4 #include "host-utils.h"
5 #if !defined(CONFIG_USER_ONLY)
10 static uint32_t cortexa15_cp15_c0_c1
[8] = {
11 0x00001131, 0x00011011, 0x02010555, 0x00000000,
12 0x10201105, 0x20000000, 0x01240000, 0x02102211
15 static uint32_t cortexa15_cp15_c0_c2
[8] = {
16 0x02101110, 0x13112111, 0x21232041, 0x11112131, 0x10011142, 0, 0, 0
19 static uint32_t cortexa9_cp15_c0_c1
[8] =
20 { 0x1031, 0x11, 0x000, 0, 0x00100103, 0x20000000, 0x01230000, 0x00002111 };
22 static uint32_t cortexa9_cp15_c0_c2
[8] =
23 { 0x00101111, 0x13112111, 0x21232041, 0x11112131, 0x00111142, 0, 0, 0 };
25 static uint32_t cortexa8_cp15_c0_c1
[8] =
26 { 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
28 static uint32_t cortexa8_cp15_c0_c2
[8] =
29 { 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
31 static uint32_t mpcore_cp15_c0_c1
[8] =
32 { 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
34 static uint32_t mpcore_cp15_c0_c2
[8] =
35 { 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
37 static uint32_t arm1136_cp15_c0_c1
[8] =
38 { 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
40 static uint32_t arm1136_cp15_c0_c2
[8] =
41 { 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
43 static uint32_t arm1176_cp15_c0_c1
[8] =
44 { 0x111, 0x11, 0x33, 0, 0x01130003, 0x10030302, 0x01222100, 0 };
46 static uint32_t arm1176_cp15_c0_c2
[8] =
47 { 0x0140011, 0x12002111, 0x11231121, 0x01102131, 0x01141, 0, 0, 0 };
49 static uint32_t cpu_arm_find_by_name(const char *name
);
51 static inline void set_feature(CPUARMState
*env
, int feature
)
53 env
->features
|= 1u << feature
;
56 static void cpu_reset_model_id(CPUARMState
*env
, uint32_t id
)
58 env
->cp15
.c0_cpuid
= id
;
60 case ARM_CPUID_ARM926
:
61 set_feature(env
, ARM_FEATURE_V5
);
62 set_feature(env
, ARM_FEATURE_VFP
);
63 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x41011090;
64 env
->cp15
.c0_cachetype
= 0x1dd20d2;
65 env
->cp15
.c1_sys
= 0x00090078;
67 case ARM_CPUID_ARM946
:
68 set_feature(env
, ARM_FEATURE_V5
);
69 set_feature(env
, ARM_FEATURE_MPU
);
70 env
->cp15
.c0_cachetype
= 0x0f004006;
71 env
->cp15
.c1_sys
= 0x00000078;
73 case ARM_CPUID_ARM1026
:
74 set_feature(env
, ARM_FEATURE_V5
);
75 set_feature(env
, ARM_FEATURE_VFP
);
76 set_feature(env
, ARM_FEATURE_AUXCR
);
77 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x410110a0;
78 env
->cp15
.c0_cachetype
= 0x1dd20d2;
79 env
->cp15
.c1_sys
= 0x00090078;
81 case ARM_CPUID_ARM1136
:
82 /* This is the 1136 r1, which is a v6K core */
83 set_feature(env
, ARM_FEATURE_V6K
);
85 case ARM_CPUID_ARM1136_R2
:
86 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
87 * older core than plain "arm1136". In particular this does not
88 * have the v6K features.
90 set_feature(env
, ARM_FEATURE_V6
);
91 set_feature(env
, ARM_FEATURE_VFP
);
92 /* These ID register values are correct for 1136 but may be wrong
93 * for 1136_r2 (in particular r0p2 does not actually implement most
94 * of the ID registers).
96 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x410120b4;
97 env
->vfp
.xregs
[ARM_VFP_MVFR0
] = 0x11111111;
98 env
->vfp
.xregs
[ARM_VFP_MVFR1
] = 0x00000000;
99 memcpy(env
->cp15
.c0_c1
, arm1136_cp15_c0_c1
, 8 * sizeof(uint32_t));
100 memcpy(env
->cp15
.c0_c2
, arm1136_cp15_c0_c2
, 8 * sizeof(uint32_t));
101 env
->cp15
.c0_cachetype
= 0x1dd20d2;
102 env
->cp15
.c1_sys
= 0x00050078;
104 case ARM_CPUID_ARM1176
:
105 set_feature(env
, ARM_FEATURE_V6K
);
106 set_feature(env
, ARM_FEATURE_VFP
);
107 set_feature(env
, ARM_FEATURE_VAPA
);
108 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x410120b5;
109 env
->vfp
.xregs
[ARM_VFP_MVFR0
] = 0x11111111;
110 env
->vfp
.xregs
[ARM_VFP_MVFR1
] = 0x00000000;
111 memcpy(env
->cp15
.c0_c1
, arm1176_cp15_c0_c1
, 8 * sizeof(uint32_t));
112 memcpy(env
->cp15
.c0_c2
, arm1176_cp15_c0_c2
, 8 * sizeof(uint32_t));
113 env
->cp15
.c0_cachetype
= 0x1dd20d2;
114 env
->cp15
.c1_sys
= 0x00050078;
116 case ARM_CPUID_ARM11MPCORE
:
117 set_feature(env
, ARM_FEATURE_V6K
);
118 set_feature(env
, ARM_FEATURE_VFP
);
119 set_feature(env
, ARM_FEATURE_VAPA
);
120 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x410120b4;
121 env
->vfp
.xregs
[ARM_VFP_MVFR0
] = 0x11111111;
122 env
->vfp
.xregs
[ARM_VFP_MVFR1
] = 0x00000000;
123 memcpy(env
->cp15
.c0_c1
, mpcore_cp15_c0_c1
, 8 * sizeof(uint32_t));
124 memcpy(env
->cp15
.c0_c2
, mpcore_cp15_c0_c2
, 8 * sizeof(uint32_t));
125 env
->cp15
.c0_cachetype
= 0x1dd20d2;
127 case ARM_CPUID_CORTEXA8
:
128 set_feature(env
, ARM_FEATURE_V7
);
129 set_feature(env
, ARM_FEATURE_VFP3
);
130 set_feature(env
, ARM_FEATURE_NEON
);
131 set_feature(env
, ARM_FEATURE_THUMB2EE
);
132 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x410330c0;
133 env
->vfp
.xregs
[ARM_VFP_MVFR0
] = 0x11110222;
134 env
->vfp
.xregs
[ARM_VFP_MVFR1
] = 0x00011100;
135 memcpy(env
->cp15
.c0_c1
, cortexa8_cp15_c0_c1
, 8 * sizeof(uint32_t));
136 memcpy(env
->cp15
.c0_c2
, cortexa8_cp15_c0_c2
, 8 * sizeof(uint32_t));
137 env
->cp15
.c0_cachetype
= 0x82048004;
138 env
->cp15
.c0_clid
= (1 << 27) | (2 << 24) | 3;
139 env
->cp15
.c0_ccsid
[0] = 0xe007e01a; /* 16k L1 dcache. */
140 env
->cp15
.c0_ccsid
[1] = 0x2007e01a; /* 16k L1 icache. */
141 env
->cp15
.c0_ccsid
[2] = 0xf0000000; /* No L2 icache. */
142 env
->cp15
.c1_sys
= 0x00c50078;
144 case ARM_CPUID_CORTEXA9
:
145 set_feature(env
, ARM_FEATURE_V7
);
146 set_feature(env
, ARM_FEATURE_VFP3
);
147 set_feature(env
, ARM_FEATURE_VFP_FP16
);
148 set_feature(env
, ARM_FEATURE_NEON
);
149 set_feature(env
, ARM_FEATURE_THUMB2EE
);
150 /* Note that A9 supports the MP extensions even for
151 * A9UP and single-core A9MP (which are both different
152 * and valid configurations; we don't model A9UP).
154 set_feature(env
, ARM_FEATURE_V7MP
);
155 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x41033090;
156 env
->vfp
.xregs
[ARM_VFP_MVFR0
] = 0x11110222;
157 env
->vfp
.xregs
[ARM_VFP_MVFR1
] = 0x01111111;
158 memcpy(env
->cp15
.c0_c1
, cortexa9_cp15_c0_c1
, 8 * sizeof(uint32_t));
159 memcpy(env
->cp15
.c0_c2
, cortexa9_cp15_c0_c2
, 8 * sizeof(uint32_t));
160 env
->cp15
.c0_cachetype
= 0x80038003;
161 env
->cp15
.c0_clid
= (1 << 27) | (1 << 24) | 3;
162 env
->cp15
.c0_ccsid
[0] = 0xe00fe015; /* 16k L1 dcache. */
163 env
->cp15
.c0_ccsid
[1] = 0x200fe015; /* 16k L1 icache. */
164 env
->cp15
.c1_sys
= 0x00c50078;
166 case ARM_CPUID_CORTEXA15
:
167 set_feature(env
, ARM_FEATURE_V7
);
168 set_feature(env
, ARM_FEATURE_VFP4
);
169 set_feature(env
, ARM_FEATURE_VFP_FP16
);
170 set_feature(env
, ARM_FEATURE_NEON
);
171 set_feature(env
, ARM_FEATURE_THUMB2EE
);
172 set_feature(env
, ARM_FEATURE_ARM_DIV
);
173 set_feature(env
, ARM_FEATURE_V7MP
);
174 set_feature(env
, ARM_FEATURE_GENERIC_TIMER
);
175 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x410430f0;
176 env
->vfp
.xregs
[ARM_VFP_MVFR0
] = 0x10110222;
177 env
->vfp
.xregs
[ARM_VFP_MVFR1
] = 0x11111111;
178 memcpy(env
->cp15
.c0_c1
, cortexa15_cp15_c0_c1
, 8 * sizeof(uint32_t));
179 memcpy(env
->cp15
.c0_c2
, cortexa15_cp15_c0_c2
, 8 * sizeof(uint32_t));
180 env
->cp15
.c0_cachetype
= 0x8444c004;
181 env
->cp15
.c0_clid
= 0x0a200023;
182 env
->cp15
.c0_ccsid
[0] = 0x701fe00a; /* 32K L1 dcache */
183 env
->cp15
.c0_ccsid
[1] = 0x201fe00a; /* 32K L1 icache */
184 env
->cp15
.c0_ccsid
[2] = 0x711fe07a; /* 4096K L2 unified cache */
185 env
->cp15
.c1_sys
= 0x00c50078;
187 case ARM_CPUID_CORTEXM3
:
188 set_feature(env
, ARM_FEATURE_V7
);
189 set_feature(env
, ARM_FEATURE_M
);
191 case ARM_CPUID_ANY
: /* For userspace emulation. */
192 set_feature(env
, ARM_FEATURE_V7
);
193 set_feature(env
, ARM_FEATURE_VFP4
);
194 set_feature(env
, ARM_FEATURE_VFP_FP16
);
195 set_feature(env
, ARM_FEATURE_NEON
);
196 set_feature(env
, ARM_FEATURE_THUMB2EE
);
197 set_feature(env
, ARM_FEATURE_ARM_DIV
);
198 set_feature(env
, ARM_FEATURE_V7MP
);
200 case ARM_CPUID_TI915T
:
201 case ARM_CPUID_TI925T
:
202 set_feature(env
, ARM_FEATURE_V4T
);
203 set_feature(env
, ARM_FEATURE_OMAPCP
);
204 env
->cp15
.c0_cpuid
= ARM_CPUID_TI925T
; /* Depends on wiring. */
205 env
->cp15
.c0_cachetype
= 0x5109149;
206 env
->cp15
.c1_sys
= 0x00000070;
207 env
->cp15
.c15_i_max
= 0x000;
208 env
->cp15
.c15_i_min
= 0xff0;
210 case ARM_CPUID_PXA250
:
211 case ARM_CPUID_PXA255
:
212 case ARM_CPUID_PXA260
:
213 case ARM_CPUID_PXA261
:
214 case ARM_CPUID_PXA262
:
215 set_feature(env
, ARM_FEATURE_V5
);
216 set_feature(env
, ARM_FEATURE_XSCALE
);
217 /* JTAG_ID is ((id << 28) | 0x09265013) */
218 env
->cp15
.c0_cachetype
= 0xd172172;
219 env
->cp15
.c1_sys
= 0x00000078;
221 case ARM_CPUID_PXA270_A0
:
222 case ARM_CPUID_PXA270_A1
:
223 case ARM_CPUID_PXA270_B0
:
224 case ARM_CPUID_PXA270_B1
:
225 case ARM_CPUID_PXA270_C0
:
226 case ARM_CPUID_PXA270_C5
:
227 set_feature(env
, ARM_FEATURE_V5
);
228 set_feature(env
, ARM_FEATURE_XSCALE
);
229 /* JTAG_ID is ((id << 28) | 0x09265013) */
230 set_feature(env
, ARM_FEATURE_IWMMXT
);
231 env
->iwmmxt
.cregs
[ARM_IWMMXT_wCID
] = 0x69051000 | 'Q';
232 env
->cp15
.c0_cachetype
= 0xd172172;
233 env
->cp15
.c1_sys
= 0x00000078;
235 case ARM_CPUID_SA1100
:
236 case ARM_CPUID_SA1110
:
237 set_feature(env
, ARM_FEATURE_STRONGARM
);
238 env
->cp15
.c1_sys
= 0x00000070;
241 cpu_abort(env
, "Bad CPU ID: %x\n", id
);
245 /* Some features automatically imply others: */
246 if (arm_feature(env
, ARM_FEATURE_V7
)) {
247 set_feature(env
, ARM_FEATURE_VAPA
);
248 set_feature(env
, ARM_FEATURE_THUMB2
);
249 if (!arm_feature(env
, ARM_FEATURE_M
)) {
250 set_feature(env
, ARM_FEATURE_V6K
);
252 set_feature(env
, ARM_FEATURE_V6
);
255 if (arm_feature(env
, ARM_FEATURE_V6K
)) {
256 set_feature(env
, ARM_FEATURE_V6
);
257 set_feature(env
, ARM_FEATURE_MVFR
);
259 if (arm_feature(env
, ARM_FEATURE_V6
)) {
260 set_feature(env
, ARM_FEATURE_V5
);
261 if (!arm_feature(env
, ARM_FEATURE_M
)) {
262 set_feature(env
, ARM_FEATURE_AUXCR
);
265 if (arm_feature(env
, ARM_FEATURE_V5
)) {
266 set_feature(env
, ARM_FEATURE_V4T
);
268 if (arm_feature(env
, ARM_FEATURE_M
)) {
269 set_feature(env
, ARM_FEATURE_THUMB_DIV
);
271 if (arm_feature(env
, ARM_FEATURE_ARM_DIV
)) {
272 set_feature(env
, ARM_FEATURE_THUMB_DIV
);
274 if (arm_feature(env
, ARM_FEATURE_VFP4
)) {
275 set_feature(env
, ARM_FEATURE_VFP3
);
277 if (arm_feature(env
, ARM_FEATURE_VFP3
)) {
278 set_feature(env
, ARM_FEATURE_VFP
);
282 /* TODO Move contents into arm_cpu_reset() in cpu.c,
283 * once cpu_reset_model_id() is eliminated,
284 * and then forward to cpu_reset() here.
