4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "target/arm/idau.h"
14 #include "internals.h"
15 #include "exec/gdbstub.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/bitops.h"
20 #include "qemu/crc32c.h"
21 #include "qemu/qemu-print.h"
22 #include "exec/exec-all.h"
23 #include <zlib.h> /* For crc32 */
25 #include "hw/semihosting/semihost.h"
26 #include "sysemu/cpus.h"
27 #include "sysemu/kvm.h"
28 #include "qemu/range.h"
29 #include "qapi/qapi-commands-machine-target.h"
30 #include "qapi/error.h"
31 #include "qemu/guest-random.h"
34 #include "exec/cpu_ldst.h"
37 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
39 #ifndef CONFIG_USER_ONLY
41 static bool get_phys_addr_lpae(CPUARMState
*env
, target_ulong address
,
42 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
43 hwaddr
*phys_ptr
, MemTxAttrs
*txattrs
, int *prot
,
44 target_ulong
*page_size_ptr
,
45 ARMMMUFaultInfo
*fi
, ARMCacheAttrs
*cacheattrs
);
48 static void switch_mode(CPUARMState
*env
, int mode
);
50 static int vfp_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
54 /* VFP data registers are always little-endian. */
55 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
57 stq_le_p(buf
, *aa32_vfp_dreg(env
, reg
));
60 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
61 /* Aliases for Q regs. */
64 uint64_t *q
= aa32_vfp_qreg(env
, reg
- 32);
66 stq_le_p(buf
+ 8, q
[1]);
70 switch (reg
- nregs
) {
71 case 0: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSID
]); return 4;
72 case 1: stl_p(buf
, vfp_get_fpscr(env
)); return 4;
73 case 2: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPEXC
]); return 4;
78 static int vfp_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
82 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
84 *aa32_vfp_dreg(env
, reg
) = ldq_le_p(buf
);
87 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
90 uint64_t *q
= aa32_vfp_qreg(env
, reg
- 32);
92 q
[1] = ldq_le_p(buf
+ 8);
96 switch (reg
- nregs
) {
97 case 0: env
->vfp
.xregs
[ARM_VFP_FPSID
] = ldl_p(buf
); return 4;
98 case 1: vfp_set_fpscr(env
, ldl_p(buf
)); return 4;
99 case 2: env
->vfp
.xregs
[ARM_VFP_FPEXC
] = ldl_p(buf
) & (1 << 30); return 4;
104 static int aarch64_fpu_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
108 /* 128 bit FP register */
110 uint64_t *q
= aa64_vfp_qreg(env
, reg
);
112 stq_le_p(buf
+ 8, q
[1]);
117 stl_p(buf
, vfp_get_fpsr(env
));
121 stl_p(buf
, vfp_get_fpcr(env
));
128 static int aarch64_fpu_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
132 /* 128 bit FP register */
134 uint64_t *q
= aa64_vfp_qreg(env
, reg
);
135 q
[0] = ldq_le_p(buf
);
136 q
[1] = ldq_le_p(buf
+ 8);
141 vfp_set_fpsr(env
, ldl_p(buf
));
145 vfp_set_fpcr(env
, ldl_p(buf
));
152 static uint64_t raw_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
154 assert(ri
->fieldoffset
);
155 if (cpreg_field_is_64bit(ri
)) {
156 return CPREG_FIELD64(env
, ri
);
158 return CPREG_FIELD32(env
, ri
);
162 static void raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
165 assert(ri
->fieldoffset
);
166 if (cpreg_field_is_64bit(ri
)) {
167 CPREG_FIELD64(env
, ri
) = value
;
169 CPREG_FIELD32(env
, ri
) = value
;
173 static void *raw_ptr(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
175 return (char *)env
+ ri
->fieldoffset
;
178 uint64_t read_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
180 /* Raw read of a coprocessor register (as needed for migration, etc). */
181 if (ri
->type
& ARM_CP_CONST
) {
182 return ri
->resetvalue
;
183 } else if (ri
->raw_readfn
) {
184 return ri
->raw_readfn(env
, ri
);
185 } else if (ri
->readfn
) {
186 return ri
->readfn(env
, ri
);
188 return raw_read(env
, ri
);
192 static void write_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
195 /* Raw write of a coprocessor register (as needed for migration, etc).
196 * Note that constant registers are treated as write-ignored; the
197 * caller should check for success by whether a readback gives the
200 if (ri
->type
& ARM_CP_CONST
) {
202 } else if (ri
->raw_writefn
) {
203 ri
->raw_writefn(env
, ri
, v
);
204 } else if (ri
->writefn
) {
205 ri
->writefn(env
, ri
, v
);
207 raw_write(env
, ri
, v
);
211 static int arm_gdb_get_sysreg(CPUARMState
*env
, uint8_t *buf
, int reg
)
213 ARMCPU
*cpu
= env_archcpu(env
);
214 const ARMCPRegInfo
*ri
;
217 key
= cpu
->dyn_xml
.cpregs_keys
[reg
];
218 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, key
);
220 if (cpreg_field_is_64bit(ri
)) {
221 return gdb_get_reg64(buf
, (uint64_t)read_raw_cp_reg(env
, ri
));
223 return gdb_get_reg32(buf
, (uint32_t)read_raw_cp_reg(env
, ri
));
229 static int arm_gdb_set_sysreg(CPUARMState
*env
, uint8_t *buf
, int reg
)
234 static bool raw_accessors_invalid(const ARMCPRegInfo
*ri
)
236 /* Return true if the regdef would cause an assertion if you called
237 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
238 * program bug for it not to have the NO_RAW flag).
239 * NB that returning false here doesn't necessarily mean that calling
240 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
241 * read/write access functions which are safe for raw use" from "has
242 * read/write access functions which have side effects but has forgotten
243 * to provide raw access functions".
244 * The tests here line up with the conditions in read/write_raw_cp_reg()
245 * and assertions in raw_read()/raw_write().
247 if ((ri
->type
& ARM_CP_CONST
) ||
249 ((ri
->raw_writefn
|| ri
->writefn
) && (ri
->raw_readfn
|| ri
->readfn
))) {
255 bool write_cpustate_to_list(ARMCPU
*cpu
, bool kvm_sync
)
257 /* Write the coprocessor state from cpu->env to the (index,value) list. */
261 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
262 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
263 const ARMCPRegInfo
*ri
;
266 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
271 if (ri
->type
& ARM_CP_NO_RAW
) {
275 newval
= read_raw_cp_reg(&cpu
->env
, ri
);
278 * Only sync if the previous list->cpustate sync succeeded.
279 * Rather than tracking the success/failure state for every
280 * item in the list, we just recheck "does the raw write we must
281 * have made in write_list_to_cpustate() read back OK" here.
283 uint64_t oldval
= cpu
->cpreg_values
[i
];
285 if (oldval
== newval
) {
289 write_raw_cp_reg(&cpu
->env
, ri
, oldval
);
290 if (read_raw_cp_reg(&cpu
->env
, ri
) != oldval
) {
294 write_raw_cp_reg(&cpu
->env
, ri
, newval
);
296 cpu
->cpreg_values
[i
] = newval
;
301 bool write_list_to_cpustate(ARMCPU
*cpu
)
306 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
307 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
308 uint64_t v
= cpu
->cpreg_values
[i
];
309 const ARMCPRegInfo
*ri
;
311 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
316 if (ri
->type
& ARM_CP_NO_RAW
) {
319 /* Write value and confirm it reads back as written
320 * (to catch read-only registers and partially read-only
321 * registers where the incoming migration value doesn't match)
323 write_raw_cp_reg(&cpu
->env
, ri
, v
);
324 if (read_raw_cp_reg(&cpu
->env
, ri
) != v
) {
331 static void add_cpreg_to_list(gpointer key
, gpointer opaque
)
333 ARMCPU
*cpu
= opaque
;
335 const ARMCPRegInfo
*ri
;
337 regidx
= *(uint32_t *)key
;
338 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
340 if (!(ri
->type
& (ARM_CP_NO_RAW
|ARM_CP_ALIAS
))) {
341 cpu
->cpreg_indexes
[cpu
->cpreg_array_len
] = cpreg_to_kvm_id(regidx
);
342 /* The value array need not be initialized at this point */
343 cpu
->cpreg_array_len
++;
347 static void count_cpreg(gpointer key
, gpointer opaque
)
349 ARMCPU
*cpu
= opaque
;
351 const ARMCPRegInfo
*ri
;
353 regidx
= *(uint32_t *)key
;
354 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
356 if (!(ri
->type
& (ARM_CP_NO_RAW
|ARM_CP_ALIAS
))) {
357 cpu
->cpreg_array_len
++;
361 static gint
cpreg_key_compare(gconstpointer a
, gconstpointer b
)
363 uint64_t aidx
= cpreg_to_kvm_id(*(uint32_t *)a
);
364 uint64_t bidx
= cpreg_to_kvm_id(*(uint32_t *)b
);
375 void init_cpreg_list(ARMCPU
*cpu
)
377 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
378 * Note that we require cpreg_tuples[] to be sorted by key ID.
383 keys
= g_hash_table_get_keys(cpu
->cp_regs
);
384 keys
= g_list_sort(keys
, cpreg_key_compare
);
386 cpu
->cpreg_array_len
= 0;
388 g_list_foreach(keys
, count_cpreg
, cpu
);
390 arraylen
= cpu
->cpreg_array_len
;
391 cpu
->cpreg_indexes
= g_new(uint64_t, arraylen
);
392 cpu
->cpreg_values
= g_new(uint64_t, arraylen
);
393 cpu
->cpreg_vmstate_indexes
= g_new(uint64_t, arraylen
);
394 cpu
->cpreg_vmstate_values
= g_new(uint64_t, arraylen
);
395 cpu
->cpreg_vmstate_array_len
= cpu
->cpreg_array_len
;
396 cpu
->cpreg_array_len
= 0;
398 g_list_foreach(keys
, add_cpreg_to_list
, cpu
);
400 assert(cpu
->cpreg_array_len
== arraylen
);
406 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
407 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
409 * access_el3_aa32ns: Used to check AArch32 register views.
410 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
412 static CPAccessResult
access_el3_aa32ns(CPUARMState
*env
,
413 const ARMCPRegInfo
*ri
,
416 bool secure
= arm_is_secure_below_el3(env
);
418 assert(!arm_el_is_aa64(env
, 3));
420 return CP_ACCESS_TRAP_UNCATEGORIZED
;
425 static CPAccessResult
access_el3_aa32ns_aa64any(CPUARMState
*env
,
426 const ARMCPRegInfo
*ri
,
429 if (!arm_el_is_aa64(env
, 3)) {
430 return access_el3_aa32ns(env
, ri
, isread
);
435 /* Some secure-only AArch32 registers trap to EL3 if used from
436 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
437 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
438 * We assume that the .access field is set to PL1_RW.
440 static CPAccessResult
access_trap_aa32s_el1(CPUARMState
*env
,
441 const ARMCPRegInfo
*ri
,
444 if (arm_current_el(env
) == 3) {
447 if (arm_is_secure_below_el3(env
)) {
448 return CP_ACCESS_TRAP_EL3
;
450 /* This will be EL1 NS and EL2 NS, which just UNDEF */
451 return CP_ACCESS_TRAP_UNCATEGORIZED
;
454 /* Check for traps to "powerdown debug" registers, which are controlled
457 static CPAccessResult
access_tdosa(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
460 int el
= arm_current_el(env
);
461 bool mdcr_el2_tdosa
= (env
->cp15
.mdcr_el2
& MDCR_TDOSA
) ||
462 (env
->cp15
.mdcr_el2
& MDCR_TDE
) ||
463 (arm_hcr_el2_eff(env
) & HCR_TGE
);
465 if (el
< 2 && mdcr_el2_tdosa
&& !arm_is_secure_below_el3(env
)) {
466 return CP_ACCESS_TRAP_EL2
;
468 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TDOSA
)) {
469 return CP_ACCESS_TRAP_EL3
;
474 /* Check for traps to "debug ROM" registers, which are controlled
475 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
477 static CPAccessResult
access_tdra(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
480 int el
= arm_current_el(env
);
481 bool mdcr_el2_tdra
= (env
->cp15
.mdcr_el2
& MDCR_TDRA
) ||
482 (env
->cp15
.mdcr_el2
& MDCR_TDE
) ||
483 (arm_hcr_el2_eff(env
) & HCR_TGE
);
485 if (el
< 2 && mdcr_el2_tdra
&& !arm_is_secure_below_el3(env
)) {
486 return CP_ACCESS_TRAP_EL2
;
488 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TDA
)) {
489 return CP_ACCESS_TRAP_EL3
;
494 /* Check for traps to general debug registers, which are controlled
495 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
497 static CPAccessResult
access_tda(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
500 int el
= arm_current_el(env
);
501 bool mdcr_el2_tda
= (env
->cp15
.mdcr_el2
& MDCR_TDA
) ||
502 (env
->cp15
.mdcr_el2
& MDCR_TDE
) ||
503 (arm_hcr_el2_eff(env
) & HCR_TGE
);
505 if (el
< 2 && mdcr_el2_tda
&& !arm_is_secure_below_el3(env
)) {
506 return CP_ACCESS_TRAP_EL2
;
508 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TDA
)) {
509 return CP_ACCESS_TRAP_EL3
;
514 /* Check for traps to performance monitor registers, which are controlled
515 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
517 static CPAccessResult
access_tpm(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
520 int el
= arm_current_el(env
);
522 if (el
< 2 && (env
->cp15
.mdcr_el2
& MDCR_TPM
)
523 && !arm_is_secure_below_el3(env
)) {
524 return CP_ACCESS_TRAP_EL2
;
526 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TPM
)) {
527 return CP_ACCESS_TRAP_EL3
;
532 static void dacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
534 ARMCPU
*cpu
= env_archcpu(env
);
536 raw_write(env
, ri
, value
);
537 tlb_flush(CPU(cpu
)); /* Flush TLB as domain not tracked in TLB */
540 static void fcse_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
542 ARMCPU
*cpu
= env_archcpu(env
);
544 if (raw_read(env
, ri
) != value
) {
545 /* Unlike real hardware the qemu TLB uses virtual addresses,
546 * not modified virtual addresses, so this causes a TLB flush.
549 raw_write(env
, ri
, value
);
553 static void contextidr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
556 ARMCPU
*cpu
= env_archcpu(env
);
558 if (raw_read(env
, ri
) != value
&& !arm_feature(env
, ARM_FEATURE_PMSA
)
559 && !extended_addresses_enabled(env
)) {
560 /* For VMSA (when not using the LPAE long descriptor page table
561 * format) this register includes the ASID, so do a TLB flush.
562 * For PMSA it is purely a process ID and no action is needed.
566 raw_write(env
, ri
, value
);
569 /* IS variants of TLB operations must affect all cores */
570 static void tlbiall_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
573 CPUState
*cs
= env_cpu(env
);
575 tlb_flush_all_cpus_synced(cs
);
578 static void tlbiasid_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
581 CPUState
*cs
= env_cpu(env
);
583 tlb_flush_all_cpus_synced(cs
);
586 static void tlbimva_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
589 CPUState
*cs
= env_cpu(env
);
591 tlb_flush_page_all_cpus_synced(cs
, value
& TARGET_PAGE_MASK
);
594 static void tlbimvaa_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
597 CPUState
*cs
= env_cpu(env
);
599 tlb_flush_page_all_cpus_synced(cs
, value
& TARGET_PAGE_MASK
);
603 * Non-IS variants of TLB operations are upgraded to
604 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to
605 * force broadcast of these operations.
607 static bool tlb_force_broadcast(CPUARMState
*env
)
609 return (env
->cp15
.hcr_el2
& HCR_FB
) &&
610 arm_current_el(env
) == 1 && arm_is_secure_below_el3(env
);
613 static void tlbiall_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
616 /* Invalidate all (TLBIALL) */
617 ARMCPU
*cpu
= env_archcpu(env
);
619 if (tlb_force_broadcast(env
)) {
620 tlbiall_is_write(env
, NULL
, value
);
627 static void tlbimva_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
630 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
631 ARMCPU
*cpu
= env_archcpu(env
);
633 if (tlb_force_broadcast(env
)) {
634 tlbimva_is_write(env
, NULL
, value
);
638 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
641 static void tlbiasid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
644 /* Invalidate by ASID (TLBIASID) */
645 ARMCPU
*cpu
= env_archcpu(env
);
647 if (tlb_force_broadcast(env
)) {
648 tlbiasid_is_write(env
, NULL
, value
);
655 static void tlbimvaa_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
658 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
659 ARMCPU
*cpu
= env_archcpu(env
);
661 if (tlb_force_broadcast(env
)) {
662 tlbimvaa_is_write(env
, NULL
, value
);
666 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
669 static void tlbiall_nsnh_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
672 CPUState
*cs
= env_cpu(env
);
674 tlb_flush_by_mmuidx(cs
,
675 ARMMMUIdxBit_S12NSE1
|
676 ARMMMUIdxBit_S12NSE0
|
680 static void tlbiall_nsnh_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
683 CPUState
*cs
= env_cpu(env
);
685 tlb_flush_by_mmuidx_all_cpus_synced(cs
,
686 ARMMMUIdxBit_S12NSE1
|
687 ARMMMUIdxBit_S12NSE0
|
691 static void tlbiipas2_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
694 /* Invalidate by IPA. This has to invalidate any structures that
695 * contain only stage 2 translation information, but does not need
696 * to apply to structures that contain combined stage 1 and stage 2
697 * translation information.
698 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
700 CPUState
*cs
= env_cpu(env
);
703 if (!arm_feature(env
, ARM_FEATURE_EL2
) || !(env
->cp15
.scr_el3
& SCR_NS
)) {
707 pageaddr
= sextract64(value
<< 12, 0, 40);
709 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdxBit_S2NS
);
712 static void tlbiipas2_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
715 CPUState
*cs
= env_cpu(env
);
718 if (!arm_feature(env
, ARM_FEATURE_EL2
) || !(env
->cp15
.scr_el3
& SCR_NS
)) {
722 pageaddr
= sextract64(value
<< 12, 0, 40);
724 tlb_flush_page_by_mmuidx_all_cpus_synced(cs
, pageaddr
,
728 static void tlbiall_hyp_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
731 CPUState
*cs
= env_cpu(env
);
733 tlb_flush_by_mmuidx(cs
, ARMMMUIdxBit_S1E2
);
736 static void tlbiall_hyp_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
739 CPUState
*cs
= env_cpu(env
);
741 tlb_flush_by_mmuidx_all_cpus_synced(cs
, ARMMMUIdxBit_S1E2
);
744 static void tlbimva_hyp_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
747 CPUState
*cs
= env_cpu(env
);
748 uint64_t pageaddr
= value
& ~MAKE_64BIT_MASK(0, 12);
750 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdxBit_S1E2
);
753 static void tlbimva_hyp_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
756 CPUState
*cs
= env_cpu(env
);
757 uint64_t pageaddr
= value
& ~MAKE_64BIT_MASK(0, 12);
759 tlb_flush_page_by_mmuidx_all_cpus_synced(cs
, pageaddr
,
763 static const ARMCPRegInfo cp_reginfo
[] = {
764 /* Define the secure and non-secure FCSE identifier CP registers
765 * separately because there is no secure bank in V8 (no _EL3). This allows
766 * the secure register to be properly reset and migrated. There is also no
767 * v8 EL1 version of the register so the non-secure instance stands alone.
770 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 0,
771 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_NS
,
772 .fieldoffset
= offsetof(CPUARMState
, cp15
.fcseidr_ns
),
773 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
774 { .name
= "FCSEIDR_S",
775 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 0,
776 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_S
,
777 .fieldoffset
= offsetof(CPUARMState
, cp15
.fcseidr_s
),
778 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
779 /* Define the secure and non-secure context identifier CP registers
780 * separately because there is no secure bank in V8 (no _EL3). This allows
781 * the secure register to be properly reset and migrated. In the
782 * non-secure case, the 32-bit register will have reset and migration
783 * disabled during registration as it is handled by the 64-bit instance.
785 { .name
= "CONTEXTIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
786 .opc0
= 3, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 1,
787 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_NS
,
788 .fieldoffset
= offsetof(CPUARMState
, cp15
.contextidr_el
[1]),
789 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
790 { .name
= "CONTEXTIDR_S", .state
= ARM_CP_STATE_AA32
,
791 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 1,
792 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_S
,
793 .fieldoffset
= offsetof(CPUARMState
, cp15
.contextidr_s
),
794 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
798 static const ARMCPRegInfo not_v8_cp_reginfo
[] = {
799 /* NB: Some of these registers exist in v8 but with more precise
800 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
802 /* MMU Domain access control / MPU write buffer control */
804 .cp
= 15, .opc1
= CP_ANY
, .crn
= 3, .crm
= CP_ANY
, .opc2
= CP_ANY
,
805 .access
= PL1_RW
, .resetvalue
= 0,
806 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
807 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dacr_s
),
808 offsetoflow32(CPUARMState
, cp15
.dacr_ns
) } },
809 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
810 * For v6 and v5, these mappings are overly broad.
812 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 0,
813 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
814 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 1,
815 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
816 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 4,
817 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
818 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 8,
819 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
820 /* Cache maintenance ops; some of this space may be overridden later. */
821 { .name
= "CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
822 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
823 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
},
827 static const ARMCPRegInfo not_v6_cp_reginfo
[] = {
828 /* Not all pre-v6 cores implemented this WFI, so this is slightly
831 { .name
= "WFI_v5", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= 2,
832 .access
= PL1_W
, .type
= ARM_CP_WFI
},
836 static const ARMCPRegInfo not_v7_cp_reginfo
[] = {
837 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
838 * is UNPREDICTABLE; we choose to NOP as most implementations do).
840 { .name
= "WFI_v6", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
841 .access
= PL1_W
, .type
= ARM_CP_WFI
},
842 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
843 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
844 * OMAPCP will override this space.
846 { .name
= "DLOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 0,
847 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_data
),
849 { .name
= "ILOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 1,
850 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_insn
),
852 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
853 { .name
= "DUMMY", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= CP_ANY
,
854 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
856 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
857 * implementing it as RAZ means the "debug architecture version" bits
858 * will read as a reserved value, which should cause Linux to not try
859 * to use the debug hardware.
861 { .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
862 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
863 /* MMU TLB control. Note that the wildcarding means we cover not just
864 * the unified TLB ops but also the dside/iside/inner-shareable variants.
866 { .name
= "TLBIALL", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
867 .opc1
= CP_ANY
, .opc2
= 0, .access
= PL1_W
, .writefn
= tlbiall_write
,
868 .type
= ARM_CP_NO_RAW
},
869 { .name
= "TLBIMVA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
870 .opc1
= CP_ANY
, .opc2
= 1, .access
= PL1_W
, .writefn
= tlbimva_write
,
871 .type
= ARM_CP_NO_RAW
},
872 { .name
= "TLBIASID", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
873 .opc1
= CP_ANY
, .opc2
= 2, .access
= PL1_W
, .writefn
= tlbiasid_write
,
874 .type
= ARM_CP_NO_RAW
},
875 { .name
= "TLBIMVAA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
876 .opc1
= CP_ANY
, .opc2
= 3, .access
= PL1_W
, .writefn
= tlbimvaa_write
,
877 .type
= ARM_CP_NO_RAW
},
878 { .name
= "PRRR", .cp
= 15, .crn
= 10, .crm
= 2,
879 .opc1
= 0, .opc2
= 0, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
880 { .name
= "NMRR", .cp
= 15, .crn
= 10, .crm
= 2,
881 .opc1
= 0, .opc2
= 1, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
885 static void cpacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
890 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
891 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
892 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
893 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
894 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
896 if (arm_feature(env
, ARM_FEATURE_VFP
)) {
897 /* VFP coprocessor: cp10 & cp11 [23:20] */
898 mask
|= (1 << 31) | (1 << 30) | (0xf << 20);
900 if (!arm_feature(env
, ARM_FEATURE_NEON
)) {
901 /* ASEDIS [31] bit is RAO/WI */
905 /* VFPv3 and upwards with NEON implement 32 double precision
906 * registers (D0-D31).
908 if (!arm_feature(env
, ARM_FEATURE_NEON
) ||
909 !arm_feature(env
, ARM_FEATURE_VFP3
)) {
910 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
918 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
919 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
921 if (arm_feature(env
, ARM_FEATURE_EL3
) && !arm_el_is_aa64(env
, 3) &&
922 !arm_is_secure(env
) && !extract32(env
->cp15
.nsacr
, 10, 1)) {
923 value
&= ~(0xf << 20);
924 value
|= env
->cp15
.cpacr_el1
& (0xf << 20);
927 env
->cp15
.cpacr_el1
= value
;
930 static uint64_t cpacr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
933 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
934 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
936 uint64_t value
= env
->cp15
.cpacr_el1
;
938 if (arm_feature(env
, ARM_FEATURE_EL3
) && !arm_el_is_aa64(env
, 3) &&
939 !arm_is_secure(env
) && !extract32(env
->cp15
.nsacr
, 10, 1)) {
940 value
&= ~(0xf << 20);
946 static void cpacr_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
948 /* Call cpacr_write() so that we reset with the correct RAO bits set
949 * for our CPU features.
951 cpacr_write(env
, ri
, 0);
954 static CPAccessResult
cpacr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
957 if (arm_feature(env
, ARM_FEATURE_V8
)) {
958 /* Check if CPACR accesses are to be trapped to EL2 */
959 if (arm_current_el(env
) == 1 &&
960 (env
->cp15
.cptr_el
[2] & CPTR_TCPAC
) && !arm_is_secure(env
)) {
961 return CP_ACCESS_TRAP_EL2
;
962 /* Check if CPACR accesses are to be trapped to EL3 */
963 } else if (arm_current_el(env
) < 3 &&
964 (env
->cp15
.cptr_el
[3] & CPTR_TCPAC
)) {
965 return CP_ACCESS_TRAP_EL3
;
972 static CPAccessResult
cptr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
975 /* Check if CPTR accesses are set to trap to EL3 */
976 if (arm_current_el(env
) == 2 && (env
->cp15
.cptr_el
[3] & CPTR_TCPAC
)) {
977 return CP_ACCESS_TRAP_EL3
;
983 static const ARMCPRegInfo v6_cp_reginfo
[] = {
984 /* prefetch by MVA in v6, NOP in v7 */
985 { .name
= "MVA_prefetch",
986 .cp
= 15, .crn
= 7, .crm
= 13, .opc1
= 0, .opc2
= 1,
987 .access
= PL1_W
, .type
= ARM_CP_NOP
},
988 /* We need to break the TB after ISB to execute self-modifying code
989 * correctly and also to take any pending interrupts immediately.
990 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
992 { .name
= "ISB", .cp
= 15, .crn
= 7, .crm
= 5, .opc1
= 0, .opc2
= 4,
993 .access
= PL0_W
, .type
= ARM_CP_NO_RAW
, .writefn
= arm_cp_write_ignore
},
994 { .name
= "DSB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 4,
995 .access
= PL0_W
, .type
= ARM_CP_NOP
},
996 { .name
= "DMB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 5,
997 .access
= PL0_W
, .type
= ARM_CP_NOP
},
998 { .name
= "IFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 2,
1000 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ifar_s
),
1001 offsetof(CPUARMState
, cp15
.ifar_ns
) },
1003 /* Watchpoint Fault Address Register : should actually only be present
1004 * for 1136, 1176, 11MPCore.
1006 { .name
= "WFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 1,
1007 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0, },
1008 { .name
= "CPACR", .state
= ARM_CP_STATE_BOTH
, .opc0
= 3,
1009 .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 2, .accessfn
= cpacr_access
,
1010 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.cpacr_el1
),
1011 .resetfn
= cpacr_reset
, .writefn
= cpacr_write
, .readfn
= cpacr_read
},
1015 /* Definitions for the PMU registers */
1016 #define PMCRN_MASK 0xf800
1017 #define PMCRN_SHIFT 11
1025 #define PMXEVTYPER_P 0x80000000
1026 #define PMXEVTYPER_U 0x40000000
1027 #define PMXEVTYPER_NSK 0x20000000
1028 #define PMXEVTYPER_NSU 0x10000000
1029 #define PMXEVTYPER_NSH 0x08000000
1030 #define PMXEVTYPER_M 0x04000000
1031 #define PMXEVTYPER_MT 0x02000000
1032 #define PMXEVTYPER_EVTCOUNT 0x0000ffff
1033 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1034 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1035 PMXEVTYPER_M | PMXEVTYPER_MT | \
1036 PMXEVTYPER_EVTCOUNT)
1038 #define PMCCFILTR 0xf8000000
1039 #define PMCCFILTR_M PMXEVTYPER_M
1040 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M)
1042 static inline uint32_t pmu_num_counters(CPUARMState
*env
)
1044 return (env
->cp15
.c9_pmcr
& PMCRN_MASK
) >> PMCRN_SHIFT
;
1047 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1048 static inline uint64_t pmu_counter_mask(CPUARMState
*env
)
1050 return (1 << 31) | ((1 << pmu_num_counters(env
)) - 1);
1053 typedef struct pm_event
{
1054 uint16_t number
; /* PMEVTYPER.evtCount is 16 bits wide */
1055 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1056 bool (*supported
)(CPUARMState
*);
1058 * Retrieve the current count of the underlying event. The programmed
1059 * counters hold a difference from the return value from this function
1061 uint64_t (*get_count
)(CPUARMState
*);
1063 * Return how many nanoseconds it will take (at a minimum) for count events
1064 * to occur. A negative value indicates the counter will never overflow, or
1065 * that the counter has otherwise arranged for the overflow bit to be set
1066 * and the PMU interrupt to be raised on overflow.
1068 int64_t (*ns_per_count
)(uint64_t);
1071 static bool event_always_supported(CPUARMState
*env
)
1076 static uint64_t swinc_get_count(CPUARMState
*env
)
1079 * SW_INCR events are written directly to the pmevcntr's by writes to
1080 * PMSWINC, so there is no underlying count maintained by the PMU itself
1085 static int64_t swinc_ns_per(uint64_t ignored
)
1091 * Return the underlying cycle count for the PMU cycle counters. If we're in
1092 * usermode, simply return 0.
1094 static uint64_t cycles_get_count(CPUARMState
*env
)
1096 #ifndef CONFIG_USER_ONLY
1097 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
1098 ARM_CPU_FREQ
, NANOSECONDS_PER_SECOND
);
1100 return cpu_get_host_ticks();
1104 #ifndef CONFIG_USER_ONLY
1105 static int64_t cycles_ns_per(uint64_t cycles
)
1107 return (ARM_CPU_FREQ
/ NANOSECONDS_PER_SECOND
) * cycles
;
1110 static bool instructions_supported(CPUARMState
*env
)
1112 return use_icount
== 1 /* Precise instruction counting */;
1115 static uint64_t instructions_get_count(CPUARMState
*env
)
1117 return (uint64_t)cpu_get_icount_raw();
1120 static int64_t instructions_ns_per(uint64_t icount
)
1122 return cpu_icount_to_ns((int64_t)icount
);
1126 static const pm_event pm_events
[] = {
1127 { .number
= 0x000, /* SW_INCR */
1128 .supported
= event_always_supported
,
1129 .get_count
= swinc_get_count
,
1130 .ns_per_count
= swinc_ns_per
,
1132 #ifndef CONFIG_USER_ONLY
1133 { .number
= 0x008, /* INST_RETIRED, Instruction architecturally executed */
1134 .supported
= instructions_supported
,
1135 .get_count
= instructions_get_count
,
1136 .ns_per_count
= instructions_ns_per
,
1138 { .number
= 0x011, /* CPU_CYCLES, Cycle */
1139 .supported
= event_always_supported
,
1140 .get_count
= cycles_get_count
,
1141 .ns_per_count
= cycles_ns_per
,
1147 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1148 * events (i.e. the statistical profiling extension), this implementation
1149 * should first be updated to something sparse instead of the current
1150 * supported_event_map[] array.
1152 #define MAX_EVENT_ID 0x11
1153 #define UNSUPPORTED_EVENT UINT16_MAX
1154 static uint16_t supported_event_map
[MAX_EVENT_ID
+ 1];
1157 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1158 * of ARM event numbers to indices in our pm_events array.
1160 * Note: Events in the 0x40XX range are not currently supported.
1162 void pmu_init(ARMCPU
*cpu
)
1167 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1170 for (i
= 0; i
< ARRAY_SIZE(supported_event_map
); i
++) {
1171 supported_event_map
[i
] = UNSUPPORTED_EVENT
;
1176 for (i
= 0; i
< ARRAY_SIZE(pm_events
); i
++) {
1177 const pm_event
*cnt
= &pm_events
[i
];
1178 assert(cnt
->number
<= MAX_EVENT_ID
);
1179 /* We do not currently support events in the 0x40xx range */
1180 assert(cnt
->number
<= 0x3f);
1182 if (cnt
->supported(&cpu
->env
)) {
1183 supported_event_map
[cnt
->number
] = i
;
1184 uint64_t event_mask
= 1ULL << (cnt
->number
& 0x1f);
1185 if (cnt
->number
& 0x20) {
1186 cpu
->pmceid1
|= event_mask
;
1188 cpu
->pmceid0
|= event_mask
;
1195 * Check at runtime whether a PMU event is supported for the current machine
1197 static bool event_supported(uint16_t number
)
1199 if (number
> MAX_EVENT_ID
) {
1202 return supported_event_map
[number
] != UNSUPPORTED_EVENT
;
1205 static CPAccessResult
pmreg_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1208 /* Performance monitor registers user accessibility is controlled
1209 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1210 * trapping to EL2 or EL3 for other accesses.
1212 int el
= arm_current_el(env
);
1214 if (el
== 0 && !(env
->cp15
.c9_pmuserenr
& 1)) {
1215 return CP_ACCESS_TRAP
;
1217 if (el
< 2 && (env
->cp15
.mdcr_el2
& MDCR_TPM
)
1218 && !arm_is_secure_below_el3(env
)) {
1219 return CP_ACCESS_TRAP_EL2
;
1221 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TPM
)) {
1222 return CP_ACCESS_TRAP_EL3
;
1225 return CP_ACCESS_OK
;
1228 static CPAccessResult
pmreg_access_xevcntr(CPUARMState
*env
,
1229 const ARMCPRegInfo
*ri
,
1232 /* ER: event counter read trap control */
1233 if (arm_feature(env
, ARM_FEATURE_V8
)
1234 && arm_current_el(env
) == 0
1235 && (env
->cp15
.c9_pmuserenr
& (1 << 3)) != 0
1237 return CP_ACCESS_OK
;
1240 return pmreg_access(env
, ri
, isread
);
1243 static CPAccessResult
pmreg_access_swinc(CPUARMState
*env
,
1244 const ARMCPRegInfo
*ri
,
1247 /* SW: software increment write trap control */
1248 if (arm_feature(env
, ARM_FEATURE_V8
)
1249 && arm_current_el(env
) == 0
1250 && (env
->cp15
.c9_pmuserenr
& (1 << 1)) != 0
1252 return CP_ACCESS_OK
;
1255 return pmreg_access(env
, ri
, isread
);
1258 static CPAccessResult
pmreg_access_selr(CPUARMState
*env
,
1259 const ARMCPRegInfo
*ri
,
1262 /* ER: event counter read trap control */
1263 if (arm_feature(env
, ARM_FEATURE_V8
)
1264 && arm_current_el(env
) == 0
1265 && (env
->cp15
.c9_pmuserenr
& (1 << 3)) != 0) {
1266 return CP_ACCESS_OK
;
1269 return pmreg_access(env
, ri
, isread
);
1272 static CPAccessResult
pmreg_access_ccntr(CPUARMState
*env
,
1273 const ARMCPRegInfo
*ri
,
1276 /* CR: cycle counter read trap control */
1277 if (arm_feature(env
, ARM_FEATURE_V8
)
1278 && arm_current_el(env
) == 0
1279 && (env
->cp15
.c9_pmuserenr
& (1 << 2)) != 0
1281 return CP_ACCESS_OK
;
1284 return pmreg_access(env
, ri
, isread
);
1287 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1288 * the current EL, security state, and register configuration.
1290 static bool pmu_counter_enabled(CPUARMState
*env
, uint8_t counter
)
1293 bool e
, p
, u
, nsk
, nsu
, nsh
, m
;
1294 bool enabled
, prohibited
, filtered
;
1295 bool secure
= arm_is_secure(env
);
1296 int el
= arm_current_el(env
);
1297 uint8_t hpmn
= env
->cp15
.mdcr_el2
& MDCR_HPMN
;
1299 if (!arm_feature(env
, ARM_FEATURE_PMU
)) {
1303 if (!arm_feature(env
, ARM_FEATURE_EL2
) ||
1304 (counter
< hpmn
|| counter
== 31)) {
1305 e
= env
->cp15
.c9_pmcr
& PMCRE
;
1307 e
= env
->cp15
.mdcr_el2
& MDCR_HPME
;
1309 enabled
= e
&& (env
->cp15
.c9_pmcnten
& (1 << counter
));
1312 if (el
== 2 && (counter
< hpmn
|| counter
== 31)) {
1313 prohibited
= env
->cp15
.mdcr_el2
& MDCR_HPMD
;
1318 prohibited
= arm_feature(env
, ARM_FEATURE_EL3
) &&
1319 (env
->cp15
.mdcr_el3
& MDCR_SPME
);
1322 if (prohibited
&& counter
== 31) {
1323 prohibited
= env
->cp15
.c9_pmcr
& PMCRDP
;
1326 if (counter
== 31) {
1327 filter
= env
->cp15
.pmccfiltr_el0
;
1329 filter
= env
->cp15
.c14_pmevtyper
[counter
];
1332 p
= filter
& PMXEVTYPER_P
;
1333 u
= filter
& PMXEVTYPER_U
;
1334 nsk
= arm_feature(env
, ARM_FEATURE_EL3
) && (filter
& PMXEVTYPER_NSK
);
1335 nsu
= arm_feature(env
, ARM_FEATURE_EL3
) && (filter
& PMXEVTYPER_NSU
);
1336 nsh
= arm_feature(env
, ARM_FEATURE_EL2
) && (filter
& PMXEVTYPER_NSH
);
1337 m
= arm_el_is_aa64(env
, 1) &&
1338 arm_feature(env
, ARM_FEATURE_EL3
) && (filter
& PMXEVTYPER_M
);
1341 filtered
= secure
? u
: u
!= nsu
;
1342 } else if (el
== 1) {
1343 filtered
= secure
? p
: p
!= nsk
;
1344 } else if (el
== 2) {
1350 if (counter
!= 31) {
1352 * If not checking PMCCNTR, ensure the counter is setup to an event we
1355 uint16_t event
= filter
& PMXEVTYPER_EVTCOUNT
;
1356 if (!event_supported(event
)) {
1361 return enabled
&& !prohibited
&& !filtered
;
1364 static void pmu_update_irq(CPUARMState
*env
)
1366 ARMCPU
*cpu
= env_archcpu(env
);
1367 qemu_set_irq(cpu
->pmu_interrupt
, (env
->cp15
.c9_pmcr
& PMCRE
) &&
1368 (env
->cp15
.c9_pminten
& env
->cp15
.c9_pmovsr
));
1372 * Ensure c15_ccnt is the guest-visible count so that operations such as
1373 * enabling/disabling the counter or filtering, modifying the count itself,
1374 * etc. can be done logically. This is essentially a no-op if the counter is
1375 * not enabled at the time of the call.
1377 static void pmccntr_op_start(CPUARMState
*env
)
1379 uint64_t cycles
= cycles_get_count(env
);
1381 if (pmu_counter_enabled(env
, 31)) {
1382 uint64_t eff_cycles
= cycles
;
1383 if (env
->cp15
.c9_pmcr
& PMCRD
) {
1384 /* Increment once every 64 processor clock cycles */
1388 uint64_t new_pmccntr
= eff_cycles
- env
->cp15
.c15_ccnt_delta
;
1390 uint64_t overflow_mask
= env
->cp15
.c9_pmcr
& PMCRLC
? \
1391 1ull << 63 : 1ull << 31;
1392 if (env
->cp15
.c15_ccnt
& ~new_pmccntr
& overflow_mask
) {
1393 env
->cp15
.c9_pmovsr
|= (1 << 31);
1394 pmu_update_irq(env
);
1397 env
->cp15
.c15_ccnt
= new_pmccntr
;
1399 env
->cp15
.c15_ccnt_delta
= cycles
;
1403 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1404 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1407 static void pmccntr_op_finish(CPUARMState
*env
)
1409 if (pmu_counter_enabled(env
, 31)) {
1410 #ifndef CONFIG_USER_ONLY
1411 /* Calculate when the counter will next overflow */
1412 uint64_t remaining_cycles
= -env
->cp15
.c15_ccnt
;
1413 if (!(env
->cp15
.c9_pmcr
& PMCRLC
)) {
1414 remaining_cycles
= (uint32_t)remaining_cycles
;
1416 int64_t overflow_in
= cycles_ns_per(remaining_cycles
);
1418 if (overflow_in
> 0) {
1419 int64_t overflow_at
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) +
1421 ARMCPU
*cpu
= env_archcpu(env
);
1422 timer_mod_anticipate_ns(cpu
->pmu_timer
, overflow_at
);
1426 uint64_t prev_cycles
= env
->cp15
.c15_ccnt_delta
;
1427 if (env
->cp15
.c9_pmcr
& PMCRD
) {
1428 /* Increment once every 64 processor clock cycles */
1431 env
->cp15
.c15_ccnt_delta
= prev_cycles
- env
->cp15
.c15_ccnt
;
1435 static void pmevcntr_op_start(CPUARMState
*env
, uint8_t counter
)
1438 uint16_t event
= env
->cp15
.c14_pmevtyper
[counter
] & PMXEVTYPER_EVTCOUNT
;
1440 if (event_supported(event
)) {
1441 uint16_t event_idx
= supported_event_map
[event
];
1442 count
= pm_events
[event_idx
].get_count(env
);
1445 if (pmu_counter_enabled(env
, counter
)) {
1446 uint32_t new_pmevcntr
= count
- env
->cp15
.c14_pmevcntr_delta
[counter
];
1448 if (env
->cp15
.c14_pmevcntr
[counter
] & ~new_pmevcntr
& INT32_MIN
) {
1449 env
->cp15
.c9_pmovsr
|= (1 << counter
);
1450 pmu_update_irq(env
);
1452 env
->cp15
.c14_pmevcntr
[counter
] = new_pmevcntr
;
1454 env
->cp15
.c14_pmevcntr_delta
[counter
] = count
;
1457 static void pmevcntr_op_finish(CPUARMState
*env
, uint8_t counter
)
1459 if (pmu_counter_enabled(env
, counter
)) {
1460 #ifndef CONFIG_USER_ONLY
1461 uint16_t event
= env
->cp15
.c14_pmevtyper
[counter
] & PMXEVTYPER_EVTCOUNT
;
1462 uint16_t event_idx
= supported_event_map
[event
];
1463 uint64_t delta
= UINT32_MAX
-
1464 (uint32_t)env
->cp15
.c14_pmevcntr
[counter
] + 1;
1465 int64_t overflow_in
= pm_events
[event_idx
].ns_per_count(delta
);
1467 if (overflow_in
> 0) {
1468 int64_t overflow_at
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) +
1470 ARMCPU
*cpu
= env_archcpu(env
);
1471 timer_mod_anticipate_ns(cpu
->pmu_timer
, overflow_at
);
1475 env
->cp15
.c14_pmevcntr_delta
[counter
] -=
1476 env
->cp15
.c14_pmevcntr
[counter
];
1480 void pmu_op_start(CPUARMState
*env
)
1483 pmccntr_op_start(env
);
1484 for (i
= 0; i
< pmu_num_counters(env
); i
++) {
1485 pmevcntr_op_start(env
, i
);
1489 void pmu_op_finish(CPUARMState
*env
)
1492 pmccntr_op_finish(env
);
1493 for (i
= 0; i
< pmu_num_counters(env
); i
++) {
1494 pmevcntr_op_finish(env
, i
);
1498 void pmu_pre_el_change(ARMCPU
*cpu
, void *ignored
)
1500 pmu_op_start(&cpu
->env
);
1503 void pmu_post_el_change(ARMCPU
*cpu
, void *ignored
)
1505 pmu_op_finish(&cpu
->env
);
1508 void arm_pmu_timer_cb(void *opaque
)
1510 ARMCPU
*cpu
= opaque
;
1513 * Update all the counter values based on the current underlying counts,
1514 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1515 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1516 * counter may expire.
1518 pmu_op_start(&cpu
->env
);
1519 pmu_op_finish(&cpu
->env
);
1522 static void pmcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1527 if (value
& PMCRC
) {
1528 /* The counter has been reset */
1529 env
->cp15
.c15_ccnt
= 0;
1532 if (value
& PMCRP
) {
1534 for (i
= 0; i
< pmu_num_counters(env
); i
++) {
1535 env
->cp15
.c14_pmevcntr
[i
] = 0;
1539 /* only the DP, X, D and E bits are writable */
1540 env
->cp15
.c9_pmcr
&= ~0x39;
1541 env
->cp15
.c9_pmcr
|= (value
& 0x39);
1546 static void pmswinc_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1550 for (i
= 0; i
< pmu_num_counters(env
); i
++) {
1551 /* Increment a counter's count iff: */
1552 if ((value
& (1 << i
)) && /* counter's bit is set */
1553 /* counter is enabled and not filtered */
1554 pmu_counter_enabled(env
, i
) &&
1555 /* counter is SW_INCR */
1556 (env
->cp15
.c14_pmevtyper
[i
] & PMXEVTYPER_EVTCOUNT
) == 0x0) {
1557 pmevcntr_op_start(env
, i
);
1560 * Detect if this write causes an overflow since we can't predict
1561 * PMSWINC overflows like we can for other events
1563 uint32_t new_pmswinc
= env
->cp15
.c14_pmevcntr
[i
] + 1;
1565 if (env
->cp15
.c14_pmevcntr
[i
] & ~new_pmswinc
& INT32_MIN
) {
1566 env
->cp15
.c9_pmovsr
|= (1 << i
);
1567 pmu_update_irq(env
);
1570 env
->cp15
.c14_pmevcntr
[i
] = new_pmswinc
;
1572 pmevcntr_op_finish(env
, i
);
1577 static uint64_t pmccntr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1580 pmccntr_op_start(env
);
1581 ret
= env
->cp15
.c15_ccnt
;
1582 pmccntr_op_finish(env
);
1586 static void pmselr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1589 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1590 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1591 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1594 env
->cp15
.c9_pmselr
= value
& 0x1f;
1597 static void pmccntr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1600 pmccntr_op_start(env
);
1601 env
->cp15
.c15_ccnt
= value
;
1602 pmccntr_op_finish(env
);
1605 static void pmccntr_write32(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1608 uint64_t cur_val
= pmccntr_read(env
, NULL
);
1610 pmccntr_write(env
, ri
, deposit64(cur_val
, 0, 32, value
));
1613 static void pmccfiltr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1616 pmccntr_op_start(env
);
1617 env
->cp15
.pmccfiltr_el0
= value
& PMCCFILTR_EL0
;
1618 pmccntr_op_finish(env
);
1621 static void pmccfiltr_write_a32(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1624 pmccntr_op_start(env
);
1625 /* M is not accessible from AArch32 */
1626 env
->cp15
.pmccfiltr_el0
= (env
->cp15
.pmccfiltr_el0
& PMCCFILTR_M
) |
1627 (value
& PMCCFILTR
);
1628 pmccntr_op_finish(env
);
1631 static uint64_t pmccfiltr_read_a32(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1633 /* M is not visible in AArch32 */
1634 return env
->cp15
.pmccfiltr_el0
& PMCCFILTR
;
1637 static void pmcntenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1640 value
&= pmu_counter_mask(env
);
1641 env
->cp15
.c9_pmcnten
|= value
;
1644 static void pmcntenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1647 value
&= pmu_counter_mask(env
);
1648 env
->cp15
.c9_pmcnten
&= ~value
;
1651 static void pmovsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1654 value
&= pmu_counter_mask(env
);
1655 env
->cp15
.c9_pmovsr
&= ~value
;
1656 pmu_update_irq(env
);
1659 static void pmovsset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1662 value
&= pmu_counter_mask(env
);
1663 env
->cp15
.c9_pmovsr
|= value
;
1664 pmu_update_irq(env
);
1667 static void pmevtyper_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1668 uint64_t value
, const uint8_t counter
)
1670 if (counter
== 31) {
1671 pmccfiltr_write(env
, ri
, value
);
1672 } else if (counter
< pmu_num_counters(env
)) {
1673 pmevcntr_op_start(env
, counter
);
1676 * If this counter's event type is changing, store the current
1677 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1678 * pmevcntr_op_finish has the correct baseline when it converts back to
1681 uint16_t old_event
= env
->cp15
.c14_pmevtyper
[counter
] &
1682 PMXEVTYPER_EVTCOUNT
;
1683 uint16_t new_event
= value
& PMXEVTYPER_EVTCOUNT
;
1684 if (old_event
!= new_event
) {
1686 if (event_supported(new_event
)) {
1687 uint16_t event_idx
= supported_event_map
[new_event
];
1688 count
= pm_events
[event_idx
].get_count(env
);
1690 env
->cp15
.c14_pmevcntr_delta
[counter
] = count
;
1693 env
->cp15
.c14_pmevtyper
[counter
] = value
& PMXEVTYPER_MASK
;
1694 pmevcntr_op_finish(env
, counter
);
1696 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1697 * PMSELR value is equal to or greater than the number of implemented
1698 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1702 static uint64_t pmevtyper_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1703 const uint8_t counter
)
1705 if (counter
== 31) {
1706 return env
->cp15
.pmccfiltr_el0
;
1707 } else if (counter
< pmu_num_counters(env
)) {
1708 return env
->cp15
.c14_pmevtyper
[counter
];
1711 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1712 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1718 static void pmevtyper_writefn(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1721 uint8_t counter
= ((ri
->crm
& 3) << 3) | (ri
->opc2
& 7);
1722 pmevtyper_write(env
, ri
, value
, counter
);
1725 static void pmevtyper_rawwrite(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1728 uint8_t counter
= ((ri
->crm
& 3) << 3) | (ri
->opc2
& 7);
1729 env
->cp15
.c14_pmevtyper
[counter
] = value
;
1732 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1733 * pmu_op_finish calls when loading saved state for a migration. Because
1734 * we're potentially updating the type of event here, the value written to
1735 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1736 * different counter type. Therefore, we need to set this value to the
1737 * current count for the counter type we're writing so that pmu_op_finish
1738 * has the correct count for its calculation.
