free_i64(tcg_flags);
4177 /* C3.6.22 Floating point compare
4178 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
4179 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
4180 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
4181 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
4183 static void disas_fp_compare(DisasContext *s, uint32_t insn)
4185 unsigned int mos, type, rm, op, rn, opc, op2r;
4187 mos = extract32(insn, 29, 3);
4188 type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
4189 rm = extract32(insn, 16, 5);
4190 op = extract32(insn, 14, 2);
4191 rn = extract32(insn, 5, 5);
4192 opc = extract32(insn, 3, 2);
4193 op2r = extract32(insn, 0, 3);
4195 if (mos || op || op2r || type > 1) {
4196 unallocated_encoding(s);
4197 return;
4200 if (!fp_access_check(s)) {
4201 return;
4204 handle_fp_compare(s, type, rn, rm, opc & 1, opc & 2);
4207 /* C3.6.23 Floating point conditional compare
4208 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
4209 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
4210 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
4211 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
4213 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
4215 unsigned int mos, type, rm, cond, rn, op, nzcv;
4216 TCGv_i64 tcg_flags;
4217 TCGLabel *label_continue = NULL;
4219 mos = extract32(insn, 29, 3);
4220 type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
4221 rm = extract32(insn, 16, 5);
4222 cond = extract32(insn, 12, 4);
4223 rn = extract32(insn, 5, 5);
4224 op = extract32(insn, 4, 1);
4225 nzcv = extract32(insn, 0, 4);
4227 if (mos || type > 1) {
4228 unallocated_encoding(s);
4229 return;
4232 if (!fp_access_check(s)) {
4233 return;
4236 if (cond < 0x0e) { /* not always */
4237 TCGLabel *label_match = gen_new_label();
4238 label_continue = gen_new_label();
4239 arm_gen_test_cc(cond, label_match);
4240 /* nomatch: */
4241 tcg_flags = tcg_const_i64(nzcv << 28);
4242 gen_set_nzcv(tcg_flags);
4243 tcg_temp_free_i64(tcg_flags);
4244 tcg_gen_br(label_continue);
4245 gen_set_label(label_match);
4248 handle_fp_compare(s, type, rn, rm, false, op);
4250 if (cond < 0x0e) {
4251 gen_set_label(label_continue);
4255 /* C3.6.24 Floating point conditional select
4256 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
4257 * +---+---+---+-----------+------+---+------+------+-----+------+------+
4258 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd |
4259 * +---+---+---+-----------+------+---+------+------+-----+------+------+
4261 static void disas_fp_csel(DisasContext *s, uint32_t insn)
4263 unsigned int mos, type, rm, cond, rn, rd;
4264 TCGv_i64 t_true, t_false, t_zero;
4265 DisasCompare64 c;
4267 mos = extract32(insn, 29, 3);
4268 type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
4269 rm = extract32(insn, 16, 5);
4270 cond = extract32(insn, 12, 4);
4271 rn = extract32(insn, 5, 5);
4272 rd = extract32(insn, 0, 5);
4274 if (mos || type > 1) {
4275 unallocated_encoding(s);
4276 return;
4279 if (!fp_access_check(s)) {
4280 return;
4283 /* Zero extend sreg inputs to 64 bits now. */
4284 t_true = tcg_temp_new_i64();
4285 t_false = tcg_temp_new_i64();
4286 read_vec_element(s, t_true, rn, 0, type ? MO_64 : MO_32);
4287 read_vec_element(s, t_false, rm, 0, type ? MO_64 : MO_32);
4289 a64_test_cc(&c, cond);
4290 t_zero = tcg_const_i64(0);
4291 tcg_gen_movcond_i64(c.cond, t_true, c.value, t_zero, t_true, t_false);
4292 tcg_temp_free_i64(t_zero);
4293 tcg_temp_free_i64(t_false);
4294 a64_free_cc(&c);
4296 /* Note that sregs write back zeros to the high bits,
4297 and we've already done the zero-extension. */
4298 write_fp_dreg(s, rd, t_true);
4299 tcg_temp_free_i64(t_true);
4302 /* C3.6.25 Floating-point data-processing (1 source) - single precision */
4303 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
4305 TCGv_ptr fpst;
4306 TCGv_i32 tcg_op;
4307 TCGv_i32 tcg_res;
4309 fpst = get_fpstatus_ptr();
4310 tcg_op = read_fp_sreg(s, rn);
4311 tcg_res = tcg_temp_new_i32();
4313 switch (opcode) {
4314 case 0x0: /* FMOV */
4315 tcg_gen_mov_i32(tcg_res, tcg_op);
4316 break;
4317 case 0x1: /* FABS */
4318 gen_helper_vfp_abss(tcg_res, tcg_op);
4319 break;
4320 case 0x2: /* FNEG */
4321 gen_helper_vfp_negs(tcg_res, tcg_op);
4322 break;
4323 case 0x3: /* FSQRT */
4324 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
4325 break;
4326 case 0x8: /* FRINTN */
4327 case 0x9: /* FRINTP */
4328 case 0xa: /* FRINTM */
4329 case 0xb: /* FRINTZ */
4330 case 0xc: /* FRINTA */
4332 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
4334 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4335 gen_helper_rints(tcg_res, tcg_op, fpst);
4337 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4338 tcg_temp_free_i32(tcg_rmode);
4339 break;
4341 case 0xe: /* FRINTX */
4342 gen_helper_rints_exact(tcg_res, tcg_op, fpst);
4343 break;
4344 case 0xf: /* FRINTI */
4345 gen_helper_rints(tcg_res, tcg_op, fpst);
4346 break;
4347 default:
4348 abort();
4351 write_fp_sreg(s, rd, tcg_res);
4353 tcg_temp_free_ptr(fpst);
4354 tcg_temp_free_i32(tcg_op);
4355 tcg_temp_free_i32(tcg_res);
4358 /* C3.6.25 Floating-point data-processing (1 source) - double precision */
4359 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
4361 TCGv_ptr fpst;
4362 TCGv_i64 tcg_op;
4363 TCGv_i64 tcg_res;
4365 fpst = get_fpstatus_ptr();
4366 tcg_op = read_fp_dreg(s, rn);
4367 tcg_res = tcg_temp_new_i64();
4369 switch (opcode) {
4370 case 0x0: /* FMOV */
4371 tcg_gen_mov_i64(tcg_res, tcg_op);
4372 break;
4373 case 0x1: /* FABS */
4374 gen_helper_vfp_absd(tcg_res, tcg_op);
4375 break;
4376 case 0x2: /* FNEG */
4377 gen_helper_vfp_negd(tcg_res, tcg_op);
4378 break;
4379 case 0x3: /* FSQRT */
4380 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env);
4381 break;
4382 case 0x8: /* FRINTN */
4383 case 0x9: /* FRINTP */
4384 case 0xa: /* FRINTM */
4385 case 0xb: /* FRINTZ */
4386 case 0xc: /* FRINTA */
4388 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
4390 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4391 gen_helper_rintd(tcg_res, tcg_op, fpst);
4393 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4394 tcg_temp_free_i32(tcg_rmode);
4395 break;
4397 case 0xe: /* FRINTX */
4398 gen_helper_rintd_exact(tcg_res, tcg_op, fpst);
4399 break;
4400 case 0xf: /* FRINTI */
4401 gen_helper_rintd(tcg_res, tcg_op, fpst);
4402 break;
4403 default:
4404 abort();
4407 write_fp_dreg(s, rd, tcg_res);
4409 tcg_temp_free_ptr(fpst);
4410 tcg_temp_free_i64(tcg_op);
4411 tcg_temp_free_i64(tcg_res);
4414 static void handle_fp_fcvt(DisasContext *s, int opcode,
4415 int rd, int rn, int dtype, int ntype)
4417 switch (ntype) {
4418 case 0x0:
4420 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
4421 if (dtype == 1) {
4422 /* Single to double */
4423 TCGv_i64 tcg_rd = tcg_temp_new_i64();
4424 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env);
4425 write_fp_dreg(s, rd, tcg_rd);
4426 tcg_temp_free_i64(tcg_rd);
4427 } else {
4428 /* Single to half */
4429 TCGv_i32 tcg_rd = tcg_temp_new_i32();
4430 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, cpu_env);
4431 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
4432 write_fp_sreg(s, rd, tcg_rd);
4433 tcg_temp_free_i32(tcg_rd);
4435 tcg_temp_free_i32(tcg_rn);
4436 break;
4438 case 0x1:
4440 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
4441 TCGv_i32 tcg_rd = tcg_temp_new_i32();
4442 if (dtype == 0) {
4443 /* Double to single */
4444 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env);
4445 } else {
4446 /* Double to half */
4447 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, cpu_env);
4448 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
4450 write_fp_sreg(s, rd, tcg_rd);
4451 tcg_temp_free_i32(tcg_rd);
4452 tcg_temp_free_i64(tcg_rn);
4453 break;
4455 case 0x3:
4457 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
4458 tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
4459 if (dtype == 0) {
4460 /* Half to single */
4461 TCGv_i32 tcg_rd = tcg_temp_new_i32();
4462 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, cpu_env);
4463 write_fp_sreg(s, rd, tcg_rd);
4464 tcg_temp_free_i32(tcg_rd);
4465 } else {
4466 /* Half to double */
4467 TCGv_i64 tcg_rd = tcg_temp_new_i64();
4468 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, cpu_env);
4469 write_fp_dreg(s, rd, tcg_rd);
4470 tcg_temp_free_i64(tcg_rd);
4472 tcg_temp_free_i32(tcg_rn);
4473 break;
4475 default:
4476 abort();
4480 /* C3.6.25 Floating point data-processing (1 source)
4481 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
4482 * +---+---+---+-----------+------+---+--------+-----------+------+------+
4483 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
4484 * +---+---+---+-----------+------+---+--------+-----------+------+------+
4486 static void disas_fp_1src(DisasContext *s, uint32_t insn)
4488 int type = extract32(insn, 22, 2);
4489 int opcode = extract32(insn, 15, 6);
4490 int rn = extract32(insn, 5, 5);
4491 int rd = extract32(insn, 0, 5);
4493 switch (opcode) {
4494 case 0x4: case 0x5: case 0x7:
4496 /* FCVT between half, single and double precision */
4497 int dtype = extract32(opcode, 0, 2);
4498 if (type == 2 || dtype == type) {
4499 unallocated_encoding(s);
4500 return;
4502 if (!fp_access_check(s)) {
4503 return;
4506 handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
4507 break;
4509 case 0x0 ... 0x3:
4510 case 0x8 ... 0xc:
4511 case 0xe ... 0xf:
4512 /* 32-to-32 and 64-to-64 ops */
4513 switch (type) {
4514 case 0:
4515 if (!fp_access_check(s)) {
4516 return;
4519 handle_fp_1src_single(s, opcode, rd, rn);
4520 break;
4521 case 1:
4522 if (!fp_access_check(s)) {
4523 return;
4526 handle_fp_1src_double(s, opcode, rd, rn);
4527 break;
4528 default:
4529 unallocated_encoding(s);
4531 break;
4532 default:
4533 unallocated_encoding(s);
4534 break;
4538 /* C3.6.26 Floating-point data-processing (2 source) - single precision */
4539 static void handle_fp_2src_single(DisasContext *s, int opcode,
4540 int rd, int rn, int rm)
4542 TCGv_i32 tcg_op1;
4543 TCGv_i32 tcg_op2;
4544 TCGv_i32 tcg_res;
4545 TCGv_ptr fpst;
4547 tcg_res = tcg_temp_new_i32();
4548 fpst = get_fpstatus_ptr();
4549 tcg_op1 = read_fp_sreg(s, rn);
4550 tcg_op2 = read_fp_sreg(s, rm);
4552 switch (opcode) {
4553 case 0x0: /* FMUL */
4554 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
4555 break;
4556 case 0x1: /* FDIV */
4557 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
4558 break;
4559 case 0x2: /* FADD */
4560 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
4561 break;
4562 case 0x3: /* FSUB */
4563 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
4564 break;
4565 case 0x4: /* FMAX */
4566 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
4567 break;
4568 case 0x5: /* FMIN */
4569 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
4570 break;
4571 case 0x6: /* FMAXNM */
4572 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
4573 break;
4574 case 0x7: /* FMINNM */
4575 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
4576 break;
4577 case 0x8: /* FNMUL */
4578 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
4579 gen_helper_vfp_negs(tcg_res, tcg_res);
4580 break;
4583 write_fp_sreg(s, rd, tcg_res);
4585 tcg_temp_free_ptr(fpst);
4586 tcg_temp_free_i32(tcg_op1);
4587 tcg_temp_free_i32(tcg_op2);
4588 tcg_temp_free_i32(tcg_res);
4591 /* C3.6.26 Floating-point data-processing (2 source) - double precision */
4592 static void handle_fp_2src_double(DisasContext *s, int opcode,
4593 int rd, int rn, int rm)
4595 TCGv_i64 tcg_op1;
4596 TCGv_i64 tcg_op2;
4597 TCGv_i64 tcg_res;
4598 TCGv_ptr fpst;
4600 tcg_res = tcg_temp_new_i64();
4601 fpst = get_fpstatus_ptr();
4602 tcg_op1 = read_fp_dreg(s, rn);
4603 tcg_op2 = read_fp_dreg(s, rm);
4605 switch (opcode) {
4606 case 0x0: /* FMUL */
4607 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
4608 break;
4609 case 0x1: /* FDIV */
4610 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
4611 break;
4612 case 0x2: /* FADD */
4613 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
4614 break;
4615 case 0x3: /* FSUB */
4616 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
4617 break;
4618 case 0x4: /* FMAX */
4619 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
4620 break;
4621 case 0x5: /* FMIN */
4622 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
4623 break;
4624 case 0x6: /* FMAXNM */
4625 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
4626 break;
4627 case 0x7: /* FMINNM */
4628 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
4629 break;
4630 case 0x8: /* FNMUL */
4631 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
4632 gen_helper_vfp_negd(tcg_res, tcg_res);
4633 break;
4636 write_fp_dreg(s, rd, tcg_res);
4638 tcg_temp_free_ptr(fpst);
4639 tcg_temp_free_i64(tcg_op1);
4640 tcg_temp_free_i64(tcg_op2);
4641 tcg_temp_free_i64(tcg_res);
4644 /* C3.6.26 Floating point data-processing (2 source)
4645 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
4646 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
4647 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd |
4648 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
4650 static void disas_fp_2src(DisasContext *s, uint32_t insn)
4652 int type = extract32(insn, 22, 2);
4653 int rd = extract32(insn, 0, 5);
4654 int rn = extract32(insn, 5, 5);
4655 int rm = extract32(insn, 16, 5);
4656 int opcode = extract32(insn, 12, 4);
4658 if (opcode > 8) {
4659 unallocated_encoding(s);
4660 return;
4663 switch (type) {
4664 case 0:
4665 if (!fp_access_check(s)) {
4666 return;
4668 handle_fp_2src_single(s, opcode, rd, rn, rm);
4669 break;
4670 case 1:
4671 if (!fp_access_check(s)) {
4672 return;
4674 handle_fp_2src_double(s, opcode, rd, rn, rm);
4675 break;
4676 default:
4677 unallocated_encoding(s);
4681 /* C3.6.27 Floating-point data-processing (3 source) - single precision */
4682 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
4683 int rd, int rn, int rm, int ra)
4685 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
4686 TCGv_i32 tcg_res = tcg_temp_new_i32();
4687 TCGv_ptr fpst = get_fpstatus_ptr();
4689 tcg_op1 = read_fp_sreg(s, rn);
4690 tcg_op2 = read_fp_sreg(s, rm);
4691 tcg_op3 = read_fp_sreg(s, ra);
4693 /* These are fused multiply-add, and must be done as one
4694 * floating point operation with no rounding between the
4695 * multiplication and addition steps.
4696 * NB that doing the negations here as separate steps is
4697 * correct : an input NaN should come out with its sign bit
4698 * flipped if it is a negated-input.
4700 if (o1 == true) {
4701 gen_helper_vfp_negs(tcg_op3, tcg_op3);
4704 if (o0 != o1) {
4705 gen_helper_vfp_negs(tcg_op1, tcg_op1);
4708 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
4710 write_fp_sreg(s, rd, tcg_res);
4712 tcg_temp_free_ptr(fpst);
4713 tcg_temp_free_i32(tcg_op1);
4714 tcg_temp_free_i32(tcg_op2);
4715 tcg_temp_free_i32(tcg_op3);
4716 tcg_temp_free_i32(tcg_res);
4719 /* C3.6.27 Floating-point data-processing (3 source) - double precision */
4720 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
4721 int rd, int rn, int rm, int ra)
4723 TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
4724 TCGv_i64 tcg_res = tcg_temp_new_i64();
4725 TCGv_ptr fpst = get_fpstatus_ptr();
4727 tcg_op1 = read_fp_dreg(s, rn);
4728 tcg_op2 = read_fp_dreg(s, rm);
4729 tcg_op3 = read_fp_dreg(s, ra);
4731 /* These are fused multiply-add, and must be done as one
4732 * floating point operation with no rounding between the
4733 * multiplication and addition steps.
4734 * NB that doing the negations here as separate steps is
4735 * correct : an input NaN should come out with its sign bit
4736 * flipped if it is a negated-input.
4738 if (o1 == true) {
4739 gen_helper_vfp_negd(tcg_op3, tcg_op3);
4742 if (o0 != o1) {
4743 gen_helper_vfp_negd(tcg_op1, tcg_op1);
4746 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
4748 write_fp_dreg(s, rd, tcg_res);
4750 tcg_temp_free_ptr(fpst);
4751 tcg_temp_free_i64(tcg_op1);
4752 tcg_temp_free_i64(tcg_op2);
4753 tcg_temp_free_i64(tcg_op3);
4754 tcg_temp_free_i64(tcg_res);
4757 /* C3.6.27 Floating point data-processing (3 source)
4758 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0
4759 * +---+---+---+-----------+------+----+------+----+------+------+------+
4760 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd |
4761 * +---+---+---+-----------+------+----+------+----+------+------+------+
4763 static void disas_fp_3src(DisasContext *s, uint32_t insn)
4765 int type = extract32(insn, 22, 2);
4766 int rd = extract32(insn, 0, 5);
4767 int rn = extract32(insn, 5, 5);
4768 int ra = extract32(insn, 10, 5);
4769 int rm = extract32(insn, 16, 5);
4770 bool o0 = extract32(insn, 15, 1);
4771 bool o1 = extract32(insn, 21, 1);
4773 switch (type) {
4774 case 0:
4775 if (!fp_access_check(s)) {
4776 return;
4778 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
4779 break;
4780 case 1:
4781 if (!fp_access_check(s)) {
4782 return;
4784 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
4785 break;
4786 default:
4787 unallocated_encoding(s);
4791 /* C3.6.28 Floating point immediate
4792 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
4793 * +---+---+---+-----------+------+---+------------+-------+------+------+
4794 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
4795 * +---+---+---+-----------+------+---+------------+-------+------+------+
4797 static void disas_fp_imm(DisasContext *s, uint32_t insn)
4799 int rd = extract32(insn, 0, 5);
4800 int imm8 = extract32(insn, 13, 8);
4801 int is_double = extract32(insn, 22, 2);
4802 uint64_t imm;
4803 TCGv_i64 tcg_res;
4805 if (is_double > 1) {
4806 unallocated_encoding(s);
4807 return;
4810 if (!fp_access_check(s)) {
4811 return;
4814 /* The imm8 encodes the sign bit, enough bits to represent
4815 * an exponent in the range 01....1xx to 10....0xx,
4816 * and the most significant 4 bits of the mantissa; see
4817 * VFPExpandImm() in the v8 ARM ARM.
4819 if (is_double) {
4820 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
4821 (extract32(imm8, 6, 1) ? 0x3fc0 : 0x4000) |
4822 extract32(imm8, 0, 6);
4823 imm <<= 48;
4824 } else {
4825 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
4826 (extract32(imm8, 6, 1) ? 0x3e00 : 0x4000) |
4827 (extract32(imm8, 0, 6) << 3);
4828 imm <<= 16;
4831 tcg_res = tcg_const_i64(imm);
4832 write_fp_dreg(s, rd, tcg_res);
4833 tcg_temp_free_i64(tcg_res);
4836 /* Handle floating point <=> fixed point conversions. Note that we can
4837 * also deal with fp <=> integer conversions as a special case (scale == 64)
4838 * OPTME: consider handling that special case specially or at least skipping
4839 * the call to scalbn in the helpers for zero shifts.
4841 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
4842 bool itof, int rmode, int scale, int sf, int type)
4844 bool is_signed = !(opcode & 1);
4845 bool is_double = type;
4846 TCGv_ptr tcg_fpstatus;
4847 TCGv_i32 tcg_shift;
4849 tcg_fpstatus = get_fpstatus_ptr();
4851 tcg_shift = tcg_const_i32(64 - scale);
4853 if (itof) {
4854 TCGv_i64 tcg_int = cpu_reg(s, rn);
4855 if (!sf) {
4856 TCGv_i64 tcg_extend = new_tmp_a64(s);
4858 if (is_signed) {
4859 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
4860 } else {
4861 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
4864 tcg_int = tcg_extend;
4867 if (is_double) {
4868 TCGv_i64 tcg_double = tcg_temp_new_i64();
4869 if (is_signed) {
4870 gen_helper_vfp_sqtod(tcg_double, tcg_int,
4871 tcg_shift, tcg_fpstatus);
4872 } else {
4873 gen_helper_vfp_uqtod(tcg_double, tcg_int,
4874 tcg_shift, tcg_fpstatus);
4876 write_fp_dreg(s, rd, tcg_double);
4877 tcg_temp_free_i64(tcg_double);
4878 } else {
4879 TCGv_i32 tcg_single = tcg_temp_new_i32();
4880 if (is_signed) {
4881 gen_helper_vfp_sqtos(tcg_single, tcg_int,
4882 tcg_shift, tcg_fpstatus);
4883 } else {
4884 gen_helper_vfp_uqtos(tcg_single, tcg_int,
4885 tcg_shift, tcg_fpstatus);
4887 write_fp_sreg(s, rd, tcg_single);
4888 tcg_temp_free_i32(tcg_single);
4890 } else {
4891 TCGv_i64 tcg_int = cpu_reg(s, rd);
4892 TCGv_i32 tcg_rmode;
4894 if (extract32(opcode, 2, 1)) {
4895 /* There are too many rounding modes to all fit into rmode,
4896 * so FCVTA[US] is a special case.
4898 rmode = FPROUNDING_TIEAWAY;
4901 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
4903 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4905 if (is_double) {
4906 TCGv_i64 tcg_double = read_fp_dreg(s, rn);
4907 if (is_signed) {
4908 if (!sf) {
4909 gen_helper_vfp_tosld(tcg_int, tcg_double,
4910 tcg_shift, tcg_fpstatus);
4911 } else {
4912 gen_helper_vfp_tosqd(tcg_int, tcg_double,
4913 tcg_shift, tcg_fpstatus);
4915 } else {
4916 if (!sf) {
4917 gen_helper_vfp_tould(tcg_int, tcg_double,
4918 tcg_shift, tcg_fpstatus);
4919 } else {
4920 gen_helper_vfp_touqd(tcg_int, tcg_double,
4921 tcg_shift, tcg_fpstatus);
4924 tcg_temp_free_i64(tcg_double);
4925 } else {
4926 TCGv_i32 tcg_single = read_fp_sreg(s, rn);
4927 if (sf) {
4928 if (is_signed) {
4929 gen_helper_vfp_tosqs(tcg_int, tcg_single,
4930 tcg_shift, tcg_fpstatus);
4931 } else {
4932 gen_helper_vfp_touqs(tcg_int, tcg_single,
4933 tcg_shift, tcg_fpstatus);
4935 } else {
4936 TCGv_i32 tcg_dest = tcg_temp_new_i32();
4937 if (is_signed) {
4938 gen_helper_vfp_tosls(tcg_dest, tcg_single,
4939 tcg_shift, tcg_fpstatus);
4940 } else {
4941 gen_helper_vfp_touls(tcg_dest, tcg_single,
4942 tcg_shift, tcg_fpstatus);
4944 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
4945 tcg_temp_free_i32(tcg_dest);
4947 tcg_temp_free_i32(tcg_single);
4950 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4951 tcg_temp_free_i32(tcg_rmode);
4953 if (!sf) {
4954 tcg_gen_ext32u_i64(tcg_int, tcg_int);
4958 tcg_temp_free_ptr(tcg_fpstatus);
4959 tcg_temp_free_i32(tcg_shift);
4962 /* C3.6.29 Floating point <-> fixed point conversions
4963 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
4964 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
4965 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
4966 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
4968 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
4970 int rd = extract32(insn, 0, 5);
4971 int rn = extract32(insn, 5, 5);
4972 int scale = extract32(insn, 10, 6);
4973 int opcode = extract32(insn, 16, 3);
4974 int rmode = extract32(insn, 19, 2);
4975 int type = extract32(insn, 22, 2);
4976 bool sbit = extract32(insn, 29, 1);
4977 bool sf = extract32(insn, 31, 1);
4978 bool itof;
4980 if (sbit || (type > 1)
4981 || (!sf && scale < 32)) {
4982 unallocated_encoding(s);
4983 return;
4986 switch ((rmode << 3) | opcode) {
4987 case 0x2: /* SCVTF */
4988 case 0x3: /* UCVTF */
4989 itof = true;
4990 break;
4991 case 0x18: /* FCVTZS */
4992 case 0x19: /* FCVTZU */
4993 itof = false;
4994 break;
4995 default:
4996 unallocated_encoding(s);
4997 return;
5000 if (!fp_access_check(s)) {
5001 return;
5004 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
5007 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
5009 /* FMOV: gpr to or from float, double, or top half of quad fp reg,
5010 * without conversion.