286 void cpu_state_reset(CPUARMState
*env
)
291 if (qemu_loglevel_mask(CPU_LOG_RESET
)) {
292 qemu_log("CPU Reset (CPU %d)\n", env
->cpu_index
);
293 log_cpu_state(env
, 0);
296 id
= env
->cp15
.c0_cpuid
;
297 tmp
= env
->cp15
.c15_config_base_address
;
298 memset(env
, 0, offsetof(CPUARMState
, breakpoints
));
300 cpu_reset_model_id(env
, id
);
301 env
->cp15
.c15_config_base_address
= tmp
;
302 #if defined (CONFIG_USER_ONLY)
303 env
->uncached_cpsr
= ARM_CPU_MODE_USR
;
304 /* For user mode we must enable access to coprocessors */
305 env
->vfp
.xregs
[ARM_VFP_FPEXC
] = 1 << 30;
306 if (arm_feature(env
, ARM_FEATURE_IWMMXT
)) {
307 env
->cp15
.c15_cpar
= 3;
308 } else if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
309 env
->cp15
.c15_cpar
= 1;
312 /* SVC mode with interrupts disabled. */
313 env
->uncached_cpsr
= ARM_CPU_MODE_SVC
| CPSR_A
| CPSR_F
| CPSR_I
;
314 /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
315 clear at reset. Initial SP and PC are loaded from ROM. */
319 env
->uncached_cpsr
&= ~CPSR_I
;
322 /* We should really use ldl_phys here, in case the guest
323 modified flash and reset itself. However images
324 loaded via -kernel have not been copied yet, so load the
325 values directly from there. */
326 env
->regs
[13] = ldl_p(rom
);
329 env
->regs
[15] = pc
& ~1;
332 env
->vfp
.xregs
[ARM_VFP_FPEXC
] = 0;
333 env
->cp15
.c2_base_mask
= 0xffffc000u
;
334 /* v7 performance monitor control register: same implementor
335 * field as main ID register, and we implement no event counters.
337 env
->cp15
.c9_pmcr
= (id
& 0xff000000);
339 set_flush_to_zero(1, &env
->vfp
.standard_fp_status
);
340 set_flush_inputs_to_zero(1, &env
->vfp
.standard_fp_status
);
341 set_default_nan_mode(1, &env
->vfp
.standard_fp_status
);
342 set_float_detect_tininess(float_tininess_before_rounding
,
343 &env
->vfp
.fp_status
);
344 set_float_detect_tininess(float_tininess_before_rounding
,
345 &env
->vfp
.standard_fp_status
);
347 /* Reset is a state change for some CPUARMState fields which we
348 * bake assumptions about into translated code, so we need to
354 static int vfp_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
358 /* VFP data registers are always little-endian. */
359 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
361 stfq_le_p(buf
, env
->vfp
.regs
[reg
]);
364 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
365 /* Aliases for Q regs. */
368 stfq_le_p(buf
, env
->vfp
.regs
[(reg
- 32) * 2]);
369 stfq_le_p(buf
+ 8, env
->vfp
.regs
[(reg
- 32) * 2 + 1]);
373 switch (reg
- nregs
) {
374 case 0: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSID
]); return 4;
375 case 1: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSCR
]); return 4;
376 case 2: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPEXC
]); return 4;
381 static int vfp_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
385 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
387 env
->vfp
.regs
[reg
] = ldfq_le_p(buf
);
390 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
393 env
->vfp
.regs
[(reg
- 32) * 2] = ldfq_le_p(buf
);
394 env
->vfp
.regs
[(reg
- 32) * 2 + 1] = ldfq_le_p(buf
+ 8);
398 switch (reg
- nregs
) {
399 case 0: env
->vfp
.xregs
[ARM_VFP_FPSID
] = ldl_p(buf
); return 4;
400 case 1: env
->vfp
.xregs
[ARM_VFP_FPSCR
] = ldl_p(buf
); return 4;
401 case 2: env
->vfp
.xregs
[ARM_VFP_FPEXC
] = ldl_p(buf
) & (1 << 30); return 4;
406 CPUARMState
*cpu_arm_init(const char *cpu_model
)
411 static int inited
= 0;
413 id
= cpu_arm_find_by_name(cpu_model
);
416 cpu
= ARM_CPU(object_new(TYPE_ARM_CPU
));
419 if (tcg_enabled() && !inited
) {
421 arm_translate_init();
424 env
->cpu_model_str
= cpu_model
;
425 env
->cp15
.c0_cpuid
= id
;
426 cpu_state_reset(env
);
427 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
428 gdb_register_coprocessor(env
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
429 51, "arm-neon.xml", 0);
430 } else if (arm_feature(env
, ARM_FEATURE_VFP3
)) {
431 gdb_register_coprocessor(env
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
432 35, "arm-vfp3.xml", 0);
433 } else if (arm_feature(env
, ARM_FEATURE_VFP
)) {
434 gdb_register_coprocessor(env
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
435 19, "arm-vfp.xml", 0);
446 static const struct arm_cpu_t arm_cpu_names
[] = {
447 { ARM_CPUID_ARM926
, "arm926"},
448 { ARM_CPUID_ARM946
, "arm946"},
449 { ARM_CPUID_ARM1026
, "arm1026"},
450 { ARM_CPUID_ARM1136
, "arm1136"},
451 { ARM_CPUID_ARM1136_R2
, "arm1136-r2"},
452 { ARM_CPUID_ARM1176
, "arm1176"},
453 { ARM_CPUID_ARM11MPCORE
, "arm11mpcore"},
454 { ARM_CPUID_CORTEXM3
, "cortex-m3"},
455 { ARM_CPUID_CORTEXA8
, "cortex-a8"},
456 { ARM_CPUID_CORTEXA9
, "cortex-a9"},
457 { ARM_CPUID_CORTEXA15
, "cortex-a15" },
458 { ARM_CPUID_TI925T
, "ti925t" },
459 { ARM_CPUID_PXA250
, "pxa250" },
460 { ARM_CPUID_SA1100
, "sa1100" },
461 { ARM_CPUID_SA1110
, "sa1110" },
462 { ARM_CPUID_PXA255
, "pxa255" },
463 { ARM_CPUID_PXA260
, "pxa260" },
464 { ARM_CPUID_PXA261
, "pxa261" },
465 { ARM_CPUID_PXA262
, "pxa262" },
466 { ARM_CPUID_PXA270
, "pxa270" },
467 { ARM_CPUID_PXA270_A0
, "pxa270-a0" },
468 { ARM_CPUID_PXA270_A1
, "pxa270-a1" },
469 { ARM_CPUID_PXA270_B0
, "pxa270-b0" },
470 { ARM_CPUID_PXA270_B1
, "pxa270-b1" },
471 { ARM_CPUID_PXA270_C0
, "pxa270-c0" },
472 { ARM_CPUID_PXA270_C5
, "pxa270-c5" },
473 { ARM_CPUID_ANY
, "any"},
477 void arm_cpu_list(FILE *f
, fprintf_function cpu_fprintf
)
481 (*cpu_fprintf
)(f
, "Available CPUs:\n");
482 for (i
= 0; arm_cpu_names
[i
].name
; i
++) {
483 (*cpu_fprintf
)(f
, " %s\n", arm_cpu_names
[i
].name
);
487 /* return 0 if not found */
488 static uint32_t cpu_arm_find_by_name(const char *name
)
494 for (i
= 0; arm_cpu_names
[i
].name
; i
++) {
495 if (strcmp(name
, arm_cpu_names
[i
].name
) == 0) {
496 id
= arm_cpu_names
[i
].id
;
503 static int bad_mode_switch(CPUARMState
*env
, int mode
)
505 /* Return true if it is not valid for us to switch to
506 * this CPU mode (ie all the UNPREDICTABLE cases in
507 * the ARM ARM CPSRWriteByInstr pseudocode).
