target/arm: Add CONTEXTIDR_EL2
[qemu/ar7.git] / target / arm / helper.c
blobfe7991864a69be1970681d01a9e97393b71604b3
1 /*
2 * ARM generic helpers.
4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "target/arm/idau.h"
12 #include "trace.h"
13 #include "cpu.h"
14 #include "internals.h"
15 #include "exec/gdbstub.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/bitops.h"
20 #include "qemu/crc32c.h"
21 #include "qemu/qemu-print.h"
22 #include "exec/exec-all.h"
23 #include <zlib.h> /* For crc32 */
24 #include "hw/irq.h"
25 #include "hw/semihosting/semihost.h"
26 #include "sysemu/cpus.h"
27 #include "sysemu/kvm.h"
28 #include "qemu/range.h"
29 #include "qapi/qapi-commands-machine-target.h"
30 #include "qapi/error.h"
31 #include "qemu/guest-random.h"
32 #ifdef CONFIG_TCG
33 #include "arm_ldst.h"
34 #include "exec/cpu_ldst.h"
35 #endif
37 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
39 #ifndef CONFIG_USER_ONLY
41 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
42 MMUAccessType access_type, ARMMMUIdx mmu_idx,
43 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
44 target_ulong *page_size_ptr,
45 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
46 #endif
48 static void switch_mode(CPUARMState *env, int mode);
50 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
52 int nregs;
54 /* VFP data registers are always little-endian. */
55 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
56 if (reg < nregs) {
57 stq_le_p(buf, *aa32_vfp_dreg(env, reg));
58 return 8;
60 if (arm_feature(env, ARM_FEATURE_NEON)) {
61 /* Aliases for Q regs. */
62 nregs += 16;
63 if (reg < nregs) {
64 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
65 stq_le_p(buf, q[0]);
66 stq_le_p(buf + 8, q[1]);
67 return 16;
70 switch (reg - nregs) {
71 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
72 case 1: stl_p(buf, vfp_get_fpscr(env)); return 4;
73 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
75 return 0;
78 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
80 int nregs;
82 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
83 if (reg < nregs) {
84 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
85 return 8;
87 if (arm_feature(env, ARM_FEATURE_NEON)) {
88 nregs += 16;
89 if (reg < nregs) {
90 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
91 q[0] = ldq_le_p(buf);
92 q[1] = ldq_le_p(buf + 8);
93 return 16;
96 switch (reg - nregs) {
97 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
98 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
99 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
101 return 0;
104 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
106 switch (reg) {
107 case 0 ... 31:
108 /* 128 bit FP register */
110 uint64_t *q = aa64_vfp_qreg(env, reg);
111 stq_le_p(buf, q[0]);
112 stq_le_p(buf + 8, q[1]);
113 return 16;
115 case 32:
116 /* FPSR */
117 stl_p(buf, vfp_get_fpsr(env));
118 return 4;
119 case 33:
120 /* FPCR */
121 stl_p(buf, vfp_get_fpcr(env));
122 return 4;
123 default:
124 return 0;
128 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
130 switch (reg) {
131 case 0 ... 31:
132 /* 128 bit FP register */
134 uint64_t *q = aa64_vfp_qreg(env, reg);
135 q[0] = ldq_le_p(buf);
136 q[1] = ldq_le_p(buf + 8);
137 return 16;
139 case 32:
140 /* FPSR */
141 vfp_set_fpsr(env, ldl_p(buf));
142 return 4;
143 case 33:
144 /* FPCR */
145 vfp_set_fpcr(env, ldl_p(buf));
146 return 4;
147 default:
148 return 0;
152 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
154 assert(ri->fieldoffset);
155 if (cpreg_field_is_64bit(ri)) {
156 return CPREG_FIELD64(env, ri);
157 } else {
158 return CPREG_FIELD32(env, ri);
162 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
163 uint64_t value)
165 assert(ri->fieldoffset);
166 if (cpreg_field_is_64bit(ri)) {
167 CPREG_FIELD64(env, ri) = value;
168 } else {
169 CPREG_FIELD32(env, ri) = value;
173 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
175 return (char *)env + ri->fieldoffset;
178 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
180 /* Raw read of a coprocessor register (as needed for migration, etc). */
181 if (ri->type & ARM_CP_CONST) {
182 return ri->resetvalue;
183 } else if (ri->raw_readfn) {
184 return ri->raw_readfn(env, ri);
185 } else if (ri->readfn) {
186 return ri->readfn(env, ri);
187 } else {
188 return raw_read(env, ri);
192 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
193 uint64_t v)
195 /* Raw write of a coprocessor register (as needed for migration, etc).
196 * Note that constant registers are treated as write-ignored; the
197 * caller should check for success by whether a readback gives the
198 * value written.
200 if (ri->type & ARM_CP_CONST) {
201 return;
202 } else if (ri->raw_writefn) {
203 ri->raw_writefn(env, ri, v);
204 } else if (ri->writefn) {
205 ri->writefn(env, ri, v);
206 } else {
207 raw_write(env, ri, v);
211 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg)
213 ARMCPU *cpu = env_archcpu(env);
214 const ARMCPRegInfo *ri;
215 uint32_t key;
217 key = cpu->dyn_xml.cpregs_keys[reg];
218 ri = get_arm_cp_reginfo(cpu->cp_regs, key);
219 if (ri) {
220 if (cpreg_field_is_64bit(ri)) {
221 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
222 } else {
223 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
226 return 0;
229 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
231 return 0;
234 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
236 /* Return true if the regdef would cause an assertion if you called
237 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
238 * program bug for it not to have the NO_RAW flag).
239 * NB that returning false here doesn't necessarily mean that calling
240 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
241 * read/write access functions which are safe for raw use" from "has
242 * read/write access functions which have side effects but has forgotten
243 * to provide raw access functions".
244 * The tests here line up with the conditions in read/write_raw_cp_reg()
245 * and assertions in raw_read()/raw_write().
247 if ((ri->type & ARM_CP_CONST) ||
248 ri->fieldoffset ||
249 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
250 return false;
252 return true;
255 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
257 /* Write the coprocessor state from cpu->env to the (index,value) list. */
258 int i;
259 bool ok = true;
261 for (i = 0; i < cpu->cpreg_array_len; i++) {
262 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
263 const ARMCPRegInfo *ri;
264 uint64_t newval;
266 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
267 if (!ri) {
268 ok = false;
269 continue;
271 if (ri->type & ARM_CP_NO_RAW) {
272 continue;
275 newval = read_raw_cp_reg(&cpu->env, ri);
276 if (kvm_sync) {
278 * Only sync if the previous list->cpustate sync succeeded.
279 * Rather than tracking the success/failure state for every
280 * item in the list, we just recheck "does the raw write we must
281 * have made in write_list_to_cpustate() read back OK" here.
283 uint64_t oldval = cpu->cpreg_values[i];
285 if (oldval == newval) {
286 continue;
289 write_raw_cp_reg(&cpu->env, ri, oldval);
290 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
291 continue;
294 write_raw_cp_reg(&cpu->env, ri, newval);
296 cpu->cpreg_values[i] = newval;
298 return ok;
301 bool write_list_to_cpustate(ARMCPU *cpu)
303 int i;
304 bool ok = true;
306 for (i = 0; i < cpu->cpreg_array_len; i++) {
307 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
308 uint64_t v = cpu->cpreg_values[i];
309 const ARMCPRegInfo *ri;
311 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
312 if (!ri) {
313 ok = false;
314 continue;
316 if (ri->type & ARM_CP_NO_RAW) {
317 continue;
319 /* Write value and confirm it reads back as written
320 * (to catch read-only registers and partially read-only
321 * registers where the incoming migration value doesn't match)
323 write_raw_cp_reg(&cpu->env, ri, v);
324 if (read_raw_cp_reg(&cpu->env, ri) != v) {
325 ok = false;
328 return ok;
331 static void add_cpreg_to_list(gpointer key, gpointer opaque)
333 ARMCPU *cpu = opaque;
334 uint64_t regidx;
335 const ARMCPRegInfo *ri;
337 regidx = *(uint32_t *)key;
338 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
340 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
341 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
342 /* The value array need not be initialized at this point */
343 cpu->cpreg_array_len++;
347 static void count_cpreg(gpointer key, gpointer opaque)
349 ARMCPU *cpu = opaque;
350 uint64_t regidx;
351 const ARMCPRegInfo *ri;
353 regidx = *(uint32_t *)key;
354 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
356 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
357 cpu->cpreg_array_len++;
361 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
363 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
364 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
366 if (aidx > bidx) {
367 return 1;
369 if (aidx < bidx) {
370 return -1;
372 return 0;
375 void init_cpreg_list(ARMCPU *cpu)
377 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
378 * Note that we require cpreg_tuples[] to be sorted by key ID.
380 GList *keys;
381 int arraylen;
383 keys = g_hash_table_get_keys(cpu->cp_regs);
384 keys = g_list_sort(keys, cpreg_key_compare);
386 cpu->cpreg_array_len = 0;
388 g_list_foreach(keys, count_cpreg, cpu);
390 arraylen = cpu->cpreg_array_len;
391 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
392 cpu->cpreg_values = g_new(uint64_t, arraylen);
393 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
394 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
395 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
396 cpu->cpreg_array_len = 0;
398 g_list_foreach(keys, add_cpreg_to_list, cpu);
400 assert(cpu->cpreg_array_len == arraylen);
402 g_list_free(keys);
406 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
407 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
409 * access_el3_aa32ns: Used to check AArch32 register views.
410 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
412 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
413 const ARMCPRegInfo *ri,
414 bool isread)
416 bool secure = arm_is_secure_below_el3(env);
418 assert(!arm_el_is_aa64(env, 3));
419 if (secure) {
420 return CP_ACCESS_TRAP_UNCATEGORIZED;
422 return CP_ACCESS_OK;
425 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
426 const ARMCPRegInfo *ri,
427 bool isread)
429 if (!arm_el_is_aa64(env, 3)) {
430 return access_el3_aa32ns(env, ri, isread);
432 return CP_ACCESS_OK;
435 /* Some secure-only AArch32 registers trap to EL3 if used from
436 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
437 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
438 * We assume that the .access field is set to PL1_RW.
440 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
441 const ARMCPRegInfo *ri,
442 bool isread)
444 if (arm_current_el(env) == 3) {
445 return CP_ACCESS_OK;
447 if (arm_is_secure_below_el3(env)) {
448 return CP_ACCESS_TRAP_EL3;
450 /* This will be EL1 NS and EL2 NS, which just UNDEF */
451 return CP_ACCESS_TRAP_UNCATEGORIZED;
454 /* Check for traps to "powerdown debug" registers, which are controlled
455 * by MDCR.TDOSA
457 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
458 bool isread)
460 int el = arm_current_el(env);
461 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) ||
462 (env->cp15.mdcr_el2 & MDCR_TDE) ||
463 (arm_hcr_el2_eff(env) & HCR_TGE);
465 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) {
466 return CP_ACCESS_TRAP_EL2;
468 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
469 return CP_ACCESS_TRAP_EL3;
471 return CP_ACCESS_OK;
474 /* Check for traps to "debug ROM" registers, which are controlled
475 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
477 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
478 bool isread)
480 int el = arm_current_el(env);
481 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) ||
482 (env->cp15.mdcr_el2 & MDCR_TDE) ||
483 (arm_hcr_el2_eff(env) & HCR_TGE);
485 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) {
486 return CP_ACCESS_TRAP_EL2;
488 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
489 return CP_ACCESS_TRAP_EL3;
491 return CP_ACCESS_OK;
494 /* Check for traps to general debug registers, which are controlled
495 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
497 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
498 bool isread)
500 int el = arm_current_el(env);
501 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) ||
502 (env->cp15.mdcr_el2 & MDCR_TDE) ||
503 (arm_hcr_el2_eff(env) & HCR_TGE);
505 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) {
506 return CP_ACCESS_TRAP_EL2;
508 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
509 return CP_ACCESS_TRAP_EL3;
511 return CP_ACCESS_OK;
514 /* Check for traps to performance monitor registers, which are controlled
515 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
517 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
518 bool isread)
520 int el = arm_current_el(env);
522 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
523 && !arm_is_secure_below_el3(env)) {
524 return CP_ACCESS_TRAP_EL2;
526 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
527 return CP_ACCESS_TRAP_EL3;
529 return CP_ACCESS_OK;
532 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
534 ARMCPU *cpu = env_archcpu(env);
536 raw_write(env, ri, value);
537 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
540 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
542 ARMCPU *cpu = env_archcpu(env);
544 if (raw_read(env, ri) != value) {
545 /* Unlike real hardware the qemu TLB uses virtual addresses,
546 * not modified virtual addresses, so this causes a TLB flush.
548 tlb_flush(CPU(cpu));
549 raw_write(env, ri, value);
553 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
554 uint64_t value)
556 ARMCPU *cpu = env_archcpu(env);
558 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
559 && !extended_addresses_enabled(env)) {
560 /* For VMSA (when not using the LPAE long descriptor page table
561 * format) this register includes the ASID, so do a TLB flush.
562 * For PMSA it is purely a process ID and no action is needed.
564 tlb_flush(CPU(cpu));
566 raw_write(env, ri, value);
569 /* IS variants of TLB operations must affect all cores */
570 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
571 uint64_t value)
573 CPUState *cs = env_cpu(env);
575 tlb_flush_all_cpus_synced(cs);
578 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
579 uint64_t value)
581 CPUState *cs = env_cpu(env);
583 tlb_flush_all_cpus_synced(cs);
586 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
587 uint64_t value)
589 CPUState *cs = env_cpu(env);
591 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
594 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
595 uint64_t value)
597 CPUState *cs = env_cpu(env);
599 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
603 * Non-IS variants of TLB operations are upgraded to
604 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to
605 * force broadcast of these operations.
607 static bool tlb_force_broadcast(CPUARMState *env)
609 return (env->cp15.hcr_el2 & HCR_FB) &&
610 arm_current_el(env) == 1 && arm_is_secure_below_el3(env);
613 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
614 uint64_t value)
616 /* Invalidate all (TLBIALL) */
617 ARMCPU *cpu = env_archcpu(env);
619 if (tlb_force_broadcast(env)) {
620 tlbiall_is_write(env, NULL, value);
621 return;
624 tlb_flush(CPU(cpu));
627 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
628 uint64_t value)
630 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
631 ARMCPU *cpu = env_archcpu(env);
633 if (tlb_force_broadcast(env)) {
634 tlbimva_is_write(env, NULL, value);
635 return;
638 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
641 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
642 uint64_t value)
644 /* Invalidate by ASID (TLBIASID) */
645 ARMCPU *cpu = env_archcpu(env);
647 if (tlb_force_broadcast(env)) {
648 tlbiasid_is_write(env, NULL, value);
649 return;
652 tlb_flush(CPU(cpu));
655 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
656 uint64_t value)
658 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
659 ARMCPU *cpu = env_archcpu(env);
661 if (tlb_force_broadcast(env)) {
662 tlbimvaa_is_write(env, NULL, value);
663 return;
666 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
669 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
670 uint64_t value)
672 CPUState *cs = env_cpu(env);
674 tlb_flush_by_mmuidx(cs,
675 ARMMMUIdxBit_S12NSE1 |
676 ARMMMUIdxBit_S12NSE0 |
677 ARMMMUIdxBit_S2NS);
680 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
681 uint64_t value)
683 CPUState *cs = env_cpu(env);
685 tlb_flush_by_mmuidx_all_cpus_synced(cs,
686 ARMMMUIdxBit_S12NSE1 |
687 ARMMMUIdxBit_S12NSE0 |
688 ARMMMUIdxBit_S2NS);
691 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
692 uint64_t value)
694 /* Invalidate by IPA. This has to invalidate any structures that
695 * contain only stage 2 translation information, but does not need
696 * to apply to structures that contain combined stage 1 and stage 2
697 * translation information.
698 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
700 CPUState *cs = env_cpu(env);
701 uint64_t pageaddr;
703 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
704 return;
707 pageaddr = sextract64(value << 12, 0, 40);
709 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
712 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
713 uint64_t value)
715 CPUState *cs = env_cpu(env);
716 uint64_t pageaddr;
718 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
719 return;
722 pageaddr = sextract64(value << 12, 0, 40);
724 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
725 ARMMMUIdxBit_S2NS);
728 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
729 uint64_t value)
731 CPUState *cs = env_cpu(env);
733 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
736 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
737 uint64_t value)
739 CPUState *cs = env_cpu(env);
741 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
744 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
745 uint64_t value)
747 CPUState *cs = env_cpu(env);
748 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
750 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
753 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
754 uint64_t value)
756 CPUState *cs = env_cpu(env);
757 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
759 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
760 ARMMMUIdxBit_S1E2);
763 static const ARMCPRegInfo cp_reginfo[] = {
764 /* Define the secure and non-secure FCSE identifier CP registers
765 * separately because there is no secure bank in V8 (no _EL3). This allows
766 * the secure register to be properly reset and migrated. There is also no
767 * v8 EL1 version of the register so the non-secure instance stands alone.
769 { .name = "FCSEIDR",
770 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
771 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
772 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
773 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
774 { .name = "FCSEIDR_S",
775 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
776 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
777 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
778 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
779 /* Define the secure and non-secure context identifier CP registers
780 * separately because there is no secure bank in V8 (no _EL3). This allows
781 * the secure register to be properly reset and migrated. In the
782 * non-secure case, the 32-bit register will have reset and migration
783 * disabled during registration as it is handled by the 64-bit instance.
785 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
786 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
787 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
788 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
789 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
790 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
791 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
792 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
793 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
794 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
795 REGINFO_SENTINEL
798 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
799 /* NB: Some of these registers exist in v8 but with more precise
800 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
802 /* MMU Domain access control / MPU write buffer control */
803 { .name = "DACR",
804 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
805 .access = PL1_RW, .resetvalue = 0,
806 .writefn = dacr_write, .raw_writefn = raw_write,
807 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
808 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
809 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
810 * For v6 and v5, these mappings are overly broad.
812 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
813 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
814 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
815 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
816 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
817 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
818 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
819 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
820 /* Cache maintenance ops; some of this space may be overridden later. */
821 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
822 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
823 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
824 REGINFO_SENTINEL
827 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
828 /* Not all pre-v6 cores implemented this WFI, so this is slightly
829 * over-broad.
831 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
832 .access = PL1_W, .type = ARM_CP_WFI },
833 REGINFO_SENTINEL
836 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
837 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
838 * is UNPREDICTABLE; we choose to NOP as most implementations do).
840 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
841 .access = PL1_W, .type = ARM_CP_WFI },
842 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
843 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
844 * OMAPCP will override this space.
846 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
847 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
848 .resetvalue = 0 },
849 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
850 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
851 .resetvalue = 0 },
852 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
853 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
854 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
855 .resetvalue = 0 },
856 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
857 * implementing it as RAZ means the "debug architecture version" bits
858 * will read as a reserved value, which should cause Linux to not try
859 * to use the debug hardware.
861 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
862 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
863 /* MMU TLB control. Note that the wildcarding means we cover not just
864 * the unified TLB ops but also the dside/iside/inner-shareable variants.
866 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
867 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
868 .type = ARM_CP_NO_RAW },
869 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
870 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
871 .type = ARM_CP_NO_RAW },
872 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
873 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
874 .type = ARM_CP_NO_RAW },
875 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
876 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
877 .type = ARM_CP_NO_RAW },
878 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
879 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
880 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
881 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
882 REGINFO_SENTINEL
885 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
886 uint64_t value)
888 uint32_t mask = 0;
890 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
891 if (!arm_feature(env, ARM_FEATURE_V8)) {
892 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
893 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
894 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
896 if (arm_feature(env, ARM_FEATURE_VFP)) {
897 /* VFP coprocessor: cp10 & cp11 [23:20] */
898 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
900 if (!arm_feature(env, ARM_FEATURE_NEON)) {
901 /* ASEDIS [31] bit is RAO/WI */
902 value |= (1 << 31);
905 /* VFPv3 and upwards with NEON implement 32 double precision
906 * registers (D0-D31).
908 if (!arm_feature(env, ARM_FEATURE_NEON) ||
909 !arm_feature(env, ARM_FEATURE_VFP3)) {
910 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
911 value |= (1 << 30);
914 value &= mask;
918 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
919 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
921 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
922 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
923 value &= ~(0xf << 20);
924 value |= env->cp15.cpacr_el1 & (0xf << 20);
927 env->cp15.cpacr_el1 = value;
930 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
933 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
934 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
936 uint64_t value = env->cp15.cpacr_el1;
938 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
939 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
940 value &= ~(0xf << 20);
942 return value;
946 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
948 /* Call cpacr_write() so that we reset with the correct RAO bits set
949 * for our CPU features.
951 cpacr_write(env, ri, 0);
954 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
955 bool isread)
957 if (arm_feature(env, ARM_FEATURE_V8)) {
958 /* Check if CPACR accesses are to be trapped to EL2 */
959 if (arm_current_el(env) == 1 &&
960 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
961 return CP_ACCESS_TRAP_EL2;
962 /* Check if CPACR accesses are to be trapped to EL3 */
963 } else if (arm_current_el(env) < 3 &&
964 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
965 return CP_ACCESS_TRAP_EL3;
969 return CP_ACCESS_OK;
972 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
973 bool isread)
975 /* Check if CPTR accesses are set to trap to EL3 */
976 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
977 return CP_ACCESS_TRAP_EL3;
980 return CP_ACCESS_OK;
983 static const ARMCPRegInfo v6_cp_reginfo[] = {
984 /* prefetch by MVA in v6, NOP in v7 */
985 { .name = "MVA_prefetch",
986 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
987 .access = PL1_W, .type = ARM_CP_NOP },
988 /* We need to break the TB after ISB to execute self-modifying code
989 * correctly and also to take any pending interrupts immediately.
990 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
992 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
993 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
994 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
995 .access = PL0_W, .type = ARM_CP_NOP },
996 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
997 .access = PL0_W, .type = ARM_CP_NOP },
998 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
999 .access = PL1_RW,
1000 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
1001 offsetof(CPUARMState, cp15.ifar_ns) },
1002 .resetvalue = 0, },
1003 /* Watchpoint Fault Address Register : should actually only be present
1004 * for 1136, 1176, 11MPCore.
1006 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1007 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
1008 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
1009 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
1010 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
1011 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
1012 REGINFO_SENTINEL
1015 /* Definitions for the PMU registers */
1016 #define PMCRN_MASK 0xf800
1017 #define PMCRN_SHIFT 11
1018 #define PMCRLC 0x40
1019 #define PMCRDP 0x10
1020 #define PMCRD 0x8
1021 #define PMCRC 0x4
1022 #define PMCRP 0x2
1023 #define PMCRE 0x1
1025 #define PMXEVTYPER_P 0x80000000
1026 #define PMXEVTYPER_U 0x40000000
1027 #define PMXEVTYPER_NSK 0x20000000
1028 #define PMXEVTYPER_NSU 0x10000000
1029 #define PMXEVTYPER_NSH 0x08000000
1030 #define PMXEVTYPER_M 0x04000000
1031 #define PMXEVTYPER_MT 0x02000000
1032 #define PMXEVTYPER_EVTCOUNT 0x0000ffff
1033 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1034 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1035 PMXEVTYPER_M | PMXEVTYPER_MT | \
1036 PMXEVTYPER_EVTCOUNT)
1038 #define PMCCFILTR 0xf8000000
1039 #define PMCCFILTR_M PMXEVTYPER_M
1040 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M)
1042 static inline uint32_t pmu_num_counters(CPUARMState *env)
1044 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1047 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1048 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1050 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1053 typedef struct pm_event {
1054 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1055 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1056 bool (*supported)(CPUARMState *);
1058 * Retrieve the current count of the underlying event. The programmed
1059 * counters hold a difference from the return value from this function
1061 uint64_t (*get_count)(CPUARMState *);
1063 * Return how many nanoseconds it will take (at a minimum) for count events
1064 * to occur. A negative value indicates the counter will never overflow, or
1065 * that the counter has otherwise arranged for the overflow bit to be set
1066 * and the PMU interrupt to be raised on overflow.
1068 int64_t (*ns_per_count)(uint64_t);
1069 } pm_event;
1071 static bool event_always_supported(CPUARMState *env)
1073 return true;
1076 static uint64_t swinc_get_count(CPUARMState *env)
1079 * SW_INCR events are written directly to the pmevcntr's by writes to
1080 * PMSWINC, so there is no underlying count maintained by the PMU itself
1082 return 0;
1085 static int64_t swinc_ns_per(uint64_t ignored)
1087 return -1;
1091 * Return the underlying cycle count for the PMU cycle counters. If we're in
1092 * usermode, simply return 0.
1094 static uint64_t cycles_get_count(CPUARMState *env)
1096 #ifndef CONFIG_USER_ONLY
1097 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1098 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1099 #else
1100 return cpu_get_host_ticks();
1101 #endif
1104 #ifndef CONFIG_USER_ONLY
1105 static int64_t cycles_ns_per(uint64_t cycles)
1107 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
1110 static bool instructions_supported(CPUARMState *env)
1112 return use_icount == 1 /* Precise instruction counting */;
1115 static uint64_t instructions_get_count(CPUARMState *env)
1117 return (uint64_t)cpu_get_icount_raw();
1120 static int64_t instructions_ns_per(uint64_t icount)
1122 return cpu_icount_to_ns((int64_t)icount);
1124 #endif
1126 static const pm_event pm_events[] = {
1127 { .number = 0x000, /* SW_INCR */
1128 .supported = event_always_supported,
1129 .get_count = swinc_get_count,
1130 .ns_per_count = swinc_ns_per,
1132 #ifndef CONFIG_USER_ONLY
1133 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1134 .supported = instructions_supported,
1135 .get_count = instructions_get_count,
1136 .ns_per_count = instructions_ns_per,
1138 { .number = 0x011, /* CPU_CYCLES, Cycle */
1139 .supported = event_always_supported,
1140 .get_count = cycles_get_count,
1141 .ns_per_count = cycles_ns_per,
1143 #endif
1147 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1148 * events (i.e. the statistical profiling extension), this implementation
1149 * should first be updated to something sparse instead of the current
1150 * supported_event_map[] array.
1152 #define MAX_EVENT_ID 0x11
1153 #define UNSUPPORTED_EVENT UINT16_MAX
1154 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1157 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1158 * of ARM event numbers to indices in our pm_events array.
1160 * Note: Events in the 0x40XX range are not currently supported.
1162 void pmu_init(ARMCPU *cpu)
1164 unsigned int i;
1167 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1168 * events to them
1170 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1171 supported_event_map[i] = UNSUPPORTED_EVENT;
1173 cpu->pmceid0 = 0;
1174 cpu->pmceid1 = 0;
1176 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1177 const pm_event *cnt = &pm_events[i];
1178 assert(cnt->number <= MAX_EVENT_ID);
1179 /* We do not currently support events in the 0x40xx range */
1180 assert(cnt->number <= 0x3f);
1182 if (cnt->supported(&cpu->env)) {
1183 supported_event_map[cnt->number] = i;
1184 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1185 if (cnt->number & 0x20) {
1186 cpu->pmceid1 |= event_mask;
1187 } else {
1188 cpu->pmceid0 |= event_mask;
1195 * Check at runtime whether a PMU event is supported for the current machine
1197 static bool event_supported(uint16_t number)
1199 if (number > MAX_EVENT_ID) {
1200 return false;
1202 return supported_event_map[number] != UNSUPPORTED_EVENT;
1205 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1206 bool isread)
1208 /* Performance monitor registers user accessibility is controlled
1209 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1210 * trapping to EL2 or EL3 for other accesses.
1212 int el = arm_current_el(env);
1214 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1215 return CP_ACCESS_TRAP;
1217 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
1218 && !arm_is_secure_below_el3(env)) {
1219 return CP_ACCESS_TRAP_EL2;
1221 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1222 return CP_ACCESS_TRAP_EL3;
1225 return CP_ACCESS_OK;
1228 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1229 const ARMCPRegInfo *ri,
1230 bool isread)
1232 /* ER: event counter read trap control */
1233 if (arm_feature(env, ARM_FEATURE_V8)
1234 && arm_current_el(env) == 0
1235 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1236 && isread) {
1237 return CP_ACCESS_OK;
1240 return pmreg_access(env, ri, isread);
1243 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1244 const ARMCPRegInfo *ri,
1245 bool isread)
1247 /* SW: software increment write trap control */
1248 if (arm_feature(env, ARM_FEATURE_V8)
1249 && arm_current_el(env) == 0
1250 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1251 && !isread) {
1252 return CP_ACCESS_OK;
1255 return pmreg_access(env, ri, isread);
1258 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1259 const ARMCPRegInfo *ri,
1260 bool isread)
1262 /* ER: event counter read trap control */
1263 if (arm_feature(env, ARM_FEATURE_V8)
1264 && arm_current_el(env) == 0
1265 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1266 return CP_ACCESS_OK;
1269 return pmreg_access(env, ri, isread);
1272 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1273 const ARMCPRegInfo *ri,
1274 bool isread)
1276 /* CR: cycle counter read trap control */
1277 if (arm_feature(env, ARM_FEATURE_V8)
1278 && arm_current_el(env) == 0
1279 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1280 && isread) {
1281 return CP_ACCESS_OK;
1284 return pmreg_access(env, ri, isread);
1287 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1288 * the current EL, security state, and register configuration.
1290 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1292 uint64_t filter;
1293 bool e, p, u, nsk, nsu, nsh, m;
1294 bool enabled, prohibited, filtered;
1295 bool secure = arm_is_secure(env);
1296 int el = arm_current_el(env);
1297 uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1299 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1300 return false;
1303 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1304 (counter < hpmn || counter == 31)) {
1305 e = env->cp15.c9_pmcr & PMCRE;
1306 } else {
1307 e = env->cp15.mdcr_el2 & MDCR_HPME;
1309 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1311 if (!secure) {
1312 if (el == 2 && (counter < hpmn || counter == 31)) {
1313 prohibited = env->cp15.mdcr_el2 & MDCR_HPMD;
1314 } else {
1315 prohibited = false;
1317 } else {
1318 prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1319 (env->cp15.mdcr_el3 & MDCR_SPME);
1322 if (prohibited && counter == 31) {
1323 prohibited = env->cp15.c9_pmcr & PMCRDP;
1326 if (counter == 31) {
1327 filter = env->cp15.pmccfiltr_el0;
1328 } else {
1329 filter = env->cp15.c14_pmevtyper[counter];
1332 p = filter & PMXEVTYPER_P;
1333 u = filter & PMXEVTYPER_U;
1334 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1335 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1336 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1337 m = arm_el_is_aa64(env, 1) &&
1338 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1340 if (el == 0) {
1341 filtered = secure ? u : u != nsu;
1342 } else if (el == 1) {
1343 filtered = secure ? p : p != nsk;
1344 } else if (el == 2) {
1345 filtered = !nsh;
1346 } else { /* EL3 */
1347 filtered = m != p;
1350 if (counter != 31) {
1352 * If not checking PMCCNTR, ensure the counter is setup to an event we
1353 * support
1355 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1356 if (!event_supported(event)) {
1357 return false;
1361 return enabled && !prohibited && !filtered;
1364 static void pmu_update_irq(CPUARMState *env)
1366 ARMCPU *cpu = env_archcpu(env);
1367 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1368 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1372 * Ensure c15_ccnt is the guest-visible count so that operations such as
1373 * enabling/disabling the counter or filtering, modifying the count itself,
1374 * etc. can be done logically. This is essentially a no-op if the counter is
1375 * not enabled at the time of the call.
1377 static void pmccntr_op_start(CPUARMState *env)
1379 uint64_t cycles = cycles_get_count(env);
1381 if (pmu_counter_enabled(env, 31)) {
1382 uint64_t eff_cycles = cycles;
1383 if (env->cp15.c9_pmcr & PMCRD) {
1384 /* Increment once every 64 processor clock cycles */
1385 eff_cycles /= 64;
1388 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1390 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1391 1ull << 63 : 1ull << 31;
1392 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1393 env->cp15.c9_pmovsr |= (1 << 31);
1394 pmu_update_irq(env);
1397 env->cp15.c15_ccnt = new_pmccntr;
1399 env->cp15.c15_ccnt_delta = cycles;
1403 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1404 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1405 * pmccntr_op_start.
1407 static void pmccntr_op_finish(CPUARMState *env)
1409 if (pmu_counter_enabled(env, 31)) {
1410 #ifndef CONFIG_USER_ONLY
1411 /* Calculate when the counter will next overflow */
1412 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1413 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1414 remaining_cycles = (uint32_t)remaining_cycles;
1416 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1418 if (overflow_in > 0) {
1419 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1420 overflow_in;
1421 ARMCPU *cpu = env_archcpu(env);
1422 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1424 #endif
1426 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1427 if (env->cp15.c9_pmcr & PMCRD) {
1428 /* Increment once every 64 processor clock cycles */
1429 prev_cycles /= 64;
1431 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1435 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1438 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1439 uint64_t count = 0;
1440 if (event_supported(event)) {
1441 uint16_t event_idx = supported_event_map[event];
1442 count = pm_events[event_idx].get_count(env);
1445 if (pmu_counter_enabled(env, counter)) {
1446 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1448 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1449 env->cp15.c9_pmovsr |= (1 << counter);
1450 pmu_update_irq(env);
1452 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1454 env->cp15.c14_pmevcntr_delta[counter] = count;
1457 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1459 if (pmu_counter_enabled(env, counter)) {
1460 #ifndef CONFIG_USER_ONLY
1461 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1462 uint16_t event_idx = supported_event_map[event];
1463 uint64_t delta = UINT32_MAX -
1464 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1465 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1467 if (overflow_in > 0) {
1468 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1469 overflow_in;
1470 ARMCPU *cpu = env_archcpu(env);
1471 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1473 #endif
1475 env->cp15.c14_pmevcntr_delta[counter] -=
1476 env->cp15.c14_pmevcntr[counter];
1480 void pmu_op_start(CPUARMState *env)
1482 unsigned int i;
1483 pmccntr_op_start(env);
1484 for (i = 0; i < pmu_num_counters(env); i++) {
1485 pmevcntr_op_start(env, i);
1489 void pmu_op_finish(CPUARMState *env)
1491 unsigned int i;
1492 pmccntr_op_finish(env);
1493 for (i = 0; i < pmu_num_counters(env); i++) {
1494 pmevcntr_op_finish(env, i);
1498 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1500 pmu_op_start(&cpu->env);
1503 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1505 pmu_op_finish(&cpu->env);
1508 void arm_pmu_timer_cb(void *opaque)
1510 ARMCPU *cpu = opaque;
1513 * Update all the counter values based on the current underlying counts,
1514 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1515 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1516 * counter may expire.
1518 pmu_op_start(&cpu->env);
1519 pmu_op_finish(&cpu->env);
1522 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1523 uint64_t value)
1525 pmu_op_start(env);
1527 if (value & PMCRC) {
1528 /* The counter has been reset */
1529 env->cp15.c15_ccnt = 0;
1532 if (value & PMCRP) {
1533 unsigned int i;
1534 for (i = 0; i < pmu_num_counters(env); i++) {
1535 env->cp15.c14_pmevcntr[i] = 0;
1539 /* only the DP, X, D and E bits are writable */
1540 env->cp15.c9_pmcr &= ~0x39;
1541 env->cp15.c9_pmcr |= (value & 0x39);
1543 pmu_op_finish(env);
1546 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1547 uint64_t value)
1549 unsigned int i;
1550 for (i = 0; i < pmu_num_counters(env); i++) {
1551 /* Increment a counter's count iff: */
1552 if ((value & (1 << i)) && /* counter's bit is set */
1553 /* counter is enabled and not filtered */
1554 pmu_counter_enabled(env, i) &&
1555 /* counter is SW_INCR */
1556 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1557 pmevcntr_op_start(env, i);
1560 * Detect if this write causes an overflow since we can't predict
1561 * PMSWINC overflows like we can for other events
1563 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1565 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1566 env->cp15.c9_pmovsr |= (1 << i);
1567 pmu_update_irq(env);
1570 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1572 pmevcntr_op_finish(env, i);
1577 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1579 uint64_t ret;
1580 pmccntr_op_start(env);
1581 ret = env->cp15.c15_ccnt;
1582 pmccntr_op_finish(env);
1583 return ret;
1586 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1587 uint64_t value)
1589 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1590 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1591 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1592 * accessed.
1594 env->cp15.c9_pmselr = value & 0x1f;
1597 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1598 uint64_t value)
1600 pmccntr_op_start(env);
1601 env->cp15.c15_ccnt = value;
1602 pmccntr_op_finish(env);
1605 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1606 uint64_t value)
1608 uint64_t cur_val = pmccntr_read(env, NULL);
1610 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1613 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1614 uint64_t value)
1616 pmccntr_op_start(env);
1617 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1618 pmccntr_op_finish(env);
1621 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1622 uint64_t value)
1624 pmccntr_op_start(env);
1625 /* M is not accessible from AArch32 */
1626 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1627 (value & PMCCFILTR);
1628 pmccntr_op_finish(env);
1631 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1633 /* M is not visible in AArch32 */
1634 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1637 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1638 uint64_t value)
1640 value &= pmu_counter_mask(env);
1641 env->cp15.c9_pmcnten |= value;
1644 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1645 uint64_t value)
1647 value &= pmu_counter_mask(env);
1648 env->cp15.c9_pmcnten &= ~value;
1651 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1652 uint64_t value)
1654 value &= pmu_counter_mask(env);
1655 env->cp15.c9_pmovsr &= ~value;
1656 pmu_update_irq(env);
1659 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1660 uint64_t value)
1662 value &= pmu_counter_mask(env);
1663 env->cp15.c9_pmovsr |= value;
1664 pmu_update_irq(env);
1667 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1668 uint64_t value, const uint8_t counter)
1670 if (counter == 31) {
1671 pmccfiltr_write(env, ri, value);
1672 } else if (counter < pmu_num_counters(env)) {
1673 pmevcntr_op_start(env, counter);
1676 * If this counter's event type is changing, store the current
1677 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1678 * pmevcntr_op_finish has the correct baseline when it converts back to
1679 * a delta.
1681 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1682 PMXEVTYPER_EVTCOUNT;
1683 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1684 if (old_event != new_event) {
1685 uint64_t count = 0;
1686 if (event_supported(new_event)) {
1687 uint16_t event_idx = supported_event_map[new_event];
1688 count = pm_events[event_idx].get_count(env);
1690 env->cp15.c14_pmevcntr_delta[counter] = count;
1693 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1694 pmevcntr_op_finish(env, counter);
1696 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1697 * PMSELR value is equal to or greater than the number of implemented
1698 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1702 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1703 const uint8_t counter)
1705 if (counter == 31) {
1706 return env->cp15.pmccfiltr_el0;
1707 } else if (counter < pmu_num_counters(env)) {
1708 return env->cp15.c14_pmevtyper[counter];
1709 } else {
1711 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1712 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1714 return 0;
1718 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1719 uint64_t value)
1721 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1722 pmevtyper_write(env, ri, value, counter);
1725 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1726 uint64_t value)
1728 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1729 env->cp15.c14_pmevtyper[counter] = value;
1732 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1733 * pmu_op_finish calls when loading saved state for a migration. Because
1734 * we're potentially updating the type of event here, the value written to
1735 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1736 * different counter type. Therefore, we need to set this value to the
1737 * current count for the counter type we're writing so that pmu_op_finish
1738 * has the correct count for its calculation.