5013 if (itof) {
5014 TCGv_i64 tcg_rn = cpu_reg(s, rn);
5016 switch (type) {
5017 case 0:
5019 /* 32 bit */
5020 TCGv_i64 tmp = tcg_temp_new_i64();
5021 tcg_gen_ext32u_i64(tmp, tcg_rn);
5022 tcg_gen_st_i64(tmp, cpu_env, fp_reg_offset(s, rd, MO_64));
5023 tcg_gen_movi_i64(tmp, 0);
5024 tcg_gen_st_i64(tmp, cpu_env, fp_reg_hi_offset(s, rd));
5025 tcg_temp_free_i64(tmp);
5026 break;
5028 case 1:
5030 /* 64 bit */
5031 TCGv_i64 tmp = tcg_const_i64(0);
5032 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_offset(s, rd, MO_64));
5033 tcg_gen_st_i64(tmp, cpu_env, fp_reg_hi_offset(s, rd));
5034 tcg_temp_free_i64(tmp);
5035 break;
5037 case 2:
5038 /* 64 bit to top half. */
5039 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd));
5040 break;
5042 } else {
5043 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5045 switch (type) {
5046 case 0:
5047 /* 32 bit */
5048 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32));
5049 break;
5050 case 1:
5051 /* 64 bit */
5052 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64));
5053 break;
5054 case 2:
5055 /* 64 bits from top half */
5056 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn));
5057 break;
5062 /* C3.6.30 Floating point <-> integer conversions
5063 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
5064 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
5065 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
5066 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
5068 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
5070 int rd = extract32(insn, 0, 5);
5071 int rn = extract32(insn, 5, 5);
5072 int opcode = extract32(insn, 16, 3);
5073 int rmode = extract32(insn, 19, 2);
5074 int type = extract32(insn, 22, 2);
5075 bool sbit = extract32(insn, 29, 1);
5076 bool sf = extract32(insn, 31, 1);
5078 if (sbit) {
5079 unallocated_encoding(s);
5080 return;
5083 if (opcode > 5) {
5084 /* FMOV */
5085 bool itof = opcode & 1;
5087 if (rmode >= 2) {
5088 unallocated_encoding(s);
5089 return;
5092 switch (sf << 3 | type << 1 | rmode) {
5093 case 0x0: /* 32 bit */
5094 case 0xa: /* 64 bit */
5095 case 0xd: /* 64 bit to top half of quad */
5096 break;
5097 default:
5098 /* all other sf/type/rmode combinations are invalid */
5099 unallocated_encoding(s);
5100 break;
5103 if (!fp_access_check(s)) {
5104 return;
5106 handle_fmov(s, rd, rn, type, itof);
5107 } else {
5108 /* actual FP conversions */
5109 bool itof = extract32(opcode, 1, 1);
5111 if (type > 1 || (rmode != 0 && opcode > 1)) {
5112 unallocated_encoding(s);
5113 return;
5116 if (!fp_access_check(s)) {
5117 return;
5119 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
5123 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
5124 * 31 30 29 28 25 24 0
5125 * +---+---+---+---------+-----------------------------+
5126 * | | 0 | | 1 1 1 1 | |
5127 * +---+---+---+---------+-----------------------------+
5129 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
5131 if (extract32(insn, 24, 1)) {
5132 /* Floating point data-processing (3 source) */
5133 disas_fp_3src(s, insn);
5134 } else if (extract32(insn, 21, 1) == 0) {
5135 /* Floating point to fixed point conversions */
5136 disas_fp_fixed_conv(s, insn);
5137 } else {
5138 switch (extract32(insn, 10, 2)) {
5139 case 1:
5140 /* Floating point conditional compare */
5141 disas_fp_ccomp(s, insn);
5142 break;
5143 case 2:
5144 /* Floating point data-processing (2 source) */
5145 disas_fp_2src(s, insn);
5146 break;
5147 case 3:
5148 /* Floating point conditional select */
5149 disas_fp_csel(s, insn);
5150 break;
5151 case 0:
5152 switch (ctz32(extract32(insn, 12, 4))) {
5153 case 0: /* [15:12] == xxx1 */
5154 /* Floating point immediate */
5155 disas_fp_imm(s, insn);
5156 break;
5157 case 1: /* [15:12] == xx10 */
5158 /* Floating point compare */
5159 disas_fp_compare(s, insn);
5160 break;
5161 case 2: /* [15:12] == x100 */
5162 /* Floating point data-processing (1 source) */
5163 disas_fp_1src(s, insn);
5164 break;
5165 case 3: /* [15:12] == 1000 */
5166 unallocated_encoding(s);
5167 break;
5168 default: /* [15:12] == 0000 */
5169 /* Floating point <-> integer conversions */
5170 disas_fp_int_conv(s, insn);
5171 break;
5173 break;
5178 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
5179 int pos)
5181 /* Extract 64 bits from the middle of two concatenated 64 bit
5182 * vector register slices left:right. The extracted bits start
5183 * at 'pos' bits into the right (least significant) side.
5184 * We return the result in tcg_right, and guarantee not to
5185 * trash tcg_left.
5187 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
5188 assert(pos > 0 && pos < 64);
5190 tcg_gen_shri_i64(tcg_right, tcg_right, pos);
5191 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
5192 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
5194 tcg_temp_free_i64(tcg_tmp);
5197 /* C3.6.1 EXT
5198 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
5199 * +---+---+-------------+-----+---+------+---+------+---+------+------+
5200 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
5201 * +---+---+-------------+-----+---+------+---+------+---+------+------+
5203 static void disas_simd_ext(DisasContext *s, uint32_t insn)
5205 int is_q = extract32(insn, 30, 1);
5206 int op2 = extract32(insn, 22, 2);
5207 int imm4 = extract32(insn, 11, 4);
5208 int rm = extract32(insn, 16, 5);
5209 int rn = extract32(insn, 5, 5);
5210 int rd = extract32(insn, 0, 5);
5211 int pos = imm4 << 3;
5212 TCGv_i64 tcg_resl, tcg_resh;
5214 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
5215 unallocated_encoding(s);
5216 return;
5219 if (!fp_access_check(s)) {
5220 return;
5223 tcg_resh = tcg_temp_new_i64();
5224 tcg_resl = tcg_temp_new_i64();
5226 /* Vd gets bits starting at pos bits into Vm:Vn. This is
5227 * either extracting 128 bits from a 128:128 concatenation, or
5228 * extracting 64 bits from a 64:64 concatenation.
5230 if (!is_q) {
5231 read_vec_element(s, tcg_resl, rn, 0, MO_64);
5232 if (pos != 0) {
5233 read_vec_element(s, tcg_resh, rm, 0, MO_64);
5234 do_ext64(s, tcg_resh, tcg_resl, pos);
5236 tcg_gen_movi_i64(tcg_resh, 0);
5237 } else {
5238 TCGv_i64 tcg_hh;
5239 typedef struct {
5240 int reg;
5241 int elt;
5242 } EltPosns;
5243 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
5244 EltPosns *elt = eltposns;
5246 if (pos >= 64) {
5247 elt++;
5248 pos -= 64;
5251 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
5252 elt++;
5253 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
5254 elt++;
5255 if (pos != 0) {
5256 do_ext64(s, tcg_resh, tcg_resl, pos);
5257 tcg_hh = tcg_temp_new_i64();
5258 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
5259 do_ext64(s, tcg_hh, tcg_resh, pos);
5260 tcg_temp_free_i64(tcg_hh);
5264 write_vec_element(s, tcg_resl, rd, 0, MO_64);
5265 tcg_temp_free_i64(tcg_resl);
5266 write_vec_element(s, tcg_resh, rd, 1, MO_64);
5267 tcg_temp_free_i64(tcg_resh);
5270 /* C3.6.2 TBL/TBX
5271 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
5272 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
5273 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
5274 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
5276 static void disas_simd_tb(DisasContext *s, uint32_t insn)
5278 int op2 = extract32(insn, 22, 2);
5279 int is_q = extract32(insn, 30, 1);
5280 int rm = extract32(insn, 16, 5);
5281 int rn = extract32(insn, 5, 5);
5282 int rd = extract32(insn, 0, 5);
5283 int is_tblx = extract32(insn, 12, 1);
5284 int len = extract32(insn, 13, 2);
5285 TCGv_i64 tcg_resl, tcg_resh, tcg_idx;
5286 TCGv_i32 tcg_regno, tcg_numregs;
5288 if (op2 != 0) {
5289 unallocated_encoding(s);
5290 return;
5293 if (!fp_access_check(s)) {
5294 return;
5297 /* This does a table lookup: for every byte element in the input
5298 * we index into a table formed from up to four vector registers,
5299 * and then the output is the result of the lookups. Our helper
5300 * function does the lookup operation for a single 64 bit part of
5301 * the input.
5303 tcg_resl = tcg_temp_new_i64();
5304 tcg_resh = tcg_temp_new_i64();
5306 if (is_tblx) {
5307 read_vec_element(s, tcg_resl, rd, 0, MO_64);
5308 } else {
5309 tcg_gen_movi_i64(tcg_resl, 0);
5311 if (is_tblx && is_q) {
5312 read_vec_element(s, tcg_resh, rd, 1, MO_64);
5313 } else {
5314 tcg_gen_movi_i64(tcg_resh, 0);
5317 tcg_idx = tcg_temp_new_i64();
5318 tcg_regno = tcg_const_i32(rn);
5319 tcg_numregs = tcg_const_i32(len + 1);
5320 read_vec_element(s, tcg_idx, rm, 0, MO_64);
5321 gen_helper_simd_tbl(tcg_resl, cpu_env, tcg_resl, tcg_idx,
5322 tcg_regno, tcg_numregs);
5323 if (is_q) {
5324 read_vec_element(s, tcg_idx, rm, 1, MO_64);
5325 gen_helper_simd_tbl(tcg_resh, cpu_env, tcg_resh, tcg_idx,
5326 tcg_regno, tcg_numregs);
5328 tcg_temp_free_i64(tcg_idx);
5329 tcg_temp_free_i32(tcg_regno);
5330 tcg_temp_free_i32(tcg_numregs);
5332 write_vec_element(s, tcg_resl, rd, 0, MO_64);
5333 tcg_temp_free_i64(tcg_resl);
5334 write_vec_element(s, tcg_resh, rd, 1, MO_64);
5335 tcg_temp_free_i64(tcg_resh);
5338 /* C3.6.3 ZIP/UZP/TRN
5339 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
5340 * +---+---+-------------+------+---+------+---+------------------+------+
5341 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
5342 * +---+---+-------------+------+---+------+---+------------------+------+
5344 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
5346 int rd = extract32(insn, 0, 5);
5347 int rn = extract32(insn, 5, 5);
5348 int rm = extract32(insn, 16, 5);
5349 int size = extract32(insn, 22, 2);
5350 /* opc field bits [1:0] indicate ZIP/UZP/TRN;
5351 * bit 2 indicates 1 vs 2 variant of the insn.
5353 int opcode = extract32(insn, 12, 2);
5354 bool part = extract32(insn, 14, 1);
5355 bool is_q = extract32(insn, 30, 1);
5356 int esize = 8 << size;
5357 int i, ofs;
5358 int datasize = is_q ? 128 : 64;
5359 int elements = datasize / esize;
5360 TCGv_i64 tcg_res, tcg_resl, tcg_resh;
5362 if (opcode == 0 || (size == 3 && !is_q)) {
5363 unallocated_encoding(s);
5364 return;
5367 if (!fp_access_check(s)) {
5368 return;
5371 tcg_resl = tcg_const_i64(0);
5372 tcg_resh = tcg_const_i64(0);
5373 tcg_res = tcg_temp_new_i64();
5375 for (i = 0; i < elements; i++) {
5376 switch (opcode) {
5377 case 1: /* UZP1/2 */
5379 int midpoint = elements / 2;
5380 if (i < midpoint) {
5381 read_vec_element(s, tcg_res, rn, 2 * i + part, size);
5382 } else {
5383 read_vec_element(s, tcg_res, rm,
5384 2 * (i - midpoint) + part, size);
5386 break;
5388 case 2: /* TRN1/2 */
5389 if (i & 1) {
5390 read_vec_element(s, tcg_res, rm, (i & ~1) + part, size);
5391 } else {
5392 read_vec_element(s, tcg_res, rn, (i & ~1) + part, size);
5394 break;
5395 case 3: /* ZIP1/2 */
5397 int base = part * elements / 2;
5398 if (i & 1) {
5399 read_vec_element(s, tcg_res, rm, base + (i >> 1), size);
5400 } else {
5401 read_vec_element(s, tcg_res, rn, base + (i >> 1), size);
5403 break;
5405 default:
5406 g_assert_not_reached();
5409 ofs = i * esize;
5410 if (ofs < 64) {
5411 tcg_gen_shli_i64(tcg_res, tcg_res, ofs);
5412 tcg_gen_or_i64(tcg_resl, tcg_resl, tcg_res);
5413 } else {
5414 tcg_gen_shli_i64(tcg_res, tcg_res, ofs - 64);
5415 tcg_gen_or_i64(tcg_resh, tcg_resh, tcg_res);
5419 tcg_temp_free_i64(tcg_res);
5421 write_vec_element(s, tcg_resl, rd, 0, MO_64);
5422 tcg_temp_free_i64(tcg_resl);
5423 write_vec_element(s, tcg_resh, rd, 1, MO_64);
5424 tcg_temp_free_i64(tcg_resh);
5427 static void do_minmaxop(DisasContext *s, TCGv_i32 tcg_elt1, TCGv_i32 tcg_elt2,
5428 int opc, bool is_min, TCGv_ptr fpst)
5430 /* Helper function for disas_simd_across_lanes: do a single precision
5431 * min/max operation on the specified two inputs,
5432 * and return the result in tcg_elt1.
5434 if (opc == 0xc) {
5435 if (is_min) {
5436 gen_helper_vfp_minnums(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
5437 } else {
5438 gen_helper_vfp_maxnums(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
5440 } else {
5441 assert(opc == 0xf);
5442 if (is_min) {
5443 gen_helper_vfp_mins(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
5444 } else {
5445 gen_helper_vfp_maxs(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
5450 /* C3.6.4 AdvSIMD across lanes
5451 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
5452 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
5453 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
5454 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
5456 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
5458 int rd = extract32(insn, 0, 5);
5459 int rn = extract32(insn, 5, 5);
5460 int size = extract32(insn, 22, 2);
5461 int opcode = extract32(insn, 12, 5);
5462 bool is_q = extract32(insn, 30, 1);
5463 bool is_u = extract32(insn, 29, 1);
5464 bool is_fp = false;
5465 bool is_min = false;
5466 int esize;
5467 int elements;
5468 int i;
5469 TCGv_i64 tcg_res, tcg_elt;
5471 switch (opcode) {
5472 case 0x1b: /* ADDV */
5473 if (is_u) {
5474 unallocated_encoding(s);
5475 return;
5477 /* fall through */
5478 case 0x3: /* SADDLV, UADDLV */
5479 case 0xa: /* SMAXV, UMAXV */
5480 case 0x1a: /* SMINV, UMINV */
5481 if (size == 3 || (size == 2 && !is_q)) {
5482 unallocated_encoding(s);
5483 return;
5485 break;
5486 case 0xc: /* FMAXNMV, FMINNMV */
5487 case 0xf: /* FMAXV, FMINV */
5488 if (!is_u || !is_q || extract32(size, 0, 1)) {
5489 unallocated_encoding(s);
5490 return;
5492 /* Bit 1 of size field encodes min vs max, and actual size is always
5493 * 32 bits: adjust the size variable so following code can rely on it
5495 is_min = extract32(size, 1, 1);
5496 is_fp = true;
5497 size = 2;
5498 break;
5499 default:
5500 unallocated_encoding(s);
5501 return;
5504 if (!fp_access_check(s)) {
5505 return;
5508 esize = 8 << size;
5509 elements = (is_q ? 128 : 64) / esize;
5511 tcg_res = tcg_temp_new_i64();
5512 tcg_elt = tcg_temp_new_i64();
5514 /* These instructions operate across all lanes of a vector
5515 * to produce a single result. We can guarantee that a 64
5516 * bit intermediate is sufficient:
5517 * + for [US]ADDLV the maximum element size is 32 bits, and
5518 * the result type is 64 bits
5519 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the
5520 * same as the element size, which is 32 bits at most
5521 * For the integer operations we can choose to work at 64
5522 * or 32 bits and truncate at the end; for simplicity
5523 * we use 64 bits always. The floating point
5524 * ops do require 32 bit intermediates, though.
5526 if (!is_fp) {
5527 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
5529 for (i = 1; i < elements; i++) {
5530 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
5532 switch (opcode) {
5533 case 0x03: /* SADDLV / UADDLV */
5534 case 0x1b: /* ADDV */
5535 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
5536 break;
5537 case 0x0a: /* SMAXV / UMAXV */
5538 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
5539 tcg_res,
5540 tcg_res, tcg_elt, tcg_res, tcg_elt);
5541 break;
5542 case 0x1a: /* SMINV / UMINV */
5543 tcg_gen_movcond_i64(is_u ? TCG_COND_LEU : TCG_COND_LE,
5544 tcg_res,
5545 tcg_res, tcg_elt, tcg_res, tcg_elt);
5546 break;
5547 break;
5548 default:
5549 g_assert_not_reached();
5553 } else {
5554 /* Floating point ops which work on 32 bit (single) intermediates.
5555 * Note that correct NaN propagation requires that we do these
5556 * operations in exactly the order specified by the pseudocode.
5558 TCGv_i32 tcg_elt1 = tcg_temp_new_i32();
5559 TCGv_i32 tcg_elt2 = tcg_temp_new_i32();
5560 TCGv_i32 tcg_elt3 = tcg_temp_new_i32();
5561 TCGv_ptr fpst = get_fpstatus_ptr();
5563 assert(esize == 32);
5564 assert(elements == 4);
5566 read_vec_element(s, tcg_elt, rn, 0, MO_32);
5567 tcg_gen_extrl_i64_i32(tcg_elt1, tcg_elt);
5568 read_vec_element(s, tcg_elt, rn, 1, MO_32);
5569 tcg_gen_extrl_i64_i32(tcg_elt2, tcg_elt);
5571 do_minmaxop(s, tcg_elt1, tcg_elt2, opcode, is_min, fpst);
5573 read_vec_element(s, tcg_elt, rn, 2, MO_32);
5574 tcg_gen_extrl_i64_i32(tcg_elt2, tcg_elt);
5575 read_vec_element(s, tcg_elt, rn, 3, MO_32);
5576 tcg_gen_extrl_i64_i32(tcg_elt3, tcg_elt);
5578 do_minmaxop(s, tcg_elt2, tcg_elt3, opcode, is_min, fpst);
5580 do_minmaxop(s, tcg_elt1, tcg_elt2, opcode, is_min, fpst);
5582 tcg_gen_extu_i32_i64(tcg_res, tcg_elt1);
5583 tcg_temp_free_i32(tcg_elt1);
5584 tcg_temp_free_i32(tcg_elt2);
5585 tcg_temp_free_i32(tcg_elt3);
5586 tcg_temp_free_ptr(fpst);
5589 tcg_temp_free_i64(tcg_elt);
5591 /* Now truncate the result to the width required for the final output */
5592 if (opcode == 0x03) {
5593 /* SADDLV, UADDLV: result is 2*esize */
5594 size++;
5597 switch (size) {
5598 case 0:
5599 tcg_gen_ext8u_i64(tcg_res, tcg_res);
5600 break;
5601 case 1:
5602 tcg_gen_ext16u_i64(tcg_res, tcg_res);
5603 break;
5604 case 2:
5605 tcg_gen_ext32u_i64(tcg_res, tcg_res);
5606 break;
5607 case 3:
5608 break;
5609 default:
5610 g_assert_not_reached();
5613 write_fp_dreg(s, rd, tcg_res);
5614 tcg_temp_free_i64(tcg_res);
5617 /* C6.3.31 DUP (Element, Vector)
5619 * 31 30 29 21 20 16 15 10 9 5 4 0
5620 * +---+---+-------------------+--------+-------------+------+------+
5621 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
5622 * +---+---+-------------------+--------+-------------+------+------+
5624 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5626 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
5627 int imm5)
5629 int size = ctz32(imm5);
5630 int esize = 8 << size;
5631 int elements = (is_q ? 128 : 64) / esize;
5632 int index, i;
5633 TCGv_i64 tmp;
5635 if (size > 3 || (size == 3 && !is_q)) {
5636 unallocated_encoding(s);
5637 return;
5640 if (!fp_access_check(s)) {
5641 return;
5644 index = imm5 >> (size + 1);
5646 tmp = tcg_temp_new_i64();
5647 read_vec_element(s, tmp, rn, index, size);
5649 for (i = 0; i < elements; i++) {
5650 write_vec_element(s, tmp, rd, i, size);
5653 if (!is_q) {
5654 clear_vec_high(s, rd);
5657 tcg_temp_free_i64(tmp);
5660 /* C6.3.31 DUP (element, scalar)
5661 * 31 21 20 16 15 10 9 5 4 0
5662 * +-----------------------+--------+-------------+------+------+
5663 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
5664 * +-----------------------+--------+-------------+------+------+
5666 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
5667 int imm5)
5669 int size = ctz32(imm5);
5670 int index;
5671 TCGv_i64 tmp;
5673 if (size > 3) {
5674 unallocated_encoding(s);
5675 return;
5678 if (!fp_access_check(s)) {
5679 return;
5682 index = imm5 >> (size + 1);
5684 /* This instruction just extracts the specified element and
5685 * zero-extends it into the bottom of the destination register.
5687 tmp = tcg_temp_new_i64();
5688 read_vec_element(s, tmp, rn, index, size);
5689 write_fp_dreg(s, rd, tmp);
5690 tcg_temp_free_i64(tmp);
5693 /* C6.3.32 DUP (General)
5695 * 31 30 29 21 20 16 15 10 9 5 4 0
5696 * +---+---+-------------------+--------+-------------+------+------+
5697 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd |
5698 * +---+---+-------------------+--------+-------------+------+------+
5700 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5702 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
5703 int imm5)
5705 int size = ctz32(imm5);
5706 int esize = 8 << size;
5707 int elements = (is_q ? 128 : 64)/esize;
5708 int i = 0;
5710 if (size > 3 || ((size == 3) && !is_q)) {
5711 unallocated_encoding(s);
5712 return;
5715 if (!fp_access_check(s)) {
5716 return;
5719 for (i = 0; i < elements; i++) {
5720 write_vec_element(s, cpu_reg(s, rn), rd, i, size);
5722 if (!is_q) {
5723 clear_vec_high(s, rd);
5727 /* C6.3.150 INS (Element)
5729 * 31 21 20 16 15 14 11 10 9 5 4 0
5730 * +-----------------------+--------+------------+---+------+------+
5731 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
5732 * +-----------------------+--------+------------+---+------+------+
5734 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5735 * index: encoded in imm5<4:size+1>
5737 static void handle_simd_inse(DisasContext *s, int rd, int rn,
5738 int imm4, int imm5)
5740 int size = ctz32(imm5);
5741 int src_index, dst_index;
5742 TCGv_i64 tmp;
5744 if (size > 3) {
5745 unallocated_encoding(s);
5746 return;
5749 if (!fp_access_check(s)) {
5750 return;
5753 dst_index = extract32(imm5, 1+size, 5);
5754 src_index = extract32(imm4, size, 4);
5756 tmp = tcg_temp_new_i64();
5758 read_vec_element(s, tmp, rn, src_index, size);
5759 write_vec_element(s, tmp, rd, dst_index, size);
5761 tcg_temp_free_i64(tmp);
5765 /* C6.3.151 INS (General)
5767 * 31 21 20 16 15 10 9 5 4 0
5768 * +-----------------------+--------+-------------+------+------+
5769 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd |
5770 * +-----------------------+--------+-------------+------+------+
5772 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5773 * index: encoded in imm5<4:size+1>
5775 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
5777 int size = ctz32(imm5);
5778 int idx;
5780 if (size > 3) {
5781 unallocated_encoding(s);
5782 return;
5785 if (!fp_access_check(s)) {
5786 return;
5789 idx = extract32(imm5, 1 + size, 4 - size);
5790 write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
5794 * C6.3.321 UMOV (General)
5795 * C6.3.237 SMOV (General)
5797 * 31 30 29 21 20 16 15 12 10 9 5 4 0
5798 * +---+---+-------------------+--------+-------------+------+------+
5799 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd |
5800 * +---+---+-------------------+--------+-------------+------+------+
5802 * U: unsigned when set
5803 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5805 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
5806 int rn, int rd, int imm5)
5808 int size = ctz32(imm5);
5809 int element;
5810 TCGv_i64 tcg_rd;
5812 /* Check for UnallocatedEncodings */
5813 if (is_signed) {
5814 if (size > 2 || (size == 2 && !is_q)) {
5815 unallocated_encoding(s);
5816 return;
5818 } else {
5819 if (size > 3
5820 || (size < 3 && is_q)
5821 || (size == 3 && !is_q)) {
5822 unallocated_encoding(s);
5823 return;
5827 if (!fp_access_check(s)) {
5828 return;
5831 element = extract32(imm5, 1+size, 4);
5833 tcg_rd = cpu_reg(s, rd);
5834 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
5835 if (is_signed && !is_q) {
5836 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5840 /* C3.6.5 AdvSIMD copy
5841 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
5842 * +---+---+----+-----------------+------+---+------+---+------+------+
5843 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
5844 * +---+---+----+-----------------+------+---+------+---+------+------+
5846 static void disas_simd_copy(DisasContext *s, uint32_t insn)
5848 int rd = extract32(insn, 0, 5);
5849 int rn = extract32(insn, 5, 5);
5850 int imm4 = extract32(insn, 11, 4);
5851 int op = extract32(insn, 29, 1);
5852 int is_q = extract32(insn, 30, 1);
5853 int imm5 = extract32(insn, 16, 5);
5855 if (op) {
5856 if (is_q) {
5857 /* INS (element) */
5858 handle_simd_inse(s, rd, rn, imm4, imm5);
5859 } else {
5860 unallocated_encoding(s);
5862 } else {
5863 switch (imm4) {
5864 case 0:
5865 /* DUP (element - vector) */
5866 handle_simd_dupe(s, is_q, rd, rn, imm5);
5867 break;
5868 case 1:
5869 /* DUP (general) */
5870 handle_simd_dupg(s, is_q, rd, rn, imm5);
5871 break;
5872 case 3:
5873 if (is_q) {
5874 /* INS (general) */
5875 handle_simd_insg(s, rd, rn, imm5);
5876 } else {
5877 unallocated_encoding(s);
5879 break;
5880 case 5:
5881 case 7:
5882 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
5883 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
5884 break;
5885 default:
5886 unallocated_encoding(s);
5887 break;
5892 /* C3.6.6 AdvSIMD modified immediate
5893 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
5894 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
5895 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
5896 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
5898 * There are a number of operations that can be carried out here:
5899 * MOVI - move (shifted) imm into register
5900 * MVNI - move inverted (shifted) imm into register
5901 * ORR - bitwise OR of (shifted) imm with register
5902 * BIC - bitwise clear of (shifted) imm with register
5904 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
5906 int rd = extract32(insn, 0, 5);
5907 int cmode = extract32(insn, 12, 4);
5908 int cmode_3_1 = extract32(cmode, 1, 3);
5909 int cmode_0 = extract32(cmode, 0, 1);
5910 int o2 = extract32(insn, 11, 1);
5911 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
5912 bool is_neg = extract32(insn, 29, 1);
5913 bool is_q = extract32(insn, 30, 1);
5914 uint64_t imm = 0;
5915 TCGv_i64 tcg_rd, tcg_imm;
5916 int i;
5918 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
5919 unallocated_encoding(s);
5920 return;
5923 if (!fp_access_check(s)) {
5924 return;
5927 /* See AdvSIMDExpandImm() in ARM ARM */
5928 switch (cmode_3_1) {
5929 case 0: /* Replicate(Zeros(24):imm8, 2) */
5930 case 1: /* Replicate(Zeros(16):imm8:Zeros(8), 2) */
5931 case 2: /* Replicate(Zeros(8):imm8:Zeros(16), 2) */
5932 case 3: /* Replicate(imm8:Zeros(24), 2) */
5934 int shift = cmode_3_1 * 8;
5935 imm = bitfield_replicate(abcdefgh << shift, 32);
5936 break;
5938 case 4: /* Replicate(Zeros(8):imm8, 4) */
5939 case 5: /* Replicate(imm8:Zeros(8), 4) */
5941 int shift = (cmode_3_1 & 0x1) * 8;
5942 imm = bitfield_replicate(abcdefgh << shift, 16);
5943 break;
5945 case 6:
5946 if (cmode_0) {
5947 /* Replicate(Zeros(8):imm8:Ones(16), 2) */
5948 imm = (abcdefgh << 16) | 0xffff;
5949 } else {
5950 /* Replicate(Zeros(16):imm8:Ones(8), 2) */
5951 imm = (abcdefgh << 8) | 0xff;
5953 imm = bitfield_replicate(imm, 32);
5954 break;
5955 case 7:
5956 if (!cmode_0 && !is_neg) {
5957 imm = bitfield_replicate(abcdefgh, 8);
5958 } else if (!cmode_0 && is_neg) {
5959 int i;
5960 imm = 0;
5961 for (i = 0; i < 8; i++) {
5962 if ((abcdefgh) & (1 << i)) {
5963 imm |= 0xffULL << (i * 8);
5966 } else if (cmode_0) {
5967 if (is_neg) {
5968 imm = (abcdefgh & 0x3f) << 48;
5969 if (abcdefgh & 0x80) {
5970 imm |= 0x8000000000000000ULL;
5972 if (abcdefgh & 0x40) {
5973 imm |= 0x3fc0000000000000ULL;
5974 } else {
5975 imm |= 0x4000000000000000ULL;
5977 } else {
5978 imm = (abcdefgh & 0x3f) << 19;
5979 if (abcdefgh & 0x80) {
5980 imm |= 0x80000000;
5982 if (abcdefgh & 0x40) {
5983 imm |= 0x3e000000;
5984 } else {
5985 imm |= 0x40000000;
5987 imm |= (imm << 32);
5990 break;
5993 if (cmode_3_1 != 7 && is_neg) {
5994 imm = ~imm;
5997 tcg_imm = tcg_const_i64(imm);
5998 tcg_rd = new_tmp_a64(s);
6000 for (i = 0; i < 2; i++) {
6001 int foffs = i ? fp_reg_hi_offset(s, rd) : fp_reg_offset(s, rd, MO_64);
6003 if (i == 1 && !is_q) {
6004 /* non-quad ops clear high half of vector */
6005 tcg_gen_movi_i64(tcg_rd, 0);
6006 } else if ((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9) {
6007 tcg_gen_ld_i64(tcg_rd, cpu_env, foffs);
6008 if (is_neg) {
6009 /* AND (BIC) */
6010 tcg_gen_and_i64(tcg_rd, tcg_rd, tcg_imm);
6011 } else {
6012 /* ORR */
6013 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_imm);
6015 } else {
6016 /* MOVI */
6017 tcg_gen_mov_i64(tcg_rd, tcg_imm);
6019 tcg_gen_st_i64(tcg_rd, cpu_env, foffs);
6022 tcg_temp_free_i64(tcg_imm);
6025 /* C3.6.7 AdvSIMD scalar copy
6026 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
6027 * +-----+----+-----------------+------+---+------+---+------+------+
6028 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
6029 * +-----+----+-----------------+------+---+------+---+------+------+
6031 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
6033 int rd = extract32(insn, 0, 5);
6034 int rn = extract32(insn, 5, 5);
6035 int imm4 = extract32(insn, 11, 4);
6036 int imm5 = extract32(insn, 16, 5);
6037 int op = extract32(insn, 29, 1);
6039 if (op != 0 || imm4 != 0) {
6040 unallocated_encoding(s);
6041 return;
6044 /* DUP (element, scalar) */
6045 handle_simd_dupes(s, rd, rn, imm5);
6048 /* C3.6.8 AdvSIMD scalar pairwise
6049 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
6050 * +-----+---+-----------+------+-----------+--------+-----+------+------+
6051 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
6052 * +-----+---+-----------+------+-----------+--------+-----+------+------+
6054 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
6056 int u = extract32(insn, 29, 1);
6057 int size = extract32(insn, 22, 2);
6058 int opcode = extract32(insn, 12, 5);
6059 int rn = extract32(insn, 5, 5);
6060 int rd = extract32(insn, 0, 5);
6061 TCGv_ptr fpst;
6063 /* For some ops (the FP ones), size[1] is part of the encoding.