510 case ARM_CPU_MODE_USR
:
511 case ARM_CPU_MODE_SYS
:
512 case ARM_CPU_MODE_SVC
:
513 case ARM_CPU_MODE_ABT
:
514 case ARM_CPU_MODE_UND
:
515 case ARM_CPU_MODE_IRQ
:
516 case ARM_CPU_MODE_FIQ
:
523 uint32_t cpsr_read(CPUARMState
*env
)
527 return env
->uncached_cpsr
| (env
->NF
& 0x80000000) | (ZF
<< 30) |
528 (env
->CF
<< 29) | ((env
->VF
& 0x80000000) >> 3) | (env
->QF
<< 27)
529 | (env
->thumb
<< 5) | ((env
->condexec_bits
& 3) << 25)
530 | ((env
->condexec_bits
& 0xfc) << 8)
534 void cpsr_write(CPUARMState
*env
, uint32_t val
, uint32_t mask
)
536 if (mask
& CPSR_NZCV
) {
537 env
->ZF
= (~val
) & CPSR_Z
;
539 env
->CF
= (val
>> 29) & 1;
540 env
->VF
= (val
<< 3) & 0x80000000;
543 env
->QF
= ((val
& CPSR_Q
) != 0);
545 env
->thumb
= ((val
& CPSR_T
) != 0);
546 if (mask
& CPSR_IT_0_1
) {
547 env
->condexec_bits
&= ~3;
548 env
->condexec_bits
|= (val
>> 25) & 3;
550 if (mask
& CPSR_IT_2_7
) {
551 env
->condexec_bits
&= 3;
552 env
->condexec_bits
|= (val
>> 8) & 0xfc;
554 if (mask
& CPSR_GE
) {
555 env
->GE
= (val
>> 16) & 0xf;
558 if ((env
->uncached_cpsr
^ val
) & mask
& CPSR_M
) {
559 if (bad_mode_switch(env
, val
& CPSR_M
)) {
560 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
561 * We choose to ignore the attempt and leave the CPSR M field
566 switch_mode(env
, val
& CPSR_M
);
569 mask
&= ~CACHED_CPSR_BITS
;
570 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~mask
) | (val
& mask
);
573 /* Sign/zero extend */
574 uint32_t HELPER(sxtb16
)(uint32_t x
)
577 res
= (uint16_t)(int8_t)x
;
578 res
|= (uint32_t)(int8_t)(x
>> 16) << 16;
582 uint32_t HELPER(uxtb16
)(uint32_t x
)
585 res
= (uint16_t)(uint8_t)x
;
586 res
|= (uint32_t)(uint8_t)(x
>> 16) << 16;
590 uint32_t HELPER(clz
)(uint32_t x
)
595 int32_t HELPER(sdiv
)(int32_t num
, int32_t den
)
599 if (num
== INT_MIN
&& den
== -1)
604 uint32_t HELPER(udiv
)(uint32_t num
, uint32_t den
)
611 uint32_t HELPER(rbit
)(uint32_t x
)
613 x
= ((x
& 0xff000000) >> 24)
614 | ((x
& 0x00ff0000) >> 8)
615 | ((x
& 0x0000ff00) << 8)
616 | ((x
& 0x000000ff) << 24);
617 x
= ((x
& 0xf0f0f0f0) >> 4)
618 | ((x
& 0x0f0f0f0f) << 4);
619 x
= ((x
& 0x88888888) >> 3)
620 | ((x
& 0x44444444) >> 1)
621 | ((x
& 0x22222222) << 1)
622 | ((x
& 0x11111111) << 3);
626 uint32_t HELPER(abs
)(uint32_t x
)
628 return ((int32_t)x
< 0) ? -x
: x
;
631 #if defined(CONFIG_USER_ONLY)
633 void do_interrupt (CPUARMState
*env
)
635 env
->exception_index
= -1;
638 int cpu_arm_handle_mmu_fault (CPUARMState
*env
, target_ulong address
, int rw
,
642 env
->exception_index
= EXCP_PREFETCH_ABORT
;
643 env
->cp15
.c6_insn
= address
;
645 env
->exception_index
= EXCP_DATA_ABORT
;
646 env
->cp15
.c6_data
= address
;
651 /* These should probably raise undefined insn exceptions. */
652 void HELPER(set_cp
)(CPUARMState
*env
, uint32_t insn
, uint32_t val
)
654 int op1
= (insn
>> 8) & 0xf;
655 cpu_abort(env
, "cp%i insn %08x\n", op1
, insn
);
659 uint32_t HELPER(get_cp
)(CPUARMState
*env
, uint32_t insn
)
661 int op1
= (insn
>> 8) & 0xf;
662 cpu_abort(env
, "cp%i insn %08x\n", op1
, insn
);
666 void HELPER(set_cp15
)(CPUARMState
*env
, uint32_t insn
, uint32_t val
)
668 cpu_abort(env
, "cp15 insn %08x\n", insn
);
671 uint32_t HELPER(get_cp15
)(CPUARMState
*env
, uint32_t insn
)
673 cpu_abort(env
, "cp15 insn %08x\n", insn
);
676 /* These should probably raise undefined insn exceptions. */
677 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
679 cpu_abort(env
, "v7m_mrs %d\n", reg
);
682 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
684 cpu_abort(env
, "v7m_mrs %d\n", reg
);
688 void switch_mode(CPUARMState
*env
, int mode
)
690 if (mode
!= ARM_CPU_MODE_USR
)
691 cpu_abort(env
, "Tried to switch out of user mode\n");
694 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
696 cpu_abort(env
, "banked r13 write\n");
699 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
701 cpu_abort(env
, "banked r13 read\n");
707 /* Map CPU modes onto saved register banks. */
708 static inline int bank_number(CPUARMState
*env
, int mode
)
711 case ARM_CPU_MODE_USR
:
712 case ARM_CPU_MODE_SYS
:
714 case ARM_CPU_MODE_SVC
:
716 case ARM_CPU_MODE_ABT
:
718 case ARM_CPU_MODE_UND
:
720 case ARM_CPU_MODE_IRQ
:
722 case ARM_CPU_MODE_FIQ
:
725 cpu_abort(env
, "Bad mode %x\n", mode
);
729 void switch_mode(CPUARMState
*env
, int mode
)
734 old_mode
= env
->uncached_cpsr
& CPSR_M
;
735 if (mode
== old_mode
)
738 if (old_mode
== ARM_CPU_MODE_FIQ
) {
739 memcpy (env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
740 memcpy (env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
741 } else if (mode
== ARM_CPU_MODE_FIQ
) {
742 memcpy (env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
743 memcpy (env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
746 i
= bank_number(env
, old_mode
);
747 env
->banked_r13
[i
] = env
->regs
[13];
748 env
->banked_r14
[i
] = env
->regs
[14];
749 env
->banked_spsr
[i
] = env
->spsr
;
751 i
= bank_number(env
, mode
);
752 env
->regs
[13] = env
->banked_r13
[i
];
753 env
->regs
[14] = env
->banked_r14
[i
];
754 env
->spsr
= env
->banked_spsr
[i
];
757 static void v7m_push(CPUARMState
*env
, uint32_t val
)
760 stl_phys(env
->regs
[13], val
);
763 static uint32_t v7m_pop(CPUARMState
*env
)
766 val
= ldl_phys(env
->regs
[13]);
771 /* Switch to V7M main or process stack pointer. */
772 static void switch_v7m_sp(CPUARMState
*env
, int process
)
775 if (env
->v7m
.current_sp
!= process
) {
776 tmp
= env
->v7m
.other_sp
;
777 env
->v7m
.other_sp
= env
->regs
[13];
779 env
->v7m
.current_sp
= process
;
783 static void do_v7m_exception_exit(CPUARMState
*env
)
788 type
= env
->regs
[15];
789 if (env
->v7m
.exception
!= 0)
790 armv7m_nvic_complete_irq(env
->nvic
, env
->v7m
.exception
);
792 /* Switch to the target stack. */
793 switch_v7m_sp(env
, (type
& 4) != 0);
795 env
->regs
[0] = v7m_pop(env
);
796 env
->regs
[1] = v7m_pop(env
);
797 env
->regs
[2] = v7m_pop(env
);
798 env
->regs
[3] = v7m_pop(env
);
799 env
->regs
[12] = v7m_pop(env
);
800 env
->regs
[14] = v7m_pop(env
);
801 env
->regs
[15] = v7m_pop(env
);
803 xpsr_write(env
, xpsr
, 0xfffffdff);
804 /* Undo stack alignment. */
807 /* ??? The exception return type specifies Thread/Handler mode. However
808 this is also implied by the xPSR value. Not sure what to do
809 if there is a mismatch. */
810 /* ??? Likewise for mismatches between the CONTROL register and the stack
814 static void do_interrupt_v7m(CPUARMState
*env
)
816 uint32_t xpsr
= xpsr_read(env
);
821 if (env
->v7m
.current_sp
)
823 if (env
->v7m
.exception
== 0)
826 /* For exceptions we just mark as pending on the NVIC, and let that
828 /* TODO: Need to escalate if the current priority is higher than the
829 one we're raising. */
830 switch (env
->exception_index
) {
832 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
);
836 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SVC
);
838 case EXCP_PREFETCH_ABORT
:
839 case EXCP_DATA_ABORT
:
840 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_MEM
);
843 if (semihosting_enabled
) {
845 nr
= arm_lduw_code(env
->regs
[15], env
->bswap_code
) & 0xff;
848 env
->regs
[0] = do_arm_semihosting(env
);
852 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_DEBUG
);
855 env
->v7m
.exception
= armv7m_nvic_acknowledge_irq(env
->nvic
);
857 case EXCP_EXCEPTION_EXIT
:
858 do_v7m_exception_exit(env
);
861 cpu_abort(env
, "Unhandled exception 0x%x\n", env
->exception_index
);
862 return; /* Never happens. Keep compiler happy. */
865 /* Align stack pointer. */
866 /* ??? Should only do this if Configuration Control Register
867 STACKALIGN bit is set. */
868 if (env
->regs
[13] & 4) {
872 /* Switch to the handler mode. */
874 v7m_push(env
, env
->regs
[15]);
875 v7m_push(env
, env
->regs
[14]);
876 v7m_push(env
, env
->regs
[12]);
877 v7m_push(env
, env
->regs
[3]);
878 v7m_push(env
, env
->regs
[2]);
879 v7m_push(env
, env
->regs
[1]);
880 v7m_push(env
, env
->regs
[0]);
881 switch_v7m_sp(env
, 0);
883 env
->condexec_bits
= 0;
885 addr
= ldl_phys(env
->v7m
.vecbase
+ env
->v7m
.exception
* 4);
886 env
->regs
[15] = addr
& 0xfffffffe;
887 env
->thumb
= addr
& 1;
890 /* Handle a CPU exception. */
891 void do_interrupt(CPUARMState
*env
)
899 do_interrupt_v7m(env
);
902 /* TODO: Vectored interrupt controller. */
903 switch (env
->exception_index
) {
905 new_mode
= ARM_CPU_MODE_UND
;
914 if (semihosting_enabled
) {
915 /* Check for semihosting interrupt. */
917 mask
= arm_lduw_code(env
->regs
[15] - 2, env
->bswap_code
) & 0xff;
919 mask
= arm_ldl_code(env
->regs
[15] - 4, env
->bswap_code
)
922 /* Only intercept calls from privileged modes, to provide some
923 semblance of security. */
924 if (((mask
== 0x123456 && !env
->thumb
)
925 || (mask
== 0xab && env
->thumb
))
926 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
927 env
->regs
[0] = do_arm_semihosting(env
);
931 new_mode
= ARM_CPU_MODE_SVC
;
934 /* The PC already points to the next instruction. */
938 /* See if this is a semihosting syscall. */
939 if (env
->thumb
&& semihosting_enabled
) {
940 mask
= arm_lduw_code(env
->regs
[15], env
->bswap_code
) & 0xff;
942 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
944 env
->regs
[0] = do_arm_semihosting(env
);
948 env
->cp15
.c5_insn
= 2;
949 /* Fall through to prefetch abort. */
950 case EXCP_PREFETCH_ABORT
:
951 new_mode
= ARM_CPU_MODE_ABT
;
953 mask
= CPSR_A
| CPSR_I
;
956 case EXCP_DATA_ABORT
:
957 new_mode
= ARM_CPU_MODE_ABT
;
959 mask
= CPSR_A
| CPSR_I
;
963 new_mode
= ARM_CPU_MODE_IRQ
;
965 /* Disable IRQ and imprecise data aborts. */
966 mask
= CPSR_A
| CPSR_I
;
970 new_mode
= ARM_CPU_MODE_FIQ
;
972 /* Disable FIQ, IRQ and imprecise data aborts. */
973 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
977 cpu_abort(env
, "Unhandled exception 0x%x\n", env
->exception_index
);
978 return; /* Never happens. Keep compiler happy. */
981 if (env
->cp15
.c1_sys
& (1 << 13)) {
984 switch_mode (env
, new_mode
);
985 env
->spsr
= cpsr_read(env
);
987 env
->condexec_bits
= 0;
988 /* Switch to the new mode, and to the correct instruction set. */
989 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~CPSR_M
) | new_mode
;
990 env
->uncached_cpsr
|= mask
;
991 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
992 * and we should just guard the thumb mode on V4 */
993 if (arm_feature(env
, ARM_FEATURE_V4T
)) {
994 env
->thumb
= (env
->cp15
.c1_sys
& (1 << 30)) != 0;
996 env
->regs
[14] = env
->regs
[15] + offset
;
997 env
->regs
[15] = addr
;
998 env
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
1001 /* Check section/page access permissions.