1740 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1741 if (event_supported(event)) {
1742 uint16_t event_idx = supported_event_map[event];
1743 env->cp15.c14_pmevcntr_delta[counter] =
1744 pm_events[event_idx].get_count(env);
1748 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1750 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1751 return pmevtyper_read(env, ri, counter);
1754 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1755 uint64_t value)
1757 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1760 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1762 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1765 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1766 uint64_t value, uint8_t counter)
1768 if (counter < pmu_num_counters(env)) {
1769 pmevcntr_op_start(env, counter);
1770 env->cp15.c14_pmevcntr[counter] = value;
1771 pmevcntr_op_finish(env, counter);
1774 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1775 * are CONSTRAINED UNPREDICTABLE.
1779 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1780 uint8_t counter)
1782 if (counter < pmu_num_counters(env)) {
1783 uint64_t ret;
1784 pmevcntr_op_start(env, counter);
1785 ret = env->cp15.c14_pmevcntr[counter];
1786 pmevcntr_op_finish(env, counter);
1787 return ret;
1788 } else {
1789 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1790 * are CONSTRAINED UNPREDICTABLE. */
1791 return 0;
1795 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1796 uint64_t value)
1798 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1799 pmevcntr_write(env, ri, value, counter);
1802 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1804 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1805 return pmevcntr_read(env, ri, counter);
1808 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1809 uint64_t value)
1811 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1812 assert(counter < pmu_num_counters(env));
1813 env->cp15.c14_pmevcntr[counter] = value;
1814 pmevcntr_write(env, ri, value, counter);
1817 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1819 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1820 assert(counter < pmu_num_counters(env));
1821 return env->cp15.c14_pmevcntr[counter];
1824 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1825 uint64_t value)
1827 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1830 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1832 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1835 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1836 uint64_t value)
1838 if (arm_feature(env, ARM_FEATURE_V8)) {
1839 env->cp15.c9_pmuserenr = value & 0xf;
1840 } else {
1841 env->cp15.c9_pmuserenr = value & 1;
1845 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1846 uint64_t value)
1848 /* We have no event counters so only the C bit can be changed */
1849 value &= pmu_counter_mask(env);
1850 env->cp15.c9_pminten |= value;
1851 pmu_update_irq(env);
1854 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1855 uint64_t value)
1857 value &= pmu_counter_mask(env);
1858 env->cp15.c9_pminten &= ~value;
1859 pmu_update_irq(env);
1862 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1863 uint64_t value)
1865 /* Note that even though the AArch64 view of this register has bits
1866 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1867 * architectural requirements for bits which are RES0 only in some
1868 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1869 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1871 raw_write(env, ri, value & ~0x1FULL);
1874 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1876 /* Begin with base v8.0 state. */
1877 uint32_t valid_mask = 0x3fff;
1878 ARMCPU *cpu = env_archcpu(env);
1880 if (arm_el_is_aa64(env, 3)) {
1881 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */
1882 valid_mask &= ~SCR_NET;
1883 } else {
1884 valid_mask &= ~(SCR_RW | SCR_ST);
1887 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1888 valid_mask &= ~SCR_HCE;
1890 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1891 * supported if EL2 exists. The bit is UNK/SBZP when
1892 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1893 * when EL2 is unavailable.
1894 * On ARMv8, this bit is always available.
1896 if (arm_feature(env, ARM_FEATURE_V7) &&
1897 !arm_feature(env, ARM_FEATURE_V8)) {
1898 valid_mask &= ~SCR_SMD;
1901 if (cpu_isar_feature(aa64_lor, cpu)) {
1902 valid_mask |= SCR_TLOR;
1904 if (cpu_isar_feature(aa64_pauth, cpu)) {
1905 valid_mask |= SCR_API | SCR_APK;
1908 /* Clear all-context RES0 bits. */
1909 value &= valid_mask;
1910 raw_write(env, ri, value);
1913 static CPAccessResult access_aa64_tid2(CPUARMState *env,
1914 const ARMCPRegInfo *ri,
1915 bool isread)
1917 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) {
1918 return CP_ACCESS_TRAP_EL2;
1921 return CP_ACCESS_OK;
1924 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1926 ARMCPU *cpu = env_archcpu(env);
1928 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1929 * bank
1931 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1932 ri->secure & ARM_CP_SECSTATE_S);
1934 return cpu->ccsidr[index];
1937 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1938 uint64_t value)
1940 raw_write(env, ri, value & 0xf);
1943 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1945 CPUState *cs = env_cpu(env);
1946 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
1947 uint64_t ret = 0;
1948 bool allow_virt = (arm_current_el(env) == 1 &&
1949 (!arm_is_secure_below_el3(env) ||
1950 (env->cp15.scr_el3 & SCR_EEL2)));
1952 if (allow_virt && (hcr_el2 & HCR_IMO)) {
1953 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1954 ret |= CPSR_I;
1956 } else {
1957 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1958 ret |= CPSR_I;
1962 if (allow_virt && (hcr_el2 & HCR_FMO)) {
1963 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1964 ret |= CPSR_F;
1966 } else {
1967 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1968 ret |= CPSR_F;
1972 /* External aborts are not possible in QEMU so A bit is always clear */
1973 return ret;
1976 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1977 bool isread)
1979 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
1980 return CP_ACCESS_TRAP_EL2;
1983 return CP_ACCESS_OK;
1986 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1987 bool isread)
1989 if (arm_feature(env, ARM_FEATURE_V8)) {
1990 return access_aa64_tid1(env, ri, isread);
1993 return CP_ACCESS_OK;
1996 static const ARMCPRegInfo v7_cp_reginfo[] = {
1997 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1998 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1999 .access = PL1_W, .type = ARM_CP_NOP },
2000 /* Performance monitors are implementation defined in v7,
2001 * but with an ARM recommended set of registers, which we
2002 * follow.
2004 * Performance registers fall into three categories:
2005 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2006 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2007 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2008 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2009 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2011 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2012 .access = PL0_RW, .type = ARM_CP_ALIAS,
2013 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2014 .writefn = pmcntenset_write,
2015 .accessfn = pmreg_access,
2016 .raw_writefn = raw_write },
2017 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
2018 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2019 .access = PL0_RW, .accessfn = pmreg_access,
2020 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2021 .writefn = pmcntenset_write, .raw_writefn = raw_write },
2022 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2023 .access = PL0_RW,
2024 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2025 .accessfn = pmreg_access,
2026 .writefn = pmcntenclr_write,
2027 .type = ARM_CP_ALIAS },
2028 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2029 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2030 .access = PL0_RW, .accessfn = pmreg_access,
2031 .type = ARM_CP_ALIAS,
2032 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2033 .writefn = pmcntenclr_write },
2034 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2035 .access = PL0_RW, .type = ARM_CP_IO,
2036 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2037 .accessfn = pmreg_access,
2038 .writefn = pmovsr_write,
2039 .raw_writefn = raw_write },
2040 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2041 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2042 .access = PL0_RW, .accessfn = pmreg_access,
2043 .type = ARM_CP_ALIAS | ARM_CP_IO,
2044 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2045 .writefn = pmovsr_write,
2046 .raw_writefn = raw_write },
2047 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2048 .access = PL0_W, .accessfn = pmreg_access_swinc,
2049 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2050 .writefn = pmswinc_write },
2051 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2052 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2053 .access = PL0_W, .accessfn = pmreg_access_swinc,
2054 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2055 .writefn = pmswinc_write },
2056 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2057 .access = PL0_RW, .type = ARM_CP_ALIAS,
2058 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2059 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2060 .raw_writefn = raw_write},
2061 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2062 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2063 .access = PL0_RW, .accessfn = pmreg_access_selr,
2064 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2065 .writefn = pmselr_write, .raw_writefn = raw_write, },
2066 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2067 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2068 .readfn = pmccntr_read, .writefn = pmccntr_write32,
2069 .accessfn = pmreg_access_ccntr },
2070 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2071 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2072 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2073 .type = ARM_CP_IO,
2074 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2075 .readfn = pmccntr_read, .writefn = pmccntr_write,
2076 .raw_readfn = raw_read, .raw_writefn = raw_write, },
2077 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2078 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2079 .access = PL0_RW, .accessfn = pmreg_access,
2080 .type = ARM_CP_ALIAS | ARM_CP_IO,
2081 .resetvalue = 0, },
2082 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2083 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2084 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2085 .access = PL0_RW, .accessfn = pmreg_access,
2086 .type = ARM_CP_IO,
2087 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2088 .resetvalue = 0, },
2089 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2090 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2091 .accessfn = pmreg_access,
2092 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2093 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2094 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2095 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2096 .accessfn = pmreg_access,
2097 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2098 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2099 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2100 .accessfn = pmreg_access_xevcntr,
2101 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2102 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2103 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2104 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2105 .accessfn = pmreg_access_xevcntr,
2106 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2107 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2108 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2109 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2110 .resetvalue = 0,
2111 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2112 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2113 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2114 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2115 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2116 .resetvalue = 0,
2117 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2118 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2119 .access = PL1_RW, .accessfn = access_tpm,
2120 .type = ARM_CP_ALIAS | ARM_CP_IO,
2121 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2122 .resetvalue = 0,
2123 .writefn = pmintenset_write, .raw_writefn = raw_write },
2124 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2125 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2126 .access = PL1_RW, .accessfn = access_tpm,
2127 .type = ARM_CP_IO,
2128 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2129 .writefn = pmintenset_write, .raw_writefn = raw_write,
2130 .resetvalue = 0x0 },
2131 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2132 .access = PL1_RW, .accessfn = access_tpm,
2133 .type = ARM_CP_ALIAS | ARM_CP_IO,
2134 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2135 .writefn = pmintenclr_write, },
2136 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2137 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2138 .access = PL1_RW, .accessfn = access_tpm,
2139 .type = ARM_CP_ALIAS | ARM_CP_IO,
2140 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2141 .writefn = pmintenclr_write },
2142 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2143 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2144 .access = PL1_R,
2145 .accessfn = access_aa64_tid2,
2146 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2147 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2148 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2149 .access = PL1_RW,
2150 .accessfn = access_aa64_tid2,
2151 .writefn = csselr_write, .resetvalue = 0,
2152 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2153 offsetof(CPUARMState, cp15.csselr_ns) } },
2154 /* Auxiliary ID register: this actually has an IMPDEF value but for now
2155 * just RAZ for all cores:
2157 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2158 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2159 .access = PL1_R, .type = ARM_CP_CONST,
2160 .accessfn = access_aa64_tid1,
2161 .resetvalue = 0 },
2162 /* Auxiliary fault status registers: these also are IMPDEF, and we
2163 * choose to RAZ/WI for all cores.
2165 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2166 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2167 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2168 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2169 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2170 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2171 /* MAIR can just read-as-written because we don't implement caches
2172 * and so don't need to care about memory attributes.
2174 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2175 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2176 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2177 .resetvalue = 0 },
2178 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2179 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2180 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2181 .resetvalue = 0 },
2182 /* For non-long-descriptor page tables these are PRRR and NMRR;
2183 * regardless they still act as reads-as-written for QEMU.
2185 /* MAIR0/1 are defined separately from their 64-bit counterpart which
2186 * allows them to assign the correct fieldoffset based on the endianness
2187 * handled in the field definitions.
2189 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2190 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
2191 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2192 offsetof(CPUARMState, cp15.mair0_ns) },
2193 .resetfn = arm_cp_reset_ignore },
2194 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2195 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
2196 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2197 offsetof(CPUARMState, cp15.mair1_ns) },
2198 .resetfn = arm_cp_reset_ignore },
2199 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2200 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2201 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2202 /* 32 bit ITLB invalidates */
2203 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2204 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2205 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2206 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2207 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2208 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2209 /* 32 bit DTLB invalidates */
2210 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2211 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2212 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2213 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2214 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2215 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2216 /* 32 bit TLB invalidates */
2217 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2218 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2219 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2220 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2221 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2222 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2223 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2224 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
2225 REGINFO_SENTINEL
2228 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2229 /* 32 bit TLB invalidates, Inner Shareable */
2230 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2231 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
2232 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2233 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
2234 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2235 .type = ARM_CP_NO_RAW, .access = PL1_W,
2236 .writefn = tlbiasid_is_write },
2237 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2238 .type = ARM_CP_NO_RAW, .access = PL1_W,
2239 .writefn = tlbimvaa_is_write },
2240 REGINFO_SENTINEL
2243 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2244 /* PMOVSSET is not implemented in v7 before v7ve */
2245 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2246 .access = PL0_RW, .accessfn = pmreg_access,
2247 .type = ARM_CP_ALIAS | ARM_CP_IO,
2248 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2249 .writefn = pmovsset_write,
2250 .raw_writefn = raw_write },
2251 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2252 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2253 .access = PL0_RW, .accessfn = pmreg_access,
2254 .type = ARM_CP_ALIAS | ARM_CP_IO,
2255 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2256 .writefn = pmovsset_write,
2257 .raw_writefn = raw_write },
2258 REGINFO_SENTINEL
2261 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2262 uint64_t value)
2264 value &= 1;
2265 env->teecr = value;
2268 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2269 bool isread)
2271 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2272 return CP_ACCESS_TRAP;
2274 return CP_ACCESS_OK;
2277 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2278 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2279 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2280 .resetvalue = 0,
2281 .writefn = teecr_write },
2282 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2283 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2284 .accessfn = teehbr_access, .resetvalue = 0 },
2285 REGINFO_SENTINEL
2288 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2289 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2290 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2291 .access = PL0_RW,
2292 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2293 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2294 .access = PL0_RW,
2295 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2296 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2297 .resetfn = arm_cp_reset_ignore },
2298 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2299 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2300 .access = PL0_R|PL1_W,
2301 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2302 .resetvalue = 0},
2303 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2304 .access = PL0_R|PL1_W,
2305 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2306 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2307 .resetfn = arm_cp_reset_ignore },
2308 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2309 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2310 .access = PL1_RW,
2311 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2312 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2313 .access = PL1_RW,
2314 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2315 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2316 .resetvalue = 0 },
2317 REGINFO_SENTINEL
2320 #ifndef CONFIG_USER_ONLY
2322 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2323 bool isread)
2325 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2326 * Writable only at the highest implemented exception level.
2328 int el = arm_current_el(env);
2330 switch (el) {
2331 case 0:
2332 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
2333 return CP_ACCESS_TRAP;
2335 break;
2336 case 1:
2337 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2338 arm_is_secure_below_el3(env)) {
2339 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2340 return CP_ACCESS_TRAP_UNCATEGORIZED;
2342 break;
2343 case 2:
2344 case 3:
2345 break;
2348 if (!isread && el < arm_highest_el(env)) {
2349 return CP_ACCESS_TRAP_UNCATEGORIZED;
2352 return CP_ACCESS_OK;
2355 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2356 bool isread)
2358 unsigned int cur_el = arm_current_el(env);
2359 bool secure = arm_is_secure(env);
2361 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
2362 if (cur_el == 0 &&
2363 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2364 return CP_ACCESS_TRAP;
2367 if (arm_feature(env, ARM_FEATURE_EL2) &&
2368 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
2369 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
2370 return CP_ACCESS_TRAP_EL2;
2372 return CP_ACCESS_OK;
2375 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2376 bool isread)
2378 unsigned int cur_el = arm_current_el(env);
2379 bool secure = arm_is_secure(env);
2381 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
2382 * EL0[PV]TEN is zero.
2384 if (cur_el == 0 &&
2385 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2386 return CP_ACCESS_TRAP;
2389 if (arm_feature(env, ARM_FEATURE_EL2) &&
2390 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
2391 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2392 return CP_ACCESS_TRAP_EL2;
2394 return CP_ACCESS_OK;
2397 static CPAccessResult gt_pct_access(CPUARMState *env,
2398 const ARMCPRegInfo *ri,
2399 bool isread)
2401 return gt_counter_access(env, GTIMER_PHYS, isread);
2404 static CPAccessResult gt_vct_access(CPUARMState *env,
2405 const ARMCPRegInfo *ri,
2406 bool isread)
2408 return gt_counter_access(env, GTIMER_VIRT, isread);
2411 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2412 bool isread)
2414 return gt_timer_access(env, GTIMER_PHYS, isread);
2417 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2418 bool isread)
2420 return gt_timer_access(env, GTIMER_VIRT, isread);
2423 static CPAccessResult gt_stimer_access(CPUARMState *env,
2424 const ARMCPRegInfo *ri,
2425 bool isread)
2427 /* The AArch64 register view of the secure physical timer is
2428 * always accessible from EL3, and configurably accessible from
2429 * Secure EL1.
2431 switch (arm_current_el(env)) {
2432 case 1:
2433 if (!arm_is_secure(env)) {
2434 return CP_ACCESS_TRAP;
2436 if (!(env->cp15.scr_el3 & SCR_ST)) {
2437 return CP_ACCESS_TRAP_EL3;
2439 return CP_ACCESS_OK;
2440 case 0:
2441 case 2:
2442 return CP_ACCESS_TRAP;
2443 case 3:
2444 return CP_ACCESS_OK;
2445 default:
2446 g_assert_not_reached();
2450 static uint64_t gt_get_countervalue(CPUARMState *env)
2452 ARMCPU *cpu = env_archcpu(env);
2454 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2457 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2459 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2461 if (gt->ctl & 1) {
2462 /* Timer enabled: calculate and set current ISTATUS, irq, and
2463 * reset timer to when ISTATUS next has to change
2465 uint64_t offset = timeridx == GTIMER_VIRT ?
2466 cpu->env.cp15.cntvoff_el2 : 0;
2467 uint64_t count = gt_get_countervalue(&cpu->env);
2468 /* Note that this must be unsigned 64 bit arithmetic: */
2469 int istatus = count - offset >= gt->cval;
2470 uint64_t nexttick;
2471 int irqstate;
2473 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2475 irqstate = (istatus && !(gt->ctl & 2));
2476 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2478 if (istatus) {
2479 /* Next transition is when count rolls back over to zero */
2480 nexttick = UINT64_MAX;
2481 } else {
2482 /* Next transition is when we hit cval */
2483 nexttick = gt->cval + offset;
2485 /* Note that the desired next expiry time might be beyond the
2486 * signed-64-bit range of a QEMUTimer -- in this case we just
2487 * set the timer for as far in the future as possible. When the
2488 * timer expires we will reset the timer for any remaining period.
2490 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2491 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2492 } else {
2493 timer_mod(cpu->gt_timer[timeridx], nexttick);
2495 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2496 } else {
2497 /* Timer disabled: ISTATUS and timer output always clear */
2498 gt->ctl &= ~4;
2499 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2500 timer_del(cpu->gt_timer[timeridx]);
2501 trace_arm_gt_recalc_disabled(timeridx);
2505 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2506 int timeridx)
2508 ARMCPU *cpu = env_archcpu(env);
2510 timer_del(cpu->gt_timer[timeridx]);
2513 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2515 return gt_get_countervalue(env);
2518 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2520 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
2523 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2524 int timeridx,
2525 uint64_t value)
2527 trace_arm_gt_cval_write(timeridx, value);
2528 env->cp15.c14_timer[timeridx].cval = value;
2529 gt_recalc_timer(env_archcpu(env), timeridx);
2532 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2533 int timeridx)
2535 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
2537 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2538 (gt_get_countervalue(env) - offset));
2541 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2542 int timeridx,
2543 uint64_t value)
2545 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
2547 trace_arm_gt_tval_write(timeridx, value);
2548 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2549 sextract64(value, 0, 32);
2550 gt_recalc_timer(env_archcpu(env), timeridx);
2553 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2554 int timeridx,
2555 uint64_t value)
2557 ARMCPU *cpu = env_archcpu(env);
2558 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2560 trace_arm_gt_ctl_write(timeridx, value);
2561 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2562 if ((oldval ^ value) & 1) {
2563 /* Enable toggled */
2564 gt_recalc_timer(cpu, timeridx);
2565 } else if ((oldval ^ value) & 2) {
2566 /* IMASK toggled: don't need to recalculate,
2567 * just set the interrupt line based on ISTATUS
2569 int irqstate = (oldval & 4) && !(value & 2);
2571 trace_arm_gt_imask_toggle(timeridx, irqstate);
2572 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2576 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2578 gt_timer_reset(env, ri, GTIMER_PHYS);
2581 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2582 uint64_t value)
2584 gt_cval_write(env, ri, GTIMER_PHYS, value);
2587 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2589 return gt_tval_read(env, ri, GTIMER_PHYS);
2592 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2593 uint64_t value)
2595 gt_tval_write(env, ri, GTIMER_PHYS, value);
2598 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2599 uint64_t value)
2601 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2604 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2606 gt_timer_reset(env, ri, GTIMER_VIRT);
2609 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2610 uint64_t value)
2612 gt_cval_write(env, ri, GTIMER_VIRT, value);
2615 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2617 return gt_tval_read(env, ri, GTIMER_VIRT);
2620 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2621 uint64_t value)
2623 gt_tval_write(env, ri, GTIMER_VIRT, value);
2626 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2627 uint64_t value)
2629 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2632 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2633 uint64_t value)
2635 ARMCPU *cpu = env_archcpu(env);
2637 trace_arm_gt_cntvoff_write(value);
2638 raw_write(env, ri, value);
2639 gt_recalc_timer(cpu, GTIMER_VIRT);
2642 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2644 gt_timer_reset(env, ri, GTIMER_HYP);
2647 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2648 uint64_t value)
2650 gt_cval_write(env, ri, GTIMER_HYP, value);
2653 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2655 return gt_tval_read(env, ri, GTIMER_HYP);
2658 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2659 uint64_t value)
2661 gt_tval_write(env, ri, GTIMER_HYP, value);
2664 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2665 uint64_t value)
2667 gt_ctl_write(env, ri, GTIMER_HYP, value);
2670 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2672 gt_timer_reset(env, ri, GTIMER_SEC);
2675 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2676 uint64_t value)
2678 gt_cval_write(env, ri, GTIMER_SEC, value);
2681 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2683 return gt_tval_read(env, ri, GTIMER_SEC);
2686 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2687 uint64_t value)
2689 gt_tval_write(env, ri, GTIMER_SEC, value);
2692 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2693 uint64_t value)
2695 gt_ctl_write(env, ri, GTIMER_SEC, value);
2698 void arm_gt_ptimer_cb(void *opaque)
2700 ARMCPU *cpu = opaque;
2702 gt_recalc_timer(cpu, GTIMER_PHYS);
2705 void arm_gt_vtimer_cb(void *opaque)
2707 ARMCPU *cpu = opaque;
2709 gt_recalc_timer(cpu, GTIMER_VIRT);
2712 void arm_gt_htimer_cb(void *opaque)
2714 ARMCPU *cpu = opaque;
2716 gt_recalc_timer(cpu, GTIMER_HYP);
2719 void arm_gt_stimer_cb(void *opaque)
2721 ARMCPU *cpu = opaque;
2723 gt_recalc_timer(cpu, GTIMER_SEC);
2726 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
2728 ARMCPU *cpu = env_archcpu(env);
2730 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
2733 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2734 /* Note that CNTFRQ is purely reads-as-written for the benefit
2735 * of software; writing it doesn't actually change the timer frequency.
2736 * Our reset value matches the fixed frequency we implement the timer at.
2738 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
2739 .type = ARM_CP_ALIAS,
2740 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2741 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
2743 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2744 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2745 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2746 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2747 .resetfn = arm_gt_cntfrq_reset,
2749 /* overall control: mostly access permissions */
2750 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2751 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
2752 .access = PL1_RW,
2753 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2754 .resetvalue = 0,
2756 /* per-timer control */
2757 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2758 .secure = ARM_CP_SECSTATE_NS,
2759 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2760 .accessfn = gt_ptimer_access,
2761 .fieldoffset = offsetoflow32(CPUARMState,
2762 cp15.c14_timer[GTIMER_PHYS].ctl),
2763 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2765 { .name = "CNTP_CTL_S",
2766 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2767 .secure = ARM_CP_SECSTATE_S,
2768 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2769 .accessfn = gt_ptimer_access,
2770 .fieldoffset = offsetoflow32(CPUARMState,
2771 cp15.c14_timer[GTIMER_SEC].ctl),
2772 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2774 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2775 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
2776 .type = ARM_CP_IO, .access = PL0_RW,
2777 .accessfn = gt_ptimer_access,
2778 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2779 .resetvalue = 0,
2780 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2782 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
2783 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2784 .accessfn = gt_vtimer_access,
2785 .fieldoffset = offsetoflow32(CPUARMState,
2786 cp15.c14_timer[GTIMER_VIRT].ctl),
2787 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2789 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2790 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
2791 .type = ARM_CP_IO, .access = PL0_RW,
2792 .accessfn = gt_vtimer_access,
2793 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2794 .resetvalue = 0,
2795 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2797 /* TimerValue views: a 32 bit downcounting view of the underlying state */
2798 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2799 .secure = ARM_CP_SECSTATE_NS,
2800 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2801 .accessfn = gt_ptimer_access,
2802 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2804 { .name = "CNTP_TVAL_S",
2805 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2806 .secure = ARM_CP_SECSTATE_S,
2807 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2808 .accessfn = gt_ptimer_access,
2809 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2811 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2812 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2813 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2814 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2815 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2817 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2818 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2819 .accessfn = gt_vtimer_access,
2820 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2822 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2823 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2824 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2825 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2826 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2828 /* The counter itself */
2829 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2830 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2831 .accessfn = gt_pct_access,
2832 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2834 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2835 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2836 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2837 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2839 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2840 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2841 .accessfn = gt_vct_access,
2842 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2844 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2845 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2846 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2847 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2849 /* Comparison value, indicating when the timer goes off */
2850 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2851 .secure = ARM_CP_SECSTATE_NS,
2852 .access = PL0_RW,
2853 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2854 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2855 .accessfn = gt_ptimer_access,
2856 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2858 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
2859 .secure = ARM_CP_SECSTATE_S,
2860 .access = PL0_RW,
2861 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2862 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2863 .accessfn = gt_ptimer_access,
2864 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2866 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2867 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2868 .access = PL0_RW,
2869 .type = ARM_CP_IO,
2870 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2871 .resetvalue = 0, .accessfn = gt_ptimer_access,
2872 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2874 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2875 .access = PL0_RW,
2876 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2877 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2878 .accessfn = gt_vtimer_access,
2879 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2881 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2882 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2883 .access = PL0_RW,
2884 .type = ARM_CP_IO,
2885 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2886 .resetvalue = 0, .accessfn = gt_vtimer_access,
2887 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2889 /* Secure timer -- this is actually restricted to only EL3
2890 * and configurably Secure-EL1 via the accessfn.
2892 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2893 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2894 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2895 .accessfn = gt_stimer_access,
2896 .readfn = gt_sec_tval_read,
2897 .writefn = gt_sec_tval_write,
2898 .resetfn = gt_sec_timer_reset,
2900 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2901 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2902 .type = ARM_CP_IO, .access = PL1_RW,
2903 .accessfn = gt_stimer_access,
2904 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2905 .resetvalue = 0,
2906 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2908 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2909 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2910 .type = ARM_CP_IO, .access = PL1_RW,
2911 .accessfn = gt_stimer_access,
2912 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2913 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2915 REGINFO_SENTINEL
2918 #else
2920 /* In user-mode most of the generic timer registers are inaccessible
2921 * however modern kernels (4.12+) allow access to cntvct_el0
2924 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2926 ARMCPU *cpu = env_archcpu(env);
2928 /* Currently we have no support for QEMUTimer in linux-user so we
2929 * can't call gt_get_countervalue(env), instead we directly
2930 * call the lower level functions.
2932 return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
2935 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2936 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2937 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2938 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
2939 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2940 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
2942 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2943 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2944 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2945 .readfn = gt_virt_cnt_read,
2947 REGINFO_SENTINEL
2950 #endif
2952 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2954 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2955 raw_write(env, ri, value);
2956 } else if (arm_feature(env, ARM_FEATURE_V7)) {
2957 raw_write(env, ri, value & 0xfffff6ff);
2958 } else {
2959 raw_write(env, ri, value & 0xfffff1ff);
2963 #ifndef CONFIG_USER_ONLY
2964 /* get_phys_addr() isn't present for user-mode-only targets */
2966 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2967 bool isread)
2969 if (ri->opc2 & 4) {
2970 /* The ATS12NSO* operations must trap to EL3 if executed in
2971 * Secure EL1 (which can only happen if EL3 is AArch64).
2972 * They are simply UNDEF if executed from NS EL1.
2973 * They function normally from EL2 or EL3.
2975 if (arm_current_el(env) == 1) {
2976 if (arm_is_secure_below_el3(env)) {
2977 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2979 return CP_ACCESS_TRAP_UNCATEGORIZED;
2982 return CP_ACCESS_OK;
2985 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2986 MMUAccessType access_type, ARMMMUIdx mmu_idx)
2988 hwaddr phys_addr;
2989 target_ulong page_size;
2990 int prot;
2991 bool ret;
2992 uint64_t par64;
2993 bool format64 = false;
2994 MemTxAttrs attrs = {};
2995 ARMMMUFaultInfo fi = {};
2996 ARMCacheAttrs cacheattrs = {};
2998 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
2999 &prot, &page_size, &fi, &cacheattrs);
3001 if (ret) {
3003 * Some kinds of translation fault must cause exceptions rather
3004 * than being reported in the PAR.
3006 int current_el = arm_current_el(env);
3007 int target_el;
3008 uint32_t syn, fsr, fsc;
3009 bool take_exc = false;
3011 if (fi.s1ptw && current_el == 1 && !arm_is_secure(env)
3012 && (mmu_idx == ARMMMUIdx_S1NSE1 || mmu_idx == ARMMMUIdx_S1NSE0)) {
3014 * Synchronous stage 2 fault on an access made as part of the
3015 * translation table walk for AT S1E0* or AT S1E1* insn
3016 * executed from NS EL1. If this is a synchronous external abort
3017 * and SCR_EL3.EA == 1, then we take a synchronous external abort
3018 * to EL3. Otherwise the fault is taken as an exception to EL2,
3019 * and HPFAR_EL2 holds the faulting IPA.
3021 if (fi.type == ARMFault_SyncExternalOnWalk &&
3022 (env->cp15.scr_el3 & SCR_EA)) {
3023 target_el = 3;
3024 } else {
3025 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3026 target_el = 2;
3028 take_exc = true;
3029 } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3031 * Synchronous external aborts during a translation table walk
3032 * are taken as Data Abort exceptions.
3034 if (fi.stage2) {
3035 if (current_el == 3) {
3036 target_el = 3;
3037 } else {
3038 target_el = 2;
3040 } else {
3041 target_el = exception_target_el(env);
3043 take_exc = true;
3046 if (take_exc) {
3047 /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3048 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3049 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3050 fsr = arm_fi_to_lfsc(&fi);
3051 fsc = extract32(fsr, 0, 6);
3052 } else {
3053 fsr = arm_fi_to_sfsc(&fi);
3054 fsc = 0x3f;
3057 * Report exception with ESR indicating a fault due to a
3058 * translation table walk for a cache maintenance instruction.
3060 syn = syn_data_abort_no_iss(current_el == target_el,
3061 fi.ea, 1, fi.s1ptw, 1, fsc);
3062 env->exception.vaddress = value;
3063 env->exception.fsr = fsr;
3064 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3068 if (is_a64(env)) {
3069 format64 = true;
3070 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3072 * ATS1Cxx:
3073 * * TTBCR.EAE determines whether the result is returned using the
3074 * 32-bit or the 64-bit PAR format
3075 * * Instructions executed in Hyp mode always use the 64bit format
3077 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3078 * * The Non-secure TTBCR.EAE bit is set to 1
3079 * * The implementation includes EL2, and the value of HCR.VM is 1
3081 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3083 * ATS1Hx always uses the 64bit format.
3085 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3087 if (arm_feature(env, ARM_FEATURE_EL2)) {
3088 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
3089 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3090 } else {
3091 format64 |= arm_current_el(env) == 2;
3096 if (format64) {
3097 /* Create a 64-bit PAR */
3098 par64 = (1 << 11); /* LPAE bit always set */
3099 if (!ret) {
3100 par64 |= phys_addr & ~0xfffULL;
3101 if (!attrs.secure) {
3102 par64 |= (1 << 9); /* NS */
3104 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
3105 par64 |= cacheattrs.shareability << 7; /* SH */
3106 } else {
3107 uint32_t fsr = arm_fi_to_lfsc(&fi);
3109 par64 |= 1; /* F */
3110 par64 |= (fsr & 0x3f) << 1; /* FS */
3111 if (fi.stage2) {
3112 par64 |= (1 << 9); /* S */
3114 if (fi.s1ptw) {
3115 par64 |= (1 << 8); /* PTW */
3118 } else {
3119 /* fsr is a DFSR/IFSR value for the short descriptor
3120 * translation table format (with WnR always clear).
3121 * Convert it to a 32-bit PAR.
3123 if (!ret) {
3124 /* We do not set any attribute bits in the PAR */
3125 if (page_size == (1 << 24)
3126 && arm_feature(env, ARM_FEATURE_V7)) {
3127 par64 = (phys_addr & 0xff000000) | (1 << 1);
3128 } else {
3129 par64 = phys_addr & 0xfffff000;
3131 if (!attrs.secure) {
3132 par64 |= (1 << 9); /* NS */
3134 } else {
3135 uint32_t fsr = arm_fi_to_sfsc(&fi);
3137 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3138 ((fsr & 0xf) << 1) | 1;
3141 return par64;
3144 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3146 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3147 uint64_t par64;
3148 ARMMMUIdx mmu_idx;
3149 int el = arm_current_el(env);
3150 bool secure = arm_is_secure_below_el3(env);
3152 switch (ri->opc2 & 6) {
3153 case 0:
3154 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
3155 switch (el) {
3156 case 3:
3157 mmu_idx = ARMMMUIdx_S1E3;
3158 break;
3159 case 2:
3160 mmu_idx = ARMMMUIdx_S1NSE1;
3161 break;
3162 case 1:
3163 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
3164 break;
3165 default:
3166 g_assert_not_reached();
3168 break;
3169 case 2:
3170 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3171 switch (el) {
3172 case 3:
3173 mmu_idx = ARMMMUIdx_S1SE0;
3174 break;
3175 case 2:
3176 mmu_idx = ARMMMUIdx_S1NSE0;
3177 break;
3178 case 1:
3179 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
3180 break;
3181 default:
3182 g_assert_not_reached();
3184 break;
3185 case 4:
3186 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3187 mmu_idx = ARMMMUIdx_S12NSE1;
3188 break;
3189 case 6:
3190 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3191 mmu_idx = ARMMMUIdx_S12NSE0;
3192 break;
3193 default:
3194 g_assert_not_reached();
3197 par64 = do_ats_write(env, value, access_type, mmu_idx);
3199 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3202 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3203 uint64_t value)
3205 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3206 uint64_t par64;
3208 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S1E2);
3210 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3213 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3214 bool isread)
3216 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
3217 return CP_ACCESS_TRAP;
3219 return CP_ACCESS_OK;
3222 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3223 uint64_t value)
3225 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3226 ARMMMUIdx mmu_idx;
3227 int secure = arm_is_secure_below_el3(env);
3229 switch (ri->opc2 & 6) {
3230 case 0:
3231 switch (ri->opc1) {
3232 case 0: /* AT S1E1R, AT S1E1W */
3233 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
3234 break;
3235 case 4: /* AT S1E2R, AT S1E2W */
3236 mmu_idx = ARMMMUIdx_S1E2;
3237 break;
3238 case 6: /* AT S1E3R, AT S1E3W */
3239 mmu_idx = ARMMMUIdx_S1E3;
3240 break;
3241 default:
3242 g_assert_not_reached();
3244 break;
3245 case 2: /* AT S1E0R, AT S1E0W */
3246 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
3247 break;
3248 case 4: /* AT S12E1R, AT S12E1W */
3249 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
3250 break;
3251 case 6: /* AT S12E0R, AT S12E0W */
3252 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
3253 break;
3254 default:
3255 g_assert_not_reached();
3258 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3260 #endif
3262 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3263 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3264 .access = PL1_RW, .resetvalue = 0,
3265 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3266 offsetoflow32(CPUARMState, cp15.par_ns) },
3267 .writefn = par_write },
3268 #ifndef CONFIG_USER_ONLY
3269 /* This underdecoding is safe because the reginfo is NO_RAW. */
3270 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3271 .access = PL1_W, .accessfn = ats_access,
3272 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3273 #endif
3274 REGINFO_SENTINEL
3277 /* Return basic MPU access permission bits. */
3278 static uint32_t simple_mpu_ap_bits(uint32_t val)
3280 uint32_t ret;
3281 uint32_t mask;
3282 int i;
3283 ret = 0;
3284 mask = 3;
3285 for (i = 0; i < 16; i += 2) {
3286 ret |= (val >> i) & mask;
3287 mask <<= 2;
3289 return ret;
3292 /* Pad basic MPU access permission bits to extended format. */
3293 static uint32_t extended_mpu_ap_bits(uint32_t val)
3295 uint32_t ret;
3296 uint32_t mask;
3297 int i;
3298 ret = 0;
3299 mask = 3;
3300 for (i = 0; i < 16; i += 2) {
3301 ret |= (val & mask) << i;
3302 mask <<= 2;
3304 return ret;
3307 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3308 uint64_t value)
3310 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3313 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3315 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3318 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3319 uint64_t value)
3321 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3324 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3326 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3329 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3331 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3333 if (!u32p) {
3334 return 0;
3337 u32p += env->pmsav7.rnr[M_REG_NS];
3338 return *u32p;
3341 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3342 uint64_t value)
3344 ARMCPU *cpu = env_archcpu(env);
3345 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3347 if (!u32p) {
3348 return;
3351 u32p += env->pmsav7.rnr[M_REG_NS];
3352 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3353 *u32p = value;
3356 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3357 uint64_t value)
3359 ARMCPU *cpu = env_archcpu(env);
3360 uint32_t nrgs = cpu->pmsav7_dregion;
3362 if (value >= nrgs) {
3363 qemu_log_mask(LOG_GUEST_ERROR,
3364 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3365 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3366 return;
3369 raw_write(env, ri, value);
3372 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3373 /* Reset for all these registers is handled in arm_cpu_reset(),
3374 * because the PMSAv7 is also used by M-profile CPUs, which do
3375 * not register cpregs but still need the state to be reset.