6064 * For ADDP strictly it is not but size[1] is always 1 for valid
6065 * encodings.
6067 opcode |= (extract32(size, 1, 1) << 5);
6069 switch (opcode) {
6070 case 0x3b: /* ADDP */
6071 if (u || size != 3) {
6072 unallocated_encoding(s);
6073 return;
6075 if (!fp_access_check(s)) {
6076 return;
6079 TCGV_UNUSED_PTR(fpst);
6080 break;
6081 case 0xc: /* FMAXNMP */
6082 case 0xd: /* FADDP */
6083 case 0xf: /* FMAXP */
6084 case 0x2c: /* FMINNMP */
6085 case 0x2f: /* FMINP */
6086 /* FP op, size[0] is 32 or 64 bit */
6087 if (!u) {
6088 unallocated_encoding(s);
6089 return;
6091 if (!fp_access_check(s)) {
6092 return;
6095 size = extract32(size, 0, 1) ? 3 : 2;
6096 fpst = get_fpstatus_ptr();
6097 break;
6098 default:
6099 unallocated_encoding(s);
6100 return;
6103 if (size == 3) {
6104 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
6105 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
6106 TCGv_i64 tcg_res = tcg_temp_new_i64();
6108 read_vec_element(s, tcg_op1, rn, 0, MO_64);
6109 read_vec_element(s, tcg_op2, rn, 1, MO_64);
6111 switch (opcode) {
6112 case 0x3b: /* ADDP */
6113 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
6114 break;
6115 case 0xc: /* FMAXNMP */
6116 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6117 break;
6118 case 0xd: /* FADDP */
6119 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
6120 break;
6121 case 0xf: /* FMAXP */
6122 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
6123 break;
6124 case 0x2c: /* FMINNMP */
6125 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6126 break;
6127 case 0x2f: /* FMINP */
6128 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
6129 break;
6130 default:
6131 g_assert_not_reached();
6134 write_fp_dreg(s, rd, tcg_res);
6136 tcg_temp_free_i64(tcg_op1);
6137 tcg_temp_free_i64(tcg_op2);
6138 tcg_temp_free_i64(tcg_res);
6139 } else {
6140 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
6141 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
6142 TCGv_i32 tcg_res = tcg_temp_new_i32();
6144 read_vec_element_i32(s, tcg_op1, rn, 0, MO_32);
6145 read_vec_element_i32(s, tcg_op2, rn, 1, MO_32);
6147 switch (opcode) {
6148 case 0xc: /* FMAXNMP */
6149 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
6150 break;
6151 case 0xd: /* FADDP */
6152 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
6153 break;
6154 case 0xf: /* FMAXP */
6155 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
6156 break;
6157 case 0x2c: /* FMINNMP */
6158 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
6159 break;
6160 case 0x2f: /* FMINP */
6161 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
6162 break;
6163 default:
6164 g_assert_not_reached();
6167 write_fp_sreg(s, rd, tcg_res);
6169 tcg_temp_free_i32(tcg_op1);
6170 tcg_temp_free_i32(tcg_op2);
6171 tcg_temp_free_i32(tcg_res);
6174 if (!TCGV_IS_UNUSED_PTR(fpst)) {
6175 tcg_temp_free_ptr(fpst);
6180 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
6182 * This code is handles the common shifting code and is used by both
6183 * the vector and scalar code.
6185 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
6186 TCGv_i64 tcg_rnd, bool accumulate,
6187 bool is_u, int size, int shift)
6189 bool extended_result = false;
6190 bool round = !TCGV_IS_UNUSED_I64(tcg_rnd);
6191 int ext_lshift = 0;
6192 TCGv_i64 tcg_src_hi;
6194 if (round && size == 3) {
6195 extended_result = true;
6196 ext_lshift = 64 - shift;
6197 tcg_src_hi = tcg_temp_new_i64();
6198 } else if (shift == 64) {
6199 if (!accumulate && is_u) {
6200 /* result is zero */
6201 tcg_gen_movi_i64(tcg_res, 0);
6202 return;
6206 /* Deal with the rounding step */
6207 if (round) {
6208 if (extended_result) {
6209 TCGv_i64 tcg_zero = tcg_const_i64(0);
6210 if (!is_u) {
6211 /* take care of sign extending tcg_res */
6212 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
6213 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
6214 tcg_src, tcg_src_hi,
6215 tcg_rnd, tcg_zero);
6216 } else {
6217 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
6218 tcg_src, tcg_zero,
6219 tcg_rnd, tcg_zero);
6221 tcg_temp_free_i64(tcg_zero);
6222 } else {
6223 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
6227 /* Now do the shift right */
6228 if (round && extended_result) {
6229 /* extended case, >64 bit precision required */
6230 if (ext_lshift == 0) {
6231 /* special case, only high bits matter */
6232 tcg_gen_mov_i64(tcg_src, tcg_src_hi);
6233 } else {
6234 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
6235 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
6236 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
6238 } else {
6239 if (is_u) {
6240 if (shift == 64) {
6241 /* essentially shifting in 64 zeros */
6242 tcg_gen_movi_i64(tcg_src, 0);
6243 } else {
6244 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
6246 } else {
6247 if (shift == 64) {
6248 /* effectively extending the sign-bit */
6249 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
6250 } else {
6251 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
6256 if (accumulate) {
6257 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
6258 } else {
6259 tcg_gen_mov_i64(tcg_res, tcg_src);
6262 if (extended_result) {
6263 tcg_temp_free_i64(tcg_src_hi);
6267 /* Common SHL/SLI - Shift left with an optional insert */
6268 static void handle_shli_with_ins(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
6269 bool insert, int shift)
6271 if (insert) { /* SLI */
6272 tcg_gen_deposit_i64(tcg_res, tcg_res, tcg_src, shift, 64 - shift);
6273 } else { /* SHL */
6274 tcg_gen_shli_i64(tcg_res, tcg_src, shift);
6278 /* SRI: shift right with insert */
6279 static void handle_shri_with_ins(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
6280 int size, int shift)
6282 int esize = 8 << size;
6284 /* shift count same as element size is valid but does nothing;
6285 * special case to avoid potential shift by 64.
6287 if (shift != esize) {
6288 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
6289 tcg_gen_deposit_i64(tcg_res, tcg_res, tcg_src, 0, esize - shift);
6293 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
6294 static void handle_scalar_simd_shri(DisasContext *s,
6295 bool is_u, int immh, int immb,
6296 int opcode, int rn, int rd)
6298 const int size = 3;
6299 int immhb = immh << 3 | immb;
6300 int shift = 2 * (8 << size) - immhb;
6301 bool accumulate = false;
6302 bool round = false;
6303 bool insert = false;
6304 TCGv_i64 tcg_rn;
6305 TCGv_i64 tcg_rd;
6306 TCGv_i64 tcg_round;
6308 if (!extract32(immh, 3, 1)) {
6309 unallocated_encoding(s);
6310 return;
6313 if (!fp_access_check(s)) {
6314 return;
6317 switch (opcode) {
6318 case 0x02: /* SSRA / USRA (accumulate) */
6319 accumulate = true;
6320 break;
6321 case 0x04: /* SRSHR / URSHR (rounding) */
6322 round = true;
6323 break;
6324 case 0x06: /* SRSRA / URSRA (accum + rounding) */
6325 accumulate = round = true;
6326 break;
6327 case 0x08: /* SRI */
6328 insert = true;
6329 break;
6332 if (round) {
6333 uint64_t round_const = 1ULL << (shift - 1);
6334 tcg_round = tcg_const_i64(round_const);
6335 } else {
6336 TCGV_UNUSED_I64(tcg_round);
6339 tcg_rn = read_fp_dreg(s, rn);
6340 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
6342 if (insert) {
6343 handle_shri_with_ins(tcg_rd, tcg_rn, size, shift);
6344 } else {
6345 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
6346 accumulate, is_u, size, shift);
6349 write_fp_dreg(s, rd, tcg_rd);
6351 tcg_temp_free_i64(tcg_rn);
6352 tcg_temp_free_i64(tcg_rd);
6353 if (round) {
6354 tcg_temp_free_i64(tcg_round);
6358 /* SHL/SLI - Scalar shift left */
6359 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
6360 int immh, int immb, int opcode,
6361 int rn, int rd)
6363 int size = 32 - clz32(immh) - 1;
6364 int immhb = immh << 3 | immb;
6365 int shift = immhb - (8 << size);
6366 TCGv_i64 tcg_rn = new_tmp_a64(s);
6367 TCGv_i64 tcg_rd = new_tmp_a64(s);
6369 if (!extract32(immh, 3, 1)) {
6370 unallocated_encoding(s);
6371 return;
6374 if (!fp_access_check(s)) {
6375 return;
6378 tcg_rn = read_fp_dreg(s, rn);
6379 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
6381 handle_shli_with_ins(tcg_rd, tcg_rn, insert, shift);
6383 write_fp_dreg(s, rd, tcg_rd);
6385 tcg_temp_free_i64(tcg_rn);
6386 tcg_temp_free_i64(tcg_rd);
6389 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
6390 * (signed/unsigned) narrowing */
6391 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
6392 bool is_u_shift, bool is_u_narrow,
6393 int immh, int immb, int opcode,
6394 int rn, int rd)
6396 int immhb = immh << 3 | immb;
6397 int size = 32 - clz32(immh) - 1;
6398 int esize = 8 << size;
6399 int shift = (2 * esize) - immhb;
6400 int elements = is_scalar ? 1 : (64 / esize);
6401 bool round = extract32(opcode, 0, 1);
6402 TCGMemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
6403 TCGv_i64 tcg_rn, tcg_rd, tcg_round;
6404 TCGv_i32 tcg_rd_narrowed;
6405 TCGv_i64 tcg_final;
6407 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
6408 { gen_helper_neon_narrow_sat_s8,
6409 gen_helper_neon_unarrow_sat8 },
6410 { gen_helper_neon_narrow_sat_s16,
6411 gen_helper_neon_unarrow_sat16 },
6412 { gen_helper_neon_narrow_sat_s32,
6413 gen_helper_neon_unarrow_sat32 },
6414 { NULL, NULL },
6416 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
6417 gen_helper_neon_narrow_sat_u8,
6418 gen_helper_neon_narrow_sat_u16,
6419 gen_helper_neon_narrow_sat_u32,
6420 NULL
6422 NeonGenNarrowEnvFn *narrowfn;
6424 int i;
6426 assert(size < 4);
6428 if (extract32(immh, 3, 1)) {
6429 unallocated_encoding(s);
6430 return;
6433 if (!fp_access_check(s)) {
6434 return;
6437 if (is_u_shift) {
6438 narrowfn = unsigned_narrow_fns[size];
6439 } else {
6440 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
6443 tcg_rn = tcg_temp_new_i64();
6444 tcg_rd = tcg_temp_new_i64();
6445 tcg_rd_narrowed = tcg_temp_new_i32();
6446 tcg_final = tcg_const_i64(0);
6448 if (round) {
6449 uint64_t round_const = 1ULL << (shift - 1);
6450 tcg_round = tcg_const_i64(round_const);
6451 } else {
6452 TCGV_UNUSED_I64(tcg_round);
6455 for (i = 0; i < elements; i++) {
6456 read_vec_element(s, tcg_rn, rn, i, ldop);
6457 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
6458 false, is_u_shift, size+1, shift);
6459 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd);
6460 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
6461 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
6464 if (!is_q) {
6465 clear_vec_high(s, rd);
6466 write_vec_element(s, tcg_final, rd, 0, MO_64);
6467 } else {
6468 write_vec_element(s, tcg_final, rd, 1, MO_64);
6471 if (round) {
6472 tcg_temp_free_i64(tcg_round);
6474 tcg_temp_free_i64(tcg_rn);
6475 tcg_temp_free_i64(tcg_rd);
6476 tcg_temp_free_i32(tcg_rd_narrowed);
6477 tcg_temp_free_i64(tcg_final);
6478 return;
6481 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
6482 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
6483 bool src_unsigned, bool dst_unsigned,
6484 int immh, int immb, int rn, int rd)
6486 int immhb = immh << 3 | immb;
6487 int size = 32 - clz32(immh) - 1;
6488 int shift = immhb - (8 << size);
6489 int pass;
6491 assert(immh != 0);
6492 assert(!(scalar && is_q));
6494 if (!scalar) {
6495 if (!is_q && extract32(immh, 3, 1)) {
6496 unallocated_encoding(s);
6497 return;
6500 /* Since we use the variable-shift helpers we must
6501 * replicate the shift count into each element of
6502 * the tcg_shift value.
6504 switch (size) {
6505 case 0:
6506 shift |= shift << 8;
6507 /* fall through */
6508 case 1:
6509 shift |= shift << 16;
6510 break;
6511 case 2:
6512 case 3:
6513 break;
6514 default:
6515 g_assert_not_reached();
6519 if (!fp_access_check(s)) {
6520 return;
6523 if (size == 3) {
6524 TCGv_i64 tcg_shift = tcg_const_i64(shift);
6525 static NeonGenTwo64OpEnvFn * const fns[2][2] = {
6526 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
6527 { NULL, gen_helper_neon_qshl_u64 },
6529 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
6530 int maxpass = is_q ? 2 : 1;
6532 for (pass = 0; pass < maxpass; pass++) {
6533 TCGv_i64 tcg_op = tcg_temp_new_i64();
6535 read_vec_element(s, tcg_op, rn, pass, MO_64);
6536 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
6537 write_vec_element(s, tcg_op, rd, pass, MO_64);
6539 tcg_temp_free_i64(tcg_op);
6541 tcg_temp_free_i64(tcg_shift);
6543 if (!is_q) {
6544 clear_vec_high(s, rd);
6546 } else {
6547 TCGv_i32 tcg_shift = tcg_const_i32(shift);
6548 static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
6550 { gen_helper_neon_qshl_s8,
6551 gen_helper_neon_qshl_s16,
6552 gen_helper_neon_qshl_s32 },
6553 { gen_helper_neon_qshlu_s8,
6554 gen_helper_neon_qshlu_s16,
6555 gen_helper_neon_qshlu_s32 }
6556 }, {
6557 { NULL, NULL, NULL },
6558 { gen_helper_neon_qshl_u8,
6559 gen_helper_neon_qshl_u16,
6560 gen_helper_neon_qshl_u32 }
6563 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
6564 TCGMemOp memop = scalar ? size : MO_32;
6565 int maxpass = scalar ? 1 : is_q ? 4 : 2;
6567 for (pass = 0; pass < maxpass; pass++) {
6568 TCGv_i32 tcg_op = tcg_temp_new_i32();
6570 read_vec_element_i32(s, tcg_op, rn, pass, memop);
6571 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
6572 if (scalar) {
6573 switch (size) {
6574 case 0:
6575 tcg_gen_ext8u_i32(tcg_op, tcg_op);
6576 break;
6577 case 1:
6578 tcg_gen_ext16u_i32(tcg_op, tcg_op);
6579 break;
6580 case 2:
6581 break;
6582 default:
6583 g_assert_not_reached();
6585 write_fp_sreg(s, rd, tcg_op);
6586 } else {
6587 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
6590 tcg_temp_free_i32(tcg_op);
6592 tcg_temp_free_i32(tcg_shift);
6594 if (!is_q && !scalar) {
6595 clear_vec_high(s, rd);
6600 /* Common vector code for handling integer to FP conversion */
6601 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
6602 int elements, int is_signed,
6603 int fracbits, int size)
6605 bool is_double = size == 3 ? true : false;
6606 TCGv_ptr tcg_fpst = get_fpstatus_ptr();
6607 TCGv_i32 tcg_shift = tcg_const_i32(fracbits);
6608 TCGv_i64 tcg_int = tcg_temp_new_i64();
6609 TCGMemOp mop = size | (is_signed ? MO_SIGN : 0);
6610 int pass;
6612 for (pass = 0; pass < elements; pass++) {
6613 read_vec_element(s, tcg_int, rn, pass, mop);
6615 if (is_double) {
6616 TCGv_i64 tcg_double = tcg_temp_new_i64();
6617 if (is_signed) {
6618 gen_helper_vfp_sqtod(tcg_double, tcg_int,
6619 tcg_shift, tcg_fpst);
6620 } else {
6621 gen_helper_vfp_uqtod(tcg_double, tcg_int,
6622 tcg_shift, tcg_fpst);
6624 if (elements == 1) {
6625 write_fp_dreg(s, rd, tcg_double);
6626 } else {
6627 write_vec_element(s, tcg_double, rd, pass, MO_64);
6629 tcg_temp_free_i64(tcg_double);
6630 } else {
6631 TCGv_i32 tcg_single = tcg_temp_new_i32();
6632 if (is_signed) {
6633 gen_helper_vfp_sqtos(tcg_single, tcg_int,
6634 tcg_shift, tcg_fpst);
6635 } else {
6636 gen_helper_vfp_uqtos(tcg_single, tcg_int,
6637 tcg_shift, tcg_fpst);
6639 if (elements == 1) {
6640 write_fp_sreg(s, rd, tcg_single);
6641 } else {
6642 write_vec_element_i32(s, tcg_single, rd, pass, MO_32);
6644 tcg_temp_free_i32(tcg_single);
6648 if (!is_double && elements == 2) {
6649 clear_vec_high(s, rd);
6652 tcg_temp_free_i64(tcg_int);
6653 tcg_temp_free_ptr(tcg_fpst);
6654 tcg_temp_free_i32(tcg_shift);
6657 /* UCVTF/SCVTF - Integer to FP conversion */
6658 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
6659 bool is_q, bool is_u,
6660 int immh, int immb, int opcode,
6661 int rn, int rd)
6663 bool is_double = extract32(immh, 3, 1);
6664 int size = is_double ? MO_64 : MO_32;
6665 int elements;
6666 int immhb = immh << 3 | immb;
6667 int fracbits = (is_double ? 128 : 64) - immhb;
6669 if (!extract32(immh, 2, 2)) {
6670 unallocated_encoding(s);
6671 return;
6674 if (is_scalar) {
6675 elements = 1;
6676 } else {
6677 elements = is_double ? 2 : is_q ? 4 : 2;
6678 if (is_double && !is_q) {
6679 unallocated_encoding(s);
6680 return;
6684 if (!fp_access_check(s)) {
6685 return;
6688 /* immh == 0 would be a failure of the decode logic */
6689 g_assert(immh);
6691 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
6694 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
6695 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
6696 bool is_q, bool is_u,
6697 int immh, int immb, int rn, int rd)
6699 bool is_double = extract32(immh, 3, 1);
6700 int immhb = immh << 3 | immb;
6701 int fracbits = (is_double ? 128 : 64) - immhb;
6702 int pass;
6703 TCGv_ptr tcg_fpstatus;
6704 TCGv_i32 tcg_rmode, tcg_shift;
6706 if (!extract32(immh, 2, 2)) {
6707 unallocated_encoding(s);
6708 return;
6711 if (!is_scalar && !is_q && is_double) {
6712 unallocated_encoding(s);
6713 return;
6716 if (!fp_access_check(s)) {
6717 return;
6720 assert(!(is_scalar && is_q));
6722 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(FPROUNDING_ZERO));
6723 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
6724 tcg_fpstatus = get_fpstatus_ptr();
6725 tcg_shift = tcg_const_i32(fracbits);
6727 if (is_double) {
6728 int maxpass = is_scalar ? 1 : 2;
6730 for (pass = 0; pass < maxpass; pass++) {
6731 TCGv_i64 tcg_op = tcg_temp_new_i64();
6733 read_vec_element(s, tcg_op, rn, pass, MO_64);
6734 if (is_u) {
6735 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
6736 } else {
6737 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
6739 write_vec_element(s, tcg_op, rd, pass, MO_64);
6740 tcg_temp_free_i64(tcg_op);
6742 if (!is_q) {
6743 clear_vec_high(s, rd);
6745 } else {
6746 int maxpass = is_scalar ? 1 : is_q ? 4 : 2;
6747 for (pass = 0; pass < maxpass; pass++) {
6748 TCGv_i32 tcg_op = tcg_temp_new_i32();
6750 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
6751 if (is_u) {
6752 gen_helper_vfp_touls(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
6753 } else {
6754 gen_helper_vfp_tosls(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
6756 if (is_scalar) {
6757 write_fp_sreg(s, rd, tcg_op);
6758 } else {
6759 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
6761 tcg_temp_free_i32(tcg_op);
6763 if (!is_q && !is_scalar) {
6764 clear_vec_high(s, rd);
6768 tcg_temp_free_ptr(tcg_fpstatus);
6769 tcg_temp_free_i32(tcg_shift);
6770 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
6771 tcg_temp_free_i32(tcg_rmode);
6774 /* C3.6.9 AdvSIMD scalar shift by immediate
6775 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
6776 * +-----+---+-------------+------+------+--------+---+------+------+
6777 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
6778 * +-----+---+-------------+------+------+--------+---+------+------+
6780 * This is the scalar version so it works on a fixed sized registers
6782 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
6784 int rd = extract32(insn, 0, 5);
6785 int rn = extract32(insn, 5, 5);
6786 int opcode = extract32(insn, 11, 5);
6787 int immb = extract32(insn, 16, 3);
6788 int immh = extract32(insn, 19, 4);
6789 bool is_u = extract32(insn, 29, 1);
6791 if (immh == 0) {
6792 unallocated_encoding(s);
6793 return;
6796 switch (opcode) {
6797 case 0x08: /* SRI */
6798 if (!is_u) {
6799 unallocated_encoding(s);
6800 return;
6802 /* fall through */
6803 case 0x00: /* SSHR / USHR */
6804 case 0x02: /* SSRA / USRA */
6805 case 0x04: /* SRSHR / URSHR */
6806 case 0x06: /* SRSRA / URSRA */
6807 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
6808 break;
6809 case 0x0a: /* SHL / SLI */
6810 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
6811 break;
6812 case 0x1c: /* SCVTF, UCVTF */
6813 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
6814 opcode, rn, rd);
6815 break;
6816 case 0x10: /* SQSHRUN, SQSHRUN2 */
6817 case 0x11: /* SQRSHRUN, SQRSHRUN2 */
6818 if (!is_u) {
6819 unallocated_encoding(s);
6820 return;
6822 handle_vec_simd_sqshrn(s, true, false, false, true,
6823 immh, immb, opcode, rn, rd);
6824 break;
6825 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
6826 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
6827 handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
6828 immh, immb, opcode, rn, rd);
6829 break;
6830 case 0xc: /* SQSHLU */
6831 if (!is_u) {
6832 unallocated_encoding(s);
6833 return;
6835 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
6836 break;
6837 case 0xe: /* SQSHL, UQSHL */
6838 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
6839 break;
6840 case 0x1f: /* FCVTZS, FCVTZU */
6841 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
6842 break;
6843 default:
6844 unallocated_encoding(s);
6845 break;
6849 /* C3.6.10 AdvSIMD scalar three different
6850 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
6851 * +-----+---+-----------+------+---+------+--------+-----+------+------+
6852 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
6853 * +-----+---+-----------+------+---+------+--------+-----+------+------+
6855 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
6857 bool is_u = extract32(insn, 29, 1);
6858 int size = extract32(insn, 22, 2);
6859 int opcode = extract32(insn, 12, 4);
6860 int rm = extract32(insn, 16, 5);
6861 int rn = extract32(insn, 5, 5);
6862 int rd = extract32(insn, 0, 5);
6864 if (is_u) {
6865 unallocated_encoding(s);
6866 return;
6869 switch (opcode) {
6870 case 0x9: /* SQDMLAL, SQDMLAL2 */
6871 case 0xb: /* SQDMLSL, SQDMLSL2 */
6872 case 0xd: /* SQDMULL, SQDMULL2 */
6873 if (size == 0 || size == 3) {
6874 unallocated_encoding(s);
6875 return;
6877 break;
6878 default:
6879 unallocated_encoding(s);
6880 return;
6883 if (!fp_access_check(s)) {
6884 return;
6887 if (size == 2) {
6888 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
6889 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
6890 TCGv_i64 tcg_res = tcg_temp_new_i64();
6892 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
6893 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
6895 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
6896 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res);
6898 switch (opcode) {
6899 case 0xd: /* SQDMULL, SQDMULL2 */
6900 break;
6901 case 0xb: /* SQDMLSL, SQDMLSL2 */
6902 tcg_gen_neg_i64(tcg_res, tcg_res);
6903 /* fall through */
6904 case 0x9: /* SQDMLAL, SQDMLAL2 */
6905 read_vec_element(s, tcg_op1, rd, 0, MO_64);
6906 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env,
6907 tcg_res, tcg_op1);
6908 break;
6909 default:
6910 g_assert_not_reached();
6913 write_fp_dreg(s, rd, tcg_res);
6915 tcg_temp_free_i64(tcg_op1);
6916 tcg_temp_free_i64(tcg_op2);
6917 tcg_temp_free_i64(tcg_res);
6918 } else {
6919 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
6920 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
6921 TCGv_i64 tcg_res = tcg_temp_new_i64();
6923 read_vec_element_i32(s, tcg_op1, rn, 0, MO_16);
6924 read_vec_element_i32(s, tcg_op2, rm, 0, MO_16);
6926 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
6927 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res);
6929 switch (opcode) {
6930 case 0xd: /* SQDMULL, SQDMULL2 */
6931 break;
6932 case 0xb: /* SQDMLSL, SQDMLSL2 */
6933 gen_helper_neon_negl_u32(tcg_res, tcg_res);
6934 /* fall through */
6935 case 0x9: /* SQDMLAL, SQDMLAL2 */
6937 TCGv_i64 tcg_op3 = tcg_temp_new_i64();
6938 read_vec_element(s, tcg_op3, rd, 0, MO_32);
6939 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env,
6940 tcg_res, tcg_op3);
6941 tcg_temp_free_i64(tcg_op3);
6942 break;
6944 default:
6945 g_assert_not_reached();
6948 tcg_gen_ext32u_i64(tcg_res, tcg_res);
6949 write_fp_dreg(s, rd, tcg_res);
6951 tcg_temp_free_i32(tcg_op1);
6952 tcg_temp_free_i32(tcg_op2);
6953 tcg_temp_free_i64(tcg_res);
6957 static void handle_3same_64(DisasContext *s, int opcode, bool u,
6958 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
6960 /* Handle 64x64->64 opcodes which are shared between the scalar
6961 * and vector 3-same groups. We cover every opcode where size == 3
6962 * is valid in either the three-reg-same (integer, not pairwise)
6963 * or scalar-three-reg-same groups. (Some opcodes are not yet
6964 * implemented.)