1740 uint16_t event
= value
& PMXEVTYPER_EVTCOUNT
;
1741 if (event_supported(event
)) {
1742 uint16_t event_idx
= supported_event_map
[event
];
1743 env
->cp15
.c14_pmevcntr_delta
[counter
] =
1744 pm_events
[event_idx
].get_count(env
);
1748 static uint64_t pmevtyper_readfn(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1750 uint8_t counter
= ((ri
->crm
& 3) << 3) | (ri
->opc2
& 7);
1751 return pmevtyper_read(env
, ri
, counter
);
1754 static void pmxevtyper_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1757 pmevtyper_write(env
, ri
, value
, env
->cp15
.c9_pmselr
& 31);
1760 static uint64_t pmxevtyper_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1762 return pmevtyper_read(env
, ri
, env
->cp15
.c9_pmselr
& 31);
1765 static void pmevcntr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1766 uint64_t value
, uint8_t counter
)
1768 if (counter
< pmu_num_counters(env
)) {
1769 pmevcntr_op_start(env
, counter
);
1770 env
->cp15
.c14_pmevcntr
[counter
] = value
;
1771 pmevcntr_op_finish(env
, counter
);
1774 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1775 * are CONSTRAINED UNPREDICTABLE.
1779 static uint64_t pmevcntr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1782 if (counter
< pmu_num_counters(env
)) {
1784 pmevcntr_op_start(env
, counter
);
1785 ret
= env
->cp15
.c14_pmevcntr
[counter
];
1786 pmevcntr_op_finish(env
, counter
);
1789 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1790 * are CONSTRAINED UNPREDICTABLE. */
1795 static void pmevcntr_writefn(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1798 uint8_t counter
= ((ri
->crm
& 3) << 3) | (ri
->opc2
& 7);
1799 pmevcntr_write(env
, ri
, value
, counter
);
1802 static uint64_t pmevcntr_readfn(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1804 uint8_t counter
= ((ri
->crm
& 3) << 3) | (ri
->opc2
& 7);
1805 return pmevcntr_read(env
, ri
, counter
);
1808 static void pmevcntr_rawwrite(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1811 uint8_t counter
= ((ri
->crm
& 3) << 3) | (ri
->opc2
& 7);
1812 assert(counter
< pmu_num_counters(env
));
1813 env
->cp15
.c14_pmevcntr
[counter
] = value
;
1814 pmevcntr_write(env
, ri
, value
, counter
);
1817 static uint64_t pmevcntr_rawread(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1819 uint8_t counter
= ((ri
->crm
& 3) << 3) | (ri
->opc2
& 7);
1820 assert(counter
< pmu_num_counters(env
));
1821 return env
->cp15
.c14_pmevcntr
[counter
];
1824 static void pmxevcntr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1827 pmevcntr_write(env
, ri
, value
, env
->cp15
.c9_pmselr
& 31);
1830 static uint64_t pmxevcntr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1832 return pmevcntr_read(env
, ri
, env
->cp15
.c9_pmselr
& 31);
1835 static void pmuserenr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1838 if (arm_feature(env
, ARM_FEATURE_V8
)) {
1839 env
->cp15
.c9_pmuserenr
= value
& 0xf;
1841 env
->cp15
.c9_pmuserenr
= value
& 1;
1845 static void pmintenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1848 /* We have no event counters so only the C bit can be changed */
1849 value
&= pmu_counter_mask(env
);
1850 env
->cp15
.c9_pminten
|= value
;
1851 pmu_update_irq(env
);
1854 static void pmintenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1857 value
&= pmu_counter_mask(env
);
1858 env
->cp15
.c9_pminten
&= ~value
;
1859 pmu_update_irq(env
);
1862 static void vbar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1865 /* Note that even though the AArch64 view of this register has bits
1866 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1867 * architectural requirements for bits which are RES0 only in some
1868 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1869 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1871 raw_write(env
, ri
, value
& ~0x1FULL
);
1874 static void scr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1876 /* Begin with base v8.0 state. */
1877 uint32_t valid_mask
= 0x3fff;
1878 ARMCPU
*cpu
= env_archcpu(env
);
1880 if (arm_el_is_aa64(env
, 3)) {
1881 value
|= SCR_FW
| SCR_AW
; /* these two bits are RES1. */
1882 valid_mask
&= ~SCR_NET
;
1884 valid_mask
&= ~(SCR_RW
| SCR_ST
);
1887 if (!arm_feature(env
, ARM_FEATURE_EL2
)) {
1888 valid_mask
&= ~SCR_HCE
;
1890 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1891 * supported if EL2 exists. The bit is UNK/SBZP when
1892 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1893 * when EL2 is unavailable.
1894 * On ARMv8, this bit is always available.
1896 if (arm_feature(env
, ARM_FEATURE_V7
) &&
1897 !arm_feature(env
, ARM_FEATURE_V8
)) {
1898 valid_mask
&= ~SCR_SMD
;
1901 if (cpu_isar_feature(aa64_lor
, cpu
)) {
1902 valid_mask
|= SCR_TLOR
;
1904 if (cpu_isar_feature(aa64_pauth
, cpu
)) {
1905 valid_mask
|= SCR_API
| SCR_APK
;
1908 /* Clear all-context RES0 bits. */
1909 value
&= valid_mask
;
1910 raw_write(env
, ri
, value
);
1913 static CPAccessResult
access_aa64_tid2(CPUARMState
*env
,
1914 const ARMCPRegInfo
*ri
,
1917 if (arm_current_el(env
) == 1 && (arm_hcr_el2_eff(env
) & HCR_TID2
)) {
1918 return CP_ACCESS_TRAP_EL2
;
1921 return CP_ACCESS_OK
;
1924 static uint64_t ccsidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1926 ARMCPU
*cpu
= env_archcpu(env
);
1928 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1931 uint32_t index
= A32_BANKED_REG_GET(env
, csselr
,
1932 ri
->secure
& ARM_CP_SECSTATE_S
);
1934 return cpu
->ccsidr
[index
];
1937 static void csselr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1940 raw_write(env
, ri
, value
& 0xf);
1943 static uint64_t isr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1945 CPUState
*cs
= env_cpu(env
);
1946 uint64_t hcr_el2
= arm_hcr_el2_eff(env
);
1948 bool allow_virt
= (arm_current_el(env
) == 1 &&
1949 (!arm_is_secure_below_el3(env
) ||
1950 (env
->cp15
.scr_el3
& SCR_EEL2
)));
1952 if (allow_virt
&& (hcr_el2
& HCR_IMO
)) {
1953 if (cs
->interrupt_request
& CPU_INTERRUPT_VIRQ
) {
1957 if (cs
->interrupt_request
& CPU_INTERRUPT_HARD
) {
1962 if (allow_virt
&& (hcr_el2
& HCR_FMO
)) {
1963 if (cs
->interrupt_request
& CPU_INTERRUPT_VFIQ
) {
1967 if (cs
->interrupt_request
& CPU_INTERRUPT_FIQ
) {
1972 /* External aborts are not possible in QEMU so A bit is always clear */
1976 static CPAccessResult
access_aa64_tid1(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1979 if (arm_current_el(env
) == 1 && (arm_hcr_el2_eff(env
) & HCR_TID1
)) {
1980 return CP_ACCESS_TRAP_EL2
;
1983 return CP_ACCESS_OK
;
1986 static CPAccessResult
access_aa32_tid1(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1989 if (arm_feature(env
, ARM_FEATURE_V8
)) {
1990 return access_aa64_tid1(env
, ri
, isread
);
1993 return CP_ACCESS_OK
;
1996 static const ARMCPRegInfo v7_cp_reginfo
[] = {
1997 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1998 { .name
= "NOP", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
1999 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2000 /* Performance monitors are implementation defined in v7,
2001 * but with an ARM recommended set of registers, which we
2004 * Performance registers fall into three categories:
2005 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2006 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2007 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2008 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2009 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2011 { .name
= "PMCNTENSET", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 1,
2012 .access
= PL0_RW
, .type
= ARM_CP_ALIAS
,
2013 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcnten
),
2014 .writefn
= pmcntenset_write
,
2015 .accessfn
= pmreg_access
,
2016 .raw_writefn
= raw_write
},
2017 { .name
= "PMCNTENSET_EL0", .state
= ARM_CP_STATE_AA64
,
2018 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 1,
2019 .access
= PL0_RW
, .accessfn
= pmreg_access
,
2020 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
), .resetvalue
= 0,
2021 .writefn
= pmcntenset_write
, .raw_writefn
= raw_write
},
2022 { .name
= "PMCNTENCLR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 2,
2024 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcnten
),
2025 .accessfn
= pmreg_access
,
2026 .writefn
= pmcntenclr_write
,
2027 .type
= ARM_CP_ALIAS
},
2028 { .name
= "PMCNTENCLR_EL0", .state
= ARM_CP_STATE_AA64
,
2029 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 2,
2030 .access
= PL0_RW
, .accessfn
= pmreg_access
,
2031 .type
= ARM_CP_ALIAS
,
2032 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
),
2033 .writefn
= pmcntenclr_write
},
2034 { .name
= "PMOVSR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 3,
2035 .access
= PL0_RW
, .type
= ARM_CP_IO
,
2036 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmovsr
),
2037 .accessfn
= pmreg_access
,
2038 .writefn
= pmovsr_write
,
2039 .raw_writefn
= raw_write
},
2040 { .name
= "PMOVSCLR_EL0", .state
= ARM_CP_STATE_AA64
,
2041 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 3,
2042 .access
= PL0_RW
, .accessfn
= pmreg_access
,
2043 .type
= ARM_CP_ALIAS
| ARM_CP_IO
,
2044 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmovsr
),
2045 .writefn
= pmovsr_write
,
2046 .raw_writefn
= raw_write
},
2047 { .name
= "PMSWINC", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 4,
2048 .access
= PL0_W
, .accessfn
= pmreg_access_swinc
,
2049 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
2050 .writefn
= pmswinc_write
},
2051 { .name
= "PMSWINC_EL0", .state
= ARM_CP_STATE_AA64
,
2052 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 4,
2053 .access
= PL0_W
, .accessfn
= pmreg_access_swinc
,
2054 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
2055 .writefn
= pmswinc_write
},
2056 { .name
= "PMSELR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 5,
2057 .access
= PL0_RW
, .type
= ARM_CP_ALIAS
,
2058 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmselr
),
2059 .accessfn
= pmreg_access_selr
, .writefn
= pmselr_write
,
2060 .raw_writefn
= raw_write
},
2061 { .name
= "PMSELR_EL0", .state
= ARM_CP_STATE_AA64
,
2062 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 5,
2063 .access
= PL0_RW
, .accessfn
= pmreg_access_selr
,
2064 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmselr
),
2065 .writefn
= pmselr_write
, .raw_writefn
= raw_write
, },
2066 { .name
= "PMCCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 0,
2067 .access
= PL0_RW
, .resetvalue
= 0, .type
= ARM_CP_ALIAS
| ARM_CP_IO
,
2068 .readfn
= pmccntr_read
, .writefn
= pmccntr_write32
,
2069 .accessfn
= pmreg_access_ccntr
},
2070 { .name
= "PMCCNTR_EL0", .state
= ARM_CP_STATE_AA64
,
2071 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 13, .opc2
= 0,
2072 .access
= PL0_RW
, .accessfn
= pmreg_access_ccntr
,
2074 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_ccnt
),
2075 .readfn
= pmccntr_read
, .writefn
= pmccntr_write
,
2076 .raw_readfn
= raw_read
, .raw_writefn
= raw_write
, },
2077 { .name
= "PMCCFILTR", .cp
= 15, .opc1
= 0, .crn
= 14, .crm
= 15, .opc2
= 7,
2078 .writefn
= pmccfiltr_write_a32
, .readfn
= pmccfiltr_read_a32
,
2079 .access
= PL0_RW
, .accessfn
= pmreg_access
,
2080 .type
= ARM_CP_ALIAS
| ARM_CP_IO
,
2082 { .name
= "PMCCFILTR_EL0", .state
= ARM_CP_STATE_AA64
,
2083 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 15, .opc2
= 7,
2084 .writefn
= pmccfiltr_write
, .raw_writefn
= raw_write
,
2085 .access
= PL0_RW
, .accessfn
= pmreg_access
,
2087 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmccfiltr_el0
),
2089 { .name
= "PMXEVTYPER", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 1,
2090 .access
= PL0_RW
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
2091 .accessfn
= pmreg_access
,
2092 .writefn
= pmxevtyper_write
, .readfn
= pmxevtyper_read
},
2093 { .name
= "PMXEVTYPER_EL0", .state
= ARM_CP_STATE_AA64
,
2094 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 13, .opc2
= 1,
2095 .access
= PL0_RW
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
2096 .accessfn
= pmreg_access
,
2097 .writefn
= pmxevtyper_write
, .readfn
= pmxevtyper_read
},
2098 { .name
= "PMXEVCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 2,
2099 .access
= PL0_RW
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
2100 .accessfn
= pmreg_access_xevcntr
,
2101 .writefn
= pmxevcntr_write
, .readfn
= pmxevcntr_read
},
2102 { .name
= "PMXEVCNTR_EL0", .state
= ARM_CP_STATE_AA64
,
2103 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 13, .opc2
= 2,
2104 .access
= PL0_RW
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
2105 .accessfn
= pmreg_access_xevcntr
,
2106 .writefn
= pmxevcntr_write
, .readfn
= pmxevcntr_read
},
2107 { .name
= "PMUSERENR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 0,
2108 .access
= PL0_R
| PL1_RW
, .accessfn
= access_tpm
,
2109 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmuserenr
),
2111 .writefn
= pmuserenr_write
, .raw_writefn
= raw_write
},
2112 { .name
= "PMUSERENR_EL0", .state
= ARM_CP_STATE_AA64
,
2113 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 14, .opc2
= 0,
2114 .access
= PL0_R
| PL1_RW
, .accessfn
= access_tpm
, .type
= ARM_CP_ALIAS
,
2115 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmuserenr
),
2117 .writefn
= pmuserenr_write
, .raw_writefn
= raw_write
},
2118 { .name
= "PMINTENSET", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 1,
2119 .access
= PL1_RW
, .accessfn
= access_tpm
,
2120 .type
= ARM_CP_ALIAS
| ARM_CP_IO
,
2121 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pminten
),
2123 .writefn
= pmintenset_write
, .raw_writefn
= raw_write
},
2124 { .name
= "PMINTENSET_EL1", .state
= ARM_CP_STATE_AA64
,
2125 .opc0
= 3, .opc1
= 0, .crn
= 9, .crm
= 14, .opc2
= 1,
2126 .access
= PL1_RW
, .accessfn
= access_tpm
,
2128 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
2129 .writefn
= pmintenset_write
, .raw_writefn
= raw_write
,
2130 .resetvalue
= 0x0 },
2131 { .name
= "PMINTENCLR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 2,
2132 .access
= PL1_RW
, .accessfn
= access_tpm
,
2133 .type
= ARM_CP_ALIAS
| ARM_CP_IO
,
2134 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
2135 .writefn
= pmintenclr_write
, },
2136 { .name
= "PMINTENCLR_EL1", .state
= ARM_CP_STATE_AA64
,
2137 .opc0
= 3, .opc1
= 0, .crn
= 9, .crm
= 14, .opc2
= 2,
2138 .access
= PL1_RW
, .accessfn
= access_tpm
,
2139 .type
= ARM_CP_ALIAS
| ARM_CP_IO
,
2140 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
2141 .writefn
= pmintenclr_write
},
2142 { .name
= "CCSIDR", .state
= ARM_CP_STATE_BOTH
,
2143 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 0,
2145 .accessfn
= access_aa64_tid2
,
2146 .readfn
= ccsidr_read
, .type
= ARM_CP_NO_RAW
},
2147 { .name
= "CSSELR", .state
= ARM_CP_STATE_BOTH
,
2148 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 2, .opc2
= 0,
2150 .accessfn
= access_aa64_tid2
,
2151 .writefn
= csselr_write
, .resetvalue
= 0,
2152 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.csselr_s
),
2153 offsetof(CPUARMState
, cp15
.csselr_ns
) } },
2154 /* Auxiliary ID register: this actually has an IMPDEF value but for now
2155 * just RAZ for all cores:
2157 { .name
= "AIDR", .state
= ARM_CP_STATE_BOTH
,
2158 .opc0
= 3, .opc1
= 1, .crn
= 0, .crm
= 0, .opc2
= 7,
2159 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2160 .accessfn
= access_aa64_tid1
,
2162 /* Auxiliary fault status registers: these also are IMPDEF, and we
2163 * choose to RAZ/WI for all cores.
2165 { .name
= "AFSR0_EL1", .state
= ARM_CP_STATE_BOTH
,
2166 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 0,
2167 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2168 { .name
= "AFSR1_EL1", .state
= ARM_CP_STATE_BOTH
,
2169 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 1,
2170 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2171 /* MAIR can just read-as-written because we don't implement caches
2172 * and so don't need to care about memory attributes.
2174 { .name
= "MAIR_EL1", .state
= ARM_CP_STATE_AA64
,
2175 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0,
2176 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[1]),
2178 { .name
= "MAIR_EL3", .state
= ARM_CP_STATE_AA64
,
2179 .opc0
= 3, .opc1
= 6, .crn
= 10, .crm
= 2, .opc2
= 0,
2180 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[3]),
2182 /* For non-long-descriptor page tables these are PRRR and NMRR;
2183 * regardless they still act as reads-as-written for QEMU.
2185 /* MAIR0/1 are defined separately from their 64-bit counterpart which
2186 * allows them to assign the correct fieldoffset based on the endianness
2187 * handled in the field definitions.
2189 { .name
= "MAIR0", .state
= ARM_CP_STATE_AA32
,
2190 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0, .access
= PL1_RW
,
2191 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.mair0_s
),
2192 offsetof(CPUARMState
, cp15
.mair0_ns
) },
2193 .resetfn
= arm_cp_reset_ignore
},
2194 { .name
= "MAIR1", .state
= ARM_CP_STATE_AA32
,
2195 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 1, .access
= PL1_RW
,
2196 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.mair1_s
),
2197 offsetof(CPUARMState
, cp15
.mair1_ns
) },
2198 .resetfn
= arm_cp_reset_ignore
},
2199 { .name
= "ISR_EL1", .state
= ARM_CP_STATE_BOTH
,
2200 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 1, .opc2
= 0,
2201 .type
= ARM_CP_NO_RAW
, .access
= PL1_R
, .readfn
= isr_read
},
2202 /* 32 bit ITLB invalidates */
2203 { .name
= "ITLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 0,
2204 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
2205 { .name
= "ITLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 1,
2206 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
2207 { .name
= "ITLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 2,
2208 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
2209 /* 32 bit DTLB invalidates */
2210 { .name
= "DTLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 0,
2211 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
2212 { .name
= "DTLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 1,
2213 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
2214 { .name
= "DTLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 2,
2215 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
2216 /* 32 bit TLB invalidates */
2217 { .name
= "TLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
2218 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
2219 { .name
= "TLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
2220 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
2221 { .name
= "TLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
2222 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
2223 { .name
= "TLBIMVAA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
2224 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
2228 static const ARMCPRegInfo v7mp_cp_reginfo
[] = {
2229 /* 32 bit TLB invalidates, Inner Shareable */
2230 { .name
= "TLBIALLIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
2231 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_is_write
},
2232 { .name
= "TLBIMVAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
2233 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_is_write
},
2234 { .name
= "TLBIASIDIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
2235 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
2236 .writefn
= tlbiasid_is_write
},
2237 { .name
= "TLBIMVAAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
2238 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
2239 .writefn
= tlbimvaa_is_write
},
2243 static const ARMCPRegInfo pmovsset_cp_reginfo
[] = {
2244 /* PMOVSSET is not implemented in v7 before v7ve */
2245 { .name
= "PMOVSSET", .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 14, .opc2
= 3,
2246 .access
= PL0_RW
, .accessfn
= pmreg_access
,
2247 .type
= ARM_CP_ALIAS
| ARM_CP_IO
,
2248 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmovsr
),
2249 .writefn
= pmovsset_write
,
2250 .raw_writefn
= raw_write
},
2251 { .name
= "PMOVSSET_EL0", .state
= ARM_CP_STATE_AA64
,
2252 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 14, .opc2
= 3,
2253 .access
= PL0_RW
, .accessfn
= pmreg_access
,
2254 .type
= ARM_CP_ALIAS
| ARM_CP_IO
,
2255 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmovsr
),
2256 .writefn
= pmovsset_write
,
2257 .raw_writefn
= raw_write
},
2261 static void teecr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2268 static CPAccessResult
teehbr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2271 if (arm_current_el(env
) == 0 && (env
->teecr
& 1)) {
2272 return CP_ACCESS_TRAP
;
2274 return CP_ACCESS_OK
;
2277 static const ARMCPRegInfo t2ee_cp_reginfo
[] = {
2278 { .name
= "TEECR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 6, .opc2
= 0,
2279 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, teecr
),
2281 .writefn
= teecr_write
},
2282 { .name
= "TEEHBR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 6, .opc2
= 0,
2283 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, teehbr
),
2284 .accessfn
= teehbr_access
, .resetvalue
= 0 },
2288 static const ARMCPRegInfo v6k_cp_reginfo
[] = {
2289 { .name
= "TPIDR_EL0", .state
= ARM_CP_STATE_AA64
,
2290 .opc0
= 3, .opc1
= 3, .opc2
= 2, .crn
= 13, .crm
= 0,
2292 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[0]), .resetvalue
= 0 },
2293 { .name
= "TPIDRURW", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 2,
2295 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidrurw_s
),
2296 offsetoflow32(CPUARMState
, cp15
.tpidrurw_ns
) },
2297 .resetfn
= arm_cp_reset_ignore
},
2298 { .name
= "TPIDRRO_EL0", .state
= ARM_CP_STATE_AA64
,
2299 .opc0
= 3, .opc1
= 3, .opc2
= 3, .crn
= 13, .crm
= 0,
2300 .access
= PL0_R
|PL1_W
,
2301 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidrro_el
[0]),
2303 { .name
= "TPIDRURO", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 3,
2304 .access
= PL0_R
|PL1_W
,
2305 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidruro_s
),
2306 offsetoflow32(CPUARMState
, cp15
.tpidruro_ns
) },
2307 .resetfn
= arm_cp_reset_ignore
},
2308 { .name
= "TPIDR_EL1", .state
= ARM_CP_STATE_AA64
,
2309 .opc0
= 3, .opc1
= 0, .opc2
= 4, .crn
= 13, .crm
= 0,
2311 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[1]), .resetvalue
= 0 },
2312 { .name
= "TPIDRPRW", .opc1
= 0, .cp
= 15, .crn
= 13, .crm
= 0, .opc2
= 4,
2314 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidrprw_s
),
2315 offsetoflow32(CPUARMState
, cp15
.tpidrprw_ns
) },
2320 #ifndef CONFIG_USER_ONLY
2322 static CPAccessResult
gt_cntfrq_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2325 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2326 * Writable only at the highest implemented exception level.
2328 int el
= arm_current_el(env
);
2332 if (!extract32(env
->cp15
.c14_cntkctl
, 0, 2)) {
2333 return CP_ACCESS_TRAP
;
2337 if (!isread
&& ri
->state
== ARM_CP_STATE_AA32
&&
2338 arm_is_secure_below_el3(env
)) {
2339 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2340 return CP_ACCESS_TRAP_UNCATEGORIZED
;
2348 if (!isread
&& el
< arm_highest_el(env
)) {
2349 return CP_ACCESS_TRAP_UNCATEGORIZED
;
2352 return CP_ACCESS_OK
;
2355 static CPAccessResult
gt_counter_access(CPUARMState
*env
, int timeridx
,
2358 unsigned int cur_el
= arm_current_el(env
);
2359 bool secure
= arm_is_secure(env
);
2361 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
2363 !extract32(env
->cp15
.c14_cntkctl
, timeridx
, 1)) {
2364 return CP_ACCESS_TRAP
;
2367 if (arm_feature(env
, ARM_FEATURE_EL2
) &&
2368 timeridx
== GTIMER_PHYS
&& !secure
&& cur_el
< 2 &&
2369 !extract32(env
->cp15
.cnthctl_el2
, 0, 1)) {
2370 return CP_ACCESS_TRAP_EL2
;
2372 return CP_ACCESS_OK
;
2375 static CPAccessResult
gt_timer_access(CPUARMState
*env
, int timeridx
,
2378 unsigned int cur_el
= arm_current_el(env
);
2379 bool secure
= arm_is_secure(env
);
2381 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
2382 * EL0[PV]TEN is zero.
2385 !extract32(env
->cp15
.c14_cntkctl
, 9 - timeridx
, 1)) {
2386 return CP_ACCESS_TRAP
;
2389 if (arm_feature(env
, ARM_FEATURE_EL2
) &&
2390 timeridx
== GTIMER_PHYS
&& !secure
&& cur_el
< 2 &&
2391 !extract32(env
->cp15
.cnthctl_el2
, 1, 1)) {
2392 return CP_ACCESS_TRAP_EL2
;
2394 return CP_ACCESS_OK
;
2397 static CPAccessResult
gt_pct_access(CPUARMState
*env
,
2398 const ARMCPRegInfo
*ri
,
2401 return gt_counter_access(env
, GTIMER_PHYS
, isread
);
2404 static CPAccessResult
gt_vct_access(CPUARMState
*env
,
2405 const ARMCPRegInfo
*ri
,
2408 return gt_counter_access(env
, GTIMER_VIRT
, isread
);
2411 static CPAccessResult
gt_ptimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2414 return gt_timer_access(env
, GTIMER_PHYS
, isread
);
2417 static CPAccessResult
gt_vtimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2420 return gt_timer_access(env
, GTIMER_VIRT
, isread
);
2423 static CPAccessResult
gt_stimer_access(CPUARMState
*env
,
2424 const ARMCPRegInfo
*ri
,
2427 /* The AArch64 register view of the secure physical timer is
2428 * always accessible from EL3, and configurably accessible from
2431 switch (arm_current_el(env
)) {
2433 if (!arm_is_secure(env
)) {
2434 return CP_ACCESS_TRAP
;
2436 if (!(env
->cp15
.scr_el3
& SCR_ST
)) {
2437 return CP_ACCESS_TRAP_EL3
;
2439 return CP_ACCESS_OK
;
2442 return CP_ACCESS_TRAP
;
2444 return CP_ACCESS_OK
;
2446 g_assert_not_reached();
2450 static uint64_t gt_get_countervalue(CPUARMState
*env
)
2452 ARMCPU
*cpu
= env_archcpu(env
);
2454 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) / gt_cntfrq_period_ns(cpu
);
2457 static void gt_recalc_timer(ARMCPU
*cpu
, int timeridx
)
2459 ARMGenericTimer
*gt
= &cpu
->env
.cp15
.c14_timer
[timeridx
];
2462 /* Timer enabled: calculate and set current ISTATUS, irq, and
2463 * reset timer to when ISTATUS next has to change
2465 uint64_t offset
= timeridx
== GTIMER_VIRT
?
2466 cpu
->env
.cp15
.cntvoff_el2
: 0;
2467 uint64_t count
= gt_get_countervalue(&cpu
->env
);
2468 /* Note that this must be unsigned 64 bit arithmetic: */
2469 int istatus
= count
- offset
>= gt
->cval
;
2473 gt
->ctl
= deposit32(gt
->ctl
, 2, 1, istatus
);
2475 irqstate
= (istatus
&& !(gt
->ctl
& 2));
2476 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
], irqstate
);
2479 /* Next transition is when count rolls back over to zero */
2480 nexttick
= UINT64_MAX
;
2482 /* Next transition is when we hit cval */
2483 nexttick
= gt
->cval
+ offset
;
2485 /* Note that the desired next expiry time might be beyond the
2486 * signed-64-bit range of a QEMUTimer -- in this case we just
2487 * set the timer for as far in the future as possible. When the
2488 * timer expires we will reset the timer for any remaining period.
2490 if (nexttick
> INT64_MAX
/ gt_cntfrq_period_ns(cpu
)) {
2491 timer_mod_ns(cpu
->gt_timer
[timeridx
], INT64_MAX
);
2493 timer_mod(cpu
->gt_timer
[timeridx
], nexttick
);
2495 trace_arm_gt_recalc(timeridx
, irqstate
, nexttick
);
2497 /* Timer disabled: ISTATUS and timer output always clear */
2499 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
], 0);
2500 timer_del(cpu
->gt_timer
[timeridx
]);
2501 trace_arm_gt_recalc_disabled(timeridx
);
2505 static void gt_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2508 ARMCPU
*cpu
= env_archcpu(env
);
2510 timer_del(cpu
->gt_timer
[timeridx
]);
2513 static uint64_t gt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2515 return gt_get_countervalue(env
);
2518 static uint64_t gt_virt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2520 return gt_get_countervalue(env
) - env
->cp15
.cntvoff_el2
;
2523 static void gt_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2527 trace_arm_gt_cval_write(timeridx
, value
);
2528 env
->cp15
.c14_timer
[timeridx
].cval
= value
;
2529 gt_recalc_timer(env_archcpu(env
), timeridx
);
2532 static uint64_t gt_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2535 uint64_t offset
= timeridx
== GTIMER_VIRT
? env
->cp15
.cntvoff_el2
: 0;
2537 return (uint32_t)(env
->cp15
.c14_timer
[timeridx
].cval
-
2538 (gt_get_countervalue(env
) - offset
));
2541 static void gt_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2545 uint64_t offset
= timeridx
== GTIMER_VIRT
? env
->cp15
.cntvoff_el2
: 0;
2547 trace_arm_gt_tval_write(timeridx
, value
);
2548 env
->cp15
.c14_timer
[timeridx
].cval
= gt_get_countervalue(env
) - offset
+
2549 sextract64(value
, 0, 32);
2550 gt_recalc_timer(env_archcpu(env
), timeridx
);
2553 static void gt_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2557 ARMCPU
*cpu
= env_archcpu(env
);
2558 uint32_t oldval
= env
->cp15
.c14_timer
[timeridx
].ctl
;
2560 trace_arm_gt_ctl_write(timeridx
, value
);
2561 env
->cp15
.c14_timer
[timeridx
].ctl
= deposit64(oldval
, 0, 2, value
);
2562 if ((oldval
^ value
) & 1) {
2563 /* Enable toggled */
2564 gt_recalc_timer(cpu
, timeridx
);
2565 } else if ((oldval
^ value
) & 2) {
2566 /* IMASK toggled: don't need to recalculate,
2567 * just set the interrupt line based on ISTATUS
2569 int irqstate
= (oldval
& 4) && !(value
& 2);
2571 trace_arm_gt_imask_toggle(timeridx
, irqstate
);
2572 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
], irqstate
);
2576 static void gt_phys_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2578 gt_timer_reset(env
, ri
, GTIMER_PHYS
);
2581 static void gt_phys_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2584 gt_cval_write(env
, ri
, GTIMER_PHYS
, value
);
2587 static uint64_t gt_phys_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2589 return gt_tval_read(env
, ri
, GTIMER_PHYS
);
2592 static void gt_phys_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2595 gt_tval_write(env
, ri
, GTIMER_PHYS
, value
);
2598 static void gt_phys_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2601 gt_ctl_write(env
, ri
, GTIMER_PHYS
, value
);
2604 static void gt_virt_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2606 gt_timer_reset(env
, ri
, GTIMER_VIRT
);
2609 static void gt_virt_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2612 gt_cval_write(env
, ri
, GTIMER_VIRT
, value
);
2615 static uint64_t gt_virt_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2617 return gt_tval_read(env
, ri
, GTIMER_VIRT
);
2620 static void gt_virt_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2623 gt_tval_write(env
, ri
, GTIMER_VIRT
, value
);
2626 static void gt_virt_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2629 gt_ctl_write(env
, ri
, GTIMER_VIRT
, value
);
2632 static void gt_cntvoff_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2635 ARMCPU
*cpu
= env_archcpu(env
);
2637 trace_arm_gt_cntvoff_write(value
);
2638 raw_write(env
, ri
, value
);
2639 gt_recalc_timer(cpu
, GTIMER_VIRT
);
2642 static void gt_hyp_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2644 gt_timer_reset(env
, ri
, GTIMER_HYP
);
2647 static void gt_hyp_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2650 gt_cval_write(env
, ri
, GTIMER_HYP
, value
);
2653 static uint64_t gt_hyp_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2655 return gt_tval_read(env
, ri
, GTIMER_HYP
);
2658 static void gt_hyp_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2661 gt_tval_write(env
, ri
, GTIMER_HYP
, value
);
2664 static void gt_hyp_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2667 gt_ctl_write(env
, ri
, GTIMER_HYP
, value
);
2670 static void gt_sec_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2672 gt_timer_reset(env
, ri
, GTIMER_SEC
);
2675 static void gt_sec_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2678 gt_cval_write(env
, ri
, GTIMER_SEC
, value
);
2681 static uint64_t gt_sec_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2683 return gt_tval_read(env
, ri
, GTIMER_SEC
);
2686 static void gt_sec_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2689 gt_tval_write(env
, ri
, GTIMER_SEC
, value
);
2692 static void gt_sec_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2695 gt_ctl_write(env
, ri
, GTIMER_SEC
, value
);
2698 void arm_gt_ptimer_cb(void *opaque
)
2700 ARMCPU
*cpu
= opaque
;
2702 gt_recalc_timer(cpu
, GTIMER_PHYS
);
2705 void arm_gt_vtimer_cb(void *opaque
)
2707 ARMCPU
*cpu
= opaque
;
2709 gt_recalc_timer(cpu
, GTIMER_VIRT
);
2712 void arm_gt_htimer_cb(void *opaque
)
2714 ARMCPU
*cpu
= opaque
;
2716 gt_recalc_timer(cpu
, GTIMER_HYP
);
2719 void arm_gt_stimer_cb(void *opaque
)
2721 ARMCPU
*cpu
= opaque
;
2723 gt_recalc_timer(cpu
, GTIMER_SEC
);
2726 static void arm_gt_cntfrq_reset(CPUARMState
*env
, const ARMCPRegInfo
*opaque
)
2728 ARMCPU
*cpu
= env_archcpu(env
);
2730 cpu
->env
.cp15
.c14_cntfrq
= cpu
->gt_cntfrq_hz
;
2733 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
2734 /* Note that CNTFRQ is purely reads-as-written for the benefit
2735 * of software; writing it doesn't actually change the timer frequency.
2736 * Our reset value matches the fixed frequency we implement the timer at.
2738 { .name
= "CNTFRQ", .cp
= 15, .crn
= 14, .crm
= 0, .opc1
= 0, .opc2
= 0,
2739 .type
= ARM_CP_ALIAS
,
2740 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
2741 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c14_cntfrq
),
2743 { .name
= "CNTFRQ_EL0", .state
= ARM_CP_STATE_AA64
,
2744 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 0,
2745 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
2746 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntfrq
),
2747 .resetfn
= arm_gt_cntfrq_reset
,
2749 /* overall control: mostly access permissions */
2750 { .name
= "CNTKCTL", .state
= ARM_CP_STATE_BOTH
,
2751 .opc0
= 3, .opc1
= 0, .crn
= 14, .crm
= 1, .opc2
= 0,
2753 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntkctl
),
2756 /* per-timer control */
2757 { .name
= "CNTP_CTL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 1,
2758 .secure
= ARM_CP_SECSTATE_NS
,
2759 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL0_RW
,
2760 .accessfn
= gt_ptimer_access
,
2761 .fieldoffset
= offsetoflow32(CPUARMState
,
2762 cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
2763 .writefn
= gt_phys_ctl_write
, .raw_writefn
= raw_write
,
2765 { .name
= "CNTP_CTL_S",
2766 .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 1,
2767 .secure
= ARM_CP_SECSTATE_S
,
2768 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL0_RW
,
2769 .accessfn
= gt_ptimer_access
,
2770 .fieldoffset
= offsetoflow32(CPUARMState
,
2771 cp15
.c14_timer
[GTIMER_SEC
].ctl
),
2772 .writefn
= gt_sec_ctl_write
, .raw_writefn
= raw_write
,
2774 { .name
= "CNTP_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
2775 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 1,
2776 .type
= ARM_CP_IO
, .access
= PL0_RW
,
2777 .accessfn
= gt_ptimer_access
,
2778 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
2780 .writefn
= gt_phys_ctl_write
, .raw_writefn
= raw_write
,
2782 { .name
= "CNTV_CTL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 1,
2783 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL0_RW
,
2784 .accessfn
= gt_vtimer_access
,
2785 .fieldoffset
= offsetoflow32(CPUARMState
,
2786 cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
2787 .writefn
= gt_virt_ctl_write
, .raw_writefn
= raw_write
,
2789 { .name
= "CNTV_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
2790 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 1,
2791 .type
= ARM_CP_IO
, .access
= PL0_RW
,
2792 .accessfn
= gt_vtimer_access
,
2793 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
2795 .writefn
= gt_virt_ctl_write
, .raw_writefn
= raw_write
,
2797 /* TimerValue views: a 32 bit downcounting view of the underlying state */
2798 { .name
= "CNTP_TVAL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 0,
2799 .secure
= ARM_CP_SECSTATE_NS
,
2800 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL0_RW
,
2801 .accessfn
= gt_ptimer_access
,
2802 .readfn
= gt_phys_tval_read
, .writefn
= gt_phys_tval_write
,
2804 { .name
= "CNTP_TVAL_S",
2805 .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 0,
2806 .secure
= ARM_CP_SECSTATE_S
,
2807 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL0_RW
,
2808 .accessfn
= gt_ptimer_access
,
2809 .readfn
= gt_sec_tval_read
, .writefn
= gt_sec_tval_write
,
2811 { .name
= "CNTP_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
2812 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 0,
2813 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL0_RW
,
2814 .accessfn
= gt_ptimer_access
, .resetfn
= gt_phys_timer_reset
,
2815 .readfn
= gt_phys_tval_read
, .writefn
= gt_phys_tval_write
,
2817 { .name
= "CNTV_TVAL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 0,
2818 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL0_RW
,
2819 .accessfn
= gt_vtimer_access
,
2820 .readfn
= gt_virt_tval_read
, .writefn
= gt_virt_tval_write
,
2822 { .name
= "CNTV_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
2823 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 0,
2824 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL0_RW
,
2825 .accessfn
= gt_vtimer_access
, .resetfn
= gt_virt_timer_reset
,
2826 .readfn
= gt_virt_tval_read
, .writefn
= gt_virt_tval_write
,
2828 /* The counter itself */
2829 { .name
= "CNTPCT", .cp
= 15, .crm
= 14, .opc1
= 0,
2830 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_RAW
| ARM_CP_IO
,
2831 .accessfn
= gt_pct_access
,
2832 .readfn
= gt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
2834 { .name
= "CNTPCT_EL0", .state
= ARM_CP_STATE_AA64
,
2835 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 1,
2836 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
2837 .accessfn
= gt_pct_access
, .readfn
= gt_cnt_read
,
2839 { .name
= "CNTVCT", .cp
= 15, .crm
= 14, .opc1
= 1,
2840 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_RAW
| ARM_CP_IO
,
2841 .accessfn
= gt_vct_access
,
2842 .readfn
= gt_virt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
2844 { .name
= "CNTVCT_EL0", .state
= ARM_CP_STATE_AA64
,
2845 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 2,
2846 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
2847 .accessfn
= gt_vct_access
, .readfn
= gt_virt_cnt_read
,
2849 /* Comparison value, indicating when the timer goes off */
2850 { .name
= "CNTP_CVAL", .cp
= 15, .crm
= 14, .opc1
= 2,
2851 .secure
= ARM_CP_SECSTATE_NS
,
2853 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
2854 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
2855 .accessfn
= gt_ptimer_access
,
2856 .writefn
= gt_phys_cval_write
, .raw_writefn
= raw_write
,
2858 { .name
= "CNTP_CVAL_S", .cp
= 15, .crm
= 14, .opc1
= 2,
2859 .secure
= ARM_CP_SECSTATE_S
,
2861 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
2862 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].cval
),
2863 .accessfn
= gt_ptimer_access
,
2864 .writefn
= gt_sec_cval_write
, .raw_writefn
= raw_write
,
2866 { .name
= "CNTP_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
2867 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 2,
2870 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
2871 .resetvalue
= 0, .accessfn
= gt_ptimer_access
,
2872 .writefn
= gt_phys_cval_write
, .raw_writefn
= raw_write
,
2874 { .name
= "CNTV_CVAL", .cp
= 15, .crm
= 14, .opc1
= 3,
2876 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
2877 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
2878 .accessfn
= gt_vtimer_access
,
2879 .writefn
= gt_virt_cval_write
, .raw_writefn
= raw_write
,
2881 { .name
= "CNTV_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
2882 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 2,
2885 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
2886 .resetvalue
= 0, .accessfn
= gt_vtimer_access
,
2887 .writefn
= gt_virt_cval_write
, .raw_writefn
= raw_write
,
2889 /* Secure timer -- this is actually restricted to only EL3
2890 * and configurably Secure-EL1 via the accessfn.
2892 { .name
= "CNTPS_TVAL_EL1", .state
= ARM_CP_STATE_AA64
,
2893 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 0,
2894 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
,
2895 .accessfn
= gt_stimer_access
,
2896 .readfn
= gt_sec_tval_read
,
2897 .writefn
= gt_sec_tval_write
,
2898 .resetfn
= gt_sec_timer_reset
,
2900 { .name
= "CNTPS_CTL_EL1", .state
= ARM_CP_STATE_AA64
,
2901 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 1,
2902 .type
= ARM_CP_IO
, .access
= PL1_RW
,
2903 .accessfn
= gt_stimer_access
,
2904 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].ctl
),
2906 .writefn
= gt_sec_ctl_write
, .raw_writefn
= raw_write
,
2908 { .name
= "CNTPS_CVAL_EL1", .state
= ARM_CP_STATE_AA64
,
2909 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 2,
2910 .type
= ARM_CP_IO
, .access
= PL1_RW
,
2911 .accessfn
= gt_stimer_access
,
2912 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].cval
),
2913 .writefn
= gt_sec_cval_write
, .raw_writefn
= raw_write
,
2920 /* In user-mode most of the generic timer registers are inaccessible
2921 * however modern kernels (4.12+) allow access to cntvct_el0
2924 static uint64_t gt_virt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2926 ARMCPU
*cpu
= env_archcpu(env
);
2928 /* Currently we have no support for QEMUTimer in linux-user so we
2929 * can't call gt_get_countervalue(env), instead we directly
2930 * call the lower level functions.
2932 return cpu_get_clock() / gt_cntfrq_period_ns(cpu
);
2935 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
2936 { .name
= "CNTFRQ_EL0", .state
= ARM_CP_STATE_AA64
,
2937 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 0,
2938 .type
= ARM_CP_CONST
, .access
= PL0_R
/* no PL1_RW in linux-user */,
2939 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntfrq
),
2940 .resetvalue
= NANOSECONDS_PER_SECOND
/ GTIMER_SCALE
,
2942 { .name
= "CNTVCT_EL0", .state
= ARM_CP_STATE_AA64
,
2943 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 2,
2944 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
2945 .readfn
= gt_virt_cnt_read
,
2952 static void par_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
2954 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
2955 raw_write(env
, ri
, value
);
2956 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
2957 raw_write(env
, ri
, value
& 0xfffff6ff);
2959 raw_write(env
, ri
, value
& 0xfffff1ff);
2963 #ifndef CONFIG_USER_ONLY
2964 /* get_phys_addr() isn't present for user-mode-only targets */
2966 static CPAccessResult
ats_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2970 /* The ATS12NSO* operations must trap to EL3 if executed in
2971 * Secure EL1 (which can only happen if EL3 is AArch64).
2972 * They are simply UNDEF if executed from NS EL1.
2973 * They function normally from EL2 or EL3.
2975 if (arm_current_el(env
) == 1) {
2976 if (arm_is_secure_below_el3(env
)) {
2977 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3
;
2979 return CP_ACCESS_TRAP_UNCATEGORIZED
;
2982 return CP_ACCESS_OK
;
2985 static uint64_t do_ats_write(CPUARMState
*env
, uint64_t value
,
2986 MMUAccessType access_type
, ARMMMUIdx mmu_idx
)
2989 target_ulong page_size
;
2993 bool format64
= false;
2994 MemTxAttrs attrs
= {};
2995 ARMMMUFaultInfo fi
= {};
2996 ARMCacheAttrs cacheattrs
= {};
2998 ret
= get_phys_addr(env
, value
, access_type
, mmu_idx
, &phys_addr
, &attrs
,
2999 &prot
, &page_size
, &fi
, &cacheattrs
);
3003 * Some kinds of translation fault must cause exceptions rather
3004 * than being reported in the PAR.
3006 int current_el
= arm_current_el(env
);
3008 uint32_t syn
, fsr
, fsc
;
3009 bool take_exc
= false;
3011 if (fi
.s1ptw
&& current_el
== 1 && !arm_is_secure(env
)
3012 && (mmu_idx
== ARMMMUIdx_S1NSE1
|| mmu_idx
== ARMMMUIdx_S1NSE0
)) {
3014 * Synchronous stage 2 fault on an access made as part of the
3015 * translation table walk for AT S1E0* or AT S1E1* insn
3016 * executed from NS EL1. If this is a synchronous external abort
3017 * and SCR_EL3.EA == 1, then we take a synchronous external abort
3018 * to EL3. Otherwise the fault is taken as an exception to EL2,
3019 * and HPFAR_EL2 holds the faulting IPA.
3021 if (fi
.type
== ARMFault_SyncExternalOnWalk
&&
3022 (env
->cp15
.scr_el3
& SCR_EA
)) {
3025 env
->cp15
.hpfar_el2
= extract64(fi
.s2addr
, 12, 47) << 4;
3029 } else if (fi
.type
== ARMFault_SyncExternalOnWalk
) {
3031 * Synchronous external aborts during a translation table walk
3032 * are taken as Data Abort exceptions.
3035 if (current_el
== 3) {
3041 target_el
= exception_target_el(env
);
3047 /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3048 if (target_el
== 2 || arm_el_is_aa64(env
, target_el
) ||
3049 arm_s1_regime_using_lpae_format(env
, mmu_idx
)) {
3050 fsr
= arm_fi_to_lfsc(&fi
);
3051 fsc
= extract32(fsr
, 0, 6);
3053 fsr
= arm_fi_to_sfsc(&fi
);
3057 * Report exception with ESR indicating a fault due to a
3058 * translation table walk for a cache maintenance instruction.
3060 syn
= syn_data_abort_no_iss(current_el
== target_el
,
3061 fi
.ea
, 1, fi
.s1ptw
, 1, fsc
);
3062 env
->exception
.vaddress
= value
;
3063 env
->exception
.fsr
= fsr
;
3064 raise_exception(env
, EXCP_DATA_ABORT
, syn
, target_el
);
3070 } else if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
3073 * * TTBCR.EAE determines whether the result is returned using the
3074 * 32-bit or the 64-bit PAR format
3075 * * Instructions executed in Hyp mode always use the 64bit format
3077 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3078 * * The Non-secure TTBCR.EAE bit is set to 1
3079 * * The implementation includes EL2, and the value of HCR.VM is 1
3081 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3083 * ATS1Hx always uses the 64bit format.
3085 format64
= arm_s1_regime_using_lpae_format(env
, mmu_idx
);
3087 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
3088 if (mmu_idx
== ARMMMUIdx_S12NSE0
|| mmu_idx
== ARMMMUIdx_S12NSE1
) {
3089 format64
|= env
->cp15
.hcr_el2
& (HCR_VM
| HCR_DC
);
3091 format64
|= arm_current_el(env
) == 2;
3097 /* Create a 64-bit PAR */
3098 par64
= (1 << 11); /* LPAE bit always set */
3100 par64
|= phys_addr
& ~0xfffULL
;
3101 if (!attrs
.secure
) {
3102 par64
|= (1 << 9); /* NS */
3104 par64
|= (uint64_t)cacheattrs
.attrs
<< 56; /* ATTR */
3105 par64
|= cacheattrs
.shareability
<< 7; /* SH */
3107 uint32_t fsr
= arm_fi_to_lfsc(&fi
);
3110 par64
|= (fsr
& 0x3f) << 1; /* FS */
3112 par64
|= (1 << 9); /* S */
3115 par64
|= (1 << 8); /* PTW */
3119 /* fsr is a DFSR/IFSR value for the short descriptor
3120 * translation table format (with WnR always clear).
3121 * Convert it to a 32-bit PAR.