1002 Returns the page protection flags, or zero if the access is not
1004 static inline int check_ap(CPUARMState
*env
, int ap
, int domain_prot
,
1005 int access_type
, int is_user
)
1009 if (domain_prot
== 3) {
1010 return PAGE_READ
| PAGE_WRITE
;
1013 if (access_type
== 1)
1016 prot_ro
= PAGE_READ
;
1020 if (access_type
== 1)
1022 switch ((env
->cp15
.c1_sys
>> 8) & 3) {
1024 return is_user
? 0 : PAGE_READ
;
1031 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
1036 return PAGE_READ
| PAGE_WRITE
;
1038 return PAGE_READ
| PAGE_WRITE
;
1039 case 4: /* Reserved. */
1042 return is_user
? 0 : prot_ro
;
1046 if (!arm_feature (env
, ARM_FEATURE_V6K
))
1054 static uint32_t get_level1_table_address(CPUARMState
*env
, uint32_t address
)
1058 if (address
& env
->cp15
.c2_mask
)
1059 table
= env
->cp15
.c2_base1
& 0xffffc000;
1061 table
= env
->cp15
.c2_base0
& env
->cp15
.c2_base_mask
;
1063 table
|= (address
>> 18) & 0x3ffc;
1067 static int get_phys_addr_v5(CPUARMState
*env
, uint32_t address
, int access_type
,
1068 int is_user
, uint32_t *phys_ptr
, int *prot
,
1069 target_ulong
*page_size
)
1080 /* Pagetable walk. */
1081 /* Lookup l1 descriptor. */
1082 table
= get_level1_table_address(env
, address
);
1083 desc
= ldl_phys(table
);
1085 domain
= (desc
>> 5) & 0x0f;
1086 domain_prot
= (env
->cp15
.c3
>> (domain
* 2)) & 3;
1088 /* Section translation fault. */
1092 if (domain_prot
== 0 || domain_prot
== 2) {
1094 code
= 9; /* Section domain fault. */
1096 code
= 11; /* Page domain fault. */
1101 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
1102 ap
= (desc
>> 10) & 3;
1104 *page_size
= 1024 * 1024;
1106 /* Lookup l2 entry. */
1108 /* Coarse pagetable. */
1109 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
1111 /* Fine pagetable. */
1112 table
= (desc
& 0xfffff000) | ((address
>> 8) & 0xffc);
1114 desc
= ldl_phys(table
);
1116 case 0: /* Page translation fault. */
1119 case 1: /* 64k page. */
1120 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
1121 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
1122 *page_size
= 0x10000;
1124 case 2: /* 4k page. */
1125 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
1126 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
1127 *page_size
= 0x1000;
1129 case 3: /* 1k page. */
1131 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
1132 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
1134 /* Page translation fault. */
1139 phys_addr
= (desc
& 0xfffffc00) | (address
& 0x3ff);
1141 ap
= (desc
>> 4) & 3;
1145 /* Never happens, but compiler isn't smart enough to tell. */
1150 *prot
= check_ap(env
, ap
, domain_prot
, access_type
, is_user
);
1152 /* Access permission fault. */
1156 *phys_ptr
= phys_addr
;
1159 return code
| (domain
<< 4);
1162 static int get_phys_addr_v6(CPUARMState
*env
, uint32_t address
, int access_type
,
1163 int is_user
, uint32_t *phys_ptr
, int *prot
,
1164 target_ulong
*page_size
)
1176 /* Pagetable walk. */
1177 /* Lookup l1 descriptor. */
1178 table
= get_level1_table_address(env
, address
);
1179 desc
= ldl_phys(table
);
1182 /* Section translation fault. */
1186 } else if (type
== 2 && (desc
& (1 << 18))) {
1190 /* Section or page. */
1191 domain
= (desc
>> 5) & 0x0f;
1193 domain_prot
= (env
->cp15
.c3
>> (domain
* 2)) & 3;
1194 if (domain_prot
== 0 || domain_prot
== 2) {
1196 code
= 9; /* Section domain fault. */
1198 code
= 11; /* Page domain fault. */
1202 if (desc
& (1 << 18)) {
1204 phys_addr
= (desc
& 0xff000000) | (address
& 0x00ffffff);
1205 *page_size
= 0x1000000;
1208 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
1209 *page_size
= 0x100000;
1211 ap
= ((desc
>> 10) & 3) | ((desc
>> 13) & 4);
1212 xn
= desc
& (1 << 4);
1215 /* Lookup l2 entry. */
1216 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
1217 desc
= ldl_phys(table
);
1218 ap
= ((desc
>> 4) & 3) | ((desc
>> 7) & 4);
1220 case 0: /* Page translation fault. */
1223 case 1: /* 64k page. */
1224 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
1225 xn
= desc
& (1 << 15);
1226 *page_size
= 0x10000;
1228 case 2: case 3: /* 4k page. */
1229 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
1231 *page_size
= 0x1000;
1234 /* Never happens, but compiler isn't smart enough to tell. */
1239 if (domain_prot
== 3) {
1240 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
1242 if (xn
&& access_type
== 2)
1245 /* The simplified model uses AP[0] as an access control bit. */
1246 if ((env
->cp15
.c1_sys
& (1 << 29)) && (ap
& 1) == 0) {
1247 /* Access flag fault. */
1248 code
= (code
== 15) ? 6 : 3;
1251 *prot
= check_ap(env
, ap
, domain_prot
, access_type
, is_user
);
1253 /* Access permission fault. */
1260 *phys_ptr
= phys_addr
;
1263 return code
| (domain
<< 4);
1266 static int get_phys_addr_mpu(CPUARMState
*env
, uint32_t address
, int access_type
,
1267 int is_user
, uint32_t *phys_ptr
, int *prot
)
1273 *phys_ptr
= address
;
1274 for (n
= 7; n
>= 0; n
--) {
1275 base
= env
->cp15
.c6_region
[n
];
1276 if ((base
& 1) == 0)
1278 mask
= 1 << ((base
>> 1) & 0x1f);
1279 /* Keep this shift separate from the above to avoid an
1280 (undefined) << 32. */
1281 mask
= (mask
<< 1) - 1;
1282 if (((base
^ address
) & ~mask
) == 0)
1288 if (access_type
== 2) {
1289 mask
= env
->cp15
.c5_insn
;
1291 mask
= env
->cp15
.c5_data
;
1293 mask
= (mask
>> (n
* 4)) & 0xf;
1300 *prot
= PAGE_READ
| PAGE_WRITE
;
1305 *prot
|= PAGE_WRITE
;
1308 *prot
= PAGE_READ
| PAGE_WRITE
;
1319 /* Bad permission. */
1326 static inline int get_phys_addr(CPUARMState
*env
, uint32_t address
,
1327 int access_type
, int is_user
,
1328 uint32_t *phys_ptr
, int *prot
,
1329 target_ulong
*page_size
)
1331 /* Fast Context Switch Extension. */
1332 if (address
< 0x02000000)
1333 address
+= env
->cp15
.c13_fcse
;
1335 if ((env
->cp15
.c1_sys
& 1) == 0) {
1336 /* MMU/MPU disabled. */
1337 *phys_ptr
= address
;
1338 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
1339 *page_size
= TARGET_PAGE_SIZE
;
1341 } else if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1342 *page_size
= TARGET_PAGE_SIZE
;
1343 return get_phys_addr_mpu(env
, address
, access_type
, is_user
, phys_ptr
,
1345 } else if (env
->cp15
.c1_sys
& (1 << 23)) {
1346 return get_phys_addr_v6(env
, address
, access_type
, is_user
, phys_ptr
,
1349 return get_phys_addr_v5(env
, address
, access_type
, is_user
, phys_ptr
,
1354 int cpu_arm_handle_mmu_fault (CPUARMState
*env
, target_ulong address
,
1355 int access_type
, int mmu_idx
)
1358 target_ulong page_size
;
1362 is_user
= mmu_idx
== MMU_USER_IDX
;
1363 ret
= get_phys_addr(env
, address
, access_type
, is_user
, &phys_addr
, &prot
,
1366 /* Map a single [sub]page. */
1367 phys_addr
&= ~(uint32_t)0x3ff;
1368 address
&= ~(uint32_t)0x3ff;
1369 tlb_set_page (env
, address
, phys_addr
, prot
, mmu_idx
, page_size
);
1373 if (access_type
== 2) {
1374 env
->cp15
.c5_insn
= ret
;
1375 env
->cp15
.c6_insn
= address
;
1376 env
->exception_index
= EXCP_PREFETCH_ABORT
;
1378 env
->cp15
.c5_data
= ret
;
1379 if (access_type
== 1 && arm_feature(env
, ARM_FEATURE_V6
))
1380 env
->cp15
.c5_data
|= (1 << 11);
1381 env
->cp15
.c6_data
= address
;
1382 env
->exception_index
= EXCP_DATA_ABORT
;
1387 target_phys_addr_t
cpu_get_phys_page_debug(CPUARMState
*env
, target_ulong addr
)
1390 target_ulong page_size
;
1394 ret
= get_phys_addr(env
, addr
, 0, 0, &phys_addr
, &prot
, &page_size
);
1402 void HELPER(set_cp
)(CPUARMState
*env
, uint32_t insn
, uint32_t val
)
1404 int cp_num
= (insn
>> 8) & 0xf;
1405 int cp_info
= (insn
>> 5) & 7;
1406 int src
= (insn
>> 16) & 0xf;
1407 int operand
= insn
& 0xf;
1409 if (env
->cp
[cp_num
].cp_write
)
1410 env
->cp
[cp_num
].cp_write(env
->cp
[cp_num
].opaque
,
1411 cp_info
, src
, operand
, val
);
1414 uint32_t HELPER(get_cp
)(CPUARMState
*env
, uint32_t insn
)
1416 int cp_num
= (insn
>> 8) & 0xf;
1417 int cp_info
= (insn
>> 5) & 7;
1418 int dest
= (insn
>> 16) & 0xf;
1419 int operand
= insn
& 0xf;
1421 if (env
->cp
[cp_num
].cp_read
)
1422 return env
->cp
[cp_num
].cp_read(env
->cp
[cp_num
].opaque
,
1423 cp_info
, dest
, operand
);
1427 /* Return basic MPU access permission bits. */
1428 static uint32_t simple_mpu_ap_bits(uint32_t val
)
1435 for (i
= 0; i
< 16; i
+= 2) {
1436 ret
|= (val
>> i
) & mask
;
1442 /* Pad basic MPU access permission bits to extended format. */
1443 static uint32_t extended_mpu_ap_bits(uint32_t val
)
1450 for (i
= 0; i
< 16; i
+= 2) {
1451 ret
|= (val
& mask
) << i
;
1457 void HELPER(set_cp15
)(CPUARMState
*env
, uint32_t insn
, uint32_t val
)
1463 op1
= (insn
>> 21) & 7;
1464 op2
= (insn
>> 5) & 7;
1466 switch ((insn
>> 16) & 0xf) {
1469 if (arm_feature(env
, ARM_FEATURE_XSCALE
))
1471 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1473 if (arm_feature(env
, ARM_FEATURE_V7
)
1474 && op1
== 2 && crm
== 0 && op2
== 0) {
1475 env
->cp15
.c0_cssel
= val
& 0xf;
1479 case 1: /* System configuration. */
