Makefile: Use QEMU_FLAGS for DTC compilation
[qemu/ar7.git] / target-arm / kvm.c
blobd8acace9b7f2cfb8321060073e7f398510251eac
1 /*
2 * ARM implementation of KVM hooks
4 * Copyright Christoffer Dall 2009-2010
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
9 */
11 #include <stdio.h>
12 #include <sys/types.h>
13 #include <sys/ioctl.h>
14 #include <sys/mman.h>
16 #include <linux/kvm.h>
18 #include "qemu-common.h"
19 #include "qemu/timer.h"
20 #include "sysemu/sysemu.h"
21 #include "sysemu/kvm.h"
22 #include "kvm_arm.h"
23 #include "cpu.h"
24 #include "hw/arm/arm.h"
26 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
27 KVM_CAP_LAST_INFO
30 int kvm_arch_init(KVMState *s)
32 /* For ARM interrupt delivery is always asynchronous,
33 * whether we are using an in-kernel VGIC or not.
35 kvm_async_interrupts_allowed = true;
36 return 0;
39 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
41 return cpu->cpu_index;
44 int kvm_arch_init_vcpu(CPUState *cs)
46 struct kvm_vcpu_init init;
47 int ret;
48 uint64_t v;
49 struct kvm_one_reg r;
51 init.target = KVM_ARM_TARGET_CORTEX_A15;
52 memset(init.features, 0, sizeof(init.features));
53 ret = kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
54 if (ret) {
55 return ret;
57 /* Query the kernel to make sure it supports 32 VFP
58 * registers: QEMU's "cortex-a15" CPU is always a
59 * VFP-D32 core. The simplest way to do this is just
60 * to attempt to read register d31.
62 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP | 31;
63 r.addr = (uintptr_t)(&v);
64 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
65 if (ret == ENOENT) {
66 return EINVAL;
68 return ret;
71 /* We track all the KVM devices which need their memory addresses
72 * passing to the kernel in a list of these structures.
73 * When board init is complete we run through the list and
74 * tell the kernel the base addresses of the memory regions.
75 * We use a MemoryListener to track mapping and unmapping of
76 * the regions during board creation, so the board models don't
77 * need to do anything special for the KVM case.
79 typedef struct KVMDevice {
80 struct kvm_arm_device_addr kda;
81 MemoryRegion *mr;
82 QSLIST_ENTRY(KVMDevice) entries;
83 } KVMDevice;
85 static QSLIST_HEAD(kvm_devices_head, KVMDevice) kvm_devices_head;
87 static void kvm_arm_devlistener_add(MemoryListener *listener,
88 MemoryRegionSection *section)
90 KVMDevice *kd;
92 QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
93 if (section->mr == kd->mr) {
94 kd->kda.addr = section->offset_within_address_space;
99 static void kvm_arm_devlistener_del(MemoryListener *listener,
100 MemoryRegionSection *section)
102 KVMDevice *kd;
104 QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
105 if (section->mr == kd->mr) {
106 kd->kda.addr = -1;
111 static MemoryListener devlistener = {
112 .region_add = kvm_arm_devlistener_add,
113 .region_del = kvm_arm_devlistener_del,
116 static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
118 KVMDevice *kd, *tkd;
120 memory_listener_unregister(&devlistener);
121 QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
122 if (kd->kda.addr != -1) {
123 if (kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR,
124 &kd->kda) < 0) {
125 fprintf(stderr, "KVM_ARM_SET_DEVICE_ADDRESS failed: %s\n",
126 strerror(errno));
127 abort();
130 g_free(kd);
134 static Notifier notify = {
135 .notify = kvm_arm_machine_init_done,
138 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid)
140 KVMDevice *kd;
142 if (!kvm_irqchip_in_kernel()) {
143 return;
146 if (QSLIST_EMPTY(&kvm_devices_head)) {
147 memory_listener_register(&devlistener, NULL);
148 qemu_add_machine_init_done_notifier(&notify);
150 kd = g_new0(KVMDevice, 1);
151 kd->mr = mr;
152 kd->kda.id = devid;
153 kd->kda.addr = -1;
154 QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
157 typedef struct Reg {
158 uint64_t id;
159 int offset;
160 } Reg;
162 #define COREREG(KERNELNAME, QEMUFIELD) \
164 KVM_REG_ARM | KVM_REG_SIZE_U32 | \
165 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
166 offsetof(CPUARMState, QEMUFIELD) \
169 #define CP15REG(CRN, CRM, OPC1, OPC2, QEMUFIELD) \
171 KVM_REG_ARM | KVM_REG_SIZE_U32 | \
172 (15 << KVM_REG_ARM_COPROC_SHIFT) | \
173 ((CRN) << KVM_REG_ARM_32_CRN_SHIFT) | \
174 ((CRM) << KVM_REG_ARM_CRM_SHIFT) | \
175 ((OPC1) << KVM_REG_ARM_OPC1_SHIFT) | \
176 ((OPC2) << KVM_REG_ARM_32_OPC2_SHIFT), \
177 offsetof(CPUARMState, QEMUFIELD) \
180 #define VFPSYSREG(R) \
182 KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \
183 KVM_REG_ARM_VFP_##R, \
184 offsetof(CPUARMState, vfp.xregs[ARM_VFP_##R]) \
187 static const Reg regs[] = {
188 /* R0_usr .. R14_usr */
189 COREREG(usr_regs.uregs[0], regs[0]),
190 COREREG(usr_regs.uregs[1], regs[1]),
191 COREREG(usr_regs.uregs[2], regs[2]),
192 COREREG(usr_regs.uregs[3], regs[3]),
193 COREREG(usr_regs.uregs[4], regs[4]),
194 COREREG(usr_regs.uregs[5], regs[5]),
195 COREREG(usr_regs.uregs[6], regs[6]),
196 COREREG(usr_regs.uregs[7], regs[7]),
197 COREREG(usr_regs.uregs[8], usr_regs[0]),
198 COREREG(usr_regs.uregs[9], usr_regs[1]),
199 COREREG(usr_regs.uregs[10], usr_regs[2]),
200 COREREG(usr_regs.uregs[11], usr_regs[3]),
201 COREREG(usr_regs.uregs[12], usr_regs[4]),
202 COREREG(usr_regs.uregs[13], banked_r13[0]),
203 COREREG(usr_regs.uregs[14], banked_r14[0]),
204 /* R13, R14, SPSR for SVC, ABT, UND, IRQ banks */
205 COREREG(svc_regs[0], banked_r13[1]),
206 COREREG(svc_regs[1], banked_r14[1]),
207 COREREG(svc_regs[2], banked_spsr[1]),
208 COREREG(abt_regs[0], banked_r13[2]),
209 COREREG(abt_regs[1], banked_r14[2]),
210 COREREG(abt_regs[2], banked_spsr[2]),
211 COREREG(und_regs[0], banked_r13[3]),
212 COREREG(und_regs[1], banked_r14[3]),
213 COREREG(und_regs[2], banked_spsr[3]),
214 COREREG(irq_regs[0], banked_r13[4]),
215 COREREG(irq_regs[1], banked_r14[4]),
216 COREREG(irq_regs[2], banked_spsr[4]),
217 /* R8_fiq .. R14_fiq and SPSR_fiq */
218 COREREG(fiq_regs[0], fiq_regs[0]),
219 COREREG(fiq_regs[1], fiq_regs[1]),
220 COREREG(fiq_regs[2], fiq_regs[2]),
221 COREREG(fiq_regs[3], fiq_regs[3]),
222 COREREG(fiq_regs[4], fiq_regs[4]),
223 COREREG(fiq_regs[5], banked_r13[5]),
224 COREREG(fiq_regs[6], banked_r14[5]),
225 COREREG(fiq_regs[7], banked_spsr[5]),
226 /* R15 */
227 COREREG(usr_regs.uregs[15], regs[15]),
228 /* A non-comprehensive set of cp15 registers.
229 * TODO: drive this from the cp_regs hashtable instead.
231 CP15REG(1, 0, 0, 0, cp15.c1_sys), /* SCTLR */
232 CP15REG(2, 0, 0, 2, cp15.c2_control), /* TTBCR */
233 CP15REG(3, 0, 0, 0, cp15.c3), /* DACR */
234 /* VFP system registers */
235 VFPSYSREG(FPSID),
236 VFPSYSREG(MVFR1),
237 VFPSYSREG(MVFR0),
238 VFPSYSREG(FPEXC),
239 VFPSYSREG(FPINST),
240 VFPSYSREG(FPINST2),
243 int kvm_arch_put_registers(CPUState *cs, int level)
245 ARMCPU *cpu = ARM_CPU(cs);
246 CPUARMState *env = &cpu->env;
247 struct kvm_one_reg r;
248 int mode, bn;
249 int ret, i;
250 uint32_t cpsr, fpscr;
251 uint64_t ttbr;
253 /* Make sure the banked regs are properly set */
254 mode = env->uncached_cpsr & CPSR_M;
255 bn = bank_number(mode);
256 if (mode == ARM_CPU_MODE_FIQ) {
257 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
258 } else {
259 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
261 env->banked_r13[bn] = env->regs[13];
262 env->banked_r14[bn] = env->regs[14];
263 env->banked_spsr[bn] = env->spsr;
265 /* Now we can safely copy stuff down to the kernel */
266 for (i = 0; i < ARRAY_SIZE(regs); i++) {
267 r.id = regs[i].id;
268 r.addr = (uintptr_t)(env) + regs[i].offset;
269 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
270 if (ret) {
271 return ret;
275 /* Special cases which aren't a single CPUARMState field */
276 cpsr = cpsr_read(env);
277 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
278 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
279 r.addr = (uintptr_t)(&cpsr);
280 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
281 if (ret) {
282 return ret;
285 /* TTBR0: cp15 crm=2 opc1=0 */
286 ttbr = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
287 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | (15 << KVM_REG_ARM_COPROC_SHIFT) |
288 (2 << KVM_REG_ARM_CRM_SHIFT) | (0 << KVM_REG_ARM_OPC1_SHIFT);
289 r.addr = (uintptr_t)(&ttbr);
290 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
291 if (ret) {
292 return ret;
295 /* TTBR1: cp15 crm=2 opc1=1 */
296 ttbr = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
297 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | (15 << KVM_REG_ARM_COPROC_SHIFT) |
298 (2 << KVM_REG_ARM_CRM_SHIFT) | (1 << KVM_REG_ARM_OPC1_SHIFT);
299 r.addr = (uintptr_t)(&ttbr);
300 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
301 if (ret) {
302 return ret;
305 /* VFP registers */
306 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
307 for (i = 0; i < 32; i++) {
308 r.addr = (uintptr_t)(&env->vfp.regs[i]);
309 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
310 if (ret) {
311 return ret;
313 r.id++;
316 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