3124 /* We do not set any attribute bits in the PAR */
3125 if (page_size
== (1 << 24)
3126 && arm_feature(env
, ARM_FEATURE_V7
)) {
3127 par64
= (phys_addr
& 0xff000000) | (1 << 1);
3129 par64
= phys_addr
& 0xfffff000;
3131 if (!attrs
.secure
) {
3132 par64
|= (1 << 9); /* NS */
3135 uint32_t fsr
= arm_fi_to_sfsc(&fi
);
3137 par64
= ((fsr
& (1 << 10)) >> 5) | ((fsr
& (1 << 12)) >> 6) |
3138 ((fsr
& 0xf) << 1) | 1;
3144 static void ats_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
3146 MMUAccessType access_type
= ri
->opc2
& 1 ? MMU_DATA_STORE
: MMU_DATA_LOAD
;
3149 int el
= arm_current_el(env
);
3150 bool secure
= arm_is_secure_below_el3(env
);
3152 switch (ri
->opc2
& 6) {
3154 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
3157 mmu_idx
= ARMMMUIdx_S1E3
;
3160 mmu_idx
= ARMMMUIdx_S1NSE1
;
3163 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S1NSE1
;
3166 g_assert_not_reached();
3170 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3173 mmu_idx
= ARMMMUIdx_S1SE0
;
3176 mmu_idx
= ARMMMUIdx_S1NSE0
;
3179 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S1NSE0
;
3182 g_assert_not_reached();
3186 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3187 mmu_idx
= ARMMMUIdx_S12NSE1
;
3190 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3191 mmu_idx
= ARMMMUIdx_S12NSE0
;
3194 g_assert_not_reached();
3197 par64
= do_ats_write(env
, value
, access_type
, mmu_idx
);
3199 A32_BANKED_CURRENT_REG_SET(env
, par
, par64
);
3202 static void ats1h_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3205 MMUAccessType access_type
= ri
->opc2
& 1 ? MMU_DATA_STORE
: MMU_DATA_LOAD
;
3208 par64
= do_ats_write(env
, value
, access_type
, ARMMMUIdx_S1E2
);
3210 A32_BANKED_CURRENT_REG_SET(env
, par
, par64
);
3213 static CPAccessResult
at_s1e2_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3216 if (arm_current_el(env
) == 3 && !(env
->cp15
.scr_el3
& SCR_NS
)) {
3217 return CP_ACCESS_TRAP
;
3219 return CP_ACCESS_OK
;
3222 static void ats_write64(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3225 MMUAccessType access_type
= ri
->opc2
& 1 ? MMU_DATA_STORE
: MMU_DATA_LOAD
;
3227 int secure
= arm_is_secure_below_el3(env
);
3229 switch (ri
->opc2
& 6) {
3232 case 0: /* AT S1E1R, AT S1E1W */
3233 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S1NSE1
;
3235 case 4: /* AT S1E2R, AT S1E2W */
3236 mmu_idx
= ARMMMUIdx_S1E2
;
3238 case 6: /* AT S1E3R, AT S1E3W */
3239 mmu_idx
= ARMMMUIdx_S1E3
;
3242 g_assert_not_reached();
3245 case 2: /* AT S1E0R, AT S1E0W */
3246 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S1NSE0
;
3248 case 4: /* AT S12E1R, AT S12E1W */
3249 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S12NSE1
;
3251 case 6: /* AT S12E0R, AT S12E0W */
3252 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S12NSE0
;
3255 g_assert_not_reached();
3258 env
->cp15
.par_el
[1] = do_ats_write(env
, value
, access_type
, mmu_idx
);
3262 static const ARMCPRegInfo vapa_cp_reginfo
[] = {
3263 { .name
= "PAR", .cp
= 15, .crn
= 7, .crm
= 4, .opc1
= 0, .opc2
= 0,
3264 .access
= PL1_RW
, .resetvalue
= 0,
3265 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.par_s
),
3266 offsetoflow32(CPUARMState
, cp15
.par_ns
) },
3267 .writefn
= par_write
},
3268 #ifndef CONFIG_USER_ONLY
3269 /* This underdecoding is safe because the reginfo is NO_RAW. */
3270 { .name
= "ATS", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= CP_ANY
,
3271 .access
= PL1_W
, .accessfn
= ats_access
,
3272 .writefn
= ats_write
, .type
= ARM_CP_NO_RAW
| ARM_CP_RAISES_EXC
},
3277 /* Return basic MPU access permission bits. */
3278 static uint32_t simple_mpu_ap_bits(uint32_t val
)
3285 for (i
= 0; i
< 16; i
+= 2) {
3286 ret
|= (val
>> i
) & mask
;
3292 /* Pad basic MPU access permission bits to extended format. */
3293 static uint32_t extended_mpu_ap_bits(uint32_t val
)
3300 for (i
= 0; i
< 16; i
+= 2) {
3301 ret
|= (val
& mask
) << i
;
3307 static void pmsav5_data_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3310 env
->cp15
.pmsav5_data_ap
= extended_mpu_ap_bits(value
);
3313 static uint64_t pmsav5_data_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3315 return simple_mpu_ap_bits(env
->cp15
.pmsav5_data_ap
);
3318 static void pmsav5_insn_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3321 env
->cp15
.pmsav5_insn_ap
= extended_mpu_ap_bits(value
);
3324 static uint64_t pmsav5_insn_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3326 return simple_mpu_ap_bits(env
->cp15
.pmsav5_insn_ap
);
3329 static uint64_t pmsav7_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3331 uint32_t *u32p
= *(uint32_t **)raw_ptr(env
, ri
);
3337 u32p
+= env
->pmsav7
.rnr
[M_REG_NS
];
3341 static void pmsav7_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3344 ARMCPU
*cpu
= env_archcpu(env
);
3345 uint32_t *u32p
= *(uint32_t **)raw_ptr(env
, ri
);
3351 u32p
+= env
->pmsav7
.rnr
[M_REG_NS
];
3352 tlb_flush(CPU(cpu
)); /* Mappings may have changed - purge! */
3356 static void pmsav7_rgnr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3359 ARMCPU
*cpu
= env_archcpu(env
);
3360 uint32_t nrgs
= cpu
->pmsav7_dregion
;
3362 if (value
>= nrgs
) {
3363 qemu_log_mask(LOG_GUEST_ERROR
,
3364 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3365 " > %" PRIu32
"\n", (uint32_t)value
, nrgs
);
3369 raw_write(env
, ri
, value
);
3372 static const ARMCPRegInfo pmsav7_cp_reginfo
[] = {
3373 /* Reset for all these registers is handled in arm_cpu_reset(),
3374 * because the PMSAv7 is also used by M-profile CPUs, which do
3375 * not register cpregs but still need the state to be reset.
3377 { .name
= "DRBAR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 0,
3378 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
3379 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.drbar
),
3380 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
,
3381 .resetfn
= arm_cp_reset_ignore
},
3382 { .name
= "DRSR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 2,
3383 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
3384 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.drsr
),
3385 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
,
3386 .resetfn
= arm_cp_reset_ignore
},
3387 { .name
= "DRACR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 4,
3388 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
3389 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.dracr
),
3390 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
,
3391 .resetfn
= arm_cp_reset_ignore
},
3392 { .name
= "RGNR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 2, .opc2
= 0,
3394 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.rnr
[M_REG_NS
]),
3395 .writefn
= pmsav7_rgnr_write
,
3396 .resetfn
= arm_cp_reset_ignore
},
3400 static const ARMCPRegInfo pmsav5_cp_reginfo
[] = {
3401 { .name
= "DATA_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
3402 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
3403 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
3404 .readfn
= pmsav5_data_ap_read
, .writefn
= pmsav5_data_ap_write
, },
3405 { .name
= "INSN_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
3406 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
3407 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
3408 .readfn
= pmsav5_insn_ap_read
, .writefn
= pmsav5_insn_ap_write
, },
3409 { .name
= "DATA_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 2,
3411 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
3413 { .name
= "INSN_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 3,
3415 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
3417 { .name
= "DCACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
3419 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_data
), .resetvalue
= 0, },
3420 { .name
= "ICACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 1,
3422 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_insn
), .resetvalue
= 0, },
3423 /* Protection region base and size registers */
3424 { .name
= "946_PRBS0", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0,
3425 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
3426 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[0]) },
3427 { .name
= "946_PRBS1", .cp
= 15, .crn
= 6, .crm
= 1, .opc1
= 0,
3428 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
3429 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[1]) },
3430 { .name
= "946_PRBS2", .cp
= 15, .crn
= 6, .crm
= 2, .opc1
= 0,
3431 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
3432 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[2]) },
3433 { .name
= "946_PRBS3", .cp
= 15, .crn
= 6, .crm
= 3, .opc1
= 0,
3434 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
3435 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[3]) },
3436 { .name
= "946_PRBS4", .cp
= 15, .crn
= 6, .crm
= 4, .opc1
= 0,
3437 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
3438 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[4]) },
3439 { .name
= "946_PRBS5", .cp
= 15, .crn
= 6, .crm
= 5, .opc1
= 0,
3440 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
3441 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[5]) },
3442 { .name
= "946_PRBS6", .cp
= 15, .crn
= 6, .crm
= 6, .opc1
= 0,
3443 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
3444 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[6]) },
3445 { .name
= "946_PRBS7", .cp
= 15, .crn
= 6, .crm
= 7, .opc1
= 0,
3446 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
3447 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[7]) },
3451 static void vmsa_ttbcr_raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3454 TCR
*tcr
= raw_ptr(env
, ri
);
3455 int maskshift
= extract32(value
, 0, 3);
3457 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
3458 if (arm_feature(env
, ARM_FEATURE_LPAE
) && (value
& TTBCR_EAE
)) {
3459 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3460 * using Long-desciptor translation table format */
3461 value
&= ~((7 << 19) | (3 << 14) | (0xf << 3));
3462 } else if (arm_feature(env
, ARM_FEATURE_EL3
)) {
3463 /* In an implementation that includes the Security Extensions
3464 * TTBCR has additional fields PD0 [4] and PD1 [5] for
3465 * Short-descriptor translation table format.
3467 value
&= TTBCR_PD1
| TTBCR_PD0
| TTBCR_N
;
3473 /* Update the masks corresponding to the TCR bank being written
3474 * Note that we always calculate mask and base_mask, but
3475 * they are only used for short-descriptor tables (ie if EAE is 0);
3476 * for long-descriptor tables the TCR fields are used differently
3477 * and the mask and base_mask values are meaningless.
3479 tcr
->raw_tcr
= value
;
3480 tcr
->mask
= ~(((uint32_t)0xffffffffu
) >> maskshift
);
3481 tcr
->base_mask
= ~((uint32_t)0x3fffu
>> maskshift
);
3484 static void vmsa_ttbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3487 ARMCPU
*cpu
= env_archcpu(env
);
3488 TCR
*tcr
= raw_ptr(env
, ri
);
3490 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
3491 /* With LPAE the TTBCR could result in a change of ASID
3492 * via the TTBCR.A1 bit, so do a TLB flush.
3494 tlb_flush(CPU(cpu
));
3496 /* Preserve the high half of TCR_EL1, set via TTBCR2. */
3497 value
= deposit64(tcr
->raw_tcr
, 0, 32, value
);
3498 vmsa_ttbcr_raw_write(env
, ri
, value
);
3501 static void vmsa_ttbcr_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3503 TCR
*tcr
= raw_ptr(env
, ri
);
3505 /* Reset both the TCR as well as the masks corresponding to the bank of
3506 * the TCR being reset.
3510 tcr
->base_mask
= 0xffffc000u
;
3513 static void vmsa_tcr_el1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3516 ARMCPU
*cpu
= env_archcpu(env
);
3517 TCR
*tcr
= raw_ptr(env
, ri
);
3519 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3520 tlb_flush(CPU(cpu
));
3521 tcr
->raw_tcr
= value
;
3524 static void vmsa_ttbr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3527 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
3528 if (cpreg_field_is_64bit(ri
) &&
3529 extract64(raw_read(env
, ri
) ^ value
, 48, 16) != 0) {
3530 ARMCPU
*cpu
= env_archcpu(env
);
3531 tlb_flush(CPU(cpu
));
3533 raw_write(env
, ri
, value
);
3536 static void vttbr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3539 ARMCPU
*cpu
= env_archcpu(env
);
3540 CPUState
*cs
= CPU(cpu
);
3542 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
3543 if (raw_read(env
, ri
) != value
) {
3544 tlb_flush_by_mmuidx(cs
,
3545 ARMMMUIdxBit_S12NSE1
|
3546 ARMMMUIdxBit_S12NSE0
|
3548 raw_write(env
, ri
, value
);
3552 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo
[] = {
3553 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
3554 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
3555 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dfsr_s
),
3556 offsetoflow32(CPUARMState
, cp15
.dfsr_ns
) }, },
3557 { .name
= "IFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
3558 .access
= PL1_RW
, .resetvalue
= 0,
3559 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.ifsr_s
),
3560 offsetoflow32(CPUARMState
, cp15
.ifsr_ns
) } },
3561 { .name
= "DFAR", .cp
= 15, .opc1
= 0, .crn
= 6, .crm
= 0, .opc2
= 0,
3562 .access
= PL1_RW
, .resetvalue
= 0,
3563 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.dfar_s
),
3564 offsetof(CPUARMState
, cp15
.dfar_ns
) } },
3565 { .name
= "FAR_EL1", .state
= ARM_CP_STATE_AA64
,
3566 .opc0
= 3, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 0,
3567 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[1]),
3572 static const ARMCPRegInfo vmsa_cp_reginfo
[] = {
3573 { .name
= "ESR_EL1", .state
= ARM_CP_STATE_AA64
,
3574 .opc0
= 3, .crn
= 5, .crm
= 2, .opc1
= 0, .opc2
= 0,
3576 .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[1]), .resetvalue
= 0, },
3577 { .name
= "TTBR0_EL1", .state
= ARM_CP_STATE_BOTH
,
3578 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 0, .opc2
= 0,
3579 .access
= PL1_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
3580 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr0_s
),
3581 offsetof(CPUARMState
, cp15
.ttbr0_ns
) } },
3582 { .name
= "TTBR1_EL1", .state
= ARM_CP_STATE_BOTH
,
3583 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 0, .opc2
= 1,
3584 .access
= PL1_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
3585 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr1_s
),
3586 offsetof(CPUARMState
, cp15
.ttbr1_ns
) } },
3587 { .name
= "TCR_EL1", .state
= ARM_CP_STATE_AA64
,
3588 .opc0
= 3, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
3589 .access
= PL1_RW
, .writefn
= vmsa_tcr_el1_write
,
3590 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= raw_write
,
3591 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[1]) },
3592 { .name
= "TTBCR", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
3593 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
, .writefn
= vmsa_ttbcr_write
,
3594 .raw_writefn
= vmsa_ttbcr_raw_write
,
3595 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tcr_el
[3]),
3596 offsetoflow32(CPUARMState
, cp15
.tcr_el
[1])} },
3600 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
3601 * qemu tlbs nor adjusting cached masks.
3603 static const ARMCPRegInfo ttbcr2_reginfo
= {
3604 .name
= "TTBCR2", .cp
= 15, .opc1
= 0, .crn
= 2, .crm
= 0, .opc2
= 3,
3605 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
3606 .bank_fieldoffsets
= { offsetofhigh32(CPUARMState
, cp15
.tcr_el
[3]),
3607 offsetofhigh32(CPUARMState
, cp15
.tcr_el
[1]) },
3610 static void omap_ticonfig_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3613 env
->cp15
.c15_ticonfig
= value
& 0xe7;
3614 /* The OS_TYPE bit in this register changes the reported CPUID! */
3615 env
->cp15
.c0_cpuid
= (value
& (1 << 5)) ?
3616 ARM_CPUID_TI915T
: ARM_CPUID_TI925T
;
3619 static void omap_threadid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3622 env
->cp15
.c15_threadid
= value
& 0xffff;
3625 static void omap_wfi_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3628 /* Wait-for-interrupt (deprecated) */
3629 cpu_interrupt(env_cpu(env
), CPU_INTERRUPT_HALT
);
3632 static void omap_cachemaint_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3635 /* On OMAP there are registers indicating the max/min index of dcache lines
3636 * containing a dirty line; cache flush operations have to reset these.
3638 env
->cp15
.c15_i_max
= 0x000;
3639 env
->cp15
.c15_i_min
= 0xff0;
3642 static const ARMCPRegInfo omap_cp_reginfo
[] = {
3643 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= CP_ANY
,
3644 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_OVERRIDE
,
3645 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.esr_el
[1]),
3647 { .name
= "", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 0,
3648 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
3649 { .name
= "TICONFIG", .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0,
3651 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_ticonfig
), .resetvalue
= 0,
3652 .writefn
= omap_ticonfig_write
},
3653 { .name
= "IMAX", .cp
= 15, .crn
= 15, .crm
= 2, .opc1
= 0, .opc2
= 0,
3655 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_max
), .resetvalue
= 0, },
3656 { .name
= "IMIN", .cp
= 15, .crn
= 15, .crm
= 3, .opc1
= 0, .opc2
= 0,
3657 .access
= PL1_RW
, .resetvalue
= 0xff0,
3658 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_min
) },
3659 { .name
= "THREADID", .cp
= 15, .crn
= 15, .crm
= 4, .opc1
= 0, .opc2
= 0,
3661 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_threadid
), .resetvalue
= 0,
3662 .writefn
= omap_threadid_write
},
3663 { .name
= "TI925T_STATUS", .cp
= 15, .crn
= 15,
3664 .crm
= 8, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
3665 .type
= ARM_CP_NO_RAW
,
3666 .readfn
= arm_cp_read_zero
, .writefn
= omap_wfi_write
, },
3667 /* TODO: Peripheral port remap register:
3668 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
3669 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
3672 { .name
= "OMAP_CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
3673 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
3674 .type
= ARM_CP_OVERRIDE
| ARM_CP_NO_RAW
,
3675 .writefn
= omap_cachemaint_write
},
3676 { .name
= "C9", .cp
= 15, .crn
= 9,
3677 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
,
3678 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
, .resetvalue
= 0 },
3682 static void xscale_cpar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3685 env
->cp15
.c15_cpar
= value
& 0x3fff;
3688 static const ARMCPRegInfo xscale_cp_reginfo
[] = {
3689 { .name
= "XSCALE_CPAR",
3690 .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
3691 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_cpar
), .resetvalue
= 0,
3692 .writefn
= xscale_cpar_write
, },
3693 { .name
= "XSCALE_AUXCR",
3694 .cp
= 15, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 1, .access
= PL1_RW
,
3695 .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_xscaleauxcr
),
3697 /* XScale specific cache-lockdown: since we have no cache we NOP these
3698 * and hope the guest does not really rely on cache behaviour.
3700 { .name
= "XSCALE_LOCK_ICACHE_LINE",
3701 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 0,
3702 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3703 { .name
= "XSCALE_UNLOCK_ICACHE",
3704 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 1,
3705 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3706 { .name
= "XSCALE_DCACHE_LOCK",
3707 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 0,
3708 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
3709 { .name
= "XSCALE_UNLOCK_DCACHE",
3710 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 1,
3711 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3715 static const ARMCPRegInfo dummy_c15_cp_reginfo
[] = {
3716 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
3717 * implementation of this implementation-defined space.
3718 * Ideally this should eventually disappear in favour of actually
3719 * implementing the correct behaviour for all cores.
3721 { .name
= "C15_IMPDEF", .cp
= 15, .crn
= 15,
3722 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
3724 .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
| ARM_CP_OVERRIDE
,
3729 static const ARMCPRegInfo cache_dirty_status_cp_reginfo
[] = {
3730 /* Cache status: RAZ because we have no cache so it's always clean */
3731 { .name
= "CDSR", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 6,
3732 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
3737 static const ARMCPRegInfo cache_block_ops_cp_reginfo
[] = {
3738 /* We never have a a block transfer operation in progress */
3739 { .name
= "BXSR", .cp
= 15, .crn
= 7, .crm
= 12, .opc1
= 0, .opc2
= 4,
3740 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
3742 /* The cache ops themselves: these all NOP for QEMU */
3743 { .name
= "IICR", .cp
= 15, .crm
= 5, .opc1
= 0,
3744 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
3745 { .name
= "IDCR", .cp
= 15, .crm
= 6, .opc1
= 0,
3746 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
3747 { .name
= "CDCR", .cp
= 15, .crm
= 12, .opc1
= 0,
3748 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
3749 { .name
= "PIR", .cp
= 15, .crm
= 12, .opc1
= 1,
3750 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
3751 { .name
= "PDR", .cp
= 15, .crm
= 12, .opc1
= 2,
3752 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
3753 { .name
= "CIDCR", .cp
= 15, .crm
= 14, .opc1
= 0,
3754 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
3758 static const ARMCPRegInfo cache_test_clean_cp_reginfo
[] = {
3759 /* The cache test-and-clean instructions always return (1 << 30)
3760 * to indicate that there are no dirty cache lines.
3762 { .name
= "TC_DCACHE", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 3,
3763 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
3764 .resetvalue
= (1 << 30) },
3765 { .name
= "TCI_DCACHE", .cp
= 15, .crn
= 7, .crm
= 14, .opc1
= 0, .opc2
= 3,
3766 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
3767 .resetvalue
= (1 << 30) },
3771 static const ARMCPRegInfo strongarm_cp_reginfo
[] = {
3772 /* Ignore ReadBuffer accesses */
3773 { .name
= "C9_READBUFFER", .cp
= 15, .crn
= 9,
3774 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
3775 .access
= PL1_RW
, .resetvalue
= 0,
3776 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
| ARM_CP_NO_RAW
},
3780 static uint64_t midr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3782 ARMCPU
*cpu
= env_archcpu(env
);
3783 unsigned int cur_el
= arm_current_el(env
);
3784 bool secure
= arm_is_secure(env
);
3786 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL2
) && !secure
&& cur_el
== 1) {
3787 return env
->cp15
.vpidr_el2
;
3789 return raw_read(env
, ri
);
3792 static uint64_t mpidr_read_val(CPUARMState
*env
)
3794 ARMCPU
*cpu
= env_archcpu(env
);
3795 uint64_t mpidr
= cpu
->mp_affinity
;
3797 if (arm_feature(env
, ARM_FEATURE_V7MP
)) {
3798 mpidr
|= (1U << 31);
3799 /* Cores which are uniprocessor (non-coherent)
3800 * but still implement the MP extensions set
3801 * bit 30. (For instance, Cortex-R5).
3803 if (cpu
->mp_is_up
) {
3804 mpidr
|= (1u << 30);
3810 static uint64_t mpidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3812 unsigned int cur_el
= arm_current_el(env
);
3813 bool secure
= arm_is_secure(env
);
3815 if (arm_feature(env
, ARM_FEATURE_EL2
) && !secure
&& cur_el
== 1) {
3816 return env
->cp15
.vmpidr_el2
;
3818 return mpidr_read_val(env
);
3821 static const ARMCPRegInfo lpae_cp_reginfo
[] = {
3823 { .name
= "AMAIR0", .state
= ARM_CP_STATE_BOTH
,
3824 .opc0
= 3, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 0,
3825 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
3827 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
3828 { .name
= "AMAIR1", .cp
= 15, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 1,
3829 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
3831 { .name
= "PAR", .cp
= 15, .crm
= 7, .opc1
= 0,
3832 .access
= PL1_RW
, .type
= ARM_CP_64BIT
, .resetvalue
= 0,
3833 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.par_s
),
3834 offsetof(CPUARMState
, cp15
.par_ns
)} },
3835 { .name
= "TTBR0", .cp
= 15, .crm
= 2, .opc1
= 0,
3836 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
3837 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr0_s
),
3838 offsetof(CPUARMState
, cp15
.ttbr0_ns
) },
3839 .writefn
= vmsa_ttbr_write
, },
3840 { .name
= "TTBR1", .cp
= 15, .crm
= 2, .opc1
= 1,
3841 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
3842 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr1_s
),
3843 offsetof(CPUARMState
, cp15
.ttbr1_ns
) },
3844 .writefn
= vmsa_ttbr_write
, },
3848 static uint64_t aa64_fpcr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3850 return vfp_get_fpcr(env
);
3853 static void aa64_fpcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3856 vfp_set_fpcr(env
, value
);
3859 static uint64_t aa64_fpsr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3861 return vfp_get_fpsr(env
);
3864 static void aa64_fpsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3867 vfp_set_fpsr(env
, value
);
3870 static CPAccessResult
aa64_daif_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3873 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UMA
)) {
3874 return CP_ACCESS_TRAP
;
3876 return CP_ACCESS_OK
;
3879 static void aa64_daif_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3882 env
->daif
= value
& PSTATE_DAIF
;
3885 static CPAccessResult
aa64_cacheop_access(CPUARMState
*env
,
3886 const ARMCPRegInfo
*ri
,
3889 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
3890 * SCTLR_EL1.UCI is set.
3892 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UCI
)) {
3893 return CP_ACCESS_TRAP
;
3895 return CP_ACCESS_OK
;
3898 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
3899 * Page D4-1736 (DDI0487A.b)
3902 static void tlbi_aa64_vmalle1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3905 CPUState
*cs
= env_cpu(env
);
3906 bool sec
= arm_is_secure_below_el3(env
);
3909 tlb_flush_by_mmuidx_all_cpus_synced(cs
,
3910 ARMMMUIdxBit_S1SE1
|
3911 ARMMMUIdxBit_S1SE0
);
3913 tlb_flush_by_mmuidx_all_cpus_synced(cs
,
3914 ARMMMUIdxBit_S12NSE1
|
3915 ARMMMUIdxBit_S12NSE0
);
3919 static void tlbi_aa64_vmalle1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3922 CPUState
*cs
= env_cpu(env
);
3924 if (tlb_force_broadcast(env
)) {
3925 tlbi_aa64_vmalle1is_write(env
, NULL
, value
);
3929 if (arm_is_secure_below_el3(env
)) {
3930 tlb_flush_by_mmuidx(cs
,
3931 ARMMMUIdxBit_S1SE1
|
3932 ARMMMUIdxBit_S1SE0
);
3934 tlb_flush_by_mmuidx(cs
,
3935 ARMMMUIdxBit_S12NSE1
|
3936 ARMMMUIdxBit_S12NSE0
);
3940 static void tlbi_aa64_alle1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3943 /* Note that the 'ALL' scope must invalidate both stage 1 and
3944 * stage 2 translations, whereas most other scopes only invalidate
3945 * stage 1 translations.
3947 ARMCPU
*cpu
= env_archcpu(env
);
3948 CPUState
*cs
= CPU(cpu
);
3950 if (arm_is_secure_below_el3(env
)) {
3951 tlb_flush_by_mmuidx(cs
,
3952 ARMMMUIdxBit_S1SE1
|
3953 ARMMMUIdxBit_S1SE0
);
3955 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
3956 tlb_flush_by_mmuidx(cs
,
3957 ARMMMUIdxBit_S12NSE1
|
3958 ARMMMUIdxBit_S12NSE0
|
3961 tlb_flush_by_mmuidx(cs
,
3962 ARMMMUIdxBit_S12NSE1
|
3963 ARMMMUIdxBit_S12NSE0
);
3968 static void tlbi_aa64_alle2_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3971 ARMCPU
*cpu
= env_archcpu(env
);
3972 CPUState
*cs
= CPU(cpu
);
3974 tlb_flush_by_mmuidx(cs
, ARMMMUIdxBit_S1E2
);
3977 static void tlbi_aa64_alle3_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3980 ARMCPU
*cpu
= env_archcpu(env
);
3981 CPUState
*cs
= CPU(cpu
);
3983 tlb_flush_by_mmuidx(cs
, ARMMMUIdxBit_S1E3
);
3986 static void tlbi_aa64_alle1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3989 /* Note that the 'ALL' scope must invalidate both stage 1 and
3990 * stage 2 translations, whereas most other scopes only invalidate
3991 * stage 1 translations.
3993 CPUState
*cs
= env_cpu(env
);
3994 bool sec
= arm_is_secure_below_el3(env
);
3995 bool has_el2
= arm_feature(env
, ARM_FEATURE_EL2
);
3998 tlb_flush_by_mmuidx_all_cpus_synced(cs
,
3999 ARMMMUIdxBit_S1SE1
|
4000 ARMMMUIdxBit_S1SE0
);
4001 } else if (has_el2
) {
4002 tlb_flush_by_mmuidx_all_cpus_synced(cs
,
4003 ARMMMUIdxBit_S12NSE1
|
4004 ARMMMUIdxBit_S12NSE0
|
4007 tlb_flush_by_mmuidx_all_cpus_synced(cs
,
4008 ARMMMUIdxBit_S12NSE1
|
4009 ARMMMUIdxBit_S12NSE0
);
4013 static void tlbi_aa64_alle2is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4016 CPUState
*cs
= env_cpu(env
);
4018 tlb_flush_by_mmuidx_all_cpus_synced(cs
, ARMMMUIdxBit_S1E2
);
4021 static void tlbi_aa64_alle3is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4024 CPUState
*cs
= env_cpu(env
);
4026 tlb_flush_by_mmuidx_all_cpus_synced(cs
, ARMMMUIdxBit_S1E3
);
4029 static void tlbi_aa64_vae2_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4032 /* Invalidate by VA, EL2
4033 * Currently handles both VAE2 and VALE2, since we don't support
4034 * flush-last-level-only.
4036 ARMCPU
*cpu
= env_archcpu(env
);
4037 CPUState
*cs
= CPU(cpu
);
4038 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
4040 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdxBit_S1E2
);
4043 static void tlbi_aa64_vae3_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4046 /* Invalidate by VA, EL3
4047 * Currently handles both VAE3 and VALE3, since we don't support
4048 * flush-last-level-only.
4050 ARMCPU
*cpu
= env_archcpu(env
);
4051 CPUState
*cs
= CPU(cpu
);
4052 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
4054 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdxBit_S1E3
);
4057 static void tlbi_aa64_vae1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4060 ARMCPU
*cpu
= env_archcpu(env
);
4061 CPUState
*cs
= CPU(cpu
);
4062 bool sec
= arm_is_secure_below_el3(env
);
4063 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
4066 tlb_flush_page_by_mmuidx_all_cpus_synced(cs
, pageaddr
,
4067 ARMMMUIdxBit_S1SE1
|
4068 ARMMMUIdxBit_S1SE0
);
4070 tlb_flush_page_by_mmuidx_all_cpus_synced(cs
, pageaddr
,
4071 ARMMMUIdxBit_S12NSE1
|
4072 ARMMMUIdxBit_S12NSE0
);
4076 static void tlbi_aa64_vae1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4079 /* Invalidate by VA, EL1&0 (AArch64 version).
4080 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4081 * since we don't support flush-for-specific-ASID-only or
4082 * flush-last-level-only.
4084 ARMCPU
*cpu
= env_archcpu(env
);
4085 CPUState
*cs
= CPU(cpu
);
4086 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
4088 if (tlb_force_broadcast(env
)) {
4089 tlbi_aa64_vae1is_write(env
, NULL
, value
);
4093 if (arm_is_secure_below_el3(env
)) {
4094 tlb_flush_page_by_mmuidx(cs
, pageaddr
,
4095 ARMMMUIdxBit_S1SE1
|
4096 ARMMMUIdxBit_S1SE0
);
4098 tlb_flush_page_by_mmuidx(cs
, pageaddr
,
4099 ARMMMUIdxBit_S12NSE1
|
4100 ARMMMUIdxBit_S12NSE0
);
4104 static void tlbi_aa64_vae2is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4107 CPUState
*cs
= env_cpu(env
);
4108 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
4110 tlb_flush_page_by_mmuidx_all_cpus_synced(cs
, pageaddr
,
4114 static void tlbi_aa64_vae3is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4117 CPUState
*cs
= env_cpu(env
);
4118 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
4120 tlb_flush_page_by_mmuidx_all_cpus_synced(cs
, pageaddr
,
4124 static void tlbi_aa64_ipas2e1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4127 /* Invalidate by IPA. This has to invalidate any structures that
4128 * contain only stage 2 translation information, but does not need
4129 * to apply to structures that contain combined stage 1 and stage 2
4130 * translation information.
4131 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
4133 ARMCPU
*cpu
= env_archcpu(env
);
4134 CPUState
*cs
= CPU(cpu
);
4137 if (!arm_feature(env
, ARM_FEATURE_EL2
) || !(env
->cp15
.scr_el3
& SCR_NS
)) {
4141 pageaddr
= sextract64(value
<< 12, 0, 48);
4143 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdxBit_S2NS
);
4146 static void tlbi_aa64_ipas2e1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4149 CPUState
*cs
= env_cpu(env
);
4152 if (!arm_feature(env
, ARM_FEATURE_EL2
) || !(env
->cp15
.scr_el3
& SCR_NS
)) {
4156 pageaddr
= sextract64(value
<< 12, 0, 48);
4158 tlb_flush_page_by_mmuidx_all_cpus_synced(cs
, pageaddr
,
4162 static CPAccessResult
aa64_zva_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4165 /* We don't implement EL2, so the only control on DC ZVA is the
4166 * bit in the SCTLR which can prohibit access for EL0.
4168 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_DZE
)) {
4169 return CP_ACCESS_TRAP
;
4171 return CP_ACCESS_OK
;
4174 static uint64_t aa64_dczid_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
4176 ARMCPU
*cpu
= env_archcpu(env
);
4177 int dzp_bit
= 1 << 4;
4179 /* DZP indicates whether DC ZVA access is allowed */
4180 if (aa64_zva_access(env
, NULL
, false) == CP_ACCESS_OK
) {
4183 return cpu
->dcz_blocksize
| dzp_bit
;
4186 static CPAccessResult
sp_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4189 if (!(env
->pstate
& PSTATE_SP
)) {
4190 /* Access to SP_EL0 is undefined if it's being used as
4191 * the stack pointer.
4193 return CP_ACCESS_TRAP_UNCATEGORIZED
;
4195 return CP_ACCESS_OK
;
4198 static uint64_t spsel_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
4200 return env
->pstate
& PSTATE_SP
;
4203 static void spsel_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t val
)
4205 update_spsel(env
, val
);
4208 static void sctlr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4211 ARMCPU
*cpu
= env_archcpu(env
);
4213 if (raw_read(env
, ri
) == value
) {
4214 /* Skip the TLB flush if nothing actually changed; Linux likes
4215 * to do a lot of pointless SCTLR writes.
4220 if (arm_feature(env
, ARM_FEATURE_PMSA
) && !cpu
->has_mpu
) {
4221 /* M bit is RAZ/WI for PMSA with no MPU implemented */
4225 raw_write(env
, ri
, value
);
4226 /* ??? Lots of these bits are not implemented. */
4227 /* This may enable/disable the MMU, so do a TLB flush. */
4228 tlb_flush(CPU(cpu
));
4230 if (ri
->type
& ARM_CP_SUPPRESS_TB_END
) {
4232 * Normally we would always end the TB on an SCTLR write; see the
4233 * comment in ARMCPRegInfo sctlr initialization below for why Xscale
4234 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
4235 * of hflags from the translator, so do it here.
4237 arm_rebuild_hflags(env
);
4241 static CPAccessResult
fpexc32_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4244 if ((env
->cp15
.cptr_el
[2] & CPTR_TFP
) && arm_current_el(env
) == 2) {
4245 return CP_ACCESS_TRAP_FP_EL2
;
4247 if (env
->cp15
.cptr_el
[3] & CPTR_TFP
) {
4248 return CP_ACCESS_TRAP_FP_EL3
;
4250 return CP_ACCESS_OK
;
4253 static void sdcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4256 env
->cp15
.mdcr_el3
= value
& SDCR_VALID_MASK
;
4259 static const ARMCPRegInfo v8_cp_reginfo
[] = {
4260 /* Minimal set of EL0-visible registers. This will need to be expanded
4261 * significantly for system emulation of AArch64 CPUs.
4263 { .name
= "NZCV", .state
= ARM_CP_STATE_AA64
,
4264 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 2,
4265 .access
= PL0_RW
, .type
= ARM_CP_NZCV
},
4266 { .name
= "DAIF", .state
= ARM_CP_STATE_AA64
,
4267 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 2,
4268 .type
= ARM_CP_NO_RAW
,
4269 .access
= PL0_RW
, .accessfn
= aa64_daif_access
,
4270 .fieldoffset
= offsetof(CPUARMState
, daif
),
4271 .writefn
= aa64_daif_write
, .resetfn
= arm_cp_reset_ignore
},
4272 { .name
= "FPCR", .state
= ARM_CP_STATE_AA64
,
4273 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 4,
4274 .access
= PL0_RW
, .type
= ARM_CP_FPU
| ARM_CP_SUPPRESS_TB_END
,
4275 .readfn
= aa64_fpcr_read
, .writefn
= aa64_fpcr_write
},
4276 { .name
= "FPSR", .state
= ARM_CP_STATE_AA64
,
4277 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 4,
4278 .access
= PL0_RW
, .type
= ARM_CP_FPU
| ARM_CP_SUPPRESS_TB_END
,
4279 .readfn
= aa64_fpsr_read
, .writefn
= aa64_fpsr_write
},
4280 { .name
= "DCZID_EL0", .state
= ARM_CP_STATE_AA64
,
4281 .opc0
= 3, .opc1
= 3, .opc2
= 7, .crn
= 0, .crm
= 0,
4282 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
,
4283 .readfn
= aa64_dczid_read
},
4284 { .name
= "DC_ZVA", .state
= ARM_CP_STATE_AA64
,
4285 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 4, .opc2
= 1,
4286 .access
= PL0_W
, .type
= ARM_CP_DC_ZVA
,
4287 #ifndef CONFIG_USER_ONLY
4288 /* Avoid overhead of an access check that always passes in user-mode */
4289 .accessfn
= aa64_zva_access
,
4292 { .name
= "CURRENTEL", .state
= ARM_CP_STATE_AA64
,
4293 .opc0
= 3, .opc1
= 0, .opc2
= 2, .crn
= 4, .crm
= 2,
4294 .access
= PL1_R
, .type
= ARM_CP_CURRENTEL
},
4295 /* Cache ops: all NOPs since we don't emulate caches */
4296 { .name
= "IC_IALLUIS", .state
= ARM_CP_STATE_AA64
,
4297 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
4298 .access
= PL1_W
, .type
= ARM_CP_NOP
},
4299 { .name
= "IC_IALLU", .state
= ARM_CP_STATE_AA64
,
4300 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
4301 .access
= PL1_W
, .type
= ARM_CP_NOP
},
4302 { .name
= "IC_IVAU", .state
= ARM_CP_STATE_AA64
,
4303 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 5, .opc2
= 1,
4304 .access
= PL0_W
, .type
= ARM_CP_NOP
,
4305 .accessfn
= aa64_cacheop_access
},
4306 { .name
= "DC_IVAC", .state
= ARM_CP_STATE_AA64
,
4307 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
4308 .access
= PL1_W
, .type
= ARM_CP_NOP
},
4309 { .name
= "DC_ISW", .state
= ARM_CP_STATE_AA64
,
4310 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
4311 .access
= PL1_W
, .type
= ARM_CP_NOP
},
4312 { .name
= "DC_CVAC", .state
= ARM_CP_STATE_AA64
,
4313 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 10, .opc2
= 1,
4314 .access
= PL0_W
, .type
= ARM_CP_NOP
,
4315 .accessfn
= aa64_cacheop_access
},
4316 { .name
= "DC_CSW", .state
= ARM_CP_STATE_AA64
,
4317 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
4318 .access
= PL1_W
, .type
= ARM_CP_NOP
},
4319 { .name
= "DC_CVAU", .state
= ARM_CP_STATE_AA64
,
4320 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 11, .opc2
= 1,
4321 .access
= PL0_W
, .type
= ARM_CP_NOP
,
4322 .accessfn
= aa64_cacheop_access
},
4323 { .name
= "DC_CIVAC", .state
= ARM_CP_STATE_AA64
,
4324 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 14, .opc2
= 1,
4325 .access
= PL0_W
, .type
= ARM_CP_NOP
,
4326 .accessfn
= aa64_cacheop_access
},
4327 { .name
= "DC_CISW", .state
= ARM_CP_STATE_AA64
,
4328 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
4329 .access
= PL1_W
, .type
= ARM_CP_NOP
},
4330 /* TLBI operations */
4331 { .name
= "TLBI_VMALLE1IS", .state
= ARM_CP_STATE_AA64
,
4332 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
4333 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
4334 .writefn
= tlbi_aa64_vmalle1is_write
},
4335 { .name
= "TLBI_VAE1IS", .state
= ARM_CP_STATE_AA64
,
4336 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
4337 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
4338 .writefn
= tlbi_aa64_vae1is_write
},
4339 { .name
= "TLBI_ASIDE1IS", .state
= ARM_CP_STATE_AA64
,
4340 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
4341 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
4342 .writefn
= tlbi_aa64_vmalle1is_write
},
4343 { .name
= "TLBI_VAAE1IS", .state
= ARM_CP_STATE_AA64
,
4344 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
4345 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
4346 .writefn
= tlbi_aa64_vae1is_write
},
4347 { .name
= "TLBI_VALE1IS", .state
= ARM_CP_STATE_AA64
,
4348 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
4349 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
4350 .writefn
= tlbi_aa64_vae1is_write
},
4351 { .name
= "TLBI_VAALE1IS", .state
= ARM_CP_STATE_AA64
,
4352 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
4353 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
4354 .writefn
= tlbi_aa64_vae1is_write
},
4355 { .name
= "TLBI_VMALLE1", .state
= ARM_CP_STATE_AA64
,
4356 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
4357 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
4358 .writefn
= tlbi_aa64_vmalle1_write
},
4359 { .name
= "TLBI_VAE1", .state
= ARM_CP_STATE_AA64
,
4360 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
4361 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
4362 .writefn
= tlbi_aa64_vae1_write
},
4363 { .name
= "TLBI_ASIDE1", .state
= ARM_CP_STATE_AA64
,
4364 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
4365 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
4366 .writefn
= tlbi_aa64_vmalle1_write
},
4367 { .name
= "TLBI_VAAE1", .state
= ARM_CP_STATE_AA64
,
4368 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
4369 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
4370 .writefn
= tlbi_aa64_vae1_write
},
4371 { .name
= "TLBI_VALE1", .state
= ARM_CP_STATE_AA64
,
4372 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
4373 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
4374 .writefn
= tlbi_aa64_vae1_write
},
4375 { .name
= "TLBI_VAALE1", .state
= ARM_CP_STATE_AA64
,
4376 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
4377 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
4378 .writefn
= tlbi_aa64_vae1_write
},
4379 { .name
= "TLBI_IPAS2E1IS", .state
= ARM_CP_STATE_AA64
,
4380 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 1,
4381 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
4382 .writefn
= tlbi_aa64_ipas2e1is_write
},
4383 { .name
= "TLBI_IPAS2LE1IS", .state
= ARM_CP_STATE_AA64
,
4384 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 5,
4385 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
4386 .writefn
= tlbi_aa64_ipas2e1is_write
},
4387 { .name
= "TLBI_ALLE1IS", .state
= ARM_CP_STATE_AA64
,
4388 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 4,
4389 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
4390 .writefn
= tlbi_aa64_alle1is_write
},
4391 { .name
= "TLBI_VMALLS12E1IS", .state
= ARM_CP_STATE_AA64
,
4392 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 6,
4393 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
4394 .writefn
= tlbi_aa64_alle1is_write
},
4395 { .name
= "TLBI_IPAS2E1", .state
= ARM_CP_STATE_AA64
,
4396 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 1,
4397 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
4398 .writefn
= tlbi_aa64_ipas2e1_write
},
4399 { .name
= "TLBI_IPAS2LE1", .state
= ARM_CP_STATE_AA64
,
4400 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 5,
4401 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
4402 .writefn
= tlbi_aa64_ipas2e1_write
},
4403 { .name
= "TLBI_ALLE1", .state
= ARM_CP_STATE_AA64
,
4404 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 4,
4405 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
4406 .writefn
= tlbi_aa64_alle1_write
},
4407 { .name
= "TLBI_VMALLS12E1", .state
= ARM_CP_STATE_AA64
,
4408 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 6,
4409 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
4410 .writefn
= tlbi_aa64_alle1is_write
},
4411 #ifndef CONFIG_USER_ONLY
4412 /* 64 bit address translation operations */
4413 { .name
= "AT_S1E1R", .state
= ARM_CP_STATE_AA64
,
4414 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 0,
4415 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
| ARM_CP_RAISES_EXC
,
4416 .writefn
= ats_write64
},
4417 { .name
= "AT_S1E1W", .state
= ARM_CP_STATE_AA64
,
4418 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 1,
4419 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
| ARM_CP_RAISES_EXC
,
4420 .writefn
= ats_write64
},
4421 { .name
= "AT_S1E0R", .state
= ARM_CP_STATE_AA64
,
4422 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 2,
4423 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
| ARM_CP_RAISES_EXC
,
4424 .writefn
= ats_write64
},
4425 { .name
= "AT_S1E0W", .state
= ARM_CP_STATE_AA64
,
4426 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 3,
4427 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
| ARM_CP_RAISES_EXC
,
4428 .writefn
= ats_write64
},
4429 { .name
= "AT_S12E1R", .state
= ARM_CP_STATE_AA64
,
4430 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 4,
4431 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
| ARM_CP_RAISES_EXC
,
4432 .writefn
= ats_write64
},
4433 { .name
= "AT_S12E1W", .state
= ARM_CP_STATE_AA64
,
4434 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 5,
4435 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
| ARM_CP_RAISES_EXC
,
4436 .writefn
= ats_write64
},
4437 { .name
= "AT_S12E0R", .state
= ARM_CP_STATE_AA64
,
4438 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 6,
4439 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
| ARM_CP_RAISES_EXC
,
4440 .writefn
= ats_write64
},
4441 { .name
= "AT_S12E0W", .state
= ARM_CP_STATE_AA64
,
4442 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 7,
4443 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
| ARM_CP_RAISES_EXC
,
4444 .writefn
= ats_write64
},
4445 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4446 { .name
= "AT_S1E3R", .state
= ARM_CP_STATE_AA64
,
4447 .opc0
= 1, .opc1
= 6, .crn
= 7, .crm
= 8, .opc2
= 0,
4448 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
| ARM_CP_RAISES_EXC
,
4449 .writefn
= ats_write64
},
4450 { .name
= "AT_S1E3W", .state
= ARM_CP_STATE_AA64
,
4451 .opc0
= 1, .opc1
= 6, .crn
= 7, .crm
= 8, .opc2
= 1,
4452 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
| ARM_CP_RAISES_EXC
,
4453 .writefn
= ats_write64
},
4454 { .name
= "PAR_EL1", .state
= ARM_CP_STATE_AA64
,
4455 .type
= ARM_CP_ALIAS
,
4456 .opc0
= 3, .opc1
= 0, .crn
= 7, .crm
= 4, .opc2
= 0,
4457 .access
= PL1_RW
, .resetvalue
= 0,
4458 .fieldoffset
= offsetof(CPUARMState
, cp15
.par_el
[1]),
4459 .writefn
= par_write
},
4461 /* TLB invalidate last level of translation table walk */
4462 { .name
= "TLBIMVALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
4463 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_is_write
},
4464 { .name
= "TLBIMVAALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
4465 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
4466 .writefn
= tlbimvaa_is_write
},
4467 { .name
= "TLBIMVAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
4468 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
4469 { .name
= "TLBIMVAAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
4470 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
4471 { .name
= "TLBIMVALH", .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 5,
4472 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4473 .writefn
= tlbimva_hyp_write
},
4474 { .name
= "TLBIMVALHIS",
4475 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 5,
4476 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4477 .writefn
= tlbimva_hyp_is_write
},
4478 { .name
= "TLBIIPAS2",
4479 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 1,
4480 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4481 .writefn
= tlbiipas2_write
},
4482 { .name
= "TLBIIPAS2IS",
4483 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 1,
4484 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4485 .writefn
= tlbiipas2_is_write
},
4486 { .name
= "TLBIIPAS2L",
4487 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 5,
4488 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4489 .writefn
= tlbiipas2_write
},
4490 { .name
= "TLBIIPAS2LIS",
4491 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 5,
4492 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4493 .writefn
= tlbiipas2_is_write
},
4494 /* 32 bit cache operations */
4495 { .name
= "ICIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
4496 .type
= ARM_CP_NOP
, .access
= PL1_W
},
4497 { .name
= "BPIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 6,
4498 .type
= ARM_CP_NOP
, .access
= PL1_W
},
4499 { .name
= "ICIALLU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
4500 .type
= ARM_CP_NOP
, .access
= PL1_W
},
4501 { .name
= "ICIMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 1,
4502 .type
= ARM_CP_NOP
, .access
= PL1_W
},
4503 { .name
= "BPIALL", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 6,
4504 .type
= ARM_CP_NOP
, .access
= PL1_W
},
4505 { .name
= "BPIMVA", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 7,
4506 .type
= ARM_CP_NOP
, .access
= PL1_W
},
4507 { .name
= "DCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
4508 .type
= ARM_CP_NOP
, .access
= PL1_W
},
4509 { .name
= "DCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
4510 .type
= ARM_CP_NOP
, .access
= PL1_W
},
4511 { .name
= "DCCMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 1,
4512 .type
= ARM_CP_NOP
, .access
= PL1_W
},
4513 { .name
= "DCCSW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
4514 .type
= ARM_CP_NOP
, .access
= PL1_W
},
4515 { .name
= "DCCMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 11, .opc2
= 1,
4516 .type
= ARM_CP_NOP
, .access
= PL1_W
},
4517 { .name
= "DCCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 1,
4518 .type
= ARM_CP_NOP
, .access
= PL1_W
},
4519 { .name
= "DCCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
4520 .type
= ARM_CP_NOP
, .access
= PL1_W
},
4521 /* MMU Domain access control / MPU write buffer control */
4522 { .name
= "DACR", .cp
= 15, .opc1
= 0, .crn
= 3, .crm
= 0, .opc2
= 0,
4523 .access
= PL1_RW
, .resetvalue
= 0,
4524 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
4525 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dacr_s
),
4526 offsetoflow32(CPUARMState
, cp15
.dacr_ns
) } },
4527 { .name
= "ELR_EL1", .state
= ARM_CP_STATE_AA64
,
4528 .type
= ARM_CP_ALIAS
,
4529 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 1,
4531 .fieldoffset
= offsetof(CPUARMState
, elr_el
[1]) },
4532 { .name
= "SPSR_EL1", .state
= ARM_CP_STATE_AA64
,
4533 .type
= ARM_CP_ALIAS
,
4534 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 0,
4536 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_SVC
]) },
4537 /* We rely on the access checks not allowing the guest to write to the
4538 * state field when SPSel indicates that it's being used as the stack
4541 { .name
= "SP_EL0", .state
= ARM_CP_STATE_AA64
,
4542 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 1, .opc2
= 0,
4543 .access
= PL1_RW
, .accessfn
= sp_el0_access
,
4544 .type
= ARM_CP_ALIAS
,
4545 .fieldoffset
= offsetof(CPUARMState
, sp_el
[0]) },
4546 { .name
= "SP_EL1", .state
= ARM_CP_STATE_AA64
,
4547 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 1, .opc2
= 0,
4548 .access
= PL2_RW
, .type
= ARM_CP_ALIAS
,
4549 .fieldoffset
= offsetof(CPUARMState
, sp_el
[1]) },
4550 { .name
= "SPSel", .state
= ARM_CP_STATE_AA64
,
4551 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 2, .opc2
= 0,
4552 .type
= ARM_CP_NO_RAW
,
4553 .access
= PL1_RW
, .readfn
= spsel_read
, .writefn
= spsel_write
},
4554 { .name
= "FPEXC32_EL2", .state
= ARM_CP_STATE_AA64
,
4555 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 3, .opc2
= 0,
4556 .type
= ARM_CP_ALIAS
,
4557 .fieldoffset
= offsetof(CPUARMState
, vfp
.xregs
[ARM_VFP_FPEXC
]),
4558 .access
= PL2_RW
, .accessfn
= fpexc32_access
},
4559 { .name
= "DACR32_EL2", .state
= ARM_CP_STATE_AA64
,
4560 .opc0
= 3, .opc1
= 4, .crn
= 3, .crm
= 0, .opc2
= 0,
4561 .access
= PL2_RW
, .resetvalue
= 0,
4562 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
4563 .fieldoffset
= offsetof(CPUARMState
, cp15
.dacr32_el2
) },
4564 { .name
= "IFSR32_EL2", .state
= ARM_CP_STATE_AA64
,
4565 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 0, .opc2
= 1,
4566 .access
= PL2_RW
, .resetvalue
= 0,
4567 .fieldoffset
= offsetof(CPUARMState
, cp15
.ifsr32_el2
) },
4568 { .name
= "SPSR_IRQ", .state
= ARM_CP_STATE_AA64
,
4569 .type
= ARM_CP_ALIAS
,
4570 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 0,
4572 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_IRQ
]) },
4573 { .name
= "SPSR_ABT", .state
= ARM_CP_STATE_AA64
,
4574 .type
= ARM_CP_ALIAS
,
4575 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 1,
4577 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_ABT
]) },
4578 { .name
= "SPSR_UND", .state
= ARM_CP_STATE_AA64
,
4579 .type
= ARM_CP_ALIAS
,
4580 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 2,
4582 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_UND
]) },
4583 { .name
= "SPSR_FIQ", .state
= ARM_CP_STATE_AA64
,
4584 .type
= ARM_CP_ALIAS
,
4585 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 3,
4587 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_FIQ
]) },
4588 { .name
= "MDCR_EL3", .state
= ARM_CP_STATE_AA64
,
4589 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 3, .opc2
= 1,
4591 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mdcr_el3
) },
4592 { .name
= "SDCR", .type
= ARM_CP_ALIAS
,
4593 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 3, .opc2
= 1,
4594 .access
= PL1_RW
, .accessfn
= access_trap_aa32s_el1
,
4595 .writefn
= sdcr_write
,
4596 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.mdcr_el3
) },
4600 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
4601 static const ARMCPRegInfo el3_no_el2_cp_reginfo
[] = {
4602 { .name
= "VBAR_EL2", .state
= ARM_CP_STATE_BOTH
,
4603 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 0,
4605 .readfn
= arm_cp_read_zero
, .writefn
= arm_cp_write_ignore
},
4606 { .name
= "HCR_EL2", .state
= ARM_CP_STATE_BOTH
,
4607 .type
= ARM_CP_NO_RAW
,
4608 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 0,
4610 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4611 { .name
= "HACR_EL2", .state
= ARM_CP_STATE_BOTH
,
4612 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 7,
4613 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4614 { .name
= "ESR_EL2", .state
= ARM_CP_STATE_BOTH
,
4615 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 2, .opc2
= 0,
4617 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4618 { .name
= "CPTR_EL2", .state
= ARM_CP_STATE_BOTH
,
4619 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 2,
4620 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4621 { .name
= "MAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
4622 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 0,
4623 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
4625 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
4626 .cp
= 15, .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 1,
4627 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4628 { .name
= "AMAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
4629 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 0,
4630 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
4632 { .name
= "HAMAIR1", .state
= ARM_CP_STATE_AA32
,
4633 .cp
= 15, .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 1,
4634 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
4636 { .name
= "AFSR0_EL2", .state
= ARM_CP_STATE_BOTH
,
4637 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 0,
4638 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
4640 { .name
= "AFSR1_EL2", .state
= ARM_CP_STATE_BOTH
,
4641 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 1,
4642 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
4644 { .name
= "TCR_EL2", .state
= ARM_CP_STATE_BOTH
,
4645 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 2,
4646 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4647 { .name
= "VTCR_EL2", .state
= ARM_CP_STATE_BOTH
,
4648 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 2,
4649 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
4650 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4651 { .name
= "VTTBR", .state
= ARM_CP_STATE_AA32
,
4652 .cp
= 15, .opc1
= 6, .crm
= 2,
4653 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
4654 .type
= ARM_CP_CONST
| ARM_CP_64BIT
, .resetvalue
= 0 },
4655 { .name
= "VTTBR_EL2", .state
= ARM_CP_STATE_AA64
,
4656 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 0,
4657 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4658 { .name
= "SCTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
4659 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 0,
4660 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4661 { .name
= "TPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
4662 .opc0
= 3, .opc1
= 4, .crn
= 13, .crm
= 0, .opc2
= 2,
4663 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4664 { .name
= "TTBR0_EL2", .state
= ARM_CP_STATE_AA64
,
4665 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 0,
4666 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4667 { .name
= "HTTBR", .cp
= 15, .opc1
= 4, .crm
= 2,
4668 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
4670 { .name
= "CNTHCTL_EL2", .state
= ARM_CP_STATE_BOTH
,
4671 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 1, .opc2
= 0,
4672 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4673 { .name
= "CNTVOFF_EL2", .state
= ARM_CP_STATE_AA64
,
4674 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 0, .opc2
= 3,
4675 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4676 { .name
= "CNTVOFF", .cp
= 15, .opc1
= 4, .crm
= 14,
4677 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
4679 { .name
= "CNTHP_CVAL_EL2", .state
= ARM_CP_STATE_AA64
,
4680 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 2,
4681 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4682 { .name
= "CNTHP_CVAL", .cp
= 15, .opc1
= 6, .crm
= 14,
4683 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
4685 { .name
= "CNTHP_TVAL_EL2", .state
= ARM_CP_STATE_BOTH
,
4686 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 0,
4687 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4688 { .name
= "CNTHP_CTL_EL2", .state
= ARM_CP_STATE_BOTH
,
4689 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 1,
4690 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4691 { .name
= "MDCR_EL2", .state
= ARM_CP_STATE_BOTH
,
4692 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 1,
4693 .access
= PL2_RW
, .accessfn
= access_tda
,
4694 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4695 { .name
= "HPFAR_EL2", .state
= ARM_CP_STATE_BOTH
,
4696 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 4,
4697 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
4698 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4699 { .name
= "HSTR_EL2", .state
= ARM_CP_STATE_BOTH
,
4700 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 3,
4701 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4702 { .name
= "FAR_EL2", .state
= ARM_CP_STATE_BOTH
,
4703 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 0,
4704 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4705 { .name
= "HIFAR", .state
= ARM_CP_STATE_AA32
,
4706 .type
= ARM_CP_CONST
,
4707 .cp
= 15, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 2,
4708 .access
= PL2_RW
, .resetvalue
= 0 },
4712 /* Ditto, but for registers which exist in ARMv8 but not v7 */
4713 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo
[] = {
4714 { .name
= "HCR2", .state
= ARM_CP_STATE_AA32
,
4715 .cp
= 15, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 4,
4717 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4721 static void hcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
4723 ARMCPU
*cpu
= env_archcpu(env
);
4724 /* Begin with bits defined in base ARMv8.0. */
4725 uint64_t valid_mask
= MAKE_64BIT_MASK(0, 34);
4727 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
4728 valid_mask
&= ~HCR_HCD
;
4729 } else if (cpu
->psci_conduit
!= QEMU_PSCI_CONDUIT_SMC
) {
4730 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
4731 * However, if we're using the SMC PSCI conduit then QEMU is
4732 * effectively acting like EL3 firmware and so the guest at
4733 * EL2 should retain the ability to prevent EL1 from being
4734 * able to make SMC calls into the ersatz firmware, so in
4735 * that case HCR.TSC should be read/write.