6966 TCGCond cond;
6968 switch (opcode) {
6969 case 0x1: /* SQADD */
6970 if (u) {
6971 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
6972 } else {
6973 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
6975 break;
6976 case 0x5: /* SQSUB */
6977 if (u) {
6978 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
6979 } else {
6980 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
6982 break;
6983 case 0x6: /* CMGT, CMHI */
6984 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
6985 * We implement this using setcond (test) and then negating.
6987 cond = u ? TCG_COND_GTU : TCG_COND_GT;
6988 do_cmop:
6989 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
6990 tcg_gen_neg_i64(tcg_rd, tcg_rd);
6991 break;
6992 case 0x7: /* CMGE, CMHS */
6993 cond = u ? TCG_COND_GEU : TCG_COND_GE;
6994 goto do_cmop;
6995 case 0x11: /* CMTST, CMEQ */
6996 if (u) {
6997 cond = TCG_COND_EQ;
6998 goto do_cmop;
7000 /* CMTST : test is "if (X & Y != 0)". */
7001 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
7002 tcg_gen_setcondi_i64(TCG_COND_NE, tcg_rd, tcg_rd, 0);
7003 tcg_gen_neg_i64(tcg_rd, tcg_rd);
7004 break;
7005 case 0x8: /* SSHL, USHL */
7006 if (u) {
7007 gen_helper_neon_shl_u64(tcg_rd, tcg_rn, tcg_rm);
7008 } else {
7009 gen_helper_neon_shl_s64(tcg_rd, tcg_rn, tcg_rm);
7011 break;
7012 case 0x9: /* SQSHL, UQSHL */
7013 if (u) {
7014 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7015 } else {
7016 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7018 break;
7019 case 0xa: /* SRSHL, URSHL */
7020 if (u) {
7021 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
7022 } else {
7023 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
7025 break;
7026 case 0xb: /* SQRSHL, UQRSHL */
7027 if (u) {
7028 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7029 } else {
7030 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7032 break;
7033 case 0x10: /* ADD, SUB */
7034 if (u) {
7035 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
7036 } else {
7037 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
7039 break;
7040 default:
7041 g_assert_not_reached();
7045 /* Handle the 3-same-operands float operations; shared by the scalar
7046 * and vector encodings. The caller must filter out any encodings
7047 * not allocated for the encoding it is dealing with.
7049 static void handle_3same_float(DisasContext *s, int size, int elements,
7050 int fpopcode, int rd, int rn, int rm)
7052 int pass;
7053 TCGv_ptr fpst = get_fpstatus_ptr();
7055 for (pass = 0; pass < elements; pass++) {
7056 if (size) {
7057 /* Double */
7058 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
7059 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
7060 TCGv_i64 tcg_res = tcg_temp_new_i64();
7062 read_vec_element(s, tcg_op1, rn, pass, MO_64);
7063 read_vec_element(s, tcg_op2, rm, pass, MO_64);
7065 switch (fpopcode) {
7066 case 0x39: /* FMLS */
7067 /* As usual for ARM, separate negation for fused multiply-add */
7068 gen_helper_vfp_negd(tcg_op1, tcg_op1);
7069 /* fall through */
7070 case 0x19: /* FMLA */
7071 read_vec_element(s, tcg_res, rd, pass, MO_64);
7072 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
7073 tcg_res, fpst);
7074 break;
7075 case 0x18: /* FMAXNM */
7076 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7077 break;
7078 case 0x1a: /* FADD */
7079 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
7080 break;
7081 case 0x1b: /* FMULX */
7082 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
7083 break;
7084 case 0x1c: /* FCMEQ */
7085 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7086 break;
7087 case 0x1e: /* FMAX */
7088 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
7089 break;
7090 case 0x1f: /* FRECPS */
7091 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7092 break;
7093 case 0x38: /* FMINNM */
7094 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7095 break;
7096 case 0x3a: /* FSUB */
7097 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
7098 break;
7099 case 0x3e: /* FMIN */
7100 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
7101 break;
7102 case 0x3f: /* FRSQRTS */
7103 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7104 break;
7105 case 0x5b: /* FMUL */
7106 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
7107 break;
7108 case 0x5c: /* FCMGE */
7109 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7110 break;
7111 case 0x5d: /* FACGE */
7112 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7113 break;
7114 case 0x5f: /* FDIV */
7115 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
7116 break;
7117 case 0x7a: /* FABD */
7118 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
7119 gen_helper_vfp_absd(tcg_res, tcg_res);
7120 break;
7121 case 0x7c: /* FCMGT */
7122 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7123 break;
7124 case 0x7d: /* FACGT */
7125 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7126 break;
7127 default:
7128 g_assert_not_reached();
7131 write_vec_element(s, tcg_res, rd, pass, MO_64);
7133 tcg_temp_free_i64(tcg_res);
7134 tcg_temp_free_i64(tcg_op1);
7135 tcg_temp_free_i64(tcg_op2);
7136 } else {
7137 /* Single */
7138 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
7139 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
7140 TCGv_i32 tcg_res = tcg_temp_new_i32();
7142 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
7143 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
7145 switch (fpopcode) {
7146 case 0x39: /* FMLS */
7147 /* As usual for ARM, separate negation for fused multiply-add */
7148 gen_helper_vfp_negs(tcg_op1, tcg_op1);
7149 /* fall through */
7150 case 0x19: /* FMLA */
7151 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
7152 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
7153 tcg_res, fpst);
7154 break;
7155 case 0x1a: /* FADD */
7156 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
7157 break;
7158 case 0x1b: /* FMULX */
7159 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
7160 break;
7161 case 0x1c: /* FCMEQ */
7162 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7163 break;
7164 case 0x1e: /* FMAX */
7165 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
7166 break;
7167 case 0x1f: /* FRECPS */
7168 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7169 break;
7170 case 0x18: /* FMAXNM */
7171 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
7172 break;
7173 case 0x38: /* FMINNM */
7174 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
7175 break;
7176 case 0x3a: /* FSUB */
7177 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
7178 break;
7179 case 0x3e: /* FMIN */
7180 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
7181 break;
7182 case 0x3f: /* FRSQRTS */
7183 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7184 break;
7185 case 0x5b: /* FMUL */
7186 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
7187 break;
7188 case 0x5c: /* FCMGE */
7189 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7190 break;
7191 case 0x5d: /* FACGE */
7192 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7193 break;
7194 case 0x5f: /* FDIV */
7195 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
7196 break;
7197 case 0x7a: /* FABD */
7198 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
7199 gen_helper_vfp_abss(tcg_res, tcg_res);
7200 break;
7201 case 0x7c: /* FCMGT */
7202 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7203 break;
7204 case 0x7d: /* FACGT */
7205 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7206 break;
7207 default:
7208 g_assert_not_reached();
7211 if (elements == 1) {
7212 /* scalar single so clear high part */
7213 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7215 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
7216 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
7217 tcg_temp_free_i64(tcg_tmp);
7218 } else {
7219 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
7222 tcg_temp_free_i32(tcg_res);
7223 tcg_temp_free_i32(tcg_op1);
7224 tcg_temp_free_i32(tcg_op2);
7228 tcg_temp_free_ptr(fpst);
7230 if ((elements << size) < 4) {
7231 /* scalar, or non-quad vector op */
7232 clear_vec_high(s, rd);
7236 /* C3.6.11 AdvSIMD scalar three same
7237 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
7238 * +-----+---+-----------+------+---+------+--------+---+------+------+
7239 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
7240 * +-----+---+-----------+------+---+------+--------+---+------+------+
7242 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
7244 int rd = extract32(insn, 0, 5);
7245 int rn = extract32(insn, 5, 5);
7246 int opcode = extract32(insn, 11, 5);
7247 int rm = extract32(insn, 16, 5);
7248 int size = extract32(insn, 22, 2);
7249 bool u = extract32(insn, 29, 1);
7250 TCGv_i64 tcg_rd;
7252 if (opcode >= 0x18) {
7253 /* Floating point: U, size[1] and opcode indicate operation */
7254 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
7255 switch (fpopcode) {
7256 case 0x1b: /* FMULX */
7257 case 0x1f: /* FRECPS */
7258 case 0x3f: /* FRSQRTS */
7259 case 0x5d: /* FACGE */
7260 case 0x7d: /* FACGT */
7261 case 0x1c: /* FCMEQ */
7262 case 0x5c: /* FCMGE */
7263 case 0x7c: /* FCMGT */
7264 case 0x7a: /* FABD */
7265 break;
7266 default:
7267 unallocated_encoding(s);
7268 return;
7271 if (!fp_access_check(s)) {
7272 return;
7275 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
7276 return;
7279 switch (opcode) {
7280 case 0x1: /* SQADD, UQADD */
7281 case 0x5: /* SQSUB, UQSUB */
7282 case 0x9: /* SQSHL, UQSHL */
7283 case 0xb: /* SQRSHL, UQRSHL */
7284 break;
7285 case 0x8: /* SSHL, USHL */
7286 case 0xa: /* SRSHL, URSHL */
7287 case 0x6: /* CMGT, CMHI */
7288 case 0x7: /* CMGE, CMHS */
7289 case 0x11: /* CMTST, CMEQ */
7290 case 0x10: /* ADD, SUB (vector) */
7291 if (size != 3) {
7292 unallocated_encoding(s);
7293 return;
7295 break;
7296 case 0x16: /* SQDMULH, SQRDMULH (vector) */
7297 if (size != 1 && size != 2) {
7298 unallocated_encoding(s);
7299 return;
7301 break;
7302 default:
7303 unallocated_encoding(s);
7304 return;
7307 if (!fp_access_check(s)) {
7308 return;
7311 tcg_rd = tcg_temp_new_i64();
7313 if (size == 3) {
7314 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
7315 TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
7317 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
7318 tcg_temp_free_i64(tcg_rn);
7319 tcg_temp_free_i64(tcg_rm);
7320 } else {
7321 /* Do a single operation on the lowest element in the vector.
7322 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
7323 * no side effects for all these operations.
7324 * OPTME: special-purpose helpers would avoid doing some
7325 * unnecessary work in the helper for the 8 and 16 bit cases.
7327 NeonGenTwoOpEnvFn *genenvfn;
7328 TCGv_i32 tcg_rn = tcg_temp_new_i32();
7329 TCGv_i32 tcg_rm = tcg_temp_new_i32();
7330 TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
7332 read_vec_element_i32(s, tcg_rn, rn, 0, size);
7333 read_vec_element_i32(s, tcg_rm, rm, 0, size);
7335 switch (opcode) {
7336 case 0x1: /* SQADD, UQADD */
7338 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7339 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
7340 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
7341 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
7343 genenvfn = fns[size][u];
7344 break;
7346 case 0x5: /* SQSUB, UQSUB */
7348 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7349 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
7350 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
7351 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
7353 genenvfn = fns[size][u];
7354 break;
7356 case 0x9: /* SQSHL, UQSHL */
7358 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7359 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
7360 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
7361 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
7363 genenvfn = fns[size][u];
7364 break;
7366 case 0xb: /* SQRSHL, UQRSHL */
7368 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7369 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
7370 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
7371 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
7373 genenvfn = fns[size][u];
7374 break;
7376 case 0x16: /* SQDMULH, SQRDMULH */
7378 static NeonGenTwoOpEnvFn * const fns[2][2] = {
7379 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
7380 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
7382 assert(size == 1 || size == 2);
7383 genenvfn = fns[size - 1][u];
7384 break;
7386 default:
7387 g_assert_not_reached();
7390 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm);
7391 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
7392 tcg_temp_free_i32(tcg_rd32);
7393 tcg_temp_free_i32(tcg_rn);
7394 tcg_temp_free_i32(tcg_rm);
7397 write_fp_dreg(s, rd, tcg_rd);
7399 tcg_temp_free_i64(tcg_rd);
7402 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
7403 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
7404 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
7406 /* Handle 64->64 opcodes which are shared between the scalar and
7407 * vector 2-reg-misc groups. We cover every integer opcode where size == 3
7408 * is valid in either group and also the double-precision fp ops.
7409 * The caller only need provide tcg_rmode and tcg_fpstatus if the op
7410 * requires them.
7412 TCGCond cond;
7414 switch (opcode) {
7415 case 0x4: /* CLS, CLZ */
7416 if (u) {
7417 gen_helper_clz64(tcg_rd, tcg_rn);
7418 } else {
7419 gen_helper_cls64(tcg_rd, tcg_rn);
7421 break;
7422 case 0x5: /* NOT */
7423 /* This opcode is shared with CNT and RBIT but we have earlier
7424 * enforced that size == 3 if and only if this is the NOT insn.
7426 tcg_gen_not_i64(tcg_rd, tcg_rn);
7427 break;
7428 case 0x7: /* SQABS, SQNEG */
7429 if (u) {
7430 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn);
7431 } else {
7432 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn);
7434 break;
7435 case 0xa: /* CMLT */
7436 /* 64 bit integer comparison against zero, result is
7437 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and
7438 * subtracting 1.
7440 cond = TCG_COND_LT;
7441 do_cmop:
7442 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0);
7443 tcg_gen_neg_i64(tcg_rd, tcg_rd);
7444 break;
7445 case 0x8: /* CMGT, CMGE */
7446 cond = u ? TCG_COND_GE : TCG_COND_GT;
7447 goto do_cmop;
7448 case 0x9: /* CMEQ, CMLE */
7449 cond = u ? TCG_COND_LE : TCG_COND_EQ;
7450 goto do_cmop;
7451 case 0xb: /* ABS, NEG */
7452 if (u) {
7453 tcg_gen_neg_i64(tcg_rd, tcg_rn);
7454 } else {
7455 TCGv_i64 tcg_zero = tcg_const_i64(0);
7456 tcg_gen_neg_i64(tcg_rd, tcg_rn);
7457 tcg_gen_movcond_i64(TCG_COND_GT, tcg_rd, tcg_rn, tcg_zero,
7458 tcg_rn, tcg_rd);
7459 tcg_temp_free_i64(tcg_zero);
7461 break;
7462 case 0x2f: /* FABS */
7463 gen_helper_vfp_absd(tcg_rd, tcg_rn);
7464 break;
7465 case 0x6f: /* FNEG */
7466 gen_helper_vfp_negd(tcg_rd, tcg_rn);
7467 break;
7468 case 0x7f: /* FSQRT */
7469 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env);
7470 break;
7471 case 0x1a: /* FCVTNS */
7472 case 0x1b: /* FCVTMS */
7473 case 0x1c: /* FCVTAS */
7474 case 0x3a: /* FCVTPS */
7475 case 0x3b: /* FCVTZS */
7477 TCGv_i32 tcg_shift = tcg_const_i32(0);
7478 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
7479 tcg_temp_free_i32(tcg_shift);
7480 break;
7482 case 0x5a: /* FCVTNU */
7483 case 0x5b: /* FCVTMU */
7484 case 0x5c: /* FCVTAU */
7485 case 0x7a: /* FCVTPU */
7486 case 0x7b: /* FCVTZU */
7488 TCGv_i32 tcg_shift = tcg_const_i32(0);
7489 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
7490 tcg_temp_free_i32(tcg_shift);
7491 break;
7493 case 0x18: /* FRINTN */
7494 case 0x19: /* FRINTM */
7495 case 0x38: /* FRINTP */
7496 case 0x39: /* FRINTZ */
7497 case 0x58: /* FRINTA */
7498 case 0x79: /* FRINTI */
7499 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
7500 break;
7501 case 0x59: /* FRINTX */
7502 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
7503 break;
7504 default:
7505 g_assert_not_reached();
7509 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
7510 bool is_scalar, bool is_u, bool is_q,
7511 int size, int rn, int rd)
7513 bool is_double = (size == 3);
7514 TCGv_ptr fpst;
7516 if (!fp_access_check(s)) {
7517 return;
7520 fpst = get_fpstatus_ptr();
7522 if (is_double) {
7523 TCGv_i64 tcg_op = tcg_temp_new_i64();
7524 TCGv_i64 tcg_zero = tcg_const_i64(0);
7525 TCGv_i64 tcg_res = tcg_temp_new_i64();
7526 NeonGenTwoDoubleOPFn *genfn;
7527 bool swap = false;
7528 int pass;
7530 switch (opcode) {
7531 case 0x2e: /* FCMLT (zero) */
7532 swap = true;
7533 /* fallthrough */
7534 case 0x2c: /* FCMGT (zero) */
7535 genfn = gen_helper_neon_cgt_f64;
7536 break;
7537 case 0x2d: /* FCMEQ (zero) */
7538 genfn = gen_helper_neon_ceq_f64;
7539 break;
7540 case 0x6d: /* FCMLE (zero) */
7541 swap = true;
7542 /* fall through */
7543 case 0x6c: /* FCMGE (zero) */
7544 genfn = gen_helper_neon_cge_f64;
7545 break;
7546 default:
7547 g_assert_not_reached();
7550 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
7551 read_vec_element(s, tcg_op, rn, pass, MO_64);
7552 if (swap) {
7553 genfn(tcg_res, tcg_zero, tcg_op, fpst);
7554 } else {
7555 genfn(tcg_res, tcg_op, tcg_zero, fpst);
7557 write_vec_element(s, tcg_res, rd, pass, MO_64);
7559 if (is_scalar) {
7560 clear_vec_high(s, rd);
7563 tcg_temp_free_i64(tcg_res);
7564 tcg_temp_free_i64(tcg_zero);
7565 tcg_temp_free_i64(tcg_op);
7566 } else {
7567 TCGv_i32 tcg_op = tcg_temp_new_i32();
7568 TCGv_i32 tcg_zero = tcg_const_i32(0);
7569 TCGv_i32 tcg_res = tcg_temp_new_i32();
7570 NeonGenTwoSingleOPFn *genfn;
7571 bool swap = false;
7572 int pass, maxpasses;
7574 switch (opcode) {
7575 case 0x2e: /* FCMLT (zero) */
7576 swap = true;
7577 /* fall through */
7578 case 0x2c: /* FCMGT (zero) */
7579 genfn = gen_helper_neon_cgt_f32;
7580 break;
7581 case 0x2d: /* FCMEQ (zero) */
7582 genfn = gen_helper_neon_ceq_f32;
7583 break;
7584 case 0x6d: /* FCMLE (zero) */
7585 swap = true;
7586 /* fall through */
7587 case 0x6c: /* FCMGE (zero) */
7588 genfn = gen_helper_neon_cge_f32;
7589 break;
7590 default:
7591 g_assert_not_reached();
7594 if (is_scalar) {
7595 maxpasses = 1;
7596 } else {
7597 maxpasses = is_q ? 4 : 2;
7600 for (pass = 0; pass < maxpasses; pass++) {
7601 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
7602 if (swap) {
7603 genfn(tcg_res, tcg_zero, tcg_op, fpst);
7604 } else {
7605 genfn(tcg_res, tcg_op, tcg_zero, fpst);
7607 if (is_scalar) {
7608 write_fp_sreg(s, rd, tcg_res);
7609 } else {
7610 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
7613 tcg_temp_free_i32(tcg_res);
7614 tcg_temp_free_i32(tcg_zero);
7615 tcg_temp_free_i32(tcg_op);
7616 if (!is_q && !is_scalar) {
7617 clear_vec_high(s, rd);
7621 tcg_temp_free_ptr(fpst);
7624 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
7625 bool is_scalar, bool is_u, bool is_q,
7626 int size, int rn, int rd)
7628 bool is_double = (size == 3);
7629 TCGv_ptr fpst = get_fpstatus_ptr();
7631 if (is_double) {
7632 TCGv_i64 tcg_op = tcg_temp_new_i64();
7633 TCGv_i64 tcg_res = tcg_temp_new_i64();
7634 int pass;
7636 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
7637 read_vec_element(s, tcg_op, rn, pass, MO_64);
7638 switch (opcode) {
7639 case 0x3d: /* FRECPE */
7640 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
7641 break;
7642 case 0x3f: /* FRECPX */
7643 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
7644 break;
7645 case 0x7d: /* FRSQRTE */
7646 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
7647 break;
7648 default:
7649 g_assert_not_reached();
7651 write_vec_element(s, tcg_res, rd, pass, MO_64);
7653 if (is_scalar) {
7654 clear_vec_high(s, rd);
7657 tcg_temp_free_i64(tcg_res);
7658 tcg_temp_free_i64(tcg_op);
7659 } else {
7660 TCGv_i32 tcg_op = tcg_temp_new_i32();
7661 TCGv_i32 tcg_res = tcg_temp_new_i32();
7662 int pass, maxpasses;
7664 if (is_scalar) {
7665 maxpasses = 1;
7666 } else {
7667 maxpasses = is_q ? 4 : 2;
7670 for (pass = 0; pass < maxpasses; pass++) {
7671 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
7673 switch (opcode) {
7674 case 0x3c: /* URECPE */
7675 gen_helper_recpe_u32(tcg_res, tcg_op, fpst);
7676 break;
7677 case 0x3d: /* FRECPE */
7678 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
7679 break;
7680 case 0x3f: /* FRECPX */
7681 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
7682 break;
7683 case 0x7d: /* FRSQRTE */
7684 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
7685 break;
7686 default:
7687 g_assert_not_reached();
7690 if (is_scalar) {
7691 write_fp_sreg(s, rd, tcg_res);
7692 } else {
7693 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
7696 tcg_temp_free_i32(tcg_res);
7697 tcg_temp_free_i32(tcg_op);
7698 if (!is_q && !is_scalar) {
7699 clear_vec_high(s, rd);
7702 tcg_temp_free_ptr(fpst);
7705 static void handle_2misc_narrow(DisasContext *s, bool scalar,
7706 int opcode, bool u, bool is_q,
7707 int size, int rn, int rd)
7709 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
7710 * in the source becomes a size element in the destination).