1480 if (arm_feature(env
, ARM_FEATURE_V7
)
1481 && op1
== 0 && crm
== 1 && op2
== 0) {
1482 env
->cp15
.c1_scr
= val
;
1485 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1489 if (!arm_feature(env
, ARM_FEATURE_XSCALE
) || crm
== 0)
1490 env
->cp15
.c1_sys
= val
;
1491 /* ??? Lots of these bits are not implemented. */
1492 /* This may enable/disable the MMU, so do a TLB flush. */
1495 case 1: /* Auxiliary control register. */
1496 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
1497 env
->cp15
.c1_xscaleauxcr
= val
;
1500 /* Not implemented. */
1503 if (arm_feature(env
, ARM_FEATURE_XSCALE
))
1505 if (env
->cp15
.c1_coproc
!= val
) {
1506 env
->cp15
.c1_coproc
= val
;
1507 /* ??? Is this safe when called from within a TB? */
1515 case 2: /* MMU Page table control / MPU cache control. */
1516 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1519 env
->cp15
.c2_data
= val
;
1522 env
->cp15
.c2_insn
= val
;
1530 env
->cp15
.c2_base0
= val
;
1533 env
->cp15
.c2_base1
= val
;
1537 env
->cp15
.c2_control
= val
;
1538 env
->cp15
.c2_mask
= ~(((uint32_t)0xffffffffu
) >> val
);
1539 env
->cp15
.c2_base_mask
= ~((uint32_t)0x3fffu
>> val
);
1546 case 3: /* MMU Domain access control / MPU write buffer control. */
1548 tlb_flush(env
, 1); /* Flush TLB as domain not tracked in TLB */
1550 case 4: /* Reserved. */
1552 case 5: /* MMU Fault status / MPU access permission. */
1553 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1557 if (arm_feature(env
, ARM_FEATURE_MPU
))
1558 val
= extended_mpu_ap_bits(val
);
1559 env
->cp15
.c5_data
= val
;
1562 if (arm_feature(env
, ARM_FEATURE_MPU
))
1563 val
= extended_mpu_ap_bits(val
);
1564 env
->cp15
.c5_insn
= val
;
1567 if (!arm_feature(env
, ARM_FEATURE_MPU
))
1569 env
->cp15
.c5_data
= val
;
1572 if (!arm_feature(env
, ARM_FEATURE_MPU
))
1574 env
->cp15
.c5_insn
= val
;
1580 case 6: /* MMU Fault address / MPU base/size. */
1581 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1584 env
->cp15
.c6_region
[crm
] = val
;
1586 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1590 env
->cp15
.c6_data
= val
;
1592 case 1: /* ??? This is WFAR on armv6 */
1594 env
->cp15
.c6_insn
= val
;
1601 case 7: /* Cache control. */
1602 env
->cp15
.c15_i_max
= 0x000;
1603 env
->cp15
.c15_i_min
= 0xff0;
1607 /* No cache, so nothing to do except VA->PA translations. */
1608 if (arm_feature(env
, ARM_FEATURE_VAPA
)) {
1611 if (arm_feature(env
, ARM_FEATURE_V7
)) {
1612 env
->cp15
.c7_par
= val
& 0xfffff6ff;
1614 env
->cp15
.c7_par
= val
& 0xfffff1ff;
1619 target_ulong page_size
;
1621 int ret
, is_user
= op2
& 2;
1622 int access_type
= op2
& 1;
1625 /* Other states are only available with TrustZone */
1628 ret
= get_phys_addr(env
, val
, access_type
, is_user
,
1629 &phys_addr
, &prot
, &page_size
);
1631 /* We do not set any attribute bits in the PAR */
1632 if (page_size
== (1 << 24)
1633 && arm_feature(env
, ARM_FEATURE_V7
)) {
1634 env
->cp15
.c7_par
= (phys_addr
& 0xff000000) | 1 << 1;
1636 env
->cp15
.c7_par
= phys_addr
& 0xfffff000;
1639 env
->cp15
.c7_par
= ((ret
& (10 << 1)) >> 5) |
1640 ((ret
& (12 << 1)) >> 6) |
1641 ((ret
& 0xf) << 1) | 1;
1648 case 8: /* MMU TLB control. */
1650 case 0: /* Invalidate all (TLBIALL) */
1653 case 1: /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
1654 tlb_flush_page(env
, val
& TARGET_PAGE_MASK
);
1656 case 2: /* Invalidate by ASID (TLBIASID) */
1657 tlb_flush(env
, val
== 0);
1659 case 3: /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
1660 tlb_flush_page(env
, val
& TARGET_PAGE_MASK
);
1667 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1669 if (arm_feature(env
, ARM_FEATURE_STRONGARM
))
1670 break; /* Ignore ReadBuffer access */
1672 case 0: /* Cache lockdown. */
1674 case 0: /* L1 cache. */
1677 env
->cp15
.c9_data
= val
;
1680 env
->cp15
.c9_insn
= val
;
1686 case 1: /* L2 cache. */
1687 /* Ignore writes to L2 lockdown/auxiliary registers. */
1693 case 1: /* TCM memory region registers. */
1694 /* Not implemented. */
1696 case 12: /* Performance monitor control */
1697 /* Performance monitors are implementation defined in v7,
1698 * but with an ARM recommended set of registers, which we
1699 * follow (although we don't actually implement any counters)
1701 if (!arm_feature(env
, ARM_FEATURE_V7
)) {
1705 case 0: /* performance monitor control register */
1706 /* only the DP, X, D and E bits are writable */
1707 env
->cp15
.c9_pmcr
&= ~0x39;
1708 env
->cp15
.c9_pmcr
|= (val
& 0x39);
1710 case 1: /* Count enable set register */
1712 env
->cp15
.c9_pmcnten
|= val
;
1714 case 2: /* Count enable clear */
1716 env
->cp15
.c9_pmcnten
&= ~val
;
1718 case 3: /* Overflow flag status */
1719 env
->cp15
.c9_pmovsr
&= ~val
;
1721 case 4: /* Software increment */
1722 /* RAZ/WI since we don't implement the software-count event */
1724 case 5: /* Event counter selection register */
1725 /* Since we don't implement any events, writing to this register
1726 * is actually UNPREDICTABLE. So we choose to RAZ/WI.
1733 case 13: /* Performance counters */
1734 if (!arm_feature(env
, ARM_FEATURE_V7
)) {
1738 case 0: /* Cycle count register: not implemented, so RAZ/WI */
1740 case 1: /* Event type select */
1741 env
->cp15
.c9_pmxevtyper
= val
& 0xff;
1743 case 2: /* Event count register */
1744 /* Unimplemented (we have no events), RAZ/WI */
1750 case 14: /* Performance monitor control */
1751 if (!arm_feature(env
, ARM_FEATURE_V7
)) {
1755 case 0: /* user enable */
1756 env
->cp15
.c9_pmuserenr
= val
& 1;
1757 /* changes access rights for cp registers, so flush tbs */
1760 case 1: /* interrupt enable set */
1761 /* We have no event counters so only the C bit can be changed */
1763 env
->cp15
.c9_pminten
|= val
;
1765 case 2: /* interrupt enable clear */
1767 env
->cp15
.c9_pminten
&= ~val
;
1775 case 10: /* MMU TLB lockdown. */
1776 /* ??? TLB lockdown not implemented. */
1778 case 12: /* Reserved. */
1780 case 13: /* Process ID. */
1783 /* Unlike real hardware the qemu TLB uses virtual addresses,
1784 not modified virtual addresses, so this causes a TLB flush.
1786 if (env
->cp15
.c13_fcse
!= val
)
1788 env
->cp15
.c13_fcse
= val
;
1791 /* This changes the ASID, so do a TLB flush. */
1792 if (env
->cp15
.c13_context
!= val
1793 && !arm_feature(env
, ARM_FEATURE_MPU
))
1795 env
->cp15
.c13_context
= val
;
1801 case 14: /* Generic timer */
1802 if (arm_feature(env
, ARM_FEATURE_GENERIC_TIMER
)) {
1803 /* Dummy implementation: RAZ/WI for all */
1807 case 15: /* Implementation specific. */
1808 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
1809 if (op2
== 0 && crm
== 1) {
1810 if (env
->cp15
.c15_cpar
!= (val
& 0x3fff)) {
1811 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1813 env
->cp15
.c15_cpar
= val
& 0x3fff;
1819 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
1823 case 1: /* Set TI925T configuration. */
1824 env
->cp15
.c15_ticonfig
= val
& 0xe7;
1825 env
->cp15
.c0_cpuid
= (val
& (1 << 5)) ? /* OS_TYPE bit */
1826 ARM_CPUID_TI915T
: ARM_CPUID_TI925T
;
1828 case 2: /* Set I_max. */
1829 env
->cp15
.c15_i_max
= val
;
1831 case 3: /* Set I_min. */
1832 env
->cp15
.c15_i_min
= val
;
1834 case 4: /* Set thread-ID. */
1835 env
->cp15
.c15_threadid
= val
& 0xffff;
1837 case 8: /* Wait-for-interrupt (deprecated). */
1838 cpu_interrupt(env
, CPU_INTERRUPT_HALT
);
1844 if (ARM_CPUID(env
) == ARM_CPUID_CORTEXA9
) {
1847 if ((op1
== 0) && (op2
== 0)) {
1848 env
->cp15
.c15_power_control
= val
;
1849 } else if ((op1
== 0) && (op2
== 1)) {
1850 env
->cp15
.c15_diagnostic
= val
;
1851 } else if ((op1
== 0) && (op2
== 2)) {
1852 env
->cp15
.c15_power_diagnostic
= val
;
1862 /* ??? For debugging only. Should raise illegal instruction exception. */
1863 cpu_abort(env
, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1864 (insn
>> 16) & 0xf, crm
, op1
, op2
);
1867 uint32_t HELPER(get_cp15
)(CPUARMState
*env
, uint32_t insn
)
1873 op1
= (insn
>> 21) & 7;
1874 op2
= (insn
>> 5) & 7;
1876 switch ((insn
>> 16) & 0xf) {
1877 case 0: /* ID codes. */
1883 case 0: /* Device ID. */
1884 return env
->cp15
.c0_cpuid
;
1885 case 1: /* Cache Type. */
1886 return env
->cp15
.c0_cachetype
;
1887 case 2: /* TCM status. */
1889 case 3: /* TLB type register. */
1890 return 0; /* No lockable TLB entries. */
1892 /* The MPIDR was standardised in v7; prior to
1893 * this it was implemented only in the 11MPCore.
1894 * For all other pre-v7 cores it does not exist.
1896 if (arm_feature(env
, ARM_FEATURE_V7
) ||
1897 ARM_CPUID(env
) == ARM_CPUID_ARM11MPCORE
) {
1898 int mpidr
= env
->cpu_index
;
1899 /* We don't support setting cluster ID ([8..11])
1900 * so these bits always RAZ.
1902 if (arm_feature(env
, ARM_FEATURE_V7MP
)) {
1904 /* Cores which are uniprocessor (non-coherent)
1905 * but still implement the MP extensions set
1906 * bit 30. (For instance, A9UP.) However we do
1907 * not currently model any of those cores.