4737 valid_mask
&= ~HCR_TSC
;
4739 if (cpu_isar_feature(aa64_vh
, cpu
)) {
4740 valid_mask
|= HCR_E2H
;
4742 if (cpu_isar_feature(aa64_lor
, cpu
)) {
4743 valid_mask
|= HCR_TLOR
;
4745 if (cpu_isar_feature(aa64_pauth
, cpu
)) {
4746 valid_mask
|= HCR_API
| HCR_APK
;
4749 /* Clear RES0 bits. */
4750 value
&= valid_mask
;
4752 /* These bits change the MMU setup:
4753 * HCR_VM enables stage 2 translation
4754 * HCR_PTW forbids certain page-table setups
4755 * HCR_DC Disables stage1 and enables stage2 translation
4757 if ((env
->cp15
.hcr_el2
^ value
) & (HCR_VM
| HCR_PTW
| HCR_DC
)) {
4758 tlb_flush(CPU(cpu
));
4760 env
->cp15
.hcr_el2
= value
;
4763 * Updates to VI and VF require us to update the status of
4764 * virtual interrupts, which are the logical OR of these bits
4765 * and the state of the input lines from the GIC. (This requires
4766 * that we have the iothread lock, which is done by marking the
4767 * reginfo structs as ARM_CP_IO.)
4768 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
4769 * possible for it to be taken immediately, because VIRQ and
4770 * VFIQ are masked unless running at EL0 or EL1, and HCR
4771 * can only be written at EL2.
4773 g_assert(qemu_mutex_iothread_locked());
4774 arm_cpu_update_virq(cpu
);
4775 arm_cpu_update_vfiq(cpu
);
4778 static void hcr_writehigh(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4781 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
4782 value
= deposit64(env
->cp15
.hcr_el2
, 32, 32, value
);
4783 hcr_write(env
, NULL
, value
);
4786 static void hcr_writelow(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4789 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
4790 value
= deposit64(env
->cp15
.hcr_el2
, 0, 32, value
);
4791 hcr_write(env
, NULL
, value
);
4795 * Return the effective value of HCR_EL2.
4796 * Bits that are not included here:
4797 * RW (read from SCR_EL3.RW as needed)
4799 uint64_t arm_hcr_el2_eff(CPUARMState
*env
)
4801 uint64_t ret
= env
->cp15
.hcr_el2
;
4803 if (arm_is_secure_below_el3(env
)) {
4805 * "This register has no effect if EL2 is not enabled in the
4806 * current Security state". This is ARMv8.4-SecEL2 speak for
4807 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
4809 * Prior to that, the language was "In an implementation that
4810 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
4811 * as if this field is 0 for all purposes other than a direct
4812 * read or write access of HCR_EL2". With lots of enumeration
4813 * on a per-field basis. In current QEMU, this is condition
4814 * is arm_is_secure_below_el3.
4816 * Since the v8.4 language applies to the entire register, and
4817 * appears to be backward compatible, use that.
4820 } else if (ret
& HCR_TGE
) {
4821 /* These bits are up-to-date as of ARMv8.4. */
4822 if (ret
& HCR_E2H
) {
4823 ret
&= ~(HCR_VM
| HCR_FMO
| HCR_IMO
| HCR_AMO
|
4824 HCR_BSU_MASK
| HCR_DC
| HCR_TWI
| HCR_TWE
|
4825 HCR_TID0
| HCR_TID2
| HCR_TPCP
| HCR_TPU
|
4826 HCR_TDZ
| HCR_CD
| HCR_ID
| HCR_MIOCNCE
);
4828 ret
|= HCR_FMO
| HCR_IMO
| HCR_AMO
;
4830 ret
&= ~(HCR_SWIO
| HCR_PTW
| HCR_VF
| HCR_VI
| HCR_VSE
|
4831 HCR_FB
| HCR_TID1
| HCR_TID3
| HCR_TSC
| HCR_TACR
|
4832 HCR_TSW
| HCR_TTLB
| HCR_TVM
| HCR_HCD
| HCR_TRVM
|
4839 static void cptr_el2_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4843 * For A-profile AArch32 EL3, if NSACR.CP10
4844 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
4846 if (arm_feature(env
, ARM_FEATURE_EL3
) && !arm_el_is_aa64(env
, 3) &&
4847 !arm_is_secure(env
) && !extract32(env
->cp15
.nsacr
, 10, 1)) {
4848 value
&= ~(0x3 << 10);
4849 value
|= env
->cp15
.cptr_el
[2] & (0x3 << 10);
4851 env
->cp15
.cptr_el
[2] = value
;
4854 static uint64_t cptr_el2_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
4857 * For A-profile AArch32 EL3, if NSACR.CP10
4858 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
4860 uint64_t value
= env
->cp15
.cptr_el
[2];
4862 if (arm_feature(env
, ARM_FEATURE_EL3
) && !arm_el_is_aa64(env
, 3) &&
4863 !arm_is_secure(env
) && !extract32(env
->cp15
.nsacr
, 10, 1)) {
4869 static const ARMCPRegInfo el2_cp_reginfo
[] = {
4870 { .name
= "HCR_EL2", .state
= ARM_CP_STATE_AA64
,
4872 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 0,
4873 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.hcr_el2
),
4874 .writefn
= hcr_write
},
4875 { .name
= "HCR", .state
= ARM_CP_STATE_AA32
,
4876 .type
= ARM_CP_ALIAS
| ARM_CP_IO
,
4877 .cp
= 15, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 0,
4878 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.hcr_el2
),
4879 .writefn
= hcr_writelow
},
4880 { .name
= "HACR_EL2", .state
= ARM_CP_STATE_BOTH
,
4881 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 7,
4882 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4883 { .name
= "ELR_EL2", .state
= ARM_CP_STATE_AA64
,
4884 .type
= ARM_CP_ALIAS
,
4885 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 0, .opc2
= 1,
4887 .fieldoffset
= offsetof(CPUARMState
, elr_el
[2]) },
4888 { .name
= "ESR_EL2", .state
= ARM_CP_STATE_BOTH
,
4889 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 2, .opc2
= 0,
4890 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[2]) },
4891 { .name
= "FAR_EL2", .state
= ARM_CP_STATE_BOTH
,
4892 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 0,
4893 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[2]) },
4894 { .name
= "HIFAR", .state
= ARM_CP_STATE_AA32
,
4895 .type
= ARM_CP_ALIAS
,
4896 .cp
= 15, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 2,
4898 .fieldoffset
= offsetofhigh32(CPUARMState
, cp15
.far_el
[2]) },
4899 { .name
= "SPSR_EL2", .state
= ARM_CP_STATE_AA64
,
4900 .type
= ARM_CP_ALIAS
,
4901 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 0, .opc2
= 0,
4903 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_HYP
]) },
4904 { .name
= "VBAR_EL2", .state
= ARM_CP_STATE_BOTH
,
4905 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 0,
4906 .access
= PL2_RW
, .writefn
= vbar_write
,
4907 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[2]),
4909 { .name
= "SP_EL2", .state
= ARM_CP_STATE_AA64
,
4910 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 1, .opc2
= 0,
4911 .access
= PL3_RW
, .type
= ARM_CP_ALIAS
,
4912 .fieldoffset
= offsetof(CPUARMState
, sp_el
[2]) },
4913 { .name
= "CPTR_EL2", .state
= ARM_CP_STATE_BOTH
,
4914 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 2,
4915 .access
= PL2_RW
, .accessfn
= cptr_access
, .resetvalue
= 0,
4916 .fieldoffset
= offsetof(CPUARMState
, cp15
.cptr_el
[2]),
4917 .readfn
= cptr_el2_read
, .writefn
= cptr_el2_write
},
4918 { .name
= "MAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
4919 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 0,
4920 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[2]),
4922 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
4923 .cp
= 15, .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 1,
4924 .access
= PL2_RW
, .type
= ARM_CP_ALIAS
,
4925 .fieldoffset
= offsetofhigh32(CPUARMState
, cp15
.mair_el
[2]) },
4926 { .name
= "AMAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
4927 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 0,
4928 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
4930 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
4931 { .name
= "HAMAIR1", .state
= ARM_CP_STATE_AA32
,
4932 .cp
= 15, .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 1,
4933 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
4935 { .name
= "AFSR0_EL2", .state
= ARM_CP_STATE_BOTH
,
4936 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 0,
4937 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
4939 { .name
= "AFSR1_EL2", .state
= ARM_CP_STATE_BOTH
,
4940 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 1,
4941 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
4943 { .name
= "TCR_EL2", .state
= ARM_CP_STATE_BOTH
,
4944 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 2,
4946 /* no .writefn needed as this can't cause an ASID change;
4947 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4949 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[2]) },
4950 { .name
= "VTCR", .state
= ARM_CP_STATE_AA32
,
4951 .cp
= 15, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 2,
4952 .type
= ARM_CP_ALIAS
,
4953 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
4954 .fieldoffset
= offsetof(CPUARMState
, cp15
.vtcr_el2
) },
4955 { .name
= "VTCR_EL2", .state
= ARM_CP_STATE_AA64
,
4956 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 2,
4958 /* no .writefn needed as this can't cause an ASID change;
4959 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4961 .fieldoffset
= offsetof(CPUARMState
, cp15
.vtcr_el2
) },
4962 { .name
= "VTTBR", .state
= ARM_CP_STATE_AA32
,
4963 .cp
= 15, .opc1
= 6, .crm
= 2,
4964 .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
4965 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
4966 .fieldoffset
= offsetof(CPUARMState
, cp15
.vttbr_el2
),
4967 .writefn
= vttbr_write
},
4968 { .name
= "VTTBR_EL2", .state
= ARM_CP_STATE_AA64
,
4969 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 0,
4970 .access
= PL2_RW
, .writefn
= vttbr_write
,
4971 .fieldoffset
= offsetof(CPUARMState
, cp15
.vttbr_el2
) },
4972 { .name
= "SCTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
4973 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 0,
4974 .access
= PL2_RW
, .raw_writefn
= raw_write
, .writefn
= sctlr_write
,
4975 .fieldoffset
= offsetof(CPUARMState
, cp15
.sctlr_el
[2]) },
4976 { .name
= "TPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
4977 .opc0
= 3, .opc1
= 4, .crn
= 13, .crm
= 0, .opc2
= 2,
4978 .access
= PL2_RW
, .resetvalue
= 0,
4979 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[2]) },
4980 { .name
= "TTBR0_EL2", .state
= ARM_CP_STATE_AA64
,
4981 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 0,
4982 .access
= PL2_RW
, .resetvalue
= 0,
4983 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[2]) },
4984 { .name
= "HTTBR", .cp
= 15, .opc1
= 4, .crm
= 2,
4985 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
4986 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[2]) },
4987 { .name
= "TLBIALLNSNH",
4988 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 4,
4989 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4990 .writefn
= tlbiall_nsnh_write
},
4991 { .name
= "TLBIALLNSNHIS",
4992 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 4,
4993 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4994 .writefn
= tlbiall_nsnh_is_write
},
4995 { .name
= "TLBIALLH", .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 0,
4996 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4997 .writefn
= tlbiall_hyp_write
},
4998 { .name
= "TLBIALLHIS", .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 0,
4999 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
5000 .writefn
= tlbiall_hyp_is_write
},
5001 { .name
= "TLBIMVAH", .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 1,
5002 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
5003 .writefn
= tlbimva_hyp_write
},
5004 { .name
= "TLBIMVAHIS", .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 1,
5005 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
5006 .writefn
= tlbimva_hyp_is_write
},
5007 { .name
= "TLBI_ALLE2", .state
= ARM_CP_STATE_AA64
,
5008 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 0,
5009 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
5010 .writefn
= tlbi_aa64_alle2_write
},
5011 { .name
= "TLBI_VAE2", .state
= ARM_CP_STATE_AA64
,
5012 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 1,
5013 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
5014 .writefn
= tlbi_aa64_vae2_write
},
5015 { .name
= "TLBI_VALE2", .state
= ARM_CP_STATE_AA64
,
5016 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 5,
5017 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
5018 .writefn
= tlbi_aa64_vae2_write
},
5019 { .name
= "TLBI_ALLE2IS", .state
= ARM_CP_STATE_AA64
,
5020 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 0,
5021 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
5022 .writefn
= tlbi_aa64_alle2is_write
},
5023 { .name
= "TLBI_VAE2IS", .state
= ARM_CP_STATE_AA64
,
5024 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 1,
5025 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
5026 .writefn
= tlbi_aa64_vae2is_write
},
5027 { .name
= "TLBI_VALE2IS", .state
= ARM_CP_STATE_AA64
,
5028 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 5,
5029 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
5030 .writefn
= tlbi_aa64_vae2is_write
},
5031 #ifndef CONFIG_USER_ONLY
5032 /* Unlike the other EL2-related AT operations, these must
5033 * UNDEF from EL3 if EL2 is not implemented, which is why we
5034 * define them here rather than with the rest of the AT ops.
5036 { .name
= "AT_S1E2R", .state
= ARM_CP_STATE_AA64
,
5037 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 0,
5038 .access
= PL2_W
, .accessfn
= at_s1e2_access
,
5039 .type
= ARM_CP_NO_RAW
| ARM_CP_RAISES_EXC
, .writefn
= ats_write64
},
5040 { .name
= "AT_S1E2W", .state
= ARM_CP_STATE_AA64
,
5041 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 1,
5042 .access
= PL2_W
, .accessfn
= at_s1e2_access
,
5043 .type
= ARM_CP_NO_RAW
| ARM_CP_RAISES_EXC
, .writefn
= ats_write64
},
5044 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
5045 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
5046 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
5047 * to behave as if SCR.NS was 1.
5049 { .name
= "ATS1HR", .cp
= 15, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 0,
5051 .writefn
= ats1h_write
, .type
= ARM_CP_NO_RAW
| ARM_CP_RAISES_EXC
},
5052 { .name
= "ATS1HW", .cp
= 15, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 1,
5054 .writefn
= ats1h_write
, .type
= ARM_CP_NO_RAW
| ARM_CP_RAISES_EXC
},
5055 { .name
= "CNTHCTL_EL2", .state
= ARM_CP_STATE_BOTH
,
5056 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 1, .opc2
= 0,
5057 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5058 * reset values as IMPDEF. We choose to reset to 3 to comply with
5059 * both ARMv7 and ARMv8.
5061 .access
= PL2_RW
, .resetvalue
= 3,
5062 .fieldoffset
= offsetof(CPUARMState
, cp15
.cnthctl_el2
) },
5063 { .name
= "CNTVOFF_EL2", .state
= ARM_CP_STATE_AA64
,
5064 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 0, .opc2
= 3,
5065 .access
= PL2_RW
, .type
= ARM_CP_IO
, .resetvalue
= 0,
5066 .writefn
= gt_cntvoff_write
,
5067 .fieldoffset
= offsetof(CPUARMState
, cp15
.cntvoff_el2
) },
5068 { .name
= "CNTVOFF", .cp
= 15, .opc1
= 4, .crm
= 14,
5069 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
| ARM_CP_IO
,
5070 .writefn
= gt_cntvoff_write
,
5071 .fieldoffset
= offsetof(CPUARMState
, cp15
.cntvoff_el2
) },
5072 { .name
= "CNTHP_CVAL_EL2", .state
= ARM_CP_STATE_AA64
,
5073 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 2,
5074 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].cval
),
5075 .type
= ARM_CP_IO
, .access
= PL2_RW
,
5076 .writefn
= gt_hyp_cval_write
, .raw_writefn
= raw_write
},
5077 { .name
= "CNTHP_CVAL", .cp
= 15, .opc1
= 6, .crm
= 14,
5078 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].cval
),
5079 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_IO
,
5080 .writefn
= gt_hyp_cval_write
, .raw_writefn
= raw_write
},
5081 { .name
= "CNTHP_TVAL_EL2", .state
= ARM_CP_STATE_BOTH
,
5082 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 0,
5083 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL2_RW
,
5084 .resetfn
= gt_hyp_timer_reset
,
5085 .readfn
= gt_hyp_tval_read
, .writefn
= gt_hyp_tval_write
},
5086 { .name
= "CNTHP_CTL_EL2", .state
= ARM_CP_STATE_BOTH
,
5088 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 1,
5090 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].ctl
),
5092 .writefn
= gt_hyp_ctl_write
, .raw_writefn
= raw_write
},
5094 /* The only field of MDCR_EL2 that has a defined architectural reset value
5095 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
5096 * don't implement any PMU event counters, so using zero as a reset
5097 * value for MDCR_EL2 is okay
5099 { .name
= "MDCR_EL2", .state
= ARM_CP_STATE_BOTH
,
5100 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 1,
5101 .access
= PL2_RW
, .resetvalue
= 0,
5102 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdcr_el2
), },
5103 { .name
= "HPFAR", .state
= ARM_CP_STATE_AA32
,
5104 .cp
= 15, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 4,
5105 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
5106 .fieldoffset
= offsetof(CPUARMState
, cp15
.hpfar_el2
) },
5107 { .name
= "HPFAR_EL2", .state
= ARM_CP_STATE_AA64
,
5108 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 4,
5110 .fieldoffset
= offsetof(CPUARMState
, cp15
.hpfar_el2
) },
5111 { .name
= "HSTR_EL2", .state
= ARM_CP_STATE_BOTH
,
5112 .cp
= 15, .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 3,
5114 .fieldoffset
= offsetof(CPUARMState
, cp15
.hstr_el2
) },
5118 static const ARMCPRegInfo el2_v8_cp_reginfo
[] = {
5119 { .name
= "HCR2", .state
= ARM_CP_STATE_AA32
,
5120 .type
= ARM_CP_ALIAS
| ARM_CP_IO
,
5121 .cp
= 15, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 4,
5123 .fieldoffset
= offsetofhigh32(CPUARMState
, cp15
.hcr_el2
),
5124 .writefn
= hcr_writehigh
},
5128 static CPAccessResult
nsacr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
5131 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5132 * At Secure EL1 it traps to EL3.
5134 if (arm_current_el(env
) == 3) {
5135 return CP_ACCESS_OK
;
5137 if (arm_is_secure_below_el3(env
)) {
5138 return CP_ACCESS_TRAP_EL3
;
5140 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5142 return CP_ACCESS_OK
;
5144 return CP_ACCESS_TRAP_UNCATEGORIZED
;
5147 static const ARMCPRegInfo el3_cp_reginfo
[] = {
5148 { .name
= "SCR_EL3", .state
= ARM_CP_STATE_AA64
,
5149 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 0,
5150 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.scr_el3
),
5151 .resetvalue
= 0, .writefn
= scr_write
},
5152 { .name
= "SCR", .type
= ARM_CP_ALIAS
| ARM_CP_NEWEL
,
5153 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 0,
5154 .access
= PL1_RW
, .accessfn
= access_trap_aa32s_el1
,
5155 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.scr_el3
),
5156 .writefn
= scr_write
},
5157 { .name
= "SDER32_EL3", .state
= ARM_CP_STATE_AA64
,
5158 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 1,
5159 .access
= PL3_RW
, .resetvalue
= 0,
5160 .fieldoffset
= offsetof(CPUARMState
, cp15
.sder
) },
5162 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 1,
5163 .access
= PL3_RW
, .resetvalue
= 0,
5164 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.sder
) },
5165 { .name
= "MVBAR", .cp
= 15, .opc1
= 0, .crn
= 12, .crm
= 0, .opc2
= 1,
5166 .access
= PL1_RW
, .accessfn
= access_trap_aa32s_el1
,
5167 .writefn
= vbar_write
, .resetvalue
= 0,
5168 .fieldoffset
= offsetof(CPUARMState
, cp15
.mvbar
) },
5169 { .name
= "TTBR0_EL3", .state
= ARM_CP_STATE_AA64
,
5170 .opc0
= 3, .opc1
= 6, .crn
= 2, .crm
= 0, .opc2
= 0,
5171 .access
= PL3_RW
, .resetvalue
= 0,
5172 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[3]) },
5173 { .name
= "TCR_EL3", .state
= ARM_CP_STATE_AA64
,
5174 .opc0
= 3, .opc1
= 6, .crn
= 2, .crm
= 0, .opc2
= 2,
5176 /* no .writefn needed as this can't cause an ASID change;
5177 * we must provide a .raw_writefn and .resetfn because we handle
5178 * reset and migration for the AArch32 TTBCR(S), which might be
5179 * using mask and base_mask.
5181 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= vmsa_ttbcr_raw_write
,
5182 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[3]) },
5183 { .name
= "ELR_EL3", .state
= ARM_CP_STATE_AA64
,
5184 .type
= ARM_CP_ALIAS
,
5185 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 0, .opc2
= 1,
5187 .fieldoffset
= offsetof(CPUARMState
, elr_el
[3]) },
5188 { .name
= "ESR_EL3", .state
= ARM_CP_STATE_AA64
,
5189 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 2, .opc2
= 0,
5190 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[3]) },
5191 { .name
= "FAR_EL3", .state
= ARM_CP_STATE_AA64
,
5192 .opc0
= 3, .opc1
= 6, .crn
= 6, .crm
= 0, .opc2
= 0,
5193 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[3]) },
5194 { .name
= "SPSR_EL3", .state
= ARM_CP_STATE_AA64
,
5195 .type
= ARM_CP_ALIAS
,
5196 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 0, .opc2
= 0,
5198 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_MON
]) },
5199 { .name
= "VBAR_EL3", .state
= ARM_CP_STATE_AA64
,
5200 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 0, .opc2
= 0,
5201 .access
= PL3_RW
, .writefn
= vbar_write
,
5202 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[3]),
5204 { .name
= "CPTR_EL3", .state
= ARM_CP_STATE_AA64
,
5205 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 2,
5206 .access
= PL3_RW
, .accessfn
= cptr_access
, .resetvalue
= 0,
5207 .fieldoffset
= offsetof(CPUARMState
, cp15
.cptr_el
[3]) },
5208 { .name
= "TPIDR_EL3", .state
= ARM_CP_STATE_AA64
,
5209 .opc0
= 3, .opc1
= 6, .crn
= 13, .crm
= 0, .opc2
= 2,
5210 .access
= PL3_RW
, .resetvalue
= 0,
5211 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[3]) },
5212 { .name
= "AMAIR_EL3", .state
= ARM_CP_STATE_AA64
,
5213 .opc0
= 3, .opc1
= 6, .crn
= 10, .crm
= 3, .opc2
= 0,
5214 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
5216 { .name
= "AFSR0_EL3", .state
= ARM_CP_STATE_BOTH
,
5217 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 1, .opc2
= 0,
5218 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
5220 { .name
= "AFSR1_EL3", .state
= ARM_CP_STATE_BOTH
,
5221 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 1, .opc2
= 1,
5222 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
5224 { .name
= "TLBI_ALLE3IS", .state
= ARM_CP_STATE_AA64
,
5225 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 0,
5226 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
5227 .writefn
= tlbi_aa64_alle3is_write
},
5228 { .name
= "TLBI_VAE3IS", .state
= ARM_CP_STATE_AA64
,
5229 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 1,
5230 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
5231 .writefn
= tlbi_aa64_vae3is_write
},
5232 { .name
= "TLBI_VALE3IS", .state
= ARM_CP_STATE_AA64
,
5233 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 5,
5234 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
5235 .writefn
= tlbi_aa64_vae3is_write
},
5236 { .name
= "TLBI_ALLE3", .state
= ARM_CP_STATE_AA64
,
5237 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 0,
5238 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
5239 .writefn
= tlbi_aa64_alle3_write
},
5240 { .name
= "TLBI_VAE3", .state
= ARM_CP_STATE_AA64
,
5241 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 1,
5242 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
5243 .writefn
= tlbi_aa64_vae3_write
},
5244 { .name
= "TLBI_VALE3", .state
= ARM_CP_STATE_AA64
,
5245 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 5,
5246 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
5247 .writefn
= tlbi_aa64_vae3_write
},
5251 static CPAccessResult
ctr_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
5254 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
5255 * but the AArch32 CTR has its own reginfo struct)
5257 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UCT
)) {
5258 return CP_ACCESS_TRAP
;
5261 if (arm_current_el(env
) < 2 && arm_hcr_el2_eff(env
) & HCR_TID2
) {
5262 return CP_ACCESS_TRAP_EL2
;
5265 return CP_ACCESS_OK
;
5268 static void oslar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
5271 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
5272 * read via a bit in OSLSR_EL1.
5276 if (ri
->state
== ARM_CP_STATE_AA32
) {
5277 oslock
= (value
== 0xC5ACCE55);
5282 env
->cp15
.oslsr_el1
= deposit32(env
->cp15
.oslsr_el1
, 1, 1, oslock
);
5285 static const ARMCPRegInfo debug_cp_reginfo
[] = {
5286 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
5287 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
5288 * unlike DBGDRAR it is never accessible from EL0.
5289 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
5292 { .name
= "DBGDRAR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 0,
5293 .access
= PL0_R
, .accessfn
= access_tdra
,
5294 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
5295 { .name
= "MDRAR_EL1", .state
= ARM_CP_STATE_AA64
,
5296 .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 0,
5297 .access
= PL1_R
, .accessfn
= access_tdra
,
5298 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
5299 { .name
= "DBGDSAR", .cp
= 14, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
5300 .access
= PL0_R
, .accessfn
= access_tdra
,
5301 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
5302 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
5303 { .name
= "MDSCR_EL1", .state
= ARM_CP_STATE_BOTH
,
5304 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
5305 .access
= PL1_RW
, .accessfn
= access_tda
,
5306 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdscr_el1
),
5308 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
5309 * We don't implement the configurable EL0 access.
5311 { .name
= "MDCCSR_EL0", .state
= ARM_CP_STATE_BOTH
,
5312 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 0,
5313 .type
= ARM_CP_ALIAS
,
5314 .access
= PL1_R
, .accessfn
= access_tda
,
5315 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdscr_el1
), },
5316 { .name
= "OSLAR_EL1", .state
= ARM_CP_STATE_BOTH
,
5317 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 4,
5318 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
5319 .accessfn
= access_tdosa
,
5320 .writefn
= oslar_write
},
5321 { .name
= "OSLSR_EL1", .state
= ARM_CP_STATE_BOTH
,
5322 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 4,
5323 .access
= PL1_R
, .resetvalue
= 10,
5324 .accessfn
= access_tdosa
,
5325 .fieldoffset
= offsetof(CPUARMState
, cp15
.oslsr_el1
) },
5326 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
5327 { .name
= "OSDLR_EL1", .state
= ARM_CP_STATE_BOTH
,
5328 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 3, .opc2
= 4,
5329 .access
= PL1_RW
, .accessfn
= access_tdosa
,
5330 .type
= ARM_CP_NOP
},
5331 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
5332 * implement vector catch debug events yet.
5335 .cp
= 14, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 0,
5336 .access
= PL1_RW
, .accessfn
= access_tda
,
5337 .type
= ARM_CP_NOP
},
5338 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
5339 * to save and restore a 32-bit guest's DBGVCR)
5341 { .name
= "DBGVCR32_EL2", .state
= ARM_CP_STATE_AA64
,
5342 .opc0
= 2, .opc1
= 4, .crn
= 0, .crm
= 7, .opc2
= 0,
5343 .access
= PL2_RW
, .accessfn
= access_tda
,
5344 .type
= ARM_CP_NOP
},
5345 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
5346 * Channel but Linux may try to access this register. The 32-bit
5347 * alias is DBGDCCINT.
5349 { .name
= "MDCCINT_EL1", .state
= ARM_CP_STATE_BOTH
,
5350 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 0,
5351 .access
= PL1_RW
, .accessfn
= access_tda
,
5352 .type
= ARM_CP_NOP
},
5356 static const ARMCPRegInfo debug_lpae_cp_reginfo
[] = {
5357 /* 64 bit access versions of the (dummy) debug registers */
5358 { .name
= "DBGDRAR", .cp
= 14, .crm
= 1, .opc1
= 0,
5359 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
5360 { .name
= "DBGDSAR", .cp
= 14, .crm
= 2, .opc1
= 0,
5361 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
5365 /* Return the exception level to which exceptions should be taken
5366 * via SVEAccessTrap. If an exception should be routed through
5367 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
5368 * take care of raising that exception.
5369 * C.f. the ARM pseudocode function CheckSVEEnabled.
5371 int sve_exception_el(CPUARMState
*env
, int el
)
5373 #ifndef CONFIG_USER_ONLY
5375 bool disabled
= false;
5377 /* The CPACR.ZEN controls traps to EL1:
5378 * 0, 2 : trap EL0 and EL1 accesses
5379 * 1 : trap only EL0 accesses
5380 * 3 : trap no accesses
5382 if (!extract32(env
->cp15
.cpacr_el1
, 16, 1)) {
5384 } else if (!extract32(env
->cp15
.cpacr_el1
, 17, 1)) {
5389 return (arm_feature(env
, ARM_FEATURE_EL2
)
5390 && (arm_hcr_el2_eff(env
) & HCR_TGE
) ? 2 : 1);
5393 /* Check CPACR.FPEN. */
5394 if (!extract32(env
->cp15
.cpacr_el1
, 20, 1)) {
5396 } else if (!extract32(env
->cp15
.cpacr_el1
, 21, 1)) {
5404 /* CPTR_EL2. Since TZ and TFP are positive,
5405 * they will be zero when EL2 is not present.
5407 if (el
<= 2 && !arm_is_secure_below_el3(env
)) {
5408 if (env
->cp15
.cptr_el
[2] & CPTR_TZ
) {
5411 if (env
->cp15
.cptr_el
[2] & CPTR_TFP
) {
5416 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
5417 if (arm_feature(env
, ARM_FEATURE_EL3
)
5418 && !(env
->cp15
.cptr_el
[3] & CPTR_EZ
)) {
5425 static uint32_t sve_zcr_get_valid_len(ARMCPU
*cpu
, uint32_t start_len
)
5429 end_len
= start_len
&= 0xf;
5430 if (!test_bit(start_len
, cpu
->sve_vq_map
)) {
5431 end_len
= find_last_bit(cpu
->sve_vq_map
, start_len
);
5432 assert(end_len
< start_len
);
5438 * Given that SVE is enabled, return the vector length for EL.
5440 uint32_t sve_zcr_len_for_el(CPUARMState
*env
, int el
)
5442 ARMCPU
*cpu
= env_archcpu(env
);
5443 uint32_t zcr_len
= cpu
->sve_max_vq
- 1;
5446 zcr_len
= MIN(zcr_len
, 0xf & (uint32_t)env
->vfp
.zcr_el
[1]);
5448 if (el
<= 2 && arm_feature(env
, ARM_FEATURE_EL2
)) {
5449 zcr_len
= MIN(zcr_len
, 0xf & (uint32_t)env
->vfp
.zcr_el
[2]);
5451 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
5452 zcr_len
= MIN(zcr_len
, 0xf & (uint32_t)env
->vfp
.zcr_el
[3]);
5455 return sve_zcr_get_valid_len(cpu
, zcr_len
);
5458 static void zcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
5461 int cur_el
= arm_current_el(env
);
5462 int old_len
= sve_zcr_len_for_el(env
, cur_el
);
5465 /* Bits other than [3:0] are RAZ/WI. */
5466 QEMU_BUILD_BUG_ON(ARM_MAX_VQ
> 16);
5467 raw_write(env
, ri
, value
& 0xf);
5470 * Because we arrived here, we know both FP and SVE are enabled;
5471 * otherwise we would have trapped access to the ZCR_ELn register.
5473 new_len
= sve_zcr_len_for_el(env
, cur_el
);
5474 if (new_len
< old_len
) {
5475 aarch64_sve_narrow_vq(env
, new_len
+ 1);
5479 static const ARMCPRegInfo zcr_el1_reginfo
= {
5480 .name
= "ZCR_EL1", .state
= ARM_CP_STATE_AA64
,
5481 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 2, .opc2
= 0,
5482 .access
= PL1_RW
, .type
= ARM_CP_SVE
,
5483 .fieldoffset
= offsetof(CPUARMState
, vfp
.zcr_el
[1]),
5484 .writefn
= zcr_write
, .raw_writefn
= raw_write
5487 static const ARMCPRegInfo zcr_el2_reginfo
= {
5488 .name
= "ZCR_EL2", .state
= ARM_CP_STATE_AA64
,
5489 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 2, .opc2
= 0,
5490 .access
= PL2_RW
, .type
= ARM_CP_SVE
,
5491 .fieldoffset
= offsetof(CPUARMState
, vfp
.zcr_el
[2]),
5492 .writefn
= zcr_write
, .raw_writefn
= raw_write
5495 static const ARMCPRegInfo zcr_no_el2_reginfo
= {
5496 .name
= "ZCR_EL2", .state
= ARM_CP_STATE_AA64
,
5497 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 2, .opc2
= 0,
5498 .access
= PL2_RW
, .type
= ARM_CP_SVE
,
5499 .readfn
= arm_cp_read_zero
, .writefn
= arm_cp_write_ignore
5502 static const ARMCPRegInfo zcr_el3_reginfo
= {
5503 .name
= "ZCR_EL3", .state
= ARM_CP_STATE_AA64
,
5504 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 2, .opc2
= 0,
5505 .access
= PL3_RW
, .type
= ARM_CP_SVE
,
5506 .fieldoffset
= offsetof(CPUARMState
, vfp
.zcr_el
[3]),
5507 .writefn
= zcr_write
, .raw_writefn
= raw_write
5510 void hw_watchpoint_update(ARMCPU
*cpu
, int n
)
5512 CPUARMState
*env
= &cpu
->env
;
5514 vaddr wvr
= env
->cp15
.dbgwvr
[n
];
5515 uint64_t wcr
= env
->cp15
.dbgwcr
[n
];
5517 int flags
= BP_CPU
| BP_STOP_BEFORE_ACCESS
;
5519 if (env
->cpu_watchpoint
[n
]) {
5520 cpu_watchpoint_remove_by_ref(CPU(cpu
), env
->cpu_watchpoint
[n
]);
5521 env
->cpu_watchpoint
[n
] = NULL
;
5524 if (!extract64(wcr
, 0, 1)) {
5525 /* E bit clear : watchpoint disabled */
5529 switch (extract64(wcr
, 3, 2)) {
5531 /* LSC 00 is reserved and must behave as if the wp is disabled */
5534 flags
|= BP_MEM_READ
;
5537 flags
|= BP_MEM_WRITE
;
5540 flags
|= BP_MEM_ACCESS
;
5544 /* Attempts to use both MASK and BAS fields simultaneously are
5545 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
5546 * thus generating a watchpoint for every byte in the masked region.
5548 mask
= extract64(wcr
, 24, 4);
5549 if (mask
== 1 || mask
== 2) {
5550 /* Reserved values of MASK; we must act as if the mask value was
5551 * some non-reserved value, or as if the watchpoint were disabled.
5552 * We choose the latter.
5556 /* Watchpoint covers an aligned area up to 2GB in size */
5558 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
5559 * whether the watchpoint fires when the unmasked bits match; we opt
5560 * to generate the exceptions.
5564 /* Watchpoint covers bytes defined by the byte address select bits */
5565 int bas
= extract64(wcr
, 5, 8);
5569 /* This must act as if the watchpoint is disabled */
5573 if (extract64(wvr
, 2, 1)) {
5574 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
5575 * ignored, and BAS[3:0] define which bytes to watch.
5579 /* The BAS bits are supposed to be programmed to indicate a contiguous
5580 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
5581 * we fire for each byte in the word/doubleword addressed by the WVR.
5582 * We choose to ignore any non-zero bits after the first range of 1s.
5584 basstart
= ctz32(bas
);
5585 len
= cto32(bas
>> basstart
);
5589 cpu_watchpoint_insert(CPU(cpu
), wvr
, len
, flags
,
5590 &env
->cpu_watchpoint
[n
]);
5593 void hw_watchpoint_update_all(ARMCPU
*cpu
)
5596 CPUARMState
*env
= &cpu
->env
;
5598 /* Completely clear out existing QEMU watchpoints and our array, to
5599 * avoid possible stale entries following migration load.
5601 cpu_watchpoint_remove_all(CPU(cpu
), BP_CPU
);
5602 memset(env
->cpu_watchpoint
, 0, sizeof(env
->cpu_watchpoint
));
5604 for (i
= 0; i
< ARRAY_SIZE(cpu
->env
.cpu_watchpoint
); i
++) {
5605 hw_watchpoint_update(cpu
, i
);
5609 static void dbgwvr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
5612 ARMCPU
*cpu
= env_archcpu(env
);
5615 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
5616 * register reads and behaves as if values written are sign extended.
5617 * Bits [1:0] are RES0.
5619 value
= sextract64(value
, 0, 49) & ~3ULL;
5621 raw_write(env
, ri
, value
);
5622 hw_watchpoint_update(cpu
, i
);
5625 static void dbgwcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
5628 ARMCPU
*cpu
= env_archcpu(env
);
5631 raw_write(env
, ri
, value
);
5632 hw_watchpoint_update(cpu
, i
);
5635 void hw_breakpoint_update(ARMCPU
*cpu
, int n
)
5637 CPUARMState
*env
= &cpu
->env
;
5638 uint64_t bvr
= env
->cp15
.dbgbvr
[n
];
5639 uint64_t bcr
= env
->cp15
.dbgbcr
[n
];
5644 if (env
->cpu_breakpoint
[n
]) {
5645 cpu_breakpoint_remove_by_ref(CPU(cpu
), env
->cpu_breakpoint
[n
]);
5646 env
->cpu_breakpoint
[n
] = NULL
;
5649 if (!extract64(bcr
, 0, 1)) {
5650 /* E bit clear : watchpoint disabled */
5654 bt
= extract64(bcr
, 20, 4);
5657 case 4: /* unlinked address mismatch (reserved if AArch64) */
5658 case 5: /* linked address mismatch (reserved if AArch64) */
5659 qemu_log_mask(LOG_UNIMP
,
5660 "arm: address mismatch breakpoint types not implemented\n");
5662 case 0: /* unlinked address match */
5663 case 1: /* linked address match */
5665 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
5666 * we behave as if the register was sign extended. Bits [1:0] are
5667 * RES0. The BAS field is used to allow setting breakpoints on 16
5668 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
5669 * a bp will fire if the addresses covered by the bp and the addresses
5670 * covered by the insn overlap but the insn doesn't start at the
5671 * start of the bp address range. We choose to require the insn and
5672 * the bp to have the same address. The constraints on writing to
5673 * BAS enforced in dbgbcr_write mean we have only four cases:
5674 * 0b0000 => no breakpoint
5675 * 0b0011 => breakpoint on addr
5676 * 0b1100 => breakpoint on addr + 2
5677 * 0b1111 => breakpoint on addr
5678 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
5680 int bas
= extract64(bcr
, 5, 4);
5681 addr
= sextract64(bvr
, 0, 49) & ~3ULL;
5690 case 2: /* unlinked context ID match */
5691 case 8: /* unlinked VMID match (reserved if no EL2) */
5692 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
5693 qemu_log_mask(LOG_UNIMP
,
5694 "arm: unlinked context breakpoint types not implemented\n");
5696 case 9: /* linked VMID match (reserved if no EL2) */
5697 case 11: /* linked context ID and VMID match (reserved if no EL2) */
5698 case 3: /* linked context ID match */
5700 /* We must generate no events for Linked context matches (unless
5701 * they are linked to by some other bp/wp, which is handled in
5702 * updates for the linking bp/wp). We choose to also generate no events
5703 * for reserved values.
5708 cpu_breakpoint_insert(CPU(cpu
), addr
, flags
, &env
->cpu_breakpoint
[n
]);
5711 void hw_breakpoint_update_all(ARMCPU
*cpu
)
5714 CPUARMState
*env
= &cpu
->env
;
5716 /* Completely clear out existing QEMU breakpoints and our array, to
5717 * avoid possible stale entries following migration load.
5719 cpu_breakpoint_remove_all(CPU(cpu
), BP_CPU
);
5720 memset(env
->cpu_breakpoint
, 0, sizeof(env
->cpu_breakpoint
));
5722 for (i
= 0; i
< ARRAY_SIZE(cpu
->env
.cpu_breakpoint
); i
++) {
5723 hw_breakpoint_update(cpu
, i
);
5727 static void dbgbvr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
5730 ARMCPU
*cpu
= env_archcpu(env
);
5733 raw_write(env
, ri
, value
);
5734 hw_breakpoint_update(cpu
, i
);
5737 static void dbgbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
5740 ARMCPU
*cpu
= env_archcpu(env
);
5743 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
5746 value
= deposit64(value
, 6, 1, extract64(value
, 5, 1));
5747 value
= deposit64(value
, 8, 1, extract64(value
, 7, 1));
5749 raw_write(env
, ri
, value
);
5750 hw_breakpoint_update(cpu
, i
);
5753 static void define_debug_regs(ARMCPU
*cpu
)
5755 /* Define v7 and v8 architectural debug registers.
5756 * These are just dummy implementations for now.
5759 int wrps
, brps
, ctx_cmps
;
5760 ARMCPRegInfo dbgdidr
= {
5761 .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
5762 .access
= PL0_R
, .accessfn
= access_tda
,
5763 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->dbgdidr
,
5766 /* Note that all these register fields hold "number of Xs minus 1". */
5767 brps
= extract32(cpu
->dbgdidr
, 24, 4);
5768 wrps
= extract32(cpu
->dbgdidr
, 28, 4);
5769 ctx_cmps
= extract32(cpu
->dbgdidr
, 20, 4);
5771 assert(ctx_cmps
<= brps
);
5773 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
5774 * of the debug registers such as number of breakpoints;
5775 * check that if they both exist then they agree.