3377 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3378 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3379 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3380 .readfn = pmsav7_read, .writefn = pmsav7_write,
3381 .resetfn = arm_cp_reset_ignore },
3382 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3383 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3384 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3385 .readfn = pmsav7_read, .writefn = pmsav7_write,
3386 .resetfn = arm_cp_reset_ignore },
3387 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3388 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3389 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3390 .readfn = pmsav7_read, .writefn = pmsav7_write,
3391 .resetfn = arm_cp_reset_ignore },
3392 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3393 .access = PL1_RW,
3394 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3395 .writefn = pmsav7_rgnr_write,
3396 .resetfn = arm_cp_reset_ignore },
3397 REGINFO_SENTINEL
3400 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3401 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3402 .access = PL1_RW, .type = ARM_CP_ALIAS,
3403 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3404 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3405 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3406 .access = PL1_RW, .type = ARM_CP_ALIAS,
3407 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3408 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3409 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3410 .access = PL1_RW,
3411 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3412 .resetvalue = 0, },
3413 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3414 .access = PL1_RW,
3415 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3416 .resetvalue = 0, },
3417 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3418 .access = PL1_RW,
3419 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3420 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3421 .access = PL1_RW,
3422 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3423 /* Protection region base and size registers */
3424 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3425 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3426 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3427 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3428 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3429 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3430 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3431 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3432 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3433 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3434 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3435 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3436 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3437 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3438 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3439 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3440 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3441 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3442 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3443 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3444 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3445 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3446 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3447 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3448 REGINFO_SENTINEL
3451 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3452 uint64_t value)
3454 TCR *tcr = raw_ptr(env, ri);
3455 int maskshift = extract32(value, 0, 3);
3457 if (!arm_feature(env, ARM_FEATURE_V8)) {
3458 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3459 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3460 * using Long-desciptor translation table format */
3461 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3462 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3463 /* In an implementation that includes the Security Extensions
3464 * TTBCR has additional fields PD0 [4] and PD1 [5] for
3465 * Short-descriptor translation table format.
3467 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3468 } else {
3469 value &= TTBCR_N;
3473 /* Update the masks corresponding to the TCR bank being written
3474 * Note that we always calculate mask and base_mask, but
3475 * they are only used for short-descriptor tables (ie if EAE is 0);
3476 * for long-descriptor tables the TCR fields are used differently
3477 * and the mask and base_mask values are meaningless.
3479 tcr->raw_tcr = value;
3480 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3481 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3484 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3485 uint64_t value)
3487 ARMCPU *cpu = env_archcpu(env);
3488 TCR *tcr = raw_ptr(env, ri);
3490 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3491 /* With LPAE the TTBCR could result in a change of ASID
3492 * via the TTBCR.A1 bit, so do a TLB flush.
3494 tlb_flush(CPU(cpu));
3496 /* Preserve the high half of TCR_EL1, set via TTBCR2. */
3497 value = deposit64(tcr->raw_tcr, 0, 32, value);
3498 vmsa_ttbcr_raw_write(env, ri, value);
3501 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3503 TCR *tcr = raw_ptr(env, ri);
3505 /* Reset both the TCR as well as the masks corresponding to the bank of
3506 * the TCR being reset.
3508 tcr->raw_tcr = 0;
3509 tcr->mask = 0;
3510 tcr->base_mask = 0xffffc000u;
3513 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3514 uint64_t value)
3516 ARMCPU *cpu = env_archcpu(env);
3517 TCR *tcr = raw_ptr(env, ri);
3519 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3520 tlb_flush(CPU(cpu));
3521 tcr->raw_tcr = value;
3524 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3525 uint64_t value)
3527 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
3528 if (cpreg_field_is_64bit(ri) &&
3529 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3530 ARMCPU *cpu = env_archcpu(env);
3531 tlb_flush(CPU(cpu));
3533 raw_write(env, ri, value);
3536 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3537 uint64_t value)
3539 ARMCPU *cpu = env_archcpu(env);
3540 CPUState *cs = CPU(cpu);
3542 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
3543 if (raw_read(env, ri) != value) {
3544 tlb_flush_by_mmuidx(cs,
3545 ARMMMUIdxBit_S12NSE1 |
3546 ARMMMUIdxBit_S12NSE0 |
3547 ARMMMUIdxBit_S2NS);
3548 raw_write(env, ri, value);
3552 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
3553 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3554 .access = PL1_RW, .type = ARM_CP_ALIAS,
3555 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
3556 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
3557 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3558 .access = PL1_RW, .resetvalue = 0,
3559 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
3560 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
3561 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
3562 .access = PL1_RW, .resetvalue = 0,
3563 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
3564 offsetof(CPUARMState, cp15.dfar_ns) } },
3565 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
3566 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
3567 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
3568 .resetvalue = 0, },
3569 REGINFO_SENTINEL
3572 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
3573 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
3574 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
3575 .access = PL1_RW,
3576 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
3577 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
3578 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
3579 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3580 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3581 offsetof(CPUARMState, cp15.ttbr0_ns) } },
3582 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
3583 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
3584 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3585 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3586 offsetof(CPUARMState, cp15.ttbr1_ns) } },
3587 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
3588 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3589 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
3590 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3591 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
3592 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3593 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
3594 .raw_writefn = vmsa_ttbcr_raw_write,
3595 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
3596 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
3597 REGINFO_SENTINEL
3600 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
3601 * qemu tlbs nor adjusting cached masks.
3603 static const ARMCPRegInfo ttbcr2_reginfo = {
3604 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
3605 .access = PL1_RW, .type = ARM_CP_ALIAS,
3606 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
3607 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) },
3610 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
3611 uint64_t value)
3613 env->cp15.c15_ticonfig = value & 0xe7;
3614 /* The OS_TYPE bit in this register changes the reported CPUID! */
3615 env->cp15.c0_cpuid = (value & (1 << 5)) ?
3616 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
3619 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
3620 uint64_t value)
3622 env->cp15.c15_threadid = value & 0xffff;
3625 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
3626 uint64_t value)
3628 /* Wait-for-interrupt (deprecated) */
3629 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
3632 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
3633 uint64_t value)
3635 /* On OMAP there are registers indicating the max/min index of dcache lines
3636 * containing a dirty line; cache flush operations have to reset these.
3638 env->cp15.c15_i_max = 0x000;
3639 env->cp15.c15_i_min = 0xff0;
3642 static const ARMCPRegInfo omap_cp_reginfo[] = {
3643 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
3644 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
3645 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
3646 .resetvalue = 0, },
3647 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
3648 .access = PL1_RW, .type = ARM_CP_NOP },
3649 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
3650 .access = PL1_RW,
3651 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
3652 .writefn = omap_ticonfig_write },
3653 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
3654 .access = PL1_RW,
3655 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
3656 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
3657 .access = PL1_RW, .resetvalue = 0xff0,
3658 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
3659 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
3660 .access = PL1_RW,
3661 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
3662 .writefn = omap_threadid_write },
3663 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
3664 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3665 .type = ARM_CP_NO_RAW,
3666 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
3667 /* TODO: Peripheral port remap register:
3668 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
3669 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
3670 * when MMU is off.
3672 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
3673 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
3674 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
3675 .writefn = omap_cachemaint_write },
3676 { .name = "C9", .cp = 15, .crn = 9,
3677 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
3678 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
3679 REGINFO_SENTINEL
3682 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3683 uint64_t value)
3685 env->cp15.c15_cpar = value & 0x3fff;
3688 static const ARMCPRegInfo xscale_cp_reginfo[] = {
3689 { .name = "XSCALE_CPAR",
3690 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3691 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
3692 .writefn = xscale_cpar_write, },
3693 { .name = "XSCALE_AUXCR",
3694 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
3695 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
3696 .resetvalue = 0, },
3697 /* XScale specific cache-lockdown: since we have no cache we NOP these
3698 * and hope the guest does not really rely on cache behaviour.
3700 { .name = "XSCALE_LOCK_ICACHE_LINE",
3701 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
3702 .access = PL1_W, .type = ARM_CP_NOP },
3703 { .name = "XSCALE_UNLOCK_ICACHE",
3704 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
3705 .access = PL1_W, .type = ARM_CP_NOP },
3706 { .name = "XSCALE_DCACHE_LOCK",
3707 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
3708 .access = PL1_RW, .type = ARM_CP_NOP },
3709 { .name = "XSCALE_UNLOCK_DCACHE",
3710 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
3711 .access = PL1_W, .type = ARM_CP_NOP },
3712 REGINFO_SENTINEL
3715 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
3716 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
3717 * implementation of this implementation-defined space.
3718 * Ideally this should eventually disappear in favour of actually
3719 * implementing the correct behaviour for all cores.
3721 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
3722 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3723 .access = PL1_RW,
3724 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
3725 .resetvalue = 0 },
3726 REGINFO_SENTINEL
3729 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
3730 /* Cache status: RAZ because we have no cache so it's always clean */
3731 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
3732 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3733 .resetvalue = 0 },
3734 REGINFO_SENTINEL
3737 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
3738 /* We never have a a block transfer operation in progress */
3739 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
3740 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3741 .resetvalue = 0 },
3742 /* The cache ops themselves: these all NOP for QEMU */
3743 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
3744 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3745 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
3746 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3747 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
3748 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3749 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
3750 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3751 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
3752 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3753 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
3754 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3755 REGINFO_SENTINEL
3758 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
3759 /* The cache test-and-clean instructions always return (1 << 30)
3760 * to indicate that there are no dirty cache lines.
3762 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
3763 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3764 .resetvalue = (1 << 30) },
3765 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
3766 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3767 .resetvalue = (1 << 30) },
3768 REGINFO_SENTINEL
3771 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
3772 /* Ignore ReadBuffer accesses */
3773 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
3774 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3775 .access = PL1_RW, .resetvalue = 0,
3776 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
3777 REGINFO_SENTINEL
3780 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3782 ARMCPU *cpu = env_archcpu(env);
3783 unsigned int cur_el = arm_current_el(env);
3784 bool secure = arm_is_secure(env);
3786 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3787 return env->cp15.vpidr_el2;
3789 return raw_read(env, ri);
3792 static uint64_t mpidr_read_val(CPUARMState *env)
3794 ARMCPU *cpu = env_archcpu(env);
3795 uint64_t mpidr = cpu->mp_affinity;
3797 if (arm_feature(env, ARM_FEATURE_V7MP)) {
3798 mpidr |= (1U << 31);
3799 /* Cores which are uniprocessor (non-coherent)
3800 * but still implement the MP extensions set
3801 * bit 30. (For instance, Cortex-R5).
3803 if (cpu->mp_is_up) {
3804 mpidr |= (1u << 30);
3807 return mpidr;
3810 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3812 unsigned int cur_el = arm_current_el(env);
3813 bool secure = arm_is_secure(env);
3815 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3816 return env->cp15.vmpidr_el2;
3818 return mpidr_read_val(env);
3821 static const ARMCPRegInfo lpae_cp_reginfo[] = {
3822 /* NOP AMAIR0/1 */
3823 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
3824 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
3825 .access = PL1_RW, .type = ARM_CP_CONST,
3826 .resetvalue = 0 },
3827 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
3828 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
3829 .access = PL1_RW, .type = ARM_CP_CONST,
3830 .resetvalue = 0 },
3831 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
3832 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
3833 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
3834 offsetof(CPUARMState, cp15.par_ns)} },
3835 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
3836 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3837 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3838 offsetof(CPUARMState, cp15.ttbr0_ns) },
3839 .writefn = vmsa_ttbr_write, },
3840 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
3841 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3842 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3843 offsetof(CPUARMState, cp15.ttbr1_ns) },
3844 .writefn = vmsa_ttbr_write, },
3845 REGINFO_SENTINEL
3848 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3850 return vfp_get_fpcr(env);
3853 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3854 uint64_t value)
3856 vfp_set_fpcr(env, value);
3859 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3861 return vfp_get_fpsr(env);
3864 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3865 uint64_t value)
3867 vfp_set_fpsr(env, value);
3870 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
3871 bool isread)
3873 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
3874 return CP_ACCESS_TRAP;
3876 return CP_ACCESS_OK;
3879 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
3880 uint64_t value)
3882 env->daif = value & PSTATE_DAIF;
3885 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
3886 const ARMCPRegInfo *ri,
3887 bool isread)
3889 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
3890 * SCTLR_EL1.UCI is set.
3892 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
3893 return CP_ACCESS_TRAP;
3895 return CP_ACCESS_OK;
3898 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
3899 * Page D4-1736 (DDI0487A.b)
3902 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3903 uint64_t value)
3905 CPUState *cs = env_cpu(env);
3906 bool sec = arm_is_secure_below_el3(env);
3908 if (sec) {
3909 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3910 ARMMMUIdxBit_S1SE1 |
3911 ARMMMUIdxBit_S1SE0);
3912 } else {
3913 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3914 ARMMMUIdxBit_S12NSE1 |
3915 ARMMMUIdxBit_S12NSE0);
3919 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3920 uint64_t value)
3922 CPUState *cs = env_cpu(env);
3924 if (tlb_force_broadcast(env)) {
3925 tlbi_aa64_vmalle1is_write(env, NULL, value);
3926 return;
3929 if (arm_is_secure_below_el3(env)) {
3930 tlb_flush_by_mmuidx(cs,
3931 ARMMMUIdxBit_S1SE1 |
3932 ARMMMUIdxBit_S1SE0);
3933 } else {
3934 tlb_flush_by_mmuidx(cs,
3935 ARMMMUIdxBit_S12NSE1 |
3936 ARMMMUIdxBit_S12NSE0);
3940 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3941 uint64_t value)
3943 /* Note that the 'ALL' scope must invalidate both stage 1 and
3944 * stage 2 translations, whereas most other scopes only invalidate
3945 * stage 1 translations.
3947 ARMCPU *cpu = env_archcpu(env);
3948 CPUState *cs = CPU(cpu);
3950 if (arm_is_secure_below_el3(env)) {
3951 tlb_flush_by_mmuidx(cs,
3952 ARMMMUIdxBit_S1SE1 |
3953 ARMMMUIdxBit_S1SE0);
3954 } else {
3955 if (arm_feature(env, ARM_FEATURE_EL2)) {
3956 tlb_flush_by_mmuidx(cs,
3957 ARMMMUIdxBit_S12NSE1 |
3958 ARMMMUIdxBit_S12NSE0 |
3959 ARMMMUIdxBit_S2NS);
3960 } else {
3961 tlb_flush_by_mmuidx(cs,
3962 ARMMMUIdxBit_S12NSE1 |
3963 ARMMMUIdxBit_S12NSE0);
3968 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3969 uint64_t value)
3971 ARMCPU *cpu = env_archcpu(env);
3972 CPUState *cs = CPU(cpu);
3974 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3977 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3978 uint64_t value)
3980 ARMCPU *cpu = env_archcpu(env);
3981 CPUState *cs = CPU(cpu);
3983 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3986 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3987 uint64_t value)
3989 /* Note that the 'ALL' scope must invalidate both stage 1 and
3990 * stage 2 translations, whereas most other scopes only invalidate
3991 * stage 1 translations.
3993 CPUState *cs = env_cpu(env);
3994 bool sec = arm_is_secure_below_el3(env);
3995 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3997 if (sec) {
3998 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3999 ARMMMUIdxBit_S1SE1 |
4000 ARMMMUIdxBit_S1SE0);
4001 } else if (has_el2) {
4002 tlb_flush_by_mmuidx_all_cpus_synced(cs,
4003 ARMMMUIdxBit_S12NSE1 |
4004 ARMMMUIdxBit_S12NSE0 |
4005 ARMMMUIdxBit_S2NS);
4006 } else {
4007 tlb_flush_by_mmuidx_all_cpus_synced(cs,
4008 ARMMMUIdxBit_S12NSE1 |
4009 ARMMMUIdxBit_S12NSE0);
4013 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4014 uint64_t value)
4016 CPUState *cs = env_cpu(env);
4018 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
4021 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4022 uint64_t value)
4024 CPUState *cs = env_cpu(env);
4026 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
4029 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4030 uint64_t value)
4032 /* Invalidate by VA, EL2
4033 * Currently handles both VAE2 and VALE2, since we don't support
4034 * flush-last-level-only.
4036 ARMCPU *cpu = env_archcpu(env);
4037 CPUState *cs = CPU(cpu);
4038 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4040 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
4043 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4044 uint64_t value)
4046 /* Invalidate by VA, EL3
4047 * Currently handles both VAE3 and VALE3, since we don't support
4048 * flush-last-level-only.
4050 ARMCPU *cpu = env_archcpu(env);
4051 CPUState *cs = CPU(cpu);
4052 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4054 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
4057 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4058 uint64_t value)
4060 ARMCPU *cpu = env_archcpu(env);
4061 CPUState *cs = CPU(cpu);
4062 bool sec = arm_is_secure_below_el3(env);
4063 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4065 if (sec) {
4066 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4067 ARMMMUIdxBit_S1SE1 |
4068 ARMMMUIdxBit_S1SE0);
4069 } else {
4070 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4071 ARMMMUIdxBit_S12NSE1 |
4072 ARMMMUIdxBit_S12NSE0);
4076 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4077 uint64_t value)
4079 /* Invalidate by VA, EL1&0 (AArch64 version).
4080 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4081 * since we don't support flush-for-specific-ASID-only or
4082 * flush-last-level-only.
4084 ARMCPU *cpu = env_archcpu(env);
4085 CPUState *cs = CPU(cpu);
4086 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4088 if (tlb_force_broadcast(env)) {
4089 tlbi_aa64_vae1is_write(env, NULL, value);
4090 return;
4093 if (arm_is_secure_below_el3(env)) {
4094 tlb_flush_page_by_mmuidx(cs, pageaddr,
4095 ARMMMUIdxBit_S1SE1 |
4096 ARMMMUIdxBit_S1SE0);
4097 } else {
4098 tlb_flush_page_by_mmuidx(cs, pageaddr,
4099 ARMMMUIdxBit_S12NSE1 |
4100 ARMMMUIdxBit_S12NSE0);
4104 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4105 uint64_t value)
4107 CPUState *cs = env_cpu(env);
4108 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4110 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4111 ARMMMUIdxBit_S1E2);
4114 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4115 uint64_t value)
4117 CPUState *cs = env_cpu(env);
4118 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4120 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4121 ARMMMUIdxBit_S1E3);
4124 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4125 uint64_t value)
4127 /* Invalidate by IPA. This has to invalidate any structures that
4128 * contain only stage 2 translation information, but does not need
4129 * to apply to structures that contain combined stage 1 and stage 2
4130 * translation information.
4131 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
4133 ARMCPU *cpu = env_archcpu(env);
4134 CPUState *cs = CPU(cpu);
4135 uint64_t pageaddr;
4137 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
4138 return;
4141 pageaddr = sextract64(value << 12, 0, 48);
4143 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
4146 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4147 uint64_t value)
4149 CPUState *cs = env_cpu(env);
4150 uint64_t pageaddr;
4152 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
4153 return;
4156 pageaddr = sextract64(value << 12, 0, 48);
4158 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4159 ARMMMUIdxBit_S2NS);
4162 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4163 bool isread)
4165 /* We don't implement EL2, so the only control on DC ZVA is the
4166 * bit in the SCTLR which can prohibit access for EL0.
4168 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4169 return CP_ACCESS_TRAP;
4171 return CP_ACCESS_OK;
4174 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4176 ARMCPU *cpu = env_archcpu(env);
4177 int dzp_bit = 1 << 4;
4179 /* DZP indicates whether DC ZVA access is allowed */
4180 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4181 dzp_bit = 0;
4183 return cpu->dcz_blocksize | dzp_bit;
4186 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4187 bool isread)
4189 if (!(env->pstate & PSTATE_SP)) {
4190 /* Access to SP_EL0 is undefined if it's being used as
4191 * the stack pointer.
4193 return CP_ACCESS_TRAP_UNCATEGORIZED;
4195 return CP_ACCESS_OK;
4198 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4200 return env->pstate & PSTATE_SP;
4203 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4205 update_spsel(env, val);
4208 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4209 uint64_t value)
4211 ARMCPU *cpu = env_archcpu(env);
4213 if (raw_read(env, ri) == value) {
4214 /* Skip the TLB flush if nothing actually changed; Linux likes
4215 * to do a lot of pointless SCTLR writes.
4217 return;
4220 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4221 /* M bit is RAZ/WI for PMSA with no MPU implemented */
4222 value &= ~SCTLR_M;
4225 raw_write(env, ri, value);
4226 /* ??? Lots of these bits are not implemented. */
4227 /* This may enable/disable the MMU, so do a TLB flush. */
4228 tlb_flush(CPU(cpu));
4230 if (ri->type & ARM_CP_SUPPRESS_TB_END) {
4232 * Normally we would always end the TB on an SCTLR write; see the
4233 * comment in ARMCPRegInfo sctlr initialization below for why Xscale
4234 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
4235 * of hflags from the translator, so do it here.
4237 arm_rebuild_hflags(env);
4241 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
4242 bool isread)
4244 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
4245 return CP_ACCESS_TRAP_FP_EL2;
4247 if (env->cp15.cptr_el[3] & CPTR_TFP) {
4248 return CP_ACCESS_TRAP_FP_EL3;
4250 return CP_ACCESS_OK;
4253 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4254 uint64_t value)
4256 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4259 static const ARMCPRegInfo v8_cp_reginfo[] = {
4260 /* Minimal set of EL0-visible registers. This will need to be expanded
4261 * significantly for system emulation of AArch64 CPUs.
4263 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4264 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4265 .access = PL0_RW, .type = ARM_CP_NZCV },
4266 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4267 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4268 .type = ARM_CP_NO_RAW,
4269 .access = PL0_RW, .accessfn = aa64_daif_access,
4270 .fieldoffset = offsetof(CPUARMState, daif),
4271 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4272 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4273 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4274 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4275 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4276 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4277 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4278 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4279 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4280 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4281 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4282 .access = PL0_R, .type = ARM_CP_NO_RAW,
4283 .readfn = aa64_dczid_read },
4284 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4285 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4286 .access = PL0_W, .type = ARM_CP_DC_ZVA,
4287 #ifndef CONFIG_USER_ONLY
4288 /* Avoid overhead of an access check that always passes in user-mode */
4289 .accessfn = aa64_zva_access,
4290 #endif
4292 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4293 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4294 .access = PL1_R, .type = ARM_CP_CURRENTEL },
4295 /* Cache ops: all NOPs since we don't emulate caches */
4296 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4297 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4298 .access = PL1_W, .type = ARM_CP_NOP },
4299 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4300 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4301 .access = PL1_W, .type = ARM_CP_NOP },
4302 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4303 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4304 .access = PL0_W, .type = ARM_CP_NOP,
4305 .accessfn = aa64_cacheop_access },
4306 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4307 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4308 .access = PL1_W, .type = ARM_CP_NOP },
4309 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4310 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4311 .access = PL1_W, .type = ARM_CP_NOP },
4312 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4313 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4314 .access = PL0_W, .type = ARM_CP_NOP,
4315 .accessfn = aa64_cacheop_access },
4316 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4317 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4318 .access = PL1_W, .type = ARM_CP_NOP },
4319 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4320 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4321 .access = PL0_W, .type = ARM_CP_NOP,
4322 .accessfn = aa64_cacheop_access },
4323 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4324 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4325 .access = PL0_W, .type = ARM_CP_NOP,
4326 .accessfn = aa64_cacheop_access },
4327 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4328 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4329 .access = PL1_W, .type = ARM_CP_NOP },
4330 /* TLBI operations */
4331 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4332 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4333 .access = PL1_W, .type = ARM_CP_NO_RAW,
4334 .writefn = tlbi_aa64_vmalle1is_write },
4335 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4336 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4337 .access = PL1_W, .type = ARM_CP_NO_RAW,
4338 .writefn = tlbi_aa64_vae1is_write },
4339 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4340 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4341 .access = PL1_W, .type = ARM_CP_NO_RAW,
4342 .writefn = tlbi_aa64_vmalle1is_write },
4343 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4344 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4345 .access = PL1_W, .type = ARM_CP_NO_RAW,
4346 .writefn = tlbi_aa64_vae1is_write },
4347 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4348 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4349 .access = PL1_W, .type = ARM_CP_NO_RAW,
4350 .writefn = tlbi_aa64_vae1is_write },
4351 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4352 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4353 .access = PL1_W, .type = ARM_CP_NO_RAW,
4354 .writefn = tlbi_aa64_vae1is_write },
4355 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4356 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4357 .access = PL1_W, .type = ARM_CP_NO_RAW,
4358 .writefn = tlbi_aa64_vmalle1_write },
4359 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4360 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4361 .access = PL1_W, .type = ARM_CP_NO_RAW,
4362 .writefn = tlbi_aa64_vae1_write },
4363 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4364 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4365 .access = PL1_W, .type = ARM_CP_NO_RAW,
4366 .writefn = tlbi_aa64_vmalle1_write },
4367 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4368 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4369 .access = PL1_W, .type = ARM_CP_NO_RAW,
4370 .writefn = tlbi_aa64_vae1_write },
4371 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4372 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4373 .access = PL1_W, .type = ARM_CP_NO_RAW,
4374 .writefn = tlbi_aa64_vae1_write },
4375 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4376 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4377 .access = PL1_W, .type = ARM_CP_NO_RAW,
4378 .writefn = tlbi_aa64_vae1_write },
4379 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4380 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4381 .access = PL2_W, .type = ARM_CP_NO_RAW,
4382 .writefn = tlbi_aa64_ipas2e1is_write },
4383 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4384 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4385 .access = PL2_W, .type = ARM_CP_NO_RAW,
4386 .writefn = tlbi_aa64_ipas2e1is_write },
4387 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4388 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4389 .access = PL2_W, .type = ARM_CP_NO_RAW,
4390 .writefn = tlbi_aa64_alle1is_write },
4391 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4392 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4393 .access = PL2_W, .type = ARM_CP_NO_RAW,
4394 .writefn = tlbi_aa64_alle1is_write },
4395 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4396 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4397 .access = PL2_W, .type = ARM_CP_NO_RAW,
4398 .writefn = tlbi_aa64_ipas2e1_write },
4399 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4400 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4401 .access = PL2_W, .type = ARM_CP_NO_RAW,
4402 .writefn = tlbi_aa64_ipas2e1_write },
4403 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4404 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4405 .access = PL2_W, .type = ARM_CP_NO_RAW,
4406 .writefn = tlbi_aa64_alle1_write },
4407 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4408 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4409 .access = PL2_W, .type = ARM_CP_NO_RAW,
4410 .writefn = tlbi_aa64_alle1is_write },
4411 #ifndef CONFIG_USER_ONLY
4412 /* 64 bit address translation operations */
4413 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4414 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4415 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4416 .writefn = ats_write64 },
4417 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4418 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4419 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4420 .writefn = ats_write64 },
4421 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4422 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4423 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4424 .writefn = ats_write64 },
4425 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4426 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4427 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4428 .writefn = ats_write64 },
4429 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
4430 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
4431 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4432 .writefn = ats_write64 },
4433 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
4434 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
4435 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4436 .writefn = ats_write64 },
4437 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
4438 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
4439 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4440 .writefn = ats_write64 },
4441 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
4442 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
4443 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4444 .writefn = ats_write64 },
4445 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4446 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4447 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4448 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4449 .writefn = ats_write64 },
4450 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4451 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4452 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4453 .writefn = ats_write64 },
4454 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
4455 .type = ARM_CP_ALIAS,
4456 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
4457 .access = PL1_RW, .resetvalue = 0,
4458 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
4459 .writefn = par_write },
4460 #endif
4461 /* TLB invalidate last level of translation table walk */
4462 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4463 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
4464 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4465 .type = ARM_CP_NO_RAW, .access = PL1_W,
4466 .writefn = tlbimvaa_is_write },
4467 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4468 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
4469 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4470 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
4471 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4472 .type = ARM_CP_NO_RAW, .access = PL2_W,
4473 .writefn = tlbimva_hyp_write },
4474 { .name = "TLBIMVALHIS",
4475 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4476 .type = ARM_CP_NO_RAW, .access = PL2_W,
4477 .writefn = tlbimva_hyp_is_write },
4478 { .name = "TLBIIPAS2",
4479 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4480 .type = ARM_CP_NO_RAW, .access = PL2_W,
4481 .writefn = tlbiipas2_write },
4482 { .name = "TLBIIPAS2IS",
4483 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4484 .type = ARM_CP_NO_RAW, .access = PL2_W,
4485 .writefn = tlbiipas2_is_write },
4486 { .name = "TLBIIPAS2L",
4487 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4488 .type = ARM_CP_NO_RAW, .access = PL2_W,
4489 .writefn = tlbiipas2_write },
4490 { .name = "TLBIIPAS2LIS",
4491 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4492 .type = ARM_CP_NO_RAW, .access = PL2_W,
4493 .writefn = tlbiipas2_is_write },
4494 /* 32 bit cache operations */
4495 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4496 .type = ARM_CP_NOP, .access = PL1_W },
4497 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
4498 .type = ARM_CP_NOP, .access = PL1_W },
4499 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4500 .type = ARM_CP_NOP, .access = PL1_W },
4501 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
4502 .type = ARM_CP_NOP, .access = PL1_W },
4503 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
4504 .type = ARM_CP_NOP, .access = PL1_W },
4505 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
4506 .type = ARM_CP_NOP, .access = PL1_W },
4507 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4508 .type = ARM_CP_NOP, .access = PL1_W },
4509 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4510 .type = ARM_CP_NOP, .access = PL1_W },
4511 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
4512 .type = ARM_CP_NOP, .access = PL1_W },
4513 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4514 .type = ARM_CP_NOP, .access = PL1_W },
4515 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
4516 .type = ARM_CP_NOP, .access = PL1_W },
4517 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
4518 .type = ARM_CP_NOP, .access = PL1_W },
4519 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4520 .type = ARM_CP_NOP, .access = PL1_W },
4521 /* MMU Domain access control / MPU write buffer control */
4522 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
4523 .access = PL1_RW, .resetvalue = 0,
4524 .writefn = dacr_write, .raw_writefn = raw_write,
4525 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
4526 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
4527 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
4528 .type = ARM_CP_ALIAS,
4529 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
4530 .access = PL1_RW,
4531 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
4532 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
4533 .type = ARM_CP_ALIAS,
4534 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
4535 .access = PL1_RW,
4536 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
4537 /* We rely on the access checks not allowing the guest to write to the
4538 * state field when SPSel indicates that it's being used as the stack
4539 * pointer.
4541 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
4542 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
4543 .access = PL1_RW, .accessfn = sp_el0_access,
4544 .type = ARM_CP_ALIAS,
4545 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
4546 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
4547 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
4548 .access = PL2_RW, .type = ARM_CP_ALIAS,
4549 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
4550 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
4551 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
4552 .type = ARM_CP_NO_RAW,
4553 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
4554 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
4555 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
4556 .type = ARM_CP_ALIAS,
4557 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
4558 .access = PL2_RW, .accessfn = fpexc32_access },
4559 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
4560 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
4561 .access = PL2_RW, .resetvalue = 0,
4562 .writefn = dacr_write, .raw_writefn = raw_write,
4563 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
4564 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
4565 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
4566 .access = PL2_RW, .resetvalue = 0,
4567 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
4568 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
4569 .type = ARM_CP_ALIAS,
4570 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
4571 .access = PL2_RW,
4572 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
4573 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
4574 .type = ARM_CP_ALIAS,
4575 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
4576 .access = PL2_RW,
4577 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
4578 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
4579 .type = ARM_CP_ALIAS,
4580 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
4581 .access = PL2_RW,
4582 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
4583 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
4584 .type = ARM_CP_ALIAS,
4585 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
4586 .access = PL2_RW,
4587 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
4588 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
4589 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
4590 .resetvalue = 0,
4591 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
4592 { .name = "SDCR", .type = ARM_CP_ALIAS,
4593 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
4594 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4595 .writefn = sdcr_write,
4596 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
4597 REGINFO_SENTINEL
4600 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
4601 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
4602 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
4603 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4604 .access = PL2_RW,
4605 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
4606 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
4607 .type = ARM_CP_NO_RAW,
4608 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4609 .access = PL2_RW,
4610 .type = ARM_CP_CONST, .resetvalue = 0 },
4611 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
4612 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
4613 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4614 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4615 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4616 .access = PL2_RW,
4617 .type = ARM_CP_CONST, .resetvalue = 0 },
4618 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4619 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4620 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4621 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4622 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4623 .access = PL2_RW, .type = ARM_CP_CONST,
4624 .resetvalue = 0 },
4625 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
4626 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
4627 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4628 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4629 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4630 .access = PL2_RW, .type = ARM_CP_CONST,
4631 .resetvalue = 0 },
4632 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
4633 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
4634 .access = PL2_RW, .type = ARM_CP_CONST,
4635 .resetvalue = 0 },
4636 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4637 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4638 .access = PL2_RW, .type = ARM_CP_CONST,
4639 .resetvalue = 0 },
4640 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4641 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4642 .access = PL2_RW, .type = ARM_CP_CONST,
4643 .resetvalue = 0 },
4644 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4645 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4646 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4647 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
4648 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4649 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4650 .type = ARM_CP_CONST, .resetvalue = 0 },
4651 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4652 .cp = 15, .opc1 = 6, .crm = 2,
4653 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4654 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
4655 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4656 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4657 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4658 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4659 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4660 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4661 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4662 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4663 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4664 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4665 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4666 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4667 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4668 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4669 .resetvalue = 0 },
4670 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4671 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4672 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4673 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4674 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4675 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4676 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4677 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4678 .resetvalue = 0 },
4679 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4680 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4681 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4682 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4683 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4684 .resetvalue = 0 },
4685 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4686 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4687 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4688 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4689 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4690 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4691 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4692 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4693 .access = PL2_RW, .accessfn = access_tda,
4694 .type = ARM_CP_CONST, .resetvalue = 0 },
4695 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
4696 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4697 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4698 .type = ARM_CP_CONST, .resetvalue = 0 },
4699 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4700 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4701 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4702 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4703 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4704 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4705 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4706 .type = ARM_CP_CONST,
4707 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4708 .access = PL2_RW, .resetvalue = 0 },
4709 REGINFO_SENTINEL
4712 /* Ditto, but for registers which exist in ARMv8 but not v7 */
4713 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
4714 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
4715 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
4716 .access = PL2_RW,
4717 .type = ARM_CP_CONST, .resetvalue = 0 },
4718 REGINFO_SENTINEL
4721 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
4723 ARMCPU *cpu = env_archcpu(env);
4724 /* Begin with bits defined in base ARMv8.0. */
4725 uint64_t valid_mask = MAKE_64BIT_MASK(0, 34);
4727 if (arm_feature(env, ARM_FEATURE_EL3)) {
4728 valid_mask &= ~HCR_HCD;
4729 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
4730 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
4731 * However, if we're using the SMC PSCI conduit then QEMU is
4732 * effectively acting like EL3 firmware and so the guest at
4733 * EL2 should retain the ability to prevent EL1 from being
4734 * able to make SMC calls into the ersatz firmware, so in
4735 * that case HCR.TSC should be read/write.
4737 valid_mask &= ~HCR_TSC;
4739 if (cpu_isar_feature(aa64_vh, cpu)) {
4740 valid_mask |= HCR_E2H;
4742 if (cpu_isar_feature(aa64_lor, cpu)) {
4743 valid_mask |= HCR_TLOR;
4745 if (cpu_isar_feature(aa64_pauth, cpu)) {
4746 valid_mask |= HCR_API | HCR_APK;
4749 /* Clear RES0 bits. */
4750 value &= valid_mask;
4752 /* These bits change the MMU setup:
4753 * HCR_VM enables stage 2 translation
4754 * HCR_PTW forbids certain page-table setups
4755 * HCR_DC Disables stage1 and enables stage2 translation
4757 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
4758 tlb_flush(CPU(cpu));
4760 env->cp15.hcr_el2 = value;
4763 * Updates to VI and VF require us to update the status of
4764 * virtual interrupts, which are the logical OR of these bits
4765 * and the state of the input lines from the GIC. (This requires
4766 * that we have the iothread lock, which is done by marking the
4767 * reginfo structs as ARM_CP_IO.)
4768 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
4769 * possible for it to be taken immediately, because VIRQ and
4770 * VFIQ are masked unless running at EL0 or EL1, and HCR
4771 * can only be written at EL2.
4773 g_assert(qemu_mutex_iothread_locked());
4774 arm_cpu_update_virq(cpu);
4775 arm_cpu_update_vfiq(cpu);
4778 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
4779 uint64_t value)
4781 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
4782 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
4783 hcr_write(env, NULL, value);
4786 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
4787 uint64_t value)
4789 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
4790 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
4791 hcr_write(env, NULL, value);
4795 * Return the effective value of HCR_EL2.
4796 * Bits that are not included here:
4797 * RW (read from SCR_EL3.RW as needed)
4799 uint64_t arm_hcr_el2_eff(CPUARMState *env)
4801 uint64_t ret = env->cp15.hcr_el2;
4803 if (arm_is_secure_below_el3(env)) {
4805 * "This register has no effect if EL2 is not enabled in the
4806 * current Security state". This is ARMv8.4-SecEL2 speak for
4807 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
4809 * Prior to that, the language was "In an implementation that
4810 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
4811 * as if this field is 0 for all purposes other than a direct
4812 * read or write access of HCR_EL2". With lots of enumeration
4813 * on a per-field basis. In current QEMU, this is condition
4814 * is arm_is_secure_below_el3.
4816 * Since the v8.4 language applies to the entire register, and
4817 * appears to be backward compatible, use that.