1912 /* otherwise fall through to the unimplemented-reg case */
1917 if (!arm_feature(env
, ARM_FEATURE_V6
))
1919 return env
->cp15
.c0_c1
[op2
];
1921 if (!arm_feature(env
, ARM_FEATURE_V6
))
1923 return env
->cp15
.c0_c2
[op2
];
1924 case 3: case 4: case 5: case 6: case 7:
1930 /* These registers aren't documented on arm11 cores. However
1931 Linux looks at them anyway. */
1932 if (!arm_feature(env
, ARM_FEATURE_V6
))
1936 if (!arm_feature(env
, ARM_FEATURE_V7
))
1941 return env
->cp15
.c0_ccsid
[env
->cp15
.c0_cssel
];
1943 return env
->cp15
.c0_clid
;
1949 if (op2
!= 0 || crm
!= 0)
1951 return env
->cp15
.c0_cssel
;
1955 case 1: /* System configuration. */
1956 if (arm_feature(env
, ARM_FEATURE_V7
)
1957 && op1
== 0 && crm
== 1 && op2
== 0) {
1958 return env
->cp15
.c1_scr
;
1960 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1963 case 0: /* Control register. */
1964 return env
->cp15
.c1_sys
;
1965 case 1: /* Auxiliary control register. */
1966 if (arm_feature(env
, ARM_FEATURE_XSCALE
))
1967 return env
->cp15
.c1_xscaleauxcr
;
1968 if (!arm_feature(env
, ARM_FEATURE_AUXCR
))
1970 switch (ARM_CPUID(env
)) {
1971 case ARM_CPUID_ARM1026
:
1973 case ARM_CPUID_ARM1136
:
1974 case ARM_CPUID_ARM1136_R2
:
1975 case ARM_CPUID_ARM1176
:
1977 case ARM_CPUID_ARM11MPCORE
:
1979 case ARM_CPUID_CORTEXA8
:
1981 case ARM_CPUID_CORTEXA9
:
1982 case ARM_CPUID_CORTEXA15
:
1987 case 2: /* Coprocessor access register. */
1988 if (arm_feature(env
, ARM_FEATURE_XSCALE
))
1990 return env
->cp15
.c1_coproc
;
1994 case 2: /* MMU Page table control / MPU cache control. */
1995 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1998 return env
->cp15
.c2_data
;
2001 return env
->cp15
.c2_insn
;
2009 return env
->cp15
.c2_base0
;
2011 return env
->cp15
.c2_base1
;
2013 return env
->cp15
.c2_control
;
2018 case 3: /* MMU Domain access control / MPU write buffer control. */
2019 return env
->cp15
.c3
;
2020 case 4: /* Reserved. */
2022 case 5: /* MMU Fault status / MPU access permission. */
2023 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
2027 if (arm_feature(env
, ARM_FEATURE_MPU
))
2028 return simple_mpu_ap_bits(env
->cp15
.c5_data
);
2029 return env
->cp15
.c5_data
;
2031 if (arm_feature(env
, ARM_FEATURE_MPU
))
2032 return simple_mpu_ap_bits(env
->cp15
.c5_insn
);
2033 return env
->cp15
.c5_insn
;
2035 if (!arm_feature(env
, ARM_FEATURE_MPU
))
2037 return env
->cp15
.c5_data
;
2039 if (!arm_feature(env
, ARM_FEATURE_MPU
))
2041 return env
->cp15
.c5_insn
;
2045 case 6: /* MMU Fault address. */
2046 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
2049 return env
->cp15
.c6_region
[crm
];
2051 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
2055 return env
->cp15
.c6_data
;
2057 if (arm_feature(env
, ARM_FEATURE_V6
)) {
2058 /* Watchpoint Fault Adrress. */
2059 return 0; /* Not implemented. */
2061 /* Instruction Fault Adrress. */
2062 /* Arm9 doesn't have an IFAR, but implementing it anyway
2063 shouldn't do any harm. */
2064 return env
->cp15
.c6_insn
;
2067 if (arm_feature(env
, ARM_FEATURE_V6
)) {
2068 /* Instruction Fault Adrress. */
2069 return env
->cp15
.c6_insn
;
2077 case 7: /* Cache control. */
2078 if (crm
== 4 && op1
== 0 && op2
== 0) {
2079 return env
->cp15
.c7_par
;
2081 /* FIXME: Should only clear Z flag if destination is r15. */
2084 case 8: /* MMU TLB control. */
2088 case 0: /* Cache lockdown */
2090 case 0: /* L1 cache. */
2091 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
2096 return env
->cp15
.c9_data
;
2098 return env
->cp15
.c9_insn
;
2102 case 1: /* L2 cache */
2103 /* L2 Lockdown and Auxiliary control. */
2106 /* L2 cache lockdown (A8 only) */
2109 /* L2 cache auxiliary control (A8) or control (A15) */
2110 if (ARM_CPUID(env
) == ARM_CPUID_CORTEXA15
) {
2111 /* Linux wants the number of processors from here.
2112 * Might as well set the interrupt-controller bit too.
2114 return ((smp_cpus
- 1) << 24) | (1 << 23);
2118 /* L2 cache extended control (A15) */
2127 case 12: /* Performance monitor control */
2128 if (!arm_feature(env
, ARM_FEATURE_V7
)) {
2132 case 0: /* performance monitor control register */
2133 return env
->cp15
.c9_pmcr
;
2134 case 1: /* count enable set */
2135 case 2: /* count enable clear */
2136 return env
->cp15
.c9_pmcnten
;
2137 case 3: /* overflow flag status */
2138 return env
->cp15
.c9_pmovsr
;
2139 case 4: /* software increment */
2140 case 5: /* event counter selection register */
2141 return 0; /* Unimplemented, RAZ/WI */
2145 case 13: /* Performance counters */
2146 if (!arm_feature(env
, ARM_FEATURE_V7
)) {
2150 case 1: /* Event type select */
2151 return env
->cp15
.c9_pmxevtyper
;
2152 case 0: /* Cycle count register */
2153 case 2: /* Event count register */
2154 /* Unimplemented, so RAZ/WI */
2159 case 14: /* Performance monitor control */
2160 if (!arm_feature(env
, ARM_FEATURE_V7
)) {
2164 case 0: /* user enable */
2165 return env
->cp15
.c9_pmuserenr
;
2166 case 1: /* interrupt enable set */
2167 case 2: /* interrupt enable clear */
2168 return env
->cp15
.c9_pminten
;
2176 case 10: /* MMU TLB lockdown. */
2177 /* ??? TLB lockdown not implemented. */
2179 case 11: /* TCM DMA control. */
2180 case 12: /* Reserved. */
2182 case 13: /* Process ID. */
2185 return env
->cp15
.c13_fcse
;
2187 return env
->cp15
.c13_context
;
2191 case 14: /* Generic timer */
2192 if (arm_feature(env
, ARM_FEATURE_GENERIC_TIMER
)) {
2193 /* Dummy implementation: RAZ/WI for all */
2197 case 15: /* Implementation specific. */
2198 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
2199 if (op2
== 0 && crm
== 1)
2200 return env
->cp15
.c15_cpar
;
2204 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
2208 case 1: /* Read TI925T configuration. */
2209 return env
->cp15
.c15_ticonfig
;
2210 case 2: /* Read I_max. */
2211 return env
->cp15
.c15_i_max
;
2212 case 3: /* Read I_min. */
2213 return env
->cp15
.c15_i_min
;
2214 case 4: /* Read thread-ID. */
2215 return env
->cp15
.c15_threadid
;
2216 case 8: /* TI925T_status */
2219 /* TODO: Peripheral port remap register:
2220 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
2221 * controller base address at $rn & ~0xfff and map size of
2222 * 0x200 << ($rn & 0xfff), when MMU is off. */
2225 if (ARM_CPUID(env
) == ARM_CPUID_CORTEXA9
) {
2228 if ((op1
== 4) && (op2
== 0)) {
2229 /* The config_base_address should hold the value of
2230 * the peripheral base. ARM should get this from a CPU
2231 * object property, but that support isn't available in
2232 * December 2011. Default to 0 for now and board models
2233 * that care can set it by a private hook */
2234 return env
->cp15
.c15_config_base_address
;
2235 } else if ((op1
== 0) && (op2
== 0)) {
2236 /* power_control should be set to maximum latency. Again,
2237 default to 0 and set by private hook */
2238 return env
->cp15
.c15_power_control
;
2239 } else if ((op1
== 0) && (op2
== 1)) {
2240 return env
->cp15
.c15_diagnostic
;
2241 } else if ((op1
== 0) && (op2
== 2)) {
2242 return env
->cp15
.c15_power_diagnostic
;
2245 case 1: /* NEON Busy */
2247 case 5: /* tlb lockdown */
2250 if ((op1
== 5) && (op2
== 2)) {
2262 /* ??? For debugging only. Should raise illegal instruction exception. */
2263 cpu_abort(env
, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
2264 (insn
>> 16) & 0xf, crm
, op1
, op2
);
2268 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
2270 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
2271 env
->regs
[13] = val
;
2273 env
->banked_r13
[bank_number(env
, mode
)] = val
;
2277 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
2279 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
2280 return env
->regs
[13];
2282 return env
->banked_r13
[bank_number(env
, mode
)];
2286 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
2290 return xpsr_read(env
) & 0xf8000000;
2292 return xpsr_read(env
) & 0xf80001ff;
2294 return xpsr_read(env
) & 0xff00fc00;
2296 return xpsr_read(env
) & 0xff00fdff;
2298 return xpsr_read(env
) & 0x000001ff;
2300 return xpsr_read(env
) & 0x0700fc00;
2302 return xpsr_read(env
) & 0x0700edff;
2304 return env
->v7m
.current_sp
? env
->v7m
.other_sp
: env
->regs
[13];
2306 return env
->v7m
.current_sp
? env
->regs
[13] : env
->v7m
.other_sp
;
2307 case 16: /* PRIMASK */
2308 return (env
->uncached_cpsr
& CPSR_I
) != 0;
2309 case 17: /* BASEPRI */
2310 case 18: /* BASEPRI_MAX */
2311 return env
->v7m
.basepri
;
2312 case 19: /* FAULTMASK */
2313 return (env
->uncached_cpsr
& CPSR_F
) != 0;
2314 case 20: /* CONTROL */
2315 return env
->v7m
.control
;
2317 /* ??? For debugging only. */
2318 cpu_abort(env
, "Unimplemented system register read (%d)\n", reg
);
2323 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
2327 xpsr_write(env
, val
, 0xf8000000);
2330 xpsr_write(env
, val
, 0xf8000000);
2333 xpsr_write(env
, val
, 0xfe00fc00);
2336 xpsr_write(env
, val
, 0xfe00fc00);
2339 /* IPSR bits are readonly. */
2342 xpsr_write(env
, val
, 0x0600fc00);
2345 xpsr_write(env
, val
, 0x0600fc00);
2348 if (env
->v7m
.current_sp
)
2349 env
->v7m
.other_sp
= val
;
2351 env
->regs
[13] = val
;
2354 if (env
->v7m
.current_sp
)
2355 env
->regs
[13] = val
;
2357 env
->v7m
.other_sp
= val
;
2359 case 16: /* PRIMASK */
2361 env
->uncached_cpsr
|= CPSR_I
;
2363 env
->uncached_cpsr
&= ~CPSR_I
;
2365 case 17: /* BASEPRI */
2366 env
->v7m
.basepri
= val
& 0xff;
2368 case 18: /* BASEPRI_MAX */
2370 if (val
!= 0 && (val
< env
->v7m
.basepri
|| env
->v7m
.basepri
== 0))
2371 env
->v7m
.basepri
= val
;
2373 case 19: /* FAULTMASK */
2375 env
->uncached_cpsr
|= CPSR_F
;
2377 env
->uncached_cpsr
&= ~CPSR_F
;
2379 case 20: /* CONTROL */
2380 env
->v7m
.control
= val
& 3;
2381 switch_v7m_sp(env
, (val
& 2) != 0);
2384 /* ??? For debugging only. */
2385 cpu_abort(env
, "Unimplemented system register write (%d)\n", reg
);
2390 void cpu_arm_set_cp_io(CPUARMState
*env
, int cpnum
,
2391 ARMReadCPFunc
*cp_read
, ARMWriteCPFunc
*cp_write
,
2394 if (cpnum
< 0 || cpnum
> 14) {
2395 cpu_abort(env
, "Bad coprocessor number: %i\n", cpnum
);
2399 env
->cp
[cpnum
].cp_read
= cp_read
;
2400 env
->cp
[cpnum
].cp_write
= cp_write
;
2401 env
->cp
[cpnum
].opaque
= opaque
;
2406 /* Note that signed overflow is undefined in C. The following routines are
2407 careful to use unsigned types where modulo arithmetic is required.