5777 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
5778 assert(extract32(cpu
->id_aa64dfr0
, 12, 4) == brps
);
5779 assert(extract32(cpu
->id_aa64dfr0
, 20, 4) == wrps
);
5780 assert(extract32(cpu
->id_aa64dfr0
, 28, 4) == ctx_cmps
);
5783 define_one_arm_cp_reg(cpu
, &dbgdidr
);
5784 define_arm_cp_regs(cpu
, debug_cp_reginfo
);
5786 if (arm_feature(&cpu
->env
, ARM_FEATURE_LPAE
)) {
5787 define_arm_cp_regs(cpu
, debug_lpae_cp_reginfo
);
5790 for (i
= 0; i
< brps
+ 1; i
++) {
5791 ARMCPRegInfo dbgregs
[] = {
5792 { .name
= "DBGBVR", .state
= ARM_CP_STATE_BOTH
,
5793 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 4,
5794 .access
= PL1_RW
, .accessfn
= access_tda
,
5795 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbvr
[i
]),
5796 .writefn
= dbgbvr_write
, .raw_writefn
= raw_write
5798 { .name
= "DBGBCR", .state
= ARM_CP_STATE_BOTH
,
5799 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 5,
5800 .access
= PL1_RW
, .accessfn
= access_tda
,
5801 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbcr
[i
]),
5802 .writefn
= dbgbcr_write
, .raw_writefn
= raw_write
5806 define_arm_cp_regs(cpu
, dbgregs
);
5809 for (i
= 0; i
< wrps
+ 1; i
++) {
5810 ARMCPRegInfo dbgregs
[] = {
5811 { .name
= "DBGWVR", .state
= ARM_CP_STATE_BOTH
,
5812 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 6,
5813 .access
= PL1_RW
, .accessfn
= access_tda
,
5814 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwvr
[i
]),
5815 .writefn
= dbgwvr_write
, .raw_writefn
= raw_write
5817 { .name
= "DBGWCR", .state
= ARM_CP_STATE_BOTH
,
5818 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 7,
5819 .access
= PL1_RW
, .accessfn
= access_tda
,
5820 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwcr
[i
]),
5821 .writefn
= dbgwcr_write
, .raw_writefn
= raw_write
5825 define_arm_cp_regs(cpu
, dbgregs
);
5829 /* We don't know until after realize whether there's a GICv3
5830 * attached, and that is what registers the gicv3 sysregs.
5831 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
5834 static uint64_t id_pfr1_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
5836 ARMCPU
*cpu
= env_archcpu(env
);
5837 uint64_t pfr1
= cpu
->id_pfr1
;
5839 if (env
->gicv3state
) {
5845 static uint64_t id_aa64pfr0_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
5847 ARMCPU
*cpu
= env_archcpu(env
);
5848 uint64_t pfr0
= cpu
->isar
.id_aa64pfr0
;
5850 if (env
->gicv3state
) {
5856 /* Shared logic between LORID and the rest of the LOR* registers.
5857 * Secure state has already been delt with.
5859 static CPAccessResult
access_lor_ns(CPUARMState
*env
)
5861 int el
= arm_current_el(env
);
5863 if (el
< 2 && (arm_hcr_el2_eff(env
) & HCR_TLOR
)) {
5864 return CP_ACCESS_TRAP_EL2
;
5866 if (el
< 3 && (env
->cp15
.scr_el3
& SCR_TLOR
)) {
5867 return CP_ACCESS_TRAP_EL3
;
5869 return CP_ACCESS_OK
;
5872 static CPAccessResult
access_lorid(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
5875 if (arm_is_secure_below_el3(env
)) {
5876 /* Access ok in secure mode. */
5877 return CP_ACCESS_OK
;
5879 return access_lor_ns(env
);
5882 static CPAccessResult
access_lor_other(CPUARMState
*env
,
5883 const ARMCPRegInfo
*ri
, bool isread
)
5885 if (arm_is_secure_below_el3(env
)) {
5886 /* Access denied in secure mode. */
5887 return CP_ACCESS_TRAP
;
5889 return access_lor_ns(env
);
5892 #ifdef TARGET_AARCH64
5893 static CPAccessResult
access_pauth(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
5896 int el
= arm_current_el(env
);
5899 arm_feature(env
, ARM_FEATURE_EL2
) &&
5900 !(arm_hcr_el2_eff(env
) & HCR_APK
)) {
5901 return CP_ACCESS_TRAP_EL2
;
5904 arm_feature(env
, ARM_FEATURE_EL3
) &&
5905 !(env
->cp15
.scr_el3
& SCR_APK
)) {
5906 return CP_ACCESS_TRAP_EL3
;
5908 return CP_ACCESS_OK
;
5911 static const ARMCPRegInfo pauth_reginfo
[] = {
5912 { .name
= "APDAKEYLO_EL1", .state
= ARM_CP_STATE_AA64
,
5913 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 2, .opc2
= 0,
5914 .access
= PL1_RW
, .accessfn
= access_pauth
,
5915 .fieldoffset
= offsetof(CPUARMState
, keys
.apda
.lo
) },
5916 { .name
= "APDAKEYHI_EL1", .state
= ARM_CP_STATE_AA64
,
5917 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 2, .opc2
= 1,
5918 .access
= PL1_RW
, .accessfn
= access_pauth
,
5919 .fieldoffset
= offsetof(CPUARMState
, keys
.apda
.hi
) },
5920 { .name
= "APDBKEYLO_EL1", .state
= ARM_CP_STATE_AA64
,
5921 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 2, .opc2
= 2,
5922 .access
= PL1_RW
, .accessfn
= access_pauth
,
5923 .fieldoffset
= offsetof(CPUARMState
, keys
.apdb
.lo
) },
5924 { .name
= "APDBKEYHI_EL1", .state
= ARM_CP_STATE_AA64
,
5925 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 2, .opc2
= 3,
5926 .access
= PL1_RW
, .accessfn
= access_pauth
,
5927 .fieldoffset
= offsetof(CPUARMState
, keys
.apdb
.hi
) },
5928 { .name
= "APGAKEYLO_EL1", .state
= ARM_CP_STATE_AA64
,
5929 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 3, .opc2
= 0,
5930 .access
= PL1_RW
, .accessfn
= access_pauth
,
5931 .fieldoffset
= offsetof(CPUARMState
, keys
.apga
.lo
) },
5932 { .name
= "APGAKEYHI_EL1", .state
= ARM_CP_STATE_AA64
,
5933 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 3, .opc2
= 1,
5934 .access
= PL1_RW
, .accessfn
= access_pauth
,
5935 .fieldoffset
= offsetof(CPUARMState
, keys
.apga
.hi
) },
5936 { .name
= "APIAKEYLO_EL1", .state
= ARM_CP_STATE_AA64
,
5937 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 1, .opc2
= 0,
5938 .access
= PL1_RW
, .accessfn
= access_pauth
,
5939 .fieldoffset
= offsetof(CPUARMState
, keys
.apia
.lo
) },
5940 { .name
= "APIAKEYHI_EL1", .state
= ARM_CP_STATE_AA64
,
5941 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 1, .opc2
= 1,
5942 .access
= PL1_RW
, .accessfn
= access_pauth
,
5943 .fieldoffset
= offsetof(CPUARMState
, keys
.apia
.hi
) },
5944 { .name
= "APIBKEYLO_EL1", .state
= ARM_CP_STATE_AA64
,
5945 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 1, .opc2
= 2,
5946 .access
= PL1_RW
, .accessfn
= access_pauth
,
5947 .fieldoffset
= offsetof(CPUARMState
, keys
.apib
.lo
) },
5948 { .name
= "APIBKEYHI_EL1", .state
= ARM_CP_STATE_AA64
,
5949 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 1, .opc2
= 3,
5950 .access
= PL1_RW
, .accessfn
= access_pauth
,
5951 .fieldoffset
= offsetof(CPUARMState
, keys
.apib
.hi
) },
5955 static uint64_t rndr_readfn(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
5960 /* Success sets NZCV = 0000. */
5961 env
->NF
= env
->CF
= env
->VF
= 0, env
->ZF
= 1;
5963 if (qemu_guest_getrandom(&ret
, sizeof(ret
), &err
) < 0) {
5965 * ??? Failed, for unknown reasons in the crypto subsystem.
5966 * The best we can do is log the reason and return the
5967 * timed-out indication to the guest. There is no reason
5968 * we know to expect this failure to be transitory, so the
5969 * guest may well hang retrying the operation.
5971 qemu_log_mask(LOG_UNIMP
, "%s: Crypto failure: %s",
5972 ri
->name
, error_get_pretty(err
));
5975 env
->ZF
= 0; /* NZCF = 0100 */
5981 /* We do not support re-seeding, so the two registers operate the same. */
5982 static const ARMCPRegInfo rndr_reginfo
[] = {
5983 { .name
= "RNDR", .state
= ARM_CP_STATE_AA64
,
5984 .type
= ARM_CP_NO_RAW
| ARM_CP_SUPPRESS_TB_END
| ARM_CP_IO
,
5985 .opc0
= 3, .opc1
= 3, .crn
= 2, .crm
= 4, .opc2
= 0,
5986 .access
= PL0_R
, .readfn
= rndr_readfn
},
5987 { .name
= "RNDRRS", .state
= ARM_CP_STATE_AA64
,
5988 .type
= ARM_CP_NO_RAW
| ARM_CP_SUPPRESS_TB_END
| ARM_CP_IO
,
5989 .opc0
= 3, .opc1
= 3, .crn
= 2, .crm
= 4, .opc2
= 1,
5990 .access
= PL0_R
, .readfn
= rndr_readfn
},
5994 #ifndef CONFIG_USER_ONLY
5995 static void dccvap_writefn(CPUARMState
*env
, const ARMCPRegInfo
*opaque
,
5998 ARMCPU
*cpu
= env_archcpu(env
);
5999 /* CTR_EL0 System register -> DminLine, bits [19:16] */
6000 uint64_t dline_size
= 4 << ((cpu
->ctr
>> 16) & 0xF);
6001 uint64_t vaddr_in
= (uint64_t) value
;
6002 uint64_t vaddr
= vaddr_in
& ~(dline_size
- 1);
6004 int mem_idx
= cpu_mmu_index(env
, false);
6006 /* This won't be crossing page boundaries */
6007 haddr
= probe_read(env
, vaddr
, dline_size
, mem_idx
, GETPC());
6013 /* RCU lock is already being held */
6014 mr
= memory_region_from_host(haddr
, &offset
);
6017 memory_region_do_writeback(mr
, offset
, dline_size
);
6022 static const ARMCPRegInfo dcpop_reg
[] = {
6023 { .name
= "DC_CVAP", .state
= ARM_CP_STATE_AA64
,
6024 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 12, .opc2
= 1,
6025 .access
= PL0_W
, .type
= ARM_CP_NO_RAW
| ARM_CP_SUPPRESS_TB_END
,
6026 .accessfn
= aa64_cacheop_access
, .writefn
= dccvap_writefn
},
6030 static const ARMCPRegInfo dcpodp_reg
[] = {
6031 { .name
= "DC_CVADP", .state
= ARM_CP_STATE_AA64
,
6032 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 13, .opc2
= 1,
6033 .access
= PL0_W
, .type
= ARM_CP_NO_RAW
| ARM_CP_SUPPRESS_TB_END
,
6034 .accessfn
= aa64_cacheop_access
, .writefn
= dccvap_writefn
},
6037 #endif /*CONFIG_USER_ONLY*/
6041 static CPAccessResult
access_predinv(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
6044 int el
= arm_current_el(env
);
6047 uint64_t sctlr
= arm_sctlr(env
, el
);
6048 if (!(sctlr
& SCTLR_EnRCTX
)) {
6049 return CP_ACCESS_TRAP
;
6051 } else if (el
== 1) {
6052 uint64_t hcr
= arm_hcr_el2_eff(env
);
6054 return CP_ACCESS_TRAP_EL2
;
6057 return CP_ACCESS_OK
;
6060 static const ARMCPRegInfo predinv_reginfo
[] = {
6061 { .name
= "CFP_RCTX", .state
= ARM_CP_STATE_AA64
,
6062 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 3, .opc2
= 4,
6063 .type
= ARM_CP_NOP
, .access
= PL0_W
, .accessfn
= access_predinv
},
6064 { .name
= "DVP_RCTX", .state
= ARM_CP_STATE_AA64
,
6065 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 3, .opc2
= 5,
6066 .type
= ARM_CP_NOP
, .access
= PL0_W
, .accessfn
= access_predinv
},
6067 { .name
= "CPP_RCTX", .state
= ARM_CP_STATE_AA64
,
6068 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 3, .opc2
= 7,
6069 .type
= ARM_CP_NOP
, .access
= PL0_W
, .accessfn
= access_predinv
},
6071 * Note the AArch32 opcodes have a different OPC1.
6073 { .name
= "CFPRCTX", .state
= ARM_CP_STATE_AA32
,
6074 .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 3, .opc2
= 4,
6075 .type
= ARM_CP_NOP
, .access
= PL0_W
, .accessfn
= access_predinv
},
6076 { .name
= "DVPRCTX", .state
= ARM_CP_STATE_AA32
,
6077 .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 3, .opc2
= 5,
6078 .type
= ARM_CP_NOP
, .access
= PL0_W
, .accessfn
= access_predinv
},
6079 { .name
= "CPPRCTX", .state
= ARM_CP_STATE_AA32
,
6080 .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 3, .opc2
= 7,
6081 .type
= ARM_CP_NOP
, .access
= PL0_W
, .accessfn
= access_predinv
},
6085 static CPAccessResult
access_aa64_tid3(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
6088 if ((arm_current_el(env
) < 2) && (arm_hcr_el2_eff(env
) & HCR_TID3
)) {
6089 return CP_ACCESS_TRAP_EL2
;
6092 return CP_ACCESS_OK
;
6095 static CPAccessResult
access_aa32_tid3(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
6098 if (arm_feature(env
, ARM_FEATURE_V8
)) {
6099 return access_aa64_tid3(env
, ri
, isread
);
6102 return CP_ACCESS_OK
;
6105 static CPAccessResult
access_jazelle(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
6108 if (arm_current_el(env
) == 1 && (arm_hcr_el2_eff(env
) & HCR_TID0
)) {
6109 return CP_ACCESS_TRAP_EL2
;
6112 return CP_ACCESS_OK
;
6115 static const ARMCPRegInfo jazelle_regs
[] = {
6117 .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 7, .opc2
= 0,
6118 .access
= PL1_R
, .accessfn
= access_jazelle
,
6119 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
6121 .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 7, .opc2
= 0,
6122 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
6124 .cp
= 14, .crn
= 2, .crm
= 0, .opc1
= 7, .opc2
= 0,
6125 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
6129 static const ARMCPRegInfo vhe_reginfo
[] = {
6130 { .name
= "CONTEXTIDR_EL2", .state
= ARM_CP_STATE_AA64
,
6131 .opc0
= 3, .opc1
= 4, .crn
= 13, .crm
= 0, .opc2
= 1,
6133 .fieldoffset
= offsetof(CPUARMState
, cp15
.contextidr_el
[2]) },
6137 void register_cp_regs_for_features(ARMCPU
*cpu
)
6139 /* Register all the coprocessor registers based on feature bits */
6140 CPUARMState
*env
= &cpu
->env
;
6141 if (arm_feature(env
, ARM_FEATURE_M
)) {
6142 /* M profile has no coprocessor registers */
6146 define_arm_cp_regs(cpu
, cp_reginfo
);
6147 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
6148 /* Must go early as it is full of wildcards that may be
6149 * overridden by later definitions.
6151 define_arm_cp_regs(cpu
, not_v8_cp_reginfo
);
6154 if (arm_feature(env
, ARM_FEATURE_V6
)) {
6155 /* The ID registers all have impdef reset values */
6156 ARMCPRegInfo v6_idregs
[] = {
6157 { .name
= "ID_PFR0", .state
= ARM_CP_STATE_BOTH
,
6158 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 0,
6159 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6160 .accessfn
= access_aa32_tid3
,
6161 .resetvalue
= cpu
->id_pfr0
},
6162 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
6163 * the value of the GIC field until after we define these regs.
6165 { .name
= "ID_PFR1", .state
= ARM_CP_STATE_BOTH
,
6166 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 1,
6167 .access
= PL1_R
, .type
= ARM_CP_NO_RAW
,
6168 .accessfn
= access_aa32_tid3
,
6169 .readfn
= id_pfr1_read
,
6170 .writefn
= arm_cp_write_ignore
},
6171 { .name
= "ID_DFR0", .state
= ARM_CP_STATE_BOTH
,
6172 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 2,
6173 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6174 .accessfn
= access_aa32_tid3
,
6175 .resetvalue
= cpu
->id_dfr0
},
6176 { .name
= "ID_AFR0", .state
= ARM_CP_STATE_BOTH
,
6177 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 3,
6178 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6179 .accessfn
= access_aa32_tid3
,
6180 .resetvalue
= cpu
->id_afr0
},
6181 { .name
= "ID_MMFR0", .state
= ARM_CP_STATE_BOTH
,
6182 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 4,
6183 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6184 .accessfn
= access_aa32_tid3
,
6185 .resetvalue
= cpu
->id_mmfr0
},
6186 { .name
= "ID_MMFR1", .state
= ARM_CP_STATE_BOTH
,
6187 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 5,
6188 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6189 .accessfn
= access_aa32_tid3
,
6190 .resetvalue
= cpu
->id_mmfr1
},
6191 { .name
= "ID_MMFR2", .state
= ARM_CP_STATE_BOTH
,
6192 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 6,
6193 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6194 .accessfn
= access_aa32_tid3
,
6195 .resetvalue
= cpu
->id_mmfr2
},
6196 { .name
= "ID_MMFR3", .state
= ARM_CP_STATE_BOTH
,
6197 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 7,
6198 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6199 .accessfn
= access_aa32_tid3
,
6200 .resetvalue
= cpu
->id_mmfr3
},
6201 { .name
= "ID_ISAR0", .state
= ARM_CP_STATE_BOTH
,
6202 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 0,
6203 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6204 .accessfn
= access_aa32_tid3
,
6205 .resetvalue
= cpu
->isar
.id_isar0
},
6206 { .name
= "ID_ISAR1", .state
= ARM_CP_STATE_BOTH
,
6207 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 1,
6208 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6209 .accessfn
= access_aa32_tid3
,
6210 .resetvalue
= cpu
->isar
.id_isar1
},
6211 { .name
= "ID_ISAR2", .state
= ARM_CP_STATE_BOTH
,
6212 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
6213 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6214 .accessfn
= access_aa32_tid3
,
6215 .resetvalue
= cpu
->isar
.id_isar2
},
6216 { .name
= "ID_ISAR3", .state
= ARM_CP_STATE_BOTH
,
6217 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 3,
6218 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6219 .accessfn
= access_aa32_tid3
,
6220 .resetvalue
= cpu
->isar
.id_isar3
},
6221 { .name
= "ID_ISAR4", .state
= ARM_CP_STATE_BOTH
,
6222 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 4,
6223 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6224 .accessfn
= access_aa32_tid3
,
6225 .resetvalue
= cpu
->isar
.id_isar4
},
6226 { .name
= "ID_ISAR5", .state
= ARM_CP_STATE_BOTH
,
6227 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 5,
6228 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6229 .accessfn
= access_aa32_tid3
,
6230 .resetvalue
= cpu
->isar
.id_isar5
},
6231 { .name
= "ID_MMFR4", .state
= ARM_CP_STATE_BOTH
,
6232 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 6,
6233 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6234 .accessfn
= access_aa32_tid3
,
6235 .resetvalue
= cpu
->id_mmfr4
},
6236 { .name
= "ID_ISAR6", .state
= ARM_CP_STATE_BOTH
,
6237 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 7,
6238 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6239 .accessfn
= access_aa32_tid3
,
6240 .resetvalue
= cpu
->isar
.id_isar6
},
6243 define_arm_cp_regs(cpu
, v6_idregs
);
6244 define_arm_cp_regs(cpu
, v6_cp_reginfo
);
6246 define_arm_cp_regs(cpu
, not_v6_cp_reginfo
);
6248 if (arm_feature(env
, ARM_FEATURE_V6K
)) {
6249 define_arm_cp_regs(cpu
, v6k_cp_reginfo
);
6251 if (arm_feature(env
, ARM_FEATURE_V7MP
) &&
6252 !arm_feature(env
, ARM_FEATURE_PMSA
)) {
6253 define_arm_cp_regs(cpu
, v7mp_cp_reginfo
);
6255 if (arm_feature(env
, ARM_FEATURE_V7VE
)) {
6256 define_arm_cp_regs(cpu
, pmovsset_cp_reginfo
);
6258 if (arm_feature(env
, ARM_FEATURE_V7
)) {
6259 /* v7 performance monitor control register: same implementor
6260 * field as main ID register, and we implement four counters in
6261 * addition to the cycle count register.
6263 unsigned int i
, pmcrn
= 4;
6264 ARMCPRegInfo pmcr
= {
6265 .name
= "PMCR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 0,
6267 .type
= ARM_CP_IO
| ARM_CP_ALIAS
,
6268 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcr
),
6269 .accessfn
= pmreg_access
, .writefn
= pmcr_write
,
6270 .raw_writefn
= raw_write
,
6272 ARMCPRegInfo pmcr64
= {
6273 .name
= "PMCR_EL0", .state
= ARM_CP_STATE_AA64
,
6274 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 0,
6275 .access
= PL0_RW
, .accessfn
= pmreg_access
,
6277 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcr
),
6278 .resetvalue
= (cpu
->midr
& 0xff000000) | (pmcrn
<< PMCRN_SHIFT
),
6279 .writefn
= pmcr_write
, .raw_writefn
= raw_write
,
6281 define_one_arm_cp_reg(cpu
, &pmcr
);
6282 define_one_arm_cp_reg(cpu
, &pmcr64
);
6283 for (i
= 0; i
< pmcrn
; i
++) {
6284 char *pmevcntr_name
= g_strdup_printf("PMEVCNTR%d", i
);
6285 char *pmevcntr_el0_name
= g_strdup_printf("PMEVCNTR%d_EL0", i
);
6286 char *pmevtyper_name
= g_strdup_printf("PMEVTYPER%d", i
);
6287 char *pmevtyper_el0_name
= g_strdup_printf("PMEVTYPER%d_EL0", i
);
6288 ARMCPRegInfo pmev_regs
[] = {
6289 { .name
= pmevcntr_name
, .cp
= 15, .crn
= 14,
6290 .crm
= 8 | (3 & (i
>> 3)), .opc1
= 0, .opc2
= i
& 7,
6291 .access
= PL0_RW
, .type
= ARM_CP_IO
| ARM_CP_ALIAS
,
6292 .readfn
= pmevcntr_readfn
, .writefn
= pmevcntr_writefn
,
6293 .accessfn
= pmreg_access
},
6294 { .name
= pmevcntr_el0_name
, .state
= ARM_CP_STATE_AA64
,
6295 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 8 | (3 & (i
>> 3)),
6296 .opc2
= i
& 7, .access
= PL0_RW
, .accessfn
= pmreg_access
,
6298 .readfn
= pmevcntr_readfn
, .writefn
= pmevcntr_writefn
,
6299 .raw_readfn
= pmevcntr_rawread
,
6300 .raw_writefn
= pmevcntr_rawwrite
},
6301 { .name
= pmevtyper_name
, .cp
= 15, .crn
= 14,
6302 .crm
= 12 | (3 & (i
>> 3)), .opc1
= 0, .opc2
= i
& 7,
6303 .access
= PL0_RW
, .type
= ARM_CP_IO
| ARM_CP_ALIAS
,
6304 .readfn
= pmevtyper_readfn
, .writefn
= pmevtyper_writefn
,
6305 .accessfn
= pmreg_access
},
6306 { .name
= pmevtyper_el0_name
, .state
= ARM_CP_STATE_AA64
,
6307 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 12 | (3 & (i
>> 3)),
6308 .opc2
= i
& 7, .access
= PL0_RW
, .accessfn
= pmreg_access
,
6310 .readfn
= pmevtyper_readfn
, .writefn
= pmevtyper_writefn
,
6311 .raw_writefn
= pmevtyper_rawwrite
},
6314 define_arm_cp_regs(cpu
, pmev_regs
);
6315 g_free(pmevcntr_name
);
6316 g_free(pmevcntr_el0_name
);
6317 g_free(pmevtyper_name
);
6318 g_free(pmevtyper_el0_name
);
6320 ARMCPRegInfo clidr
= {
6321 .name
= "CLIDR", .state
= ARM_CP_STATE_BOTH
,
6322 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 1,
6323 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6324 .accessfn
= access_aa64_tid2
,
6325 .resetvalue
= cpu
->clidr
6327 define_one_arm_cp_reg(cpu
, &clidr
);
6328 define_arm_cp_regs(cpu
, v7_cp_reginfo
);
6329 define_debug_regs(cpu
);
6331 define_arm_cp_regs(cpu
, not_v7_cp_reginfo
);
6333 if (FIELD_EX32(cpu
->id_dfr0
, ID_DFR0
, PERFMON
) >= 4 &&
6334 FIELD_EX32(cpu
->id_dfr0
, ID_DFR0
, PERFMON
) != 0xf) {
6335 ARMCPRegInfo v81_pmu_regs
[] = {
6336 { .name
= "PMCEID2", .state
= ARM_CP_STATE_AA32
,
6337 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 14, .opc2
= 4,
6338 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
6339 .resetvalue
= extract64(cpu
->pmceid0
, 32, 32) },
6340 { .name
= "PMCEID3", .state
= ARM_CP_STATE_AA32
,
6341 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 14, .opc2
= 5,
6342 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
6343 .resetvalue
= extract64(cpu
->pmceid1
, 32, 32) },
6346 define_arm_cp_regs(cpu
, v81_pmu_regs
);
6348 if (arm_feature(env
, ARM_FEATURE_V8
)) {
6349 /* AArch64 ID registers, which all have impdef reset values.
6350 * Note that within the ID register ranges the unused slots
6351 * must all RAZ, not UNDEF; future architecture versions may
6352 * define new registers here.
6354 ARMCPRegInfo v8_idregs
[] = {
6355 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
6356 * know the right value for the GIC field until after we
6357 * define these regs.
6359 { .name
= "ID_AA64PFR0_EL1", .state
= ARM_CP_STATE_AA64
,
6360 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 0,
6361 .access
= PL1_R
, .type
= ARM_CP_NO_RAW
,
6362 .accessfn
= access_aa64_tid3
,
6363 .readfn
= id_aa64pfr0_read
,
6364 .writefn
= arm_cp_write_ignore
},
6365 { .name
= "ID_AA64PFR1_EL1", .state
= ARM_CP_STATE_AA64
,
6366 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 1,
6367 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6368 .accessfn
= access_aa64_tid3
,
6369 .resetvalue
= cpu
->isar
.id_aa64pfr1
},
6370 { .name
= "ID_AA64PFR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6371 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 2,
6372 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6373 .accessfn
= access_aa64_tid3
,
6375 { .name
= "ID_AA64PFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6376 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 3,
6377 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6378 .accessfn
= access_aa64_tid3
,
6380 { .name
= "ID_AA64ZFR0_EL1", .state
= ARM_CP_STATE_AA64
,
6381 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 4,
6382 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6383 .accessfn
= access_aa64_tid3
,
6384 /* At present, only SVEver == 0 is defined anyway. */
6386 { .name
= "ID_AA64PFR5_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6387 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 5,
6388 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6389 .accessfn
= access_aa64_tid3
,
6391 { .name
= "ID_AA64PFR6_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6392 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 6,
6393 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6394 .accessfn
= access_aa64_tid3
,
6396 { .name
= "ID_AA64PFR7_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6397 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 7,
6398 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6399 .accessfn
= access_aa64_tid3
,
6401 { .name
= "ID_AA64DFR0_EL1", .state
= ARM_CP_STATE_AA64
,
6402 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 0,
6403 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6404 .accessfn
= access_aa64_tid3
,
6405 .resetvalue
= cpu
->id_aa64dfr0
},
6406 { .name
= "ID_AA64DFR1_EL1", .state
= ARM_CP_STATE_AA64
,
6407 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 1,
6408 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6409 .accessfn
= access_aa64_tid3
,
6410 .resetvalue
= cpu
->id_aa64dfr1
},
6411 { .name
= "ID_AA64DFR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6412 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 2,
6413 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6414 .accessfn
= access_aa64_tid3
,
6416 { .name
= "ID_AA64DFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6417 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 3,
6418 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6419 .accessfn
= access_aa64_tid3
,
6421 { .name
= "ID_AA64AFR0_EL1", .state
= ARM_CP_STATE_AA64
,
6422 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 4,
6423 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6424 .accessfn
= access_aa64_tid3
,
6425 .resetvalue
= cpu
->id_aa64afr0
},
6426 { .name
= "ID_AA64AFR1_EL1", .state
= ARM_CP_STATE_AA64
,
6427 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 5,
6428 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6429 .accessfn
= access_aa64_tid3
,
6430 .resetvalue
= cpu
->id_aa64afr1
},
6431 { .name
= "ID_AA64AFR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6432 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 6,
6433 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6434 .accessfn
= access_aa64_tid3
,
6436 { .name
= "ID_AA64AFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6437 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 7,
6438 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6439 .accessfn
= access_aa64_tid3
,
6441 { .name
= "ID_AA64ISAR0_EL1", .state
= ARM_CP_STATE_AA64
,
6442 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 0,
6443 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6444 .accessfn
= access_aa64_tid3
,
6445 .resetvalue
= cpu
->isar
.id_aa64isar0
},
6446 { .name
= "ID_AA64ISAR1_EL1", .state
= ARM_CP_STATE_AA64
,
6447 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 1,
6448 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6449 .accessfn
= access_aa64_tid3
,
6450 .resetvalue
= cpu
->isar
.id_aa64isar1
},
6451 { .name
= "ID_AA64ISAR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6452 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 2,
6453 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6454 .accessfn
= access_aa64_tid3
,
6456 { .name
= "ID_AA64ISAR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6457 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 3,
6458 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6459 .accessfn
= access_aa64_tid3
,
6461 { .name
= "ID_AA64ISAR4_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6462 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 4,
6463 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6464 .accessfn
= access_aa64_tid3
,
6466 { .name
= "ID_AA64ISAR5_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6467 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 5,
6468 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6469 .accessfn
= access_aa64_tid3
,
6471 { .name
= "ID_AA64ISAR6_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6472 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 6,
6473 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6474 .accessfn
= access_aa64_tid3
,
6476 { .name
= "ID_AA64ISAR7_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6477 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 7,
6478 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6479 .accessfn
= access_aa64_tid3
,
6481 { .name
= "ID_AA64MMFR0_EL1", .state
= ARM_CP_STATE_AA64
,
6482 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 0,
6483 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6484 .accessfn
= access_aa64_tid3
,
6485 .resetvalue
= cpu
->isar
.id_aa64mmfr0
},
6486 { .name
= "ID_AA64MMFR1_EL1", .state
= ARM_CP_STATE_AA64
,
6487 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 1,
6488 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6489 .accessfn
= access_aa64_tid3
,
6490 .resetvalue
= cpu
->isar
.id_aa64mmfr1
},
6491 { .name
= "ID_AA64MMFR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6492 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 2,
6493 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6494 .accessfn
= access_aa64_tid3
,
6496 { .name
= "ID_AA64MMFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6497 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 3,
6498 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6499 .accessfn
= access_aa64_tid3
,
6501 { .name
= "ID_AA64MMFR4_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6502 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 4,
6503 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6504 .accessfn
= access_aa64_tid3
,
6506 { .name
= "ID_AA64MMFR5_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6507 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 5,
6508 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6509 .accessfn
= access_aa64_tid3
,
6511 { .name
= "ID_AA64MMFR6_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6512 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 6,
6513 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6514 .accessfn
= access_aa64_tid3
,
6516 { .name
= "ID_AA64MMFR7_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6517 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 7,
6518 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6519 .accessfn
= access_aa64_tid3
,
6521 { .name
= "MVFR0_EL1", .state
= ARM_CP_STATE_AA64
,
6522 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 0,
6523 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6524 .accessfn
= access_aa64_tid3
,
6525 .resetvalue
= cpu
->isar
.mvfr0
},
6526 { .name
= "MVFR1_EL1", .state
= ARM_CP_STATE_AA64
,
6527 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 1,
6528 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6529 .accessfn
= access_aa64_tid3
,
6530 .resetvalue
= cpu
->isar
.mvfr1
},
6531 { .name
= "MVFR2_EL1", .state
= ARM_CP_STATE_AA64
,
6532 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 2,
6533 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6534 .accessfn
= access_aa64_tid3
,
6535 .resetvalue
= cpu
->isar
.mvfr2
},
6536 { .name
= "MVFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6537 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 3,
6538 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6539 .accessfn
= access_aa64_tid3
,
6541 { .name
= "MVFR4_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6542 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 4,
6543 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6544 .accessfn
= access_aa64_tid3
,
6546 { .name
= "MVFR5_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6547 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 5,
6548 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6549 .accessfn
= access_aa64_tid3
,
6551 { .name
= "MVFR6_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6552 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 6,
6553 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6554 .accessfn
= access_aa64_tid3
,
6556 { .name
= "MVFR7_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6557 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 7,
6558 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6559 .accessfn
= access_aa64_tid3
,
6561 { .name
= "PMCEID0", .state
= ARM_CP_STATE_AA32
,
6562 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 12, .opc2
= 6,
6563 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
6564 .resetvalue
= extract64(cpu
->pmceid0
, 0, 32) },
6565 { .name
= "PMCEID0_EL0", .state
= ARM_CP_STATE_AA64
,
6566 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 6,
6567 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
6568 .resetvalue
= cpu
->pmceid0
},
6569 { .name
= "PMCEID1", .state
= ARM_CP_STATE_AA32
,
6570 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 12, .opc2
= 7,
6571 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
6572 .resetvalue
= extract64(cpu
->pmceid1
, 0, 32) },
6573 { .name
= "PMCEID1_EL0", .state
= ARM_CP_STATE_AA64
,
6574 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 7,
6575 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
6576 .resetvalue
= cpu
->pmceid1
},
6579 #ifdef CONFIG_USER_ONLY
6580 ARMCPRegUserSpaceInfo v8_user_idregs
[] = {
6581 { .name
= "ID_AA64PFR0_EL1",
6582 .exported_bits
= 0x000f000f00ff0000,
6583 .fixed_bits
= 0x0000000000000011 },
6584 { .name
= "ID_AA64PFR1_EL1",
6585 .exported_bits
= 0x00000000000000f0 },
6586 { .name
= "ID_AA64PFR*_EL1_RESERVED",
6588 { .name
= "ID_AA64ZFR0_EL1" },
6589 { .name
= "ID_AA64MMFR0_EL1",
6590 .fixed_bits
= 0x00000000ff000000 },
6591 { .name
= "ID_AA64MMFR1_EL1" },
6592 { .name
= "ID_AA64MMFR*_EL1_RESERVED",
6594 { .name
= "ID_AA64DFR0_EL1",
6595 .fixed_bits
= 0x0000000000000006 },
6596 { .name
= "ID_AA64DFR1_EL1" },
6597 { .name
= "ID_AA64DFR*_EL1_RESERVED",
6599 { .name
= "ID_AA64AFR*",
6601 { .name
= "ID_AA64ISAR0_EL1",
6602 .exported_bits
= 0x00fffffff0fffff0 },
6603 { .name
= "ID_AA64ISAR1_EL1",
6604 .exported_bits
= 0x000000f0ffffffff },
6605 { .name
= "ID_AA64ISAR*_EL1_RESERVED",
6607 REGUSERINFO_SENTINEL
6609 modify_arm_cp_regs(v8_idregs
, v8_user_idregs
);
6611 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
6612 if (!arm_feature(env
, ARM_FEATURE_EL3
) &&
6613 !arm_feature(env
, ARM_FEATURE_EL2
)) {
6614 ARMCPRegInfo rvbar
= {
6615 .name
= "RVBAR_EL1", .state
= ARM_CP_STATE_AA64
,
6616 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 0, .opc2
= 1,
6617 .type
= ARM_CP_CONST
, .access
= PL1_R
, .resetvalue
= cpu
->rvbar
6619 define_one_arm_cp_reg(cpu
, &rvbar
);
6621 define_arm_cp_regs(cpu
, v8_idregs
);
6622 define_arm_cp_regs(cpu
, v8_cp_reginfo
);
6624 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
6625 uint64_t vmpidr_def
= mpidr_read_val(env
);
6626 ARMCPRegInfo vpidr_regs
[] = {
6627 { .name
= "VPIDR", .state
= ARM_CP_STATE_AA32
,
6628 .cp
= 15, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 0,
6629 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
6630 .resetvalue
= cpu
->midr
, .type
= ARM_CP_ALIAS
,
6631 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.vpidr_el2
) },
6632 { .name
= "VPIDR_EL2", .state
= ARM_CP_STATE_AA64
,
6633 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 0,
6634 .access
= PL2_RW
, .resetvalue
= cpu
->midr
,
6635 .fieldoffset
= offsetof(CPUARMState
, cp15
.vpidr_el2
) },
6636 { .name
= "VMPIDR", .state
= ARM_CP_STATE_AA32
,
6637 .cp
= 15, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 5,
6638 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
6639 .resetvalue
= vmpidr_def
, .type
= ARM_CP_ALIAS
,
6640 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.vmpidr_el2
) },
6641 { .name
= "VMPIDR_EL2", .state
= ARM_CP_STATE_AA64
,
6642 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 5,
6644 .resetvalue
= vmpidr_def
,
6645 .fieldoffset
= offsetof(CPUARMState
, cp15
.vmpidr_el2
) },
6648 define_arm_cp_regs(cpu
, vpidr_regs
);
6649 define_arm_cp_regs(cpu
, el2_cp_reginfo
);
6650 if (arm_feature(env
, ARM_FEATURE_V8
)) {
6651 define_arm_cp_regs(cpu
, el2_v8_cp_reginfo
);
6653 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
6654 if (!arm_feature(env
, ARM_FEATURE_EL3
)) {
6655 ARMCPRegInfo rvbar
= {
6656 .name
= "RVBAR_EL2", .state
= ARM_CP_STATE_AA64
,
6657 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 1,
6658 .type
= ARM_CP_CONST
, .access
= PL2_R
, .resetvalue
= cpu
->rvbar
6660 define_one_arm_cp_reg(cpu
, &rvbar
);
6663 /* If EL2 is missing but higher ELs are enabled, we need to
6664 * register the no_el2 reginfos.
6666 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
6667 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
6668 * of MIDR_EL1 and MPIDR_EL1.
6670 ARMCPRegInfo vpidr_regs
[] = {
6671 { .name
= "VPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
6672 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 0,
6673 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
6674 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->midr
,
6675 .fieldoffset
= offsetof(CPUARMState
, cp15
.vpidr_el2
) },
6676 { .name
= "VMPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
6677 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 5,
6678 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
6679 .type
= ARM_CP_NO_RAW
,
6680 .writefn
= arm_cp_write_ignore
, .readfn
= mpidr_read
},
6683 define_arm_cp_regs(cpu
, vpidr_regs
);
6684 define_arm_cp_regs(cpu
, el3_no_el2_cp_reginfo
);
6685 if (arm_feature(env
, ARM_FEATURE_V8
)) {
6686 define_arm_cp_regs(cpu
, el3_no_el2_v8_cp_reginfo
);
6690 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
6691 define_arm_cp_regs(cpu
, el3_cp_reginfo
);
6692 ARMCPRegInfo el3_regs
[] = {
6693 { .name
= "RVBAR_EL3", .state
= ARM_CP_STATE_AA64
,
6694 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 0, .opc2
= 1,
6695 .type
= ARM_CP_CONST
, .access
= PL3_R
, .resetvalue
= cpu
->rvbar
},
6696 { .name
= "SCTLR_EL3", .state
= ARM_CP_STATE_AA64
,
6697 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 0, .opc2
= 0,
6699 .raw_writefn
= raw_write
, .writefn
= sctlr_write
,
6700 .fieldoffset
= offsetof(CPUARMState
, cp15
.sctlr_el
[3]),
6701 .resetvalue
= cpu
->reset_sctlr
},
6705 define_arm_cp_regs(cpu
, el3_regs
);
6707 /* The behaviour of NSACR is sufficiently various that we don't
6708 * try to describe it in a single reginfo:
6709 * if EL3 is 64 bit, then trap to EL3 from S EL1,
6710 * reads as constant 0xc00 from NS EL1 and NS EL2
6711 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
6712 * if v7 without EL3, register doesn't exist
6713 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
6715 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
6716 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
6717 ARMCPRegInfo nsacr
= {
6718 .name
= "NSACR", .type
= ARM_CP_CONST
,
6719 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 2,
6720 .access
= PL1_RW
, .accessfn
= nsacr_access
,
6723 define_one_arm_cp_reg(cpu
, &nsacr
);
6725 ARMCPRegInfo nsacr
= {
6727 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 2,
6728 .access
= PL3_RW
| PL1_R
,
6730 .fieldoffset
= offsetof(CPUARMState
, cp15
.nsacr
)
6732 define_one_arm_cp_reg(cpu
, &nsacr
);
6735 if (arm_feature(env
, ARM_FEATURE_V8
)) {
6736 ARMCPRegInfo nsacr
= {
6737 .name
= "NSACR", .type
= ARM_CP_CONST
,
6738 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 2,
6742 define_one_arm_cp_reg(cpu
, &nsacr
);
6746 if (arm_feature(env
, ARM_FEATURE_PMSA
)) {
6747 if (arm_feature(env
, ARM_FEATURE_V6
)) {
6748 /* PMSAv6 not implemented */
6749 assert(arm_feature(env
, ARM_FEATURE_V7
));
6750 define_arm_cp_regs(cpu
, vmsa_pmsa_cp_reginfo
);
6751 define_arm_cp_regs(cpu
, pmsav7_cp_reginfo
);
6753 define_arm_cp_regs(cpu
, pmsav5_cp_reginfo
);
6756 define_arm_cp_regs(cpu
, vmsa_pmsa_cp_reginfo
);
6757 define_arm_cp_regs(cpu
, vmsa_cp_reginfo
);
6758 /* TTCBR2 is introduced with ARMv8.2-A32HPD. */
6759 if (FIELD_EX32(cpu
->id_mmfr4
, ID_MMFR4
, HPDS
) != 0) {
6760 define_one_arm_cp_reg(cpu
, &ttbcr2_reginfo
);
6763 if (arm_feature(env
, ARM_FEATURE_THUMB2EE
)) {
6764 define_arm_cp_regs(cpu
, t2ee_cp_reginfo
);
6766 if (arm_feature(env
, ARM_FEATURE_GENERIC_TIMER
)) {
6767 define_arm_cp_regs(cpu
, generic_timer_cp_reginfo
);
6769 if (arm_feature(env
, ARM_FEATURE_VAPA
)) {
6770 define_arm_cp_regs(cpu
, vapa_cp_reginfo
);
6772 if (arm_feature(env
, ARM_FEATURE_CACHE_TEST_CLEAN
)) {
6773 define_arm_cp_regs(cpu
, cache_test_clean_cp_reginfo
);
6775 if (arm_feature(env
, ARM_FEATURE_CACHE_DIRTY_REG
)) {
6776 define_arm_cp_regs(cpu
, cache_dirty_status_cp_reginfo
);
6778 if (arm_feature(env
, ARM_FEATURE_CACHE_BLOCK_OPS
)) {
6779 define_arm_cp_regs(cpu
, cache_block_ops_cp_reginfo
);
6781 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
6782 define_arm_cp_regs(cpu
, omap_cp_reginfo
);
6784 if (arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
6785 define_arm_cp_regs(cpu
, strongarm_cp_reginfo
);
6787 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
6788 define_arm_cp_regs(cpu
, xscale_cp_reginfo
);
6790 if (arm_feature(env
, ARM_FEATURE_DUMMY_C15_REGS
)) {
6791 define_arm_cp_regs(cpu
, dummy_c15_cp_reginfo
);
6793 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
6794 define_arm_cp_regs(cpu
, lpae_cp_reginfo
);
6796 if (cpu_isar_feature(jazelle
, cpu
)) {
6797 define_arm_cp_regs(cpu
, jazelle_regs
);
6799 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
6800 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
6801 * be read-only (ie write causes UNDEF exception).
6804 ARMCPRegInfo id_pre_v8_midr_cp_reginfo
[] = {
6805 /* Pre-v8 MIDR space.
6806 * Note that the MIDR isn't a simple constant register because
6807 * of the TI925 behaviour where writes to another register can
6808 * cause the MIDR value to change.
6810 * Unimplemented registers in the c15 0 0 0 space default to
6811 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
6812 * and friends override accordingly.
6815 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= CP_ANY
,
6816 .access
= PL1_R
, .resetvalue
= cpu
->midr
,
6817 .writefn
= arm_cp_write_ignore
, .raw_writefn
= raw_write
,
6818 .readfn
= midr_read
,
6819 .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cpuid
),
6820 .type
= ARM_CP_OVERRIDE
},
6821 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
6823 .cp
= 15, .crn
= 0, .crm
= 3, .opc1
= 0, .opc2
= CP_ANY
,
6824 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
6826 .cp
= 15, .crn
= 0, .crm
= 4, .opc1
= 0, .opc2
= CP_ANY
,
6827 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
6829 .cp
= 15, .crn
= 0, .crm
= 5, .opc1
= 0, .opc2
= CP_ANY
,
6830 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
6832 .cp
= 15, .crn
= 0, .crm
= 6, .opc1
= 0, .opc2
= CP_ANY
,
6833 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
6835 .cp
= 15, .crn
= 0, .crm
= 7, .opc1
= 0, .opc2
= CP_ANY
,
6836 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
6839 ARMCPRegInfo id_v8_midr_cp_reginfo
[] = {
6840 { .name
= "MIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
6841 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 0,
6842 .access
= PL1_R
, .type
= ARM_CP_NO_RAW
, .resetvalue
= cpu
->midr
,
6843 .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cpuid
),
6844 .readfn
= midr_read
},
6845 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
6846 { .name
= "MIDR", .type
= ARM_CP_ALIAS
| ARM_CP_CONST
,
6847 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 4,
6848 .access
= PL1_R
, .resetvalue
= cpu
->midr
},
6849 { .name
= "MIDR", .type
= ARM_CP_ALIAS
| ARM_CP_CONST
,
6850 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 7,
6851 .access
= PL1_R
, .resetvalue
= cpu
->midr
},
6852 { .name
= "REVIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
6853 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 6,
6855 .accessfn
= access_aa64_tid1
,
6856 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->revidr
},
6859 ARMCPRegInfo id_cp_reginfo
[] = {
6860 /* These are common to v8 and pre-v8 */
6862 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 1,
6863 .access
= PL1_R
, .accessfn
= ctr_el0_access
,
6864 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
6865 { .name
= "CTR_EL0", .state
= ARM_CP_STATE_AA64
,
6866 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 0, .crm
= 0,
6867 .access
= PL0_R
, .accessfn
= ctr_el0_access
,
6868 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
6869 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
6871 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 2,
6873 .accessfn
= access_aa32_tid1
,
6874 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
6877 /* TLBTR is specific to VMSA */
6878 ARMCPRegInfo id_tlbtr_reginfo
= {
6880 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 3,
6882 .accessfn
= access_aa32_tid1
,
6883 .type
= ARM_CP_CONST
, .resetvalue
= 0,
6885 /* MPUIR is specific to PMSA V6+ */
6886 ARMCPRegInfo id_mpuir_reginfo
= {
6888 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 4,
6889 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6890 .resetvalue
= cpu
->pmsav7_dregion
<< 8
6892 ARMCPRegInfo crn0_wi_reginfo
= {
6893 .name
= "CRN0_WI", .cp
= 15, .crn
= 0, .crm
= CP_ANY
,
6894 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_W
,
6895 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
6897 #ifdef CONFIG_USER_ONLY
6898 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo
[] = {
6899 { .name
= "MIDR_EL1",
6900 .exported_bits
= 0x00000000ffffffff },
6901 { .name
= "REVIDR_EL1" },
6902 REGUSERINFO_SENTINEL
6904 modify_arm_cp_regs(id_v8_midr_cp_reginfo
, id_v8_user_midr_cp_reginfo
);
6906 if (arm_feature(env
, ARM_FEATURE_OMAPCP
) ||
6907 arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
6909 /* Register the blanket "writes ignored" value first to cover the
6910 * whole space. Then update the specific ID registers to allow write
6911 * access, so that they ignore writes rather than causing them to
6914 define_one_arm_cp_reg(cpu
, &crn0_wi_reginfo
);
6915 for (r
= id_pre_v8_midr_cp_reginfo
;
6916 r
->type
!= ARM_CP_SENTINEL
; r
++) {
6919 for (r
= id_cp_reginfo
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
6922 id_mpuir_reginfo
.access
= PL1_RW
;
6923 id_tlbtr_reginfo
.access
= PL1_RW
;
6925 if (arm_feature(env
, ARM_FEATURE_V8
)) {
6926 define_arm_cp_regs(cpu
, id_v8_midr_cp_reginfo
);
6928 define_arm_cp_regs(cpu
, id_pre_v8_midr_cp_reginfo
);
6930 define_arm_cp_regs(cpu
, id_cp_reginfo
);
6931 if (!arm_feature(env
, ARM_FEATURE_PMSA
)) {
6932 define_one_arm_cp_reg(cpu
, &id_tlbtr_reginfo
);
6933 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
6934 define_one_arm_cp_reg(cpu
, &id_mpuir_reginfo
);
6938 if (arm_feature(env
, ARM_FEATURE_MPIDR
)) {
6939 ARMCPRegInfo mpidr_cp_reginfo
[] = {
6940 { .name
= "MPIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
6941 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 5,
6942 .access
= PL1_R
, .readfn
= mpidr_read
, .type
= ARM_CP_NO_RAW
},
6945 #ifdef CONFIG_USER_ONLY
6946 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo
[] = {
6947 { .name
= "MPIDR_EL1",
6948 .fixed_bits
= 0x0000000080000000 },
6949 REGUSERINFO_SENTINEL
6951 modify_arm_cp_regs(mpidr_cp_reginfo
, mpidr_user_cp_reginfo
);
6953 define_arm_cp_regs(cpu
, mpidr_cp_reginfo
);
6956 if (arm_feature(env
, ARM_FEATURE_AUXCR
)) {
6957 ARMCPRegInfo auxcr_reginfo
[] = {
6958 { .name
= "ACTLR_EL1", .state
= ARM_CP_STATE_BOTH
,
6959 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 1,
6960 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
6961 .resetvalue
= cpu
->reset_auxcr
},
6962 { .name
= "ACTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
6963 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 1,
6964 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
6966 { .name
= "ACTLR_EL3", .state
= ARM_CP_STATE_AA64
,
6967 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 0, .opc2
= 1,
6968 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
6972 define_arm_cp_regs(cpu
, auxcr_reginfo
);
6973 if (arm_feature(env
, ARM_FEATURE_V8
)) {
6974 /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */
6975 ARMCPRegInfo hactlr2_reginfo
= {
6976 .name
= "HACTLR2", .state
= ARM_CP_STATE_AA32
,
6977 .cp
= 15, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 3,
6978 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
6981 define_one_arm_cp_reg(cpu
, &hactlr2_reginfo
);
6985 if (arm_feature(env
, ARM_FEATURE_CBAR
)) {
6987 * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
6988 * There are two flavours:
6989 * (1) older 32-bit only cores have a simple 32-bit CBAR
6990 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
6991 * 32-bit register visible to AArch32 at a different encoding
6992 * to the "flavour 1" register and with the bits rearranged to
6993 * be able to squash a 64-bit address into the 32-bit view.