7712 int pass;
7713 TCGv_i32 tcg_res[2];
7714 int destelt = is_q ? 2 : 0;
7715 int passes = scalar ? 1 : 2;
7717 if (scalar) {
7718 tcg_res[1] = tcg_const_i32(0);
7721 for (pass = 0; pass < passes; pass++) {
7722 TCGv_i64 tcg_op = tcg_temp_new_i64();
7723 NeonGenNarrowFn *genfn = NULL;
7724 NeonGenNarrowEnvFn *genenvfn = NULL;
7726 if (scalar) {
7727 read_vec_element(s, tcg_op, rn, pass, size + 1);
7728 } else {
7729 read_vec_element(s, tcg_op, rn, pass, MO_64);
7731 tcg_res[pass] = tcg_temp_new_i32();
7733 switch (opcode) {
7734 case 0x12: /* XTN, SQXTUN */
7736 static NeonGenNarrowFn * const xtnfns[3] = {
7737 gen_helper_neon_narrow_u8,
7738 gen_helper_neon_narrow_u16,
7739 tcg_gen_extrl_i64_i32,
7741 static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
7742 gen_helper_neon_unarrow_sat8,
7743 gen_helper_neon_unarrow_sat16,
7744 gen_helper_neon_unarrow_sat32,
7746 if (u) {
7747 genenvfn = sqxtunfns[size];
7748 } else {
7749 genfn = xtnfns[size];
7751 break;
7753 case 0x14: /* SQXTN, UQXTN */
7755 static NeonGenNarrowEnvFn * const fns[3][2] = {
7756 { gen_helper_neon_narrow_sat_s8,
7757 gen_helper_neon_narrow_sat_u8 },
7758 { gen_helper_neon_narrow_sat_s16,
7759 gen_helper_neon_narrow_sat_u16 },
7760 { gen_helper_neon_narrow_sat_s32,
7761 gen_helper_neon_narrow_sat_u32 },
7763 genenvfn = fns[size][u];
7764 break;
7766 case 0x16: /* FCVTN, FCVTN2 */
7767 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
7768 if (size == 2) {
7769 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env);
7770 } else {
7771 TCGv_i32 tcg_lo = tcg_temp_new_i32();
7772 TCGv_i32 tcg_hi = tcg_temp_new_i32();
7773 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
7774 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, cpu_env);
7775 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, cpu_env);
7776 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
7777 tcg_temp_free_i32(tcg_lo);
7778 tcg_temp_free_i32(tcg_hi);
7780 break;
7781 case 0x56: /* FCVTXN, FCVTXN2 */
7782 /* 64 bit to 32 bit float conversion
7783 * with von Neumann rounding (round to odd)
7785 assert(size == 2);
7786 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env);
7787 break;
7788 default:
7789 g_assert_not_reached();
7792 if (genfn) {
7793 genfn(tcg_res[pass], tcg_op);
7794 } else if (genenvfn) {
7795 genenvfn(tcg_res[pass], cpu_env, tcg_op);
7798 tcg_temp_free_i64(tcg_op);
7801 for (pass = 0; pass < 2; pass++) {
7802 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
7803 tcg_temp_free_i32(tcg_res[pass]);
7805 if (!is_q) {
7806 clear_vec_high(s, rd);
7810 /* Remaining saturating accumulating ops */
7811 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
7812 bool is_q, int size, int rn, int rd)
7814 bool is_double = (size == 3);
7816 if (is_double) {
7817 TCGv_i64 tcg_rn = tcg_temp_new_i64();
7818 TCGv_i64 tcg_rd = tcg_temp_new_i64();
7819 int pass;
7821 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
7822 read_vec_element(s, tcg_rn, rn, pass, MO_64);
7823 read_vec_element(s, tcg_rd, rd, pass, MO_64);
7825 if (is_u) { /* USQADD */
7826 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
7827 } else { /* SUQADD */
7828 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
7830 write_vec_element(s, tcg_rd, rd, pass, MO_64);
7832 if (is_scalar) {
7833 clear_vec_high(s, rd);
7836 tcg_temp_free_i64(tcg_rd);
7837 tcg_temp_free_i64(tcg_rn);
7838 } else {
7839 TCGv_i32 tcg_rn = tcg_temp_new_i32();
7840 TCGv_i32 tcg_rd = tcg_temp_new_i32();
7841 int pass, maxpasses;
7843 if (is_scalar) {
7844 maxpasses = 1;
7845 } else {
7846 maxpasses = is_q ? 4 : 2;
7849 for (pass = 0; pass < maxpasses; pass++) {
7850 if (is_scalar) {
7851 read_vec_element_i32(s, tcg_rn, rn, pass, size);
7852 read_vec_element_i32(s, tcg_rd, rd, pass, size);
7853 } else {
7854 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
7855 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
7858 if (is_u) { /* USQADD */
7859 switch (size) {
7860 case 0:
7861 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
7862 break;
7863 case 1:
7864 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
7865 break;
7866 case 2:
7867 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
7868 break;
7869 default:
7870 g_assert_not_reached();
7872 } else { /* SUQADD */
7873 switch (size) {
7874 case 0:
7875 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
7876 break;
7877 case 1:
7878 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
7879 break;
7880 case 2:
7881 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
7882 break;
7883 default:
7884 g_assert_not_reached();
7888 if (is_scalar) {
7889 TCGv_i64 tcg_zero = tcg_const_i64(0);
7890 write_vec_element(s, tcg_zero, rd, 0, MO_64);
7891 tcg_temp_free_i64(tcg_zero);
7893 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
7896 if (!is_q) {
7897 clear_vec_high(s, rd);
7900 tcg_temp_free_i32(tcg_rd);
7901 tcg_temp_free_i32(tcg_rn);
7905 /* C3.6.12 AdvSIMD scalar two reg misc
7906 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
7907 * +-----+---+-----------+------+-----------+--------+-----+------+------+
7908 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
7909 * +-----+---+-----------+------+-----------+--------+-----+------+------+
7911 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
7913 int rd = extract32(insn, 0, 5);
7914 int rn = extract32(insn, 5, 5);
7915 int opcode = extract32(insn, 12, 5);
7916 int size = extract32(insn, 22, 2);
7917 bool u = extract32(insn, 29, 1);
7918 bool is_fcvt = false;
7919 int rmode;
7920 TCGv_i32 tcg_rmode;
7921 TCGv_ptr tcg_fpstatus;
7923 switch (opcode) {
7924 case 0x3: /* USQADD / SUQADD*/
7925 if (!fp_access_check(s)) {
7926 return;
7928 handle_2misc_satacc(s, true, u, false, size, rn, rd);
7929 return;
7930 case 0x7: /* SQABS / SQNEG */
7931 break;
7932 case 0xa: /* CMLT */
7933 if (u) {
7934 unallocated_encoding(s);
7935 return;
7937 /* fall through */
7938 case 0x8: /* CMGT, CMGE */
7939 case 0x9: /* CMEQ, CMLE */
7940 case 0xb: /* ABS, NEG */
7941 if (size != 3) {
7942 unallocated_encoding(s);
7943 return;
7945 break;
7946 case 0x12: /* SQXTUN */
7947 if (!u) {
7948 unallocated_encoding(s);
7949 return;
7951 /* fall through */
7952 case 0x14: /* SQXTN, UQXTN */
7953 if (size == 3) {
7954 unallocated_encoding(s);
7955 return;
7957 if (!fp_access_check(s)) {
7958 return;
7960 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
7961 return;
7962 case 0xc ... 0xf:
7963 case 0x16 ... 0x1d:
7964 case 0x1f:
7965 /* Floating point: U, size[1] and opcode indicate operation;
7966 * size[0] indicates single or double precision.
7968 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
7969 size = extract32(size, 0, 1) ? 3 : 2;
7970 switch (opcode) {
7971 case 0x2c: /* FCMGT (zero) */
7972 case 0x2d: /* FCMEQ (zero) */
7973 case 0x2e: /* FCMLT (zero) */
7974 case 0x6c: /* FCMGE (zero) */
7975 case 0x6d: /* FCMLE (zero) */
7976 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
7977 return;
7978 case 0x1d: /* SCVTF */
7979 case 0x5d: /* UCVTF */
7981 bool is_signed = (opcode == 0x1d);
7982 if (!fp_access_check(s)) {
7983 return;
7985 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
7986 return;
7988 case 0x3d: /* FRECPE */
7989 case 0x3f: /* FRECPX */
7990 case 0x7d: /* FRSQRTE */
7991 if (!fp_access_check(s)) {
7992 return;
7994 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
7995 return;
7996 case 0x1a: /* FCVTNS */
7997 case 0x1b: /* FCVTMS */
7998 case 0x3a: /* FCVTPS */
7999 case 0x3b: /* FCVTZS */
8000 case 0x5a: /* FCVTNU */
8001 case 0x5b: /* FCVTMU */
8002 case 0x7a: /* FCVTPU */
8003 case 0x7b: /* FCVTZU */
8004 is_fcvt = true;
8005 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
8006 break;
8007 case 0x1c: /* FCVTAS */
8008 case 0x5c: /* FCVTAU */
8009 /* TIEAWAY doesn't fit in the usual rounding mode encoding */
8010 is_fcvt = true;
8011 rmode = FPROUNDING_TIEAWAY;
8012 break;
8013 case 0x56: /* FCVTXN, FCVTXN2 */
8014 if (size == 2) {
8015 unallocated_encoding(s);
8016 return;
8018 if (!fp_access_check(s)) {
8019 return;
8021 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
8022 return;
8023 default:
8024 unallocated_encoding(s);
8025 return;
8027 break;
8028 default:
8029 unallocated_encoding(s);
8030 return;
8033 if (!fp_access_check(s)) {
8034 return;
8037 if (is_fcvt) {
8038 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
8039 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
8040 tcg_fpstatus = get_fpstatus_ptr();
8041 } else {
8042 TCGV_UNUSED_I32(tcg_rmode);
8043 TCGV_UNUSED_PTR(tcg_fpstatus);
8046 if (size == 3) {
8047 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
8048 TCGv_i64 tcg_rd = tcg_temp_new_i64();
8050 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
8051 write_fp_dreg(s, rd, tcg_rd);
8052 tcg_temp_free_i64(tcg_rd);
8053 tcg_temp_free_i64(tcg_rn);
8054 } else {
8055 TCGv_i32 tcg_rn = tcg_temp_new_i32();
8056 TCGv_i32 tcg_rd = tcg_temp_new_i32();
8058 read_vec_element_i32(s, tcg_rn, rn, 0, size);
8060 switch (opcode) {
8061 case 0x7: /* SQABS, SQNEG */
8063 NeonGenOneOpEnvFn *genfn;
8064 static NeonGenOneOpEnvFn * const fns[3][2] = {
8065 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
8066 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
8067 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
8069 genfn = fns[size][u];
8070 genfn(tcg_rd, cpu_env, tcg_rn);
8071 break;
8073 case 0x1a: /* FCVTNS */
8074 case 0x1b: /* FCVTMS */
8075 case 0x1c: /* FCVTAS */
8076 case 0x3a: /* FCVTPS */
8077 case 0x3b: /* FCVTZS */
8079 TCGv_i32 tcg_shift = tcg_const_i32(0);
8080 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
8081 tcg_temp_free_i32(tcg_shift);
8082 break;
8084 case 0x5a: /* FCVTNU */
8085 case 0x5b: /* FCVTMU */
8086 case 0x5c: /* FCVTAU */
8087 case 0x7a: /* FCVTPU */
8088 case 0x7b: /* FCVTZU */
8090 TCGv_i32 tcg_shift = tcg_const_i32(0);
8091 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
8092 tcg_temp_free_i32(tcg_shift);
8093 break;
8095 default:
8096 g_assert_not_reached();
8099 write_fp_sreg(s, rd, tcg_rd);
8100 tcg_temp_free_i32(tcg_rd);
8101 tcg_temp_free_i32(tcg_rn);
8104 if (is_fcvt) {
8105 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
8106 tcg_temp_free_i32(tcg_rmode);
8107 tcg_temp_free_ptr(tcg_fpstatus);
8111 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
8112 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
8113 int immh, int immb, int opcode, int rn, int rd)
8115 int size = 32 - clz32(immh) - 1;
8116 int immhb = immh << 3 | immb;
8117 int shift = 2 * (8 << size) - immhb;
8118 bool accumulate = false;
8119 bool round = false;
8120 bool insert = false;
8121 int dsize = is_q ? 128 : 64;
8122 int esize = 8 << size;
8123 int elements = dsize/esize;
8124 TCGMemOp memop = size | (is_u ? 0 : MO_SIGN);
8125 TCGv_i64 tcg_rn = new_tmp_a64(s);
8126 TCGv_i64 tcg_rd = new_tmp_a64(s);
8127 TCGv_i64 tcg_round;
8128 int i;
8130 if (extract32(immh, 3, 1) && !is_q) {
8131 unallocated_encoding(s);
8132 return;
8135 if (size > 3 && !is_q) {
8136 unallocated_encoding(s);
8137 return;
8140 if (!fp_access_check(s)) {
8141 return;
8144 switch (opcode) {
8145 case 0x02: /* SSRA / USRA (accumulate) */
8146 accumulate = true;
8147 break;
8148 case 0x04: /* SRSHR / URSHR (rounding) */
8149 round = true;
8150 break;
8151 case 0x06: /* SRSRA / URSRA (accum + rounding) */
8152 accumulate = round = true;
8153 break;
8154 case 0x08: /* SRI */
8155 insert = true;
8156 break;
8159 if (round) {
8160 uint64_t round_const = 1ULL << (shift - 1);
8161 tcg_round = tcg_const_i64(round_const);
8162 } else {
8163 TCGV_UNUSED_I64(tcg_round);
8166 for (i = 0; i < elements; i++) {
8167 read_vec_element(s, tcg_rn, rn, i, memop);
8168 if (accumulate || insert) {
8169 read_vec_element(s, tcg_rd, rd, i, memop);
8172 if (insert) {
8173 handle_shri_with_ins(tcg_rd, tcg_rn, size, shift);
8174 } else {
8175 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8176 accumulate, is_u, size, shift);
8179 write_vec_element(s, tcg_rd, rd, i, size);
8182 if (!is_q) {
8183 clear_vec_high(s, rd);
8186 if (round) {
8187 tcg_temp_free_i64(tcg_round);
8191 /* SHL/SLI - Vector shift left */
8192 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
8193 int immh, int immb, int opcode, int rn, int rd)
8195 int size = 32 - clz32(immh) - 1;
8196 int immhb = immh << 3 | immb;
8197 int shift = immhb - (8 << size);
8198 int dsize = is_q ? 128 : 64;
8199 int esize = 8 << size;
8200 int elements = dsize/esize;
8201 TCGv_i64 tcg_rn = new_tmp_a64(s);
8202 TCGv_i64 tcg_rd = new_tmp_a64(s);
8203 int i;
8205 if (extract32(immh, 3, 1) && !is_q) {
8206 unallocated_encoding(s);
8207 return;
8210 if (size > 3 && !is_q) {
8211 unallocated_encoding(s);
8212 return;
8215 if (!fp_access_check(s)) {
8216 return;
8219 for (i = 0; i < elements; i++) {
8220 read_vec_element(s, tcg_rn, rn, i, size);
8221 if (insert) {
8222 read_vec_element(s, tcg_rd, rd, i, size);
8225 handle_shli_with_ins(tcg_rd, tcg_rn, insert, shift);
8227 write_vec_element(s, tcg_rd, rd, i, size);
8230 if (!is_q) {
8231 clear_vec_high(s, rd);
8235 /* USHLL/SHLL - Vector shift left with widening */
8236 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
8237 int immh, int immb, int opcode, int rn, int rd)
8239 int size = 32 - clz32(immh) - 1;
8240 int immhb = immh << 3 | immb;
8241 int shift = immhb - (8 << size);
8242 int dsize = 64;
8243 int esize = 8 << size;
8244 int elements = dsize/esize;
8245 TCGv_i64 tcg_rn = new_tmp_a64(s);
8246 TCGv_i64 tcg_rd = new_tmp_a64(s);
8247 int i;
8249 if (size >= 3) {
8250 unallocated_encoding(s);
8251 return;
8254 if (!fp_access_check(s)) {
8255 return;
8258 /* For the LL variants the store is larger than the load,
8259 * so if rd == rn we would overwrite parts of our input.
8260 * So load everything right now and use shifts in the main loop.
8262 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
8264 for (i = 0; i < elements; i++) {
8265 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
8266 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
8267 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
8268 write_vec_element(s, tcg_rd, rd, i, size + 1);
8272 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
8273 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
8274 int immh, int immb, int opcode, int rn, int rd)
8276 int immhb = immh << 3 | immb;
8277 int size = 32 - clz32(immh) - 1;
8278 int dsize = 64;
8279 int esize = 8 << size;
8280 int elements = dsize/esize;
8281 int shift = (2 * esize) - immhb;
8282 bool round = extract32(opcode, 0, 1);
8283 TCGv_i64 tcg_rn, tcg_rd, tcg_final;
8284 TCGv_i64 tcg_round;
8285 int i;
8287 if (extract32(immh, 3, 1)) {
8288 unallocated_encoding(s);
8289 return;
8292 if (!fp_access_check(s)) {
8293 return;
8296 tcg_rn = tcg_temp_new_i64();
8297 tcg_rd = tcg_temp_new_i64();
8298 tcg_final = tcg_temp_new_i64();
8299 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
8301 if (round) {
8302 uint64_t round_const = 1ULL << (shift - 1);
8303 tcg_round = tcg_const_i64(round_const);
8304 } else {
8305 TCGV_UNUSED_I64(tcg_round);
8308 for (i = 0; i < elements; i++) {
8309 read_vec_element(s, tcg_rn, rn, i, size+1);
8310 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8311 false, true, size+1, shift);
8313 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8316 if (!is_q) {
8317 clear_vec_high(s, rd);
8318 write_vec_element(s, tcg_final, rd, 0, MO_64);
8319 } else {
8320 write_vec_element(s, tcg_final, rd, 1, MO_64);
8323 if (round) {
8324 tcg_temp_free_i64(tcg_round);
8326 tcg_temp_free_i64(tcg_rn);
8327 tcg_temp_free_i64(tcg_rd);
8328 tcg_temp_free_i64(tcg_final);
8329 return;
8333 /* C3.6.14 AdvSIMD shift by immediate
8334 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
8335 * +---+---+---+-------------+------+------+--------+---+------+------+
8336 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
8337 * +---+---+---+-------------+------+------+--------+---+------+------+
8339 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
8341 int rd = extract32(insn, 0, 5);
8342 int rn = extract32(insn, 5, 5);
8343 int opcode = extract32(insn, 11, 5);
8344 int immb = extract32(insn, 16, 3);
8345 int immh = extract32(insn, 19, 4);
8346 bool is_u = extract32(insn, 29, 1);
8347 bool is_q = extract32(insn, 30, 1);
8349 switch (opcode) {
8350 case 0x08: /* SRI */
8351 if (!is_u) {
8352 unallocated_encoding(s);
8353 return;
8355 /* fall through */
8356 case 0x00: /* SSHR / USHR */
8357 case 0x02: /* SSRA / USRA (accumulate) */
8358 case 0x04: /* SRSHR / URSHR (rounding) */
8359 case 0x06: /* SRSRA / URSRA (accum + rounding) */
8360 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
8361 break;
8362 case 0x0a: /* SHL / SLI */
8363 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
8364 break;
8365 case 0x10: /* SHRN */
8366 case 0x11: /* RSHRN / SQRSHRUN */
8367 if (is_u) {
8368 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
8369 opcode, rn, rd);
8370 } else {
8371 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
8373 break;
8374 case 0x12: /* SQSHRN / UQSHRN */
8375 case 0x13: /* SQRSHRN / UQRSHRN */
8376 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
8377 opcode, rn, rd);
8378 break;
8379 case 0x14: /* SSHLL / USHLL */
8380 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
8381 break;
8382 case 0x1c: /* SCVTF / UCVTF */
8383 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
8384 opcode, rn, rd);
8385 break;
8386 case 0xc: /* SQSHLU */
8387 if (!is_u) {
8388 unallocated_encoding(s);
8389 return;
8391 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
8392 break;
8393 case 0xe: /* SQSHL, UQSHL */
8394 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
8395 break;
8396 case 0x1f: /* FCVTZS/ FCVTZU */
8397 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
8398 return;
8399 default:
8400 unallocated_encoding(s);
8401 return;
8405 /* Generate code to do a "long" addition or subtraction, ie one done in
8406 * TCGv_i64 on vector lanes twice the width specified by size.
8408 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
8409 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
8411 static NeonGenTwo64OpFn * const fns[3][2] = {
8412 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
8413 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
8414 { tcg_gen_add_i64, tcg_gen_sub_i64 },
8416 NeonGenTwo64OpFn *genfn;
8417 assert(size < 3);
8419 genfn = fns[size][is_sub];
8420 genfn(tcg_res, tcg_op1, tcg_op2);
8423 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
8424 int opcode, int rd, int rn, int rm)
8426 /* 3-reg-different widening insns: 64 x 64 -> 128 */
8427 TCGv_i64 tcg_res[2];
8428 int pass, accop;
8430 tcg_res[0] = tcg_temp_new_i64();
8431 tcg_res[1] = tcg_temp_new_i64();
8433 /* Does this op do an adding accumulate, a subtracting accumulate,
8434 * or no accumulate at all?
8436 switch (opcode) {
8437 case 5:
8438 case 8:
8439 case 9:
8440 accop = 1;
8441 break;
8442 case 10:
8443 case 11:
8444 accop = -1;
8445 break;
8446 default:
8447 accop = 0;
8448 break;
8451 if (accop != 0) {
8452 read_vec_element(s, tcg_res[0], rd, 0, MO_64);
8453 read_vec_element(s, tcg_res[1], rd, 1, MO_64);
8456 /* size == 2 means two 32x32->64 operations; this is worth special
8457 * casing because we can generally handle it inline.
8459 if (size == 2) {
8460 for (pass = 0; pass < 2; pass++) {
8461 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8462 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8463 TCGv_i64 tcg_passres;
8464 TCGMemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
8466 int elt = pass + is_q * 2;
8468 read_vec_element(s, tcg_op1, rn, elt, memop);
8469 read_vec_element(s, tcg_op2, rm, elt, memop);
8471 if (accop == 0) {
8472 tcg_passres = tcg_res[pass];
8473 } else {
8474 tcg_passres = tcg_temp_new_i64();
8477 switch (opcode) {
8478 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
8479 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
8480 break;
8481 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
8482 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
8483 break;
8484 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
8485 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
8487 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
8488 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
8490 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
8491 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
8492 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
8493 tcg_passres,
8494 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
8495 tcg_temp_free_i64(tcg_tmp1);
8496 tcg_temp_free_i64(tcg_tmp2);
8497 break;
8499 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
8500 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
8501 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
8502 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
8503 break;
8504 case 9: /* SQDMLAL, SQDMLAL2 */
8505 case 11: /* SQDMLSL, SQDMLSL2 */
8506 case 13: /* SQDMULL, SQDMULL2 */
8507 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
8508 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
8509 tcg_passres, tcg_passres);
8510 break;
8511 default:
8512 g_assert_not_reached();
8515 if (opcode == 9 || opcode == 11) {
8516 /* saturating accumulate ops */
8517 if (accop < 0) {
8518 tcg_gen_neg_i64(tcg_passres, tcg_passres);
8520 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
8521 tcg_res[pass], tcg_passres);
8522 } else if (accop > 0) {
8523 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
8524 } else if (accop < 0) {
8525 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
8528 if (accop != 0) {
8529 tcg_temp_free_i64(tcg_passres);
8532 tcg_temp_free_i64(tcg_op1);
8533 tcg_temp_free_i64(tcg_op2);
8535 } else {
8536 /* size 0 or 1, generally helper functions */
8537 for (pass = 0; pass < 2; pass++) {
8538 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8539 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8540 TCGv_i64 tcg_passres;
8541 int elt = pass + is_q * 2;
8543 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
8544 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
8546 if (accop == 0) {
8547 tcg_passres = tcg_res[pass];
8548 } else {
8549 tcg_passres = tcg_temp_new_i64();
8552 switch (opcode) {
8553 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
8554 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
8556 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
8557 static NeonGenWidenFn * const widenfns[2][2] = {
8558 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
8559 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
8561 NeonGenWidenFn *widenfn = widenfns[size][is_u];
8563 widenfn(tcg_op2_64, tcg_op2);
8564 widenfn(tcg_passres, tcg_op1);
8565 gen_neon_addl(size, (opcode == 2), tcg_passres,
8566 tcg_passres, tcg_op2_64);
8567 tcg_temp_free_i64(tcg_op2_64);
8568 break;
8570 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
8571 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
8572 if (size == 0) {
8573 if (is_u) {
8574 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
8575 } else {
8576 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
8578 } else {
8579 if (is_u) {
8580 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
8581 } else {
8582 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
8585 break;
8586 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
8587 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
8588 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
8589 if (size == 0) {
8590 if (is_u) {
8591 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
8592 } else {
8593 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
8595 } else {
8596 if (is_u) {
8597 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
8598 } else {
8599 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
8602 break;
8603 case 9: /* SQDMLAL, SQDMLAL2 */
8604 case 11: /* SQDMLSL, SQDMLSL2 */
8605 case 13: /* SQDMULL, SQDMULL2 */
8606 assert(size == 1);
8607 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
8608 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
8609 tcg_passres, tcg_passres);
8610 break;
8611 case 14: /* PMULL */
8612 assert(size == 0);
8613 gen_helper_neon_mull_p8(tcg_passres, tcg_op1, tcg_op2);
8614 break;
8615 default:
8616 g_assert_not_reached();
8618 tcg_temp_free_i32(tcg_op1);
8619 tcg_temp_free_i32(tcg_op2);
8621 if (accop != 0) {
8622 if (opcode == 9 || opcode == 11) {
8623 /* saturating accumulate ops */
8624 if (accop < 0) {
8625 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
8627 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
8628 tcg_res[pass],
8629 tcg_passres);
8630 } else {
8631 gen_neon_addl(size, (accop < 0), tcg_res[pass],
8632 tcg_res[pass], tcg_passres);
8634 tcg_temp_free_i64(tcg_passres);
8639 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
8640 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
8641 tcg_temp_free_i64(tcg_res[0]);
8642 tcg_temp_free_i64(tcg_res[1]);
8645 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
8646 int opcode, int rd, int rn, int rm)
8648 TCGv_i64 tcg_res[2];
8649 int part = is_q ? 2 : 0;
8650 int pass;
8652 for (pass = 0; pass < 2; pass++) {
8653 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8654 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8655 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
8656 static NeonGenWidenFn * const widenfns[3][2] = {
8657 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
8658 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
8659 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
8661 NeonGenWidenFn *widenfn = widenfns[size][is_u];
8663 read_vec_element(s, tcg_op1, rn, pass, MO_64);
8664 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
8665 widenfn(tcg_op2_wide, tcg_op2);
8666 tcg_temp_free_i32(tcg_op2);
8667 tcg_res[pass] = tcg_temp_new_i64();
8668 gen_neon_addl(size, (opcode == 3),
8669 tcg_res[pass], tcg_op1, tcg_op2_wide);
8670 tcg_temp_free_i64(tcg_op1);
8671 tcg_temp_free_i64(tcg_op2_wide);
8674 for (pass = 0; pass < 2; pass++) {
8675 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
8676 tcg_temp_free_i64(tcg_res[pass]);
8680 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
8682 tcg_gen_addi_i64(in, in, 1U << 31);
8683 tcg_gen_extrh_i64_i32(res, in);
8686 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
8687 int opcode, int rd, int rn, int rm)
8689 TCGv_i32 tcg_res[2];
8690 int part = is_q ? 2 : 0;
8691 int pass;
8693 for (pass = 0; pass < 2; pass++) {
8694 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8695 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8696 TCGv_i64 tcg_wideres = tcg_temp_new_i64();
8697 static NeonGenNarrowFn * const narrowfns[3][2] = {
8698 { gen_helper_neon_narrow_high_u8,
8699 gen_helper_neon_narrow_round_high_u8 },
8700 { gen_helper_neon_narrow_high_u16,
8701 gen_helper_neon_narrow_round_high_u16 },
8702 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
8704 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
8706 read_vec_element(s, tcg_op1, rn, pass, MO_64);
8707 read_vec_element(s, tcg_op2, rm, pass, MO_64);
8709 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
8711 tcg_temp_free_i64(tcg_op1);
8712 tcg_temp_free_i64(tcg_op2);
8714 tcg_res[pass] = tcg_temp_new_i32();
8715 gennarrow(tcg_res[pass], tcg_wideres);
8716 tcg_temp_free_i64(tcg_wideres);
8719 for (pass = 0; pass < 2; pass++) {
8720 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
8721 tcg_temp_free_i32(tcg_res[pass]);
8723 if (!is_q) {
8724 clear_vec_high(s, rd);
8728 static void handle_pmull_64(DisasContext *s, int is_q, int rd, int rn, int rm)
8730 /* PMULL of 64 x 64 -> 128 is an odd special case because it
8731 * is the only three-reg-diff instruction which produces a
8732 * 128-bit wide result from a single operation. However since
8733 * it's possible to calculate the two halves more or less
8734 * separately we just use two helper calls.