4819 ret = 0;
4820 } else if (ret & HCR_TGE) {
4821 /* These bits are up-to-date as of ARMv8.4. */
4822 if (ret & HCR_E2H) {
4823 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
4824 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
4825 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
4826 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE);
4827 } else {
4828 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
4830 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
4831 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
4832 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
4833 HCR_TLOR);
4836 return ret;
4839 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4840 uint64_t value)
4843 * For A-profile AArch32 EL3, if NSACR.CP10
4844 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
4846 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
4847 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
4848 value &= ~(0x3 << 10);
4849 value |= env->cp15.cptr_el[2] & (0x3 << 10);
4851 env->cp15.cptr_el[2] = value;
4854 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
4857 * For A-profile AArch32 EL3, if NSACR.CP10
4858 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
4860 uint64_t value = env->cp15.cptr_el[2];
4862 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
4863 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
4864 value |= 0x3 << 10;
4866 return value;
4869 static const ARMCPRegInfo el2_cp_reginfo[] = {
4870 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
4871 .type = ARM_CP_IO,
4872 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4873 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
4874 .writefn = hcr_write },
4875 { .name = "HCR", .state = ARM_CP_STATE_AA32,
4876 .type = ARM_CP_ALIAS | ARM_CP_IO,
4877 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4878 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
4879 .writefn = hcr_writelow },
4880 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
4881 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
4882 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4883 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
4884 .type = ARM_CP_ALIAS,
4885 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
4886 .access = PL2_RW,
4887 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
4888 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4889 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4890 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
4891 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4892 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4893 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
4894 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4895 .type = ARM_CP_ALIAS,
4896 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4897 .access = PL2_RW,
4898 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
4899 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
4900 .type = ARM_CP_ALIAS,
4901 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
4902 .access = PL2_RW,
4903 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
4904 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
4905 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4906 .access = PL2_RW, .writefn = vbar_write,
4907 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
4908 .resetvalue = 0 },
4909 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
4910 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
4911 .access = PL3_RW, .type = ARM_CP_ALIAS,
4912 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
4913 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4914 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4915 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
4916 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
4917 .readfn = cptr_el2_read, .writefn = cptr_el2_write },
4918 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4919 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4920 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
4921 .resetvalue = 0 },
4922 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
4923 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
4924 .access = PL2_RW, .type = ARM_CP_ALIAS,
4925 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
4926 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4927 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4928 .access = PL2_RW, .type = ARM_CP_CONST,
4929 .resetvalue = 0 },
4930 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
4931 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
4932 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
4933 .access = PL2_RW, .type = ARM_CP_CONST,
4934 .resetvalue = 0 },
4935 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4936 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4937 .access = PL2_RW, .type = ARM_CP_CONST,
4938 .resetvalue = 0 },
4939 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4940 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4941 .access = PL2_RW, .type = ARM_CP_CONST,
4942 .resetvalue = 0 },
4943 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4944 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4945 .access = PL2_RW,
4946 /* no .writefn needed as this can't cause an ASID change;
4947 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4949 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
4950 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
4951 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4952 .type = ARM_CP_ALIAS,
4953 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4954 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4955 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
4956 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4957 .access = PL2_RW,
4958 /* no .writefn needed as this can't cause an ASID change;
4959 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4961 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4962 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4963 .cp = 15, .opc1 = 6, .crm = 2,
4964 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4965 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4966 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
4967 .writefn = vttbr_write },
4968 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4969 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4970 .access = PL2_RW, .writefn = vttbr_write,
4971 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
4972 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4973 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4974 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
4975 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
4976 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4977 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4978 .access = PL2_RW, .resetvalue = 0,
4979 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
4980 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4981 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4982 .access = PL2_RW, .resetvalue = 0,
4983 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4984 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4985 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4986 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4987 { .name = "TLBIALLNSNH",
4988 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4989 .type = ARM_CP_NO_RAW, .access = PL2_W,
4990 .writefn = tlbiall_nsnh_write },
4991 { .name = "TLBIALLNSNHIS",
4992 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4993 .type = ARM_CP_NO_RAW, .access = PL2_W,
4994 .writefn = tlbiall_nsnh_is_write },
4995 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4996 .type = ARM_CP_NO_RAW, .access = PL2_W,
4997 .writefn = tlbiall_hyp_write },
4998 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4999 .type = ARM_CP_NO_RAW, .access = PL2_W,
5000 .writefn = tlbiall_hyp_is_write },
5001 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5002 .type = ARM_CP_NO_RAW, .access = PL2_W,
5003 .writefn = tlbimva_hyp_write },
5004 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5005 .type = ARM_CP_NO_RAW, .access = PL2_W,
5006 .writefn = tlbimva_hyp_is_write },
5007 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
5008 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5009 .type = ARM_CP_NO_RAW, .access = PL2_W,
5010 .writefn = tlbi_aa64_alle2_write },
5011 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
5012 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5013 .type = ARM_CP_NO_RAW, .access = PL2_W,
5014 .writefn = tlbi_aa64_vae2_write },
5015 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
5016 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5017 .access = PL2_W, .type = ARM_CP_NO_RAW,
5018 .writefn = tlbi_aa64_vae2_write },
5019 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
5020 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5021 .access = PL2_W, .type = ARM_CP_NO_RAW,
5022 .writefn = tlbi_aa64_alle2is_write },
5023 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
5024 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5025 .type = ARM_CP_NO_RAW, .access = PL2_W,
5026 .writefn = tlbi_aa64_vae2is_write },
5027 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
5028 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5029 .access = PL2_W, .type = ARM_CP_NO_RAW,
5030 .writefn = tlbi_aa64_vae2is_write },
5031 #ifndef CONFIG_USER_ONLY
5032 /* Unlike the other EL2-related AT operations, these must
5033 * UNDEF from EL3 if EL2 is not implemented, which is why we
5034 * define them here rather than with the rest of the AT ops.
5036 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
5037 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5038 .access = PL2_W, .accessfn = at_s1e2_access,
5039 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5040 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
5041 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5042 .access = PL2_W, .accessfn = at_s1e2_access,
5043 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5044 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
5045 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
5046 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
5047 * to behave as if SCR.NS was 1.
5049 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5050 .access = PL2_W,
5051 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5052 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5053 .access = PL2_W,
5054 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5055 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5056 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5057 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5058 * reset values as IMPDEF. We choose to reset to 3 to comply with
5059 * both ARMv7 and ARMv8.
5061 .access = PL2_RW, .resetvalue = 3,
5062 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
5063 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5064 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5065 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5066 .writefn = gt_cntvoff_write,
5067 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5068 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5069 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5070 .writefn = gt_cntvoff_write,
5071 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5072 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5073 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5074 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5075 .type = ARM_CP_IO, .access = PL2_RW,
5076 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5077 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5078 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5079 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5080 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5081 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5082 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5083 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5084 .resetfn = gt_hyp_timer_reset,
5085 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5086 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5087 .type = ARM_CP_IO,
5088 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5089 .access = PL2_RW,
5090 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5091 .resetvalue = 0,
5092 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
5093 #endif
5094 /* The only field of MDCR_EL2 that has a defined architectural reset value
5095 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
5096 * don't implement any PMU event counters, so using zero as a reset
5097 * value for MDCR_EL2 is okay
5099 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5100 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5101 .access = PL2_RW, .resetvalue = 0,
5102 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
5103 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5104 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5105 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5106 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5107 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5108 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5109 .access = PL2_RW,
5110 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5111 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5112 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5113 .access = PL2_RW,
5114 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
5115 REGINFO_SENTINEL
5118 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5119 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5120 .type = ARM_CP_ALIAS | ARM_CP_IO,
5121 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5122 .access = PL2_RW,
5123 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5124 .writefn = hcr_writehigh },
5125 REGINFO_SENTINEL
5128 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5129 bool isread)
5131 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5132 * At Secure EL1 it traps to EL3.
5134 if (arm_current_el(env) == 3) {
5135 return CP_ACCESS_OK;
5137 if (arm_is_secure_below_el3(env)) {
5138 return CP_ACCESS_TRAP_EL3;
5140 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5141 if (isread) {
5142 return CP_ACCESS_OK;
5144 return CP_ACCESS_TRAP_UNCATEGORIZED;
5147 static const ARMCPRegInfo el3_cp_reginfo[] = {
5148 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
5149 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
5150 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
5151 .resetvalue = 0, .writefn = scr_write },
5152 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
5153 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
5154 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5155 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
5156 .writefn = scr_write },
5157 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
5158 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
5159 .access = PL3_RW, .resetvalue = 0,
5160 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
5161 { .name = "SDER",
5162 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
5163 .access = PL3_RW, .resetvalue = 0,
5164 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
5165 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5166 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5167 .writefn = vbar_write, .resetvalue = 0,
5168 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
5169 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
5170 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
5171 .access = PL3_RW, .resetvalue = 0,
5172 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
5173 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
5174 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
5175 .access = PL3_RW,
5176 /* no .writefn needed as this can't cause an ASID change;
5177 * we must provide a .raw_writefn and .resetfn because we handle
5178 * reset and migration for the AArch32 TTBCR(S), which might be
5179 * using mask and base_mask.
5181 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
5182 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
5183 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
5184 .type = ARM_CP_ALIAS,
5185 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
5186 .access = PL3_RW,
5187 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
5188 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
5189 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
5190 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
5191 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5192 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5193 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
5194 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
5195 .type = ARM_CP_ALIAS,
5196 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
5197 .access = PL3_RW,
5198 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
5199 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5200 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5201 .access = PL3_RW, .writefn = vbar_write,
5202 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5203 .resetvalue = 0 },
5204 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5205 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5206 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5207 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
5208 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5209 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5210 .access = PL3_RW, .resetvalue = 0,
5211 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5212 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5213 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5214 .access = PL3_RW, .type = ARM_CP_CONST,
5215 .resetvalue = 0 },
5216 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5217 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5218 .access = PL3_RW, .type = ARM_CP_CONST,
5219 .resetvalue = 0 },
5220 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5221 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5222 .access = PL3_RW, .type = ARM_CP_CONST,
5223 .resetvalue = 0 },
5224 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5225 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5226 .access = PL3_W, .type = ARM_CP_NO_RAW,
5227 .writefn = tlbi_aa64_alle3is_write },
5228 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5229 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5230 .access = PL3_W, .type = ARM_CP_NO_RAW,
5231 .writefn = tlbi_aa64_vae3is_write },
5232 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5233 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5234 .access = PL3_W, .type = ARM_CP_NO_RAW,
5235 .writefn = tlbi_aa64_vae3is_write },
5236 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5237 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5238 .access = PL3_W, .type = ARM_CP_NO_RAW,
5239 .writefn = tlbi_aa64_alle3_write },
5240 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5241 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5242 .access = PL3_W, .type = ARM_CP_NO_RAW,
5243 .writefn = tlbi_aa64_vae3_write },
5244 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5245 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5246 .access = PL3_W, .type = ARM_CP_NO_RAW,
5247 .writefn = tlbi_aa64_vae3_write },
5248 REGINFO_SENTINEL
5251 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5252 bool isread)
5254 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
5255 * but the AArch32 CTR has its own reginfo struct)
5257 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
5258 return CP_ACCESS_TRAP;
5261 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
5262 return CP_ACCESS_TRAP_EL2;
5265 return CP_ACCESS_OK;
5268 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
5269 uint64_t value)
5271 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
5272 * read via a bit in OSLSR_EL1.
5274 int oslock;
5276 if (ri->state == ARM_CP_STATE_AA32) {
5277 oslock = (value == 0xC5ACCE55);
5278 } else {
5279 oslock = value & 1;
5282 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
5285 static const ARMCPRegInfo debug_cp_reginfo[] = {
5286 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
5287 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
5288 * unlike DBGDRAR it is never accessible from EL0.
5289 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
5290 * accessor.
5292 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
5293 .access = PL0_R, .accessfn = access_tdra,
5294 .type = ARM_CP_CONST, .resetvalue = 0 },
5295 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
5296 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5297 .access = PL1_R, .accessfn = access_tdra,
5298 .type = ARM_CP_CONST, .resetvalue = 0 },
5299 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
5300 .access = PL0_R, .accessfn = access_tdra,
5301 .type = ARM_CP_CONST, .resetvalue = 0 },
5302 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
5303 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
5304 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
5305 .access = PL1_RW, .accessfn = access_tda,
5306 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
5307 .resetvalue = 0 },
5308 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
5309 * We don't implement the configurable EL0 access.
5311 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
5312 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
5313 .type = ARM_CP_ALIAS,
5314 .access = PL1_R, .accessfn = access_tda,
5315 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
5316 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
5317 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
5318 .access = PL1_W, .type = ARM_CP_NO_RAW,
5319 .accessfn = access_tdosa,
5320 .writefn = oslar_write },
5321 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
5322 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
5323 .access = PL1_R, .resetvalue = 10,
5324 .accessfn = access_tdosa,
5325 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
5326 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
5327 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
5328 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
5329 .access = PL1_RW, .accessfn = access_tdosa,
5330 .type = ARM_CP_NOP },
5331 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
5332 * implement vector catch debug events yet.
5334 { .name = "DBGVCR",
5335 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
5336 .access = PL1_RW, .accessfn = access_tda,
5337 .type = ARM_CP_NOP },
5338 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
5339 * to save and restore a 32-bit guest's DBGVCR)
5341 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
5342 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
5343 .access = PL2_RW, .accessfn = access_tda,
5344 .type = ARM_CP_NOP },
5345 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
5346 * Channel but Linux may try to access this register. The 32-bit
5347 * alias is DBGDCCINT.
5349 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
5350 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
5351 .access = PL1_RW, .accessfn = access_tda,
5352 .type = ARM_CP_NOP },
5353 REGINFO_SENTINEL
5356 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
5357 /* 64 bit access versions of the (dummy) debug registers */
5358 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
5359 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5360 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
5361 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5362 REGINFO_SENTINEL
5365 /* Return the exception level to which exceptions should be taken
5366 * via SVEAccessTrap. If an exception should be routed through
5367 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
5368 * take care of raising that exception.
5369 * C.f. the ARM pseudocode function CheckSVEEnabled.
5371 int sve_exception_el(CPUARMState *env, int el)
5373 #ifndef CONFIG_USER_ONLY
5374 if (el <= 1) {
5375 bool disabled = false;
5377 /* The CPACR.ZEN controls traps to EL1:
5378 * 0, 2 : trap EL0 and EL1 accesses
5379 * 1 : trap only EL0 accesses
5380 * 3 : trap no accesses
5382 if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
5383 disabled = true;
5384 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
5385 disabled = el == 0;
5387 if (disabled) {
5388 /* route_to_el2 */
5389 return (arm_feature(env, ARM_FEATURE_EL2)
5390 && (arm_hcr_el2_eff(env) & HCR_TGE) ? 2 : 1);
5393 /* Check CPACR.FPEN. */
5394 if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
5395 disabled = true;
5396 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
5397 disabled = el == 0;
5399 if (disabled) {
5400 return 0;
5404 /* CPTR_EL2. Since TZ and TFP are positive,
5405 * they will be zero when EL2 is not present.
5407 if (el <= 2 && !arm_is_secure_below_el3(env)) {
5408 if (env->cp15.cptr_el[2] & CPTR_TZ) {
5409 return 2;
5411 if (env->cp15.cptr_el[2] & CPTR_TFP) {
5412 return 0;
5416 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
5417 if (arm_feature(env, ARM_FEATURE_EL3)
5418 && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
5419 return 3;
5421 #endif
5422 return 0;
5425 static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len)
5427 uint32_t end_len;
5429 end_len = start_len &= 0xf;
5430 if (!test_bit(start_len, cpu->sve_vq_map)) {
5431 end_len = find_last_bit(cpu->sve_vq_map, start_len);
5432 assert(end_len < start_len);
5434 return end_len;
5438 * Given that SVE is enabled, return the vector length for EL.
5440 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
5442 ARMCPU *cpu = env_archcpu(env);
5443 uint32_t zcr_len = cpu->sve_max_vq - 1;
5445 if (el <= 1) {
5446 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
5448 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
5449 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
5451 if (arm_feature(env, ARM_FEATURE_EL3)) {
5452 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
5455 return sve_zcr_get_valid_len(cpu, zcr_len);
5458 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5459 uint64_t value)
5461 int cur_el = arm_current_el(env);
5462 int old_len = sve_zcr_len_for_el(env, cur_el);
5463 int new_len;
5465 /* Bits other than [3:0] are RAZ/WI. */
5466 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
5467 raw_write(env, ri, value & 0xf);
5470 * Because we arrived here, we know both FP and SVE are enabled;
5471 * otherwise we would have trapped access to the ZCR_ELn register.
5473 new_len = sve_zcr_len_for_el(env, cur_el);
5474 if (new_len < old_len) {
5475 aarch64_sve_narrow_vq(env, new_len + 1);
5479 static const ARMCPRegInfo zcr_el1_reginfo = {
5480 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
5481 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
5482 .access = PL1_RW, .type = ARM_CP_SVE,
5483 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
5484 .writefn = zcr_write, .raw_writefn = raw_write
5487 static const ARMCPRegInfo zcr_el2_reginfo = {
5488 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5489 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
5490 .access = PL2_RW, .type = ARM_CP_SVE,
5491 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
5492 .writefn = zcr_write, .raw_writefn = raw_write
5495 static const ARMCPRegInfo zcr_no_el2_reginfo = {
5496 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5497 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
5498 .access = PL2_RW, .type = ARM_CP_SVE,
5499 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
5502 static const ARMCPRegInfo zcr_el3_reginfo = {
5503 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
5504 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
5505 .access = PL3_RW, .type = ARM_CP_SVE,
5506 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
5507 .writefn = zcr_write, .raw_writefn = raw_write
5510 void hw_watchpoint_update(ARMCPU *cpu, int n)
5512 CPUARMState *env = &cpu->env;
5513 vaddr len = 0;
5514 vaddr wvr = env->cp15.dbgwvr[n];
5515 uint64_t wcr = env->cp15.dbgwcr[n];
5516 int mask;
5517 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
5519 if (env->cpu_watchpoint[n]) {
5520 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
5521 env->cpu_watchpoint[n] = NULL;
5524 if (!extract64(wcr, 0, 1)) {
5525 /* E bit clear : watchpoint disabled */
5526 return;
5529 switch (extract64(wcr, 3, 2)) {
5530 case 0:
5531 /* LSC 00 is reserved and must behave as if the wp is disabled */
5532 return;
5533 case 1:
5534 flags |= BP_MEM_READ;
5535 break;
5536 case 2:
5537 flags |= BP_MEM_WRITE;
5538 break;
5539 case 3:
5540 flags |= BP_MEM_ACCESS;
5541 break;
5544 /* Attempts to use both MASK and BAS fields simultaneously are
5545 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
5546 * thus generating a watchpoint for every byte in the masked region.
5548 mask = extract64(wcr, 24, 4);
5549 if (mask == 1 || mask == 2) {
5550 /* Reserved values of MASK; we must act as if the mask value was
5551 * some non-reserved value, or as if the watchpoint were disabled.
5552 * We choose the latter.
5554 return;
5555 } else if (mask) {
5556 /* Watchpoint covers an aligned area up to 2GB in size */
5557 len = 1ULL << mask;
5558 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
5559 * whether the watchpoint fires when the unmasked bits match; we opt
5560 * to generate the exceptions.
5562 wvr &= ~(len - 1);
5563 } else {
5564 /* Watchpoint covers bytes defined by the byte address select bits */
5565 int bas = extract64(wcr, 5, 8);
5566 int basstart;
5568 if (bas == 0) {
5569 /* This must act as if the watchpoint is disabled */
5570 return;
5573 if (extract64(wvr, 2, 1)) {
5574 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
5575 * ignored, and BAS[3:0] define which bytes to watch.
5577 bas &= 0xf;
5579 /* The BAS bits are supposed to be programmed to indicate a contiguous
5580 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
5581 * we fire for each byte in the word/doubleword addressed by the WVR.
5582 * We choose to ignore any non-zero bits after the first range of 1s.
5584 basstart = ctz32(bas);
5585 len = cto32(bas >> basstart);
5586 wvr += basstart;
5589 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
5590 &env->cpu_watchpoint[n]);
5593 void hw_watchpoint_update_all(ARMCPU *cpu)
5595 int i;
5596 CPUARMState *env = &cpu->env;
5598 /* Completely clear out existing QEMU watchpoints and our array, to
5599 * avoid possible stale entries following migration load.
5601 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
5602 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
5604 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
5605 hw_watchpoint_update(cpu, i);
5609 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5610 uint64_t value)
5612 ARMCPU *cpu = env_archcpu(env);
5613 int i = ri->crm;
5615 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
5616 * register reads and behaves as if values written are sign extended.
5617 * Bits [1:0] are RES0.
5619 value = sextract64(value, 0, 49) & ~3ULL;
5621 raw_write(env, ri, value);
5622 hw_watchpoint_update(cpu, i);
5625 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5626 uint64_t value)
5628 ARMCPU *cpu = env_archcpu(env);
5629 int i = ri->crm;
5631 raw_write(env, ri, value);
5632 hw_watchpoint_update(cpu, i);
5635 void hw_breakpoint_update(ARMCPU *cpu, int n)
5637 CPUARMState *env = &cpu->env;
5638 uint64_t bvr = env->cp15.dbgbvr[n];
5639 uint64_t bcr = env->cp15.dbgbcr[n];
5640 vaddr addr;
5641 int bt;
5642 int flags = BP_CPU;
5644 if (env->cpu_breakpoint[n]) {
5645 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
5646 env->cpu_breakpoint[n] = NULL;
5649 if (!extract64(bcr, 0, 1)) {
5650 /* E bit clear : watchpoint disabled */
5651 return;
5654 bt = extract64(bcr, 20, 4);
5656 switch (bt) {
5657 case 4: /* unlinked address mismatch (reserved if AArch64) */
5658 case 5: /* linked address mismatch (reserved if AArch64) */
5659 qemu_log_mask(LOG_UNIMP,
5660 "arm: address mismatch breakpoint types not implemented\n");
5661 return;
5662 case 0: /* unlinked address match */
5663 case 1: /* linked address match */
5665 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
5666 * we behave as if the register was sign extended. Bits [1:0] are
5667 * RES0. The BAS field is used to allow setting breakpoints on 16
5668 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
5669 * a bp will fire if the addresses covered by the bp and the addresses
5670 * covered by the insn overlap but the insn doesn't start at the
5671 * start of the bp address range. We choose to require the insn and
5672 * the bp to have the same address. The constraints on writing to
5673 * BAS enforced in dbgbcr_write mean we have only four cases:
5674 * 0b0000 => no breakpoint
5675 * 0b0011 => breakpoint on addr
5676 * 0b1100 => breakpoint on addr + 2
5677 * 0b1111 => breakpoint on addr
5678 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
5680 int bas = extract64(bcr, 5, 4);
5681 addr = sextract64(bvr, 0, 49) & ~3ULL;
5682 if (bas == 0) {
5683 return;
5685 if (bas == 0xc) {
5686 addr += 2;
5688 break;
5690 case 2: /* unlinked context ID match */
5691 case 8: /* unlinked VMID match (reserved if no EL2) */
5692 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
5693 qemu_log_mask(LOG_UNIMP,
5694 "arm: unlinked context breakpoint types not implemented\n");
5695 return;
5696 case 9: /* linked VMID match (reserved if no EL2) */
5697 case 11: /* linked context ID and VMID match (reserved if no EL2) */
5698 case 3: /* linked context ID match */
5699 default:
5700 /* We must generate no events for Linked context matches (unless
5701 * they are linked to by some other bp/wp, which is handled in
5702 * updates for the linking bp/wp). We choose to also generate no events
5703 * for reserved values.
5705 return;
5708 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
5711 void hw_breakpoint_update_all(ARMCPU *cpu)
5713 int i;
5714 CPUARMState *env = &cpu->env;
5716 /* Completely clear out existing QEMU breakpoints and our array, to
5717 * avoid possible stale entries following migration load.
5719 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
5720 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
5722 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
5723 hw_breakpoint_update(cpu, i);
5727 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5728 uint64_t value)
5730 ARMCPU *cpu = env_archcpu(env);
5731 int i = ri->crm;
5733 raw_write(env, ri, value);
5734 hw_breakpoint_update(cpu, i);
5737 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5738 uint64_t value)
5740 ARMCPU *cpu = env_archcpu(env);
5741 int i = ri->crm;
5743 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
5744 * copy of BAS[0].
5746 value = deposit64(value, 6, 1, extract64(value, 5, 1));
5747 value = deposit64(value, 8, 1, extract64(value, 7, 1));
5749 raw_write(env, ri, value);
5750 hw_breakpoint_update(cpu, i);
5753 static void define_debug_regs(ARMCPU *cpu)
5755 /* Define v7 and v8 architectural debug registers.
5756 * These are just dummy implementations for now.
5758 int i;
5759 int wrps, brps, ctx_cmps;
5760 ARMCPRegInfo dbgdidr = {
5761 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
5762 .access = PL0_R, .accessfn = access_tda,
5763 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
5766 /* Note that all these register fields hold "number of Xs minus 1". */
5767 brps = extract32(cpu->dbgdidr, 24, 4);
5768 wrps = extract32(cpu->dbgdidr, 28, 4);
5769 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
5771 assert(ctx_cmps <= brps);
5773 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
5774 * of the debug registers such as number of breakpoints;
5775 * check that if they both exist then they agree.
5777 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
5778 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
5779 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
5780 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
5783 define_one_arm_cp_reg(cpu, &dbgdidr);
5784 define_arm_cp_regs(cpu, debug_cp_reginfo);
5786 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
5787 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
5790 for (i = 0; i < brps + 1; i++) {
5791 ARMCPRegInfo dbgregs[] = {
5792 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
5793 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
5794 .access = PL1_RW, .accessfn = access_tda,
5795 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
5796 .writefn = dbgbvr_write, .raw_writefn = raw_write
5798 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
5799 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
5800 .access = PL1_RW, .accessfn = access_tda,
5801 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
5802 .writefn = dbgbcr_write, .raw_writefn = raw_write
5804 REGINFO_SENTINEL
5806 define_arm_cp_regs(cpu, dbgregs);
5809 for (i = 0; i < wrps + 1; i++) {
5810 ARMCPRegInfo dbgregs[] = {
5811 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
5812 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
5813 .access = PL1_RW, .accessfn = access_tda,
5814 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
5815 .writefn = dbgwvr_write, .raw_writefn = raw_write
5817 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
5818 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
5819 .access = PL1_RW, .accessfn = access_tda,
5820 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
5821 .writefn = dbgwcr_write, .raw_writefn = raw_write
5823 REGINFO_SENTINEL
5825 define_arm_cp_regs(cpu, dbgregs);
5829 /* We don't know until after realize whether there's a GICv3
5830 * attached, and that is what registers the gicv3 sysregs.
5831 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
5832 * at runtime.
5834 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
5836 ARMCPU *cpu = env_archcpu(env);
5837 uint64_t pfr1 = cpu->id_pfr1;
5839 if (env->gicv3state) {
5840 pfr1 |= 1 << 28;
5842 return pfr1;
5845 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
5847 ARMCPU *cpu = env_archcpu(env);
5848 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
5850 if (env->gicv3state) {
5851 pfr0 |= 1 << 24;
5853 return pfr0;
5856 /* Shared logic between LORID and the rest of the LOR* registers.
5857 * Secure state has already been delt with.
5859 static CPAccessResult access_lor_ns(CPUARMState *env)
5861 int el = arm_current_el(env);
5863 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
5864 return CP_ACCESS_TRAP_EL2;
5866 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
5867 return CP_ACCESS_TRAP_EL3;
5869 return CP_ACCESS_OK;
5872 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri,
5873 bool isread)
5875 if (arm_is_secure_below_el3(env)) {
5876 /* Access ok in secure mode. */
5877 return CP_ACCESS_OK;
5879 return access_lor_ns(env);
5882 static CPAccessResult access_lor_other(CPUARMState *env,
5883 const ARMCPRegInfo *ri, bool isread)
5885 if (arm_is_secure_below_el3(env)) {
5886 /* Access denied in secure mode. */
5887 return CP_ACCESS_TRAP;
5889 return access_lor_ns(env);
5892 #ifdef TARGET_AARCH64
5893 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
5894 bool isread)
5896 int el = arm_current_el(env);
5898 if (el < 2 &&
5899 arm_feature(env, ARM_FEATURE_EL2) &&
5900 !(arm_hcr_el2_eff(env) & HCR_APK)) {
5901 return CP_ACCESS_TRAP_EL2;
5903 if (el < 3 &&
5904 arm_feature(env, ARM_FEATURE_EL3) &&
5905 !(env->cp15.scr_el3 & SCR_APK)) {
5906 return CP_ACCESS_TRAP_EL3;
5908 return CP_ACCESS_OK;
5911 static const ARMCPRegInfo pauth_reginfo[] = {
5912 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5913 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
5914 .access = PL1_RW, .accessfn = access_pauth,
5915 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
5916 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5917 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
5918 .access = PL1_RW, .accessfn = access_pauth,
5919 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
5920 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5921 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
5922 .access = PL1_RW, .accessfn = access_pauth,
5923 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
5924 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5925 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
5926 .access = PL1_RW, .accessfn = access_pauth,
5927 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
5928 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5929 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
5930 .access = PL1_RW, .accessfn = access_pauth,
5931 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
5932 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5933 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
5934 .access = PL1_RW, .accessfn = access_pauth,
5935 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
5936 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5937 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
5938 .access = PL1_RW, .accessfn = access_pauth,
5939 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
5940 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5941 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
5942 .access = PL1_RW, .accessfn = access_pauth,
5943 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
5944 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5945 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
5946 .access = PL1_RW, .accessfn = access_pauth,
5947 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
5948 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5949 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
5950 .access = PL1_RW, .accessfn = access_pauth,
5951 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
5952 REGINFO_SENTINEL
5955 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
5957 Error *err = NULL;
5958 uint64_t ret;
5960 /* Success sets NZCV = 0000. */
5961 env->NF = env->CF = env->VF = 0, env->ZF = 1;
5963 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
5965 * ??? Failed, for unknown reasons in the crypto subsystem.
5966 * The best we can do is log the reason and return the
5967 * timed-out indication to the guest. There is no reason
5968 * we know to expect this failure to be transitory, so the
5969 * guest may well hang retrying the operation.
5971 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
5972 ri->name, error_get_pretty(err));
5973 error_free(err);
5975 env->ZF = 0; /* NZCF = 0100 */
5976 return 0;
5978 return ret;
5981 /* We do not support re-seeding, so the two registers operate the same. */
5982 static const ARMCPRegInfo rndr_reginfo[] = {
5983 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
5984 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
5985 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
5986 .access = PL0_R, .readfn = rndr_readfn },
5987 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
5988 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
5989 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
5990 .access = PL0_R, .readfn = rndr_readfn },
5991 REGINFO_SENTINEL
5994 #ifndef CONFIG_USER_ONLY
5995 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
5996 uint64_t value)
5998 ARMCPU *cpu = env_archcpu(env);
5999 /* CTR_EL0 System register -> DminLine, bits [19:16] */
6000 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
6001 uint64_t vaddr_in = (uint64_t) value;
6002 uint64_t vaddr = vaddr_in & ~(dline_size - 1);
6003 void *haddr;
6004 int mem_idx = cpu_mmu_index(env, false);
6006 /* This won't be crossing page boundaries */
6007 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
6008 if (haddr) {
6010 ram_addr_t offset;
6011 MemoryRegion *mr;
6013 /* RCU lock is already being held */
6014 mr = memory_region_from_host(haddr, &offset);
6016 if (mr) {
6017 memory_region_do_writeback(mr, offset, dline_size);
6022 static const ARMCPRegInfo dcpop_reg[] = {
6023 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
6024 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
6025 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
6026 .accessfn = aa64_cacheop_access, .writefn = dccvap_writefn },
6027 REGINFO_SENTINEL
6030 static const ARMCPRegInfo dcpodp_reg[] = {
6031 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
6032 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
6033 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
6034 .accessfn = aa64_cacheop_access, .writefn = dccvap_writefn },
6035 REGINFO_SENTINEL
6037 #endif /*CONFIG_USER_ONLY*/
6039 #endif
6041 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
6042 bool isread)
6044 int el = arm_current_el(env);
6046 if (el == 0) {
6047 uint64_t sctlr = arm_sctlr(env, el);
6048 if (!(sctlr & SCTLR_EnRCTX)) {
6049 return CP_ACCESS_TRAP;
6051 } else if (el == 1) {
6052 uint64_t hcr = arm_hcr_el2_eff(env);
6053 if (hcr & HCR_NV) {
6054 return CP_ACCESS_TRAP_EL2;
6057 return CP_ACCESS_OK;
6060 static const ARMCPRegInfo predinv_reginfo[] = {
6061 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
6062 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
6063 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6064 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
6065 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
6066 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6067 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
6068 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
6069 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6071 * Note the AArch32 opcodes have a different OPC1.
6073 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
6074 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
6075 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6076 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
6077 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
6078 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6079 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
6080 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
6081 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6082 REGINFO_SENTINEL
6085 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
6086 bool isread)
6088 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
6089 return CP_ACCESS_TRAP_EL2;
6092 return CP_ACCESS_OK;
6095 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
6096 bool isread)
6098 if (arm_feature(env, ARM_FEATURE_V8)) {
6099 return access_aa64_tid3(env, ri, isread);
6102 return CP_ACCESS_OK;
6105 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
6106 bool isread)
6108 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
6109 return CP_ACCESS_TRAP_EL2;
6112 return CP_ACCESS_OK;
6115 static const ARMCPRegInfo jazelle_regs[] = {
6116 { .name = "JIDR",
6117 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
6118 .access = PL1_R, .accessfn = access_jazelle,
6119 .type = ARM_CP_CONST, .resetvalue = 0 },
6120 { .name = "JOSCR",
6121 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
6122 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
6123 { .name = "JMCR",
6124 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
6125 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
6126 REGINFO_SENTINEL
6129 static const ARMCPRegInfo vhe_reginfo[] = {
6130 { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
6131 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
6132 .access = PL2_RW,
6133 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) },
6134 REGINFO_SENTINEL
6137 void register_cp_regs_for_features(ARMCPU *cpu)
6139 /* Register all the coprocessor registers based on feature bits */
6140 CPUARMState *env = &cpu->env;
6141 if (arm_feature(env, ARM_FEATURE_M)) {
6142 /* M profile has no coprocessor registers */
6143 return;
6146 define_arm_cp_regs(cpu, cp_reginfo);
6147 if (!arm_feature(env, ARM_FEATURE_V8)) {
6148 /* Must go early as it is full of wildcards that may be
6149 * overridden by later definitions.
6151 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
6154 if (arm_feature(env, ARM_FEATURE_V6)) {
6155 /* The ID registers all have impdef reset values */
6156 ARMCPRegInfo v6_idregs[] = {
6157 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
6158 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
6159 .access = PL1_R, .type = ARM_CP_CONST,
6160 .accessfn = access_aa32_tid3,
6161 .resetvalue = cpu->id_pfr0 },
6162 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
6163 * the value of the GIC field until after we define these regs.
6165 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
6166 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
6167 .access = PL1_R, .type = ARM_CP_NO_RAW,
6168 .accessfn = access_aa32_tid3,
6169 .readfn = id_pfr1_read,
6170 .writefn = arm_cp_write_ignore },
6171 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
6172 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
6173 .access = PL1_R, .type = ARM_CP_CONST,
6174 .accessfn = access_aa32_tid3,
6175 .resetvalue = cpu->id_dfr0 },
6176 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
6177 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
6178 .access = PL1_R, .type = ARM_CP_CONST,
6179 .accessfn = access_aa32_tid3,
6180 .resetvalue = cpu->id_afr0 },
6181 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
6182 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
6183 .access = PL1_R, .type = ARM_CP_CONST,
6184 .accessfn = access_aa32_tid3,
6185 .resetvalue = cpu->id_mmfr0 },
6186 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
6187 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
6188 .access = PL1_R, .type = ARM_CP_CONST,
6189 .accessfn = access_aa32_tid3,
6190 .resetvalue = cpu->id_mmfr1 },
6191 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
6192 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
6193 .access = PL1_R, .type = ARM_CP_CONST,
6194 .accessfn = access_aa32_tid3,
6195 .resetvalue = cpu->id_mmfr2 },
6196 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
6197 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
6198 .access = PL1_R, .type = ARM_CP_CONST,
6199 .accessfn = access_aa32_tid3,
6200 .resetvalue = cpu->id_mmfr3 },
6201 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
6202 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
6203 .access = PL1_R, .type = ARM_CP_CONST,
6204 .accessfn = access_aa32_tid3,
6205 .resetvalue = cpu->isar.id_isar0 },
6206 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
6207 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
6208 .access = PL1_R, .type = ARM_CP_CONST,
6209 .accessfn = access_aa32_tid3,
6210 .resetvalue = cpu->isar.id_isar1 },
6211 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
6212 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
6213 .access = PL1_R, .type = ARM_CP_CONST,
6214 .accessfn = access_aa32_tid3,
6215 .resetvalue = cpu->isar.id_isar2 },
6216 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
6217 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
6218 .access = PL1_R, .type = ARM_CP_CONST,
6219 .accessfn = access_aa32_tid3,
6220 .resetvalue = cpu->isar.id_isar3 },
6221 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
6222 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
6223 .access = PL1_R, .type = ARM_CP_CONST,
6224 .accessfn = access_aa32_tid3,
6225 .resetvalue = cpu->isar.id_isar4 },
6226 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
6227 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
6228 .access = PL1_R, .type = ARM_CP_CONST,
6229 .accessfn = access_aa32_tid3,
6230 .resetvalue = cpu->isar.id_isar5 },
6231 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
6232 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
6233 .access = PL1_R, .type = ARM_CP_CONST,
6234 .accessfn = access_aa32_tid3,
6235 .resetvalue = cpu->id_mmfr4 },
6236 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
6237 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
6238 .access = PL1_R, .type = ARM_CP_CONST,
6239 .accessfn = access_aa32_tid3,
6240 .resetvalue = cpu->isar.id_isar6 },
6241 REGINFO_SENTINEL
6243 define_arm_cp_regs(cpu, v6_idregs);
6244 define_arm_cp_regs(cpu, v6_cp_reginfo);
6245 } else {
6246 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
6248 if (arm_feature(env, ARM_FEATURE_V6K)) {
6249 define_arm_cp_regs(cpu, v6k_cp_reginfo);
6251 if (arm_feature(env, ARM_FEATURE_V7MP) &&
6252 !arm_feature(env, ARM_FEATURE_PMSA)) {
6253 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
6255 if (arm_feature(env, ARM_FEATURE_V7VE)) {
6256 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
6258 if (arm_feature(env, ARM_FEATURE_V7)) {
6259 /* v7 performance monitor control register: same implementor
6260 * field as main ID register, and we implement four counters in
6261 * addition to the cycle count register.
6263 unsigned int i, pmcrn = 4;
6264 ARMCPRegInfo pmcr = {
6265 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6266 .access = PL0_RW,
6267 .type = ARM_CP_IO | ARM_CP_ALIAS,
6268 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6269 .accessfn = pmreg_access, .writefn = pmcr_write,
6270 .raw_writefn = raw_write,
6272 ARMCPRegInfo pmcr64 = {
6273 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6274 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6275 .access = PL0_RW, .accessfn = pmreg_access,
6276 .type = ARM_CP_IO,
6277 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6278 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT),
6279 .writefn = pmcr_write, .raw_writefn = raw_write,
6281 define_one_arm_cp_reg(cpu, &pmcr);
6282 define_one_arm_cp_reg(cpu, &pmcr64);
6283 for (i = 0; i < pmcrn; i++) {
6284 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6285 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6286 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6287 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6288 ARMCPRegInfo pmev_regs[] = {
6289 { .name = pmevcntr_name, .cp = 15, .crn = 14,
6290 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6291 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6292 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6293 .accessfn = pmreg_access },
6294 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6295 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6296 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6297 .type = ARM_CP_IO,
6298 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6299 .raw_readfn = pmevcntr_rawread,
6300 .raw_writefn = pmevcntr_rawwrite },
6301 { .name = pmevtyper_name, .cp = 15, .crn = 14,
6302 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6303 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6304 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6305 .accessfn = pmreg_access },
6306 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6307 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6308 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6309 .type = ARM_CP_IO,
6310 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6311 .raw_writefn = pmevtyper_rawwrite },
6312 REGINFO_SENTINEL
6314 define_arm_cp_regs(cpu, pmev_regs);
6315 g_free(pmevcntr_name);
6316 g_free(pmevcntr_el0_name);
6317 g_free(pmevtyper_name);
6318 g_free(pmevtyper_el0_name);
6320 ARMCPRegInfo clidr = {
6321 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
6322 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
6323 .access = PL1_R, .type = ARM_CP_CONST,
6324 .accessfn = access_aa64_tid2,
6325 .resetvalue = cpu->clidr
6327 define_one_arm_cp_reg(cpu, &clidr);
6328 define_arm_cp_regs(cpu, v7_cp_reginfo);
6329 define_debug_regs(cpu);
6330 } else {
6331 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
6333 if (FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
6334 FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) != 0xf) {
6335 ARMCPRegInfo v81_pmu_regs[] = {
6336 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6337 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6338 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6339 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6340 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6341 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6342 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6343 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6344 REGINFO_SENTINEL
6346 define_arm_cp_regs(cpu, v81_pmu_regs);
6348 if (arm_feature(env, ARM_FEATURE_V8)) {
6349 /* AArch64 ID registers, which all have impdef reset values.