6994 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
6995 * in future if we support AArch32-only configs of some of the
6996 * AArch64 cores we might need to add a specific feature flag
6997 * to indicate cores with "flavour 2" CBAR.
6999 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
7000 /* 32 bit view is [31:18] 0...0 [43:32]. */
7001 uint32_t cbar32
= (extract64(cpu
->reset_cbar
, 18, 14) << 18)
7002 | extract64(cpu
->reset_cbar
, 32, 12);
7003 ARMCPRegInfo cbar_reginfo
[] = {
7005 .type
= ARM_CP_CONST
,
7006 .cp
= 15, .crn
= 15, .crm
= 3, .opc1
= 1, .opc2
= 0,
7007 .access
= PL1_R
, .resetvalue
= cbar32
},
7008 { .name
= "CBAR_EL1", .state
= ARM_CP_STATE_AA64
,
7009 .type
= ARM_CP_CONST
,
7010 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 3, .opc2
= 0,
7011 .access
= PL1_R
, .resetvalue
= cpu
->reset_cbar
},
7014 /* We don't implement a r/w 64 bit CBAR currently */
7015 assert(arm_feature(env
, ARM_FEATURE_CBAR_RO
));
7016 define_arm_cp_regs(cpu
, cbar_reginfo
);
7018 ARMCPRegInfo cbar
= {
7020 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
7021 .access
= PL1_R
|PL3_W
, .resetvalue
= cpu
->reset_cbar
,
7022 .fieldoffset
= offsetof(CPUARMState
,
7023 cp15
.c15_config_base_address
)
7025 if (arm_feature(env
, ARM_FEATURE_CBAR_RO
)) {
7026 cbar
.access
= PL1_R
;
7027 cbar
.fieldoffset
= 0;
7028 cbar
.type
= ARM_CP_CONST
;
7030 define_one_arm_cp_reg(cpu
, &cbar
);
7034 if (arm_feature(env
, ARM_FEATURE_VBAR
)) {
7035 ARMCPRegInfo vbar_cp_reginfo
[] = {
7036 { .name
= "VBAR", .state
= ARM_CP_STATE_BOTH
,
7037 .opc0
= 3, .crn
= 12, .crm
= 0, .opc1
= 0, .opc2
= 0,
7038 .access
= PL1_RW
, .writefn
= vbar_write
,
7039 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.vbar_s
),
7040 offsetof(CPUARMState
, cp15
.vbar_ns
) },
7044 define_arm_cp_regs(cpu
, vbar_cp_reginfo
);
7047 /* Generic registers whose values depend on the implementation */
7049 ARMCPRegInfo sctlr
= {
7050 .name
= "SCTLR", .state
= ARM_CP_STATE_BOTH
,
7051 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 0,
7053 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.sctlr_s
),
7054 offsetof(CPUARMState
, cp15
.sctlr_ns
) },
7055 .writefn
= sctlr_write
, .resetvalue
= cpu
->reset_sctlr
,
7056 .raw_writefn
= raw_write
,
7058 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
7059 /* Normally we would always end the TB on an SCTLR write, but Linux
7060 * arch/arm/mach-pxa/sleep.S expects two instructions following
7061 * an MMU enable to execute from cache. Imitate this behaviour.
7063 sctlr
.type
|= ARM_CP_SUPPRESS_TB_END
;
7065 define_one_arm_cp_reg(cpu
, &sctlr
);
7068 if (cpu_isar_feature(aa64_lor
, cpu
)) {
7070 * A trivial implementation of ARMv8.1-LOR leaves all of these
7071 * registers fixed at 0, which indicates that there are zero
7072 * supported Limited Ordering regions.
7074 static const ARMCPRegInfo lor_reginfo
[] = {
7075 { .name
= "LORSA_EL1", .state
= ARM_CP_STATE_AA64
,
7076 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 4, .opc2
= 0,
7077 .access
= PL1_RW
, .accessfn
= access_lor_other
,
7078 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
7079 { .name
= "LOREA_EL1", .state
= ARM_CP_STATE_AA64
,
7080 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 4, .opc2
= 1,
7081 .access
= PL1_RW
, .accessfn
= access_lor_other
,
7082 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
7083 { .name
= "LORN_EL1", .state
= ARM_CP_STATE_AA64
,
7084 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 4, .opc2
= 2,
7085 .access
= PL1_RW
, .accessfn
= access_lor_other
,
7086 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
7087 { .name
= "LORC_EL1", .state
= ARM_CP_STATE_AA64
,
7088 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 4, .opc2
= 3,
7089 .access
= PL1_RW
, .accessfn
= access_lor_other
,
7090 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
7091 { .name
= "LORID_EL1", .state
= ARM_CP_STATE_AA64
,
7092 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 4, .opc2
= 7,
7093 .access
= PL1_R
, .accessfn
= access_lorid
,
7094 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
7097 define_arm_cp_regs(cpu
, lor_reginfo
);
7100 if (arm_feature(env
, ARM_FEATURE_EL2
) && cpu_isar_feature(aa64_vh
, cpu
)) {
7101 define_arm_cp_regs(cpu
, vhe_reginfo
);
7104 if (cpu_isar_feature(aa64_sve
, cpu
)) {
7105 define_one_arm_cp_reg(cpu
, &zcr_el1_reginfo
);
7106 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
7107 define_one_arm_cp_reg(cpu
, &zcr_el2_reginfo
);
7109 define_one_arm_cp_reg(cpu
, &zcr_no_el2_reginfo
);
7111 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
7112 define_one_arm_cp_reg(cpu
, &zcr_el3_reginfo
);
7116 #ifdef TARGET_AARCH64
7117 if (cpu_isar_feature(aa64_pauth
, cpu
)) {
7118 define_arm_cp_regs(cpu
, pauth_reginfo
);
7120 if (cpu_isar_feature(aa64_rndr
, cpu
)) {
7121 define_arm_cp_regs(cpu
, rndr_reginfo
);
7123 #ifndef CONFIG_USER_ONLY
7124 /* Data Cache clean instructions up to PoP */
7125 if (cpu_isar_feature(aa64_dcpop
, cpu
)) {
7126 define_one_arm_cp_reg(cpu
, dcpop_reg
);
7128 if (cpu_isar_feature(aa64_dcpodp
, cpu
)) {
7129 define_one_arm_cp_reg(cpu
, dcpodp_reg
);
7132 #endif /*CONFIG_USER_ONLY*/
7136 * While all v8.0 cpus support aarch64, QEMU does have configurations
7137 * that do not set ID_AA64ISAR1, e.g. user-only qemu-arm -cpu max,
7138 * which will set ID_ISAR6.
7140 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)
7141 ? cpu_isar_feature(aa64_predinv
, cpu
)
7142 : cpu_isar_feature(aa32_predinv
, cpu
)) {
7143 define_arm_cp_regs(cpu
, predinv_reginfo
);
7147 void arm_cpu_register_gdb_regs_for_features(ARMCPU
*cpu
)
7149 CPUState
*cs
= CPU(cpu
);
7150 CPUARMState
*env
= &cpu
->env
;
7152 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
7153 gdb_register_coprocessor(cs
, aarch64_fpu_gdb_get_reg
,
7154 aarch64_fpu_gdb_set_reg
,
7155 34, "aarch64-fpu.xml", 0);
7156 } else if (arm_feature(env
, ARM_FEATURE_NEON
)) {
7157 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
7158 51, "arm-neon.xml", 0);
7159 } else if (arm_feature(env
, ARM_FEATURE_VFP3
)) {
7160 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
7161 35, "arm-vfp3.xml", 0);
7162 } else if (arm_feature(env
, ARM_FEATURE_VFP
)) {
7163 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
7164 19, "arm-vfp.xml", 0);
7166 gdb_register_coprocessor(cs
, arm_gdb_get_sysreg
, arm_gdb_set_sysreg
,
7167 arm_gen_dynamic_xml(cs
),
7168 "system-registers.xml", 0);
7171 /* Sort alphabetically by type name, except for "any". */
7172 static gint
arm_cpu_list_compare(gconstpointer a
, gconstpointer b
)
7174 ObjectClass
*class_a
= (ObjectClass
*)a
;
7175 ObjectClass
*class_b
= (ObjectClass
*)b
;
7176 const char *name_a
, *name_b
;
7178 name_a
= object_class_get_name(class_a
);
7179 name_b
= object_class_get_name(class_b
);
7180 if (strcmp(name_a
, "any-" TYPE_ARM_CPU
) == 0) {
7182 } else if (strcmp(name_b
, "any-" TYPE_ARM_CPU
) == 0) {
7185 return strcmp(name_a
, name_b
);
7189 static void arm_cpu_list_entry(gpointer data
, gpointer user_data
)
7191 ObjectClass
*oc
= data
;
7192 const char *typename
;
7195 typename
= object_class_get_name(oc
);
7196 name
= g_strndup(typename
, strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
7197 qemu_printf(" %s\n", name
);
7201 void arm_cpu_list(void)
7205 list
= object_class_get_list(TYPE_ARM_CPU
, false);
7206 list
= g_slist_sort(list
, arm_cpu_list_compare
);
7207 qemu_printf("Available CPUs:\n");
7208 g_slist_foreach(list
, arm_cpu_list_entry
, NULL
);
7212 static void arm_cpu_add_definition(gpointer data
, gpointer user_data
)
7214 ObjectClass
*oc
= data
;
7215 CpuDefinitionInfoList
**cpu_list
= user_data
;
7216 CpuDefinitionInfoList
*entry
;
7217 CpuDefinitionInfo
*info
;
7218 const char *typename
;
7220 typename
= object_class_get_name(oc
);
7221 info
= g_malloc0(sizeof(*info
));
7222 info
->name
= g_strndup(typename
,
7223 strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
7224 info
->q_typename
= g_strdup(typename
);
7226 entry
= g_malloc0(sizeof(*entry
));
7227 entry
->value
= info
;
7228 entry
->next
= *cpu_list
;
7232 CpuDefinitionInfoList
*qmp_query_cpu_definitions(Error
**errp
)
7234 CpuDefinitionInfoList
*cpu_list
= NULL
;
7237 list
= object_class_get_list(TYPE_ARM_CPU
, false);
7238 g_slist_foreach(list
, arm_cpu_add_definition
, &cpu_list
);
7244 static void add_cpreg_to_hashtable(ARMCPU
*cpu
, const ARMCPRegInfo
*r
,
7245 void *opaque
, int state
, int secstate
,
7246 int crm
, int opc1
, int opc2
,
7249 /* Private utility function for define_one_arm_cp_reg_with_opaque():
7250 * add a single reginfo struct to the hash table.
7252 uint32_t *key
= g_new(uint32_t, 1);
7253 ARMCPRegInfo
*r2
= g_memdup(r
, sizeof(ARMCPRegInfo
));
7254 int is64
= (r
->type
& ARM_CP_64BIT
) ? 1 : 0;
7255 int ns
= (secstate
& ARM_CP_SECSTATE_NS
) ? 1 : 0;
7257 r2
->name
= g_strdup(name
);
7258 /* Reset the secure state to the specific incoming state. This is
7259 * necessary as the register may have been defined with both states.
7261 r2
->secure
= secstate
;
7263 if (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1]) {
7264 /* Register is banked (using both entries in array).
7265 * Overwriting fieldoffset as the array is only used to define
7266 * banked registers but later only fieldoffset is used.
7268 r2
->fieldoffset
= r
->bank_fieldoffsets
[ns
];
7271 if (state
== ARM_CP_STATE_AA32
) {
7272 if (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1]) {
7273 /* If the register is banked then we don't need to migrate or
7274 * reset the 32-bit instance in certain cases:
7276 * 1) If the register has both 32-bit and 64-bit instances then we
7277 * can count on the 64-bit instance taking care of the
7279 * 2) If ARMv8 is enabled then we can count on a 64-bit version
7280 * taking care of the secure bank. This requires that separate
7281 * 32 and 64-bit definitions are provided.
7283 if ((r
->state
== ARM_CP_STATE_BOTH
&& ns
) ||
7284 (arm_feature(&cpu
->env
, ARM_FEATURE_V8
) && !ns
)) {
7285 r2
->type
|= ARM_CP_ALIAS
;
7287 } else if ((secstate
!= r
->secure
) && !ns
) {
7288 /* The register is not banked so we only want to allow migration of
7289 * the non-secure instance.
7291 r2
->type
|= ARM_CP_ALIAS
;
7294 if (r
->state
== ARM_CP_STATE_BOTH
) {
7295 /* We assume it is a cp15 register if the .cp field is left unset.
7301 #ifdef HOST_WORDS_BIGENDIAN
7302 if (r2
->fieldoffset
) {
7303 r2
->fieldoffset
+= sizeof(uint32_t);
7308 if (state
== ARM_CP_STATE_AA64
) {
7309 /* To allow abbreviation of ARMCPRegInfo
7310 * definitions, we treat cp == 0 as equivalent to
7311 * the value for "standard guest-visible sysreg".
7312 * STATE_BOTH definitions are also always "standard
7313 * sysreg" in their AArch64 view (the .cp value may
7314 * be non-zero for the benefit of the AArch32 view).
7316 if (r
->cp
== 0 || r
->state
== ARM_CP_STATE_BOTH
) {
7317 r2
->cp
= CP_REG_ARM64_SYSREG_CP
;
7319 *key
= ENCODE_AA64_CP_REG(r2
->cp
, r2
->crn
, crm
,
7320 r2
->opc0
, opc1
, opc2
);
7322 *key
= ENCODE_CP_REG(r2
->cp
, is64
, ns
, r2
->crn
, crm
, opc1
, opc2
);
7325 r2
->opaque
= opaque
;
7327 /* reginfo passed to helpers is correct for the actual access,
7328 * and is never ARM_CP_STATE_BOTH:
7331 /* Make sure reginfo passed to helpers for wildcarded regs
7332 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
7337 /* By convention, for wildcarded registers only the first
7338 * entry is used for migration; the others are marked as
7339 * ALIAS so we don't try to transfer the register
7340 * multiple times. Special registers (ie NOP/WFI) are
7341 * never migratable and not even raw-accessible.
7343 if ((r
->type
& ARM_CP_SPECIAL
)) {
7344 r2
->type
|= ARM_CP_NO_RAW
;
7346 if (((r
->crm
== CP_ANY
) && crm
!= 0) ||
7347 ((r
->opc1
== CP_ANY
) && opc1
!= 0) ||
7348 ((r
->opc2
== CP_ANY
) && opc2
!= 0)) {
7349 r2
->type
|= ARM_CP_ALIAS
| ARM_CP_NO_GDB
;
7352 /* Check that raw accesses are either forbidden or handled. Note that
7353 * we can't assert this earlier because the setup of fieldoffset for
7354 * banked registers has to be done first.
7356 if (!(r2
->type
& ARM_CP_NO_RAW
)) {
7357 assert(!raw_accessors_invalid(r2
));
7360 /* Overriding of an existing definition must be explicitly
7363 if (!(r
->type
& ARM_CP_OVERRIDE
)) {
7364 ARMCPRegInfo
*oldreg
;
7365 oldreg
= g_hash_table_lookup(cpu
->cp_regs
, key
);
7366 if (oldreg
&& !(oldreg
->type
& ARM_CP_OVERRIDE
)) {
7367 fprintf(stderr
, "Register redefined: cp=%d %d bit "
7368 "crn=%d crm=%d opc1=%d opc2=%d, "
7369 "was %s, now %s\n", r2
->cp
, 32 + 32 * is64
,
7370 r2
->crn
, r2
->crm
, r2
->opc1
, r2
->opc2
,
7371 oldreg
->name
, r2
->name
);
7372 g_assert_not_reached();
7375 g_hash_table_insert(cpu
->cp_regs
, key
, r2
);
7379 void define_one_arm_cp_reg_with_opaque(ARMCPU
*cpu
,
7380 const ARMCPRegInfo
*r
, void *opaque
)
7382 /* Define implementations of coprocessor registers.
7383 * We store these in a hashtable because typically
7384 * there are less than 150 registers in a space which
7385 * is 16*16*16*8*8 = 262144 in size.
7386 * Wildcarding is supported for the crm, opc1 and opc2 fields.
7387 * If a register is defined twice then the second definition is
7388 * used, so this can be used to define some generic registers and
7389 * then override them with implementation specific variations.
7390 * At least one of the original and the second definition should
7391 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
7392 * against accidental use.
7394 * The state field defines whether the register is to be
7395 * visible in the AArch32 or AArch64 execution state. If the
7396 * state is set to ARM_CP_STATE_BOTH then we synthesise a
7397 * reginfo structure for the AArch32 view, which sees the lower
7398 * 32 bits of the 64 bit register.
7400 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
7401 * be wildcarded. AArch64 registers are always considered to be 64
7402 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
7403 * the register, if any.
7405 int crm
, opc1
, opc2
, state
;
7406 int crmmin
= (r
->crm
== CP_ANY
) ? 0 : r
->crm
;
7407 int crmmax
= (r
->crm
== CP_ANY
) ? 15 : r
->crm
;
7408 int opc1min
= (r
->opc1
== CP_ANY
) ? 0 : r
->opc1
;
7409 int opc1max
= (r
->opc1
== CP_ANY
) ? 7 : r
->opc1
;
7410 int opc2min
= (r
->opc2
== CP_ANY
) ? 0 : r
->opc2
;
7411 int opc2max
= (r
->opc2
== CP_ANY
) ? 7 : r
->opc2
;
7412 /* 64 bit registers have only CRm and Opc1 fields */
7413 assert(!((r
->type
& ARM_CP_64BIT
) && (r
->opc2
|| r
->crn
)));
7414 /* op0 only exists in the AArch64 encodings */
7415 assert((r
->state
!= ARM_CP_STATE_AA32
) || (r
->opc0
== 0));
7416 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
7417 assert((r
->state
!= ARM_CP_STATE_AA64
) || !(r
->type
& ARM_CP_64BIT
));
7418 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
7419 * encodes a minimum access level for the register. We roll this
7420 * runtime check into our general permission check code, so check
7421 * here that the reginfo's specified permissions are strict enough
7422 * to encompass the generic architectural permission check.
7424 if (r
->state
!= ARM_CP_STATE_AA32
) {
7428 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
7429 mask
= PL0U_R
| PL1_RW
;
7444 /* unallocated encoding, so not possible */
7452 /* min_EL EL1, secure mode only (we don't check the latter) */
7456 /* broken reginfo with out-of-range opc1 */
7460 /* assert our permissions are not too lax (stricter is fine) */
7461 assert((r
->access
& ~mask
) == 0);
7464 /* Check that the register definition has enough info to handle
7465 * reads and writes if they are permitted.
7467 if (!(r
->type
& (ARM_CP_SPECIAL
|ARM_CP_CONST
))) {
7468 if (r
->access
& PL3_R
) {
7469 assert((r
->fieldoffset
||
7470 (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1])) ||
7473 if (r
->access
& PL3_W
) {
7474 assert((r
->fieldoffset
||
7475 (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1])) ||
7479 /* Bad type field probably means missing sentinel at end of reg list */
7480 assert(cptype_valid(r
->type
));
7481 for (crm
= crmmin
; crm
<= crmmax
; crm
++) {
7482 for (opc1
= opc1min
; opc1
<= opc1max
; opc1
++) {
7483 for (opc2
= opc2min
; opc2
<= opc2max
; opc2
++) {
7484 for (state
= ARM_CP_STATE_AA32
;
7485 state
<= ARM_CP_STATE_AA64
; state
++) {
7486 if (r
->state
!= state
&& r
->state
!= ARM_CP_STATE_BOTH
) {
7489 if (state
== ARM_CP_STATE_AA32
) {
7490 /* Under AArch32 CP registers can be common
7491 * (same for secure and non-secure world) or banked.
7495 switch (r
->secure
) {
7496 case ARM_CP_SECSTATE_S
:
7497 case ARM_CP_SECSTATE_NS
:
7498 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
7499 r
->secure
, crm
, opc1
, opc2
,
7503 name
= g_strdup_printf("%s_S", r
->name
);
7504 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
7506 crm
, opc1
, opc2
, name
);
7508 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
7510 crm
, opc1
, opc2
, r
->name
);
7514 /* AArch64 registers get mapped to non-secure instance
7516 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
7518 crm
, opc1
, opc2
, r
->name
);
7526 void define_arm_cp_regs_with_opaque(ARMCPU
*cpu
,
7527 const ARMCPRegInfo
*regs
, void *opaque
)
7529 /* Define a whole list of registers */
7530 const ARMCPRegInfo
*r
;
7531 for (r
= regs
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
7532 define_one_arm_cp_reg_with_opaque(cpu
, r
, opaque
);
7537 * Modify ARMCPRegInfo for access from userspace.
7539 * This is a data driven modification directed by
7540 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
7541 * user-space cannot alter any values and dynamic values pertaining to
7542 * execution state are hidden from user space view anyway.
7544 void modify_arm_cp_regs(ARMCPRegInfo
*regs
, const ARMCPRegUserSpaceInfo
*mods
)
7546 const ARMCPRegUserSpaceInfo
*m
;
7549 for (m
= mods
; m
->name
; m
++) {
7550 GPatternSpec
*pat
= NULL
;
7552 pat
= g_pattern_spec_new(m
->name
);
7554 for (r
= regs
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
7555 if (pat
&& g_pattern_match_string(pat
, r
->name
)) {
7556 r
->type
= ARM_CP_CONST
;
7560 } else if (strcmp(r
->name
, m
->name
) == 0) {
7561 r
->type
= ARM_CP_CONST
;
7563 r
->resetvalue
&= m
->exported_bits
;
7564 r
->resetvalue
|= m
->fixed_bits
;
7569 g_pattern_spec_free(pat
);
7574 const ARMCPRegInfo
*get_arm_cp_reginfo(GHashTable
*cpregs
, uint32_t encoded_cp
)
7576 return g_hash_table_lookup(cpregs
, &encoded_cp
);
7579 void arm_cp_write_ignore(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
7582 /* Helper coprocessor write function for write-ignore registers */
7585 uint64_t arm_cp_read_zero(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
7587 /* Helper coprocessor write function for read-as-zero registers */
7591 void arm_cp_reset_ignore(CPUARMState
*env
, const ARMCPRegInfo
*opaque
)
7593 /* Helper coprocessor reset function for do-nothing-on-reset registers */
7596 static int bad_mode_switch(CPUARMState
*env
, int mode
, CPSRWriteType write_type
)
7598 /* Return true if it is not valid for us to switch to
7599 * this CPU mode (ie all the UNPREDICTABLE cases in
7600 * the ARM ARM CPSRWriteByInstr pseudocode).
7603 /* Changes to or from Hyp via MSR and CPS are illegal. */
7604 if (write_type
== CPSRWriteByInstr
&&
7605 ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_HYP
||
7606 mode
== ARM_CPU_MODE_HYP
)) {
7611 case ARM_CPU_MODE_USR
:
7613 case ARM_CPU_MODE_SYS
:
7614 case ARM_CPU_MODE_SVC
:
7615 case ARM_CPU_MODE_ABT
:
7616 case ARM_CPU_MODE_UND
:
7617 case ARM_CPU_MODE_IRQ
:
7618 case ARM_CPU_MODE_FIQ
:
7619 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
7620 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
7622 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
7623 * and CPS are treated as illegal mode changes.
7625 if (write_type
== CPSRWriteByInstr
&&
7626 (env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_MON
&&
7627 (arm_hcr_el2_eff(env
) & HCR_TGE
)) {
7631 case ARM_CPU_MODE_HYP
:
7632 return !arm_feature(env
, ARM_FEATURE_EL2
)
7633 || arm_current_el(env
) < 2 || arm_is_secure_below_el3(env
);
7634 case ARM_CPU_MODE_MON
:
7635 return arm_current_el(env
) < 3;
7641 uint32_t cpsr_read(CPUARMState
*env
)
7644 ZF
= (env
->ZF
== 0);
7645 return env
->uncached_cpsr
| (env
->NF
& 0x80000000) | (ZF
<< 30) |
7646 (env
->CF
<< 29) | ((env
->VF
& 0x80000000) >> 3) | (env
->QF
<< 27)
7647 | (env
->thumb
<< 5) | ((env
->condexec_bits
& 3) << 25)
7648 | ((env
->condexec_bits
& 0xfc) << 8)
7649 | (env
->GE
<< 16) | (env
->daif
& CPSR_AIF
);
7652 void cpsr_write(CPUARMState
*env
, uint32_t val
, uint32_t mask
,
7653 CPSRWriteType write_type
)
7655 uint32_t changed_daif
;
7657 if (mask
& CPSR_NZCV
) {
7658 env
->ZF
= (~val
) & CPSR_Z
;
7660 env
->CF
= (val
>> 29) & 1;
7661 env
->VF
= (val
<< 3) & 0x80000000;
7664 env
->QF
= ((val
& CPSR_Q
) != 0);
7666 env
->thumb
= ((val
& CPSR_T
) != 0);
7667 if (mask
& CPSR_IT_0_1
) {
7668 env
->condexec_bits
&= ~3;
7669 env
->condexec_bits
|= (val
>> 25) & 3;
7671 if (mask
& CPSR_IT_2_7
) {
7672 env
->condexec_bits
&= 3;
7673 env
->condexec_bits
|= (val
>> 8) & 0xfc;
7675 if (mask
& CPSR_GE
) {
7676 env
->GE
= (val
>> 16) & 0xf;
7679 /* In a V7 implementation that includes the security extensions but does
7680 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
7681 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
7682 * bits respectively.
7684 * In a V8 implementation, it is permitted for privileged software to
7685 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
7687 if (write_type
!= CPSRWriteRaw
&& !arm_feature(env
, ARM_FEATURE_V8
) &&
7688 arm_feature(env
, ARM_FEATURE_EL3
) &&
7689 !arm_feature(env
, ARM_FEATURE_EL2
) &&
7690 !arm_is_secure(env
)) {
7692 changed_daif
= (env
->daif
^ val
) & mask
;
7694 if (changed_daif
& CPSR_A
) {
7695 /* Check to see if we are allowed to change the masking of async
7696 * abort exceptions from a non-secure state.
7698 if (!(env
->cp15
.scr_el3
& SCR_AW
)) {
7699 qemu_log_mask(LOG_GUEST_ERROR
,
7700 "Ignoring attempt to switch CPSR_A flag from "
7701 "non-secure world with SCR.AW bit clear\n");
7706 if (changed_daif
& CPSR_F
) {
7707 /* Check to see if we are allowed to change the masking of FIQ
7708 * exceptions from a non-secure state.
7710 if (!(env
->cp15
.scr_el3
& SCR_FW
)) {
7711 qemu_log_mask(LOG_GUEST_ERROR
,
7712 "Ignoring attempt to switch CPSR_F flag from "
7713 "non-secure world with SCR.FW bit clear\n");
7717 /* Check whether non-maskable FIQ (NMFI) support is enabled.
7718 * If this bit is set software is not allowed to mask
7719 * FIQs, but is allowed to set CPSR_F to 0.
7721 if ((A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_NMFI
) &&
7723 qemu_log_mask(LOG_GUEST_ERROR
,
7724 "Ignoring attempt to enable CPSR_F flag "
7725 "(non-maskable FIQ [NMFI] support enabled)\n");
7731 env
->daif
&= ~(CPSR_AIF
& mask
);
7732 env
->daif
|= val
& CPSR_AIF
& mask
;
7734 if (write_type
!= CPSRWriteRaw
&&
7735 ((env
->uncached_cpsr
^ val
) & mask
& CPSR_M
)) {
7736 if ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_USR
) {
7737 /* Note that we can only get here in USR mode if this is a
7738 * gdb stub write; for this case we follow the architectural
7739 * behaviour for guest writes in USR mode of ignoring an attempt
7740 * to switch mode. (Those are caught by translate.c for writes
7741 * triggered by guest instructions.)
7744 } else if (bad_mode_switch(env
, val
& CPSR_M
, write_type
)) {
7745 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
7746 * v7, and has defined behaviour in v8:
7747 * + leave CPSR.M untouched
7748 * + allow changes to the other CPSR fields
7750 * For user changes via the GDB stub, we don't set PSTATE.IL,
7751 * as this would be unnecessarily harsh for a user error.
7754 if (write_type
!= CPSRWriteByGDBStub
&&
7755 arm_feature(env
, ARM_FEATURE_V8
)) {
7759 qemu_log_mask(LOG_GUEST_ERROR
,
7760 "Illegal AArch32 mode switch attempt from %s to %s\n",
7761 aarch32_mode_name(env
->uncached_cpsr
),
7762 aarch32_mode_name(val
));
7764 qemu_log_mask(CPU_LOG_INT
, "%s %s to %s PC 0x%" PRIx32
"\n",
7765 write_type
== CPSRWriteExceptionReturn
?
7766 "Exception return from AArch32" :
7767 "AArch32 mode switch from",
7768 aarch32_mode_name(env
->uncached_cpsr
),
7769 aarch32_mode_name(val
), env
->regs
[15]);
7770 switch_mode(env
, val
& CPSR_M
);
7773 mask
&= ~CACHED_CPSR_BITS
;
7774 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~mask
) | (val
& mask
);
7777 /* Sign/zero extend */
7778 uint32_t HELPER(sxtb16
)(uint32_t x
)
7781 res
= (uint16_t)(int8_t)x
;
7782 res
|= (uint32_t)(int8_t)(x
>> 16) << 16;
7786 uint32_t HELPER(uxtb16
)(uint32_t x
)
7789 res
= (uint16_t)(uint8_t)x
;
7790 res
|= (uint32_t)(uint8_t)(x
>> 16) << 16;
7794 int32_t HELPER(sdiv
)(int32_t num
, int32_t den
)
7798 if (num
== INT_MIN
&& den
== -1)
7803 uint32_t HELPER(udiv
)(uint32_t num
, uint32_t den
)
7810 uint32_t HELPER(rbit
)(uint32_t x
)
7815 #ifdef CONFIG_USER_ONLY
7817 static void switch_mode(CPUARMState
*env
, int mode
)
7819 ARMCPU
*cpu
= env_archcpu(env
);
7821 if (mode
!= ARM_CPU_MODE_USR
) {
7822 cpu_abort(CPU(cpu
), "Tried to switch out of user mode\n");
7826 uint32_t arm_phys_excp_target_el(CPUState
*cs
, uint32_t excp_idx
,
7827 uint32_t cur_el
, bool secure
)
7832 void aarch64_sync_64_to_32(CPUARMState
*env
)
7834 g_assert_not_reached();
7839 static void switch_mode(CPUARMState
*env
, int mode
)
7844 old_mode
= env
->uncached_cpsr
& CPSR_M
;
7845 if (mode
== old_mode
)
7848 if (old_mode
== ARM_CPU_MODE_FIQ
) {
7849 memcpy (env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
7850 memcpy (env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
7851 } else if (mode
== ARM_CPU_MODE_FIQ
) {
7852 memcpy (env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
7853 memcpy (env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
7856 i
= bank_number(old_mode
);
7857 env
->banked_r13
[i
] = env
->regs
[13];
7858 env
->banked_spsr
[i
] = env
->spsr
;
7860 i
= bank_number(mode
);
7861 env
->regs
[13] = env
->banked_r13
[i
];
7862 env
->spsr
= env
->banked_spsr
[i
];
7864 env
->banked_r14
[r14_bank_number(old_mode
)] = env
->regs
[14];
7865 env
->regs
[14] = env
->banked_r14
[r14_bank_number(mode
)];
7868 /* Physical Interrupt Target EL Lookup Table
7870 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
7872 * The below multi-dimensional table is used for looking up the target
7873 * exception level given numerous condition criteria. Specifically, the
7874 * target EL is based on SCR and HCR routing controls as well as the
7875 * currently executing EL and secure state.
7878 * target_el_table[2][2][2][2][2][4]
7879 * | | | | | +--- Current EL
7880 * | | | | +------ Non-secure(0)/Secure(1)
7881 * | | | +--------- HCR mask override
7882 * | | +------------ SCR exec state control
7883 * | +--------------- SCR mask override
7884 * +------------------ 32-bit(0)/64-bit(1) EL3
7886 * The table values are as such:
7890 * The ARM ARM target EL table includes entries indicating that an "exception
7891 * is not taken". The two cases where this is applicable are:
7892 * 1) An exception is taken from EL3 but the SCR does not have the exception
7894 * 2) An exception is taken from EL2 but the HCR does not have the exception
7896 * In these two cases, the below table contain a target of EL1. This value is
7897 * returned as it is expected that the consumer of the table data will check
7898 * for "target EL >= current EL" to ensure the exception is not taken.
7902 * BIT IRQ IMO Non-secure Secure
7903 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
7905 static const int8_t target_el_table
[2][2][2][2][2][4] = {
7906 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
7907 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
7908 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
7909 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
7910 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
7911 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
7912 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
7913 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
7914 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
7915 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
7916 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
7917 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
7918 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
7919 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
7920 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
7921 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
7925 * Determine the target EL for physical exceptions
7927 uint32_t arm_phys_excp_target_el(CPUState
*cs
, uint32_t excp_idx
,
7928 uint32_t cur_el
, bool secure
)
7930 CPUARMState
*env
= cs
->env_ptr
;
7935 /* Is the highest EL AArch64? */
7936 bool is64
= arm_feature(env
, ARM_FEATURE_AARCH64
);
7939 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
7940 rw
= ((env
->cp15
.scr_el3
& SCR_RW
) == SCR_RW
);
7942 /* Either EL2 is the highest EL (and so the EL2 register width
7943 * is given by is64); or there is no EL2 or EL3, in which case
7944 * the value of 'rw' does not affect the table lookup anyway.
7949 hcr_el2
= arm_hcr_el2_eff(env
);
7952 scr
= ((env
->cp15
.scr_el3
& SCR_IRQ
) == SCR_IRQ
);
7953 hcr
= hcr_el2
& HCR_IMO
;
7956 scr
= ((env
->cp15
.scr_el3
& SCR_FIQ
) == SCR_FIQ
);
7957 hcr
= hcr_el2
& HCR_FMO
;
7960 scr
= ((env
->cp15
.scr_el3
& SCR_EA
) == SCR_EA
);
7961 hcr
= hcr_el2
& HCR_AMO
;
7965 /* Perform a table-lookup for the target EL given the current state */
7966 target_el
= target_el_table
[is64
][scr
][rw
][hcr
][secure
][cur_el
];
7968 assert(target_el
> 0);
7973 void arm_log_exception(int idx
)
7975 if (qemu_loglevel_mask(CPU_LOG_INT
)) {
7976 const char *exc
= NULL
;
7977 static const char * const excnames
[] = {
7978 [EXCP_UDEF
] = "Undefined Instruction",
7980 [EXCP_PREFETCH_ABORT
] = "Prefetch Abort",
7981 [EXCP_DATA_ABORT
] = "Data Abort",
7984 [EXCP_BKPT
] = "Breakpoint",
7985 [EXCP_EXCEPTION_EXIT
] = "QEMU v7M exception exit",
7986 [EXCP_KERNEL_TRAP
] = "QEMU intercept of kernel commpage",
7987 [EXCP_HVC
] = "Hypervisor Call",
7988 [EXCP_HYP_TRAP
] = "Hypervisor Trap",
7989 [EXCP_SMC
] = "Secure Monitor Call",
7990 [EXCP_VIRQ
] = "Virtual IRQ",
7991 [EXCP_VFIQ
] = "Virtual FIQ",
7992 [EXCP_SEMIHOST
] = "Semihosting call",
7993 [EXCP_NOCP
] = "v7M NOCP UsageFault",
7994 [EXCP_INVSTATE
] = "v7M INVSTATE UsageFault",
7995 [EXCP_STKOF
] = "v8M STKOF UsageFault",
7996 [EXCP_LAZYFP
] = "v7M exception during lazy FP stacking",
7997 [EXCP_LSERR
] = "v8M LSERR UsageFault",
7998 [EXCP_UNALIGNED
] = "v7M UNALIGNED UsageFault",
8001 if (idx
>= 0 && idx
< ARRAY_SIZE(excnames
)) {
8002 exc
= excnames
[idx
];
8007 qemu_log_mask(CPU_LOG_INT
, "Taking exception %d [%s]\n", idx
, exc
);
8012 * Function used to synchronize QEMU's AArch64 register set with AArch32
8013 * register set. This is necessary when switching between AArch32 and AArch64
8016 void aarch64_sync_32_to_64(CPUARMState
*env
)
8019 uint32_t mode
= env
->uncached_cpsr
& CPSR_M
;
8021 /* We can blanket copy R[0:7] to X[0:7] */
8022 for (i
= 0; i
< 8; i
++) {
8023 env
->xregs
[i
] = env
->regs
[i
];
8027 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
8028 * Otherwise, they come from the banked user regs.
8030 if (mode
== ARM_CPU_MODE_FIQ
) {
8031 for (i
= 8; i
< 13; i
++) {
8032 env
->xregs
[i
] = env
->usr_regs
[i
- 8];
8035 for (i
= 8; i
< 13; i
++) {
8036 env
->xregs
[i
] = env
->regs
[i
];
8041 * Registers x13-x23 are the various mode SP and FP registers. Registers
8042 * r13 and r14 are only copied if we are in that mode, otherwise we copy
8043 * from the mode banked register.
8045 if (mode
== ARM_CPU_MODE_USR
|| mode
== ARM_CPU_MODE_SYS
) {
8046 env
->xregs
[13] = env
->regs
[13];
8047 env
->xregs
[14] = env
->regs
[14];
8049 env
->xregs
[13] = env
->banked_r13
[bank_number(ARM_CPU_MODE_USR
)];
8050 /* HYP is an exception in that it is copied from r14 */
8051 if (mode
== ARM_CPU_MODE_HYP
) {
8052 env
->xregs
[14] = env
->regs
[14];
8054 env
->xregs
[14] = env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_USR
)];
8058 if (mode
== ARM_CPU_MODE_HYP
) {
8059 env
->xregs
[15] = env
->regs
[13];
8061 env
->xregs
[15] = env
->banked_r13
[bank_number(ARM_CPU_MODE_HYP
)];
8064 if (mode
== ARM_CPU_MODE_IRQ
) {
8065 env
->xregs
[16] = env
->regs
[14];
8066 env
->xregs
[17] = env
->regs
[13];
8068 env
->xregs
[16] = env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_IRQ
)];
8069 env
->xregs
[17] = env
->banked_r13
[bank_number(ARM_CPU_MODE_IRQ
)];
8072 if (mode
== ARM_CPU_MODE_SVC
) {
8073 env
->xregs
[18] = env
->regs
[14];
8074 env
->xregs
[19] = env
->regs
[13];
8076 env
->xregs
[18] = env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_SVC
)];
8077 env
->xregs
[19] = env
->banked_r13
[bank_number(ARM_CPU_MODE_SVC
)];
8080 if (mode
== ARM_CPU_MODE_ABT
) {
8081 env
->xregs
[20] = env
->regs
[14];
8082 env
->xregs
[21] = env
->regs
[13];
8084 env
->xregs
[20] = env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_ABT
)];
8085 env
->xregs
[21] = env
->banked_r13
[bank_number(ARM_CPU_MODE_ABT
)];
8088 if (mode
== ARM_CPU_MODE_UND
) {
8089 env
->xregs
[22] = env
->regs
[14];
8090 env
->xregs
[23] = env
->regs
[13];
8092 env
->xregs
[22] = env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_UND
)];
8093 env
->xregs
[23] = env
->banked_r13
[bank_number(ARM_CPU_MODE_UND
)];
8097 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
8098 * mode, then we can copy from r8-r14. Otherwise, we copy from the
8099 * FIQ bank for r8-r14.
8101 if (mode
== ARM_CPU_MODE_FIQ
) {
8102 for (i
= 24; i
< 31; i
++) {
8103 env
->xregs
[i
] = env
->regs
[i
- 16]; /* X[24:30] <- R[8:14] */
8106 for (i
= 24; i
< 29; i
++) {
8107 env
->xregs
[i
] = env
->fiq_regs
[i
- 24];
8109 env
->xregs
[29] = env
->banked_r13
[bank_number(ARM_CPU_MODE_FIQ
)];
8110 env
->xregs
[30] = env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_FIQ
)];
8113 env
->pc
= env
->regs
[15];
8117 * Function used to synchronize QEMU's AArch32 register set with AArch64
8118 * register set. This is necessary when switching between AArch32 and AArch64
8121 void aarch64_sync_64_to_32(CPUARMState
*env
)
8124 uint32_t mode
= env
->uncached_cpsr
& CPSR_M
;
8126 /* We can blanket copy X[0:7] to R[0:7] */
8127 for (i
= 0; i
< 8; i
++) {
8128 env
->regs
[i
] = env
->xregs
[i
];
8132 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
8133 * Otherwise, we copy x8-x12 into the banked user regs.
8135 if (mode
== ARM_CPU_MODE_FIQ
) {
8136 for (i
= 8; i
< 13; i
++) {
8137 env
->usr_regs
[i
- 8] = env
->xregs
[i
];
8140 for (i
= 8; i
< 13; i
++) {
8141 env
->regs
[i
] = env
->xregs
[i
];
8146 * Registers r13 & r14 depend on the current mode.
8147 * If we are in a given mode, we copy the corresponding x registers to r13
8148 * and r14. Otherwise, we copy the x register to the banked r13 and r14
8151 if (mode
== ARM_CPU_MODE_USR
|| mode
== ARM_CPU_MODE_SYS
) {
8152 env
->regs
[13] = env
->xregs
[13];
8153 env
->regs
[14] = env
->xregs
[14];
8155 env
->banked_r13
[bank_number(ARM_CPU_MODE_USR
)] = env
->xregs
[13];
8158 * HYP is an exception in that it does not have its own banked r14 but
8159 * shares the USR r14
8161 if (mode
== ARM_CPU_MODE_HYP
) {
8162 env
->regs
[14] = env
->xregs
[14];
8164 env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_USR
)] = env
->xregs
[14];
8168 if (mode
== ARM_CPU_MODE_HYP
) {
8169 env
->regs
[13] = env
->xregs
[15];
8171 env
->banked_r13
[bank_number(ARM_CPU_MODE_HYP
)] = env
->xregs
[15];
8174 if (mode
== ARM_CPU_MODE_IRQ
) {
8175 env
->regs
[14] = env
->xregs
[16];
8176 env
->regs
[13] = env
->xregs
[17];
8178 env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_IRQ
)] = env
->xregs
[16];
8179 env
->banked_r13
[bank_number(ARM_CPU_MODE_IRQ
)] = env
->xregs
[17];
8182 if (mode
== ARM_CPU_MODE_SVC
) {
8183 env
->regs
[14] = env
->xregs
[18];
8184 env
->regs
[13] = env
->xregs
[19];
8186 env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_SVC
)] = env
->xregs
[18];
8187 env
->banked_r13
[bank_number(ARM_CPU_MODE_SVC
)] = env
->xregs
[19];
8190 if (mode
== ARM_CPU_MODE_ABT
) {
8191 env
->regs
[14] = env
->xregs
[20];
8192 env
->regs
[13] = env
->xregs
[21];
8194 env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_ABT
)] = env
->xregs
[20];
8195 env
->banked_r13
[bank_number(ARM_CPU_MODE_ABT
)] = env
->xregs
[21];
8198 if (mode
== ARM_CPU_MODE_UND
) {
8199 env
->regs
[14] = env
->xregs
[22];
8200 env
->regs
[13] = env
->xregs
[23];
8202 env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_UND
)] = env
->xregs
[22];
8203 env
->banked_r13
[bank_number(ARM_CPU_MODE_UND
)] = env
->xregs
[23];
8206 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
8207 * mode, then we can copy to r8-r14. Otherwise, we copy to the
8208 * FIQ bank for r8-r14.
8210 if (mode
== ARM_CPU_MODE_FIQ
) {
8211 for (i
= 24; i
< 31; i
++) {
8212 env
->regs
[i
- 16] = env
->xregs
[i
]; /* X[24:30] -> R[8:14] */
8215 for (i
= 24; i
< 29; i
++) {
8216 env
->fiq_regs
[i
- 24] = env
->xregs
[i
];
8218 env
->banked_r13
[bank_number(ARM_CPU_MODE_FIQ
)] = env
->xregs
[29];
8219 env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_FIQ
)] = env
->xregs
[30];
8222 env
->regs
[15] = env
->pc
;
8225 static void take_aarch32_exception(CPUARMState
*env
, int new_mode
,
8226 uint32_t mask
, uint32_t offset
,
8229 /* Change the CPU state so as to actually take the exception. */
8230 switch_mode(env
, new_mode
);
8232 * For exceptions taken to AArch32 we must clear the SS bit in both
8233 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
8235 env
->uncached_cpsr
&= ~PSTATE_SS
;
8236 env
->spsr
= cpsr_read(env
);
8237 /* Clear IT bits. */
8238 env
->condexec_bits
= 0;
8239 /* Switch to the new mode, and to the correct instruction set. */
8240 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~CPSR_M
) | new_mode
;
8241 /* Set new mode endianness */
8242 env
->uncached_cpsr
&= ~CPSR_E
;
8243 if (env
->cp15
.sctlr_el
[arm_current_el(env
)] & SCTLR_EE
) {
8244 env
->uncached_cpsr
|= CPSR_E
;
8246 /* J and IL must always be cleared for exception entry */
8247 env
->uncached_cpsr
&= ~(CPSR_IL
| CPSR_J
);
8250 if (new_mode
== ARM_CPU_MODE_HYP
) {
8251 env
->thumb
= (env
->cp15
.sctlr_el
[2] & SCTLR_TE
) != 0;
8252 env
->elr_el
[2] = env
->regs
[15];
8255 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
8256 * and we should just guard the thumb mode on V4
8258 if (arm_feature(env
, ARM_FEATURE_V4T
)) {
8260 (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_TE
) != 0;
8262 env
->regs
[14] = env
->regs
[15] + offset
;
8264 env
->regs
[15] = newpc
;
8265 arm_rebuild_hflags(env
);
8268 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState
*cs
)
8271 * Handle exception entry to Hyp mode; this is sufficiently
8272 * different to entry to other AArch32 modes that we handle it
8275 * The vector table entry used is always the 0x14 Hyp mode entry point,
8276 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
8277 * The offset applied to the preferred return address is always zero
8278 * (see DDI0487C.a section G1.12.3).
8279 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
8281 uint32_t addr
, mask
;
8282 ARMCPU
*cpu
= ARM_CPU(cs
);
8283 CPUARMState
*env
= &cpu
->env
;
8285 switch (cs
->exception_index
) {
8293 /* Fall through to prefetch abort. */
8294 case EXCP_PREFETCH_ABORT
:
8295 env
->cp15
.ifar_s
= env
->exception
.vaddress
;
8296 qemu_log_mask(CPU_LOG_INT
, "...with HIFAR 0x%x\n",
8297 (uint32_t)env
->exception
.vaddress
);
8300 case EXCP_DATA_ABORT
:
8301 env
->cp15
.dfar_s
= env
->exception
.vaddress
;
8302 qemu_log_mask(CPU_LOG_INT
, "...with HDFAR 0x%x\n",
8303 (uint32_t)env
->exception
.vaddress
);
8319 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
8322 if (cs
->exception_index
!= EXCP_IRQ
&& cs
->exception_index
!= EXCP_FIQ
) {
8323 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
8325 * QEMU syndrome values are v8-style. v7 has the IL bit
8326 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
8327 * If this is a v7 CPU, squash the IL bit in those cases.