8736 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8737 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8738 TCGv_i64 tcg_res = tcg_temp_new_i64();
8740 read_vec_element(s, tcg_op1, rn, is_q, MO_64);
8741 read_vec_element(s, tcg_op2, rm, is_q, MO_64);
8742 gen_helper_neon_pmull_64_lo(tcg_res, tcg_op1, tcg_op2);
8743 write_vec_element(s, tcg_res, rd, 0, MO_64);
8744 gen_helper_neon_pmull_64_hi(tcg_res, tcg_op1, tcg_op2);
8745 write_vec_element(s, tcg_res, rd, 1, MO_64);
8747 tcg_temp_free_i64(tcg_op1);
8748 tcg_temp_free_i64(tcg_op2);
8749 tcg_temp_free_i64(tcg_res);
8752 /* C3.6.15 AdvSIMD three different
8753 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
8754 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
8755 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
8756 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
8758 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
8760 /* Instructions in this group fall into three basic classes
8761 * (in each case with the operation working on each element in
8762 * the input vectors):
8763 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
8764 * 128 bit input)
8765 * (2) wide 64 x 128 -> 128
8766 * (3) narrowing 128 x 128 -> 64
8767 * Here we do initial decode, catch unallocated cases and
8768 * dispatch to separate functions for each class.
8770 int is_q = extract32(insn, 30, 1);
8771 int is_u = extract32(insn, 29, 1);
8772 int size = extract32(insn, 22, 2);
8773 int opcode = extract32(insn, 12, 4);
8774 int rm = extract32(insn, 16, 5);
8775 int rn = extract32(insn, 5, 5);
8776 int rd = extract32(insn, 0, 5);
8778 switch (opcode) {
8779 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
8780 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
8781 /* 64 x 128 -> 128 */
8782 if (size == 3) {
8783 unallocated_encoding(s);
8784 return;
8786 if (!fp_access_check(s)) {
8787 return;
8789 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
8790 break;
8791 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
8792 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
8793 /* 128 x 128 -> 64 */
8794 if (size == 3) {
8795 unallocated_encoding(s);
8796 return;
8798 if (!fp_access_check(s)) {
8799 return;
8801 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
8802 break;
8803 case 14: /* PMULL, PMULL2 */
8804 if (is_u || size == 1 || size == 2) {
8805 unallocated_encoding(s);
8806 return;
8808 if (size == 3) {
8809 if (!arm_dc_feature(s, ARM_FEATURE_V8_PMULL)) {
8810 unallocated_encoding(s);
8811 return;
8813 if (!fp_access_check(s)) {
8814 return;
8816 handle_pmull_64(s, is_q, rd, rn, rm);
8817 return;
8819 goto is_widening;
8820 case 9: /* SQDMLAL, SQDMLAL2 */
8821 case 11: /* SQDMLSL, SQDMLSL2 */
8822 case 13: /* SQDMULL, SQDMULL2 */
8823 if (is_u || size == 0) {
8824 unallocated_encoding(s);
8825 return;
8827 /* fall through */
8828 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
8829 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
8830 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
8831 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
8832 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
8833 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
8834 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
8835 /* 64 x 64 -> 128 */
8836 if (size == 3) {
8837 unallocated_encoding(s);
8838 return;
8840 is_widening:
8841 if (!fp_access_check(s)) {
8842 return;
8845 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
8846 break;
8847 default:
8848 /* opcode 15 not allocated */
8849 unallocated_encoding(s);
8850 break;
8854 /* Logic op (opcode == 3) subgroup of C3.6.16. */
8855 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
8857 int rd = extract32(insn, 0, 5);
8858 int rn = extract32(insn, 5, 5);
8859 int rm = extract32(insn, 16, 5);
8860 int size = extract32(insn, 22, 2);
8861 bool is_u = extract32(insn, 29, 1);
8862 bool is_q = extract32(insn, 30, 1);
8863 TCGv_i64 tcg_op1, tcg_op2, tcg_res[2];
8864 int pass;
8866 if (!fp_access_check(s)) {
8867 return;
8870 tcg_op1 = tcg_temp_new_i64();
8871 tcg_op2 = tcg_temp_new_i64();
8872 tcg_res[0] = tcg_temp_new_i64();
8873 tcg_res[1] = tcg_temp_new_i64();
8875 for (pass = 0; pass < (is_q ? 2 : 1); pass++) {
8876 read_vec_element(s, tcg_op1, rn, pass, MO_64);
8877 read_vec_element(s, tcg_op2, rm, pass, MO_64);
8879 if (!is_u) {
8880 switch (size) {
8881 case 0: /* AND */
8882 tcg_gen_and_i64(tcg_res[pass], tcg_op1, tcg_op2);
8883 break;
8884 case 1: /* BIC */
8885 tcg_gen_andc_i64(tcg_res[pass], tcg_op1, tcg_op2);
8886 break;
8887 case 2: /* ORR */
8888 tcg_gen_or_i64(tcg_res[pass], tcg_op1, tcg_op2);
8889 break;
8890 case 3: /* ORN */
8891 tcg_gen_orc_i64(tcg_res[pass], tcg_op1, tcg_op2);
8892 break;
8894 } else {
8895 if (size != 0) {
8896 /* B* ops need res loaded to operate on */
8897 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
8900 switch (size) {
8901 case 0: /* EOR */
8902 tcg_gen_xor_i64(tcg_res[pass], tcg_op1, tcg_op2);
8903 break;
8904 case 1: /* BSL bitwise select */
8905 tcg_gen_xor_i64(tcg_op1, tcg_op1, tcg_op2);
8906 tcg_gen_and_i64(tcg_op1, tcg_op1, tcg_res[pass]);
8907 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op1);
8908 break;
8909 case 2: /* BIT, bitwise insert if true */
8910 tcg_gen_xor_i64(tcg_op1, tcg_op1, tcg_res[pass]);
8911 tcg_gen_and_i64(tcg_op1, tcg_op1, tcg_op2);
8912 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
8913 break;
8914 case 3: /* BIF, bitwise insert if false */
8915 tcg_gen_xor_i64(tcg_op1, tcg_op1, tcg_res[pass]);
8916 tcg_gen_andc_i64(tcg_op1, tcg_op1, tcg_op2);
8917 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
8918 break;
8923 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
8924 if (!is_q) {
8925 tcg_gen_movi_i64(tcg_res[1], 0);
8927 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
8929 tcg_temp_free_i64(tcg_op1);
8930 tcg_temp_free_i64(tcg_op2);
8931 tcg_temp_free_i64(tcg_res[0]);
8932 tcg_temp_free_i64(tcg_res[1]);
8935 /* Helper functions for 32 bit comparisons */
8936 static void gen_max_s32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
8938 tcg_gen_movcond_i32(TCG_COND_GE, res, op1, op2, op1, op2);
8941 static void gen_max_u32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
8943 tcg_gen_movcond_i32(TCG_COND_GEU, res, op1, op2, op1, op2);
8946 static void gen_min_s32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
8948 tcg_gen_movcond_i32(TCG_COND_LE, res, op1, op2, op1, op2);
8951 static void gen_min_u32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
8953 tcg_gen_movcond_i32(TCG_COND_LEU, res, op1, op2, op1, op2);
8956 /* Pairwise op subgroup of C3.6.16.
8958 * This is called directly or via the handle_3same_float for float pairwise
8959 * operations where the opcode and size are calculated differently.
8961 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
8962 int size, int rn, int rm, int rd)
8964 TCGv_ptr fpst;
8965 int pass;
8967 /* Floating point operations need fpst */
8968 if (opcode >= 0x58) {
8969 fpst = get_fpstatus_ptr();
8970 } else {
8971 TCGV_UNUSED_PTR(fpst);
8974 if (!fp_access_check(s)) {
8975 return;
8978 /* These operations work on the concatenated rm:rn, with each pair of
8979 * adjacent elements being operated on to produce an element in the result.
8981 if (size == 3) {
8982 TCGv_i64 tcg_res[2];
8984 for (pass = 0; pass < 2; pass++) {
8985 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8986 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8987 int passreg = (pass == 0) ? rn : rm;
8989 read_vec_element(s, tcg_op1, passreg, 0, MO_64);
8990 read_vec_element(s, tcg_op2, passreg, 1, MO_64);
8991 tcg_res[pass] = tcg_temp_new_i64();
8993 switch (opcode) {
8994 case 0x17: /* ADDP */
8995 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
8996 break;
8997 case 0x58: /* FMAXNMP */
8998 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
8999 break;
9000 case 0x5a: /* FADDP */
9001 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9002 break;
9003 case 0x5e: /* FMAXP */
9004 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9005 break;
9006 case 0x78: /* FMINNMP */
9007 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9008 break;
9009 case 0x7e: /* FMINP */
9010 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9011 break;
9012 default:
9013 g_assert_not_reached();
9016 tcg_temp_free_i64(tcg_op1);
9017 tcg_temp_free_i64(tcg_op2);
9020 for (pass = 0; pass < 2; pass++) {
9021 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
9022 tcg_temp_free_i64(tcg_res[pass]);
9024 } else {
9025 int maxpass = is_q ? 4 : 2;
9026 TCGv_i32 tcg_res[4];
9028 for (pass = 0; pass < maxpass; pass++) {
9029 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9030 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9031 NeonGenTwoOpFn *genfn = NULL;
9032 int passreg = pass < (maxpass / 2) ? rn : rm;
9033 int passelt = (is_q && (pass & 1)) ? 2 : 0;
9035 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
9036 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
9037 tcg_res[pass] = tcg_temp_new_i32();
9039 switch (opcode) {
9040 case 0x17: /* ADDP */
9042 static NeonGenTwoOpFn * const fns[3] = {
9043 gen_helper_neon_padd_u8,
9044 gen_helper_neon_padd_u16,
9045 tcg_gen_add_i32,
9047 genfn = fns[size];
9048 break;
9050 case 0x14: /* SMAXP, UMAXP */
9052 static NeonGenTwoOpFn * const fns[3][2] = {
9053 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
9054 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
9055 { gen_max_s32, gen_max_u32 },
9057 genfn = fns[size][u];
9058 break;
9060 case 0x15: /* SMINP, UMINP */
9062 static NeonGenTwoOpFn * const fns[3][2] = {
9063 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
9064 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
9065 { gen_min_s32, gen_min_u32 },
9067 genfn = fns[size][u];
9068 break;
9070 /* The FP operations are all on single floats (32 bit) */
9071 case 0x58: /* FMAXNMP */
9072 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9073 break;
9074 case 0x5a: /* FADDP */
9075 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9076 break;
9077 case 0x5e: /* FMAXP */
9078 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9079 break;
9080 case 0x78: /* FMINNMP */
9081 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9082 break;
9083 case 0x7e: /* FMINP */
9084 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9085 break;
9086 default:
9087 g_assert_not_reached();
9090 /* FP ops called directly, otherwise call now */
9091 if (genfn) {
9092 genfn(tcg_res[pass], tcg_op1, tcg_op2);
9095 tcg_temp_free_i32(tcg_op1);
9096 tcg_temp_free_i32(tcg_op2);
9099 for (pass = 0; pass < maxpass; pass++) {
9100 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
9101 tcg_temp_free_i32(tcg_res[pass]);
9103 if (!is_q) {
9104 clear_vec_high(s, rd);
9108 if (!TCGV_IS_UNUSED_PTR(fpst)) {
9109 tcg_temp_free_ptr(fpst);
9113 /* Floating point op subgroup of C3.6.16. */
9114 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
9116 /* For floating point ops, the U, size[1] and opcode bits
9117 * together indicate the operation. size[0] indicates single
9118 * or double.
9120 int fpopcode = extract32(insn, 11, 5)
9121 | (extract32(insn, 23, 1) << 5)
9122 | (extract32(insn, 29, 1) << 6);
9123 int is_q = extract32(insn, 30, 1);
9124 int size = extract32(insn, 22, 1);
9125 int rm = extract32(insn, 16, 5);
9126 int rn = extract32(insn, 5, 5);
9127 int rd = extract32(insn, 0, 5);
9129 int datasize = is_q ? 128 : 64;
9130 int esize = 32 << size;
9131 int elements = datasize / esize;
9133 if (size == 1 && !is_q) {
9134 unallocated_encoding(s);
9135 return;
9138 switch (fpopcode) {
9139 case 0x58: /* FMAXNMP */
9140 case 0x5a: /* FADDP */
9141 case 0x5e: /* FMAXP */
9142 case 0x78: /* FMINNMP */
9143 case 0x7e: /* FMINP */
9144 if (size && !is_q) {
9145 unallocated_encoding(s);
9146 return;
9148 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
9149 rn, rm, rd);
9150 return;
9151 case 0x1b: /* FMULX */
9152 case 0x1f: /* FRECPS */
9153 case 0x3f: /* FRSQRTS */
9154 case 0x5d: /* FACGE */
9155 case 0x7d: /* FACGT */
9156 case 0x19: /* FMLA */
9157 case 0x39: /* FMLS */
9158 case 0x18: /* FMAXNM */
9159 case 0x1a: /* FADD */
9160 case 0x1c: /* FCMEQ */
9161 case 0x1e: /* FMAX */
9162 case 0x38: /* FMINNM */
9163 case 0x3a: /* FSUB */
9164 case 0x3e: /* FMIN */
9165 case 0x5b: /* FMUL */
9166 case 0x5c: /* FCMGE */
9167 case 0x5f: /* FDIV */
9168 case 0x7a: /* FABD */
9169 case 0x7c: /* FCMGT */
9170 if (!fp_access_check(s)) {
9171 return;
9174 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
9175 return;
9176 default:
9177 unallocated_encoding(s);
9178 return;
9182 /* Integer op subgroup of C3.6.16. */
9183 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
9185 int is_q = extract32(insn, 30, 1);
9186 int u = extract32(insn, 29, 1);
9187 int size = extract32(insn, 22, 2);
9188 int opcode = extract32(insn, 11, 5);
9189 int rm = extract32(insn, 16, 5);
9190 int rn = extract32(insn, 5, 5);
9191 int rd = extract32(insn, 0, 5);
9192 int pass;
9194 switch (opcode) {
9195 case 0x13: /* MUL, PMUL */
9196 if (u && size != 0) {
9197 unallocated_encoding(s);
9198 return;
9200 /* fall through */
9201 case 0x0: /* SHADD, UHADD */
9202 case 0x2: /* SRHADD, URHADD */
9203 case 0x4: /* SHSUB, UHSUB */
9204 case 0xc: /* SMAX, UMAX */
9205 case 0xd: /* SMIN, UMIN */
9206 case 0xe: /* SABD, UABD */
9207 case 0xf: /* SABA, UABA */
9208 case 0x12: /* MLA, MLS */
9209 if (size == 3) {
9210 unallocated_encoding(s);
9211 return;
9213 break;
9214 case 0x16: /* SQDMULH, SQRDMULH */
9215 if (size == 0 || size == 3) {
9216 unallocated_encoding(s);
9217 return;
9219 break;
9220 default:
9221 if (size == 3 && !is_q) {
9222 unallocated_encoding(s);
9223 return;
9225 break;
9228 if (!fp_access_check(s)) {
9229 return;
9232 if (size == 3) {
9233 assert(is_q);
9234 for (pass = 0; pass < 2; pass++) {
9235 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9236 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9237 TCGv_i64 tcg_res = tcg_temp_new_i64();
9239 read_vec_element(s, tcg_op1, rn, pass, MO_64);
9240 read_vec_element(s, tcg_op2, rm, pass, MO_64);
9242 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
9244 write_vec_element(s, tcg_res, rd, pass, MO_64);
9246 tcg_temp_free_i64(tcg_res);
9247 tcg_temp_free_i64(tcg_op1);
9248 tcg_temp_free_i64(tcg_op2);
9250 } else {
9251 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
9252 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9253 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9254 TCGv_i32 tcg_res = tcg_temp_new_i32();
9255 NeonGenTwoOpFn *genfn = NULL;
9256 NeonGenTwoOpEnvFn *genenvfn = NULL;
9258 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
9259 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
9261 switch (opcode) {
9262 case 0x0: /* SHADD, UHADD */
9264 static NeonGenTwoOpFn * const fns[3][2] = {
9265 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
9266 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
9267 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
9269 genfn = fns[size][u];
9270 break;
9272 case 0x1: /* SQADD, UQADD */
9274 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9275 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9276 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9277 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9279 genenvfn = fns[size][u];
9280 break;
9282 case 0x2: /* SRHADD, URHADD */
9284 static NeonGenTwoOpFn * const fns[3][2] = {
9285 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
9286 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
9287 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
9289 genfn = fns[size][u];
9290 break;
9292 case 0x4: /* SHSUB, UHSUB */
9294 static NeonGenTwoOpFn * const fns[3][2] = {
9295 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
9296 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
9297 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
9299 genfn = fns[size][u];
9300 break;
9302 case 0x5: /* SQSUB, UQSUB */
9304 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9305 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9306 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9307 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9309 genenvfn = fns[size][u];
9310 break;
9312 case 0x6: /* CMGT, CMHI */
9314 static NeonGenTwoOpFn * const fns[3][2] = {
9315 { gen_helper_neon_cgt_s8, gen_helper_neon_cgt_u8 },
9316 { gen_helper_neon_cgt_s16, gen_helper_neon_cgt_u16 },
9317 { gen_helper_neon_cgt_s32, gen_helper_neon_cgt_u32 },
9319 genfn = fns[size][u];
9320 break;
9322 case 0x7: /* CMGE, CMHS */
9324 static NeonGenTwoOpFn * const fns[3][2] = {
9325 { gen_helper_neon_cge_s8, gen_helper_neon_cge_u8 },
9326 { gen_helper_neon_cge_s16, gen_helper_neon_cge_u16 },
9327 { gen_helper_neon_cge_s32, gen_helper_neon_cge_u32 },
9329 genfn = fns[size][u];
9330 break;
9332 case 0x8: /* SSHL, USHL */
9334 static NeonGenTwoOpFn * const fns[3][2] = {
9335 { gen_helper_neon_shl_s8, gen_helper_neon_shl_u8 },
9336 { gen_helper_neon_shl_s16, gen_helper_neon_shl_u16 },
9337 { gen_helper_neon_shl_s32, gen_helper_neon_shl_u32 },
9339 genfn = fns[size][u];
9340 break;
9342 case 0x9: /* SQSHL, UQSHL */
9344 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9345 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9346 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9347 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9349 genenvfn = fns[size][u];
9350 break;
9352 case 0xa: /* SRSHL, URSHL */
9354 static NeonGenTwoOpFn * const fns[3][2] = {
9355 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
9356 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
9357 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
9359 genfn = fns[size][u];
9360 break;
9362 case 0xb: /* SQRSHL, UQRSHL */
9364 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9365 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9366 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9367 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9369 genenvfn = fns[size][u];
9370 break;
9372 case 0xc: /* SMAX, UMAX */
9374 static NeonGenTwoOpFn * const fns[3][2] = {
9375 { gen_helper_neon_max_s8, gen_helper_neon_max_u8 },
9376 { gen_helper_neon_max_s16, gen_helper_neon_max_u16 },
9377 { gen_max_s32, gen_max_u32 },
9379 genfn = fns[size][u];
9380 break;
9383 case 0xd: /* SMIN, UMIN */
9385 static NeonGenTwoOpFn * const fns[3][2] = {
9386 { gen_helper_neon_min_s8, gen_helper_neon_min_u8 },
9387 { gen_helper_neon_min_s16, gen_helper_neon_min_u16 },
9388 { gen_min_s32, gen_min_u32 },
9390 genfn = fns[size][u];
9391 break;
9393 case 0xe: /* SABD, UABD */
9394 case 0xf: /* SABA, UABA */
9396 static NeonGenTwoOpFn * const fns[3][2] = {
9397 { gen_helper_neon_abd_s8, gen_helper_neon_abd_u8 },
9398 { gen_helper_neon_abd_s16, gen_helper_neon_abd_u16 },
9399 { gen_helper_neon_abd_s32, gen_helper_neon_abd_u32 },
9401 genfn = fns[size][u];
9402 break;
9404 case 0x10: /* ADD, SUB */
9406 static NeonGenTwoOpFn * const fns[3][2] = {
9407 { gen_helper_neon_add_u8, gen_helper_neon_sub_u8 },
9408 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
9409 { tcg_gen_add_i32, tcg_gen_sub_i32 },
9411 genfn = fns[size][u];
9412 break;
9414 case 0x11: /* CMTST, CMEQ */
9416 static NeonGenTwoOpFn * const fns[3][2] = {
9417 { gen_helper_neon_tst_u8, gen_helper_neon_ceq_u8 },
9418 { gen_helper_neon_tst_u16, gen_helper_neon_ceq_u16 },
9419 { gen_helper_neon_tst_u32, gen_helper_neon_ceq_u32 },
9421 genfn = fns[size][u];
9422 break;
9424 case 0x13: /* MUL, PMUL */
9425 if (u) {
9426 /* PMUL */
9427 assert(size == 0);
9428 genfn = gen_helper_neon_mul_p8;
9429 break;
9431 /* fall through : MUL */
9432 case 0x12: /* MLA, MLS */
9434 static NeonGenTwoOpFn * const fns[3] = {
9435 gen_helper_neon_mul_u8,
9436 gen_helper_neon_mul_u16,
9437 tcg_gen_mul_i32,
9439 genfn = fns[size];
9440 break;
9442 case 0x16: /* SQDMULH, SQRDMULH */
9444 static NeonGenTwoOpEnvFn * const fns[2][2] = {
9445 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9446 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9448 assert(size == 1 || size == 2);
9449 genenvfn = fns[size - 1][u];
9450 break;
9452 default:
9453 g_assert_not_reached();
9456 if (genenvfn) {
9457 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2);
9458 } else {
9459 genfn(tcg_res, tcg_op1, tcg_op2);
9462 if (opcode == 0xf || opcode == 0x12) {
9463 /* SABA, UABA, MLA, MLS: accumulating ops */
9464 static NeonGenTwoOpFn * const fns[3][2] = {
9465 { gen_helper_neon_add_u8, gen_helper_neon_sub_u8 },
9466 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
9467 { tcg_gen_add_i32, tcg_gen_sub_i32 },
9469 bool is_sub = (opcode == 0x12 && u); /* MLS */
9471 genfn = fns[size][is_sub];
9472 read_vec_element_i32(s, tcg_op1, rd, pass, MO_32);
9473 genfn(tcg_res, tcg_op1, tcg_res);
9476 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9478 tcg_temp_free_i32(tcg_res);
9479 tcg_temp_free_i32(tcg_op1);
9480 tcg_temp_free_i32(tcg_op2);
9484 if (!is_q) {
9485 clear_vec_high(s, rd);
9489 /* C3.6.16 AdvSIMD three same
9490 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
9491 * +---+---+---+-----------+------+---+------+--------+---+------+------+
9492 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
9493 * +---+---+---+-----------+------+---+------+--------+---+------+------+
9495 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
9497 int opcode = extract32(insn, 11, 5);
9499 switch (opcode) {
9500 case 0x3: /* logic ops */
9501 disas_simd_3same_logic(s, insn);
9502 break;
9503 case 0x17: /* ADDP */
9504 case 0x14: /* SMAXP, UMAXP */
9505 case 0x15: /* SMINP, UMINP */
9507 /* Pairwise operations */
9508 int is_q = extract32(insn, 30, 1);
9509 int u = extract32(insn, 29, 1);
9510 int size = extract32(insn, 22, 2);
9511 int rm = extract32(insn, 16, 5);
9512 int rn = extract32(insn, 5, 5);
9513 int rd = extract32(insn, 0, 5);
9514 if (opcode == 0x17) {
9515 if (u || (size == 3 && !is_q)) {
9516 unallocated_encoding(s);
9517 return;
9519 } else {
9520 if (size == 3) {
9521 unallocated_encoding(s);
9522 return;
9525 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
9526 break;
9528 case 0x18 ... 0x31:
9529 /* floating point ops, sz[1] and U are part of opcode */
9530 disas_simd_3same_float(s, insn);
9531 break;
9532 default:
9533 disas_simd_3same_int(s, insn);
9534 break;
9538 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
9539 int size, int rn, int rd)
9541 /* Handle 2-reg-misc ops which are widening (so each size element
9542 * in the source becomes a 2*size element in the destination.