6350 * Note that within the ID register ranges the unused slots
6351 * must all RAZ, not UNDEF; future architecture versions may
6352 * define new registers here.
6354 ARMCPRegInfo v8_idregs[] = {
6355 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
6356 * know the right value for the GIC field until after we
6357 * define these regs.
6359 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
6360 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
6361 .access = PL1_R, .type = ARM_CP_NO_RAW,
6362 .accessfn = access_aa64_tid3,
6363 .readfn = id_aa64pfr0_read,
6364 .writefn = arm_cp_write_ignore },
6365 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
6366 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
6367 .access = PL1_R, .type = ARM_CP_CONST,
6368 .accessfn = access_aa64_tid3,
6369 .resetvalue = cpu->isar.id_aa64pfr1},
6370 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6371 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
6372 .access = PL1_R, .type = ARM_CP_CONST,
6373 .accessfn = access_aa64_tid3,
6374 .resetvalue = 0 },
6375 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6376 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
6377 .access = PL1_R, .type = ARM_CP_CONST,
6378 .accessfn = access_aa64_tid3,
6379 .resetvalue = 0 },
6380 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
6381 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
6382 .access = PL1_R, .type = ARM_CP_CONST,
6383 .accessfn = access_aa64_tid3,
6384 /* At present, only SVEver == 0 is defined anyway. */
6385 .resetvalue = 0 },
6386 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6387 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
6388 .access = PL1_R, .type = ARM_CP_CONST,
6389 .accessfn = access_aa64_tid3,
6390 .resetvalue = 0 },
6391 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6392 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
6393 .access = PL1_R, .type = ARM_CP_CONST,
6394 .accessfn = access_aa64_tid3,
6395 .resetvalue = 0 },
6396 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6397 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
6398 .access = PL1_R, .type = ARM_CP_CONST,
6399 .accessfn = access_aa64_tid3,
6400 .resetvalue = 0 },
6401 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
6402 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
6403 .access = PL1_R, .type = ARM_CP_CONST,
6404 .accessfn = access_aa64_tid3,
6405 .resetvalue = cpu->id_aa64dfr0 },
6406 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
6407 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
6408 .access = PL1_R, .type = ARM_CP_CONST,
6409 .accessfn = access_aa64_tid3,
6410 .resetvalue = cpu->id_aa64dfr1 },
6411 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6412 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
6413 .access = PL1_R, .type = ARM_CP_CONST,
6414 .accessfn = access_aa64_tid3,
6415 .resetvalue = 0 },
6416 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6417 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
6418 .access = PL1_R, .type = ARM_CP_CONST,
6419 .accessfn = access_aa64_tid3,
6420 .resetvalue = 0 },
6421 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
6422 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
6423 .access = PL1_R, .type = ARM_CP_CONST,
6424 .accessfn = access_aa64_tid3,
6425 .resetvalue = cpu->id_aa64afr0 },
6426 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
6427 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
6428 .access = PL1_R, .type = ARM_CP_CONST,
6429 .accessfn = access_aa64_tid3,
6430 .resetvalue = cpu->id_aa64afr1 },
6431 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6432 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
6433 .access = PL1_R, .type = ARM_CP_CONST,
6434 .accessfn = access_aa64_tid3,
6435 .resetvalue = 0 },
6436 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6437 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
6438 .access = PL1_R, .type = ARM_CP_CONST,
6439 .accessfn = access_aa64_tid3,
6440 .resetvalue = 0 },
6441 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
6442 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
6443 .access = PL1_R, .type = ARM_CP_CONST,
6444 .accessfn = access_aa64_tid3,
6445 .resetvalue = cpu->isar.id_aa64isar0 },
6446 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
6447 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
6448 .access = PL1_R, .type = ARM_CP_CONST,
6449 .accessfn = access_aa64_tid3,
6450 .resetvalue = cpu->isar.id_aa64isar1 },
6451 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6452 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
6453 .access = PL1_R, .type = ARM_CP_CONST,
6454 .accessfn = access_aa64_tid3,
6455 .resetvalue = 0 },
6456 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6457 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
6458 .access = PL1_R, .type = ARM_CP_CONST,
6459 .accessfn = access_aa64_tid3,
6460 .resetvalue = 0 },
6461 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6462 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
6463 .access = PL1_R, .type = ARM_CP_CONST,
6464 .accessfn = access_aa64_tid3,
6465 .resetvalue = 0 },
6466 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6467 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
6468 .access = PL1_R, .type = ARM_CP_CONST,
6469 .accessfn = access_aa64_tid3,
6470 .resetvalue = 0 },
6471 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6472 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
6473 .access = PL1_R, .type = ARM_CP_CONST,
6474 .accessfn = access_aa64_tid3,
6475 .resetvalue = 0 },
6476 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6477 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
6478 .access = PL1_R, .type = ARM_CP_CONST,
6479 .accessfn = access_aa64_tid3,
6480 .resetvalue = 0 },
6481 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
6482 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6483 .access = PL1_R, .type = ARM_CP_CONST,
6484 .accessfn = access_aa64_tid3,
6485 .resetvalue = cpu->isar.id_aa64mmfr0 },
6486 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
6487 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
6488 .access = PL1_R, .type = ARM_CP_CONST,
6489 .accessfn = access_aa64_tid3,
6490 .resetvalue = cpu->isar.id_aa64mmfr1 },
6491 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6492 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
6493 .access = PL1_R, .type = ARM_CP_CONST,
6494 .accessfn = access_aa64_tid3,
6495 .resetvalue = 0 },
6496 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6497 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
6498 .access = PL1_R, .type = ARM_CP_CONST,
6499 .accessfn = access_aa64_tid3,
6500 .resetvalue = 0 },
6501 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6502 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
6503 .access = PL1_R, .type = ARM_CP_CONST,
6504 .accessfn = access_aa64_tid3,
6505 .resetvalue = 0 },
6506 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6507 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
6508 .access = PL1_R, .type = ARM_CP_CONST,
6509 .accessfn = access_aa64_tid3,
6510 .resetvalue = 0 },
6511 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6512 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
6513 .access = PL1_R, .type = ARM_CP_CONST,
6514 .accessfn = access_aa64_tid3,
6515 .resetvalue = 0 },
6516 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6517 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
6518 .access = PL1_R, .type = ARM_CP_CONST,
6519 .accessfn = access_aa64_tid3,
6520 .resetvalue = 0 },
6521 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
6522 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
6523 .access = PL1_R, .type = ARM_CP_CONST,
6524 .accessfn = access_aa64_tid3,
6525 .resetvalue = cpu->isar.mvfr0 },
6526 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
6527 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
6528 .access = PL1_R, .type = ARM_CP_CONST,
6529 .accessfn = access_aa64_tid3,
6530 .resetvalue = cpu->isar.mvfr1 },
6531 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
6532 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
6533 .access = PL1_R, .type = ARM_CP_CONST,
6534 .accessfn = access_aa64_tid3,
6535 .resetvalue = cpu->isar.mvfr2 },
6536 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6537 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
6538 .access = PL1_R, .type = ARM_CP_CONST,
6539 .accessfn = access_aa64_tid3,
6540 .resetvalue = 0 },
6541 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6542 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
6543 .access = PL1_R, .type = ARM_CP_CONST,
6544 .accessfn = access_aa64_tid3,
6545 .resetvalue = 0 },
6546 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6547 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
6548 .access = PL1_R, .type = ARM_CP_CONST,
6549 .accessfn = access_aa64_tid3,
6550 .resetvalue = 0 },
6551 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6552 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
6553 .access = PL1_R, .type = ARM_CP_CONST,
6554 .accessfn = access_aa64_tid3,
6555 .resetvalue = 0 },
6556 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6557 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
6558 .access = PL1_R, .type = ARM_CP_CONST,
6559 .accessfn = access_aa64_tid3,
6560 .resetvalue = 0 },
6561 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
6562 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
6563 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6564 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
6565 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
6566 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
6567 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6568 .resetvalue = cpu->pmceid0 },
6569 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
6570 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
6571 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6572 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
6573 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
6574 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
6575 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6576 .resetvalue = cpu->pmceid1 },
6577 REGINFO_SENTINEL
6579 #ifdef CONFIG_USER_ONLY
6580 ARMCPRegUserSpaceInfo v8_user_idregs[] = {
6581 { .name = "ID_AA64PFR0_EL1",
6582 .exported_bits = 0x000f000f00ff0000,
6583 .fixed_bits = 0x0000000000000011 },
6584 { .name = "ID_AA64PFR1_EL1",
6585 .exported_bits = 0x00000000000000f0 },
6586 { .name = "ID_AA64PFR*_EL1_RESERVED",
6587 .is_glob = true },
6588 { .name = "ID_AA64ZFR0_EL1" },
6589 { .name = "ID_AA64MMFR0_EL1",
6590 .fixed_bits = 0x00000000ff000000 },
6591 { .name = "ID_AA64MMFR1_EL1" },
6592 { .name = "ID_AA64MMFR*_EL1_RESERVED",
6593 .is_glob = true },
6594 { .name = "ID_AA64DFR0_EL1",
6595 .fixed_bits = 0x0000000000000006 },
6596 { .name = "ID_AA64DFR1_EL1" },
6597 { .name = "ID_AA64DFR*_EL1_RESERVED",
6598 .is_glob = true },
6599 { .name = "ID_AA64AFR*",
6600 .is_glob = true },
6601 { .name = "ID_AA64ISAR0_EL1",
6602 .exported_bits = 0x00fffffff0fffff0 },
6603 { .name = "ID_AA64ISAR1_EL1",
6604 .exported_bits = 0x000000f0ffffffff },
6605 { .name = "ID_AA64ISAR*_EL1_RESERVED",
6606 .is_glob = true },
6607 REGUSERINFO_SENTINEL
6609 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
6610 #endif
6611 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
6612 if (!arm_feature(env, ARM_FEATURE_EL3) &&
6613 !arm_feature(env, ARM_FEATURE_EL2)) {
6614 ARMCPRegInfo rvbar = {
6615 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
6616 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6617 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
6619 define_one_arm_cp_reg(cpu, &rvbar);
6621 define_arm_cp_regs(cpu, v8_idregs);
6622 define_arm_cp_regs(cpu, v8_cp_reginfo);
6624 if (arm_feature(env, ARM_FEATURE_EL2)) {
6625 uint64_t vmpidr_def = mpidr_read_val(env);
6626 ARMCPRegInfo vpidr_regs[] = {
6627 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
6628 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6629 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6630 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
6631 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
6632 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
6633 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6634 .access = PL2_RW, .resetvalue = cpu->midr,
6635 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
6636 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
6637 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6638 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6639 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
6640 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
6641 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
6642 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6643 .access = PL2_RW,
6644 .resetvalue = vmpidr_def,
6645 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
6646 REGINFO_SENTINEL
6648 define_arm_cp_regs(cpu, vpidr_regs);
6649 define_arm_cp_regs(cpu, el2_cp_reginfo);
6650 if (arm_feature(env, ARM_FEATURE_V8)) {
6651 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
6653 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
6654 if (!arm_feature(env, ARM_FEATURE_EL3)) {
6655 ARMCPRegInfo rvbar = {
6656 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
6657 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
6658 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
6660 define_one_arm_cp_reg(cpu, &rvbar);
6662 } else {
6663 /* If EL2 is missing but higher ELs are enabled, we need to
6664 * register the no_el2 reginfos.
6666 if (arm_feature(env, ARM_FEATURE_EL3)) {
6667 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
6668 * of MIDR_EL1 and MPIDR_EL1.
6670 ARMCPRegInfo vpidr_regs[] = {
6671 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6672 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6673 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
6674 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
6675 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
6676 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6677 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6678 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
6679 .type = ARM_CP_NO_RAW,
6680 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
6681 REGINFO_SENTINEL
6683 define_arm_cp_regs(cpu, vpidr_regs);
6684 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
6685 if (arm_feature(env, ARM_FEATURE_V8)) {
6686 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
6690 if (arm_feature(env, ARM_FEATURE_EL3)) {
6691 define_arm_cp_regs(cpu, el3_cp_reginfo);
6692 ARMCPRegInfo el3_regs[] = {
6693 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
6694 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
6695 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
6696 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
6697 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
6698 .access = PL3_RW,
6699 .raw_writefn = raw_write, .writefn = sctlr_write,
6700 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
6701 .resetvalue = cpu->reset_sctlr },
6702 REGINFO_SENTINEL
6705 define_arm_cp_regs(cpu, el3_regs);
6707 /* The behaviour of NSACR is sufficiently various that we don't
6708 * try to describe it in a single reginfo:
6709 * if EL3 is 64 bit, then trap to EL3 from S EL1,
6710 * reads as constant 0xc00 from NS EL1 and NS EL2
6711 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
6712 * if v7 without EL3, register doesn't exist
6713 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
6715 if (arm_feature(env, ARM_FEATURE_EL3)) {
6716 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6717 ARMCPRegInfo nsacr = {
6718 .name = "NSACR", .type = ARM_CP_CONST,
6719 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6720 .access = PL1_RW, .accessfn = nsacr_access,
6721 .resetvalue = 0xc00
6723 define_one_arm_cp_reg(cpu, &nsacr);
6724 } else {
6725 ARMCPRegInfo nsacr = {
6726 .name = "NSACR",
6727 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6728 .access = PL3_RW | PL1_R,
6729 .resetvalue = 0,
6730 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
6732 define_one_arm_cp_reg(cpu, &nsacr);
6734 } else {
6735 if (arm_feature(env, ARM_FEATURE_V8)) {
6736 ARMCPRegInfo nsacr = {
6737 .name = "NSACR", .type = ARM_CP_CONST,
6738 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6739 .access = PL1_R,
6740 .resetvalue = 0xc00
6742 define_one_arm_cp_reg(cpu, &nsacr);
6746 if (arm_feature(env, ARM_FEATURE_PMSA)) {
6747 if (arm_feature(env, ARM_FEATURE_V6)) {
6748 /* PMSAv6 not implemented */
6749 assert(arm_feature(env, ARM_FEATURE_V7));
6750 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
6751 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
6752 } else {
6753 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
6755 } else {
6756 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
6757 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
6758 /* TTCBR2 is introduced with ARMv8.2-A32HPD. */
6759 if (FIELD_EX32(cpu->id_mmfr4, ID_MMFR4, HPDS) != 0) {
6760 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
6763 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
6764 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
6766 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
6767 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
6769 if (arm_feature(env, ARM_FEATURE_VAPA)) {
6770 define_arm_cp_regs(cpu, vapa_cp_reginfo);
6772 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
6773 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
6775 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
6776 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
6778 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
6779 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
6781 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
6782 define_arm_cp_regs(cpu, omap_cp_reginfo);
6784 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
6785 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
6787 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
6788 define_arm_cp_regs(cpu, xscale_cp_reginfo);
6790 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
6791 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
6793 if (arm_feature(env, ARM_FEATURE_LPAE)) {
6794 define_arm_cp_regs(cpu, lpae_cp_reginfo);
6796 if (cpu_isar_feature(jazelle, cpu)) {
6797 define_arm_cp_regs(cpu, jazelle_regs);
6799 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
6800 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
6801 * be read-only (ie write causes UNDEF exception).
6804 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
6805 /* Pre-v8 MIDR space.
6806 * Note that the MIDR isn't a simple constant register because
6807 * of the TI925 behaviour where writes to another register can
6808 * cause the MIDR value to change.
6810 * Unimplemented registers in the c15 0 0 0 space default to
6811 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
6812 * and friends override accordingly.
6814 { .name = "MIDR",
6815 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
6816 .access = PL1_R, .resetvalue = cpu->midr,
6817 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
6818 .readfn = midr_read,
6819 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6820 .type = ARM_CP_OVERRIDE },
6821 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
6822 { .name = "DUMMY",
6823 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
6824 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6825 { .name = "DUMMY",
6826 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
6827 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6828 { .name = "DUMMY",
6829 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
6830 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6831 { .name = "DUMMY",
6832 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
6833 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6834 { .name = "DUMMY",
6835 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
6836 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6837 REGINFO_SENTINEL
6839 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
6840 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
6841 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
6842 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
6843 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6844 .readfn = midr_read },
6845 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
6846 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
6847 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6848 .access = PL1_R, .resetvalue = cpu->midr },
6849 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
6850 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
6851 .access = PL1_R, .resetvalue = cpu->midr },
6852 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
6853 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
6854 .access = PL1_R,
6855 .accessfn = access_aa64_tid1,
6856 .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
6857 REGINFO_SENTINEL
6859 ARMCPRegInfo id_cp_reginfo[] = {
6860 /* These are common to v8 and pre-v8 */
6861 { .name = "CTR",
6862 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
6863 .access = PL1_R, .accessfn = ctr_el0_access,
6864 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
6865 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
6866 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
6867 .access = PL0_R, .accessfn = ctr_el0_access,
6868 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
6869 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
6870 { .name = "TCMTR",
6871 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
6872 .access = PL1_R,
6873 .accessfn = access_aa32_tid1,
6874 .type = ARM_CP_CONST, .resetvalue = 0 },
6875 REGINFO_SENTINEL
6877 /* TLBTR is specific to VMSA */
6878 ARMCPRegInfo id_tlbtr_reginfo = {
6879 .name = "TLBTR",
6880 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
6881 .access = PL1_R,
6882 .accessfn = access_aa32_tid1,
6883 .type = ARM_CP_CONST, .resetvalue = 0,
6885 /* MPUIR is specific to PMSA V6+ */
6886 ARMCPRegInfo id_mpuir_reginfo = {
6887 .name = "MPUIR",
6888 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6889 .access = PL1_R, .type = ARM_CP_CONST,
6890 .resetvalue = cpu->pmsav7_dregion << 8
6892 ARMCPRegInfo crn0_wi_reginfo = {
6893 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
6894 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
6895 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
6897 #ifdef CONFIG_USER_ONLY
6898 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
6899 { .name = "MIDR_EL1",
6900 .exported_bits = 0x00000000ffffffff },
6901 { .name = "REVIDR_EL1" },
6902 REGUSERINFO_SENTINEL
6904 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
6905 #endif
6906 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
6907 arm_feature(env, ARM_FEATURE_STRONGARM)) {
6908 ARMCPRegInfo *r;
6909 /* Register the blanket "writes ignored" value first to cover the
6910 * whole space. Then update the specific ID registers to allow write
6911 * access, so that they ignore writes rather than causing them to
6912 * UNDEF.
6914 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
6915 for (r = id_pre_v8_midr_cp_reginfo;
6916 r->type != ARM_CP_SENTINEL; r++) {
6917 r->access = PL1_RW;
6919 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
6920 r->access = PL1_RW;
6922 id_mpuir_reginfo.access = PL1_RW;
6923 id_tlbtr_reginfo.access = PL1_RW;
6925 if (arm_feature(env, ARM_FEATURE_V8)) {
6926 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
6927 } else {
6928 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
6930 define_arm_cp_regs(cpu, id_cp_reginfo);
6931 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
6932 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
6933 } else if (arm_feature(env, ARM_FEATURE_V7)) {
6934 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
6938 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
6939 ARMCPRegInfo mpidr_cp_reginfo[] = {
6940 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
6941 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
6942 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
6943 REGINFO_SENTINEL
6945 #ifdef CONFIG_USER_ONLY
6946 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
6947 { .name = "MPIDR_EL1",
6948 .fixed_bits = 0x0000000080000000 },
6949 REGUSERINFO_SENTINEL
6951 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
6952 #endif
6953 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
6956 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
6957 ARMCPRegInfo auxcr_reginfo[] = {
6958 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
6959 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
6960 .access = PL1_RW, .type = ARM_CP_CONST,
6961 .resetvalue = cpu->reset_auxcr },
6962 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
6963 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
6964 .access = PL2_RW, .type = ARM_CP_CONST,
6965 .resetvalue = 0 },
6966 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
6967 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
6968 .access = PL3_RW, .type = ARM_CP_CONST,
6969 .resetvalue = 0 },
6970 REGINFO_SENTINEL
6972 define_arm_cp_regs(cpu, auxcr_reginfo);
6973 if (arm_feature(env, ARM_FEATURE_V8)) {
6974 /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */
6975 ARMCPRegInfo hactlr2_reginfo = {
6976 .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
6977 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
6978 .access = PL2_RW, .type = ARM_CP_CONST,
6979 .resetvalue = 0
6981 define_one_arm_cp_reg(cpu, &hactlr2_reginfo);
6985 if (arm_feature(env, ARM_FEATURE_CBAR)) {
6987 * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
6988 * There are two flavours:
6989 * (1) older 32-bit only cores have a simple 32-bit CBAR
6990 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
6991 * 32-bit register visible to AArch32 at a different encoding
6992 * to the "flavour 1" register and with the bits rearranged to
6993 * be able to squash a 64-bit address into the 32-bit view.
6994 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
6995 * in future if we support AArch32-only configs of some of the
6996 * AArch64 cores we might need to add a specific feature flag
6997 * to indicate cores with "flavour 2" CBAR.
6999 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
7000 /* 32 bit view is [31:18] 0...0 [43:32]. */
7001 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
7002 | extract64(cpu->reset_cbar, 32, 12);
7003 ARMCPRegInfo cbar_reginfo[] = {
7004 { .name = "CBAR",
7005 .type = ARM_CP_CONST,
7006 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
7007 .access = PL1_R, .resetvalue = cbar32 },
7008 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
7009 .type = ARM_CP_CONST,
7010 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
7011 .access = PL1_R, .resetvalue = cpu->reset_cbar },
7012 REGINFO_SENTINEL
7014 /* We don't implement a r/w 64 bit CBAR currently */
7015 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
7016 define_arm_cp_regs(cpu, cbar_reginfo);
7017 } else {
7018 ARMCPRegInfo cbar = {
7019 .name = "CBAR",
7020 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
7021 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
7022 .fieldoffset = offsetof(CPUARMState,
7023 cp15.c15_config_base_address)
7025 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
7026 cbar.access = PL1_R;
7027 cbar.fieldoffset = 0;
7028 cbar.type = ARM_CP_CONST;
7030 define_one_arm_cp_reg(cpu, &cbar);
7034 if (arm_feature(env, ARM_FEATURE_VBAR)) {
7035 ARMCPRegInfo vbar_cp_reginfo[] = {
7036 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
7037 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
7038 .access = PL1_RW, .writefn = vbar_write,
7039 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
7040 offsetof(CPUARMState, cp15.vbar_ns) },
7041 .resetvalue = 0 },
7042 REGINFO_SENTINEL
7044 define_arm_cp_regs(cpu, vbar_cp_reginfo);
7047 /* Generic registers whose values depend on the implementation */
7049 ARMCPRegInfo sctlr = {
7050 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
7051 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
7052 .access = PL1_RW,
7053 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
7054 offsetof(CPUARMState, cp15.sctlr_ns) },
7055 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
7056 .raw_writefn = raw_write,
7058 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
7059 /* Normally we would always end the TB on an SCTLR write, but Linux
7060 * arch/arm/mach-pxa/sleep.S expects two instructions following
7061 * an MMU enable to execute from cache. Imitate this behaviour.
7063 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
7065 define_one_arm_cp_reg(cpu, &sctlr);
7068 if (cpu_isar_feature(aa64_lor, cpu)) {
7070 * A trivial implementation of ARMv8.1-LOR leaves all of these
7071 * registers fixed at 0, which indicates that there are zero
7072 * supported Limited Ordering regions.
7074 static const ARMCPRegInfo lor_reginfo[] = {
7075 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
7076 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
7077 .access = PL1_RW, .accessfn = access_lor_other,
7078 .type = ARM_CP_CONST, .resetvalue = 0 },
7079 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
7080 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
7081 .access = PL1_RW, .accessfn = access_lor_other,
7082 .type = ARM_CP_CONST, .resetvalue = 0 },
7083 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7084 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7085 .access = PL1_RW, .accessfn = access_lor_other,
7086 .type = ARM_CP_CONST, .resetvalue = 0 },
7087 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7088 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7089 .access = PL1_RW, .accessfn = access_lor_other,
7090 .type = ARM_CP_CONST, .resetvalue = 0 },
7091 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7092 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
7093 .access = PL1_R, .accessfn = access_lorid,
7094 .type = ARM_CP_CONST, .resetvalue = 0 },
7095 REGINFO_SENTINEL
7097 define_arm_cp_regs(cpu, lor_reginfo);
7100 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
7101 define_arm_cp_regs(cpu, vhe_reginfo);
7104 if (cpu_isar_feature(aa64_sve, cpu)) {
7105 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
7106 if (arm_feature(env, ARM_FEATURE_EL2)) {
7107 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
7108 } else {
7109 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
7111 if (arm_feature(env, ARM_FEATURE_EL3)) {
7112 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
7116 #ifdef TARGET_AARCH64
7117 if (cpu_isar_feature(aa64_pauth, cpu)) {
7118 define_arm_cp_regs(cpu, pauth_reginfo);
7120 if (cpu_isar_feature(aa64_rndr, cpu)) {
7121 define_arm_cp_regs(cpu, rndr_reginfo);
7123 #ifndef CONFIG_USER_ONLY
7124 /* Data Cache clean instructions up to PoP */
7125 if (cpu_isar_feature(aa64_dcpop, cpu)) {
7126 define_one_arm_cp_reg(cpu, dcpop_reg);
7128 if (cpu_isar_feature(aa64_dcpodp, cpu)) {
7129 define_one_arm_cp_reg(cpu, dcpodp_reg);
7132 #endif /*CONFIG_USER_ONLY*/
7133 #endif
7136 * While all v8.0 cpus support aarch64, QEMU does have configurations
7137 * that do not set ID_AA64ISAR1, e.g. user-only qemu-arm -cpu max,
7138 * which will set ID_ISAR6.
7140 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
7141 ? cpu_isar_feature(aa64_predinv, cpu)
7142 : cpu_isar_feature(aa32_predinv, cpu)) {
7143 define_arm_cp_regs(cpu, predinv_reginfo);
7147 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
7149 CPUState *cs = CPU(cpu);
7150 CPUARMState *env = &cpu->env;
7152 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
7153 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
7154 aarch64_fpu_gdb_set_reg,
7155 34, "aarch64-fpu.xml", 0);
7156 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
7157 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
7158 51, "arm-neon.xml", 0);
7159 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
7160 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
7161 35, "arm-vfp3.xml", 0);
7162 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
7163 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
7164 19, "arm-vfp.xml", 0);
7166 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
7167 arm_gen_dynamic_xml(cs),
7168 "system-registers.xml", 0);
7171 /* Sort alphabetically by type name, except for "any". */
7172 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
7174 ObjectClass *class_a = (ObjectClass *)a;
7175 ObjectClass *class_b = (ObjectClass *)b;
7176 const char *name_a, *name_b;
7178 name_a = object_class_get_name(class_a);
7179 name_b = object_class_get_name(class_b);
7180 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
7181 return 1;
7182 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
7183 return -1;
7184 } else {
7185 return strcmp(name_a, name_b);
7189 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
7191 ObjectClass *oc = data;
7192 const char *typename;
7193 char *name;
7195 typename = object_class_get_name(oc);
7196 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
7197 qemu_printf(" %s\n", name);
7198 g_free(name);
7201 void arm_cpu_list(void)
7203 GSList *list;
7205 list = object_class_get_list(TYPE_ARM_CPU, false);
7206 list = g_slist_sort(list, arm_cpu_list_compare);
7207 qemu_printf("Available CPUs:\n");
7208 g_slist_foreach(list, arm_cpu_list_entry, NULL);
7209 g_slist_free(list);
7212 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
7214 ObjectClass *oc = data;
7215 CpuDefinitionInfoList **cpu_list = user_data;
7216 CpuDefinitionInfoList *entry;
7217 CpuDefinitionInfo *info;
7218 const char *typename;
7220 typename = object_class_get_name(oc);
7221 info = g_malloc0(sizeof(*info));
7222 info->name = g_strndup(typename,
7223 strlen(typename) - strlen("-" TYPE_ARM_CPU));
7224 info->q_typename = g_strdup(typename);
7226 entry = g_malloc0(sizeof(*entry));
7227 entry->value = info;
7228 entry->next = *cpu_list;
7229 *cpu_list = entry;
7232 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
7234 CpuDefinitionInfoList *cpu_list = NULL;
7235 GSList *list;
7237 list = object_class_get_list(TYPE_ARM_CPU, false);
7238 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
7239 g_slist_free(list);
7241 return cpu_list;
7244 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
7245 void *opaque, int state, int secstate,
7246 int crm, int opc1, int opc2,
7247 const char *name)
7249 /* Private utility function for define_one_arm_cp_reg_with_opaque():
7250 * add a single reginfo struct to the hash table.
7252 uint32_t *key = g_new(uint32_t, 1);
7253 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
7254 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
7255 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
7257 r2->name = g_strdup(name);
7258 /* Reset the secure state to the specific incoming state. This is
7259 * necessary as the register may have been defined with both states.
7261 r2->secure = secstate;
7263 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
7264 /* Register is banked (using both entries in array).
7265 * Overwriting fieldoffset as the array is only used to define
7266 * banked registers but later only fieldoffset is used.
7268 r2->fieldoffset = r->bank_fieldoffsets[ns];
7271 if (state == ARM_CP_STATE_AA32) {
7272 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
7273 /* If the register is banked then we don't need to migrate or
7274 * reset the 32-bit instance in certain cases:
7276 * 1) If the register has both 32-bit and 64-bit instances then we
7277 * can count on the 64-bit instance taking care of the
7278 * non-secure bank.
7279 * 2) If ARMv8 is enabled then we can count on a 64-bit version
7280 * taking care of the secure bank. This requires that separate
7281 * 32 and 64-bit definitions are provided.
7283 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
7284 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
7285 r2->type |= ARM_CP_ALIAS;
7287 } else if ((secstate != r->secure) && !ns) {
7288 /* The register is not banked so we only want to allow migration of
7289 * the non-secure instance.
7291 r2->type |= ARM_CP_ALIAS;
7294 if (r->state == ARM_CP_STATE_BOTH) {
7295 /* We assume it is a cp15 register if the .cp field is left unset.
7297 if (r2->cp == 0) {
7298 r2->cp = 15;
7301 #ifdef HOST_WORDS_BIGENDIAN
7302 if (r2->fieldoffset) {
7303 r2->fieldoffset += sizeof(uint32_t);
7305 #endif
7308 if (state == ARM_CP_STATE_AA64) {
7309 /* To allow abbreviation of ARMCPRegInfo
7310 * definitions, we treat cp == 0 as equivalent to
7311 * the value for "standard guest-visible sysreg".
7312 * STATE_BOTH definitions are also always "standard
7313 * sysreg" in their AArch64 view (the .cp value may
7314 * be non-zero for the benefit of the AArch32 view).
7316 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
7317 r2->cp = CP_REG_ARM64_SYSREG_CP;
7319 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
7320 r2->opc0, opc1, opc2);
7321 } else {
7322 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
7324 if (opaque) {
7325 r2->opaque = opaque;
7327 /* reginfo passed to helpers is correct for the actual access,
7328 * and is never ARM_CP_STATE_BOTH:
7330 r2->state = state;
7331 /* Make sure reginfo passed to helpers for wildcarded regs
7332 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
7334 r2->crm = crm;
7335 r2->opc1 = opc1;
7336 r2->opc2 = opc2;
7337 /* By convention, for wildcarded registers only the first
7338 * entry is used for migration; the others are marked as
7339 * ALIAS so we don't try to transfer the register
7340 * multiple times. Special registers (ie NOP/WFI) are
7341 * never migratable and not even raw-accessible.
7343 if ((r->type & ARM_CP_SPECIAL)) {
7344 r2->type |= ARM_CP_NO_RAW;
7346 if (((r->crm == CP_ANY) && crm != 0) ||
7347 ((r->opc1 == CP_ANY) && opc1 != 0) ||
7348 ((r->opc2 == CP_ANY) && opc2 != 0)) {
7349 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
7352 /* Check that raw accesses are either forbidden or handled. Note that
7353 * we can't assert this earlier because the setup of fieldoffset for
7354 * banked registers has to be done first.
7356 if (!(r2->type & ARM_CP_NO_RAW)) {
7357 assert(!raw_accessors_invalid(r2));
7360 /* Overriding of an existing definition must be explicitly
7361 * requested.
7363 if (!(r->type & ARM_CP_OVERRIDE)) {
7364 ARMCPRegInfo *oldreg;
7365 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
7366 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
7367 fprintf(stderr, "Register redefined: cp=%d %d bit "
7368 "crn=%d crm=%d opc1=%d opc2=%d, "
7369 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
7370 r2->crn, r2->crm, r2->opc1, r2->opc2,
7371 oldreg->name, r2->name);
7372 g_assert_not_reached();
7375 g_hash_table_insert(cpu->cp_regs, key, r2);
7379 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
7380 const ARMCPRegInfo *r, void *opaque)
7382 /* Define implementations of coprocessor registers.
7383 * We store these in a hashtable because typically
7384 * there are less than 150 registers in a space which
7385 * is 16*16*16*8*8 = 262144 in size.
7386 * Wildcarding is supported for the crm, opc1 and opc2 fields.
7387 * If a register is defined twice then the second definition is
7388 * used, so this can be used to define some generic registers and
7389 * then override them with implementation specific variations.
7390 * At least one of the original and the second definition should
7391 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
7392 * against accidental use.
7394 * The state field defines whether the register is to be
7395 * visible in the AArch32 or AArch64 execution state. If the
7396 * state is set to ARM_CP_STATE_BOTH then we synthesise a
7397 * reginfo structure for the AArch32 view, which sees the lower
7398 * 32 bits of the 64 bit register.
7400 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
7401 * be wildcarded. AArch64 registers are always considered to be 64
7402 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
7403 * the register, if any.
7405 int crm, opc1, opc2, state;
7406 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
7407 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
7408 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
7409 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
7410 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
7411 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
7412 /* 64 bit registers have only CRm and Opc1 fields */
7413 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
7414 /* op0 only exists in the AArch64 encodings */
7415 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
7416 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
7417 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
7418 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
7419 * encodes a minimum access level for the register. We roll this
7420 * runtime check into our general permission check code, so check
7421 * here that the reginfo's specified permissions are strict enough
7422 * to encompass the generic architectural permission check.
7424 if (r->state != ARM_CP_STATE_AA32) {
7425 int mask = 0;
7426 switch (r->opc1) {
7427 case 0:
7428 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
7429 mask = PL0U_R | PL1_RW;
7430 break;
7431 case 1: case 2:
7432 /* min_EL EL1 */
7433 mask = PL1_RW;
7434 break;
7435 case 3:
7436 /* min_EL EL0 */
7437 mask = PL0_RW;
7438 break;
7439 case 4:
7440 /* min_EL EL2 */
7441 mask = PL2_RW;
7442 break;
7443 case 5:
7444 /* unallocated encoding, so not possible */
7445 assert(false);
7446 break;
7447 case 6:
7448 /* min_EL EL3 */
7449 mask = PL3_RW;
7450 break;
7451 case 7:
7452 /* min_EL EL1, secure mode only (we don't check the latter) */
7453 mask = PL1_RW;
7454 break;
7455 default:
7456 /* broken reginfo with out-of-range opc1 */
7457 assert(false);
7458 break;
7460 /* assert our permissions are not too lax (stricter is fine) */
7461 assert((r->access & ~mask) == 0);
7464 /* Check that the register definition has enough info to handle
7465 * reads and writes if they are permitted.
7467 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
7468 if (r->access & PL3_R) {
7469 assert((r->fieldoffset ||
7470 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
7471 r->readfn);
7473 if (r->access & PL3_W) {
7474 assert((r->fieldoffset ||
7475 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
7476 r->writefn);
7479 /* Bad type field probably means missing sentinel at end of reg list */
7480 assert(cptype_valid(r->type));
7481 for (crm = crmmin; crm <= crmmax; crm++) {
7482 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
7483 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
7484 for (state = ARM_CP_STATE_AA32;
7485 state <= ARM_CP_STATE_AA64; state++) {
7486 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
7487 continue;
7489 if (state == ARM_CP_STATE_AA32) {
7490 /* Under AArch32 CP registers can be common
7491 * (same for secure and non-secure world) or banked.
7493 char *name;
7495 switch (r->secure) {
7496 case ARM_CP_SECSTATE_S:
7497 case ARM_CP_SECSTATE_NS:
7498 add_cpreg_to_hashtable(cpu, r, opaque, state,
7499 r->secure, crm, opc1, opc2,
7500 r->name);
7501 break;
7502 default:
7503 name = g_strdup_printf("%s_S", r->name);
7504 add_cpreg_to_hashtable(cpu, r, opaque, state,
7505 ARM_CP_SECSTATE_S,
7506 crm, opc1, opc2, name);
7507 g_free(name);
7508 add_cpreg_to_hashtable(cpu, r, opaque, state,
7509 ARM_CP_SECSTATE_NS,
7510 crm, opc1, opc2, r->name);
7511 break;
7513 } else {
7514 /* AArch64 registers get mapped to non-secure instance
7515 * of AArch32 */
7516 add_cpreg_to_hashtable(cpu, r, opaque, state,
7517 ARM_CP_SECSTATE_NS,
7518 crm, opc1, opc2, r->name);
7526 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
7527 const ARMCPRegInfo *regs, void *opaque)
7529 /* Define a whole list of registers */
7530 const ARMCPRegInfo *r;
7531 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
7532 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
7537 * Modify ARMCPRegInfo for access from userspace.
7539 * This is a data driven modification directed by
7540 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
7541 * user-space cannot alter any values and dynamic values pertaining to
7542 * execution state are hidden from user space view anyway.