8329 if (cs
->exception_index
== EXCP_PREFETCH_ABORT
||
8330 (cs
->exception_index
== EXCP_DATA_ABORT
&&
8331 !(env
->exception
.syndrome
& ARM_EL_ISV
)) ||
8332 syn_get_ec(env
->exception
.syndrome
) == EC_UNCATEGORIZED
) {
8333 env
->exception
.syndrome
&= ~ARM_EL_IL
;
8336 env
->cp15
.esr_el
[2] = env
->exception
.syndrome
;
8339 if (arm_current_el(env
) != 2 && addr
< 0x14) {
8344 if (!(env
->cp15
.scr_el3
& SCR_EA
)) {
8347 if (!(env
->cp15
.scr_el3
& SCR_IRQ
)) {
8350 if (!(env
->cp15
.scr_el3
& SCR_FIQ
)) {
8354 addr
+= env
->cp15
.hvbar
;
8356 take_aarch32_exception(env
, ARM_CPU_MODE_HYP
, mask
, 0, addr
);
8359 static void arm_cpu_do_interrupt_aarch32(CPUState
*cs
)
8361 ARMCPU
*cpu
= ARM_CPU(cs
);
8362 CPUARMState
*env
= &cpu
->env
;
8369 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
8370 switch (syn_get_ec(env
->exception
.syndrome
)) {
8372 case EC_BREAKPOINT_SAME_EL
:
8376 case EC_WATCHPOINT_SAME_EL
:
8382 case EC_VECTORCATCH
:
8391 env
->cp15
.mdscr_el1
= deposit64(env
->cp15
.mdscr_el1
, 2, 4, moe
);
8394 if (env
->exception
.target_el
== 2) {
8395 arm_cpu_do_interrupt_aarch32_hyp(cs
);
8399 switch (cs
->exception_index
) {
8401 new_mode
= ARM_CPU_MODE_UND
;
8410 new_mode
= ARM_CPU_MODE_SVC
;
8413 /* The PC already points to the next instruction. */
8417 /* Fall through to prefetch abort. */
8418 case EXCP_PREFETCH_ABORT
:
8419 A32_BANKED_CURRENT_REG_SET(env
, ifsr
, env
->exception
.fsr
);
8420 A32_BANKED_CURRENT_REG_SET(env
, ifar
, env
->exception
.vaddress
);
8421 qemu_log_mask(CPU_LOG_INT
, "...with IFSR 0x%x IFAR 0x%x\n",
8422 env
->exception
.fsr
, (uint32_t)env
->exception
.vaddress
);
8423 new_mode
= ARM_CPU_MODE_ABT
;
8425 mask
= CPSR_A
| CPSR_I
;
8428 case EXCP_DATA_ABORT
:
8429 A32_BANKED_CURRENT_REG_SET(env
, dfsr
, env
->exception
.fsr
);
8430 A32_BANKED_CURRENT_REG_SET(env
, dfar
, env
->exception
.vaddress
);
8431 qemu_log_mask(CPU_LOG_INT
, "...with DFSR 0x%x DFAR 0x%x\n",
8433 (uint32_t)env
->exception
.vaddress
);
8434 new_mode
= ARM_CPU_MODE_ABT
;
8436 mask
= CPSR_A
| CPSR_I
;
8440 new_mode
= ARM_CPU_MODE_IRQ
;
8442 /* Disable IRQ and imprecise data aborts. */
8443 mask
= CPSR_A
| CPSR_I
;
8445 if (env
->cp15
.scr_el3
& SCR_IRQ
) {
8446 /* IRQ routed to monitor mode */
8447 new_mode
= ARM_CPU_MODE_MON
;
8452 new_mode
= ARM_CPU_MODE_FIQ
;
8454 /* Disable FIQ, IRQ and imprecise data aborts. */
8455 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
8456 if (env
->cp15
.scr_el3
& SCR_FIQ
) {
8457 /* FIQ routed to monitor mode */
8458 new_mode
= ARM_CPU_MODE_MON
;
8463 new_mode
= ARM_CPU_MODE_IRQ
;
8465 /* Disable IRQ and imprecise data aborts. */
8466 mask
= CPSR_A
| CPSR_I
;
8470 new_mode
= ARM_CPU_MODE_FIQ
;
8472 /* Disable FIQ, IRQ and imprecise data aborts. */
8473 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
8477 new_mode
= ARM_CPU_MODE_MON
;
8479 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
8483 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
8484 return; /* Never happens. Keep compiler happy. */
8487 if (new_mode
== ARM_CPU_MODE_MON
) {
8488 addr
+= env
->cp15
.mvbar
;
8489 } else if (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_V
) {
8490 /* High vectors. When enabled, base address cannot be remapped. */
8493 /* ARM v7 architectures provide a vector base address register to remap
8494 * the interrupt vector table.
8495 * This register is only followed in non-monitor mode, and is banked.
8496 * Note: only bits 31:5 are valid.
8498 addr
+= A32_BANKED_CURRENT_REG_GET(env
, vbar
);
8501 if ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_MON
) {
8502 env
->cp15
.scr_el3
&= ~SCR_NS
;
8505 take_aarch32_exception(env
, new_mode
, mask
, offset
, addr
);
8508 /* Handle exception entry to a target EL which is using AArch64 */
8509 static void arm_cpu_do_interrupt_aarch64(CPUState
*cs
)
8511 ARMCPU
*cpu
= ARM_CPU(cs
);
8512 CPUARMState
*env
= &cpu
->env
;
8513 unsigned int new_el
= env
->exception
.target_el
;
8514 target_ulong addr
= env
->cp15
.vbar_el
[new_el
];
8515 unsigned int new_mode
= aarch64_pstate_mode(new_el
, true);
8516 unsigned int cur_el
= arm_current_el(env
);
8519 * Note that new_el can never be 0. If cur_el is 0, then
8520 * el0_a64 is is_a64(), else el0_a64 is ignored.
8522 aarch64_sve_change_el(env
, cur_el
, new_el
, is_a64(env
));
8524 if (cur_el
< new_el
) {
8525 /* Entry vector offset depends on whether the implemented EL
8526 * immediately lower than the target level is using AArch32 or AArch64
8532 is_aa64
= (env
->cp15
.scr_el3
& SCR_RW
) != 0;
8535 is_aa64
= (env
->cp15
.hcr_el2
& HCR_RW
) != 0;
8538 is_aa64
= is_a64(env
);
8541 g_assert_not_reached();
8549 } else if (pstate_read(env
) & PSTATE_SP
) {
8553 switch (cs
->exception_index
) {
8554 case EXCP_PREFETCH_ABORT
:
8555 case EXCP_DATA_ABORT
:
8556 env
->cp15
.far_el
[new_el
] = env
->exception
.vaddress
;
8557 qemu_log_mask(CPU_LOG_INT
, "...with FAR 0x%" PRIx64
"\n",
8558 env
->cp15
.far_el
[new_el
]);
8566 if (syn_get_ec(env
->exception
.syndrome
) == EC_ADVSIMDFPACCESSTRAP
) {
8568 * QEMU internal FP/SIMD syndromes from AArch32 include the
8569 * TA and coproc fields which are only exposed if the exception
8570 * is taken to AArch32 Hyp mode. Mask them out to get a valid
8571 * AArch64 format syndrome.
8573 env
->exception
.syndrome
&= ~MAKE_64BIT_MASK(0, 20);
8575 env
->cp15
.esr_el
[new_el
] = env
->exception
.syndrome
;
8586 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
8590 env
->banked_spsr
[aarch64_banked_spsr_index(new_el
)] = pstate_read(env
);
8591 aarch64_save_sp(env
, arm_current_el(env
));
8592 env
->elr_el
[new_el
] = env
->pc
;
8594 env
->banked_spsr
[aarch64_banked_spsr_index(new_el
)] = cpsr_read(env
);
8595 env
->elr_el
[new_el
] = env
->regs
[15];
8597 aarch64_sync_32_to_64(env
);
8599 env
->condexec_bits
= 0;
8601 qemu_log_mask(CPU_LOG_INT
, "...with ELR 0x%" PRIx64
"\n",
8602 env
->elr_el
[new_el
]);
8604 pstate_write(env
, PSTATE_DAIF
| new_mode
);
8606 aarch64_restore_sp(env
, new_el
);
8607 helper_rebuild_hflags_a64(env
, new_el
);
8611 qemu_log_mask(CPU_LOG_INT
, "...to EL%d PC 0x%" PRIx64
" PSTATE 0x%x\n",
8612 new_el
, env
->pc
, pstate_read(env
));
8616 * Do semihosting call and set the appropriate return value. All the
8617 * permission and validity checks have been done at translate time.
8619 * We only see semihosting exceptions in TCG only as they are not
8620 * trapped to the hypervisor in KVM.
8623 static void handle_semihosting(CPUState
*cs
)
8625 ARMCPU
*cpu
= ARM_CPU(cs
);
8626 CPUARMState
*env
= &cpu
->env
;
8629 qemu_log_mask(CPU_LOG_INT
,
8630 "...handling as semihosting call 0x%" PRIx64
"\n",
8632 env
->xregs
[0] = do_arm_semihosting(env
);
8635 qemu_log_mask(CPU_LOG_INT
,
8636 "...handling as semihosting call 0x%x\n",
8638 env
->regs
[0] = do_arm_semihosting(env
);
8639 env
->regs
[15] += env
->thumb
? 2 : 4;
8644 /* Handle a CPU exception for A and R profile CPUs.
8645 * Do any appropriate logging, handle PSCI calls, and then hand off
8646 * to the AArch64-entry or AArch32-entry function depending on the
8647 * target exception level's register width.
8649 void arm_cpu_do_interrupt(CPUState
*cs
)
8651 ARMCPU
*cpu
= ARM_CPU(cs
);
8652 CPUARMState
*env
= &cpu
->env
;
8653 unsigned int new_el
= env
->exception
.target_el
;
8655 assert(!arm_feature(env
, ARM_FEATURE_M
));
8657 arm_log_exception(cs
->exception_index
);
8658 qemu_log_mask(CPU_LOG_INT
, "...from EL%d to EL%d\n", arm_current_el(env
),
8660 if (qemu_loglevel_mask(CPU_LOG_INT
)
8661 && !excp_is_internal(cs
->exception_index
)) {
8662 qemu_log_mask(CPU_LOG_INT
, "...with ESR 0x%x/0x%" PRIx32
"\n",
8663 syn_get_ec(env
->exception
.syndrome
),
8664 env
->exception
.syndrome
);
8667 if (arm_is_psci_call(cpu
, cs
->exception_index
)) {
8668 arm_handle_psci_call(cpu
);
8669 qemu_log_mask(CPU_LOG_INT
, "...handled as PSCI call\n");
8674 * Semihosting semantics depend on the register width of the code
8675 * that caused the exception, not the target exception level, so
8676 * must be handled here.
8679 if (cs
->exception_index
== EXCP_SEMIHOST
) {
8680 handle_semihosting(cs
);
8685 /* Hooks may change global state so BQL should be held, also the
8686 * BQL needs to be held for any modification of
8687 * cs->interrupt_request.
8689 g_assert(qemu_mutex_iothread_locked());
8691 arm_call_pre_el_change_hook(cpu
);
8693 assert(!excp_is_internal(cs
->exception_index
));
8694 if (arm_el_is_aa64(env
, new_el
)) {
8695 arm_cpu_do_interrupt_aarch64(cs
);
8697 arm_cpu_do_interrupt_aarch32(cs
);
8700 arm_call_el_change_hook(cpu
);
8702 if (!kvm_enabled()) {
8703 cs
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
8706 #endif /* !CONFIG_USER_ONLY */
8708 /* Return the exception level which controls this address translation regime */
8709 static inline uint32_t regime_el(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
8712 case ARMMMUIdx_S2NS
:
8713 case ARMMMUIdx_S1E2
:
8715 case ARMMMUIdx_S1E3
:
8717 case ARMMMUIdx_S1SE0
:
8718 return arm_el_is_aa64(env
, 3) ? 1 : 3;
8719 case ARMMMUIdx_S1SE1
:
8720 case ARMMMUIdx_S1NSE0
:
8721 case ARMMMUIdx_S1NSE1
:
8722 case ARMMMUIdx_MPrivNegPri
:
8723 case ARMMMUIdx_MUserNegPri
:
8724 case ARMMMUIdx_MPriv
:
8725 case ARMMMUIdx_MUser
:
8726 case ARMMMUIdx_MSPrivNegPri
:
8727 case ARMMMUIdx_MSUserNegPri
:
8728 case ARMMMUIdx_MSPriv
:
8729 case ARMMMUIdx_MSUser
:
8732 g_assert_not_reached();
8736 #ifndef CONFIG_USER_ONLY
8738 /* Return the SCTLR value which controls this address translation regime */
8739 static inline uint32_t regime_sctlr(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
8741 return env
->cp15
.sctlr_el
[regime_el(env
, mmu_idx
)];
8744 /* Return true if the specified stage of address translation is disabled */
8745 static inline bool regime_translation_disabled(CPUARMState
*env
,
8748 if (arm_feature(env
, ARM_FEATURE_M
)) {
8749 switch (env
->v7m
.mpu_ctrl
[regime_is_secure(env
, mmu_idx
)] &
8750 (R_V7M_MPU_CTRL_ENABLE_MASK
| R_V7M_MPU_CTRL_HFNMIENA_MASK
)) {
8751 case R_V7M_MPU_CTRL_ENABLE_MASK
:
8752 /* Enabled, but not for HardFault and NMI */
8753 return mmu_idx
& ARM_MMU_IDX_M_NEGPRI
;
8754 case R_V7M_MPU_CTRL_ENABLE_MASK
| R_V7M_MPU_CTRL_HFNMIENA_MASK
:
8755 /* Enabled for all cases */
8759 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
8760 * we warned about that in armv7m_nvic.c when the guest set it.
8766 if (mmu_idx
== ARMMMUIdx_S2NS
) {
8767 /* HCR.DC means HCR.VM behaves as 1 */
8768 return (env
->cp15
.hcr_el2
& (HCR_DC
| HCR_VM
)) == 0;
8771 if (env
->cp15
.hcr_el2
& HCR_TGE
) {
8772 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
8773 if (!regime_is_secure(env
, mmu_idx
) && regime_el(env
, mmu_idx
) == 1) {
8778 if ((env
->cp15
.hcr_el2
& HCR_DC
) &&
8779 (mmu_idx
== ARMMMUIdx_S1NSE0
|| mmu_idx
== ARMMMUIdx_S1NSE1
)) {
8780 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
8784 return (regime_sctlr(env
, mmu_idx
) & SCTLR_M
) == 0;
8787 static inline bool regime_translation_big_endian(CPUARMState
*env
,
8790 return (regime_sctlr(env
, mmu_idx
) & SCTLR_EE
) != 0;
8793 /* Return the TTBR associated with this translation regime */
8794 static inline uint64_t regime_ttbr(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
8797 if (mmu_idx
== ARMMMUIdx_S2NS
) {
8798 return env
->cp15
.vttbr_el2
;
8801 return env
->cp15
.ttbr0_el
[regime_el(env
, mmu_idx
)];
8803 return env
->cp15
.ttbr1_el
[regime_el(env
, mmu_idx
)];
8807 #endif /* !CONFIG_USER_ONLY */
8809 /* Return the TCR controlling this translation regime */
8810 static inline TCR
*regime_tcr(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
8812 if (mmu_idx
== ARMMMUIdx_S2NS
) {
8813 return &env
->cp15
.vtcr_el2
;
8815 return &env
->cp15
.tcr_el
[regime_el(env
, mmu_idx
)];
8818 /* Convert a possible stage1+2 MMU index into the appropriate
8821 static inline ARMMMUIdx
stage_1_mmu_idx(ARMMMUIdx mmu_idx
)
8823 if (mmu_idx
== ARMMMUIdx_S12NSE0
|| mmu_idx
== ARMMMUIdx_S12NSE1
) {
8824 mmu_idx
+= (ARMMMUIdx_S1NSE0
- ARMMMUIdx_S12NSE0
);
8829 /* Return true if the translation regime is using LPAE format page tables */
8830 static inline bool regime_using_lpae_format(CPUARMState
*env
,
8833 int el
= regime_el(env
, mmu_idx
);
8834 if (el
== 2 || arm_el_is_aa64(env
, el
)) {
8837 if (arm_feature(env
, ARM_FEATURE_LPAE
)
8838 && (regime_tcr(env
, mmu_idx
)->raw_tcr
& TTBCR_EAE
)) {
8844 /* Returns true if the stage 1 translation regime is using LPAE format page
8845 * tables. Used when raising alignment exceptions, whose FSR changes depending
8846 * on whether the long or short descriptor format is in use. */
8847 bool arm_s1_regime_using_lpae_format(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
8849 mmu_idx
= stage_1_mmu_idx(mmu_idx
);
8851 return regime_using_lpae_format(env
, mmu_idx
);
8854 #ifndef CONFIG_USER_ONLY
8855 static inline bool regime_is_user(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
8858 case ARMMMUIdx_S1SE0
:
8859 case ARMMMUIdx_S1NSE0
:
8860 case ARMMMUIdx_MUser
:
8861 case ARMMMUIdx_MSUser
:
8862 case ARMMMUIdx_MUserNegPri
:
8863 case ARMMMUIdx_MSUserNegPri
:
8867 case ARMMMUIdx_S12NSE0
:
8868 case ARMMMUIdx_S12NSE1
:
8869 g_assert_not_reached();
8873 /* Translate section/page access permissions to page
8874 * R/W protection flags
8877 * @mmu_idx: MMU index indicating required translation regime
8878 * @ap: The 3-bit access permissions (AP[2:0])
8879 * @domain_prot: The 2-bit domain access permissions
8881 static inline int ap_to_rw_prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
8882 int ap
, int domain_prot
)
8884 bool is_user
= regime_is_user(env
, mmu_idx
);
8886 if (domain_prot
== 3) {
8887 return PAGE_READ
| PAGE_WRITE
;
8892 if (arm_feature(env
, ARM_FEATURE_V7
)) {
8895 switch (regime_sctlr(env
, mmu_idx
) & (SCTLR_S
| SCTLR_R
)) {
8897 return is_user
? 0 : PAGE_READ
;
8904 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
8909 return PAGE_READ
| PAGE_WRITE
;
8912 return PAGE_READ
| PAGE_WRITE
;
8913 case 4: /* Reserved. */
8916 return is_user
? 0 : PAGE_READ
;
8920 if (!arm_feature(env
, ARM_FEATURE_V6K
)) {
8925 g_assert_not_reached();
8929 /* Translate section/page access permissions to page
8930 * R/W protection flags.
8932 * @ap: The 2-bit simple AP (AP[2:1])
8933 * @is_user: TRUE if accessing from PL0
8935 static inline int simple_ap_to_rw_prot_is_user(int ap
, bool is_user
)
8939 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
8941 return PAGE_READ
| PAGE_WRITE
;
8943 return is_user
? 0 : PAGE_READ
;
8947 g_assert_not_reached();
8952 simple_ap_to_rw_prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
, int ap
)
8954 return simple_ap_to_rw_prot_is_user(ap
, regime_is_user(env
, mmu_idx
));
8957 /* Translate S2 section/page access permissions to protection flags
8960 * @s2ap: The 2-bit stage2 access permissions (S2AP)
8961 * @xn: XN (execute-never) bit
8963 static int get_S2prot(CPUARMState
*env
, int s2ap
, int xn
)
8974 if (arm_el_is_aa64(env
, 2) || prot
& PAGE_READ
) {
8981 /* Translate section/page access permissions to protection flags
8984 * @mmu_idx: MMU index indicating required translation regime
8985 * @is_aa64: TRUE if AArch64
8986 * @ap: The 2-bit simple AP (AP[2:1])
8987 * @ns: NS (non-secure) bit
8988 * @xn: XN (execute-never) bit
8989 * @pxn: PXN (privileged execute-never) bit
8991 static int get_S1prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
, bool is_aa64
,
8992 int ap
, int ns
, int xn
, int pxn
)
8994 bool is_user
= regime_is_user(env
, mmu_idx
);
8995 int prot_rw
, user_rw
;
8999 assert(mmu_idx
!= ARMMMUIdx_S2NS
);
9001 user_rw
= simple_ap_to_rw_prot_is_user(ap
, true);
9005 prot_rw
= simple_ap_to_rw_prot_is_user(ap
, false);
9008 if (ns
&& arm_is_secure(env
) && (env
->cp15
.scr_el3
& SCR_SIF
)) {
9012 /* TODO have_wxn should be replaced with
9013 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
9014 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
9015 * compatible processors have EL2, which is required for [U]WXN.
9017 have_wxn
= arm_feature(env
, ARM_FEATURE_LPAE
);
9020 wxn
= regime_sctlr(env
, mmu_idx
) & SCTLR_WXN
;
9024 switch (regime_el(env
, mmu_idx
)) {
9027 xn
= pxn
|| (user_rw
& PAGE_WRITE
);
9034 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
9035 switch (regime_el(env
, mmu_idx
)) {
9039 xn
= xn
|| !(user_rw
& PAGE_READ
);
9043 uwxn
= regime_sctlr(env
, mmu_idx
) & SCTLR_UWXN
;
9045 xn
= xn
|| !(prot_rw
& PAGE_READ
) || pxn
||
9046 (uwxn
&& (user_rw
& PAGE_WRITE
));
9056 if (xn
|| (wxn
&& (prot_rw
& PAGE_WRITE
))) {
9059 return prot_rw
| PAGE_EXEC
;
9062 static bool get_level1_table_address(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
9063 uint32_t *table
, uint32_t address
)
9065 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
9066 TCR
*tcr
= regime_tcr(env
, mmu_idx
);
9068 if (address
& tcr
->mask
) {
9069 if (tcr
->raw_tcr
& TTBCR_PD1
) {
9070 /* Translation table walk disabled for TTBR1 */
9073 *table
= regime_ttbr(env
, mmu_idx
, 1) & 0xffffc000;
9075 if (tcr
->raw_tcr
& TTBCR_PD0
) {
9076 /* Translation table walk disabled for TTBR0 */
9079 *table
= regime_ttbr(env
, mmu_idx
, 0) & tcr
->base_mask
;
9081 *table
|= (address
>> 18) & 0x3ffc;
9085 /* Translate a S1 pagetable walk through S2 if needed. */
9086 static hwaddr
S1_ptw_translate(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
9087 hwaddr addr
, MemTxAttrs txattrs
,
9088 ARMMMUFaultInfo
*fi
)
9090 if ((mmu_idx
== ARMMMUIdx_S1NSE0
|| mmu_idx
== ARMMMUIdx_S1NSE1
) &&
9091 !regime_translation_disabled(env
, ARMMMUIdx_S2NS
)) {
9092 target_ulong s2size
;
9096 ARMCacheAttrs cacheattrs
= {};
9097 ARMCacheAttrs
*pcacheattrs
= NULL
;
9099 if (env
->cp15
.hcr_el2
& HCR_PTW
) {
9101 * PTW means we must fault if this S1 walk touches S2 Device
9102 * memory; otherwise we don't care about the attributes and can
9103 * save the S2 translation the effort of computing them.
9105 pcacheattrs
= &cacheattrs
;
9108 ret
= get_phys_addr_lpae(env
, addr
, 0, ARMMMUIdx_S2NS
, &s2pa
,
9109 &txattrs
, &s2prot
, &s2size
, fi
, pcacheattrs
);
9111 assert(fi
->type
!= ARMFault_None
);
9117 if (pcacheattrs
&& (pcacheattrs
->attrs
& 0xf0) == 0) {
9118 /* Access was to Device memory: generate Permission fault */
9119 fi
->type
= ARMFault_Permission
;
9130 /* All loads done in the course of a page table walk go through here. */
9131 static uint32_t arm_ldl_ptw(CPUState
*cs
, hwaddr addr
, bool is_secure
,
9132 ARMMMUIdx mmu_idx
, ARMMMUFaultInfo
*fi
)
9134 ARMCPU
*cpu
= ARM_CPU(cs
);
9135 CPUARMState
*env
= &cpu
->env
;
9136 MemTxAttrs attrs
= {};
9137 MemTxResult result
= MEMTX_OK
;
9141 attrs
.secure
= is_secure
;
9142 as
= arm_addressspace(cs
, attrs
);
9143 addr
= S1_ptw_translate(env
, mmu_idx
, addr
, attrs
, fi
);
9147 if (regime_translation_big_endian(env
, mmu_idx
)) {
9148 data
= address_space_ldl_be(as
, addr
, attrs
, &result
);
9150 data
= address_space_ldl_le(as
, addr
, attrs
, &result
);
9152 if (result
== MEMTX_OK
) {
9155 fi
->type
= ARMFault_SyncExternalOnWalk
;
9156 fi
->ea
= arm_extabort_type(result
);
9160 static uint64_t arm_ldq_ptw(CPUState
*cs
, hwaddr addr
, bool is_secure
,
9161 ARMMMUIdx mmu_idx
, ARMMMUFaultInfo
*fi
)
9163 ARMCPU
*cpu
= ARM_CPU(cs
);
9164 CPUARMState
*env
= &cpu
->env
;
9165 MemTxAttrs attrs
= {};
9166 MemTxResult result
= MEMTX_OK
;
9170 attrs
.secure
= is_secure
;
9171 as
= arm_addressspace(cs
, attrs
);
9172 addr
= S1_ptw_translate(env
, mmu_idx
, addr
, attrs
, fi
);
9176 if (regime_translation_big_endian(env
, mmu_idx
)) {
9177 data
= address_space_ldq_be(as
, addr
, attrs
, &result
);
9179 data
= address_space_ldq_le(as
, addr
, attrs
, &result
);
9181 if (result
== MEMTX_OK
) {
9184 fi
->type
= ARMFault_SyncExternalOnWalk
;
9185 fi
->ea
= arm_extabort_type(result
);
9189 static bool get_phys_addr_v5(CPUARMState
*env
, uint32_t address
,
9190 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
9191 hwaddr
*phys_ptr
, int *prot
,
9192 target_ulong
*page_size
,
9193 ARMMMUFaultInfo
*fi
)
9195 CPUState
*cs
= env_cpu(env
);
9206 /* Pagetable walk. */
9207 /* Lookup l1 descriptor. */
9208 if (!get_level1_table_address(env
, mmu_idx
, &table
, address
)) {
9209 /* Section translation fault if page walk is disabled by PD0 or PD1 */
9210 fi
->type
= ARMFault_Translation
;
9213 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
9215 if (fi
->type
!= ARMFault_None
) {
9219 domain
= (desc
>> 5) & 0x0f;
9220 if (regime_el(env
, mmu_idx
) == 1) {
9221 dacr
= env
->cp15
.dacr_ns
;
9223 dacr
= env
->cp15
.dacr_s
;
9225 domain_prot
= (dacr
>> (domain
* 2)) & 3;
9227 /* Section translation fault. */
9228 fi
->type
= ARMFault_Translation
;
9234 if (domain_prot
== 0 || domain_prot
== 2) {
9235 fi
->type
= ARMFault_Domain
;
9240 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
9241 ap
= (desc
>> 10) & 3;
9242 *page_size
= 1024 * 1024;
9244 /* Lookup l2 entry. */
9246 /* Coarse pagetable. */
9247 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
9249 /* Fine pagetable. */
9250 table
= (desc
& 0xfffff000) | ((address
>> 8) & 0xffc);
9252 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
9254 if (fi
->type
!= ARMFault_None
) {
9258 case 0: /* Page translation fault. */
9259 fi
->type
= ARMFault_Translation
;
9261 case 1: /* 64k page. */
9262 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
9263 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
9264 *page_size
= 0x10000;
9266 case 2: /* 4k page. */
9267 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
9268 ap
= (desc
>> (4 + ((address
>> 9) & 6))) & 3;
9269 *page_size
= 0x1000;
9271 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
9273 /* ARMv6/XScale extended small page format */
9274 if (arm_feature(env
, ARM_FEATURE_XSCALE
)
9275 || arm_feature(env
, ARM_FEATURE_V6
)) {
9276 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
9277 *page_size
= 0x1000;
9279 /* UNPREDICTABLE in ARMv5; we choose to take a
9280 * page translation fault.
9282 fi
->type
= ARMFault_Translation
;
9286 phys_addr
= (desc
& 0xfffffc00) | (address
& 0x3ff);
9289 ap
= (desc
>> 4) & 3;
9292 /* Never happens, but compiler isn't smart enough to tell. */
9296 *prot
= ap_to_rw_prot(env
, mmu_idx
, ap
, domain_prot
);
9297 *prot
|= *prot
? PAGE_EXEC
: 0;
9298 if (!(*prot
& (1 << access_type
))) {
9299 /* Access permission fault. */
9300 fi
->type
= ARMFault_Permission
;
9303 *phys_ptr
= phys_addr
;
9306 fi
->domain
= domain
;
9311 static bool get_phys_addr_v6(CPUARMState
*env
, uint32_t address
,
9312 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
9313 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
9314 target_ulong
*page_size
, ARMMMUFaultInfo
*fi
)
9316 CPUState
*cs
= env_cpu(env
);
9330 /* Pagetable walk. */
9331 /* Lookup l1 descriptor. */
9332 if (!get_level1_table_address(env
, mmu_idx
, &table
, address
)) {
9333 /* Section translation fault if page walk is disabled by PD0 or PD1 */
9334 fi
->type
= ARMFault_Translation
;
9337 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
9339 if (fi
->type
!= ARMFault_None
) {
9343 if (type
== 0 || (type
== 3 && !arm_feature(env
, ARM_FEATURE_PXN
))) {
9344 /* Section translation fault, or attempt to use the encoding
9345 * which is Reserved on implementations without PXN.
9347 fi
->type
= ARMFault_Translation
;
9350 if ((type
== 1) || !(desc
& (1 << 18))) {
9351 /* Page or Section. */
9352 domain
= (desc
>> 5) & 0x0f;
9354 if (regime_el(env
, mmu_idx
) == 1) {
9355 dacr
= env
->cp15
.dacr_ns
;
9357 dacr
= env
->cp15
.dacr_s
;
9362 domain_prot
= (dacr
>> (domain
* 2)) & 3;
9363 if (domain_prot
== 0 || domain_prot
== 2) {
9364 /* Section or Page domain fault */
9365 fi
->type
= ARMFault_Domain
;
9369 if (desc
& (1 << 18)) {
9371 phys_addr
= (desc
& 0xff000000) | (address
& 0x00ffffff);
9372 phys_addr
|= (uint64_t)extract32(desc
, 20, 4) << 32;
9373 phys_addr
|= (uint64_t)extract32(desc
, 5, 4) << 36;
9374 *page_size
= 0x1000000;
9377 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
9378 *page_size
= 0x100000;
9380 ap
= ((desc
>> 10) & 3) | ((desc
>> 13) & 4);
9381 xn
= desc
& (1 << 4);
9383 ns
= extract32(desc
, 19, 1);
9385 if (arm_feature(env
, ARM_FEATURE_PXN
)) {
9386 pxn
= (desc
>> 2) & 1;
9388 ns
= extract32(desc
, 3, 1);
9389 /* Lookup l2 entry. */
9390 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
9391 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
9393 if (fi
->type
!= ARMFault_None
) {
9396 ap
= ((desc
>> 4) & 3) | ((desc
>> 7) & 4);
9398 case 0: /* Page translation fault. */
9399 fi
->type
= ARMFault_Translation
;
9401 case 1: /* 64k page. */
9402 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
9403 xn
= desc
& (1 << 15);
9404 *page_size
= 0x10000;
9406 case 2: case 3: /* 4k page. */
9407 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
9409 *page_size
= 0x1000;
9412 /* Never happens, but compiler isn't smart enough to tell. */
9416 if (domain_prot
== 3) {
9417 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
9419 if (pxn
&& !regime_is_user(env
, mmu_idx
)) {
9422 if (xn
&& access_type
== MMU_INST_FETCH
) {
9423 fi
->type
= ARMFault_Permission
;
9427 if (arm_feature(env
, ARM_FEATURE_V6K
) &&
9428 (regime_sctlr(env
, mmu_idx
) & SCTLR_AFE
)) {
9429 /* The simplified model uses AP[0] as an access control bit. */
9430 if ((ap
& 1) == 0) {
9431 /* Access flag fault. */
9432 fi
->type
= ARMFault_AccessFlag
;
9435 *prot
= simple_ap_to_rw_prot(env
, mmu_idx
, ap
>> 1);
9437 *prot
= ap_to_rw_prot(env
, mmu_idx
, ap
, domain_prot
);
9442 if (!(*prot
& (1 << access_type
))) {
9443 /* Access permission fault. */
9444 fi
->type
= ARMFault_Permission
;
9449 /* The NS bit will (as required by the architecture) have no effect if
9450 * the CPU doesn't support TZ or this is a non-secure translation
9451 * regime, because the attribute will already be non-secure.
9453 attrs
->secure
= false;
9455 *phys_ptr
= phys_addr
;
9458 fi
->domain
= domain
;
9464 * check_s2_mmu_setup
9466 * @is_aa64: True if the translation regime is in AArch64 state
9467 * @startlevel: Suggested starting level
9468 * @inputsize: Bitsize of IPAs
9469 * @stride: Page-table stride (See the ARM ARM)
9471 * Returns true if the suggested S2 translation parameters are OK and
9474 static bool check_s2_mmu_setup(ARMCPU
*cpu
, bool is_aa64
, int level
,
9475 int inputsize
, int stride
)
9477 const int grainsize
= stride
+ 3;
9480 /* Negative levels are never allowed. */
9485 startsizecheck
= inputsize
- ((3 - level
) * stride
+ grainsize
);
9486 if (startsizecheck
< 1 || startsizecheck
> stride
+ 4) {
9491 CPUARMState
*env
= &cpu
->env
;
9492 unsigned int pamax
= arm_pamax(cpu
);
9495 case 13: /* 64KB Pages. */
9496 if (level
== 0 || (level
== 1 && pamax
<= 42)) {
9500 case 11: /* 16KB Pages. */
9501 if (level
== 0 || (level
== 1 && pamax
<= 40)) {
9505 case 9: /* 4KB Pages. */
9506 if (level
== 0 && pamax
<= 42) {
9511 g_assert_not_reached();
9514 /* Inputsize checks. */
9515 if (inputsize
> pamax
&&
9516 (arm_el_is_aa64(env
, 1) || inputsize
> 40)) {
9517 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
9521 /* AArch32 only supports 4KB pages. Assert on that. */
9522 assert(stride
== 9);
9531 /* Translate from the 4-bit stage 2 representation of
9532 * memory attributes (without cache-allocation hints) to
9533 * the 8-bit representation of the stage 1 MAIR registers
9534 * (which includes allocation hints).
9536 * ref: shared/translation/attrs/S2AttrDecode()
9537 * .../S2ConvertAttrsHints()
9539 static uint8_t convert_stage2_attrs(CPUARMState
*env
, uint8_t s2attrs
)
9541 uint8_t hiattr
= extract32(s2attrs
, 2, 2);
9542 uint8_t loattr
= extract32(s2attrs
, 0, 2);
9543 uint8_t hihint
= 0, lohint
= 0;
9545 if (hiattr
!= 0) { /* normal memory */
9546 if ((env
->cp15
.hcr_el2
& HCR_CD
) != 0) { /* cache disabled */
9547 hiattr
= loattr
= 1; /* non-cacheable */
9549 if (hiattr
!= 1) { /* Write-through or write-back */
9550 hihint
= 3; /* RW allocate */
9552 if (loattr
!= 1) { /* Write-through or write-back */
9553 lohint
= 3; /* RW allocate */
9558 return (hiattr
<< 6) | (hihint
<< 4) | (loattr
<< 2) | lohint
;
9560 #endif /* !CONFIG_USER_ONLY */
9562 ARMVAParameters
aa64_va_parameters_both(CPUARMState
*env
, uint64_t va
,
9565 uint64_t tcr
= regime_tcr(env
, mmu_idx
)->raw_tcr
;
9566 uint32_t el
= regime_el(env
, mmu_idx
);
9567 bool tbi
, tbid
, epd
, hpd
, using16k
, using64k
;
9571 * Bit 55 is always between the two regions, and is canonical for
9572 * determining if address tagging is enabled.
9574 select
= extract64(va
, 55, 1);
9577 tsz
= extract32(tcr
, 0, 6);
9578 using64k
= extract32(tcr
, 14, 1);
9579 using16k
= extract32(tcr
, 15, 1);
9580 if (mmu_idx
== ARMMMUIdx_S2NS
) {
9582 tbi
= tbid
= hpd
= false;
9584 tbi
= extract32(tcr
, 20, 1);
9585 hpd
= extract32(tcr
, 24, 1);
9586 tbid
= extract32(tcr
, 29, 1);
9589 } else if (!select
) {
9590 tsz
= extract32(tcr
, 0, 6);
9591 epd
= extract32(tcr
, 7, 1);
9592 using64k
= extract32(tcr
, 14, 1);
9593 using16k
= extract32(tcr
, 15, 1);
9594 tbi
= extract64(tcr
, 37, 1);
9595 hpd
= extract64(tcr
, 41, 1);
9596 tbid
= extract64(tcr
, 51, 1);
9598 int tg
= extract32(tcr
, 30, 2);
9601 tsz
= extract32(tcr
, 16, 6);
9602 epd
= extract32(tcr
, 23, 1);
9603 tbi
= extract64(tcr
, 38, 1);
9604 hpd
= extract64(tcr
, 42, 1);
9605 tbid
= extract64(tcr
, 52, 1);
9607 tsz
= MIN(tsz
, 39); /* TODO: ARMv8.4-TTST */
9608 tsz
= MAX(tsz
, 16); /* TODO: ARMv8.2-LVA */
9610 return (ARMVAParameters
) {
9617 .using16k
= using16k
,
9618 .using64k
= using64k
,
9622 ARMVAParameters
aa64_va_parameters(CPUARMState
*env
, uint64_t va
,
9623 ARMMMUIdx mmu_idx
, bool data
)
9625 ARMVAParameters ret
= aa64_va_parameters_both(env
, va
, mmu_idx
);
9627 /* Present TBI as a composite with TBID. */
9628 ret
.tbi
&= (data
|| !ret
.tbid
);
9632 #ifndef CONFIG_USER_ONLY
9633 static ARMVAParameters
aa32_va_parameters(CPUARMState
*env
, uint32_t va
,
9636 uint64_t tcr
= regime_tcr(env
, mmu_idx
)->raw_tcr
;
9637 uint32_t el
= regime_el(env
, mmu_idx
);
9641 if (mmu_idx
== ARMMMUIdx_S2NS
) {
9643 bool sext
= extract32(tcr
, 4, 1);
9644 bool sign
= extract32(tcr
, 3, 1);
9647 * If the sign-extend bit is not the same as t0sz[3], the result
9648 * is unpredictable. Flag this as a guest error.
9651 qemu_log_mask(LOG_GUEST_ERROR
,
9652 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
9654 tsz
= sextract32(tcr
, 0, 4) + 8;
9658 } else if (el
== 2) {
9660 tsz
= extract32(tcr
, 0, 3);
9662 hpd
= extract64(tcr
, 24, 1);
9665 int t0sz
= extract32(tcr
, 0, 3);
9666 int t1sz
= extract32(tcr
, 16, 3);
9669 select
= va
> (0xffffffffu
>> t0sz
);
9671 /* Note that we will detect errors later. */
9672 select
= va
>= ~(0xffffffffu
>> t1sz
);
9676 epd
= extract32(tcr
, 7, 1);
9677 hpd
= extract64(tcr
, 41, 1);
9680 epd
= extract32(tcr
, 23, 1);
9681 hpd
= extract64(tcr
, 42, 1);
9683 /* For aarch32, hpd0 is not enabled without t2e as well. */
9684 hpd
&= extract32(tcr
, 6, 1);
9687 return (ARMVAParameters
) {
9695 static bool get_phys_addr_lpae(CPUARMState
*env
, target_ulong address
,
9696 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
9697 hwaddr
*phys_ptr
, MemTxAttrs
*txattrs
, int *prot
,
9698 target_ulong
*page_size_ptr
,
9699 ARMMMUFaultInfo
*fi
, ARMCacheAttrs
*cacheattrs
)
9701 ARMCPU
*cpu
= env_archcpu(env
);
9702 CPUState
*cs
= CPU(cpu
);
9703 /* Read an LPAE long-descriptor translation table. */
9704 ARMFaultType fault_type
= ARMFault_Translation
;
9706 ARMVAParameters param
;
9708 hwaddr descaddr
, indexmask
, indexmask_grainsize
;
9709 uint32_t tableattrs
;
9710 target_ulong page_size
;
9713 int addrsize
, inputsize
;
9714 TCR
*tcr
= regime_tcr(env
, mmu_idx
);
9715 int ap
, ns
, xn
, pxn
;
9716 uint32_t el
= regime_el(env
, mmu_idx
);
9718 uint64_t descaddrmask
;
9719 bool aarch64
= arm_el_is_aa64(env
, el
);
9720 bool guarded
= false;
9723 * This code does not handle the different format TCR for VTCR_EL2.
9724 * This code also does not support shareability levels.
9725 * Attribute and permission bit handling should also be checked when adding
9726 * support for those page table walks.
9729 param
= aa64_va_parameters(env
, address
, mmu_idx
,
9730 access_type
!= MMU_INST_FETCH
);
9732 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
9735 ttbr1_valid
= (el
< 2);
9736 addrsize
= 64 - 8 * param
.tbi
;
9737 inputsize
= 64 - param
.tsz
;
9739 param
= aa32_va_parameters(env
, address
, mmu_idx
);
9741 /* There is no TTBR1 for EL2 */
9742 ttbr1_valid
= (el
!= 2);
9743 addrsize
= (mmu_idx
== ARMMMUIdx_S2NS
? 40 : 32);
9744 inputsize
= addrsize
- param
.tsz
;
9748 * We determined the region when collecting the parameters, but we
9749 * have not yet validated that the address is valid for the region.
9750 * Extract the top bits and verify that they all match select.
9752 * For aa32, if inputsize == addrsize, then we have selected the
9753 * region by exclusion in aa32_va_parameters and there is no more
9754 * validation to do here.
9756 if (inputsize
< addrsize
) {
9757 target_ulong top_bits
= sextract64(address
, inputsize
,
9758 addrsize
- inputsize
);
9759 if (-top_bits
!= param
.select
|| (param
.select
&& !ttbr1_valid
)) {
9760 /* The gap between the two regions is a Translation fault */
9761 fault_type
= ARMFault_Translation
;
9766 if (param
.using64k
) {
9768 } else if (param
.using16k
) {
9774 /* Note that QEMU ignores shareability and cacheability attributes,
9775 * so we don't need to do anything with the SH, ORGN, IRGN fields
9776 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
9777 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
9778 * implement any ASID-like capability so we can ignore it (instead
9779 * we will always flush the TLB any time the ASID is changed).
9781 ttbr
= regime_ttbr(env
, mmu_idx
, param
.select
);
9783 /* Here we should have set up all the parameters for the translation:
9784 * inputsize, ttbr, epd, stride, tbi
9788 /* Translation table walk disabled => Translation fault on TLB miss
9789 * Note: This is always 0 on 64-bit EL2 and EL3.
9794 if (mmu_idx
!= ARMMMUIdx_S2NS
) {
9795 /* The starting level depends on the virtual address size (which can
9796 * be up to 48 bits) and the translation granule size. It indicates
9797 * the number of strides (stride bits at a time) needed to
9798 * consume the bits of the input address. In the pseudocode this is:
9799 * level = 4 - RoundUp((inputsize - grainsize) / stride)
9800 * where their 'inputsize' is our 'inputsize', 'grainsize' is
9801 * our 'stride + 3' and 'stride' is our 'stride'.
9802 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
9803 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
9804 * = 4 - (inputsize - 4) / stride;
9806 level
= 4 - (inputsize
- 4) / stride
;
9808 /* For stage 2 translations the starting level is specified by the
9809 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
9811 uint32_t sl0
= extract32(tcr
->raw_tcr
, 6, 2);
9812 uint32_t startlevel
;
9815 if (!aarch64
|| stride
== 9) {
9816 /* AArch32 or 4KB pages */
9817 startlevel
= 2 - sl0
;
9819 /* 16KB or 64KB pages */
9820 startlevel
= 3 - sl0
;
9823 /* Check that the starting level is valid. */
9824 ok
= check_s2_mmu_setup(cpu
, aarch64
, startlevel
,
9827 fault_type
= ARMFault_Translation
;
9833 indexmask_grainsize
= (1ULL << (stride
+ 3)) - 1;
9834 indexmask
= (1ULL << (inputsize
- (stride
* (4 - level
)))) - 1;
9836 /* Now we can extract the actual base address from the TTBR */
9837 descaddr
= extract64(ttbr
, 0, 48);
9838 descaddr
&= ~indexmask
;
9840 /* The address field in the descriptor goes up to bit 39 for ARMv7
9841 * but up to bit 47 for ARMv8, but we use the descaddrmask
9842 * up to bit 39 for AArch32, because we don't need other bits in that case
9843 * to construct next descriptor address (anyway they should be all zeroes).
9845 descaddrmask
= ((1ull << (aarch64
? 48 : 40)) - 1) &
9846 ~indexmask_grainsize
;
9848 /* Secure accesses start with the page table in secure memory and
9849 * can be downgraded to non-secure at any step. Non-secure accesses
9850 * remain non-secure. We implement this by just ORing in the NSTable/NS
9851 * bits at each step.
9853 tableattrs
= regime_is_secure(env
, mmu_idx
) ? 0 : (1 << 4);
9855 uint64_t descriptor
;
9858 descaddr
|= (address
>> (stride
* (4 - level
))) & indexmask
;
9860 nstable
= extract32(tableattrs
, 4, 1);
9861 descriptor
= arm_ldq_ptw(cs
, descaddr
, !nstable
, mmu_idx
, fi
);
9862 if (fi
->type
!= ARMFault_None
) {
9866 if (!(descriptor
& 1) ||
9867 (!(descriptor
& 2) && (level
== 3))) {
9868 /* Invalid, or the Reserved level 3 encoding */
9871 descaddr
= descriptor
& descaddrmask
;
9873 if ((descriptor
& 2) && (level
< 3)) {
9874 /* Table entry. The top five bits are attributes which may
9875 * propagate down through lower levels of the table (and
9876 * which are all arranged so that 0 means "no effect", so
9877 * we can gather them up by ORing in the bits at each level).
9879 tableattrs
|= extract64(descriptor
, 59, 5);
9881 indexmask
= indexmask_grainsize
;
9884 /* Block entry at level 1 or 2, or page entry at level 3.
9885 * These are basically the same thing, although the number
9886 * of bits we pull in from the vaddr varies.
9888 page_size
= (1ULL << ((stride
* (4 - level
)) + 3));
9889 descaddr
|= (address
& (page_size
- 1));
9890 /* Extract attributes from the descriptor */
9891 attrs
= extract64(descriptor
, 2, 10)
9892 | (extract64(descriptor
, 52, 12) << 10);
9894 if (mmu_idx
== ARMMMUIdx_S2NS
) {
9895 /* Stage 2 table descriptors do not include any attribute fields */
9898 /* Merge in attributes from table descriptors */
9899 attrs
|= nstable
<< 3; /* NS */
9900 guarded
= extract64(descriptor
, 50, 1); /* GP */
9902 /* HPD disables all the table attributes except NSTable. */
9905 attrs
|= extract32(tableattrs
, 0, 2) << 11; /* XN, PXN */
9906 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
9907 * means "force PL1 access only", which means forcing AP[1] to 0.
9909 attrs
&= ~(extract32(tableattrs
, 2, 1) << 4); /* !APT[0] => AP[1] */
9910 attrs
|= extract32(tableattrs
, 3, 1) << 5; /* APT[1] => AP[2] */
9913 /* Here descaddr is the final physical address, and attributes
9916 fault_type
= ARMFault_AccessFlag
;
9917 if ((attrs
& (1 << 8)) == 0) {
9922 ap
= extract32(attrs
, 4, 2);
9923 xn
= extract32(attrs
, 12, 1);
9925 if (mmu_idx
== ARMMMUIdx_S2NS
) {
9927 *prot
= get_S2prot(env
, ap
, xn
);
9929 ns
= extract32(attrs
, 3, 1);
9930 pxn
= extract32(attrs
, 11, 1);
9931 *prot
= get_S1prot(env
, mmu_idx
, aarch64
, ap
, ns
, xn
, pxn
);
9934 fault_type
= ARMFault_Permission
;
9935 if (!(*prot
& (1 << access_type
))) {
9940 /* The NS bit will (as required by the architecture) have no effect if
9941 * the CPU doesn't support TZ or this is a non-secure translation
9942 * regime, because the attribute will already be non-secure.
9944 txattrs
->secure
= false;
9946 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */
9947 if (aarch64
&& guarded
&& cpu_isar_feature(aa64_bti
, cpu
)) {
9948 txattrs
->target_tlb_bit0
= true;
9951 if (cacheattrs
!= NULL
) {
9952 if (mmu_idx
== ARMMMUIdx_S2NS
) {
9953 cacheattrs
->attrs
= convert_stage2_attrs(env
,
9954 extract32(attrs
, 0, 4));
9956 /* Index into MAIR registers for cache attributes */
9957 uint8_t attrindx
= extract32(attrs
, 0, 3);
9958 uint64_t mair
= env
->cp15
.mair_el
[regime_el(env
, mmu_idx
)];
9959 assert(attrindx
<= 7);
9960 cacheattrs
->attrs
= extract64(mair
, attrindx
* 8, 8);
9962 cacheattrs
->shareability
= extract32(attrs
, 6, 2);
9965 *phys_ptr
= descaddr
;
9966 *page_size_ptr
= page_size
;
9970 fi
->type
= fault_type
;
9972 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
9973 fi
->stage2
= fi
->s1ptw
|| (mmu_idx
== ARMMMUIdx_S2NS
);
9977 static inline void get_phys_addr_pmsav7_default(CPUARMState
*env
,
9979 int32_t address
, int *prot
)
9981 if (!arm_feature(env
, ARM_FEATURE_M
)) {
9982 *prot
= PAGE_READ
| PAGE_WRITE
;
9984 case 0xF0000000 ... 0xFFFFFFFF:
9985 if (regime_sctlr(env
, mmu_idx
) & SCTLR_V
) {
9986 /* hivecs execing is ok */
9990 case 0x00000000 ... 0x7FFFFFFF:
9995 /* Default system address map for M profile cores.