9543 * The only instruction like this is FCVTL.
9545 int pass;
9547 if (size == 3) {
9548 /* 32 -> 64 bit fp conversion */
9549 TCGv_i64 tcg_res[2];
9550 int srcelt = is_q ? 2 : 0;
9552 for (pass = 0; pass < 2; pass++) {
9553 TCGv_i32 tcg_op = tcg_temp_new_i32();
9554 tcg_res[pass] = tcg_temp_new_i64();
9556 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
9557 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env);
9558 tcg_temp_free_i32(tcg_op);
9560 for (pass = 0; pass < 2; pass++) {
9561 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
9562 tcg_temp_free_i64(tcg_res[pass]);
9564 } else {
9565 /* 16 -> 32 bit fp conversion */
9566 int srcelt = is_q ? 4 : 0;
9567 TCGv_i32 tcg_res[4];
9569 for (pass = 0; pass < 4; pass++) {
9570 tcg_res[pass] = tcg_temp_new_i32();
9572 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
9573 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
9574 cpu_env);
9576 for (pass = 0; pass < 4; pass++) {
9577 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
9578 tcg_temp_free_i32(tcg_res[pass]);
9583 static void handle_rev(DisasContext *s, int opcode, bool u,
9584 bool is_q, int size, int rn, int rd)
9586 int op = (opcode << 1) | u;
9587 int opsz = op + size;
9588 int grp_size = 3 - opsz;
9589 int dsize = is_q ? 128 : 64;
9590 int i;
9592 if (opsz >= 3) {
9593 unallocated_encoding(s);
9594 return;
9597 if (!fp_access_check(s)) {
9598 return;
9601 if (size == 0) {
9602 /* Special case bytes, use bswap op on each group of elements */
9603 int groups = dsize / (8 << grp_size);
9605 for (i = 0; i < groups; i++) {
9606 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
9608 read_vec_element(s, tcg_tmp, rn, i, grp_size);
9609 switch (grp_size) {
9610 case MO_16:
9611 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
9612 break;
9613 case MO_32:
9614 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
9615 break;
9616 case MO_64:
9617 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
9618 break;
9619 default:
9620 g_assert_not_reached();
9622 write_vec_element(s, tcg_tmp, rd, i, grp_size);
9623 tcg_temp_free_i64(tcg_tmp);
9625 if (!is_q) {
9626 clear_vec_high(s, rd);
9628 } else {
9629 int revmask = (1 << grp_size) - 1;
9630 int esize = 8 << size;
9631 int elements = dsize / esize;
9632 TCGv_i64 tcg_rn = tcg_temp_new_i64();
9633 TCGv_i64 tcg_rd = tcg_const_i64(0);
9634 TCGv_i64 tcg_rd_hi = tcg_const_i64(0);
9636 for (i = 0; i < elements; i++) {
9637 int e_rev = (i & 0xf) ^ revmask;
9638 int off = e_rev * esize;
9639 read_vec_element(s, tcg_rn, rn, i, size);
9640 if (off >= 64) {
9641 tcg_gen_deposit_i64(tcg_rd_hi, tcg_rd_hi,
9642 tcg_rn, off - 64, esize);
9643 } else {
9644 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, off, esize);
9647 write_vec_element(s, tcg_rd, rd, 0, MO_64);
9648 write_vec_element(s, tcg_rd_hi, rd, 1, MO_64);
9650 tcg_temp_free_i64(tcg_rd_hi);
9651 tcg_temp_free_i64(tcg_rd);
9652 tcg_temp_free_i64(tcg_rn);
9656 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
9657 bool is_q, int size, int rn, int rd)
9659 /* Implement the pairwise operations from 2-misc:
9660 * SADDLP, UADDLP, SADALP, UADALP.
9661 * These all add pairs of elements in the input to produce a
9662 * double-width result element in the output (possibly accumulating).
9664 bool accum = (opcode == 0x6);
9665 int maxpass = is_q ? 2 : 1;
9666 int pass;
9667 TCGv_i64 tcg_res[2];
9669 if (size == 2) {
9670 /* 32 + 32 -> 64 op */
9671 TCGMemOp memop = size + (u ? 0 : MO_SIGN);
9673 for (pass = 0; pass < maxpass; pass++) {
9674 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9675 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9677 tcg_res[pass] = tcg_temp_new_i64();
9679 read_vec_element(s, tcg_op1, rn, pass * 2, memop);
9680 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
9681 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
9682 if (accum) {
9683 read_vec_element(s, tcg_op1, rd, pass, MO_64);
9684 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
9687 tcg_temp_free_i64(tcg_op1);
9688 tcg_temp_free_i64(tcg_op2);
9690 } else {
9691 for (pass = 0; pass < maxpass; pass++) {
9692 TCGv_i64 tcg_op = tcg_temp_new_i64();
9693 NeonGenOneOpFn *genfn;
9694 static NeonGenOneOpFn * const fns[2][2] = {
9695 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 },
9696 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 },
9699 genfn = fns[size][u];
9701 tcg_res[pass] = tcg_temp_new_i64();
9703 read_vec_element(s, tcg_op, rn, pass, MO_64);
9704 genfn(tcg_res[pass], tcg_op);
9706 if (accum) {
9707 read_vec_element(s, tcg_op, rd, pass, MO_64);
9708 if (size == 0) {
9709 gen_helper_neon_addl_u16(tcg_res[pass],
9710 tcg_res[pass], tcg_op);
9711 } else {
9712 gen_helper_neon_addl_u32(tcg_res[pass],
9713 tcg_res[pass], tcg_op);
9716 tcg_temp_free_i64(tcg_op);
9719 if (!is_q) {
9720 tcg_res[1] = tcg_const_i64(0);
9722 for (pass = 0; pass < 2; pass++) {
9723 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
9724 tcg_temp_free_i64(tcg_res[pass]);
9728 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
9730 /* Implement SHLL and SHLL2 */
9731 int pass;
9732 int part = is_q ? 2 : 0;
9733 TCGv_i64 tcg_res[2];
9735 for (pass = 0; pass < 2; pass++) {
9736 static NeonGenWidenFn * const widenfns[3] = {
9737 gen_helper_neon_widen_u8,
9738 gen_helper_neon_widen_u16,
9739 tcg_gen_extu_i32_i64,
9741 NeonGenWidenFn *widenfn = widenfns[size];
9742 TCGv_i32 tcg_op = tcg_temp_new_i32();
9744 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
9745 tcg_res[pass] = tcg_temp_new_i64();
9746 widenfn(tcg_res[pass], tcg_op);
9747 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
9749 tcg_temp_free_i32(tcg_op);
9752 for (pass = 0; pass < 2; pass++) {
9753 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
9754 tcg_temp_free_i64(tcg_res[pass]);
9758 /* C3.6.17 AdvSIMD two reg misc
9759 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
9760 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
9761 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
9762 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
9764 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
9766 int size = extract32(insn, 22, 2);
9767 int opcode = extract32(insn, 12, 5);
9768 bool u = extract32(insn, 29, 1);
9769 bool is_q = extract32(insn, 30, 1);
9770 int rn = extract32(insn, 5, 5);
9771 int rd = extract32(insn, 0, 5);
9772 bool need_fpstatus = false;
9773 bool need_rmode = false;
9774 int rmode = -1;
9775 TCGv_i32 tcg_rmode;
9776 TCGv_ptr tcg_fpstatus;
9778 switch (opcode) {
9779 case 0x0: /* REV64, REV32 */
9780 case 0x1: /* REV16 */
9781 handle_rev(s, opcode, u, is_q, size, rn, rd);
9782 return;
9783 case 0x5: /* CNT, NOT, RBIT */
9784 if (u && size == 0) {
9785 /* NOT: adjust size so we can use the 64-bits-at-a-time loop. */
9786 size = 3;
9787 break;
9788 } else if (u && size == 1) {
9789 /* RBIT */
9790 break;
9791 } else if (!u && size == 0) {
9792 /* CNT */
9793 break;
9795 unallocated_encoding(s);
9796 return;
9797 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
9798 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
9799 if (size == 3) {
9800 unallocated_encoding(s);
9801 return;
9803 if (!fp_access_check(s)) {
9804 return;
9807 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
9808 return;
9809 case 0x4: /* CLS, CLZ */
9810 if (size == 3) {
9811 unallocated_encoding(s);
9812 return;
9814 break;
9815 case 0x2: /* SADDLP, UADDLP */
9816 case 0x6: /* SADALP, UADALP */
9817 if (size == 3) {
9818 unallocated_encoding(s);
9819 return;
9821 if (!fp_access_check(s)) {
9822 return;
9824 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
9825 return;
9826 case 0x13: /* SHLL, SHLL2 */
9827 if (u == 0 || size == 3) {
9828 unallocated_encoding(s);
9829 return;
9831 if (!fp_access_check(s)) {
9832 return;
9834 handle_shll(s, is_q, size, rn, rd);
9835 return;
9836 case 0xa: /* CMLT */
9837 if (u == 1) {
9838 unallocated_encoding(s);
9839 return;
9841 /* fall through */
9842 case 0x8: /* CMGT, CMGE */
9843 case 0x9: /* CMEQ, CMLE */
9844 case 0xb: /* ABS, NEG */
9845 if (size == 3 && !is_q) {
9846 unallocated_encoding(s);
9847 return;
9849 break;
9850 case 0x3: /* SUQADD, USQADD */
9851 if (size == 3 && !is_q) {
9852 unallocated_encoding(s);
9853 return;
9855 if (!fp_access_check(s)) {
9856 return;
9858 handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
9859 return;
9860 case 0x7: /* SQABS, SQNEG */
9861 if (size == 3 && !is_q) {
9862 unallocated_encoding(s);
9863 return;
9865 break;
9866 case 0xc ... 0xf:
9867 case 0x16 ... 0x1d:
9868 case 0x1f:
9870 /* Floating point: U, size[1] and opcode indicate operation;
9871 * size[0] indicates single or double precision.
9873 int is_double = extract32(size, 0, 1);
9874 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
9875 size = is_double ? 3 : 2;
9876 switch (opcode) {
9877 case 0x2f: /* FABS */
9878 case 0x6f: /* FNEG */
9879 if (size == 3 && !is_q) {
9880 unallocated_encoding(s);
9881 return;
9883 break;
9884 case 0x1d: /* SCVTF */
9885 case 0x5d: /* UCVTF */
9887 bool is_signed = (opcode == 0x1d) ? true : false;
9888 int elements = is_double ? 2 : is_q ? 4 : 2;
9889 if (is_double && !is_q) {
9890 unallocated_encoding(s);
9891 return;
9893 if (!fp_access_check(s)) {
9894 return;
9896 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
9897 return;
9899 case 0x2c: /* FCMGT (zero) */
9900 case 0x2d: /* FCMEQ (zero) */
9901 case 0x2e: /* FCMLT (zero) */
9902 case 0x6c: /* FCMGE (zero) */
9903 case 0x6d: /* FCMLE (zero) */
9904 if (size == 3 && !is_q) {
9905 unallocated_encoding(s);
9906 return;
9908 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
9909 return;
9910 case 0x7f: /* FSQRT */
9911 if (size == 3 && !is_q) {
9912 unallocated_encoding(s);
9913 return;
9915 break;
9916 case 0x1a: /* FCVTNS */
9917 case 0x1b: /* FCVTMS */
9918 case 0x3a: /* FCVTPS */
9919 case 0x3b: /* FCVTZS */
9920 case 0x5a: /* FCVTNU */
9921 case 0x5b: /* FCVTMU */
9922 case 0x7a: /* FCVTPU */
9923 case 0x7b: /* FCVTZU */
9924 need_fpstatus = true;
9925 need_rmode = true;
9926 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
9927 if (size == 3 && !is_q) {
9928 unallocated_encoding(s);
9929 return;
9931 break;
9932 case 0x5c: /* FCVTAU */
9933 case 0x1c: /* FCVTAS */
9934 need_fpstatus = true;
9935 need_rmode = true;
9936 rmode = FPROUNDING_TIEAWAY;
9937 if (size == 3 && !is_q) {
9938 unallocated_encoding(s);
9939 return;
9941 break;
9942 case 0x3c: /* URECPE */
9943 if (size == 3) {
9944 unallocated_encoding(s);
9945 return;
9947 /* fall through */
9948 case 0x3d: /* FRECPE */
9949 case 0x7d: /* FRSQRTE */
9950 if (size == 3 && !is_q) {
9951 unallocated_encoding(s);
9952 return;
9954 if (!fp_access_check(s)) {
9955 return;
9957 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
9958 return;
9959 case 0x56: /* FCVTXN, FCVTXN2 */
9960 if (size == 2) {
9961 unallocated_encoding(s);
9962 return;
9964 /* fall through */
9965 case 0x16: /* FCVTN, FCVTN2 */
9966 /* handle_2misc_narrow does a 2*size -> size operation, but these
9967 * instructions encode the source size rather than dest size.
9969 if (!fp_access_check(s)) {
9970 return;
9972 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
9973 return;
9974 case 0x17: /* FCVTL, FCVTL2 */
9975 if (!fp_access_check(s)) {
9976 return;
9978 handle_2misc_widening(s, opcode, is_q, size, rn, rd);
9979 return;
9980 case 0x18: /* FRINTN */
9981 case 0x19: /* FRINTM */
9982 case 0x38: /* FRINTP */
9983 case 0x39: /* FRINTZ */
9984 need_rmode = true;
9985 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
9986 /* fall through */
9987 case 0x59: /* FRINTX */
9988 case 0x79: /* FRINTI */
9989 need_fpstatus = true;
9990 if (size == 3 && !is_q) {
9991 unallocated_encoding(s);
9992 return;
9994 break;
9995 case 0x58: /* FRINTA */
9996 need_rmode = true;
9997 rmode = FPROUNDING_TIEAWAY;
9998 need_fpstatus = true;
9999 if (size == 3 && !is_q) {
10000 unallocated_encoding(s);
10001 return;
10003 break;
10004 case 0x7c: /* URSQRTE */
10005 if (size == 3) {
10006 unallocated_encoding(s);
10007 return;
10009 need_fpstatus = true;
10010 break;
10011 default:
10012 unallocated_encoding(s);
10013 return;
10015 break;
10017 default:
10018 unallocated_encoding(s);
10019 return;
10022 if (!fp_access_check(s)) {
10023 return;
10026 if (need_fpstatus) {
10027 tcg_fpstatus = get_fpstatus_ptr();
10028 } else {
10029 TCGV_UNUSED_PTR(tcg_fpstatus);
10031 if (need_rmode) {
10032 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
10033 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
10034 } else {
10035 TCGV_UNUSED_I32(tcg_rmode);
10038 if (size == 3) {
10039 /* All 64-bit element operations can be shared with scalar 2misc */
10040 int pass;
10042 for (pass = 0; pass < (is_q ? 2 : 1); pass++) {
10043 TCGv_i64 tcg_op = tcg_temp_new_i64();
10044 TCGv_i64 tcg_res = tcg_temp_new_i64();
10046 read_vec_element(s, tcg_op, rn, pass, MO_64);
10048 handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
10049 tcg_rmode, tcg_fpstatus);
10051 write_vec_element(s, tcg_res, rd, pass, MO_64);
10053 tcg_temp_free_i64(tcg_res);
10054 tcg_temp_free_i64(tcg_op);
10056 } else {
10057 int pass;
10059 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
10060 TCGv_i32 tcg_op = tcg_temp_new_i32();
10061 TCGv_i32 tcg_res = tcg_temp_new_i32();
10062 TCGCond cond;
10064 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
10066 if (size == 2) {
10067 /* Special cases for 32 bit elements */
10068 switch (opcode) {
10069 case 0xa: /* CMLT */
10070 /* 32 bit integer comparison against zero, result is
10071 * test ? (2^32 - 1) : 0. We implement via setcond(test)
10072 * and inverting.
10074 cond = TCG_COND_LT;
10075 do_cmop:
10076 tcg_gen_setcondi_i32(cond, tcg_res, tcg_op, 0);
10077 tcg_gen_neg_i32(tcg_res, tcg_res);
10078 break;
10079 case 0x8: /* CMGT, CMGE */
10080 cond = u ? TCG_COND_GE : TCG_COND_GT;
10081 goto do_cmop;
10082 case 0x9: /* CMEQ, CMLE */
10083 cond = u ? TCG_COND_LE : TCG_COND_EQ;
10084 goto do_cmop;
10085 case 0x4: /* CLS */
10086 if (u) {
10087 gen_helper_clz32(tcg_res, tcg_op);
10088 } else {
10089 gen_helper_cls32(tcg_res, tcg_op);
10091 break;
10092 case 0x7: /* SQABS, SQNEG */
10093 if (u) {
10094 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op);
10095 } else {
10096 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op);
10098 break;
10099 case 0xb: /* ABS, NEG */
10100 if (u) {
10101 tcg_gen_neg_i32(tcg_res, tcg_op);
10102 } else {
10103 TCGv_i32 tcg_zero = tcg_const_i32(0);
10104 tcg_gen_neg_i32(tcg_res, tcg_op);
10105 tcg_gen_movcond_i32(TCG_COND_GT, tcg_res, tcg_op,
10106 tcg_zero, tcg_op, tcg_res);
10107 tcg_temp_free_i32(tcg_zero);
10109 break;
10110 case 0x2f: /* FABS */
10111 gen_helper_vfp_abss(tcg_res, tcg_op);
10112 break;
10113 case 0x6f: /* FNEG */
10114 gen_helper_vfp_negs(tcg_res, tcg_op);
10115 break;
10116 case 0x7f: /* FSQRT */
10117 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
10118 break;
10119 case 0x1a: /* FCVTNS */
10120 case 0x1b: /* FCVTMS */
10121 case 0x1c: /* FCVTAS */
10122 case 0x3a: /* FCVTPS */
10123 case 0x3b: /* FCVTZS */
10125 TCGv_i32 tcg_shift = tcg_const_i32(0);
10126 gen_helper_vfp_tosls(tcg_res, tcg_op,
10127 tcg_shift, tcg_fpstatus);
10128 tcg_temp_free_i32(tcg_shift);
10129 break;
10131 case 0x5a: /* FCVTNU */
10132 case 0x5b: /* FCVTMU */
10133 case 0x5c: /* FCVTAU */
10134 case 0x7a: /* FCVTPU */
10135 case 0x7b: /* FCVTZU */
10137 TCGv_i32 tcg_shift = tcg_const_i32(0);
10138 gen_helper_vfp_touls(tcg_res, tcg_op,
10139 tcg_shift, tcg_fpstatus);
10140 tcg_temp_free_i32(tcg_shift);
10141 break;
10143 case 0x18: /* FRINTN */
10144 case 0x19: /* FRINTM */
10145 case 0x38: /* FRINTP */
10146 case 0x39: /* FRINTZ */
10147 case 0x58: /* FRINTA */
10148 case 0x79: /* FRINTI */
10149 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
10150 break;
10151 case 0x59: /* FRINTX */
10152 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
10153 break;
10154 case 0x7c: /* URSQRTE */
10155 gen_helper_rsqrte_u32(tcg_res, tcg_op, tcg_fpstatus);
10156 break;
10157 default:
10158 g_assert_not_reached();
10160 } else {
10161 /* Use helpers for 8 and 16 bit elements */
10162 switch (opcode) {
10163 case 0x5: /* CNT, RBIT */
10164 /* For these two insns size is part of the opcode specifier
10165 * (handled earlier); they always operate on byte elements.
10167 if (u) {
10168 gen_helper_neon_rbit_u8(tcg_res, tcg_op);
10169 } else {
10170 gen_helper_neon_cnt_u8(tcg_res, tcg_op);
10172 break;
10173 case 0x7: /* SQABS, SQNEG */
10175 NeonGenOneOpEnvFn *genfn;
10176 static NeonGenOneOpEnvFn * const fns[2][2] = {
10177 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10178 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10180 genfn = fns[size][u];
10181 genfn(tcg_res, cpu_env, tcg_op);
10182 break;
10184 case 0x8: /* CMGT, CMGE */
10185 case 0x9: /* CMEQ, CMLE */
10186 case 0xa: /* CMLT */
10188 static NeonGenTwoOpFn * const fns[3][2] = {
10189 { gen_helper_neon_cgt_s8, gen_helper_neon_cgt_s16 },
10190 { gen_helper_neon_cge_s8, gen_helper_neon_cge_s16 },
10191 { gen_helper_neon_ceq_u8, gen_helper_neon_ceq_u16 },
10193 NeonGenTwoOpFn *genfn;
10194 int comp;
10195 bool reverse;
10196 TCGv_i32 tcg_zero = tcg_const_i32(0);
10198 /* comp = index into [CMGT, CMGE, CMEQ, CMLE, CMLT] */
10199 comp = (opcode - 0x8) * 2 + u;
10200 /* ...but LE, LT are implemented as reverse GE, GT */
10201 reverse = (comp > 2);
10202 if (reverse) {
10203 comp = 4 - comp;
10205 genfn = fns[comp][size];
10206 if (reverse) {
10207 genfn(tcg_res, tcg_zero, tcg_op);
10208 } else {
10209 genfn(tcg_res, tcg_op, tcg_zero);
10211 tcg_temp_free_i32(tcg_zero);
10212 break;
10214 case 0xb: /* ABS, NEG */
10215 if (u) {
10216 TCGv_i32 tcg_zero = tcg_const_i32(0);
10217 if (size) {
10218 gen_helper_neon_sub_u16(tcg_res, tcg_zero, tcg_op);
10219 } else {
10220 gen_helper_neon_sub_u8(tcg_res, tcg_zero, tcg_op);
10222 tcg_temp_free_i32(tcg_zero);
10223 } else {
10224 if (size) {
10225 gen_helper_neon_abs_s16(tcg_res, tcg_op);
10226 } else {
10227 gen_helper_neon_abs_s8(tcg_res, tcg_op);
10230 break;
10231 case 0x4: /* CLS, CLZ */
10232 if (u) {
10233 if (size == 0) {
10234 gen_helper_neon_clz_u8(tcg_res, tcg_op);
10235 } else {
10236 gen_helper_neon_clz_u16(tcg_res, tcg_op);
10238 } else {
10239 if (size == 0) {
10240 gen_helper_neon_cls_s8(tcg_res, tcg_op);
10241 } else {
10242 gen_helper_neon_cls_s16(tcg_res, tcg_op);
10245 break;
10246 default:
10247 g_assert_not_reached();
10251 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10253 tcg_temp_free_i32(tcg_res);
10254 tcg_temp_free_i32(tcg_op);
10257 if (!is_q) {
10258 clear_vec_high(s, rd);
10261 if (need_rmode) {
10262 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
10263 tcg_temp_free_i32(tcg_rmode);
10265 if (need_fpstatus) {
10266 tcg_temp_free_ptr(tcg_fpstatus);
10270 /* C3.6.13 AdvSIMD scalar x indexed element
10271 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
10272 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
10273 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
10274 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
10275 * C3.6.18 AdvSIMD vector x indexed element
10276 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
10277 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
10278 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
10279 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
10281 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
10283 /* This encoding has two kinds of instruction:
10284 * normal, where we perform elt x idxelt => elt for each
10285 * element in the vector
10286 * long, where we perform elt x idxelt and generate a result of
10287 * double the width of the input element
10288 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
10290 bool is_scalar = extract32(insn, 28, 1);
10291 bool is_q = extract32(insn, 30, 1);
10292 bool u = extract32(insn, 29, 1);
10293 int size = extract32(insn, 22, 2);
10294 int l = extract32(insn, 21, 1);
10295 int m = extract32(insn, 20, 1);
10296 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
10297 int rm = extract32(insn, 16, 4);
10298 int opcode = extract32(insn, 12, 4);
10299 int h = extract32(insn, 11, 1);
10300 int rn = extract32(insn, 5, 5);
10301 int rd = extract32(insn, 0, 5);
10302 bool is_long = false;
10303 bool is_fp = false;
10304 int index;
10305 TCGv_ptr fpst;
10307 switch (opcode) {
10308 case 0x0: /* MLA */
10309 case 0x4: /* MLS */
10310 if (!u || is_scalar) {
10311 unallocated_encoding(s);
10312 return;
10314 break;
10315 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10316 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10317 case 0xa: /* SMULL, SMULL2, UMULL, UMULL2 */
10318 if (is_scalar) {
10319 unallocated_encoding(s);
10320 return;
10322 is_long = true;
10323 break;
10324 case 0x3: /* SQDMLAL, SQDMLAL2 */
10325 case 0x7: /* SQDMLSL, SQDMLSL2 */
10326 case 0xb: /* SQDMULL, SQDMULL2 */
10327 is_long = true;
10328 /* fall through */
10329 case 0xc: /* SQDMULH */
10330 case 0xd: /* SQRDMULH */
10331 if (u) {
10332 unallocated_encoding(s);
10333 return;
10335 break;
10336 case 0x8: /* MUL */
10337 if (u || is_scalar) {
10338 unallocated_encoding(s);
10339 return;
10341 break;
10342 case 0x1: /* FMLA */
10343 case 0x5: /* FMLS */
10344 if (u) {
10345 unallocated_encoding(s);
10346 return;
10348 /* fall through */
10349 case 0x9: /* FMUL, FMULX */
10350 if (!extract32(size, 1, 1)) {
10351 unallocated_encoding(s);
10352 return;
10354 is_fp = true;
10355 break;
10356 default:
10357 unallocated_encoding(s);
10358 return;
10361 if (is_fp) {
10362 /* low bit of size indicates single/double */
10363 size = extract32(size, 0, 1) ? 3 : 2;
10364 if (size == 2) {
10365 index = h << 1 | l;
10366 } else {
10367 if (l || !is_q) {
10368 unallocated_encoding(s);
10369 return;
10371 index = h;
10373 rm |= (m << 4);
10374 } else {
10375 switch (size) {
10376 case 1:
10377 index = h << 2 | l << 1 | m;
10378 break;
10379 case 2:
10380 index = h << 1 | l;
10381 rm |= (m << 4);
10382 break;
10383 default:
10384 unallocated_encoding(s);
10385 return;
10389 if (!fp_access_check(s)) {
10390 return;
10393 if (is_fp) {
10394 fpst = get_fpstatus_ptr();
10395 } else {
10396 TCGV_UNUSED_PTR(fpst);
10399 if (size == 3) {
10400 TCGv_i64 tcg_idx = tcg_temp_new_i64();
10401 int pass;
10403 assert(is_fp && is_q && !is_long);
10405 read_vec_element(s, tcg_idx, rm, index, MO_64);
10407 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10408 TCGv_i64 tcg_op = tcg_temp_new_i64();
10409 TCGv_i64 tcg_res = tcg_temp_new_i64();
10411 read_vec_element(s, tcg_op, rn, pass, MO_64);
10413 switch (opcode) {
10414 case 0x5: /* FMLS */
10415 /* As usual for ARM, separate negation for fused multiply-add */
10416 gen_helper_vfp_negd(tcg_op, tcg_op);
10417 /* fall through */
10418 case 0x1: /* FMLA */
10419 read_vec_element(s, tcg_res, rd, pass, MO_64);
10420 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
10421 break;
10422 case 0x9: /* FMUL, FMULX */
10423 if (u) {
10424 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
10425 } else {
10426 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
10428 break;
10429 default:
10430 g_assert_not_reached();
10433 write_vec_element(s, tcg_res, rd, pass, MO_64);
10434 tcg_temp_free_i64(tcg_op);
10435 tcg_temp_free_i64(tcg_res);
10438 if (is_scalar) {
10439 clear_vec_high(s, rd);
10442 tcg_temp_free_i64(tcg_idx);
10443 } else if (!is_long) {
10444 /* 32 bit floating point, or 16 or 32 bit integer.