7544 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
7546 const ARMCPRegUserSpaceInfo *m;
7547 ARMCPRegInfo *r;
7549 for (m = mods; m->name; m++) {
7550 GPatternSpec *pat = NULL;
7551 if (m->is_glob) {
7552 pat = g_pattern_spec_new(m->name);
7554 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
7555 if (pat && g_pattern_match_string(pat, r->name)) {
7556 r->type = ARM_CP_CONST;
7557 r->access = PL0U_R;
7558 r->resetvalue = 0;
7559 /* continue */
7560 } else if (strcmp(r->name, m->name) == 0) {
7561 r->type = ARM_CP_CONST;
7562 r->access = PL0U_R;
7563 r->resetvalue &= m->exported_bits;
7564 r->resetvalue |= m->fixed_bits;
7565 break;
7568 if (pat) {
7569 g_pattern_spec_free(pat);
7574 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
7576 return g_hash_table_lookup(cpregs, &encoded_cp);
7579 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
7580 uint64_t value)
7582 /* Helper coprocessor write function for write-ignore registers */
7585 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
7587 /* Helper coprocessor write function for read-as-zero registers */
7588 return 0;
7591 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
7593 /* Helper coprocessor reset function for do-nothing-on-reset registers */
7596 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
7598 /* Return true if it is not valid for us to switch to
7599 * this CPU mode (ie all the UNPREDICTABLE cases in
7600 * the ARM ARM CPSRWriteByInstr pseudocode).
7603 /* Changes to or from Hyp via MSR and CPS are illegal. */
7604 if (write_type == CPSRWriteByInstr &&
7605 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
7606 mode == ARM_CPU_MODE_HYP)) {
7607 return 1;
7610 switch (mode) {
7611 case ARM_CPU_MODE_USR:
7612 return 0;
7613 case ARM_CPU_MODE_SYS:
7614 case ARM_CPU_MODE_SVC:
7615 case ARM_CPU_MODE_ABT:
7616 case ARM_CPU_MODE_UND:
7617 case ARM_CPU_MODE_IRQ:
7618 case ARM_CPU_MODE_FIQ:
7619 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
7620 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
7622 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
7623 * and CPS are treated as illegal mode changes.
7625 if (write_type == CPSRWriteByInstr &&
7626 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
7627 (arm_hcr_el2_eff(env) & HCR_TGE)) {
7628 return 1;
7630 return 0;
7631 case ARM_CPU_MODE_HYP:
7632 return !arm_feature(env, ARM_FEATURE_EL2)
7633 || arm_current_el(env) < 2 || arm_is_secure_below_el3(env);
7634 case ARM_CPU_MODE_MON:
7635 return arm_current_el(env) < 3;
7636 default:
7637 return 1;
7641 uint32_t cpsr_read(CPUARMState *env)
7643 int ZF;
7644 ZF = (env->ZF == 0);
7645 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
7646 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
7647 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
7648 | ((env->condexec_bits & 0xfc) << 8)
7649 | (env->GE << 16) | (env->daif & CPSR_AIF);
7652 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
7653 CPSRWriteType write_type)
7655 uint32_t changed_daif;
7657 if (mask & CPSR_NZCV) {
7658 env->ZF = (~val) & CPSR_Z;
7659 env->NF = val;
7660 env->CF = (val >> 29) & 1;
7661 env->VF = (val << 3) & 0x80000000;
7663 if (mask & CPSR_Q)
7664 env->QF = ((val & CPSR_Q) != 0);
7665 if (mask & CPSR_T)
7666 env->thumb = ((val & CPSR_T) != 0);
7667 if (mask & CPSR_IT_0_1) {
7668 env->condexec_bits &= ~3;
7669 env->condexec_bits |= (val >> 25) & 3;
7671 if (mask & CPSR_IT_2_7) {
7672 env->condexec_bits &= 3;
7673 env->condexec_bits |= (val >> 8) & 0xfc;
7675 if (mask & CPSR_GE) {
7676 env->GE = (val >> 16) & 0xf;
7679 /* In a V7 implementation that includes the security extensions but does
7680 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
7681 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
7682 * bits respectively.
7684 * In a V8 implementation, it is permitted for privileged software to
7685 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
7687 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
7688 arm_feature(env, ARM_FEATURE_EL3) &&
7689 !arm_feature(env, ARM_FEATURE_EL2) &&
7690 !arm_is_secure(env)) {
7692 changed_daif = (env->daif ^ val) & mask;
7694 if (changed_daif & CPSR_A) {
7695 /* Check to see if we are allowed to change the masking of async
7696 * abort exceptions from a non-secure state.
7698 if (!(env->cp15.scr_el3 & SCR_AW)) {
7699 qemu_log_mask(LOG_GUEST_ERROR,
7700 "Ignoring attempt to switch CPSR_A flag from "
7701 "non-secure world with SCR.AW bit clear\n");
7702 mask &= ~CPSR_A;
7706 if (changed_daif & CPSR_F) {
7707 /* Check to see if we are allowed to change the masking of FIQ
7708 * exceptions from a non-secure state.
7710 if (!(env->cp15.scr_el3 & SCR_FW)) {
7711 qemu_log_mask(LOG_GUEST_ERROR,
7712 "Ignoring attempt to switch CPSR_F flag from "
7713 "non-secure world with SCR.FW bit clear\n");
7714 mask &= ~CPSR_F;
7717 /* Check whether non-maskable FIQ (NMFI) support is enabled.
7718 * If this bit is set software is not allowed to mask
7719 * FIQs, but is allowed to set CPSR_F to 0.
7721 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
7722 (val & CPSR_F)) {
7723 qemu_log_mask(LOG_GUEST_ERROR,
7724 "Ignoring attempt to enable CPSR_F flag "
7725 "(non-maskable FIQ [NMFI] support enabled)\n");
7726 mask &= ~CPSR_F;
7731 env->daif &= ~(CPSR_AIF & mask);
7732 env->daif |= val & CPSR_AIF & mask;
7734 if (write_type != CPSRWriteRaw &&
7735 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
7736 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
7737 /* Note that we can only get here in USR mode if this is a
7738 * gdb stub write; for this case we follow the architectural
7739 * behaviour for guest writes in USR mode of ignoring an attempt
7740 * to switch mode. (Those are caught by translate.c for writes
7741 * triggered by guest instructions.)
7743 mask &= ~CPSR_M;
7744 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
7745 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
7746 * v7, and has defined behaviour in v8:
7747 * + leave CPSR.M untouched
7748 * + allow changes to the other CPSR fields
7749 * + set PSTATE.IL
7750 * For user changes via the GDB stub, we don't set PSTATE.IL,
7751 * as this would be unnecessarily harsh for a user error.
7753 mask &= ~CPSR_M;
7754 if (write_type != CPSRWriteByGDBStub &&
7755 arm_feature(env, ARM_FEATURE_V8)) {
7756 mask |= CPSR_IL;
7757 val |= CPSR_IL;
7759 qemu_log_mask(LOG_GUEST_ERROR,
7760 "Illegal AArch32 mode switch attempt from %s to %s\n",
7761 aarch32_mode_name(env->uncached_cpsr),
7762 aarch32_mode_name(val));
7763 } else {
7764 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
7765 write_type == CPSRWriteExceptionReturn ?
7766 "Exception return from AArch32" :
7767 "AArch32 mode switch from",
7768 aarch32_mode_name(env->uncached_cpsr),
7769 aarch32_mode_name(val), env->regs[15]);
7770 switch_mode(env, val & CPSR_M);
7773 mask &= ~CACHED_CPSR_BITS;
7774 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
7777 /* Sign/zero extend */
7778 uint32_t HELPER(sxtb16)(uint32_t x)
7780 uint32_t res;
7781 res = (uint16_t)(int8_t)x;
7782 res |= (uint32_t)(int8_t)(x >> 16) << 16;
7783 return res;
7786 uint32_t HELPER(uxtb16)(uint32_t x)
7788 uint32_t res;
7789 res = (uint16_t)(uint8_t)x;
7790 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
7791 return res;
7794 int32_t HELPER(sdiv)(int32_t num, int32_t den)
7796 if (den == 0)
7797 return 0;
7798 if (num == INT_MIN && den == -1)
7799 return INT_MIN;
7800 return num / den;
7803 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
7805 if (den == 0)
7806 return 0;
7807 return num / den;
7810 uint32_t HELPER(rbit)(uint32_t x)
7812 return revbit32(x);
7815 #ifdef CONFIG_USER_ONLY
7817 static void switch_mode(CPUARMState *env, int mode)
7819 ARMCPU *cpu = env_archcpu(env);
7821 if (mode != ARM_CPU_MODE_USR) {
7822 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
7826 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
7827 uint32_t cur_el, bool secure)
7829 return 1;
7832 void aarch64_sync_64_to_32(CPUARMState *env)
7834 g_assert_not_reached();
7837 #else
7839 static void switch_mode(CPUARMState *env, int mode)
7841 int old_mode;
7842 int i;
7844 old_mode = env->uncached_cpsr & CPSR_M;
7845 if (mode == old_mode)
7846 return;
7848 if (old_mode == ARM_CPU_MODE_FIQ) {
7849 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
7850 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
7851 } else if (mode == ARM_CPU_MODE_FIQ) {
7852 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
7853 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
7856 i = bank_number(old_mode);
7857 env->banked_r13[i] = env->regs[13];
7858 env->banked_spsr[i] = env->spsr;
7860 i = bank_number(mode);
7861 env->regs[13] = env->banked_r13[i];
7862 env->spsr = env->banked_spsr[i];
7864 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
7865 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
7868 /* Physical Interrupt Target EL Lookup Table
7870 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
7872 * The below multi-dimensional table is used for looking up the target
7873 * exception level given numerous condition criteria. Specifically, the
7874 * target EL is based on SCR and HCR routing controls as well as the
7875 * currently executing EL and secure state.
7877 * Dimensions:
7878 * target_el_table[2][2][2][2][2][4]
7879 * | | | | | +--- Current EL
7880 * | | | | +------ Non-secure(0)/Secure(1)
7881 * | | | +--------- HCR mask override
7882 * | | +------------ SCR exec state control
7883 * | +--------------- SCR mask override
7884 * +------------------ 32-bit(0)/64-bit(1) EL3
7886 * The table values are as such:
7887 * 0-3 = EL0-EL3
7888 * -1 = Cannot occur
7890 * The ARM ARM target EL table includes entries indicating that an "exception
7891 * is not taken". The two cases where this is applicable are:
7892 * 1) An exception is taken from EL3 but the SCR does not have the exception
7893 * routed to EL3.
7894 * 2) An exception is taken from EL2 but the HCR does not have the exception
7895 * routed to EL2.
7896 * In these two cases, the below table contain a target of EL1. This value is
7897 * returned as it is expected that the consumer of the table data will check
7898 * for "target EL >= current EL" to ensure the exception is not taken.
7900 * SCR HCR
7901 * 64 EA AMO From
7902 * BIT IRQ IMO Non-secure Secure
7903 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
7905 static const int8_t target_el_table[2][2][2][2][2][4] = {
7906 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
7907 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
7908 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
7909 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
7910 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
7911 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
7912 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
7913 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
7914 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
7915 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
7916 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
7917 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
7918 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
7919 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
7920 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
7921 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
7925 * Determine the target EL for physical exceptions
7927 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
7928 uint32_t cur_el, bool secure)
7930 CPUARMState *env = cs->env_ptr;
7931 bool rw;
7932 bool scr;
7933 bool hcr;
7934 int target_el;
7935 /* Is the highest EL AArch64? */
7936 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
7937 uint64_t hcr_el2;
7939 if (arm_feature(env, ARM_FEATURE_EL3)) {
7940 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
7941 } else {
7942 /* Either EL2 is the highest EL (and so the EL2 register width
7943 * is given by is64); or there is no EL2 or EL3, in which case
7944 * the value of 'rw' does not affect the table lookup anyway.
7946 rw = is64;
7949 hcr_el2 = arm_hcr_el2_eff(env);
7950 switch (excp_idx) {
7951 case EXCP_IRQ:
7952 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
7953 hcr = hcr_el2 & HCR_IMO;
7954 break;
7955 case EXCP_FIQ:
7956 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
7957 hcr = hcr_el2 & HCR_FMO;
7958 break;
7959 default:
7960 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
7961 hcr = hcr_el2 & HCR_AMO;
7962 break;
7965 /* Perform a table-lookup for the target EL given the current state */
7966 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
7968 assert(target_el > 0);
7970 return target_el;
7973 void arm_log_exception(int idx)
7975 if (qemu_loglevel_mask(CPU_LOG_INT)) {
7976 const char *exc = NULL;
7977 static const char * const excnames[] = {
7978 [EXCP_UDEF] = "Undefined Instruction",
7979 [EXCP_SWI] = "SVC",
7980 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
7981 [EXCP_DATA_ABORT] = "Data Abort",
7982 [EXCP_IRQ] = "IRQ",
7983 [EXCP_FIQ] = "FIQ",
7984 [EXCP_BKPT] = "Breakpoint",
7985 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
7986 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
7987 [EXCP_HVC] = "Hypervisor Call",
7988 [EXCP_HYP_TRAP] = "Hypervisor Trap",
7989 [EXCP_SMC] = "Secure Monitor Call",
7990 [EXCP_VIRQ] = "Virtual IRQ",
7991 [EXCP_VFIQ] = "Virtual FIQ",
7992 [EXCP_SEMIHOST] = "Semihosting call",
7993 [EXCP_NOCP] = "v7M NOCP UsageFault",
7994 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
7995 [EXCP_STKOF] = "v8M STKOF UsageFault",
7996 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
7997 [EXCP_LSERR] = "v8M LSERR UsageFault",
7998 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
8001 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
8002 exc = excnames[idx];
8004 if (!exc) {
8005 exc = "unknown";
8007 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
8012 * Function used to synchronize QEMU's AArch64 register set with AArch32
8013 * register set. This is necessary when switching between AArch32 and AArch64
8014 * execution state.
8016 void aarch64_sync_32_to_64(CPUARMState *env)
8018 int i;
8019 uint32_t mode = env->uncached_cpsr & CPSR_M;
8021 /* We can blanket copy R[0:7] to X[0:7] */
8022 for (i = 0; i < 8; i++) {
8023 env->xregs[i] = env->regs[i];
8027 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
8028 * Otherwise, they come from the banked user regs.
8030 if (mode == ARM_CPU_MODE_FIQ) {
8031 for (i = 8; i < 13; i++) {
8032 env->xregs[i] = env->usr_regs[i - 8];
8034 } else {
8035 for (i = 8; i < 13; i++) {
8036 env->xregs[i] = env->regs[i];
8041 * Registers x13-x23 are the various mode SP and FP registers. Registers
8042 * r13 and r14 are only copied if we are in that mode, otherwise we copy
8043 * from the mode banked register.
8045 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
8046 env->xregs[13] = env->regs[13];
8047 env->xregs[14] = env->regs[14];
8048 } else {
8049 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
8050 /* HYP is an exception in that it is copied from r14 */
8051 if (mode == ARM_CPU_MODE_HYP) {
8052 env->xregs[14] = env->regs[14];
8053 } else {
8054 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
8058 if (mode == ARM_CPU_MODE_HYP) {
8059 env->xregs[15] = env->regs[13];
8060 } else {
8061 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
8064 if (mode == ARM_CPU_MODE_IRQ) {
8065 env->xregs[16] = env->regs[14];
8066 env->xregs[17] = env->regs[13];
8067 } else {
8068 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
8069 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
8072 if (mode == ARM_CPU_MODE_SVC) {
8073 env->xregs[18] = env->regs[14];
8074 env->xregs[19] = env->regs[13];
8075 } else {
8076 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
8077 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
8080 if (mode == ARM_CPU_MODE_ABT) {
8081 env->xregs[20] = env->regs[14];
8082 env->xregs[21] = env->regs[13];
8083 } else {
8084 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
8085 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
8088 if (mode == ARM_CPU_MODE_UND) {
8089 env->xregs[22] = env->regs[14];
8090 env->xregs[23] = env->regs[13];
8091 } else {
8092 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
8093 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
8097 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
8098 * mode, then we can copy from r8-r14. Otherwise, we copy from the
8099 * FIQ bank for r8-r14.
8101 if (mode == ARM_CPU_MODE_FIQ) {
8102 for (i = 24; i < 31; i++) {
8103 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
8105 } else {
8106 for (i = 24; i < 29; i++) {
8107 env->xregs[i] = env->fiq_regs[i - 24];
8109 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
8110 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
8113 env->pc = env->regs[15];
8117 * Function used to synchronize QEMU's AArch32 register set with AArch64
8118 * register set. This is necessary when switching between AArch32 and AArch64
8119 * execution state.
8121 void aarch64_sync_64_to_32(CPUARMState *env)
8123 int i;
8124 uint32_t mode = env->uncached_cpsr & CPSR_M;
8126 /* We can blanket copy X[0:7] to R[0:7] */
8127 for (i = 0; i < 8; i++) {
8128 env->regs[i] = env->xregs[i];
8132 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
8133 * Otherwise, we copy x8-x12 into the banked user regs.
8135 if (mode == ARM_CPU_MODE_FIQ) {
8136 for (i = 8; i < 13; i++) {
8137 env->usr_regs[i - 8] = env->xregs[i];
8139 } else {
8140 for (i = 8; i < 13; i++) {
8141 env->regs[i] = env->xregs[i];
8146 * Registers r13 & r14 depend on the current mode.
8147 * If we are in a given mode, we copy the corresponding x registers to r13
8148 * and r14. Otherwise, we copy the x register to the banked r13 and r14
8149 * for the mode.
8151 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
8152 env->regs[13] = env->xregs[13];
8153 env->regs[14] = env->xregs[14];
8154 } else {
8155 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
8158 * HYP is an exception in that it does not have its own banked r14 but
8159 * shares the USR r14
8161 if (mode == ARM_CPU_MODE_HYP) {
8162 env->regs[14] = env->xregs[14];
8163 } else {
8164 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
8168 if (mode == ARM_CPU_MODE_HYP) {
8169 env->regs[13] = env->xregs[15];
8170 } else {
8171 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
8174 if (mode == ARM_CPU_MODE_IRQ) {
8175 env->regs[14] = env->xregs[16];
8176 env->regs[13] = env->xregs[17];
8177 } else {
8178 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
8179 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
8182 if (mode == ARM_CPU_MODE_SVC) {
8183 env->regs[14] = env->xregs[18];
8184 env->regs[13] = env->xregs[19];
8185 } else {
8186 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
8187 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
8190 if (mode == ARM_CPU_MODE_ABT) {
8191 env->regs[14] = env->xregs[20];
8192 env->regs[13] = env->xregs[21];
8193 } else {
8194 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
8195 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
8198 if (mode == ARM_CPU_MODE_UND) {
8199 env->regs[14] = env->xregs[22];
8200 env->regs[13] = env->xregs[23];
8201 } else {
8202 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
8203 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
8206 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
8207 * mode, then we can copy to r8-r14. Otherwise, we copy to the
8208 * FIQ bank for r8-r14.
8210 if (mode == ARM_CPU_MODE_FIQ) {
8211 for (i = 24; i < 31; i++) {
8212 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
8214 } else {
8215 for (i = 24; i < 29; i++) {
8216 env->fiq_regs[i - 24] = env->xregs[i];
8218 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
8219 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
8222 env->regs[15] = env->pc;
8225 static void take_aarch32_exception(CPUARMState *env, int new_mode,
8226 uint32_t mask, uint32_t offset,
8227 uint32_t newpc)
8229 /* Change the CPU state so as to actually take the exception. */
8230 switch_mode(env, new_mode);
8232 * For exceptions taken to AArch32 we must clear the SS bit in both
8233 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
8235 env->uncached_cpsr &= ~PSTATE_SS;
8236 env->spsr = cpsr_read(env);
8237 /* Clear IT bits. */
8238 env->condexec_bits = 0;
8239 /* Switch to the new mode, and to the correct instruction set. */
8240 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
8241 /* Set new mode endianness */
8242 env->uncached_cpsr &= ~CPSR_E;
8243 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
8244 env->uncached_cpsr |= CPSR_E;
8246 /* J and IL must always be cleared for exception entry */
8247 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
8248 env->daif |= mask;
8250 if (new_mode == ARM_CPU_MODE_HYP) {
8251 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
8252 env->elr_el[2] = env->regs[15];
8253 } else {
8255 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
8256 * and we should just guard the thumb mode on V4
8258 if (arm_feature(env, ARM_FEATURE_V4T)) {
8259 env->thumb =
8260 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
8262 env->regs[14] = env->regs[15] + offset;
8264 env->regs[15] = newpc;
8265 arm_rebuild_hflags(env);
8268 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
8271 * Handle exception entry to Hyp mode; this is sufficiently
8272 * different to entry to other AArch32 modes that we handle it
8273 * separately here.
8275 * The vector table entry used is always the 0x14 Hyp mode entry point,
8276 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
8277 * The offset applied to the preferred return address is always zero
8278 * (see DDI0487C.a section G1.12.3).
8279 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
8281 uint32_t addr, mask;
8282 ARMCPU *cpu = ARM_CPU(cs);
8283 CPUARMState *env = &cpu->env;
8285 switch (cs->exception_index) {
8286 case EXCP_UDEF:
8287 addr = 0x04;
8288 break;
8289 case EXCP_SWI:
8290 addr = 0x14;
8291 break;
8292 case EXCP_BKPT:
8293 /* Fall through to prefetch abort. */
8294 case EXCP_PREFETCH_ABORT:
8295 env->cp15.ifar_s = env->exception.vaddress;
8296 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
8297 (uint32_t)env->exception.vaddress);
8298 addr = 0x0c;
8299 break;
8300 case EXCP_DATA_ABORT:
8301 env->cp15.dfar_s = env->exception.vaddress;
8302 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
8303 (uint32_t)env->exception.vaddress);
8304 addr = 0x10;
8305 break;
8306 case EXCP_IRQ:
8307 addr = 0x18;
8308 break;
8309 case EXCP_FIQ:
8310 addr = 0x1c;
8311 break;
8312 case EXCP_HVC:
8313 addr = 0x08;
8314 break;
8315 case EXCP_HYP_TRAP:
8316 addr = 0x14;
8317 break;
8318 default:
8319 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8322 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
8323 if (!arm_feature(env, ARM_FEATURE_V8)) {
8325 * QEMU syndrome values are v8-style. v7 has the IL bit
8326 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
8327 * If this is a v7 CPU, squash the IL bit in those cases.
8329 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
8330 (cs->exception_index == EXCP_DATA_ABORT &&
8331 !(env->exception.syndrome & ARM_EL_ISV)) ||
8332 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
8333 env->exception.syndrome &= ~ARM_EL_IL;
8336 env->cp15.esr_el[2] = env->exception.syndrome;
8339 if (arm_current_el(env) != 2 && addr < 0x14) {
8340 addr = 0x14;
8343 mask = 0;
8344 if (!(env->cp15.scr_el3 & SCR_EA)) {
8345 mask |= CPSR_A;
8347 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
8348 mask |= CPSR_I;
8350 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
8351 mask |= CPSR_F;
8354 addr += env->cp15.hvbar;
8356 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
8359 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
8361 ARMCPU *cpu = ARM_CPU(cs);
8362 CPUARMState *env = &cpu->env;
8363 uint32_t addr;
8364 uint32_t mask;
8365 int new_mode;
8366 uint32_t offset;
8367 uint32_t moe;
8369 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
8370 switch (syn_get_ec(env->exception.syndrome)) {
8371 case EC_BREAKPOINT:
8372 case EC_BREAKPOINT_SAME_EL:
8373 moe = 1;
8374 break;
8375 case EC_WATCHPOINT:
8376 case EC_WATCHPOINT_SAME_EL:
8377 moe = 10;
8378 break;
8379 case EC_AA32_BKPT:
8380 moe = 3;
8381 break;
8382 case EC_VECTORCATCH:
8383 moe = 5;
8384 break;
8385 default:
8386 moe = 0;
8387 break;
8390 if (moe) {
8391 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
8394 if (env->exception.target_el == 2) {
8395 arm_cpu_do_interrupt_aarch32_hyp(cs);
8396 return;
8399 switch (cs->exception_index) {
8400 case EXCP_UDEF:
8401 new_mode = ARM_CPU_MODE_UND;
8402 addr = 0x04;
8403 mask = CPSR_I;
8404 if (env->thumb)
8405 offset = 2;
8406 else
8407 offset = 4;
8408 break;
8409 case EXCP_SWI:
8410 new_mode = ARM_CPU_MODE_SVC;
8411 addr = 0x08;
8412 mask = CPSR_I;
8413 /* The PC already points to the next instruction. */
8414 offset = 0;
8415 break;
8416 case EXCP_BKPT:
8417 /* Fall through to prefetch abort. */
8418 case EXCP_PREFETCH_ABORT:
8419 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
8420 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
8421 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
8422 env->exception.fsr, (uint32_t)env->exception.vaddress);
8423 new_mode = ARM_CPU_MODE_ABT;
8424 addr = 0x0c;
8425 mask = CPSR_A | CPSR_I;
8426 offset = 4;
8427 break;
8428 case EXCP_DATA_ABORT:
8429 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
8430 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
8431 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
8432 env->exception.fsr,
8433 (uint32_t)env->exception.vaddress);
8434 new_mode = ARM_CPU_MODE_ABT;
8435 addr = 0x10;
8436 mask = CPSR_A | CPSR_I;
8437 offset = 8;
8438 break;
8439 case EXCP_IRQ:
8440 new_mode = ARM_CPU_MODE_IRQ;
8441 addr = 0x18;
8442 /* Disable IRQ and imprecise data aborts. */
8443 mask = CPSR_A | CPSR_I;
8444 offset = 4;
8445 if (env->cp15.scr_el3 & SCR_IRQ) {
8446 /* IRQ routed to monitor mode */
8447 new_mode = ARM_CPU_MODE_MON;
8448 mask |= CPSR_F;
8450 break;
8451 case EXCP_FIQ:
8452 new_mode = ARM_CPU_MODE_FIQ;
8453 addr = 0x1c;
8454 /* Disable FIQ, IRQ and imprecise data aborts. */
8455 mask = CPSR_A | CPSR_I | CPSR_F;
8456 if (env->cp15.scr_el3 & SCR_FIQ) {
8457 /* FIQ routed to monitor mode */
8458 new_mode = ARM_CPU_MODE_MON;
8460 offset = 4;
8461 break;
8462 case EXCP_VIRQ:
8463 new_mode = ARM_CPU_MODE_IRQ;
8464 addr = 0x18;
8465 /* Disable IRQ and imprecise data aborts. */
8466 mask = CPSR_A | CPSR_I;
8467 offset = 4;
8468 break;
8469 case EXCP_VFIQ:
8470 new_mode = ARM_CPU_MODE_FIQ;
8471 addr = 0x1c;
8472 /* Disable FIQ, IRQ and imprecise data aborts. */
8473 mask = CPSR_A | CPSR_I | CPSR_F;
8474 offset = 4;
8475 break;
8476 case EXCP_SMC:
8477 new_mode = ARM_CPU_MODE_MON;
8478 addr = 0x08;
8479 mask = CPSR_A | CPSR_I | CPSR_F;
8480 offset = 0;
8481 break;
8482 default:
8483 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8484 return; /* Never happens. Keep compiler happy. */
8487 if (new_mode == ARM_CPU_MODE_MON) {
8488 addr += env->cp15.mvbar;
8489 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
8490 /* High vectors. When enabled, base address cannot be remapped. */
8491 addr += 0xffff0000;
8492 } else {
8493 /* ARM v7 architectures provide a vector base address register to remap
8494 * the interrupt vector table.
8495 * This register is only followed in non-monitor mode, and is banked.
8496 * Note: only bits 31:5 are valid.
8498 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
8501 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
8502 env->cp15.scr_el3 &= ~SCR_NS;
8505 take_aarch32_exception(env, new_mode, mask, offset, addr);
8508 /* Handle exception entry to a target EL which is using AArch64 */
8509 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
8511 ARMCPU *cpu = ARM_CPU(cs);
8512 CPUARMState *env = &cpu->env;
8513 unsigned int new_el = env->exception.target_el;
8514 target_ulong addr = env->cp15.vbar_el[new_el];
8515 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
8516 unsigned int cur_el = arm_current_el(env);
8519 * Note that new_el can never be 0. If cur_el is 0, then
8520 * el0_a64 is is_a64(), else el0_a64 is ignored.
8522 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
8524 if (cur_el < new_el) {
8525 /* Entry vector offset depends on whether the implemented EL
8526 * immediately lower than the target level is using AArch32 or AArch64
8528 bool is_aa64;
8530 switch (new_el) {
8531 case 3:
8532 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
8533 break;
8534 case 2:
8535 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
8536 break;
8537 case 1:
8538 is_aa64 = is_a64(env);
8539 break;
8540 default:
8541 g_assert_not_reached();
8544 if (is_aa64) {
8545 addr += 0x400;
8546 } else {
8547 addr += 0x600;
8549 } else if (pstate_read(env) & PSTATE_SP) {
8550 addr += 0x200;
8553 switch (cs->exception_index) {
8554 case EXCP_PREFETCH_ABORT:
8555 case EXCP_DATA_ABORT:
8556 env->cp15.far_el[new_el] = env->exception.vaddress;
8557 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
8558 env->cp15.far_el[new_el]);
8559 /* fall through */
8560 case EXCP_BKPT:
8561 case EXCP_UDEF:
8562 case EXCP_SWI:
8563 case EXCP_HVC:
8564 case EXCP_HYP_TRAP:
8565 case EXCP_SMC:
8566 if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) {
8568 * QEMU internal FP/SIMD syndromes from AArch32 include the
8569 * TA and coproc fields which are only exposed if the exception
8570 * is taken to AArch32 Hyp mode. Mask them out to get a valid
8571 * AArch64 format syndrome.
8573 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
8575 env->cp15.esr_el[new_el] = env->exception.syndrome;
8576 break;
8577 case EXCP_IRQ:
8578 case EXCP_VIRQ:
8579 addr += 0x80;
8580 break;
8581 case EXCP_FIQ:
8582 case EXCP_VFIQ:
8583 addr += 0x100;
8584 break;
8585 default:
8586 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8589 if (is_a64(env)) {
8590 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
8591 aarch64_save_sp(env, arm_current_el(env));
8592 env->elr_el[new_el] = env->pc;
8593 } else {
8594 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
8595 env->elr_el[new_el] = env->regs[15];
8597 aarch64_sync_32_to_64(env);
8599 env->condexec_bits = 0;
8601 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
8602 env->elr_el[new_el]);
8604 pstate_write(env, PSTATE_DAIF | new_mode);
8605 env->aarch64 = 1;
8606 aarch64_restore_sp(env, new_el);
8607 helper_rebuild_hflags_a64(env, new_el);
8609 env->pc = addr;
8611 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
8612 new_el, env->pc, pstate_read(env));
8616 * Do semihosting call and set the appropriate return value. All the
8617 * permission and validity checks have been done at translate time.
8619 * We only see semihosting exceptions in TCG only as they are not
8620 * trapped to the hypervisor in KVM.
8622 #ifdef CONFIG_TCG
8623 static void handle_semihosting(CPUState *cs)
8625 ARMCPU *cpu = ARM_CPU(cs);
8626 CPUARMState *env = &cpu->env;
8628 if (is_a64(env)) {
8629 qemu_log_mask(CPU_LOG_INT,
8630 "...handling as semihosting call 0x%" PRIx64 "\n",
8631 env->xregs[0]);
8632 env->xregs[0] = do_arm_semihosting(env);
8633 env->pc += 4;
8634 } else {
8635 qemu_log_mask(CPU_LOG_INT,
8636 "...handling as semihosting call 0x%x\n",
8637 env->regs[0]);
8638 env->regs[0] = do_arm_semihosting(env);
8639 env->regs[15] += env->thumb ? 2 : 4;
8642 #endif
8644 /* Handle a CPU exception for A and R profile CPUs.
8645 * Do any appropriate logging, handle PSCI calls, and then hand off
8646 * to the AArch64-entry or AArch32-entry function depending on the
8647 * target exception level's register width.
8649 void arm_cpu_do_interrupt(CPUState *cs)
8651 ARMCPU *cpu = ARM_CPU(cs);
8652 CPUARMState *env = &cpu->env;
8653 unsigned int new_el = env->exception.target_el;
8655 assert(!arm_feature(env, ARM_FEATURE_M));
8657 arm_log_exception(cs->exception_index);
8658 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
8659 new_el);
8660 if (qemu_loglevel_mask(CPU_LOG_INT)
8661 && !excp_is_internal(cs->exception_index)) {
8662 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
8663 syn_get_ec(env->exception.syndrome),
8664 env->exception.syndrome);
8667 if (arm_is_psci_call(cpu, cs->exception_index)) {
8668 arm_handle_psci_call(cpu);
8669 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
8670 return;
8674 * Semihosting semantics depend on the register width of the code
8675 * that caused the exception, not the target exception level, so
8676 * must be handled here.
8678 #ifdef CONFIG_TCG
8679 if (cs->exception_index == EXCP_SEMIHOST) {
8680 handle_semihosting(cs);
8681 return;
8683 #endif
8685 /* Hooks may change global state so BQL should be held, also the
8686 * BQL needs to be held for any modification of
8687 * cs->interrupt_request.
8689 g_assert(qemu_mutex_iothread_locked());
8691 arm_call_pre_el_change_hook(cpu);
8693 assert(!excp_is_internal(cs->exception_index));
8694 if (arm_el_is_aa64(env, new_el)) {
8695 arm_cpu_do_interrupt_aarch64(cs);
8696 } else {
8697 arm_cpu_do_interrupt_aarch32(cs);
8700 arm_call_el_change_hook(cpu);
8702 if (!kvm_enabled()) {
8703 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
8706 #endif /* !CONFIG_USER_ONLY */
8708 /* Return the exception level which controls this address translation regime */
8709 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
8711 switch (mmu_idx) {
8712 case ARMMMUIdx_S2NS:
8713 case ARMMMUIdx_S1E2:
8714 return 2;
8715 case ARMMMUIdx_S1E3:
8716 return 3;
8717 case ARMMMUIdx_S1SE0:
8718 return arm_el_is_aa64(env, 3) ? 1 : 3;
8719 case ARMMMUIdx_S1SE1:
8720 case ARMMMUIdx_S1NSE0:
8721 case ARMMMUIdx_S1NSE1:
8722 case ARMMMUIdx_MPrivNegPri:
8723 case ARMMMUIdx_MUserNegPri:
8724 case ARMMMUIdx_MPriv:
8725 case ARMMMUIdx_MUser:
8726 case ARMMMUIdx_MSPrivNegPri:
8727 case ARMMMUIdx_MSUserNegPri:
8728 case ARMMMUIdx_MSPriv:
8729 case ARMMMUIdx_MSUser:
8730 return 1;
8731 default:
8732 g_assert_not_reached();
8736 #ifndef CONFIG_USER_ONLY
8738 /* Return the SCTLR value which controls this address translation regime */
8739 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
8741 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
8744 /* Return true if the specified stage of address translation is disabled */
8745 static inline bool regime_translation_disabled(CPUARMState *env,
8746 ARMMMUIdx mmu_idx)
8748 if (arm_feature(env, ARM_FEATURE_M)) {
8749 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
8750 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
8751 case R_V7M_MPU_CTRL_ENABLE_MASK:
8752 /* Enabled, but not for HardFault and NMI */
8753 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
8754 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
8755 /* Enabled for all cases */
8756 return false;
8757 case 0:
8758 default:
8759 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
8760 * we warned about that in armv7m_nvic.c when the guest set it.
8762 return true;
8766 if (mmu_idx == ARMMMUIdx_S2NS) {
8767 /* HCR.DC means HCR.VM behaves as 1 */
8768 return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0;
8771 if (env->cp15.hcr_el2 & HCR_TGE) {
8772 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
8773 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
8774 return true;
8778 if ((env->cp15.hcr_el2 & HCR_DC) &&
8779 (mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1)) {
8780 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
8781 return true;
8784 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
8787 static inline bool regime_translation_big_endian(CPUARMState *env,
8788 ARMMMUIdx mmu_idx)
8790 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
8793 /* Return the TTBR associated with this translation regime */
8794 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
8795 int ttbrn)
8797 if (mmu_idx == ARMMMUIdx_S2NS) {
8798 return env->cp15.vttbr_el2;
8800 if (ttbrn == 0) {
8801 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
8802 } else {
8803 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
8807 #endif /* !CONFIG_USER_ONLY */
8809 /* Return the TCR controlling this translation regime */
8810 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
8812 if (mmu_idx == ARMMMUIdx_S2NS) {
8813 return &env->cp15.vtcr_el2;
8815 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
8818 /* Convert a possible stage1+2 MMU index into the appropriate
8819 * stage 1 MMU index
8821 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
8823 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
8824 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
8826 return mmu_idx;
8829 /* Return true if the translation regime is using LPAE format page tables */
8830 static inline bool regime_using_lpae_format(CPUARMState *env,
8831 ARMMMUIdx mmu_idx)
8833 int el = regime_el(env, mmu_idx);
8834 if (el == 2 || arm_el_is_aa64(env, el)) {
8835 return true;
8837 if (arm_feature(env, ARM_FEATURE_LPAE)
8838 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
8839 return true;
8841 return false;
8844 /* Returns true if the stage 1 translation regime is using LPAE format page
8845 * tables. Used when raising alignment exceptions, whose FSR changes depending
8846 * on whether the long or short descriptor format is in use. */
8847 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
8849 mmu_idx = stage_1_mmu_idx(mmu_idx);
8851 return regime_using_lpae_format(env, mmu_idx);
8854 #ifndef CONFIG_USER_ONLY
8855 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
8857 switch (mmu_idx) {
8858 case ARMMMUIdx_S1SE0:
8859 case ARMMMUIdx_S1NSE0:
8860 case ARMMMUIdx_MUser:
8861 case ARMMMUIdx_MSUser:
8862 case ARMMMUIdx_MUserNegPri:
8863 case ARMMMUIdx_MSUserNegPri:
8864 return true;
8865 default:
8866 return false;
8867 case ARMMMUIdx_S12NSE0:
8868 case ARMMMUIdx_S12NSE1:
8869 g_assert_not_reached();
8873 /* Translate section/page access permissions to page
8874 * R/W protection flags
8876 * @env: CPUARMState
8877 * @mmu_idx: MMU index indicating required translation regime
8878 * @ap: The 3-bit access permissions (AP[2:0])
8879 * @domain_prot: The 2-bit domain access permissions
8881 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
8882 int ap, int domain_prot)
8884 bool is_user = regime_is_user(env, mmu_idx);
8886 if (domain_prot == 3) {
8887 return PAGE_READ | PAGE_WRITE;
8890 switch (ap) {
8891 case 0:
8892 if (arm_feature(env, ARM_FEATURE_V7)) {
8893 return 0;
8895 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
8896 case SCTLR_S:
8897 return is_user ? 0 : PAGE_READ;
8898 case SCTLR_R:
8899 return PAGE_READ;
8900 default:
8901 return 0;
8903 case 1:
8904 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8905 case 2:
8906 if (is_user) {
8907 return PAGE_READ;
8908 } else {
8909 return PAGE_READ | PAGE_WRITE;
8911 case 3:
8912 return PAGE_READ | PAGE_WRITE;
8913 case 4: /* Reserved. */
8914 return 0;
8915 case 5:
8916 return is_user ? 0 : PAGE_READ;
8917 case 6:
8918 return PAGE_READ;
8919 case 7:
8920 if (!arm_feature(env, ARM_FEATURE_V6K)) {
8921 return 0;
8923 return PAGE_READ;
8924 default:
8925 g_assert_not_reached();
8929 /* Translate section/page access permissions to page
8930 * R/W protection flags.