2408 Failure to do so _will_ break on newer gcc. */
2410 /* Signed saturating arithmetic. */
2412 /* Perform 16-bit signed saturating addition. */
2413 static inline uint16_t add16_sat(uint16_t a
, uint16_t b
)
2418 if (((res
^ a
) & 0x8000) && !((a
^ b
) & 0x8000)) {
2427 /* Perform 8-bit signed saturating addition. */
2428 static inline uint8_t add8_sat(uint8_t a
, uint8_t b
)
2433 if (((res
^ a
) & 0x80) && !((a
^ b
) & 0x80)) {
2442 /* Perform 16-bit signed saturating subtraction. */
2443 static inline uint16_t sub16_sat(uint16_t a
, uint16_t b
)
2448 if (((res
^ a
) & 0x8000) && ((a
^ b
) & 0x8000)) {
2457 /* Perform 8-bit signed saturating subtraction. */
2458 static inline uint8_t sub8_sat(uint8_t a
, uint8_t b
)
2463 if (((res
^ a
) & 0x80) && ((a
^ b
) & 0x80)) {
2472 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2473 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2474 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2475 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2478 #include "op_addsub.h"
2480 /* Unsigned saturating arithmetic. */
2481 static inline uint16_t add16_usat(uint16_t a
, uint16_t b
)
2490 static inline uint16_t sub16_usat(uint16_t a
, uint16_t b
)
2498 static inline uint8_t add8_usat(uint8_t a
, uint8_t b
)
2507 static inline uint8_t sub8_usat(uint8_t a
, uint8_t b
)
2515 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2516 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2517 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2518 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2521 #include "op_addsub.h"
2523 /* Signed modulo arithmetic. */
2524 #define SARITH16(a, b, n, op) do { \
2526 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
2527 RESULT(sum, n, 16); \
2529 ge |= 3 << (n * 2); \
2532 #define SARITH8(a, b, n, op) do { \
2534 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
2535 RESULT(sum, n, 8); \
2541 #define ADD16(a, b, n) SARITH16(a, b, n, +)
2542 #define SUB16(a, b, n) SARITH16(a, b, n, -)
2543 #define ADD8(a, b, n) SARITH8(a, b, n, +)
2544 #define SUB8(a, b, n) SARITH8(a, b, n, -)
2548 #include "op_addsub.h"
2550 /* Unsigned modulo arithmetic. */
2551 #define ADD16(a, b, n) do { \
2553 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2554 RESULT(sum, n, 16); \
2555 if ((sum >> 16) == 1) \
2556 ge |= 3 << (n * 2); \
2559 #define ADD8(a, b, n) do { \
2561 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2562 RESULT(sum, n, 8); \
2563 if ((sum >> 8) == 1) \
2567 #define SUB16(a, b, n) do { \
2569 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2570 RESULT(sum, n, 16); \
2571 if ((sum >> 16) == 0) \
2572 ge |= 3 << (n * 2); \
2575 #define SUB8(a, b, n) do { \
2577 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2578 RESULT(sum, n, 8); \
2579 if ((sum >> 8) == 0) \
2586 #include "op_addsub.h"
2588 /* Halved signed arithmetic. */
2589 #define ADD16(a, b, n) \
2590 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2591 #define SUB16(a, b, n) \
2592 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2593 #define ADD8(a, b, n) \
2594 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2595 #define SUB8(a, b, n) \
2596 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2599 #include "op_addsub.h"
2601 /* Halved unsigned arithmetic. */
2602 #define ADD16(a, b, n) \
2603 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2604 #define SUB16(a, b, n) \
2605 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2606 #define ADD8(a, b, n) \
2607 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2608 #define SUB8(a, b, n) \
2609 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2612 #include "op_addsub.h"
2614 static inline uint8_t do_usad(uint8_t a
, uint8_t b
)
2622 /* Unsigned sum of absolute byte differences. */
2623 uint32_t HELPER(usad8
)(uint32_t a
, uint32_t b
)
2626 sum
= do_usad(a
, b
);
2627 sum
+= do_usad(a
>> 8, b
>> 8);
2628 sum
+= do_usad(a
>> 16, b
>>16);
2629 sum
+= do_usad(a
>> 24, b
>> 24);
2633 /* For ARMv6 SEL instruction. */
2634 uint32_t HELPER(sel_flags
)(uint32_t flags
, uint32_t a
, uint32_t b
)
2647 return (a
& mask
) | (b
& ~mask
);
2650 uint32_t HELPER(logicq_cc
)(uint64_t val
)
2652 return (val
>> 32) | (val
!= 0);
2655 /* VFP support. We follow the convention used for VFP instrunctions:
2656 Single precition routines have a "s" suffix, double precision a
2659 /* Convert host exception flags to vfp form. */
2660 static inline int vfp_exceptbits_from_host(int host_bits
)
2662 int target_bits
= 0;
2664 if (host_bits
& float_flag_invalid
)
2666 if (host_bits
& float_flag_divbyzero
)
2668 if (host_bits
& float_flag_overflow
)
2670 if (host_bits
& (float_flag_underflow
| float_flag_output_denormal
))
2672 if (host_bits
& float_flag_inexact
)
2673 target_bits
|= 0x10;
2674 if (host_bits
& float_flag_input_denormal
)
2675 target_bits
|= 0x80;
2679 uint32_t HELPER(vfp_get_fpscr
)(CPUARMState
*env
)
2684 fpscr
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & 0xffc8ffff)
2685 | (env
->vfp
.vec_len
<< 16)
2686 | (env
->vfp
.vec_stride
<< 20);
2687 i
= get_float_exception_flags(&env
->vfp
.fp_status
);
2688 i
|= get_float_exception_flags(&env
->vfp
.standard_fp_status
);
2689 fpscr
|= vfp_exceptbits_from_host(i
);
2693 uint32_t vfp_get_fpscr(CPUARMState
*env
)
2695 return HELPER(vfp_get_fpscr
)(env
);
2698 /* Convert vfp exception flags to target form. */
2699 static inline int vfp_exceptbits_to_host(int target_bits
)
2703 if (target_bits
& 1)
2704 host_bits
|= float_flag_invalid
;
2705 if (target_bits
& 2)
2706 host_bits
|= float_flag_divbyzero
;
2707 if (target_bits
& 4)
2708 host_bits
|= float_flag_overflow
;
2709 if (target_bits
& 8)
2710 host_bits
|= float_flag_underflow
;
2711 if (target_bits
& 0x10)
2712 host_bits
|= float_flag_inexact
;
2713 if (target_bits
& 0x80)
2714 host_bits
|= float_flag_input_denormal
;
2718 void HELPER(vfp_set_fpscr
)(CPUARMState
*env
, uint32_t val
)
2723 changed
= env
->vfp
.xregs
[ARM_VFP_FPSCR
];
2724 env
->vfp
.xregs
[ARM_VFP_FPSCR
] = (val
& 0xffc8ffff);
2725 env
->vfp
.vec_len
= (val
>> 16) & 7;
2726 env
->vfp
.vec_stride
= (val
>> 20) & 3;
2729 if (changed
& (3 << 22)) {
2730 i
= (val
>> 22) & 3;
2733 i
= float_round_nearest_even
;
2739 i
= float_round_down
;
2742 i
= float_round_to_zero
;
2745 set_float_rounding_mode(i
, &env
->vfp
.fp_status
);
2747 if (changed
& (1 << 24)) {
2748 set_flush_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
2749 set_flush_inputs_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
2751 if (changed
& (1 << 25))
2752 set_default_nan_mode((val
& (1 << 25)) != 0, &env
->vfp
.fp_status
);
2754 i
= vfp_exceptbits_to_host(val
);
2755 set_float_exception_flags(i
, &env
->vfp
.fp_status
);
2756 set_float_exception_flags(0, &env
->vfp
.standard_fp_status
);
2759 void vfp_set_fpscr(CPUARMState
*env
, uint32_t val
)
2761 HELPER(vfp_set_fpscr
)(env
, val
);
2764 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2766 #define VFP_BINOP(name) \
2767 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
2769 float_status *fpst = fpstp; \
2770 return float32_ ## name(a, b, fpst); \
2772 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
2774 float_status *fpst = fpstp; \
2775 return float64_ ## name(a, b, fpst); \
2783 float32
VFP_HELPER(neg
, s
)(float32 a
)
2785 return float32_chs(a
);
2788 float64
VFP_HELPER(neg
, d
)(float64 a
)
2790 return float64_chs(a
);
2793 float32
VFP_HELPER(abs
, s
)(float32 a
)
2795 return float32_abs(a
);
2798 float64
VFP_HELPER(abs
, d
)(float64 a
)
2800 return float64_abs(a
);
2803 float32
VFP_HELPER(sqrt
, s
)(float32 a
, CPUARMState
*env
)
2805 return float32_sqrt(a
, &env
->vfp
.fp_status
);
2808 float64
VFP_HELPER(sqrt
, d
)(float64 a
, CPUARMState
*env
)
2810 return float64_sqrt(a
, &env
->vfp
.fp_status
);
2813 /* XXX: check quiet/signaling case */
2814 #define DO_VFP_cmp(p, type) \
2815 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
2818 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2819 case 0: flags = 0x6; break; \
2820 case -1: flags = 0x8; break; \
2821 case 1: flags = 0x2; break; \
2822 default: case 2: flags = 0x3; break; \
2824 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2825 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2827 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
2830 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2831 case 0: flags = 0x6; break; \
2832 case -1: flags = 0x8; break; \
2833 case 1: flags = 0x2; break; \
2834 default: case 2: flags = 0x3; break; \
2836 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2837 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2839 DO_VFP_cmp(s
, float32
)
2840 DO_VFP_cmp(d
, float64
)
2843 /* Integer to float and float to integer conversions */
2845 #define CONV_ITOF(name, fsz, sign) \
2846 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
2848 float_status *fpst = fpstp; \
2849 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
2852 #define CONV_FTOI(name, fsz, sign, round) \
2853 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
2855 float_status *fpst = fpstp; \
2856 if (float##fsz##_is_any_nan(x)) { \
2857 float_raise(float_flag_invalid, fpst); \
2860 return float##fsz##_to_##sign##int32##round(x, fpst); \
2863 #define FLOAT_CONVS(name, p, fsz, sign) \
2864 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
2865 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
2866 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
2868 FLOAT_CONVS(si
, s
, 32, )
2869 FLOAT_CONVS(si
, d
, 64, )
2870 FLOAT_CONVS(ui
, s
, 32, u
)
2871 FLOAT_CONVS(ui
, d
, 64, u
)
2877 /* floating point conversion */
2878 float64
VFP_HELPER(fcvtd
, s
)(float32 x
, CPUARMState
*env
)
2880 float64 r
= float32_to_float64(x
, &env
->vfp
.fp_status
);
2881 /* ARM requires that S<->D conversion of any kind of NaN generates
2882 * a quiet NaN by forcing the most significant frac bit to 1.