10445 * For the 16 bit scalar case we use the usual Neon helpers and
10446 * rely on the fact that 0 op 0 == 0 with no side effects.
10448 TCGv_i32 tcg_idx = tcg_temp_new_i32();
10449 int pass, maxpasses;
10451 if (is_scalar) {
10452 maxpasses = 1;
10453 } else {
10454 maxpasses = is_q ? 4 : 2;
10457 read_vec_element_i32(s, tcg_idx, rm, index, size);
10459 if (size == 1 && !is_scalar) {
10460 /* The simplest way to handle the 16x16 indexed ops is to duplicate
10461 * the index into both halves of the 32 bit tcg_idx and then use
10462 * the usual Neon helpers.
10464 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
10467 for (pass = 0; pass < maxpasses; pass++) {
10468 TCGv_i32 tcg_op = tcg_temp_new_i32();
10469 TCGv_i32 tcg_res = tcg_temp_new_i32();
10471 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
10473 switch (opcode) {
10474 case 0x0: /* MLA */
10475 case 0x4: /* MLS */
10476 case 0x8: /* MUL */
10478 static NeonGenTwoOpFn * const fns[2][2] = {
10479 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
10480 { tcg_gen_add_i32, tcg_gen_sub_i32 },
10482 NeonGenTwoOpFn *genfn;
10483 bool is_sub = opcode == 0x4;
10485 if (size == 1) {
10486 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
10487 } else {
10488 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
10490 if (opcode == 0x8) {
10491 break;
10493 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
10494 genfn = fns[size - 1][is_sub];
10495 genfn(tcg_res, tcg_op, tcg_res);
10496 break;
10498 case 0x5: /* FMLS */
10499 /* As usual for ARM, separate negation for fused multiply-add */
10500 gen_helper_vfp_negs(tcg_op, tcg_op);
10501 /* fall through */
10502 case 0x1: /* FMLA */
10503 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10504 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
10505 break;
10506 case 0x9: /* FMUL, FMULX */
10507 if (u) {
10508 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
10509 } else {
10510 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
10512 break;
10513 case 0xc: /* SQDMULH */
10514 if (size == 1) {
10515 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env,
10516 tcg_op, tcg_idx);
10517 } else {
10518 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env,
10519 tcg_op, tcg_idx);
10521 break;
10522 case 0xd: /* SQRDMULH */
10523 if (size == 1) {
10524 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env,
10525 tcg_op, tcg_idx);
10526 } else {
10527 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env,
10528 tcg_op, tcg_idx);
10530 break;
10531 default:
10532 g_assert_not_reached();
10535 if (is_scalar) {
10536 write_fp_sreg(s, rd, tcg_res);
10537 } else {
10538 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10541 tcg_temp_free_i32(tcg_op);
10542 tcg_temp_free_i32(tcg_res);
10545 tcg_temp_free_i32(tcg_idx);
10547 if (!is_q) {
10548 clear_vec_high(s, rd);
10550 } else {
10551 /* long ops: 16x16->32 or 32x32->64 */
10552 TCGv_i64 tcg_res[2];
10553 int pass;
10554 bool satop = extract32(opcode, 0, 1);
10555 TCGMemOp memop = MO_32;
10557 if (satop || !u) {
10558 memop |= MO_SIGN;
10561 if (size == 2) {
10562 TCGv_i64 tcg_idx = tcg_temp_new_i64();
10564 read_vec_element(s, tcg_idx, rm, index, memop);
10566 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10567 TCGv_i64 tcg_op = tcg_temp_new_i64();
10568 TCGv_i64 tcg_passres;
10569 int passelt;
10571 if (is_scalar) {
10572 passelt = 0;
10573 } else {
10574 passelt = pass + (is_q * 2);
10577 read_vec_element(s, tcg_op, rn, passelt, memop);
10579 tcg_res[pass] = tcg_temp_new_i64();
10581 if (opcode == 0xa || opcode == 0xb) {
10582 /* Non-accumulating ops */
10583 tcg_passres = tcg_res[pass];
10584 } else {
10585 tcg_passres = tcg_temp_new_i64();
10588 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
10589 tcg_temp_free_i64(tcg_op);
10591 if (satop) {
10592 /* saturating, doubling */
10593 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
10594 tcg_passres, tcg_passres);
10597 if (opcode == 0xa || opcode == 0xb) {
10598 continue;
10601 /* Accumulating op: handle accumulate step */
10602 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10604 switch (opcode) {
10605 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10606 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10607 break;
10608 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10609 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10610 break;
10611 case 0x7: /* SQDMLSL, SQDMLSL2 */
10612 tcg_gen_neg_i64(tcg_passres, tcg_passres);
10613 /* fall through */
10614 case 0x3: /* SQDMLAL, SQDMLAL2 */
10615 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
10616 tcg_res[pass],
10617 tcg_passres);
10618 break;
10619 default:
10620 g_assert_not_reached();
10622 tcg_temp_free_i64(tcg_passres);
10624 tcg_temp_free_i64(tcg_idx);
10626 if (is_scalar) {
10627 clear_vec_high(s, rd);
10629 } else {
10630 TCGv_i32 tcg_idx = tcg_temp_new_i32();
10632 assert(size == 1);
10633 read_vec_element_i32(s, tcg_idx, rm, index, size);
10635 if (!is_scalar) {
10636 /* The simplest way to handle the 16x16 indexed ops is to
10637 * duplicate the index into both halves of the 32 bit tcg_idx
10638 * and then use the usual Neon helpers.
10640 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
10643 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10644 TCGv_i32 tcg_op = tcg_temp_new_i32();
10645 TCGv_i64 tcg_passres;
10647 if (is_scalar) {
10648 read_vec_element_i32(s, tcg_op, rn, pass, size);
10649 } else {
10650 read_vec_element_i32(s, tcg_op, rn,
10651 pass + (is_q * 2), MO_32);
10654 tcg_res[pass] = tcg_temp_new_i64();
10656 if (opcode == 0xa || opcode == 0xb) {
10657 /* Non-accumulating ops */
10658 tcg_passres = tcg_res[pass];
10659 } else {
10660 tcg_passres = tcg_temp_new_i64();
10663 if (memop & MO_SIGN) {
10664 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
10665 } else {
10666 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
10668 if (satop) {
10669 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
10670 tcg_passres, tcg_passres);
10672 tcg_temp_free_i32(tcg_op);
10674 if (opcode == 0xa || opcode == 0xb) {
10675 continue;
10678 /* Accumulating op: handle accumulate step */
10679 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10681 switch (opcode) {
10682 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10683 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
10684 tcg_passres);
10685 break;
10686 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10687 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
10688 tcg_passres);
10689 break;
10690 case 0x7: /* SQDMLSL, SQDMLSL2 */
10691 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10692 /* fall through */
10693 case 0x3: /* SQDMLAL, SQDMLAL2 */
10694 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
10695 tcg_res[pass],
10696 tcg_passres);
10697 break;
10698 default:
10699 g_assert_not_reached();
10701 tcg_temp_free_i64(tcg_passres);
10703 tcg_temp_free_i32(tcg_idx);
10705 if (is_scalar) {
10706 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
10710 if (is_scalar) {
10711 tcg_res[1] = tcg_const_i64(0);
10714 for (pass = 0; pass < 2; pass++) {
10715 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10716 tcg_temp_free_i64(tcg_res[pass]);
10720 if (!TCGV_IS_UNUSED_PTR(fpst)) {
10721 tcg_temp_free_ptr(fpst);
10725 /* C3.6.19 Crypto AES
10726 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
10727 * +-----------------+------+-----------+--------+-----+------+------+
10728 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
10729 * +-----------------+------+-----------+--------+-----+------+------+
10731 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
10733 int size = extract32(insn, 22, 2);
10734 int opcode = extract32(insn, 12, 5);
10735 int rn = extract32(insn, 5, 5);
10736 int rd = extract32(insn, 0, 5);
10737 int decrypt;
10738 TCGv_i32 tcg_rd_regno, tcg_rn_regno, tcg_decrypt;
10739 CryptoThreeOpEnvFn *genfn;
10741 if (!arm_dc_feature(s, ARM_FEATURE_V8_AES)
10742 || size != 0) {
10743 unallocated_encoding(s);
10744 return;
10747 switch (opcode) {
10748 case 0x4: /* AESE */
10749 decrypt = 0;
10750 genfn = gen_helper_crypto_aese;
10751 break;
10752 case 0x6: /* AESMC */
10753 decrypt = 0;
10754 genfn = gen_helper_crypto_aesmc;
10755 break;
10756 case 0x5: /* AESD */
10757 decrypt = 1;
10758 genfn = gen_helper_crypto_aese;
10759 break;
10760 case 0x7: /* AESIMC */
10761 decrypt = 1;
10762 genfn = gen_helper_crypto_aesmc;
10763 break;
10764 default:
10765 unallocated_encoding(s);
10766 return;
10769 /* Note that we convert the Vx register indexes into the
10770 * index within the vfp.regs[] array, so we can share the
10771 * helper with the AArch32 instructions.
10773 tcg_rd_regno = tcg_const_i32(rd << 1);
10774 tcg_rn_regno = tcg_const_i32(rn << 1);
10775 tcg_decrypt = tcg_const_i32(decrypt);
10777 genfn(cpu_env, tcg_rd_regno, tcg_rn_regno, tcg_decrypt);
10779 tcg_temp_free_i32(tcg_rd_regno);
10780 tcg_temp_free_i32(tcg_rn_regno);
10781 tcg_temp_free_i32(tcg_decrypt);
10784 /* C3.6.20 Crypto three-reg SHA
10785 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
10786 * +-----------------+------+---+------+---+--------+-----+------+------+
10787 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd |
10788 * +-----------------+------+---+------+---+--------+-----+------+------+
10790 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
10792 int size = extract32(insn, 22, 2);
10793 int opcode = extract32(insn, 12, 3);
10794 int rm = extract32(insn, 16, 5);
10795 int rn = extract32(insn, 5, 5);
10796 int rd = extract32(insn, 0, 5);
10797 CryptoThreeOpEnvFn *genfn;
10798 TCGv_i32 tcg_rd_regno, tcg_rn_regno, tcg_rm_regno;
10799 int feature = ARM_FEATURE_V8_SHA256;
10801 if (size != 0) {
10802 unallocated_encoding(s);
10803 return;
10806 switch (opcode) {
10807 case 0: /* SHA1C */
10808 case 1: /* SHA1P */
10809 case 2: /* SHA1M */
10810 case 3: /* SHA1SU0 */
10811 genfn = NULL;
10812 feature = ARM_FEATURE_V8_SHA1;
10813 break;
10814 case 4: /* SHA256H */
10815 genfn = gen_helper_crypto_sha256h;
10816 break;
10817 case 5: /* SHA256H2 */
10818 genfn = gen_helper_crypto_sha256h2;
10819 break;
10820 case 6: /* SHA256SU1 */
10821 genfn = gen_helper_crypto_sha256su1;
10822 break;
10823 default:
10824 unallocated_encoding(s);
10825 return;
10828 if (!arm_dc_feature(s, feature)) {
10829 unallocated_encoding(s);
10830 return;
10833 tcg_rd_regno = tcg_const_i32(rd << 1);
10834 tcg_rn_regno = tcg_const_i32(rn << 1);
10835 tcg_rm_regno = tcg_const_i32(rm << 1);
10837 if (genfn) {
10838 genfn(cpu_env, tcg_rd_regno, tcg_rn_regno, tcg_rm_regno);
10839 } else {
10840 TCGv_i32 tcg_opcode = tcg_const_i32(opcode);
10842 gen_helper_crypto_sha1_3reg(cpu_env, tcg_rd_regno,
10843 tcg_rn_regno, tcg_rm_regno, tcg_opcode);
10844 tcg_temp_free_i32(tcg_opcode);
10847 tcg_temp_free_i32(tcg_rd_regno);
10848 tcg_temp_free_i32(tcg_rn_regno);
10849 tcg_temp_free_i32(tcg_rm_regno);
10852 /* C3.6.21 Crypto two-reg SHA
10853 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
10854 * +-----------------+------+-----------+--------+-----+------+------+
10855 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
10856 * +-----------------+------+-----------+--------+-----+------+------+
10858 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
10860 int size = extract32(insn, 22, 2);
10861 int opcode = extract32(insn, 12, 5);
10862 int rn = extract32(insn, 5, 5);
10863 int rd = extract32(insn, 0, 5);
10864 CryptoTwoOpEnvFn *genfn;
10865 int feature;
10866 TCGv_i32 tcg_rd_regno, tcg_rn_regno;
10868 if (size != 0) {
10869 unallocated_encoding(s);
10870 return;
10873 switch (opcode) {
10874 case 0: /* SHA1H */
10875 feature = ARM_FEATURE_V8_SHA1;
10876 genfn = gen_helper_crypto_sha1h;
10877 break;
10878 case 1: /* SHA1SU1 */
10879 feature = ARM_FEATURE_V8_SHA1;
10880 genfn = gen_helper_crypto_sha1su1;
10881 break;
10882 case 2: /* SHA256SU0 */
10883 feature = ARM_FEATURE_V8_SHA256;
10884 genfn = gen_helper_crypto_sha256su0;
10885 break;
10886 default:
10887 unallocated_encoding(s);
10888 return;
10891 if (!arm_dc_feature(s, feature)) {
10892 unallocated_encoding(s);
10893 return;
10896 tcg_rd_regno = tcg_const_i32(rd << 1);
10897 tcg_rn_regno = tcg_const_i32(rn << 1);
10899 genfn(cpu_env, tcg_rd_regno, tcg_rn_regno);
10901 tcg_temp_free_i32(tcg_rd_regno);
10902 tcg_temp_free_i32(tcg_rn_regno);
10905 /* C3.6 Data processing - SIMD, inc Crypto
10907 * As the decode gets a little complex we are using a table based
10908 * approach for this part of the decode.
10910 static const AArch64DecodeTable data_proc_simd[] = {
10911 /* pattern , mask , fn */
10912 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
10913 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
10914 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
10915 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
10916 { 0x0e000400, 0x9fe08400, disas_simd_copy },
10917 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
10918 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
10919 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
10920 { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
10921 { 0x0e000000, 0xbf208c00, disas_simd_tb },
10922 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
10923 { 0x2e000000, 0xbf208400, disas_simd_ext },
10924 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
10925 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
10926 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
10927 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
10928 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
10929 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
10930 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
10931 { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
10932 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
10933 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
10934 { 0x00000000, 0x00000000, NULL }
10937 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
10939 /* Note that this is called with all non-FP cases from
10940 * table C3-6 so it must UNDEF for entries not specifically
10941 * allocated to instructions in that table.
10943 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
10944 if (fn) {
10945 fn(s, insn);
10946 } else {
10947 unallocated_encoding(s);
10951 /* C3.6 Data processing - SIMD and floating point */
10952 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
10954 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
10955 disas_data_proc_fp(s, insn);
10956 } else {
10957 /* SIMD, including crypto */
10958 disas_data_proc_simd(s, insn);
10962 /* C3.1 A64 instruction index by encoding */
10963 static void disas_a64_insn(CPUARMState *env, DisasContext *s)
10965 uint32_t insn;
10967 insn = arm_ldl_code(env, s->pc, s->bswap_code);
10968 s->insn = insn;
10969 s->pc += 4;
10971 s->fp_access_checked = false;
10973 switch (extract32(insn, 25, 4)) {
10974 case 0x0: case 0x1: case 0x2: case 0x3: /* UNALLOCATED */
10975 unallocated_encoding(s);
10976 break;
10977 case 0x8: case 0x9: /* Data processing - immediate */
10978 disas_data_proc_imm(s, insn);
10979 break;
10980 case 0xa: case 0xb: /* Branch, exception generation and system insns */
10981 disas_b_exc_sys(s, insn);
10982 break;
10983 case 0x4:
10984 case 0x6:
10985 case 0xc:
10986 case 0xe: /* Loads and stores */
10987 disas_ldst(s, insn);
10988 break;
10989 case 0x5:
10990 case 0xd: /* Data processing - register */
10991 disas_data_proc_reg(s, insn);
10992 break;
10993 case 0x7:
10994 case 0xf: /* Data processing - SIMD and floating point */
10995 disas_data_proc_simd_fp(s, insn);
10996 break;
10997 default:
10998 assert(FALSE); /* all 15 cases should be handled above */
10999 break;
11002 /* if we allocated any temporaries, free them here */
11003 free_tmp_a64(s);
11006 void gen_intermediate_code_a64(ARMCPU *cpu, TranslationBlock *tb)
11008 CPUState *cs = CPU(cpu);
11009 CPUARMState *env = &cpu->env;
11010 DisasContext dc1, *dc = &dc1;
11011 target_ulong pc_start;
11012 target_ulong next_page_start;
11013 int num_insns;
11014 int max_insns;
11016 pc_start = tb->pc;
11018 dc->tb = tb;
11020 dc->is_jmp = DISAS_NEXT;
11021 dc->pc = pc_start;
11022 dc->singlestep_enabled = cs->singlestep_enabled;
11023 dc->condjmp = 0;
11025 dc->aarch64 = 1;
11026 /* If we are coming from secure EL0 in a system with a 32-bit EL3, then
11027 * there is no secure EL1, so we route exceptions to EL3.
11029 dc->secure_routed_to_el3 = arm_feature(env, ARM_FEATURE_EL3) &&
11030 !arm_el_is_aa64(env, 3);
11031 dc->thumb = 0;
11032 dc->bswap_code = 0;
11033 dc->condexec_mask = 0;
11034 dc->condexec_cond = 0;
11035 dc->mmu_idx = ARM_TBFLAG_MMUIDX(tb->flags);
11036 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
11037 #if !defined(CONFIG_USER_ONLY)
11038 dc->user = (dc->current_el == 0);
11039 #endif
11040 dc->fp_excp_el = ARM_TBFLAG_FPEXC_EL(tb->flags);
11041 dc->vec_len = 0;
11042 dc->vec_stride = 0;
11043 dc->cp_regs = cpu->cp_regs;
11044 dc->features = env->features;
11046 /* Single step state. The code-generation logic here is:
11047 * SS_ACTIVE == 0:
11048 * generate code with no special handling for single-stepping (except
11049 * that anything that can make us go to SS_ACTIVE == 1 must end the TB;
11050 * this happens anyway because those changes are all system register or
11051 * PSTATE writes).
11052 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
11053 * emit code for one insn
11054 * emit code to clear PSTATE.SS
11055 * emit code to generate software step exception for completed step
11056 * end TB (as usual for having generated an exception)
11057 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
11058 * emit code to generate a software step exception
11059 * end the TB
11061 dc->ss_active = ARM_TBFLAG_SS_ACTIVE(tb->flags);
11062 dc->pstate_ss = ARM_TBFLAG_PSTATE_SS(tb->flags);
11063 dc->is_ldex = false;
11064 dc->ss_same_el = (arm_debug_target_el(env) == dc->current_el);
11066 init_tmp_a64_array(dc);
11068 next_page_start = (pc_start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
11069 num_insns = 0;
11070 max_insns = tb->cflags & CF_COUNT_MASK;
11071 if (max_insns == 0) {
11072 max_insns = CF_COUNT_MASK;
11074 if (max_insns > TCG_MAX_INSNS) {
11075 max_insns = TCG_MAX_INSNS;
11078 gen_tb_start(tb);
11080 tcg_clear_temp_count();
11082 do {
11083 tcg_gen_insn_start(dc->pc, 0);
11084 num_insns++;
11086 if (unlikely(!QTAILQ_EMPTY(&cs->breakpoints))) {
11087 CPUBreakpoint *bp;
11088 QTAILQ_FOREACH(bp, &cs->breakpoints, entry) {
11089 if (bp->pc == dc->pc) {
11090 if (bp->flags & BP_CPU) {
11091 gen_a64_set_pc_im(dc->pc);
11092 gen_helper_check_breakpoints(cpu_env);
11093 /* End the TB early; it likely won't be executed */
11094 dc->is_jmp = DISAS_UPDATE;
11095 } else {
11096 gen_exception_internal_insn(dc, 0, EXCP_DEBUG);
11097 /* The address covered by the breakpoint must be
11098 included in [tb->pc, tb->pc + tb->size) in order
11099 to for it to be properly cleared -- thus we
11100 increment the PC here so that the logic setting
11101 tb->size below does the right thing. */
11102 dc->pc += 4;
11103 goto done_generating;
11105 break;
11110 if (num_insns == max_insns && (tb->cflags & CF_LAST_IO)) {
11111 gen_io_start();
11114 if (dc->ss_active && !dc->pstate_ss) {
11115 /* Singlestep state is Active-pending.
11116 * If we're in this state at the start of a TB then either
11117 * a) we just took an exception to an EL which is being debugged
11118 * and this is the first insn in the exception handler
11119 * b) debug exceptions were masked and we just unmasked them
11120 * without changing EL (eg by clearing PSTATE.D)
11121 * In either case we're going to take a swstep exception in the
11122 * "did not step an insn" case, and so the syndrome ISV and EX
11123 * bits should be zero.
11125 assert(num_insns == 1);
11126 gen_exception(EXCP_UDEF, syn_swstep(dc->ss_same_el, 0, 0),
11127 default_exception_el(dc));
11128 dc->is_jmp = DISAS_EXC;
11129 break;
11132 disas_a64_insn(env, dc);
11134 if (tcg_check_temp_count()) {
11135 fprintf(stderr, "TCG temporary leak before "TARGET_FMT_lx"\n",
11136 dc->pc);
11139 /* Translation stops when a conditional branch is encountered.
11140 * Otherwise the subsequent code could get translated several times.
11141 * Also stop translation when a page boundary is reached. This
11142 * ensures prefetch aborts occur at the right place.
11144 } while (!dc->is_jmp && !tcg_op_buf_full() &&
11145 !cs->singlestep_enabled &&
11146 !singlestep &&
11147 !dc->ss_active &&
11148 dc->pc < next_page_start &&
11149 num_insns < max_insns);
11151 if (tb->cflags & CF_LAST_IO) {
11152 gen_io_end();
11155 if (unlikely(cs->singlestep_enabled || dc->ss_active)
11156 && dc->is_jmp != DISAS_EXC) {
11157 /* Note that this means single stepping WFI doesn't halt the CPU.
11158 * For conditional branch insns this is harmless unreachable code as
11159 * gen_goto_tb() has already handled emitting the debug exception
11160 * (and thus a tb-jump is not possible when singlestepping).
11162 assert(dc->is_jmp != DISAS_TB_JUMP);
11163 if (dc->is_jmp != DISAS_JUMP) {
11164 gen_a64_set_pc_im(dc->pc);
11166 if (cs->singlestep_enabled) {
11167 gen_exception_internal(EXCP_DEBUG);
11168 } else {
11169 gen_step_complete_exception(dc);
11171 } else {
11172 switch (dc->is_jmp) {
11173 case DISAS_NEXT:
11174 gen_goto_tb(dc, 1, dc->pc);
11175 break;
11176 default:
11177 case DISAS_UPDATE:
11178 gen_a64_set_pc_im(dc->pc);
11179 /* fall through */
11180 case DISAS_JUMP:
11181 /* indicate that the hash table must be used to find the next TB */
11182 tcg_gen_exit_tb(0);
11183 break;
11184 case DISAS_TB_JUMP:
11185 case DISAS_EXC:
11186 case DISAS_SWI:
11187 break;
11188 case DISAS_WFE:
11189 gen_a64_set_pc_im(dc->pc);
11190 gen_helper_wfe(cpu_env);
11191 break;
11192 case DISAS_YIELD:
11193 gen_a64_set_pc_im(dc->pc);
11194 gen_helper_yield(cpu_env);
11195 break;
11196 case DISAS_WFI:
11197 /* This is a special case because we don't want to just halt the CPU
11198 * if trying to debug across a WFI.
11200 gen_a64_set_pc_im(dc->pc);
11201 gen_helper_wfi(cpu_env);
11202 /* The helper doesn't necessarily throw an exception, but we
11203 * must go back to the main loop to check for interrupts anyway.
11205 tcg_gen_exit_tb(0);
11206 break;
11210 done_generating:
11211 gen_tb_end(tb, num_insns);
11213 #ifdef DEBUG_DISAS
11214 if (qemu_loglevel_mask(CPU_LOG_TB_IN_ASM)) {
11215 qemu_log("----------------\n");
11216 qemu_log("IN: %s\n", lookup_symbol(pc_start));
11217 log_target_disas(cs, pc_start, dc->pc - pc_start,
11218 4 | (dc->bswap_code << 1));
11219 qemu_log("\n");
11221 #endif
11222 tb->size = dc->pc - pc_start;
11223 tb->icount = num_insns;