8932 * @ap: The 2-bit simple AP (AP[2:1])
8933 * @is_user: TRUE if accessing from PL0
8935 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
8937 switch (ap) {
8938 case 0:
8939 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8940 case 1:
8941 return PAGE_READ | PAGE_WRITE;
8942 case 2:
8943 return is_user ? 0 : PAGE_READ;
8944 case 3:
8945 return PAGE_READ;
8946 default:
8947 g_assert_not_reached();
8951 static inline int
8952 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
8954 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
8957 /* Translate S2 section/page access permissions to protection flags
8959 * @env: CPUARMState
8960 * @s2ap: The 2-bit stage2 access permissions (S2AP)
8961 * @xn: XN (execute-never) bit
8963 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
8965 int prot = 0;
8967 if (s2ap & 1) {
8968 prot |= PAGE_READ;
8970 if (s2ap & 2) {
8971 prot |= PAGE_WRITE;
8973 if (!xn) {
8974 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
8975 prot |= PAGE_EXEC;
8978 return prot;
8981 /* Translate section/page access permissions to protection flags
8983 * @env: CPUARMState
8984 * @mmu_idx: MMU index indicating required translation regime
8985 * @is_aa64: TRUE if AArch64
8986 * @ap: The 2-bit simple AP (AP[2:1])
8987 * @ns: NS (non-secure) bit
8988 * @xn: XN (execute-never) bit
8989 * @pxn: PXN (privileged execute-never) bit
8991 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
8992 int ap, int ns, int xn, int pxn)
8994 bool is_user = regime_is_user(env, mmu_idx);
8995 int prot_rw, user_rw;
8996 bool have_wxn;
8997 int wxn = 0;
8999 assert(mmu_idx != ARMMMUIdx_S2NS);
9001 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
9002 if (is_user) {
9003 prot_rw = user_rw;
9004 } else {
9005 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
9008 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
9009 return prot_rw;
9012 /* TODO have_wxn should be replaced with
9013 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
9014 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
9015 * compatible processors have EL2, which is required for [U]WXN.
9017 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
9019 if (have_wxn) {
9020 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
9023 if (is_aa64) {
9024 switch (regime_el(env, mmu_idx)) {
9025 case 1:
9026 if (!is_user) {
9027 xn = pxn || (user_rw & PAGE_WRITE);
9029 break;
9030 case 2:
9031 case 3:
9032 break;
9034 } else if (arm_feature(env, ARM_FEATURE_V7)) {
9035 switch (regime_el(env, mmu_idx)) {
9036 case 1:
9037 case 3:
9038 if (is_user) {
9039 xn = xn || !(user_rw & PAGE_READ);
9040 } else {
9041 int uwxn = 0;
9042 if (have_wxn) {
9043 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
9045 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
9046 (uwxn && (user_rw & PAGE_WRITE));
9048 break;
9049 case 2:
9050 break;
9052 } else {
9053 xn = wxn = 0;
9056 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
9057 return prot_rw;
9059 return prot_rw | PAGE_EXEC;
9062 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
9063 uint32_t *table, uint32_t address)
9065 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
9066 TCR *tcr = regime_tcr(env, mmu_idx);
9068 if (address & tcr->mask) {
9069 if (tcr->raw_tcr & TTBCR_PD1) {
9070 /* Translation table walk disabled for TTBR1 */
9071 return false;
9073 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
9074 } else {
9075 if (tcr->raw_tcr & TTBCR_PD0) {
9076 /* Translation table walk disabled for TTBR0 */
9077 return false;
9079 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
9081 *table |= (address >> 18) & 0x3ffc;
9082 return true;
9085 /* Translate a S1 pagetable walk through S2 if needed. */
9086 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
9087 hwaddr addr, MemTxAttrs txattrs,
9088 ARMMMUFaultInfo *fi)
9090 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
9091 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
9092 target_ulong s2size;
9093 hwaddr s2pa;
9094 int s2prot;
9095 int ret;
9096 ARMCacheAttrs cacheattrs = {};
9097 ARMCacheAttrs *pcacheattrs = NULL;
9099 if (env->cp15.hcr_el2 & HCR_PTW) {
9101 * PTW means we must fault if this S1 walk touches S2 Device
9102 * memory; otherwise we don't care about the attributes and can
9103 * save the S2 translation the effort of computing them.
9105 pcacheattrs = &cacheattrs;
9108 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
9109 &txattrs, &s2prot, &s2size, fi, pcacheattrs);
9110 if (ret) {
9111 assert(fi->type != ARMFault_None);
9112 fi->s2addr = addr;
9113 fi->stage2 = true;
9114 fi->s1ptw = true;
9115 return ~0;
9117 if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) {
9118 /* Access was to Device memory: generate Permission fault */
9119 fi->type = ARMFault_Permission;
9120 fi->s2addr = addr;
9121 fi->stage2 = true;
9122 fi->s1ptw = true;
9123 return ~0;
9125 addr = s2pa;
9127 return addr;
9130 /* All loads done in the course of a page table walk go through here. */
9131 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
9132 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
9134 ARMCPU *cpu = ARM_CPU(cs);
9135 CPUARMState *env = &cpu->env;
9136 MemTxAttrs attrs = {};
9137 MemTxResult result = MEMTX_OK;
9138 AddressSpace *as;
9139 uint32_t data;
9141 attrs.secure = is_secure;
9142 as = arm_addressspace(cs, attrs);
9143 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
9144 if (fi->s1ptw) {
9145 return 0;
9147 if (regime_translation_big_endian(env, mmu_idx)) {
9148 data = address_space_ldl_be(as, addr, attrs, &result);
9149 } else {
9150 data = address_space_ldl_le(as, addr, attrs, &result);
9152 if (result == MEMTX_OK) {
9153 return data;
9155 fi->type = ARMFault_SyncExternalOnWalk;
9156 fi->ea = arm_extabort_type(result);
9157 return 0;
9160 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
9161 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
9163 ARMCPU *cpu = ARM_CPU(cs);
9164 CPUARMState *env = &cpu->env;
9165 MemTxAttrs attrs = {};
9166 MemTxResult result = MEMTX_OK;
9167 AddressSpace *as;
9168 uint64_t data;
9170 attrs.secure = is_secure;
9171 as = arm_addressspace(cs, attrs);
9172 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
9173 if (fi->s1ptw) {
9174 return 0;
9176 if (regime_translation_big_endian(env, mmu_idx)) {
9177 data = address_space_ldq_be(as, addr, attrs, &result);
9178 } else {
9179 data = address_space_ldq_le(as, addr, attrs, &result);
9181 if (result == MEMTX_OK) {
9182 return data;
9184 fi->type = ARMFault_SyncExternalOnWalk;
9185 fi->ea = arm_extabort_type(result);
9186 return 0;
9189 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
9190 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9191 hwaddr *phys_ptr, int *prot,
9192 target_ulong *page_size,
9193 ARMMMUFaultInfo *fi)
9195 CPUState *cs = env_cpu(env);
9196 int level = 1;
9197 uint32_t table;
9198 uint32_t desc;
9199 int type;
9200 int ap;
9201 int domain = 0;
9202 int domain_prot;
9203 hwaddr phys_addr;
9204 uint32_t dacr;
9206 /* Pagetable walk. */
9207 /* Lookup l1 descriptor. */
9208 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
9209 /* Section translation fault if page walk is disabled by PD0 or PD1 */
9210 fi->type = ARMFault_Translation;
9211 goto do_fault;
9213 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9214 mmu_idx, fi);
9215 if (fi->type != ARMFault_None) {
9216 goto do_fault;
9218 type = (desc & 3);
9219 domain = (desc >> 5) & 0x0f;
9220 if (regime_el(env, mmu_idx) == 1) {
9221 dacr = env->cp15.dacr_ns;
9222 } else {
9223 dacr = env->cp15.dacr_s;
9225 domain_prot = (dacr >> (domain * 2)) & 3;
9226 if (type == 0) {
9227 /* Section translation fault. */
9228 fi->type = ARMFault_Translation;
9229 goto do_fault;
9231 if (type != 2) {
9232 level = 2;
9234 if (domain_prot == 0 || domain_prot == 2) {
9235 fi->type = ARMFault_Domain;
9236 goto do_fault;
9238 if (type == 2) {
9239 /* 1Mb section. */
9240 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
9241 ap = (desc >> 10) & 3;
9242 *page_size = 1024 * 1024;
9243 } else {
9244 /* Lookup l2 entry. */
9245 if (type == 1) {
9246 /* Coarse pagetable. */
9247 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
9248 } else {
9249 /* Fine pagetable. */
9250 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
9252 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9253 mmu_idx, fi);
9254 if (fi->type != ARMFault_None) {
9255 goto do_fault;
9257 switch (desc & 3) {
9258 case 0: /* Page translation fault. */
9259 fi->type = ARMFault_Translation;
9260 goto do_fault;
9261 case 1: /* 64k page. */
9262 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
9263 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
9264 *page_size = 0x10000;
9265 break;
9266 case 2: /* 4k page. */
9267 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
9268 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
9269 *page_size = 0x1000;
9270 break;
9271 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
9272 if (type == 1) {
9273 /* ARMv6/XScale extended small page format */
9274 if (arm_feature(env, ARM_FEATURE_XSCALE)
9275 || arm_feature(env, ARM_FEATURE_V6)) {
9276 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
9277 *page_size = 0x1000;
9278 } else {
9279 /* UNPREDICTABLE in ARMv5; we choose to take a
9280 * page translation fault.
9282 fi->type = ARMFault_Translation;
9283 goto do_fault;
9285 } else {
9286 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
9287 *page_size = 0x400;
9289 ap = (desc >> 4) & 3;
9290 break;
9291 default:
9292 /* Never happens, but compiler isn't smart enough to tell. */
9293 abort();
9296 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
9297 *prot |= *prot ? PAGE_EXEC : 0;
9298 if (!(*prot & (1 << access_type))) {
9299 /* Access permission fault. */
9300 fi->type = ARMFault_Permission;
9301 goto do_fault;
9303 *phys_ptr = phys_addr;
9304 return false;
9305 do_fault:
9306 fi->domain = domain;
9307 fi->level = level;
9308 return true;
9311 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
9312 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9313 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
9314 target_ulong *page_size, ARMMMUFaultInfo *fi)
9316 CPUState *cs = env_cpu(env);
9317 int level = 1;
9318 uint32_t table;
9319 uint32_t desc;
9320 uint32_t xn;
9321 uint32_t pxn = 0;
9322 int type;
9323 int ap;
9324 int domain = 0;
9325 int domain_prot;
9326 hwaddr phys_addr;
9327 uint32_t dacr;
9328 bool ns;
9330 /* Pagetable walk. */
9331 /* Lookup l1 descriptor. */
9332 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
9333 /* Section translation fault if page walk is disabled by PD0 or PD1 */
9334 fi->type = ARMFault_Translation;
9335 goto do_fault;
9337 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9338 mmu_idx, fi);
9339 if (fi->type != ARMFault_None) {
9340 goto do_fault;
9342 type = (desc & 3);
9343 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
9344 /* Section translation fault, or attempt to use the encoding
9345 * which is Reserved on implementations without PXN.
9347 fi->type = ARMFault_Translation;
9348 goto do_fault;
9350 if ((type == 1) || !(desc & (1 << 18))) {
9351 /* Page or Section. */
9352 domain = (desc >> 5) & 0x0f;
9354 if (regime_el(env, mmu_idx) == 1) {
9355 dacr = env->cp15.dacr_ns;
9356 } else {
9357 dacr = env->cp15.dacr_s;
9359 if (type == 1) {
9360 level = 2;
9362 domain_prot = (dacr >> (domain * 2)) & 3;
9363 if (domain_prot == 0 || domain_prot == 2) {
9364 /* Section or Page domain fault */
9365 fi->type = ARMFault_Domain;
9366 goto do_fault;
9368 if (type != 1) {
9369 if (desc & (1 << 18)) {
9370 /* Supersection. */
9371 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
9372 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
9373 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
9374 *page_size = 0x1000000;
9375 } else {
9376 /* Section. */
9377 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
9378 *page_size = 0x100000;
9380 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
9381 xn = desc & (1 << 4);
9382 pxn = desc & 1;
9383 ns = extract32(desc, 19, 1);
9384 } else {
9385 if (arm_feature(env, ARM_FEATURE_PXN)) {
9386 pxn = (desc >> 2) & 1;
9388 ns = extract32(desc, 3, 1);
9389 /* Lookup l2 entry. */
9390 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
9391 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9392 mmu_idx, fi);
9393 if (fi->type != ARMFault_None) {
9394 goto do_fault;
9396 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
9397 switch (desc & 3) {
9398 case 0: /* Page translation fault. */
9399 fi->type = ARMFault_Translation;
9400 goto do_fault;
9401 case 1: /* 64k page. */
9402 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
9403 xn = desc & (1 << 15);
9404 *page_size = 0x10000;
9405 break;
9406 case 2: case 3: /* 4k page. */
9407 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
9408 xn = desc & 1;
9409 *page_size = 0x1000;
9410 break;
9411 default:
9412 /* Never happens, but compiler isn't smart enough to tell. */
9413 abort();
9416 if (domain_prot == 3) {
9417 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9418 } else {
9419 if (pxn && !regime_is_user(env, mmu_idx)) {
9420 xn = 1;
9422 if (xn && access_type == MMU_INST_FETCH) {
9423 fi->type = ARMFault_Permission;
9424 goto do_fault;
9427 if (arm_feature(env, ARM_FEATURE_V6K) &&
9428 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
9429 /* The simplified model uses AP[0] as an access control bit. */
9430 if ((ap & 1) == 0) {
9431 /* Access flag fault. */
9432 fi->type = ARMFault_AccessFlag;
9433 goto do_fault;
9435 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
9436 } else {
9437 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
9439 if (*prot && !xn) {
9440 *prot |= PAGE_EXEC;
9442 if (!(*prot & (1 << access_type))) {
9443 /* Access permission fault. */
9444 fi->type = ARMFault_Permission;
9445 goto do_fault;
9448 if (ns) {
9449 /* The NS bit will (as required by the architecture) have no effect if
9450 * the CPU doesn't support TZ or this is a non-secure translation
9451 * regime, because the attribute will already be non-secure.
9453 attrs->secure = false;
9455 *phys_ptr = phys_addr;
9456 return false;
9457 do_fault:
9458 fi->domain = domain;
9459 fi->level = level;
9460 return true;
9464 * check_s2_mmu_setup
9465 * @cpu: ARMCPU
9466 * @is_aa64: True if the translation regime is in AArch64 state
9467 * @startlevel: Suggested starting level
9468 * @inputsize: Bitsize of IPAs
9469 * @stride: Page-table stride (See the ARM ARM)
9471 * Returns true if the suggested S2 translation parameters are OK and
9472 * false otherwise.
9474 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
9475 int inputsize, int stride)
9477 const int grainsize = stride + 3;
9478 int startsizecheck;
9480 /* Negative levels are never allowed. */
9481 if (level < 0) {
9482 return false;
9485 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
9486 if (startsizecheck < 1 || startsizecheck > stride + 4) {
9487 return false;
9490 if (is_aa64) {
9491 CPUARMState *env = &cpu->env;
9492 unsigned int pamax = arm_pamax(cpu);
9494 switch (stride) {
9495 case 13: /* 64KB Pages. */
9496 if (level == 0 || (level == 1 && pamax <= 42)) {
9497 return false;
9499 break;
9500 case 11: /* 16KB Pages. */
9501 if (level == 0 || (level == 1 && pamax <= 40)) {
9502 return false;
9504 break;
9505 case 9: /* 4KB Pages. */
9506 if (level == 0 && pamax <= 42) {
9507 return false;
9509 break;
9510 default:
9511 g_assert_not_reached();
9514 /* Inputsize checks. */
9515 if (inputsize > pamax &&
9516 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
9517 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
9518 return false;
9520 } else {
9521 /* AArch32 only supports 4KB pages. Assert on that. */
9522 assert(stride == 9);
9524 if (level == 0) {
9525 return false;
9528 return true;
9531 /* Translate from the 4-bit stage 2 representation of
9532 * memory attributes (without cache-allocation hints) to
9533 * the 8-bit representation of the stage 1 MAIR registers
9534 * (which includes allocation hints).
9536 * ref: shared/translation/attrs/S2AttrDecode()
9537 * .../S2ConvertAttrsHints()
9539 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
9541 uint8_t hiattr = extract32(s2attrs, 2, 2);
9542 uint8_t loattr = extract32(s2attrs, 0, 2);
9543 uint8_t hihint = 0, lohint = 0;
9545 if (hiattr != 0) { /* normal memory */
9546 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
9547 hiattr = loattr = 1; /* non-cacheable */
9548 } else {
9549 if (hiattr != 1) { /* Write-through or write-back */
9550 hihint = 3; /* RW allocate */
9552 if (loattr != 1) { /* Write-through or write-back */
9553 lohint = 3; /* RW allocate */
9558 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
9560 #endif /* !CONFIG_USER_ONLY */
9562 ARMVAParameters aa64_va_parameters_both(CPUARMState *env, uint64_t va,
9563 ARMMMUIdx mmu_idx)
9565 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
9566 uint32_t el = regime_el(env, mmu_idx);
9567 bool tbi, tbid, epd, hpd, using16k, using64k;
9568 int select, tsz;
9571 * Bit 55 is always between the two regions, and is canonical for
9572 * determining if address tagging is enabled.
9574 select = extract64(va, 55, 1);
9576 if (el > 1) {
9577 tsz = extract32(tcr, 0, 6);
9578 using64k = extract32(tcr, 14, 1);
9579 using16k = extract32(tcr, 15, 1);
9580 if (mmu_idx == ARMMMUIdx_S2NS) {
9581 /* VTCR_EL2 */
9582 tbi = tbid = hpd = false;
9583 } else {
9584 tbi = extract32(tcr, 20, 1);
9585 hpd = extract32(tcr, 24, 1);
9586 tbid = extract32(tcr, 29, 1);
9588 epd = false;
9589 } else if (!select) {
9590 tsz = extract32(tcr, 0, 6);
9591 epd = extract32(tcr, 7, 1);
9592 using64k = extract32(tcr, 14, 1);
9593 using16k = extract32(tcr, 15, 1);
9594 tbi = extract64(tcr, 37, 1);
9595 hpd = extract64(tcr, 41, 1);
9596 tbid = extract64(tcr, 51, 1);
9597 } else {
9598 int tg = extract32(tcr, 30, 2);
9599 using16k = tg == 1;
9600 using64k = tg == 3;
9601 tsz = extract32(tcr, 16, 6);
9602 epd = extract32(tcr, 23, 1);
9603 tbi = extract64(tcr, 38, 1);
9604 hpd = extract64(tcr, 42, 1);
9605 tbid = extract64(tcr, 52, 1);
9607 tsz = MIN(tsz, 39); /* TODO: ARMv8.4-TTST */
9608 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */
9610 return (ARMVAParameters) {
9611 .tsz = tsz,
9612 .select = select,
9613 .tbi = tbi,
9614 .tbid = tbid,
9615 .epd = epd,
9616 .hpd = hpd,
9617 .using16k = using16k,
9618 .using64k = using64k,
9622 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
9623 ARMMMUIdx mmu_idx, bool data)
9625 ARMVAParameters ret = aa64_va_parameters_both(env, va, mmu_idx);
9627 /* Present TBI as a composite with TBID. */
9628 ret.tbi &= (data || !ret.tbid);
9629 return ret;
9632 #ifndef CONFIG_USER_ONLY
9633 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
9634 ARMMMUIdx mmu_idx)
9636 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
9637 uint32_t el = regime_el(env, mmu_idx);
9638 int select, tsz;
9639 bool epd, hpd;
9641 if (mmu_idx == ARMMMUIdx_S2NS) {
9642 /* VTCR */
9643 bool sext = extract32(tcr, 4, 1);
9644 bool sign = extract32(tcr, 3, 1);
9647 * If the sign-extend bit is not the same as t0sz[3], the result
9648 * is unpredictable. Flag this as a guest error.
9650 if (sign != sext) {
9651 qemu_log_mask(LOG_GUEST_ERROR,
9652 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
9654 tsz = sextract32(tcr, 0, 4) + 8;
9655 select = 0;
9656 hpd = false;
9657 epd = false;
9658 } else if (el == 2) {
9659 /* HTCR */
9660 tsz = extract32(tcr, 0, 3);
9661 select = 0;
9662 hpd = extract64(tcr, 24, 1);
9663 epd = false;
9664 } else {
9665 int t0sz = extract32(tcr, 0, 3);
9666 int t1sz = extract32(tcr, 16, 3);
9668 if (t1sz == 0) {
9669 select = va > (0xffffffffu >> t0sz);
9670 } else {
9671 /* Note that we will detect errors later. */
9672 select = va >= ~(0xffffffffu >> t1sz);
9674 if (!select) {
9675 tsz = t0sz;
9676 epd = extract32(tcr, 7, 1);
9677 hpd = extract64(tcr, 41, 1);
9678 } else {
9679 tsz = t1sz;
9680 epd = extract32(tcr, 23, 1);
9681 hpd = extract64(tcr, 42, 1);
9683 /* For aarch32, hpd0 is not enabled without t2e as well. */
9684 hpd &= extract32(tcr, 6, 1);
9687 return (ARMVAParameters) {
9688 .tsz = tsz,
9689 .select = select,
9690 .epd = epd,
9691 .hpd = hpd,
9695 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
9696 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9697 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
9698 target_ulong *page_size_ptr,
9699 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
9701 ARMCPU *cpu = env_archcpu(env);
9702 CPUState *cs = CPU(cpu);
9703 /* Read an LPAE long-descriptor translation table. */
9704 ARMFaultType fault_type = ARMFault_Translation;
9705 uint32_t level;
9706 ARMVAParameters param;
9707 uint64_t ttbr;
9708 hwaddr descaddr, indexmask, indexmask_grainsize;
9709 uint32_t tableattrs;
9710 target_ulong page_size;
9711 uint32_t attrs;
9712 int32_t stride;
9713 int addrsize, inputsize;
9714 TCR *tcr = regime_tcr(env, mmu_idx);
9715 int ap, ns, xn, pxn;
9716 uint32_t el = regime_el(env, mmu_idx);
9717 bool ttbr1_valid;
9718 uint64_t descaddrmask;
9719 bool aarch64 = arm_el_is_aa64(env, el);
9720 bool guarded = false;
9722 /* TODO:
9723 * This code does not handle the different format TCR for VTCR_EL2.
9724 * This code also does not support shareability levels.
9725 * Attribute and permission bit handling should also be checked when adding
9726 * support for those page table walks.
9728 if (aarch64) {
9729 param = aa64_va_parameters(env, address, mmu_idx,
9730 access_type != MMU_INST_FETCH);
9731 level = 0;
9732 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
9733 * invalid.
9735 ttbr1_valid = (el < 2);
9736 addrsize = 64 - 8 * param.tbi;
9737 inputsize = 64 - param.tsz;
9738 } else {
9739 param = aa32_va_parameters(env, address, mmu_idx);
9740 level = 1;
9741 /* There is no TTBR1 for EL2 */
9742 ttbr1_valid = (el != 2);
9743 addrsize = (mmu_idx == ARMMMUIdx_S2NS ? 40 : 32);
9744 inputsize = addrsize - param.tsz;
9748 * We determined the region when collecting the parameters, but we
9749 * have not yet validated that the address is valid for the region.
9750 * Extract the top bits and verify that they all match select.
9752 * For aa32, if inputsize == addrsize, then we have selected the
9753 * region by exclusion in aa32_va_parameters and there is no more
9754 * validation to do here.
9756 if (inputsize < addrsize) {
9757 target_ulong top_bits = sextract64(address, inputsize,
9758 addrsize - inputsize);
9759 if (-top_bits != param.select || (param.select && !ttbr1_valid)) {
9760 /* The gap between the two regions is a Translation fault */
9761 fault_type = ARMFault_Translation;
9762 goto do_fault;
9766 if (param.using64k) {
9767 stride = 13;
9768 } else if (param.using16k) {
9769 stride = 11;
9770 } else {
9771 stride = 9;
9774 /* Note that QEMU ignores shareability and cacheability attributes,
9775 * so we don't need to do anything with the SH, ORGN, IRGN fields
9776 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
9777 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
9778 * implement any ASID-like capability so we can ignore it (instead
9779 * we will always flush the TLB any time the ASID is changed).
9781 ttbr = regime_ttbr(env, mmu_idx, param.select);
9783 /* Here we should have set up all the parameters for the translation:
9784 * inputsize, ttbr, epd, stride, tbi
9787 if (param.epd) {
9788 /* Translation table walk disabled => Translation fault on TLB miss
9789 * Note: This is always 0 on 64-bit EL2 and EL3.
9791 goto do_fault;
9794 if (mmu_idx != ARMMMUIdx_S2NS) {
9795 /* The starting level depends on the virtual address size (which can
9796 * be up to 48 bits) and the translation granule size. It indicates
9797 * the number of strides (stride bits at a time) needed to
9798 * consume the bits of the input address. In the pseudocode this is:
9799 * level = 4 - RoundUp((inputsize - grainsize) / stride)
9800 * where their 'inputsize' is our 'inputsize', 'grainsize' is
9801 * our 'stride + 3' and 'stride' is our 'stride'.
9802 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
9803 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
9804 * = 4 - (inputsize - 4) / stride;
9806 level = 4 - (inputsize - 4) / stride;
9807 } else {
9808 /* For stage 2 translations the starting level is specified by the
9809 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
9811 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
9812 uint32_t startlevel;
9813 bool ok;
9815 if (!aarch64 || stride == 9) {
9816 /* AArch32 or 4KB pages */
9817 startlevel = 2 - sl0;
9818 } else {
9819 /* 16KB or 64KB pages */
9820 startlevel = 3 - sl0;
9823 /* Check that the starting level is valid. */
9824 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
9825 inputsize, stride);
9826 if (!ok) {
9827 fault_type = ARMFault_Translation;
9828 goto do_fault;
9830 level = startlevel;
9833 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
9834 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
9836 /* Now we can extract the actual base address from the TTBR */
9837 descaddr = extract64(ttbr, 0, 48);
9838 descaddr &= ~indexmask;
9840 /* The address field in the descriptor goes up to bit 39 for ARMv7
9841 * but up to bit 47 for ARMv8, but we use the descaddrmask
9842 * up to bit 39 for AArch32, because we don't need other bits in that case
9843 * to construct next descriptor address (anyway they should be all zeroes).
9845 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
9846 ~indexmask_grainsize;
9848 /* Secure accesses start with the page table in secure memory and
9849 * can be downgraded to non-secure at any step. Non-secure accesses
9850 * remain non-secure. We implement this by just ORing in the NSTable/NS
9851 * bits at each step.
9853 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
9854 for (;;) {
9855 uint64_t descriptor;
9856 bool nstable;
9858 descaddr |= (address >> (stride * (4 - level))) & indexmask;
9859 descaddr &= ~7ULL;
9860 nstable = extract32(tableattrs, 4, 1);
9861 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
9862 if (fi->type != ARMFault_None) {
9863 goto do_fault;
9866 if (!(descriptor & 1) ||
9867 (!(descriptor & 2) && (level == 3))) {
9868 /* Invalid, or the Reserved level 3 encoding */
9869 goto do_fault;
9871 descaddr = descriptor & descaddrmask;
9873 if ((descriptor & 2) && (level < 3)) {
9874 /* Table entry. The top five bits are attributes which may
9875 * propagate down through lower levels of the table (and
9876 * which are all arranged so that 0 means "no effect", so
9877 * we can gather them up by ORing in the bits at each level).
9879 tableattrs |= extract64(descriptor, 59, 5);
9880 level++;
9881 indexmask = indexmask_grainsize;
9882 continue;
9884 /* Block entry at level 1 or 2, or page entry at level 3.
9885 * These are basically the same thing, although the number
9886 * of bits we pull in from the vaddr varies.
9888 page_size = (1ULL << ((stride * (4 - level)) + 3));
9889 descaddr |= (address & (page_size - 1));
9890 /* Extract attributes from the descriptor */
9891 attrs = extract64(descriptor, 2, 10)
9892 | (extract64(descriptor, 52, 12) << 10);
9894 if (mmu_idx == ARMMMUIdx_S2NS) {
9895 /* Stage 2 table descriptors do not include any attribute fields */
9896 break;
9898 /* Merge in attributes from table descriptors */
9899 attrs |= nstable << 3; /* NS */
9900 guarded = extract64(descriptor, 50, 1); /* GP */
9901 if (param.hpd) {
9902 /* HPD disables all the table attributes except NSTable. */
9903 break;
9905 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
9906 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
9907 * means "force PL1 access only", which means forcing AP[1] to 0.
9909 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */
9910 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */
9911 break;
9913 /* Here descaddr is the final physical address, and attributes
9914 * are all in attrs.
9916 fault_type = ARMFault_AccessFlag;
9917 if ((attrs & (1 << 8)) == 0) {
9918 /* Access flag */
9919 goto do_fault;
9922 ap = extract32(attrs, 4, 2);
9923 xn = extract32(attrs, 12, 1);
9925 if (mmu_idx == ARMMMUIdx_S2NS) {
9926 ns = true;
9927 *prot = get_S2prot(env, ap, xn);
9928 } else {
9929 ns = extract32(attrs, 3, 1);
9930 pxn = extract32(attrs, 11, 1);
9931 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
9934 fault_type = ARMFault_Permission;
9935 if (!(*prot & (1 << access_type))) {
9936 goto do_fault;
9939 if (ns) {
9940 /* The NS bit will (as required by the architecture) have no effect if
9941 * the CPU doesn't support TZ or this is a non-secure translation
9942 * regime, because the attribute will already be non-secure.
9944 txattrs->secure = false;
9946 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */
9947 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
9948 txattrs->target_tlb_bit0 = true;
9951 if (cacheattrs != NULL) {
9952 if (mmu_idx == ARMMMUIdx_S2NS) {
9953 cacheattrs->attrs = convert_stage2_attrs(env,
9954 extract32(attrs, 0, 4));
9955 } else {
9956 /* Index into MAIR registers for cache attributes */
9957 uint8_t attrindx = extract32(attrs, 0, 3);
9958 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
9959 assert(attrindx <= 7);
9960 cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
9962 cacheattrs->shareability = extract32(attrs, 6, 2);
9965 *phys_ptr = descaddr;
9966 *page_size_ptr = page_size;
9967 return false;
9969 do_fault:
9970 fi->type = fault_type;
9971 fi->level = level;
9972 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
9973 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
9974 return true;
9977 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
9978 ARMMMUIdx mmu_idx,
9979 int32_t address, int *prot)
9981 if (!arm_feature(env, ARM_FEATURE_M)) {
9982 *prot = PAGE_READ | PAGE_WRITE;
9983 switch (address) {
9984 case 0xF0000000 ... 0xFFFFFFFF:
9985 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
9986 /* hivecs execing is ok */
9987 *prot |= PAGE_EXEC;
9989 break;
9990 case 0x00000000 ... 0x7FFFFFFF:
9991 *prot |= PAGE_EXEC;
9992 break;
9994 } else {
9995 /* Default system address map for M profile cores.
9996 * The architecture specifies which regions are execute-never;
9997 * at the MPU level no other checks are defined.
9999 switch (address) {
10000 case 0x00000000 ... 0x1fffffff: /* ROM */
10001 case 0x20000000 ... 0x3fffffff: /* SRAM */
10002 case 0x60000000 ... 0x7fffffff: /* RAM */
10003 case 0x80000000 ... 0x9fffffff: /* RAM */
10004 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10005 break;
10006 case 0x40000000 ... 0x5fffffff: /* Peripheral */
10007 case 0xa0000000 ... 0xbfffffff: /* Device */
10008 case 0xc0000000 ... 0xdfffffff: /* Device */
10009 case 0xe0000000 ... 0xffffffff: /* System */
10010 *prot = PAGE_READ | PAGE_WRITE;
10011 break;
10012 default:
10013 g_assert_not_reached();
10018 static bool pmsav7_use_background_region(ARMCPU *cpu,
10019 ARMMMUIdx mmu_idx, bool is_user)
10021 /* Return true if we should use the default memory map as a
10022 * "background" region if there are no hits against any MPU regions.
10024 CPUARMState *env = &cpu->env;
10026 if (is_user) {
10027 return false;
10030 if (arm_feature(env, ARM_FEATURE_M)) {
10031 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
10032 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
10033 } else {
10034 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
10038 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
10040 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
10041 return arm_feature(env, ARM_FEATURE_M) &&
10042 extract32(address, 20, 12) == 0xe00;
10045 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
10047 /* True if address is in the M profile system region
10048 * 0xe0000000 - 0xffffffff
10050 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
10053 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
10054 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10055 hwaddr *phys_ptr, int *prot,
10056 target_ulong *page_size,
10057 ARMMMUFaultInfo *fi)
10059 ARMCPU *cpu = env_archcpu(env);
10060 int n;
10061 bool is_user = regime_is_user(env, mmu_idx);
10063 *phys_ptr = address;
10064 *page_size = TARGET_PAGE_SIZE;
10065 *prot = 0;
10067 if (regime_translation_disabled(env, mmu_idx) ||
10068 m_is_ppb_region(env, address)) {
10069 /* MPU disabled or M profile PPB access: use default memory map.
10070 * The other case which uses the default memory map in the
10071 * v7M ARM ARM pseudocode is exception vector reads from the vector
10072 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
10073 * which always does a direct read using address_space_ldl(), rather
10074 * than going via this function, so we don't need to check that here.
10076 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
10077 } else { /* MPU enabled */
10078 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
10079 /* region search */
10080 uint32_t base = env->pmsav7.drbar[n];
10081 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
10082 uint32_t rmask;
10083 bool srdis = false;
10085 if (!(env->pmsav7.drsr[n] & 0x1)) {
10086 continue;
10089 if (!rsize) {
10090 qemu_log_mask(LOG_GUEST_ERROR,
10091 "DRSR[%d]: Rsize field cannot be 0\n", n);
10092 continue;
10094 rsize++;
10095 rmask = (1ull << rsize) - 1;
10097 if (base & rmask) {
10098 qemu_log_mask(LOG_GUEST_ERROR,
10099 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
10100 "to DRSR region size, mask = 0x%" PRIx32 "\n",
10101 n, base, rmask);
10102 continue;
10105 if (address < base || address > base + rmask) {
10107 * Address not in this region. We must check whether the
10108 * region covers addresses in the same page as our address.
10109 * In that case we must not report a size that covers the
10110 * whole page for a subsequent hit against a different MPU
10111 * region or the background region, because it would result in
10112 * incorrect TLB hits for subsequent accesses to addresses that
10113 * are in this MPU region.
10115 if (ranges_overlap(base, rmask,
10116 address & TARGET_PAGE_MASK,
10117 TARGET_PAGE_SIZE)) {
10118 *page_size = 1;
10120 continue;
10123 /* Region matched */
10125 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
10126 int i, snd;
10127 uint32_t srdis_mask;
10129 rsize -= 3; /* sub region size (power of 2) */
10130 snd = ((address - base) >> rsize) & 0x7;
10131 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
10133 srdis_mask = srdis ? 0x3 : 0x0;
10134 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
10135 /* This will check in groups of 2, 4 and then 8, whether
10136 * the subregion bits are consistent. rsize is incremented
10137 * back up to give the region size, considering consistent
10138 * adjacent subregions as one region. Stop testing if rsize
10139 * is already big enough for an entire QEMU page.
10141 int snd_rounded = snd & ~(i - 1);
10142 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
10143 snd_rounded + 8, i);
10144 if (srdis_mask ^ srdis_multi) {
10145 break;
10147 srdis_mask = (srdis_mask << i) | srdis_mask;
10148 rsize++;
10151 if (srdis) {
10152 continue;
10154 if (rsize < TARGET_PAGE_BITS) {
10155 *page_size = 1 << rsize;
10157 break;
10160 if (n == -1) { /* no hits */
10161 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
10162 /* background fault */
10163 fi->type = ARMFault_Background;
10164 return true;
10166 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
10167 } else { /* a MPU hit! */
10168 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
10169 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
10171 if (m_is_system_region(env, address)) {
10172 /* System space is always execute never */
10173 xn = 1;
10176 if (is_user) { /* User mode AP bit decoding */
10177 switch (ap) {
10178 case 0:
10179 case 1:
10180 case 5:
10181 break; /* no access */
10182 case 3:
10183 *prot |= PAGE_WRITE;
10184 /* fall through */
10185 case 2:
10186 case 6:
10187 *prot |= PAGE_READ | PAGE_EXEC;
10188 break;
10189 case 7:
10190 /* for v7M, same as 6; for R profile a reserved value */
10191 if (arm_feature(env, ARM_FEATURE_M)) {
10192 *prot |= PAGE_READ | PAGE_EXEC;
10193 break;
10195 /* fall through */
10196 default:
10197 qemu_log_mask(LOG_GUEST_ERROR,
10198 "DRACR[%d]: Bad value for AP bits: 0x%"
10199 PRIx32 "\n", n, ap);
10201 } else { /* Priv. mode AP bits decoding */
10202 switch (ap) {
10203 case 0:
10204 break; /* no access */
10205 case 1:
10206 case 2:
10207 case 3:
10208 *prot |= PAGE_WRITE;
10209 /* fall through */
10210 case 5:
10211 case 6:
10212 *prot |= PAGE_READ | PAGE_EXEC;
10213 break;
10214 case 7:
10215 /* for v7M, same as 6; for R profile a reserved value */
10216 if (arm_feature(env, ARM_FEATURE_M)) {
10217 *prot |= PAGE_READ | PAGE_EXEC;
10218 break;
10220 /* fall through */
10221 default:
10222 qemu_log_mask(LOG_GUEST_ERROR,
10223 "DRACR[%d]: Bad value for AP bits: 0x%"
10224 PRIx32 "\n", n, ap);
10228 /* execute never */
10229 if (xn) {
10230 *prot &= ~PAGE_EXEC;
10235 fi->type = ARMFault_Permission;
10236 fi->level = 1;
10237 return !(*prot & (1 << access_type));
10240 static bool v8m_is_sau_exempt(CPUARMState *env,
10241 uint32_t address, MMUAccessType access_type)
10243 /* The architecture specifies that certain address ranges are
10244 * exempt from v8M SAU/IDAU checks.