2884 return float64_maybe_silence_nan(r
);
2887 float32
VFP_HELPER(fcvts
, d
)(float64 x
, CPUARMState
*env
)
2889 float32 r
= float64_to_float32(x
, &env
->vfp
.fp_status
);
2890 /* ARM requires that S<->D conversion of any kind of NaN generates
2891 * a quiet NaN by forcing the most significant frac bit to 1.
2893 return float32_maybe_silence_nan(r
);
2896 /* VFP3 fixed point conversion. */
2897 #define VFP_CONV_FIX(name, p, fsz, itype, sign) \
2898 float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, \
2901 float_status *fpst = fpstp; \
2903 tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
2904 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
2906 uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
2909 float_status *fpst = fpstp; \
2911 if (float##fsz##_is_any_nan(x)) { \
2912 float_raise(float_flag_invalid, fpst); \
2915 tmp = float##fsz##_scalbn(x, shift, fpst); \
2916 return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
2919 VFP_CONV_FIX(sh
, d
, 64, int16
, )
2920 VFP_CONV_FIX(sl
, d
, 64, int32
, )
2921 VFP_CONV_FIX(uh
, d
, 64, uint16
, u
)
2922 VFP_CONV_FIX(ul
, d
, 64, uint32
, u
)
2923 VFP_CONV_FIX(sh
, s
, 32, int16
, )
2924 VFP_CONV_FIX(sl
, s
, 32, int32
, )
2925 VFP_CONV_FIX(uh
, s
, 32, uint16
, u
)
2926 VFP_CONV_FIX(ul
, s
, 32, uint32
, u
)
2929 /* Half precision conversions. */
2930 static float32
do_fcvt_f16_to_f32(uint32_t a
, CPUARMState
*env
, float_status
*s
)
2932 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
2933 float32 r
= float16_to_float32(make_float16(a
), ieee
, s
);
2935 return float32_maybe_silence_nan(r
);
2940 static uint32_t do_fcvt_f32_to_f16(float32 a
, CPUARMState
*env
, float_status
*s
)
2942 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
2943 float16 r
= float32_to_float16(a
, ieee
, s
);
2945 r
= float16_maybe_silence_nan(r
);
2947 return float16_val(r
);
2950 float32
HELPER(neon_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
2952 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.standard_fp_status
);
2955 uint32_t HELPER(neon_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
2957 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.standard_fp_status
);
2960 float32
HELPER(vfp_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
2962 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.fp_status
);
2965 uint32_t HELPER(vfp_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
2967 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.fp_status
);
2970 #define float32_two make_float32(0x40000000)
2971 #define float32_three make_float32(0x40400000)
2972 #define float32_one_point_five make_float32(0x3fc00000)
2974 float32
HELPER(recps_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
2976 float_status
*s
= &env
->vfp
.standard_fp_status
;
2977 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
2978 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
2979 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
2980 float_raise(float_flag_input_denormal
, s
);
2984 return float32_sub(float32_two
, float32_mul(a
, b
, s
), s
);
2987 float32
HELPER(rsqrts_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
2989 float_status
*s
= &env
->vfp
.standard_fp_status
;
2991 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
2992 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
2993 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
2994 float_raise(float_flag_input_denormal
, s
);
2996 return float32_one_point_five
;
2998 product
= float32_mul(a
, b
, s
);
2999 return float32_div(float32_sub(float32_three
, product
, s
), float32_two
, s
);
3004 /* Constants 256 and 512 are used in some helpers; we avoid relying on
3005 * int->float conversions at run-time. */
3006 #define float64_256 make_float64(0x4070000000000000LL)
3007 #define float64_512 make_float64(0x4080000000000000LL)
3009 /* The algorithm that must be used to calculate the estimate
3010 * is specified by the ARM ARM.
3012 static float64
recip_estimate(float64 a
, CPUARMState
*env
)
3014 /* These calculations mustn't set any fp exception flags,
3015 * so we use a local copy of the fp_status.
3017 float_status dummy_status
= env
->vfp
.standard_fp_status
;
3018 float_status
*s
= &dummy_status
;
3019 /* q = (int)(a * 512.0) */
3020 float64 q
= float64_mul(float64_512
, a
, s
);
3021 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
3023 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
3024 q
= int64_to_float64(q_int
, s
);
3025 q
= float64_add(q
, float64_half
, s
);
3026 q
= float64_div(q
, float64_512
, s
);
3027 q
= float64_div(float64_one
, q
, s
);
3029 /* s = (int)(256.0 * r + 0.5) */
3030 q
= float64_mul(q
, float64_256
, s
);
3031 q
= float64_add(q
, float64_half
, s
);
3032 q_int
= float64_to_int64_round_to_zero(q
, s
);
3034 /* return (double)s / 256.0 */
3035 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
3038 float32
HELPER(recpe_f32
)(float32 a
, CPUARMState
*env
)
3040 float_status
*s
= &env
->vfp
.standard_fp_status
;
3042 uint32_t val32
= float32_val(a
);
3045 int a_exp
= (val32
& 0x7f800000) >> 23;
3046 int sign
= val32
& 0x80000000;
3048 if (float32_is_any_nan(a
)) {
3049 if (float32_is_signaling_nan(a
)) {
3050 float_raise(float_flag_invalid
, s
);
3052 return float32_default_nan
;
3053 } else if (float32_is_infinity(a
)) {
3054 return float32_set_sign(float32_zero
, float32_is_neg(a
));
3055 } else if (float32_is_zero_or_denormal(a
)) {
3056 if (!float32_is_zero(a
)) {
3057 float_raise(float_flag_input_denormal
, s
);
3059 float_raise(float_flag_divbyzero
, s
);
3060 return float32_set_sign(float32_infinity
, float32_is_neg(a
));
3061 } else if (a_exp
>= 253) {
3062 float_raise(float_flag_underflow
, s
);
3063 return float32_set_sign(float32_zero
, float32_is_neg(a
));
3066 f64
= make_float64((0x3feULL
<< 52)
3067 | ((int64_t)(val32
& 0x7fffff) << 29));
3069 result_exp
= 253 - a_exp
;
3071 f64
= recip_estimate(f64
, env
);
3074 | ((result_exp
& 0xff) << 23)
3075 | ((float64_val(f64
) >> 29) & 0x7fffff);
3076 return make_float32(val32
);
3079 /* The algorithm that must be used to calculate the estimate
3080 * is specified by the ARM ARM.
3082 static float64
recip_sqrt_estimate(float64 a
, CPUARMState
*env
)
3084 /* These calculations mustn't set any fp exception flags,
3085 * so we use a local copy of the fp_status.
3087 float_status dummy_status
= env
->vfp
.standard_fp_status
;
3088 float_status
*s
= &dummy_status
;
3092 if (float64_lt(a
, float64_half
, s
)) {
3093 /* range 0.25 <= a < 0.5 */
3095 /* a in units of 1/512 rounded down */
3096 /* q0 = (int)(a * 512.0); */
3097 q
= float64_mul(float64_512
, a
, s
);
3098 q_int
= float64_to_int64_round_to_zero(q
, s
);
3100 /* reciprocal root r */
3101 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
3102 q
= int64_to_float64(q_int
, s
);
3103 q
= float64_add(q
, float64_half
, s
);
3104 q
= float64_div(q
, float64_512
, s
);
3105 q
= float64_sqrt(q
, s
);
3106 q
= float64_div(float64_one
, q
, s
);
3108 /* range 0.5 <= a < 1.0 */
3110 /* a in units of 1/256 rounded down */
3111 /* q1 = (int)(a * 256.0); */
3112 q
= float64_mul(float64_256
, a
, s
);
3113 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
3115 /* reciprocal root r */
3116 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
3117 q
= int64_to_float64(q_int
, s
);
3118 q
= float64_add(q
, float64_half
, s
);
3119 q
= float64_div(q
, float64_256
, s
);
3120 q
= float64_sqrt(q
, s
);
3121 q
= float64_div(float64_one
, q
, s
);
3123 /* r in units of 1/256 rounded to nearest */
3124 /* s = (int)(256.0 * r + 0.5); */
3126 q
= float64_mul(q
, float64_256
,s
);
3127 q
= float64_add(q
, float64_half
, s
);
3128 q_int
= float64_to_int64_round_to_zero(q
, s
);
3130 /* return (double)s / 256.0;*/
3131 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
3134 float32
HELPER(rsqrte_f32
)(float32 a
, CPUARMState
*env
)
3136 float_status
*s
= &env
->vfp
.standard_fp_status
;
3142 val
= float32_val(a
);
3144 if (float32_is_any_nan(a
)) {
3145 if (float32_is_signaling_nan(a
)) {
3146 float_raise(float_flag_invalid
, s
);
3148 return float32_default_nan
;
3149 } else if (float32_is_zero_or_denormal(a
)) {
3150 if (!float32_is_zero(a
)) {
3151 float_raise(float_flag_input_denormal
, s
);
3153 float_raise(float_flag_divbyzero
, s
);
3154 return float32_set_sign(float32_infinity
, float32_is_neg(a
));
3155 } else if (float32_is_neg(a
)) {
3156 float_raise(float_flag_invalid
, s
);
3157 return float32_default_nan
;
3158 } else if (float32_is_infinity(a
)) {
3159 return float32_zero
;
3162 /* Normalize to a double-precision value between 0.25 and 1.0,
3163 * preserving the parity of the exponent. */
3164 if ((val
& 0x800000) == 0) {
3165 f64
= make_float64(((uint64_t)(val
& 0x80000000) << 32)
3167 | ((uint64_t)(val
& 0x7fffff) << 29));
3169 f64
= make_float64(((uint64_t)(val
& 0x80000000) << 32)
3171 | ((uint64_t)(val
& 0x7fffff) << 29));
3174 result_exp
= (380 - ((val
& 0x7f800000) >> 23)) / 2;
3176 f64
= recip_sqrt_estimate(f64
, env
);
3178 val64
= float64_val(f64
);
3180 val
= ((result_exp
& 0xff) << 23)
3181 | ((val64
>> 29) & 0x7fffff);
3182 return make_float32(val
);
3185 uint32_t HELPER(recpe_u32
)(uint32_t a
, CPUARMState
*env
)
3189 if ((a
& 0x80000000) == 0) {
3193 f64
= make_float64((0x3feULL
<< 52)
3194 | ((int64_t)(a
& 0x7fffffff) << 21));
3196 f64
= recip_estimate (f64
, env
);
3198 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
3201 uint32_t HELPER(rsqrte_u32
)(uint32_t a
, CPUARMState
*env
)
3205 if ((a
& 0xc0000000) == 0) {
3209 if (a
& 0x80000000) {
3210 f64
= make_float64((0x3feULL
<< 52)
3211 | ((uint64_t)(a
& 0x7fffffff) << 21));
3212 } else { /* bits 31-30 == '01' */
3213 f64
= make_float64((0x3fdULL
<< 52)
3214 | ((uint64_t)(a
& 0x3fffffff) << 22));
3217 f64
= recip_sqrt_estimate(f64
, env
);
3219 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
3222 /* VFPv4 fused multiply-accumulate */
3223 float32
VFP_HELPER(muladd
, s
)(float32 a
, float32 b
, float32 c
, void *fpstp
)
3225 float_status
*fpst
= fpstp
;
3226 return float32_muladd(a
, b
, c
, 0, fpst
);
3229 float64
VFP_HELPER(muladd
, d
)(float64 a
, float64 b
, float64 c
, void *fpstp
)
3231 float_status
*fpst
= fpstp
;
3232 return float64_muladd(a
, b
, c
, 0, fpst
);
3235 void HELPER(set_teecr
)(CPUARMState
*env
, uint32_t val
)
3238 if (env
->teecr
!= val
) {