317 KVM_REG_ARM_VFP_FPSCR;
318 fpscr = vfp_get_fpscr(env);
319 r.addr = (uintptr_t)&fpscr;
320 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
322 return ret;
325 int kvm_arch_get_registers(CPUState *cs)
327 ARMCPU *cpu = ARM_CPU(cs);
328 CPUARMState *env = &cpu->env;
329 struct kvm_one_reg r;
330 int mode, bn;
331 int ret, i;
332 uint32_t cpsr, fpscr;
333 uint64_t ttbr;
335 for (i = 0; i < ARRAY_SIZE(regs); i++) {
336 r.id = regs[i].id;
337 r.addr = (uintptr_t)(env) + regs[i].offset;
338 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
339 if (ret) {
340 return ret;
344 /* Special cases which aren't a single CPUARMState field */
345 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
346 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
347 r.addr = (uintptr_t)(&cpsr);
348 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
349 if (ret) {
350 return ret;
352 cpsr_write(env, cpsr, 0xffffffff);
354 /* TTBR0: cp15 crm=2 opc1=0 */
355 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | (15 << KVM_REG_ARM_COPROC_SHIFT) |
356 (2 << KVM_REG_ARM_CRM_SHIFT) | (0 << KVM_REG_ARM_OPC1_SHIFT);
357 r.addr = (uintptr_t)(&ttbr);
358 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
359 if (ret) {
360 return ret;
362 env->cp15.c2_base0_hi = ttbr >> 32;
363 env->cp15.c2_base0 = ttbr;
365 /* TTBR1: cp15 crm=2 opc1=1 */
366 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | (15 << KVM_REG_ARM_COPROC_SHIFT) |
367 (2 << KVM_REG_ARM_CRM_SHIFT) | (1 << KVM_REG_ARM_OPC1_SHIFT);
368 r.addr = (uintptr_t)(&ttbr);
369 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
370 if (ret) {
371 return ret;
373 env->cp15.c2_base1_hi = ttbr >> 32;
374 env->cp15.c2_base1 = ttbr;
376 /* Make sure the current mode regs are properly set */
377 mode = env->uncached_cpsr & CPSR_M;
378 bn = bank_number(mode);
379 if (mode == ARM_CPU_MODE_FIQ) {
380 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
381 } else {
382 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
384 env->regs[13] = env->banked_r13[bn];
385 env->regs[14] = env->banked_r14[bn];
386 env->spsr = env->banked_spsr[bn];
388 /* The main GET_ONE_REG loop above set c2_control, but we need to
389 * update some extra cached precomputed values too.
390 * When this is driven from the cp_regs hashtable then this ugliness
391 * can disappear because we'll use the access function which sets
392 * these values automatically.
394 env->cp15.c2_mask = ~(0xffffffffu >> env->cp15.c2_control);
395 env->cp15.c2_base_mask = ~(0x3fffu >> env->cp15.c2_control);
397 /* VFP registers */
398 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
399 for (i = 0; i < 32; i++) {
400 r.addr = (uintptr_t)(&env->vfp.regs[i]);
401 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
402 if (ret) {
403 return ret;
405 r.id++;
408 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
409 KVM_REG_ARM_VFP_FPSCR;
410 r.addr = (uintptr_t)&fpscr;
411 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
412 if (ret) {
413 return ret;
415 vfp_set_fpscr(env, fpscr);
417 return 0;
420 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
424 void kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
428 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
430 return 0;
433 void kvm_arch_reset_vcpu(CPUState *cs)
437 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
439 return true;
442 int kvm_arch_process_async_events(CPUState *cs)
444 return 0;
447 int kvm_arch_on_sigbus_vcpu(CPUState *cs, int code, void *addr)
449 return 1;
452 int kvm_arch_on_sigbus(int code, void *addr)
454 return 1;
457 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
459 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
462 int kvm_arch_insert_sw_breakpoint(CPUState *cs,
463 struct kvm_sw_breakpoint *bp)
465 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
466 return -EINVAL;
469 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
470 target_ulong len, int type)
472 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
473 return -EINVAL;
476 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
477 target_ulong len, int type)
479 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
480 return -EINVAL;
483 int kvm_arch_remove_sw_breakpoint(CPUState *cs,
484 struct kvm_sw_breakpoint *bp)
486 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
487 return -EINVAL;
490 void kvm_arch_remove_all_hw_breakpoints(void)
492 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);