10246 return
10247 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
10248 (address >= 0xe0000000 && address <= 0xe0002fff) ||
10249 (address >= 0xe000e000 && address <= 0xe000efff) ||
10250 (address >= 0xe002e000 && address <= 0xe002efff) ||
10251 (address >= 0xe0040000 && address <= 0xe0041fff) ||
10252 (address >= 0xe00ff000 && address <= 0xe00fffff);
10255 void v8m_security_lookup(CPUARMState *env, uint32_t address,
10256 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10257 V8M_SAttributes *sattrs)
10259 /* Look up the security attributes for this address. Compare the
10260 * pseudocode SecurityCheck() function.
10261 * We assume the caller has zero-initialized *sattrs.
10263 ARMCPU *cpu = env_archcpu(env);
10264 int r;
10265 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
10266 int idau_region = IREGION_NOTVALID;
10267 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
10268 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
10270 if (cpu->idau) {
10271 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
10272 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
10274 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
10275 &idau_nsc);
10278 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
10279 /* 0xf0000000..0xffffffff is always S for insn fetches */
10280 return;
10283 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
10284 sattrs->ns = !regime_is_secure(env, mmu_idx);
10285 return;
10288 if (idau_region != IREGION_NOTVALID) {
10289 sattrs->irvalid = true;
10290 sattrs->iregion = idau_region;
10293 switch (env->sau.ctrl & 3) {
10294 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
10295 break;
10296 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
10297 sattrs->ns = true;
10298 break;
10299 default: /* SAU.ENABLE == 1 */
10300 for (r = 0; r < cpu->sau_sregion; r++) {
10301 if (env->sau.rlar[r] & 1) {
10302 uint32_t base = env->sau.rbar[r] & ~0x1f;
10303 uint32_t limit = env->sau.rlar[r] | 0x1f;
10305 if (base <= address && limit >= address) {
10306 if (base > addr_page_base || limit < addr_page_limit) {
10307 sattrs->subpage = true;
10309 if (sattrs->srvalid) {
10310 /* If we hit in more than one region then we must report
10311 * as Secure, not NS-Callable, with no valid region
10312 * number info.
10314 sattrs->ns = false;
10315 sattrs->nsc = false;
10316 sattrs->sregion = 0;
10317 sattrs->srvalid = false;
10318 break;
10319 } else {
10320 if (env->sau.rlar[r] & 2) {
10321 sattrs->nsc = true;
10322 } else {
10323 sattrs->ns = true;
10325 sattrs->srvalid = true;
10326 sattrs->sregion = r;
10328 } else {
10330 * Address not in this region. We must check whether the
10331 * region covers addresses in the same page as our address.
10332 * In that case we must not report a size that covers the
10333 * whole page for a subsequent hit against a different MPU
10334 * region or the background region, because it would result
10335 * in incorrect TLB hits for subsequent accesses to
10336 * addresses that are in this MPU region.
10338 if (limit >= base &&
10339 ranges_overlap(base, limit - base + 1,
10340 addr_page_base,
10341 TARGET_PAGE_SIZE)) {
10342 sattrs->subpage = true;
10347 break;
10351 * The IDAU will override the SAU lookup results if it specifies
10352 * higher security than the SAU does.
10354 if (!idau_ns) {
10355 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
10356 sattrs->ns = false;
10357 sattrs->nsc = idau_nsc;
10362 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
10363 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10364 hwaddr *phys_ptr, MemTxAttrs *txattrs,
10365 int *prot, bool *is_subpage,
10366 ARMMMUFaultInfo *fi, uint32_t *mregion)
10368 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
10369 * that a full phys-to-virt translation does).
10370 * mregion is (if not NULL) set to the region number which matched,
10371 * or -1 if no region number is returned (MPU off, address did not
10372 * hit a region, address hit in multiple regions).
10373 * We set is_subpage to true if the region hit doesn't cover the
10374 * entire TARGET_PAGE the address is within.
10376 ARMCPU *cpu = env_archcpu(env);
10377 bool is_user = regime_is_user(env, mmu_idx);
10378 uint32_t secure = regime_is_secure(env, mmu_idx);
10379 int n;
10380 int matchregion = -1;
10381 bool hit = false;
10382 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
10383 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
10385 *is_subpage = false;
10386 *phys_ptr = address;
10387 *prot = 0;
10388 if (mregion) {
10389 *mregion = -1;
10392 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
10393 * was an exception vector read from the vector table (which is always
10394 * done using the default system address map), because those accesses
10395 * are done in arm_v7m_load_vector(), which always does a direct
10396 * read using address_space_ldl(), rather than going via this function.
10398 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
10399 hit = true;
10400 } else if (m_is_ppb_region(env, address)) {
10401 hit = true;
10402 } else {
10403 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
10404 hit = true;
10407 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
10408 /* region search */
10409 /* Note that the base address is bits [31:5] from the register
10410 * with bits [4:0] all zeroes, but the limit address is bits
10411 * [31:5] from the register with bits [4:0] all ones.
10413 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
10414 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
10416 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
10417 /* Region disabled */
10418 continue;
10421 if (address < base || address > limit) {
10423 * Address not in this region. We must check whether the
10424 * region covers addresses in the same page as our address.
10425 * In that case we must not report a size that covers the
10426 * whole page for a subsequent hit against a different MPU
10427 * region or the background region, because it would result in
10428 * incorrect TLB hits for subsequent accesses to addresses that
10429 * are in this MPU region.
10431 if (limit >= base &&
10432 ranges_overlap(base, limit - base + 1,
10433 addr_page_base,
10434 TARGET_PAGE_SIZE)) {
10435 *is_subpage = true;
10437 continue;
10440 if (base > addr_page_base || limit < addr_page_limit) {
10441 *is_subpage = true;
10444 if (matchregion != -1) {
10445 /* Multiple regions match -- always a failure (unlike
10446 * PMSAv7 where highest-numbered-region wins)
10448 fi->type = ARMFault_Permission;
10449 fi->level = 1;
10450 return true;
10453 matchregion = n;
10454 hit = true;
10458 if (!hit) {
10459 /* background fault */
10460 fi->type = ARMFault_Background;
10461 return true;
10464 if (matchregion == -1) {
10465 /* hit using the background region */
10466 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
10467 } else {
10468 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
10469 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
10471 if (m_is_system_region(env, address)) {
10472 /* System space is always execute never */
10473 xn = 1;
10476 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
10477 if (*prot && !xn) {
10478 *prot |= PAGE_EXEC;
10480 /* We don't need to look the attribute up in the MAIR0/MAIR1
10481 * registers because that only tells us about cacheability.
10483 if (mregion) {
10484 *mregion = matchregion;
10488 fi->type = ARMFault_Permission;
10489 fi->level = 1;
10490 return !(*prot & (1 << access_type));
10494 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
10495 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10496 hwaddr *phys_ptr, MemTxAttrs *txattrs,
10497 int *prot, target_ulong *page_size,
10498 ARMMMUFaultInfo *fi)
10500 uint32_t secure = regime_is_secure(env, mmu_idx);
10501 V8M_SAttributes sattrs = {};
10502 bool ret;
10503 bool mpu_is_subpage;
10505 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
10506 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
10507 if (access_type == MMU_INST_FETCH) {
10508 /* Instruction fetches always use the MMU bank and the
10509 * transaction attribute determined by the fetch address,
10510 * regardless of CPU state. This is painful for QEMU
10511 * to handle, because it would mean we need to encode
10512 * into the mmu_idx not just the (user, negpri) information
10513 * for the current security state but also that for the
10514 * other security state, which would balloon the number
10515 * of mmu_idx values needed alarmingly.
10516 * Fortunately we can avoid this because it's not actually
10517 * possible to arbitrarily execute code from memory with
10518 * the wrong security attribute: it will always generate
10519 * an exception of some kind or another, apart from the
10520 * special case of an NS CPU executing an SG instruction
10521 * in S&NSC memory. So we always just fail the translation
10522 * here and sort things out in the exception handler
10523 * (including possibly emulating an SG instruction).
10525 if (sattrs.ns != !secure) {
10526 if (sattrs.nsc) {
10527 fi->type = ARMFault_QEMU_NSCExec;
10528 } else {
10529 fi->type = ARMFault_QEMU_SFault;
10531 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
10532 *phys_ptr = address;
10533 *prot = 0;
10534 return true;
10536 } else {
10537 /* For data accesses we always use the MMU bank indicated
10538 * by the current CPU state, but the security attributes
10539 * might downgrade a secure access to nonsecure.
10541 if (sattrs.ns) {
10542 txattrs->secure = false;
10543 } else if (!secure) {
10544 /* NS access to S memory must fault.
10545 * Architecturally we should first check whether the
10546 * MPU information for this address indicates that we
10547 * are doing an unaligned access to Device memory, which
10548 * should generate a UsageFault instead. QEMU does not
10549 * currently check for that kind of unaligned access though.
10550 * If we added it we would need to do so as a special case
10551 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
10553 fi->type = ARMFault_QEMU_SFault;
10554 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
10555 *phys_ptr = address;
10556 *prot = 0;
10557 return true;
10562 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
10563 txattrs, prot, &mpu_is_subpage, fi, NULL);
10564 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
10565 return ret;
10568 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
10569 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10570 hwaddr *phys_ptr, int *prot,
10571 ARMMMUFaultInfo *fi)
10573 int n;
10574 uint32_t mask;
10575 uint32_t base;
10576 bool is_user = regime_is_user(env, mmu_idx);
10578 if (regime_translation_disabled(env, mmu_idx)) {
10579 /* MPU disabled. */
10580 *phys_ptr = address;
10581 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10582 return false;
10585 *phys_ptr = address;
10586 for (n = 7; n >= 0; n--) {
10587 base = env->cp15.c6_region[n];
10588 if ((base & 1) == 0) {
10589 continue;
10591 mask = 1 << ((base >> 1) & 0x1f);
10592 /* Keep this shift separate from the above to avoid an
10593 (undefined) << 32. */
10594 mask = (mask << 1) - 1;
10595 if (((base ^ address) & ~mask) == 0) {
10596 break;
10599 if (n < 0) {
10600 fi->type = ARMFault_Background;
10601 return true;
10604 if (access_type == MMU_INST_FETCH) {
10605 mask = env->cp15.pmsav5_insn_ap;
10606 } else {
10607 mask = env->cp15.pmsav5_data_ap;
10609 mask = (mask >> (n * 4)) & 0xf;
10610 switch (mask) {
10611 case 0:
10612 fi->type = ARMFault_Permission;
10613 fi->level = 1;
10614 return true;
10615 case 1:
10616 if (is_user) {
10617 fi->type = ARMFault_Permission;
10618 fi->level = 1;
10619 return true;
10621 *prot = PAGE_READ | PAGE_WRITE;
10622 break;
10623 case 2:
10624 *prot = PAGE_READ;
10625 if (!is_user) {
10626 *prot |= PAGE_WRITE;
10628 break;
10629 case 3:
10630 *prot = PAGE_READ | PAGE_WRITE;
10631 break;
10632 case 5:
10633 if (is_user) {
10634 fi->type = ARMFault_Permission;
10635 fi->level = 1;
10636 return true;
10638 *prot = PAGE_READ;
10639 break;
10640 case 6:
10641 *prot = PAGE_READ;
10642 break;
10643 default:
10644 /* Bad permission. */
10645 fi->type = ARMFault_Permission;
10646 fi->level = 1;
10647 return true;
10649 *prot |= PAGE_EXEC;
10650 return false;
10653 /* Combine either inner or outer cacheability attributes for normal
10654 * memory, according to table D4-42 and pseudocode procedure
10655 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
10657 * NB: only stage 1 includes allocation hints (RW bits), leading to
10658 * some asymmetry.
10660 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
10662 if (s1 == 4 || s2 == 4) {
10663 /* non-cacheable has precedence */
10664 return 4;
10665 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
10666 /* stage 1 write-through takes precedence */
10667 return s1;
10668 } else if (extract32(s2, 2, 2) == 2) {
10669 /* stage 2 write-through takes precedence, but the allocation hint
10670 * is still taken from stage 1
10672 return (2 << 2) | extract32(s1, 0, 2);
10673 } else { /* write-back */
10674 return s1;
10678 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
10679 * and CombineS1S2Desc()
10681 * @s1: Attributes from stage 1 walk
10682 * @s2: Attributes from stage 2 walk
10684 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
10686 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
10687 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
10688 ARMCacheAttrs ret;
10690 /* Combine shareability attributes (table D4-43) */
10691 if (s1.shareability == 2 || s2.shareability == 2) {
10692 /* if either are outer-shareable, the result is outer-shareable */
10693 ret.shareability = 2;
10694 } else if (s1.shareability == 3 || s2.shareability == 3) {
10695 /* if either are inner-shareable, the result is inner-shareable */
10696 ret.shareability = 3;
10697 } else {
10698 /* both non-shareable */
10699 ret.shareability = 0;
10702 /* Combine memory type and cacheability attributes */
10703 if (s1hi == 0 || s2hi == 0) {
10704 /* Device has precedence over normal */
10705 if (s1lo == 0 || s2lo == 0) {
10706 /* nGnRnE has precedence over anything */
10707 ret.attrs = 0;
10708 } else if (s1lo == 4 || s2lo == 4) {
10709 /* non-Reordering has precedence over Reordering */
10710 ret.attrs = 4; /* nGnRE */
10711 } else if (s1lo == 8 || s2lo == 8) {
10712 /* non-Gathering has precedence over Gathering */
10713 ret.attrs = 8; /* nGRE */
10714 } else {
10715 ret.attrs = 0xc; /* GRE */
10718 /* Any location for which the resultant memory type is any
10719 * type of Device memory is always treated as Outer Shareable.
10721 ret.shareability = 2;
10722 } else { /* Normal memory */
10723 /* Outer/inner cacheability combine independently */
10724 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
10725 | combine_cacheattr_nibble(s1lo, s2lo);
10727 if (ret.attrs == 0x44) {
10728 /* Any location for which the resultant memory type is Normal
10729 * Inner Non-cacheable, Outer Non-cacheable is always treated
10730 * as Outer Shareable.
10732 ret.shareability = 2;
10736 return ret;
10740 /* get_phys_addr - get the physical address for this virtual address
10742 * Find the physical address corresponding to the given virtual address,
10743 * by doing a translation table walk on MMU based systems or using the
10744 * MPU state on MPU based systems.
10746 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
10747 * prot and page_size may not be filled in, and the populated fsr value provides
10748 * information on why the translation aborted, in the format of a
10749 * DFSR/IFSR fault register, with the following caveats:
10750 * * we honour the short vs long DFSR format differences.
10751 * * the WnR bit is never set (the caller must do this).
10752 * * for PSMAv5 based systems we don't bother to return a full FSR format
10753 * value.
10755 * @env: CPUARMState
10756 * @address: virtual address to get physical address for
10757 * @access_type: 0 for read, 1 for write, 2 for execute
10758 * @mmu_idx: MMU index indicating required translation regime
10759 * @phys_ptr: set to the physical address corresponding to the virtual address
10760 * @attrs: set to the memory transaction attributes to use
10761 * @prot: set to the permissions for the page containing phys_ptr
10762 * @page_size: set to the size of the page containing phys_ptr
10763 * @fi: set to fault info if the translation fails
10764 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
10766 bool get_phys_addr(CPUARMState *env, target_ulong address,
10767 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10768 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10769 target_ulong *page_size,
10770 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
10772 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
10773 /* Call ourselves recursively to do the stage 1 and then stage 2
10774 * translations.
10776 if (arm_feature(env, ARM_FEATURE_EL2)) {
10777 hwaddr ipa;
10778 int s2_prot;
10779 int ret;
10780 ARMCacheAttrs cacheattrs2 = {};
10782 ret = get_phys_addr(env, address, access_type,
10783 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
10784 prot, page_size, fi, cacheattrs);
10786 /* If S1 fails or S2 is disabled, return early. */
10787 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
10788 *phys_ptr = ipa;
10789 return ret;
10792 /* S1 is done. Now do S2 translation. */
10793 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
10794 phys_ptr, attrs, &s2_prot,
10795 page_size, fi,
10796 cacheattrs != NULL ? &cacheattrs2 : NULL);
10797 fi->s2addr = ipa;
10798 /* Combine the S1 and S2 perms. */
10799 *prot &= s2_prot;
10801 /* Combine the S1 and S2 cache attributes, if needed */
10802 if (!ret && cacheattrs != NULL) {
10803 if (env->cp15.hcr_el2 & HCR_DC) {
10805 * HCR.DC forces the first stage attributes to
10806 * Normal Non-Shareable,
10807 * Inner Write-Back Read-Allocate Write-Allocate,
10808 * Outer Write-Back Read-Allocate Write-Allocate.
10810 cacheattrs->attrs = 0xff;
10811 cacheattrs->shareability = 0;
10813 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
10816 return ret;
10817 } else {
10819 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
10821 mmu_idx = stage_1_mmu_idx(mmu_idx);
10825 /* The page table entries may downgrade secure to non-secure, but
10826 * cannot upgrade an non-secure translation regime's attributes
10827 * to secure.
10829 attrs->secure = regime_is_secure(env, mmu_idx);
10830 attrs->user = regime_is_user(env, mmu_idx);
10832 /* Fast Context Switch Extension. This doesn't exist at all in v8.
10833 * In v7 and earlier it affects all stage 1 translations.
10835 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
10836 && !arm_feature(env, ARM_FEATURE_V8)) {
10837 if (regime_el(env, mmu_idx) == 3) {
10838 address += env->cp15.fcseidr_s;
10839 } else {
10840 address += env->cp15.fcseidr_ns;
10844 if (arm_feature(env, ARM_FEATURE_PMSA)) {
10845 bool ret;
10846 *page_size = TARGET_PAGE_SIZE;
10848 if (arm_feature(env, ARM_FEATURE_V8)) {
10849 /* PMSAv8 */
10850 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
10851 phys_ptr, attrs, prot, page_size, fi);
10852 } else if (arm_feature(env, ARM_FEATURE_V7)) {
10853 /* PMSAv7 */
10854 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
10855 phys_ptr, prot, page_size, fi);
10856 } else {
10857 /* Pre-v7 MPU */
10858 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
10859 phys_ptr, prot, fi);
10861 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
10862 " mmu_idx %u -> %s (prot %c%c%c)\n",
10863 access_type == MMU_DATA_LOAD ? "reading" :
10864 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
10865 (uint32_t)address, mmu_idx,
10866 ret ? "Miss" : "Hit",
10867 *prot & PAGE_READ ? 'r' : '-',
10868 *prot & PAGE_WRITE ? 'w' : '-',
10869 *prot & PAGE_EXEC ? 'x' : '-');
10871 return ret;
10874 /* Definitely a real MMU, not an MPU */
10876 if (regime_translation_disabled(env, mmu_idx)) {
10877 /* MMU disabled. */
10878 *phys_ptr = address;
10879 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10880 *page_size = TARGET_PAGE_SIZE;
10881 return 0;
10884 if (regime_using_lpae_format(env, mmu_idx)) {
10885 return get_phys_addr_lpae(env, address, access_type, mmu_idx,
10886 phys_ptr, attrs, prot, page_size,
10887 fi, cacheattrs);
10888 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
10889 return get_phys_addr_v6(env, address, access_type, mmu_idx,
10890 phys_ptr, attrs, prot, page_size, fi);
10891 } else {
10892 return get_phys_addr_v5(env, address, access_type, mmu_idx,
10893 phys_ptr, prot, page_size, fi);
10897 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
10898 MemTxAttrs *attrs)
10900 ARMCPU *cpu = ARM_CPU(cs);
10901 CPUARMState *env = &cpu->env;
10902 hwaddr phys_addr;
10903 target_ulong page_size;
10904 int prot;
10905 bool ret;
10906 ARMMMUFaultInfo fi = {};
10907 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
10909 *attrs = (MemTxAttrs) {};
10911 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
10912 attrs, &prot, &page_size, &fi, NULL);
10914 if (ret) {
10915 return -1;
10917 return phys_addr;
10920 #endif
10922 /* Note that signed overflow is undefined in C. The following routines are
10923 careful to use unsigned types where modulo arithmetic is required.
10924 Failure to do so _will_ break on newer gcc. */
10926 /* Signed saturating arithmetic. */
10928 /* Perform 16-bit signed saturating addition. */
10929 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
10931 uint16_t res;
10933 res = a + b;
10934 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
10935 if (a & 0x8000)
10936 res = 0x8000;
10937 else
10938 res = 0x7fff;
10940 return res;
10943 /* Perform 8-bit signed saturating addition. */
10944 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
10946 uint8_t res;
10948 res = a + b;
10949 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
10950 if (a & 0x80)
10951 res = 0x80;
10952 else
10953 res = 0x7f;
10955 return res;
10958 /* Perform 16-bit signed saturating subtraction. */
10959 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
10961 uint16_t res;
10963 res = a - b;
10964 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
10965 if (a & 0x8000)
10966 res = 0x8000;
10967 else
10968 res = 0x7fff;
10970 return res;
10973 /* Perform 8-bit signed saturating subtraction. */
10974 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
10976 uint8_t res;
10978 res = a - b;
10979 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
10980 if (a & 0x80)
10981 res = 0x80;
10982 else
10983 res = 0x7f;
10985 return res;
10988 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
10989 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
10990 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
10991 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
10992 #define PFX q
10994 #include "op_addsub.h"
10996 /* Unsigned saturating arithmetic. */
10997 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
10999 uint16_t res;
11000 res = a + b;
11001 if (res < a)
11002 res = 0xffff;
11003 return res;
11006 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
11008 if (a > b)
11009 return a - b;
11010 else
11011 return 0;
11014 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
11016 uint8_t res;
11017 res = a + b;
11018 if (res < a)
11019 res = 0xff;
11020 return res;
11023 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
11025 if (a > b)
11026 return a - b;
11027 else
11028 return 0;
11031 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
11032 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
11033 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
11034 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
11035 #define PFX uq
11037 #include "op_addsub.h"
11039 /* Signed modulo arithmetic. */
11040 #define SARITH16(a, b, n, op) do { \
11041 int32_t sum; \
11042 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
11043 RESULT(sum, n, 16); \
11044 if (sum >= 0) \
11045 ge |= 3 << (n * 2); \
11046 } while(0)
11048 #define SARITH8(a, b, n, op) do { \
11049 int32_t sum; \
11050 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
11051 RESULT(sum, n, 8); \
11052 if (sum >= 0) \
11053 ge |= 1 << n; \
11054 } while(0)
11057 #define ADD16(a, b, n) SARITH16(a, b, n, +)
11058 #define SUB16(a, b, n) SARITH16(a, b, n, -)
11059 #define ADD8(a, b, n) SARITH8(a, b, n, +)
11060 #define SUB8(a, b, n) SARITH8(a, b, n, -)
11061 #define PFX s
11062 #define ARITH_GE
11064 #include "op_addsub.h"
11066 /* Unsigned modulo arithmetic. */
11067 #define ADD16(a, b, n) do { \
11068 uint32_t sum; \
11069 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
11070 RESULT(sum, n, 16); \
11071 if ((sum >> 16) == 1) \
11072 ge |= 3 << (n * 2); \
11073 } while(0)
11075 #define ADD8(a, b, n) do { \
11076 uint32_t sum; \
11077 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
11078 RESULT(sum, n, 8); \
11079 if ((sum >> 8) == 1) \
11080 ge |= 1 << n; \
11081 } while(0)
11083 #define SUB16(a, b, n) do { \
11084 uint32_t sum; \
11085 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
11086 RESULT(sum, n, 16); \
11087 if ((sum >> 16) == 0) \
11088 ge |= 3 << (n * 2); \
11089 } while(0)
11091 #define SUB8(a, b, n) do { \
11092 uint32_t sum; \
11093 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
11094 RESULT(sum, n, 8); \
11095 if ((sum >> 8) == 0) \
11096 ge |= 1 << n; \
11097 } while(0)
11099 #define PFX u
11100 #define ARITH_GE
11102 #include "op_addsub.h"
11104 /* Halved signed arithmetic. */
11105 #define ADD16(a, b, n) \
11106 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
11107 #define SUB16(a, b, n) \
11108 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
11109 #define ADD8(a, b, n) \
11110 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
11111 #define SUB8(a, b, n) \
11112 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
11113 #define PFX sh
11115 #include "op_addsub.h"
11117 /* Halved unsigned arithmetic. */
11118 #define ADD16(a, b, n) \
11119 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11120 #define SUB16(a, b, n) \
11121 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11122 #define ADD8(a, b, n) \
11123 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11124 #define SUB8(a, b, n) \
11125 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11126 #define PFX uh
11128 #include "op_addsub.h"
11130 static inline uint8_t do_usad(uint8_t a, uint8_t b)
11132 if (a > b)
11133 return a - b;
11134 else
11135 return b - a;
11138 /* Unsigned sum of absolute byte differences. */
11139 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
11141 uint32_t sum;
11142 sum = do_usad(a, b);
11143 sum += do_usad(a >> 8, b >> 8);
11144 sum += do_usad(a >> 16, b >>16);
11145 sum += do_usad(a >> 24, b >> 24);
11146 return sum;
11149 /* For ARMv6 SEL instruction. */
11150 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
11152 uint32_t mask;
11154 mask = 0;
11155 if (flags & 1)
11156 mask |= 0xff;
11157 if (flags & 2)
11158 mask |= 0xff00;
11159 if (flags & 4)
11160 mask |= 0xff0000;
11161 if (flags & 8)
11162 mask |= 0xff000000;
11163 return (a & mask) | (b & ~mask);
11166 /* CRC helpers.
11167 * The upper bytes of val (above the number specified by 'bytes') must have
11168 * been zeroed out by the caller.
11170 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
11172 uint8_t buf[4];
11174 stl_le_p(buf, val);
11176 /* zlib crc32 converts the accumulator and output to one's complement. */
11177 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
11180 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
11182 uint8_t buf[4];
11184 stl_le_p(buf, val);
11186 /* Linux crc32c converts the output to one's complement. */
11187 return crc32c(acc, buf, bytes) ^ 0xffffffff;
11190 /* Return the exception level to which FP-disabled exceptions should
11191 * be taken, or 0 if FP is enabled.
11193 int fp_exception_el(CPUARMState *env, int cur_el)
11195 #ifndef CONFIG_USER_ONLY
11196 int fpen;
11198 /* CPACR and the CPTR registers don't exist before v6, so FP is
11199 * always accessible
11201 if (!arm_feature(env, ARM_FEATURE_V6)) {
11202 return 0;
11205 if (arm_feature(env, ARM_FEATURE_M)) {
11206 /* CPACR can cause a NOCP UsageFault taken to current security state */
11207 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
11208 return 1;
11211 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
11212 if (!extract32(env->v7m.nsacr, 10, 1)) {
11213 /* FP insns cause a NOCP UsageFault taken to Secure */
11214 return 3;
11218 return 0;
11221 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
11222 * 0, 2 : trap EL0 and EL1/PL1 accesses
11223 * 1 : trap only EL0 accesses
11224 * 3 : trap no accesses
11226 fpen = extract32(env->cp15.cpacr_el1, 20, 2);
11227 switch (fpen) {
11228 case 0:
11229 case 2:
11230 if (cur_el == 0 || cur_el == 1) {
11231 /* Trap to PL1, which might be EL1 or EL3 */
11232 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
11233 return 3;
11235 return 1;
11237 if (cur_el == 3 && !is_a64(env)) {
11238 /* Secure PL1 running at EL3 */
11239 return 3;
11241 break;
11242 case 1:
11243 if (cur_el == 0) {
11244 return 1;
11246 break;
11247 case 3:
11248 break;
11252 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
11253 * to control non-secure access to the FPU. It doesn't have any
11254 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
11256 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
11257 cur_el <= 2 && !arm_is_secure_below_el3(env))) {
11258 if (!extract32(env->cp15.nsacr, 10, 1)) {
11259 /* FP insns act as UNDEF */
11260 return cur_el == 2 ? 2 : 1;
11264 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
11265 * check because zero bits in the registers mean "don't trap".
11268 /* CPTR_EL2 : present in v7VE or v8 */
11269 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
11270 && !arm_is_secure_below_el3(env)) {
11271 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
11272 return 2;
11275 /* CPTR_EL3 : present in v8 */
11276 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
11277 /* Trap all FP ops to EL3 */
11278 return 3;
11280 #endif
11281 return 0;
11284 #ifndef CONFIG_TCG
11285 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
11287 g_assert_not_reached();
11289 #endif
11291 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
11293 if (arm_feature(env, ARM_FEATURE_M)) {
11294 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
11297 if (el < 2 && arm_is_secure_below_el3(env)) {
11298 return ARMMMUIdx_S1SE0 + el;
11299 } else {
11300 return ARMMMUIdx_S12NSE0 + el;
11304 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
11306 return arm_mmu_idx_el(env, arm_current_el(env));
11309 int cpu_mmu_index(CPUARMState *env, bool ifetch)
11311 return arm_to_core_mmu_idx(arm_mmu_idx(env));
11314 #ifndef CONFIG_USER_ONLY
11315 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
11317 return stage_1_mmu_idx(arm_mmu_idx(env));
11319 #endif
11321 static uint32_t rebuild_hflags_common(CPUARMState *env, int fp_el,
11322 ARMMMUIdx mmu_idx, uint32_t flags)
11324 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el);
11325 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX,
11326 arm_to_core_mmu_idx(mmu_idx));
11328 if (arm_singlestep_active(env)) {
11329 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1);
11331 return flags;
11334 static uint32_t rebuild_hflags_common_32(CPUARMState *env, int fp_el,
11335 ARMMMUIdx mmu_idx, uint32_t flags)
11337 bool sctlr_b = arm_sctlr_b(env);
11339 if (sctlr_b) {
11340 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, 1);
11342 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
11343 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
11345 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env));
11347 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
11350 static uint32_t rebuild_hflags_m32(CPUARMState *env, int fp_el,
11351 ARMMMUIdx mmu_idx)
11353 uint32_t flags = 0;
11355 /* v8M always enables the fpu. */
11356 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
11358 if (arm_v7m_is_handler_mode(env)) {
11359 flags = FIELD_DP32(flags, TBFLAG_A32, HANDLER, 1);
11363 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
11364 * is suppressing them because the requested execution priority
11365 * is less than 0.
11367 if (arm_feature(env, ARM_FEATURE_V8) &&
11368 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
11369 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
11370 flags = FIELD_DP32(flags, TBFLAG_A32, STACKCHECK, 1);
11373 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
11376 static uint32_t rebuild_hflags_aprofile(CPUARMState *env)
11378 int flags = 0;
11380 flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL,
11381 arm_debug_target_el(env));
11382 return flags;
11385 static uint32_t rebuild_hflags_a32(CPUARMState *env, int fp_el,
11386 ARMMMUIdx mmu_idx)
11388 uint32_t flags = rebuild_hflags_aprofile(env);
11390 if (arm_el_is_aa64(env, 1)) {
11391 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
11394 if (arm_current_el(env) < 2 && env->cp15.hstr_el2 &&
11395 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11396 flags = FIELD_DP32(flags, TBFLAG_A32, HSTR_ACTIVE, 1);
11399 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
11402 static uint32_t rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
11403 ARMMMUIdx mmu_idx)
11405 uint32_t flags = rebuild_hflags_aprofile(env);
11406 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
11407 ARMVAParameters p0 = aa64_va_parameters_both(env, 0, stage1);
11408 uint64_t sctlr;
11409 int tbii, tbid;
11411 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1);
11413 /* FIXME: ARMv8.1-VHE S2 translation regime. */
11414 if (regime_el(env, stage1) < 2) {
11415 ARMVAParameters p1 = aa64_va_parameters_both(env, -1, stage1);
11416 tbid = (p1.tbi << 1) | p0.tbi;
11417 tbii = tbid & ~((p1.tbid << 1) | p0.tbid);
11418 } else {
11419 tbid = p0.tbi;
11420 tbii = tbid & !p0.tbid;
11423 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii);
11424 flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid);
11426 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
11427 int sve_el = sve_exception_el(env, el);
11428 uint32_t zcr_len;
11431 * If SVE is disabled, but FP is enabled,
11432 * then the effective len is 0.
11434 if (sve_el != 0 && fp_el == 0) {
11435 zcr_len = 0;
11436 } else {
11437 zcr_len = sve_zcr_len_for_el(env, el);
11439 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el);
11440 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len);
11443 sctlr = arm_sctlr(env, el);
11445 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
11446 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
11449 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
11451 * In order to save space in flags, we record only whether
11452 * pauth is "inactive", meaning all insns are implemented as
11453 * a nop, or "active" when some action must be performed.
11454 * The decision of which action to take is left to a helper.
11456 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
11457 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1);
11461 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
11462 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */
11463 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
11464 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1);
11468 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
11471 static uint32_t rebuild_hflags_internal(CPUARMState *env)
11473 int el = arm_current_el(env);
11474 int fp_el = fp_exception_el(env, el);
11475 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11477 if (is_a64(env)) {
11478 return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
11479 } else if (arm_feature(env, ARM_FEATURE_M)) {
11480 return rebuild_hflags_m32(env, fp_el, mmu_idx);
11481 } else {
11482 return rebuild_hflags_a32(env, fp_el, mmu_idx);
11486 void arm_rebuild_hflags(CPUARMState *env)
11488 env->hflags = rebuild_hflags_internal(env);
11491 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
11493 int fp_el = fp_exception_el(env, el);
11494 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11496 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
11500 * If we have triggered a EL state change we can't rely on the
11501 * translator having passed it too us, we need to recompute.
11503 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
11505 int el = arm_current_el(env);
11506 int fp_el = fp_exception_el(env, el);
11507 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11508 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
11511 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
11513 int fp_el = fp_exception_el(env, el);
11514 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11516 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
11519 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
11521 int fp_el = fp_exception_el(env, el);
11522 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11524 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
11527 static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
11529 #ifdef CONFIG_DEBUG_TCG
11530 uint32_t env_flags_current = env->hflags;
11531 uint32_t env_flags_rebuilt = rebuild_hflags_internal(env);
11533 if (unlikely(env_flags_current != env_flags_rebuilt)) {
11534 fprintf(stderr, "TCG hflags mismatch (current:0x%08x rebuilt:0x%08x)\n",
11535 env_flags_current, env_flags_rebuilt);
11536 abort();
11538 #endif
11541 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
11542 target_ulong *cs_base, uint32_t *pflags)
11544 uint32_t flags = env->hflags;
11545 uint32_t pstate_for_ss;
11547 *cs_base = 0;
11548 assert_hflags_rebuild_correctly(env);
11550 if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) {
11551 *pc = env->pc;
11552 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
11553 flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype);
11555 pstate_for_ss = env->pstate;
11556 } else {
11557 *pc = env->regs[15];
11559 if (arm_feature(env, ARM_FEATURE_M)) {
11560 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
11561 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
11562 != env->v7m.secure) {
11563 flags = FIELD_DP32(flags, TBFLAG_A32, FPCCR_S_WRONG, 1);
11566 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
11567 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
11568 (env->v7m.secure &&
11569 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
11571 * ASPEN is set, but FPCA/SFPA indicate that there is no
11572 * active FP context; we must create a new FP context before
11573 * executing any FP insn.
11575 flags = FIELD_DP32(flags, TBFLAG_A32, NEW_FP_CTXT_NEEDED, 1);
11578 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
11579 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
11580 flags = FIELD_DP32(flags, TBFLAG_A32, LSPACT, 1);
11582 } else {
11584 * Note that XSCALE_CPAR shares bits with VECSTRIDE.
11585 * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
11587 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
11588 flags = FIELD_DP32(flags, TBFLAG_A32,
11589 XSCALE_CPAR, env->cp15.c15_cpar);
11590 } else {
11591 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN,
11592 env->vfp.vec_len);
11593 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE,
11594 env->vfp.vec_stride);
11596 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
11597 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
11601 flags = FIELD_DP32(flags, TBFLAG_A32, THUMB, env->thumb);
11602 flags = FIELD_DP32(flags, TBFLAG_A32, CONDEXEC, env->condexec_bits);
11603 pstate_for_ss = env->uncached_cpsr;
11607 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
11608 * states defined in the ARM ARM for software singlestep:
11609 * SS_ACTIVE PSTATE.SS State
11610 * 0 x Inactive (the TB flag for SS is always 0)
11611 * 1 0 Active-pending
11612 * 1 1 Active-not-pending
11613 * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB.
11615 if (FIELD_EX32(flags, TBFLAG_ANY, SS_ACTIVE) &&
11616 (pstate_for_ss & PSTATE_SS)) {
11617 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
11620 *pflags = flags;
11623 #ifdef TARGET_AARCH64
11625 * The manual says that when SVE is enabled and VQ is widened the
11626 * implementation is allowed to zero the previously inaccessible
11627 * portion of the registers. The corollary to that is that when
11628 * SVE is enabled and VQ is narrowed we are also allowed to zero
11629 * the now inaccessible portion of the registers.
11631 * The intent of this is that no predicate bit beyond VQ is ever set.
11632 * Which means that some operations on predicate registers themselves
11633 * may operate on full uint64_t or even unrolled across the maximum
11634 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
11635 * may well be cheaper than conditionals to restrict the operation
11636 * to the relevant portion of a uint16_t[16].
11638 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
11640 int i, j;
11641 uint64_t pmask;
11643 assert(vq >= 1 && vq <= ARM_MAX_VQ);
11644 assert(vq <= env_archcpu(env)->sve_max_vq);
11646 /* Zap the high bits of the zregs. */
11647 for (i = 0; i < 32; i++) {
11648 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
11651 /* Zap the high bits of the pregs and ffr. */
11652 pmask = 0;
11653 if (vq & 3) {
11654 pmask = ~(-1ULL << (16 * (vq & 3)));
11656 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
11657 for (i = 0; i < 17; ++i) {
11658 env->vfp.pregs[i].p[j] &= pmask;
11660 pmask = 0;
11665 * Notice a change in SVE vector size when changing EL.
11667 void aarch64_sve_change_el(CPUARMState *env, int old_el,
11668 int new_el, bool el0_a64)
11670 ARMCPU *cpu = env_archcpu(env);
11671 int old_len, new_len;
11672 bool old_a64, new_a64;
11674 /* Nothing to do if no SVE. */
11675 if (!cpu_isar_feature(aa64_sve, cpu)) {
11676 return;
11679 /* Nothing to do if FP is disabled in either EL. */
11680 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
11681 return;
11685 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
11686 * at ELx, or not available because the EL is in AArch32 state, then
11687 * for all purposes other than a direct read, the ZCR_ELx.LEN field
11688 * has an effective value of 0".
11690 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
11691 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
11692 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
11693 * we already have the correct register contents when encountering the
11694 * vq0->vq0 transition between EL0->EL1.
11696 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
11697 old_len = (old_a64 && !sve_exception_el(env, old_el)
11698 ? sve_zcr_len_for_el(env, old_el) : 0);
11699 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
11700 new_len = (new_a64 && !sve_exception_el(env, new_el)
11701 ? sve_zcr_len_for_el(env, new_el) : 0);
11703 /* When changing vector length, clear inaccessible state. */
11704 if (new_len < old_len) {
11705 aarch64_sve_narrow_vq(env, new_len + 1);
11708 #endif