9996 * The architecture specifies which regions are execute-never;
9997 * at the MPU level no other checks are defined.
10000 case 0x00000000 ... 0x1fffffff: /* ROM */
10001 case 0x20000000 ... 0x3fffffff: /* SRAM */
10002 case 0x60000000 ... 0x7fffffff: /* RAM */
10003 case 0x80000000 ... 0x9fffffff: /* RAM */
10004 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
10006 case 0x40000000 ... 0x5fffffff: /* Peripheral */
10007 case 0xa0000000 ... 0xbfffffff: /* Device */
10008 case 0xc0000000 ... 0xdfffffff: /* Device */
10009 case 0xe0000000 ... 0xffffffff: /* System */
10010 *prot
= PAGE_READ
| PAGE_WRITE
;
10013 g_assert_not_reached();
10018 static bool pmsav7_use_background_region(ARMCPU
*cpu
,
10019 ARMMMUIdx mmu_idx
, bool is_user
)
10021 /* Return true if we should use the default memory map as a
10022 * "background" region if there are no hits against any MPU regions.
10024 CPUARMState
*env
= &cpu
->env
;
10030 if (arm_feature(env
, ARM_FEATURE_M
)) {
10031 return env
->v7m
.mpu_ctrl
[regime_is_secure(env
, mmu_idx
)]
10032 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK
;
10034 return regime_sctlr(env
, mmu_idx
) & SCTLR_BR
;
10038 static inline bool m_is_ppb_region(CPUARMState
*env
, uint32_t address
)
10040 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
10041 return arm_feature(env
, ARM_FEATURE_M
) &&
10042 extract32(address
, 20, 12) == 0xe00;
10045 static inline bool m_is_system_region(CPUARMState
*env
, uint32_t address
)
10047 /* True if address is in the M profile system region
10048 * 0xe0000000 - 0xffffffff
10050 return arm_feature(env
, ARM_FEATURE_M
) && extract32(address
, 29, 3) == 0x7;
10053 static bool get_phys_addr_pmsav7(CPUARMState
*env
, uint32_t address
,
10054 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
10055 hwaddr
*phys_ptr
, int *prot
,
10056 target_ulong
*page_size
,
10057 ARMMMUFaultInfo
*fi
)
10059 ARMCPU
*cpu
= env_archcpu(env
);
10061 bool is_user
= regime_is_user(env
, mmu_idx
);
10063 *phys_ptr
= address
;
10064 *page_size
= TARGET_PAGE_SIZE
;
10067 if (regime_translation_disabled(env
, mmu_idx
) ||
10068 m_is_ppb_region(env
, address
)) {
10069 /* MPU disabled or M profile PPB access: use default memory map.
10070 * The other case which uses the default memory map in the
10071 * v7M ARM ARM pseudocode is exception vector reads from the vector
10072 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
10073 * which always does a direct read using address_space_ldl(), rather
10074 * than going via this function, so we don't need to check that here.
10076 get_phys_addr_pmsav7_default(env
, mmu_idx
, address
, prot
);
10077 } else { /* MPU enabled */
10078 for (n
= (int)cpu
->pmsav7_dregion
- 1; n
>= 0; n
--) {
10079 /* region search */
10080 uint32_t base
= env
->pmsav7
.drbar
[n
];
10081 uint32_t rsize
= extract32(env
->pmsav7
.drsr
[n
], 1, 5);
10083 bool srdis
= false;
10085 if (!(env
->pmsav7
.drsr
[n
] & 0x1)) {
10090 qemu_log_mask(LOG_GUEST_ERROR
,
10091 "DRSR[%d]: Rsize field cannot be 0\n", n
);
10095 rmask
= (1ull << rsize
) - 1;
10097 if (base
& rmask
) {
10098 qemu_log_mask(LOG_GUEST_ERROR
,
10099 "DRBAR[%d]: 0x%" PRIx32
" misaligned "
10100 "to DRSR region size, mask = 0x%" PRIx32
"\n",
10105 if (address
< base
|| address
> base
+ rmask
) {
10107 * Address not in this region. We must check whether the
10108 * region covers addresses in the same page as our address.
10109 * In that case we must not report a size that covers the
10110 * whole page for a subsequent hit against a different MPU
10111 * region or the background region, because it would result in
10112 * incorrect TLB hits for subsequent accesses to addresses that
10113 * are in this MPU region.
10115 if (ranges_overlap(base
, rmask
,
10116 address
& TARGET_PAGE_MASK
,
10117 TARGET_PAGE_SIZE
)) {
10123 /* Region matched */
10125 if (rsize
>= 8) { /* no subregions for regions < 256 bytes */
10127 uint32_t srdis_mask
;
10129 rsize
-= 3; /* sub region size (power of 2) */
10130 snd
= ((address
- base
) >> rsize
) & 0x7;
10131 srdis
= extract32(env
->pmsav7
.drsr
[n
], snd
+ 8, 1);
10133 srdis_mask
= srdis
? 0x3 : 0x0;
10134 for (i
= 2; i
<= 8 && rsize
< TARGET_PAGE_BITS
; i
*= 2) {
10135 /* This will check in groups of 2, 4 and then 8, whether
10136 * the subregion bits are consistent. rsize is incremented
10137 * back up to give the region size, considering consistent
10138 * adjacent subregions as one region. Stop testing if rsize
10139 * is already big enough for an entire QEMU page.
10141 int snd_rounded
= snd
& ~(i
- 1);
10142 uint32_t srdis_multi
= extract32(env
->pmsav7
.drsr
[n
],
10143 snd_rounded
+ 8, i
);
10144 if (srdis_mask
^ srdis_multi
) {
10147 srdis_mask
= (srdis_mask
<< i
) | srdis_mask
;
10154 if (rsize
< TARGET_PAGE_BITS
) {
10155 *page_size
= 1 << rsize
;
10160 if (n
== -1) { /* no hits */
10161 if (!pmsav7_use_background_region(cpu
, mmu_idx
, is_user
)) {
10162 /* background fault */
10163 fi
->type
= ARMFault_Background
;
10166 get_phys_addr_pmsav7_default(env
, mmu_idx
, address
, prot
);
10167 } else { /* a MPU hit! */
10168 uint32_t ap
= extract32(env
->pmsav7
.dracr
[n
], 8, 3);
10169 uint32_t xn
= extract32(env
->pmsav7
.dracr
[n
], 12, 1);
10171 if (m_is_system_region(env
, address
)) {
10172 /* System space is always execute never */
10176 if (is_user
) { /* User mode AP bit decoding */
10181 break; /* no access */
10183 *prot
|= PAGE_WRITE
;
10187 *prot
|= PAGE_READ
| PAGE_EXEC
;
10190 /* for v7M, same as 6; for R profile a reserved value */
10191 if (arm_feature(env
, ARM_FEATURE_M
)) {
10192 *prot
|= PAGE_READ
| PAGE_EXEC
;
10197 qemu_log_mask(LOG_GUEST_ERROR
,
10198 "DRACR[%d]: Bad value for AP bits: 0x%"
10199 PRIx32
"\n", n
, ap
);
10201 } else { /* Priv. mode AP bits decoding */
10204 break; /* no access */
10208 *prot
|= PAGE_WRITE
;
10212 *prot
|= PAGE_READ
| PAGE_EXEC
;
10215 /* for v7M, same as 6; for R profile a reserved value */
10216 if (arm_feature(env
, ARM_FEATURE_M
)) {
10217 *prot
|= PAGE_READ
| PAGE_EXEC
;
10222 qemu_log_mask(LOG_GUEST_ERROR
,
10223 "DRACR[%d]: Bad value for AP bits: 0x%"
10224 PRIx32
"\n", n
, ap
);
10228 /* execute never */
10230 *prot
&= ~PAGE_EXEC
;
10235 fi
->type
= ARMFault_Permission
;
10237 return !(*prot
& (1 << access_type
));
10240 static bool v8m_is_sau_exempt(CPUARMState
*env
,
10241 uint32_t address
, MMUAccessType access_type
)
10243 /* The architecture specifies that certain address ranges are
10244 * exempt from v8M SAU/IDAU checks.
10247 (access_type
== MMU_INST_FETCH
&& m_is_system_region(env
, address
)) ||
10248 (address
>= 0xe0000000 && address
<= 0xe0002fff) ||
10249 (address
>= 0xe000e000 && address
<= 0xe000efff) ||
10250 (address
>= 0xe002e000 && address
<= 0xe002efff) ||
10251 (address
>= 0xe0040000 && address
<= 0xe0041fff) ||
10252 (address
>= 0xe00ff000 && address
<= 0xe00fffff);
10255 void v8m_security_lookup(CPUARMState
*env
, uint32_t address
,
10256 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
10257 V8M_SAttributes
*sattrs
)
10259 /* Look up the security attributes for this address. Compare the
10260 * pseudocode SecurityCheck() function.
10261 * We assume the caller has zero-initialized *sattrs.
10263 ARMCPU
*cpu
= env_archcpu(env
);
10265 bool idau_exempt
= false, idau_ns
= true, idau_nsc
= true;
10266 int idau_region
= IREGION_NOTVALID
;
10267 uint32_t addr_page_base
= address
& TARGET_PAGE_MASK
;
10268 uint32_t addr_page_limit
= addr_page_base
+ (TARGET_PAGE_SIZE
- 1);
10271 IDAUInterfaceClass
*iic
= IDAU_INTERFACE_GET_CLASS(cpu
->idau
);
10272 IDAUInterface
*ii
= IDAU_INTERFACE(cpu
->idau
);
10274 iic
->check(ii
, address
, &idau_region
, &idau_exempt
, &idau_ns
,
10278 if (access_type
== MMU_INST_FETCH
&& extract32(address
, 28, 4) == 0xf) {
10279 /* 0xf0000000..0xffffffff is always S for insn fetches */
10283 if (idau_exempt
|| v8m_is_sau_exempt(env
, address
, access_type
)) {
10284 sattrs
->ns
= !regime_is_secure(env
, mmu_idx
);
10288 if (idau_region
!= IREGION_NOTVALID
) {
10289 sattrs
->irvalid
= true;
10290 sattrs
->iregion
= idau_region
;
10293 switch (env
->sau
.ctrl
& 3) {
10294 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
10296 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
10299 default: /* SAU.ENABLE == 1 */
10300 for (r
= 0; r
< cpu
->sau_sregion
; r
++) {
10301 if (env
->sau
.rlar
[r
] & 1) {
10302 uint32_t base
= env
->sau
.rbar
[r
] & ~0x1f;
10303 uint32_t limit
= env
->sau
.rlar
[r
] | 0x1f;
10305 if (base
<= address
&& limit
>= address
) {
10306 if (base
> addr_page_base
|| limit
< addr_page_limit
) {
10307 sattrs
->subpage
= true;
10309 if (sattrs
->srvalid
) {
10310 /* If we hit in more than one region then we must report
10311 * as Secure, not NS-Callable, with no valid region
10314 sattrs
->ns
= false;
10315 sattrs
->nsc
= false;
10316 sattrs
->sregion
= 0;
10317 sattrs
->srvalid
= false;
10320 if (env
->sau
.rlar
[r
] & 2) {
10321 sattrs
->nsc
= true;
10325 sattrs
->srvalid
= true;
10326 sattrs
->sregion
= r
;
10330 * Address not in this region. We must check whether the
10331 * region covers addresses in the same page as our address.
10332 * In that case we must not report a size that covers the
10333 * whole page for a subsequent hit against a different MPU
10334 * region or the background region, because it would result
10335 * in incorrect TLB hits for subsequent accesses to
10336 * addresses that are in this MPU region.
10338 if (limit
>= base
&&
10339 ranges_overlap(base
, limit
- base
+ 1,
10341 TARGET_PAGE_SIZE
)) {
10342 sattrs
->subpage
= true;
10351 * The IDAU will override the SAU lookup results if it specifies
10352 * higher security than the SAU does.
10355 if (sattrs
->ns
|| (!idau_nsc
&& sattrs
->nsc
)) {
10356 sattrs
->ns
= false;
10357 sattrs
->nsc
= idau_nsc
;
10362 bool pmsav8_mpu_lookup(CPUARMState
*env
, uint32_t address
,
10363 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
10364 hwaddr
*phys_ptr
, MemTxAttrs
*txattrs
,
10365 int *prot
, bool *is_subpage
,
10366 ARMMMUFaultInfo
*fi
, uint32_t *mregion
)
10368 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
10369 * that a full phys-to-virt translation does).
10370 * mregion is (if not NULL) set to the region number which matched,
10371 * or -1 if no region number is returned (MPU off, address did not
10372 * hit a region, address hit in multiple regions).
10373 * We set is_subpage to true if the region hit doesn't cover the
10374 * entire TARGET_PAGE the address is within.
10376 ARMCPU
*cpu
= env_archcpu(env
);
10377 bool is_user
= regime_is_user(env
, mmu_idx
);
10378 uint32_t secure
= regime_is_secure(env
, mmu_idx
);
10380 int matchregion
= -1;
10382 uint32_t addr_page_base
= address
& TARGET_PAGE_MASK
;
10383 uint32_t addr_page_limit
= addr_page_base
+ (TARGET_PAGE_SIZE
- 1);
10385 *is_subpage
= false;
10386 *phys_ptr
= address
;
10392 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
10393 * was an exception vector read from the vector table (which is always
10394 * done using the default system address map), because those accesses
10395 * are done in arm_v7m_load_vector(), which always does a direct
10396 * read using address_space_ldl(), rather than going via this function.
10398 if (regime_translation_disabled(env
, mmu_idx
)) { /* MPU disabled */
10400 } else if (m_is_ppb_region(env
, address
)) {
10403 if (pmsav7_use_background_region(cpu
, mmu_idx
, is_user
)) {
10407 for (n
= (int)cpu
->pmsav7_dregion
- 1; n
>= 0; n
--) {
10408 /* region search */
10409 /* Note that the base address is bits [31:5] from the register
10410 * with bits [4:0] all zeroes, but the limit address is bits
10411 * [31:5] from the register with bits [4:0] all ones.
10413 uint32_t base
= env
->pmsav8
.rbar
[secure
][n
] & ~0x1f;
10414 uint32_t limit
= env
->pmsav8
.rlar
[secure
][n
] | 0x1f;
10416 if (!(env
->pmsav8
.rlar
[secure
][n
] & 0x1)) {
10417 /* Region disabled */
10421 if (address
< base
|| address
> limit
) {
10423 * Address not in this region. We must check whether the
10424 * region covers addresses in the same page as our address.
10425 * In that case we must not report a size that covers the
10426 * whole page for a subsequent hit against a different MPU
10427 * region or the background region, because it would result in
10428 * incorrect TLB hits for subsequent accesses to addresses that
10429 * are in this MPU region.
10431 if (limit
>= base
&&
10432 ranges_overlap(base
, limit
- base
+ 1,
10434 TARGET_PAGE_SIZE
)) {
10435 *is_subpage
= true;
10440 if (base
> addr_page_base
|| limit
< addr_page_limit
) {
10441 *is_subpage
= true;
10444 if (matchregion
!= -1) {
10445 /* Multiple regions match -- always a failure (unlike
10446 * PMSAv7 where highest-numbered-region wins)
10448 fi
->type
= ARMFault_Permission
;
10459 /* background fault */
10460 fi
->type
= ARMFault_Background
;
10464 if (matchregion
== -1) {
10465 /* hit using the background region */
10466 get_phys_addr_pmsav7_default(env
, mmu_idx
, address
, prot
);
10468 uint32_t ap
= extract32(env
->pmsav8
.rbar
[secure
][matchregion
], 1, 2);
10469 uint32_t xn
= extract32(env
->pmsav8
.rbar
[secure
][matchregion
], 0, 1);
10471 if (m_is_system_region(env
, address
)) {
10472 /* System space is always execute never */
10476 *prot
= simple_ap_to_rw_prot(env
, mmu_idx
, ap
);
10477 if (*prot
&& !xn
) {
10478 *prot
|= PAGE_EXEC
;
10480 /* We don't need to look the attribute up in the MAIR0/MAIR1
10481 * registers because that only tells us about cacheability.
10484 *mregion
= matchregion
;
10488 fi
->type
= ARMFault_Permission
;
10490 return !(*prot
& (1 << access_type
));
10494 static bool get_phys_addr_pmsav8(CPUARMState
*env
, uint32_t address
,
10495 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
10496 hwaddr
*phys_ptr
, MemTxAttrs
*txattrs
,
10497 int *prot
, target_ulong
*page_size
,
10498 ARMMMUFaultInfo
*fi
)
10500 uint32_t secure
= regime_is_secure(env
, mmu_idx
);
10501 V8M_SAttributes sattrs
= {};
10503 bool mpu_is_subpage
;
10505 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
10506 v8m_security_lookup(env
, address
, access_type
, mmu_idx
, &sattrs
);
10507 if (access_type
== MMU_INST_FETCH
) {
10508 /* Instruction fetches always use the MMU bank and the
10509 * transaction attribute determined by the fetch address,
10510 * regardless of CPU state. This is painful for QEMU
10511 * to handle, because it would mean we need to encode
10512 * into the mmu_idx not just the (user, negpri) information
10513 * for the current security state but also that for the
10514 * other security state, which would balloon the number
10515 * of mmu_idx values needed alarmingly.
10516 * Fortunately we can avoid this because it's not actually
10517 * possible to arbitrarily execute code from memory with
10518 * the wrong security attribute: it will always generate
10519 * an exception of some kind or another, apart from the
10520 * special case of an NS CPU executing an SG instruction
10521 * in S&NSC memory. So we always just fail the translation
10522 * here and sort things out in the exception handler
10523 * (including possibly emulating an SG instruction).
10525 if (sattrs
.ns
!= !secure
) {
10527 fi
->type
= ARMFault_QEMU_NSCExec
;
10529 fi
->type
= ARMFault_QEMU_SFault
;
10531 *page_size
= sattrs
.subpage
? 1 : TARGET_PAGE_SIZE
;
10532 *phys_ptr
= address
;
10537 /* For data accesses we always use the MMU bank indicated
10538 * by the current CPU state, but the security attributes
10539 * might downgrade a secure access to nonsecure.
10542 txattrs
->secure
= false;
10543 } else if (!secure
) {
10544 /* NS access to S memory must fault.
10545 * Architecturally we should first check whether the
10546 * MPU information for this address indicates that we
10547 * are doing an unaligned access to Device memory, which
10548 * should generate a UsageFault instead. QEMU does not
10549 * currently check for that kind of unaligned access though.
10550 * If we added it we would need to do so as a special case
10551 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
10553 fi
->type
= ARMFault_QEMU_SFault
;
10554 *page_size
= sattrs
.subpage
? 1 : TARGET_PAGE_SIZE
;
10555 *phys_ptr
= address
;
10562 ret
= pmsav8_mpu_lookup(env
, address
, access_type
, mmu_idx
, phys_ptr
,
10563 txattrs
, prot
, &mpu_is_subpage
, fi
, NULL
);
10564 *page_size
= sattrs
.subpage
|| mpu_is_subpage
? 1 : TARGET_PAGE_SIZE
;
10568 static bool get_phys_addr_pmsav5(CPUARMState
*env
, uint32_t address
,
10569 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
10570 hwaddr
*phys_ptr
, int *prot
,
10571 ARMMMUFaultInfo
*fi
)
10576 bool is_user
= regime_is_user(env
, mmu_idx
);
10578 if (regime_translation_disabled(env
, mmu_idx
)) {
10579 /* MPU disabled. */
10580 *phys_ptr
= address
;
10581 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
10585 *phys_ptr
= address
;
10586 for (n
= 7; n
>= 0; n
--) {
10587 base
= env
->cp15
.c6_region
[n
];
10588 if ((base
& 1) == 0) {
10591 mask
= 1 << ((base
>> 1) & 0x1f);
10592 /* Keep this shift separate from the above to avoid an
10593 (undefined) << 32. */
10594 mask
= (mask
<< 1) - 1;
10595 if (((base
^ address
) & ~mask
) == 0) {
10600 fi
->type
= ARMFault_Background
;
10604 if (access_type
== MMU_INST_FETCH
) {
10605 mask
= env
->cp15
.pmsav5_insn_ap
;
10607 mask
= env
->cp15
.pmsav5_data_ap
;
10609 mask
= (mask
>> (n
* 4)) & 0xf;
10612 fi
->type
= ARMFault_Permission
;
10617 fi
->type
= ARMFault_Permission
;
10621 *prot
= PAGE_READ
| PAGE_WRITE
;
10626 *prot
|= PAGE_WRITE
;
10630 *prot
= PAGE_READ
| PAGE_WRITE
;
10634 fi
->type
= ARMFault_Permission
;
10644 /* Bad permission. */
10645 fi
->type
= ARMFault_Permission
;
10649 *prot
|= PAGE_EXEC
;
10653 /* Combine either inner or outer cacheability attributes for normal
10654 * memory, according to table D4-42 and pseudocode procedure
10655 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
10657 * NB: only stage 1 includes allocation hints (RW bits), leading to
10660 static uint8_t combine_cacheattr_nibble(uint8_t s1
, uint8_t s2
)
10662 if (s1
== 4 || s2
== 4) {
10663 /* non-cacheable has precedence */
10665 } else if (extract32(s1
, 2, 2) == 0 || extract32(s1
, 2, 2) == 2) {
10666 /* stage 1 write-through takes precedence */
10668 } else if (extract32(s2
, 2, 2) == 2) {
10669 /* stage 2 write-through takes precedence, but the allocation hint
10670 * is still taken from stage 1
10672 return (2 << 2) | extract32(s1
, 0, 2);
10673 } else { /* write-back */
10678 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
10679 * and CombineS1S2Desc()
10681 * @s1: Attributes from stage 1 walk
10682 * @s2: Attributes from stage 2 walk
10684 static ARMCacheAttrs
combine_cacheattrs(ARMCacheAttrs s1
, ARMCacheAttrs s2
)
10686 uint8_t s1lo
= extract32(s1
.attrs
, 0, 4), s2lo
= extract32(s2
.attrs
, 0, 4);
10687 uint8_t s1hi
= extract32(s1
.attrs
, 4, 4), s2hi
= extract32(s2
.attrs
, 4, 4);
10690 /* Combine shareability attributes (table D4-43) */
10691 if (s1
.shareability
== 2 || s2
.shareability
== 2) {
10692 /* if either are outer-shareable, the result is outer-shareable */
10693 ret
.shareability
= 2;
10694 } else if (s1
.shareability
== 3 || s2
.shareability
== 3) {
10695 /* if either are inner-shareable, the result is inner-shareable */
10696 ret
.shareability
= 3;
10698 /* both non-shareable */
10699 ret
.shareability
= 0;
10702 /* Combine memory type and cacheability attributes */
10703 if (s1hi
== 0 || s2hi
== 0) {
10704 /* Device has precedence over normal */
10705 if (s1lo
== 0 || s2lo
== 0) {
10706 /* nGnRnE has precedence over anything */
10708 } else if (s1lo
== 4 || s2lo
== 4) {
10709 /* non-Reordering has precedence over Reordering */
10710 ret
.attrs
= 4; /* nGnRE */
10711 } else if (s1lo
== 8 || s2lo
== 8) {
10712 /* non-Gathering has precedence over Gathering */
10713 ret
.attrs
= 8; /* nGRE */
10715 ret
.attrs
= 0xc; /* GRE */
10718 /* Any location for which the resultant memory type is any
10719 * type of Device memory is always treated as Outer Shareable.
10721 ret
.shareability
= 2;
10722 } else { /* Normal memory */
10723 /* Outer/inner cacheability combine independently */
10724 ret
.attrs
= combine_cacheattr_nibble(s1hi
, s2hi
) << 4
10725 | combine_cacheattr_nibble(s1lo
, s2lo
);
10727 if (ret
.attrs
== 0x44) {
10728 /* Any location for which the resultant memory type is Normal
10729 * Inner Non-cacheable, Outer Non-cacheable is always treated
10730 * as Outer Shareable.
10732 ret
.shareability
= 2;
10740 /* get_phys_addr - get the physical address for this virtual address
10742 * Find the physical address corresponding to the given virtual address,
10743 * by doing a translation table walk on MMU based systems or using the
10744 * MPU state on MPU based systems.
10746 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
10747 * prot and page_size may not be filled in, and the populated fsr value provides
10748 * information on why the translation aborted, in the format of a
10749 * DFSR/IFSR fault register, with the following caveats:
10750 * * we honour the short vs long DFSR format differences.
10751 * * the WnR bit is never set (the caller must do this).
10752 * * for PSMAv5 based systems we don't bother to return a full FSR format
10755 * @env: CPUARMState
10756 * @address: virtual address to get physical address for
10757 * @access_type: 0 for read, 1 for write, 2 for execute
10758 * @mmu_idx: MMU index indicating required translation regime
10759 * @phys_ptr: set to the physical address corresponding to the virtual address
10760 * @attrs: set to the memory transaction attributes to use
10761 * @prot: set to the permissions for the page containing phys_ptr
10762 * @page_size: set to the size of the page containing phys_ptr
10763 * @fi: set to fault info if the translation fails
10764 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
10766 bool get_phys_addr(CPUARMState
*env
, target_ulong address
,
10767 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
10768 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
10769 target_ulong
*page_size
,
10770 ARMMMUFaultInfo
*fi
, ARMCacheAttrs
*cacheattrs
)
10772 if (mmu_idx
== ARMMMUIdx_S12NSE0
|| mmu_idx
== ARMMMUIdx_S12NSE1
) {
10773 /* Call ourselves recursively to do the stage 1 and then stage 2
10776 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
10780 ARMCacheAttrs cacheattrs2
= {};
10782 ret
= get_phys_addr(env
, address
, access_type
,
10783 stage_1_mmu_idx(mmu_idx
), &ipa
, attrs
,
10784 prot
, page_size
, fi
, cacheattrs
);
10786 /* If S1 fails or S2 is disabled, return early. */
10787 if (ret
|| regime_translation_disabled(env
, ARMMMUIdx_S2NS
)) {
10792 /* S1 is done. Now do S2 translation. */
10793 ret
= get_phys_addr_lpae(env
, ipa
, access_type
, ARMMMUIdx_S2NS
,
10794 phys_ptr
, attrs
, &s2_prot
,
10796 cacheattrs
!= NULL
? &cacheattrs2
: NULL
);
10798 /* Combine the S1 and S2 perms. */
10801 /* Combine the S1 and S2 cache attributes, if needed */
10802 if (!ret
&& cacheattrs
!= NULL
) {
10803 if (env
->cp15
.hcr_el2
& HCR_DC
) {
10805 * HCR.DC forces the first stage attributes to
10806 * Normal Non-Shareable,
10807 * Inner Write-Back Read-Allocate Write-Allocate,
10808 * Outer Write-Back Read-Allocate Write-Allocate.
10810 cacheattrs
->attrs
= 0xff;
10811 cacheattrs
->shareability
= 0;
10813 *cacheattrs
= combine_cacheattrs(*cacheattrs
, cacheattrs2
);
10819 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
10821 mmu_idx
= stage_1_mmu_idx(mmu_idx
);
10825 /* The page table entries may downgrade secure to non-secure, but
10826 * cannot upgrade an non-secure translation regime's attributes
10829 attrs
->secure
= regime_is_secure(env
, mmu_idx
);
10830 attrs
->user
= regime_is_user(env
, mmu_idx
);
10832 /* Fast Context Switch Extension. This doesn't exist at all in v8.
10833 * In v7 and earlier it affects all stage 1 translations.
10835 if (address
< 0x02000000 && mmu_idx
!= ARMMMUIdx_S2NS
10836 && !arm_feature(env
, ARM_FEATURE_V8
)) {
10837 if (regime_el(env
, mmu_idx
) == 3) {
10838 address
+= env
->cp15
.fcseidr_s
;
10840 address
+= env
->cp15
.fcseidr_ns
;
10844 if (arm_feature(env
, ARM_FEATURE_PMSA
)) {
10846 *page_size
= TARGET_PAGE_SIZE
;
10848 if (arm_feature(env
, ARM_FEATURE_V8
)) {
10850 ret
= get_phys_addr_pmsav8(env
, address
, access_type
, mmu_idx
,
10851 phys_ptr
, attrs
, prot
, page_size
, fi
);
10852 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
10854 ret
= get_phys_addr_pmsav7(env
, address
, access_type
, mmu_idx
,
10855 phys_ptr
, prot
, page_size
, fi
);
10858 ret
= get_phys_addr_pmsav5(env
, address
, access_type
, mmu_idx
,
10859 phys_ptr
, prot
, fi
);
10861 qemu_log_mask(CPU_LOG_MMU
, "PMSA MPU lookup for %s at 0x%08" PRIx32
10862 " mmu_idx %u -> %s (prot %c%c%c)\n",
10863 access_type
== MMU_DATA_LOAD
? "reading" :
10864 (access_type
== MMU_DATA_STORE
? "writing" : "execute"),
10865 (uint32_t)address
, mmu_idx
,
10866 ret
? "Miss" : "Hit",
10867 *prot
& PAGE_READ
? 'r' : '-',
10868 *prot
& PAGE_WRITE
? 'w' : '-',
10869 *prot
& PAGE_EXEC
? 'x' : '-');
10874 /* Definitely a real MMU, not an MPU */
10876 if (regime_translation_disabled(env
, mmu_idx
)) {
10877 /* MMU disabled. */
10878 *phys_ptr
= address
;
10879 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
10880 *page_size
= TARGET_PAGE_SIZE
;
10884 if (regime_using_lpae_format(env
, mmu_idx
)) {
10885 return get_phys_addr_lpae(env
, address
, access_type
, mmu_idx
,
10886 phys_ptr
, attrs
, prot
, page_size
,
10888 } else if (regime_sctlr(env
, mmu_idx
) & SCTLR_XP
) {
10889 return get_phys_addr_v6(env
, address
, access_type
, mmu_idx
,
10890 phys_ptr
, attrs
, prot
, page_size
, fi
);
10892 return get_phys_addr_v5(env
, address
, access_type
, mmu_idx
,
10893 phys_ptr
, prot
, page_size
, fi
);
10897 hwaddr
arm_cpu_get_phys_page_attrs_debug(CPUState
*cs
, vaddr addr
,
10900 ARMCPU
*cpu
= ARM_CPU(cs
);
10901 CPUARMState
*env
= &cpu
->env
;
10903 target_ulong page_size
;
10906 ARMMMUFaultInfo fi
= {};
10907 ARMMMUIdx mmu_idx
= arm_mmu_idx(env
);
10909 *attrs
= (MemTxAttrs
) {};
10911 ret
= get_phys_addr(env
, addr
, 0, mmu_idx
, &phys_addr
,
10912 attrs
, &prot
, &page_size
, &fi
, NULL
);
10922 /* Note that signed overflow is undefined in C. The following routines are
10923 careful to use unsigned types where modulo arithmetic is required.
10924 Failure to do so _will_ break on newer gcc. */
10926 /* Signed saturating arithmetic. */
10928 /* Perform 16-bit signed saturating addition. */
10929 static inline uint16_t add16_sat(uint16_t a
, uint16_t b
)
10934 if (((res
^ a
) & 0x8000) && !((a
^ b
) & 0x8000)) {
10943 /* Perform 8-bit signed saturating addition. */
10944 static inline uint8_t add8_sat(uint8_t a
, uint8_t b
)
10949 if (((res
^ a
) & 0x80) && !((a
^ b
) & 0x80)) {
10958 /* Perform 16-bit signed saturating subtraction. */
10959 static inline uint16_t sub16_sat(uint16_t a
, uint16_t b
)
10964 if (((res
^ a
) & 0x8000) && ((a
^ b
) & 0x8000)) {
10973 /* Perform 8-bit signed saturating subtraction. */
10974 static inline uint8_t sub8_sat(uint8_t a
, uint8_t b
)
10979 if (((res
^ a
) & 0x80) && ((a
^ b
) & 0x80)) {
10988 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
10989 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
10990 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
10991 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
10994 #include "op_addsub.h"
10996 /* Unsigned saturating arithmetic. */
10997 static inline uint16_t add16_usat(uint16_t a
, uint16_t b
)
11006 static inline uint16_t sub16_usat(uint16_t a
, uint16_t b
)
11014 static inline uint8_t add8_usat(uint8_t a
, uint8_t b
)
11023 static inline uint8_t sub8_usat(uint8_t a
, uint8_t b
)
11031 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
11032 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
11033 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
11034 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
11037 #include "op_addsub.h"
11039 /* Signed modulo arithmetic. */
11040 #define SARITH16(a, b, n, op) do { \
11042 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
11043 RESULT(sum, n, 16); \
11045 ge |= 3 << (n * 2); \
11048 #define SARITH8(a, b, n, op) do { \
11050 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
11051 RESULT(sum, n, 8); \
11057 #define ADD16(a, b, n) SARITH16(a, b, n, +)
11058 #define SUB16(a, b, n) SARITH16(a, b, n, -)
11059 #define ADD8(a, b, n) SARITH8(a, b, n, +)
11060 #define SUB8(a, b, n) SARITH8(a, b, n, -)
11064 #include "op_addsub.h"
11066 /* Unsigned modulo arithmetic. */
11067 #define ADD16(a, b, n) do { \
11069 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
11070 RESULT(sum, n, 16); \
11071 if ((sum >> 16) == 1) \
11072 ge |= 3 << (n * 2); \
11075 #define ADD8(a, b, n) do { \
11077 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
11078 RESULT(sum, n, 8); \
11079 if ((sum >> 8) == 1) \
11083 #define SUB16(a, b, n) do { \
11085 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
11086 RESULT(sum, n, 16); \
11087 if ((sum >> 16) == 0) \
11088 ge |= 3 << (n * 2); \
11091 #define SUB8(a, b, n) do { \
11093 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
11094 RESULT(sum, n, 8); \
11095 if ((sum >> 8) == 0) \
11102 #include "op_addsub.h"
11104 /* Halved signed arithmetic. */
11105 #define ADD16(a, b, n) \
11106 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
11107 #define SUB16(a, b, n) \
11108 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
11109 #define ADD8(a, b, n) \
11110 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
11111 #define SUB8(a, b, n) \
11112 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
11115 #include "op_addsub.h"
11117 /* Halved unsigned arithmetic. */
11118 #define ADD16(a, b, n) \
11119 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11120 #define SUB16(a, b, n) \
11121 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11122 #define ADD8(a, b, n) \
11123 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11124 #define SUB8(a, b, n) \
11125 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11128 #include "op_addsub.h"
11130 static inline uint8_t do_usad(uint8_t a
, uint8_t b
)
11138 /* Unsigned sum of absolute byte differences. */
11139 uint32_t HELPER(usad8
)(uint32_t a
, uint32_t b
)
11142 sum
= do_usad(a
, b
);
11143 sum
+= do_usad(a
>> 8, b
>> 8);
11144 sum
+= do_usad(a
>> 16, b
>>16);
11145 sum
+= do_usad(a
>> 24, b
>> 24);
11149 /* For ARMv6 SEL instruction. */
11150 uint32_t HELPER(sel_flags
)(uint32_t flags
, uint32_t a
, uint32_t b
)
11162 mask
|= 0xff000000;
11163 return (a
& mask
) | (b
& ~mask
);
11167 * The upper bytes of val (above the number specified by 'bytes') must have
11168 * been zeroed out by the caller.
11170 uint32_t HELPER(crc32
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
11174 stl_le_p(buf
, val
);
11176 /* zlib crc32 converts the accumulator and output to one's complement. */
11177 return crc32(acc
^ 0xffffffff, buf
, bytes
) ^ 0xffffffff;
11180 uint32_t HELPER(crc32c
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
11184 stl_le_p(buf
, val
);
11186 /* Linux crc32c converts the output to one's complement. */
11187 return crc32c(acc
, buf
, bytes
) ^ 0xffffffff;
11190 /* Return the exception level to which FP-disabled exceptions should
11191 * be taken, or 0 if FP is enabled.
11193 int fp_exception_el(CPUARMState
*env
, int cur_el
)
11195 #ifndef CONFIG_USER_ONLY
11198 /* CPACR and the CPTR registers don't exist before v6, so FP is
11199 * always accessible
11201 if (!arm_feature(env
, ARM_FEATURE_V6
)) {
11205 if (arm_feature(env
, ARM_FEATURE_M
)) {
11206 /* CPACR can cause a NOCP UsageFault taken to current security state */
11207 if (!v7m_cpacr_pass(env
, env
->v7m
.secure
, cur_el
!= 0)) {
11211 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
) && !env
->v7m
.secure
) {
11212 if (!extract32(env
->v7m
.nsacr
, 10, 1)) {
11213 /* FP insns cause a NOCP UsageFault taken to Secure */
11221 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
11222 * 0, 2 : trap EL0 and EL1/PL1 accesses
11223 * 1 : trap only EL0 accesses
11224 * 3 : trap no accesses
11226 fpen
= extract32(env
->cp15
.cpacr_el1
, 20, 2);
11230 if (cur_el
== 0 || cur_el
== 1) {
11231 /* Trap to PL1, which might be EL1 or EL3 */
11232 if (arm_is_secure(env
) && !arm_el_is_aa64(env
, 3)) {
11237 if (cur_el
== 3 && !is_a64(env
)) {
11238 /* Secure PL1 running at EL3 */
11252 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
11253 * to control non-secure access to the FPU. It doesn't have any
11254 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
11256 if ((arm_feature(env
, ARM_FEATURE_EL3
) && !arm_el_is_aa64(env
, 3) &&
11257 cur_el
<= 2 && !arm_is_secure_below_el3(env
))) {
11258 if (!extract32(env
->cp15
.nsacr
, 10, 1)) {
11259 /* FP insns act as UNDEF */
11260 return cur_el
== 2 ? 2 : 1;
11264 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
11265 * check because zero bits in the registers mean "don't trap".
11268 /* CPTR_EL2 : present in v7VE or v8 */
11269 if (cur_el
<= 2 && extract32(env
->cp15
.cptr_el
[2], 10, 1)
11270 && !arm_is_secure_below_el3(env
)) {
11271 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
11275 /* CPTR_EL3 : present in v8 */
11276 if (extract32(env
->cp15
.cptr_el
[3], 10, 1)) {
11277 /* Trap all FP ops to EL3 */
11285 ARMMMUIdx
arm_v7m_mmu_idx_for_secstate(CPUARMState
*env
, bool secstate
)
11287 g_assert_not_reached();
11291 ARMMMUIdx
arm_mmu_idx_el(CPUARMState
*env
, int el
)
11293 if (arm_feature(env
, ARM_FEATURE_M
)) {
11294 return arm_v7m_mmu_idx_for_secstate(env
, env
->v7m
.secure
);
11297 if (el
< 2 && arm_is_secure_below_el3(env
)) {
11298 return ARMMMUIdx_S1SE0
+ el
;
11300 return ARMMMUIdx_S12NSE0
+ el
;
11304 ARMMMUIdx
arm_mmu_idx(CPUARMState
*env
)
11306 return arm_mmu_idx_el(env
, arm_current_el(env
));
11309 int cpu_mmu_index(CPUARMState
*env
, bool ifetch
)
11311 return arm_to_core_mmu_idx(arm_mmu_idx(env
));
11314 #ifndef CONFIG_USER_ONLY
11315 ARMMMUIdx
arm_stage1_mmu_idx(CPUARMState
*env
)
11317 return stage_1_mmu_idx(arm_mmu_idx(env
));
11321 static uint32_t rebuild_hflags_common(CPUARMState
*env
, int fp_el
,
11322 ARMMMUIdx mmu_idx
, uint32_t flags
)
11324 flags
= FIELD_DP32(flags
, TBFLAG_ANY
, FPEXC_EL
, fp_el
);
11325 flags
= FIELD_DP32(flags
, TBFLAG_ANY
, MMUIDX
,
11326 arm_to_core_mmu_idx(mmu_idx
));
11328 if (arm_singlestep_active(env
)) {
11329 flags
= FIELD_DP32(flags
, TBFLAG_ANY
, SS_ACTIVE
, 1);
11334 static uint32_t rebuild_hflags_common_32(CPUARMState
*env
, int fp_el
,
11335 ARMMMUIdx mmu_idx
, uint32_t flags
)
11337 bool sctlr_b
= arm_sctlr_b(env
);
11340 flags
= FIELD_DP32(flags
, TBFLAG_A32
, SCTLR_B
, 1);
11342 if (arm_cpu_data_is_big_endian_a32(env
, sctlr_b
)) {
11343 flags
= FIELD_DP32(flags
, TBFLAG_ANY
, BE_DATA
, 1);
11345 flags
= FIELD_DP32(flags
, TBFLAG_A32
, NS
, !access_secure_reg(env
));
11347 return rebuild_hflags_common(env
, fp_el
, mmu_idx
, flags
);
11350 static uint32_t rebuild_hflags_m32(CPUARMState
*env
, int fp_el
,
11353 uint32_t flags
= 0;
11355 /* v8M always enables the fpu. */
11356 flags
= FIELD_DP32(flags
, TBFLAG_A32
, VFPEN
, 1);
11358 if (arm_v7m_is_handler_mode(env
)) {
11359 flags
= FIELD_DP32(flags
, TBFLAG_A32
, HANDLER
, 1);
11363 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
11364 * is suppressing them because the requested execution priority
11367 if (arm_feature(env
, ARM_FEATURE_V8
) &&
11368 !((mmu_idx
& ARM_MMU_IDX_M_NEGPRI
) &&
11369 (env
->v7m
.ccr
[env
->v7m
.secure
] & R_V7M_CCR_STKOFHFNMIGN_MASK
))) {
11370 flags
= FIELD_DP32(flags
, TBFLAG_A32
, STACKCHECK
, 1);
11373 return rebuild_hflags_common_32(env
, fp_el
, mmu_idx
, flags
);
11376 static uint32_t rebuild_hflags_aprofile(CPUARMState
*env
)
11380 flags
= FIELD_DP32(flags
, TBFLAG_ANY
, DEBUG_TARGET_EL
,
11381 arm_debug_target_el(env
));
11385 static uint32_t rebuild_hflags_a32(CPUARMState
*env
, int fp_el
,
11388 uint32_t flags
= rebuild_hflags_aprofile(env
);
11390 if (arm_el_is_aa64(env
, 1)) {
11391 flags
= FIELD_DP32(flags
, TBFLAG_A32
, VFPEN
, 1);
11394 if (arm_current_el(env
) < 2 && env
->cp15
.hstr_el2
&&
11395 (arm_hcr_el2_eff(env
) & (HCR_E2H
| HCR_TGE
)) != (HCR_E2H
| HCR_TGE
)) {
11396 flags
= FIELD_DP32(flags
, TBFLAG_A32
, HSTR_ACTIVE
, 1);
11399 return rebuild_hflags_common_32(env
, fp_el
, mmu_idx
, flags
);
11402 static uint32_t rebuild_hflags_a64(CPUARMState
*env
, int el
, int fp_el
,
11405 uint32_t flags
= rebuild_hflags_aprofile(env
);
11406 ARMMMUIdx stage1
= stage_1_mmu_idx(mmu_idx
);
11407 ARMVAParameters p0
= aa64_va_parameters_both(env
, 0, stage1
);
11411 flags
= FIELD_DP32(flags
, TBFLAG_ANY
, AARCH64_STATE
, 1);
11413 /* FIXME: ARMv8.1-VHE S2 translation regime. */
11414 if (regime_el(env
, stage1
) < 2) {
11415 ARMVAParameters p1
= aa64_va_parameters_both(env
, -1, stage1
);
11416 tbid
= (p1
.tbi
<< 1) | p0
.tbi
;
11417 tbii
= tbid
& ~((p1
.tbid
<< 1) | p0
.tbid
);
11420 tbii
= tbid
& !p0
.tbid
;
11423 flags
= FIELD_DP32(flags
, TBFLAG_A64
, TBII
, tbii
);
11424 flags
= FIELD_DP32(flags
, TBFLAG_A64
, TBID
, tbid
);
11426 if (cpu_isar_feature(aa64_sve
, env_archcpu(env
))) {
11427 int sve_el
= sve_exception_el(env
, el
);
11431 * If SVE is disabled, but FP is enabled,
11432 * then the effective len is 0.
11434 if (sve_el
!= 0 && fp_el
== 0) {
11437 zcr_len
= sve_zcr_len_for_el(env
, el
);
11439 flags
= FIELD_DP32(flags
, TBFLAG_A64
, SVEEXC_EL
, sve_el
);
11440 flags
= FIELD_DP32(flags
, TBFLAG_A64
, ZCR_LEN
, zcr_len
);
11443 sctlr
= arm_sctlr(env
, el
);
11445 if (arm_cpu_data_is_big_endian_a64(el
, sctlr
)) {
11446 flags
= FIELD_DP32(flags
, TBFLAG_ANY
, BE_DATA
, 1);
11449 if (cpu_isar_feature(aa64_pauth
, env_archcpu(env
))) {
11451 * In order to save space in flags, we record only whether
11452 * pauth is "inactive", meaning all insns are implemented as
11453 * a nop, or "active" when some action must be performed.
11454 * The decision of which action to take is left to a helper.
11456 if (sctlr
& (SCTLR_EnIA
| SCTLR_EnIB
| SCTLR_EnDA
| SCTLR_EnDB
)) {
11457 flags
= FIELD_DP32(flags
, TBFLAG_A64
, PAUTH_ACTIVE
, 1);
11461 if (cpu_isar_feature(aa64_bti
, env_archcpu(env
))) {
11462 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */
11463 if (sctlr
& (el
== 0 ? SCTLR_BT0
: SCTLR_BT1
)) {
11464 flags
= FIELD_DP32(flags
, TBFLAG_A64
, BT
, 1);
11468 return rebuild_hflags_common(env
, fp_el
, mmu_idx
, flags
);
11471 static uint32_t rebuild_hflags_internal(CPUARMState
*env
)
11473 int el
= arm_current_el(env
);
11474 int fp_el
= fp_exception_el(env
, el
);
11475 ARMMMUIdx mmu_idx
= arm_mmu_idx_el(env
, el
);
11478 return rebuild_hflags_a64(env
, el
, fp_el
, mmu_idx
);
11479 } else if (arm_feature(env
, ARM_FEATURE_M
)) {
11480 return rebuild_hflags_m32(env
, fp_el
, mmu_idx
);
11482 return rebuild_hflags_a32(env
, fp_el
, mmu_idx
);
11486 void arm_rebuild_hflags(CPUARMState
*env
)
11488 env
->hflags
= rebuild_hflags_internal(env
);
11491 void HELPER(rebuild_hflags_m32
)(CPUARMState
*env
, int el
)
11493 int fp_el
= fp_exception_el(env
, el
);
11494 ARMMMUIdx mmu_idx
= arm_mmu_idx_el(env
, el
);
11496 env
->hflags
= rebuild_hflags_m32(env
, fp_el
, mmu_idx
);
11500 * If we have triggered a EL state change we can't rely on the
11501 * translator having passed it too us, we need to recompute.
11503 void HELPER(rebuild_hflags_a32_newel
)(CPUARMState
*env
)
11505 int el
= arm_current_el(env
);
11506 int fp_el
= fp_exception_el(env
, el
);
11507 ARMMMUIdx mmu_idx
= arm_mmu_idx_el(env
, el
);
11508 env
->hflags
= rebuild_hflags_a32(env
, fp_el
, mmu_idx
);
11511 void HELPER(rebuild_hflags_a32
)(CPUARMState
*env
, int el
)
11513 int fp_el
= fp_exception_el(env
, el
);
11514 ARMMMUIdx mmu_idx
= arm_mmu_idx_el(env
, el
);
11516 env
->hflags
= rebuild_hflags_a32(env
, fp_el
, mmu_idx
);
11519 void HELPER(rebuild_hflags_a64
)(CPUARMState
*env
, int el
)
11521 int fp_el
= fp_exception_el(env
, el
);
11522 ARMMMUIdx mmu_idx
= arm_mmu_idx_el(env
, el
);
11524 env
->hflags
= rebuild_hflags_a64(env
, el
, fp_el
, mmu_idx
);
11527 static inline void assert_hflags_rebuild_correctly(CPUARMState
*env
)
11529 #ifdef CONFIG_DEBUG_TCG
11530 uint32_t env_flags_current
= env
->hflags
;
11531 uint32_t env_flags_rebuilt
= rebuild_hflags_internal(env
);
11533 if (unlikely(env_flags_current
!= env_flags_rebuilt
)) {
11534 fprintf(stderr
, "TCG hflags mismatch (current:0x%08x rebuilt:0x%08x)\n",
11535 env_flags_current
, env_flags_rebuilt
);
11541 void cpu_get_tb_cpu_state(CPUARMState
*env
, target_ulong
*pc
,
11542 target_ulong
*cs_base
, uint32_t *pflags
)
11544 uint32_t flags
= env
->hflags
;
11545 uint32_t pstate_for_ss
;
11548 assert_hflags_rebuild_correctly(env
);
11550 if (FIELD_EX32(flags
, TBFLAG_ANY
, AARCH64_STATE
)) {
11552 if (cpu_isar_feature(aa64_bti
, env_archcpu(env
))) {
11553 flags
= FIELD_DP32(flags
, TBFLAG_A64
, BTYPE
, env
->btype
);
11555 pstate_for_ss
= env
->pstate
;
11557 *pc
= env
->regs
[15];
11559 if (arm_feature(env
, ARM_FEATURE_M
)) {
11560 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
) &&
11561 FIELD_EX32(env
->v7m
.fpccr
[M_REG_S
], V7M_FPCCR
, S
)
11562 != env
->v7m
.secure
) {
11563 flags
= FIELD_DP32(flags
, TBFLAG_A32
, FPCCR_S_WRONG
, 1);
11566 if ((env
->v7m
.fpccr
[env
->v7m
.secure
] & R_V7M_FPCCR_ASPEN_MASK
) &&
11567 (!(env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_FPCA_MASK
) ||
11568 (env
->v7m
.secure
&&
11569 !(env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_SFPA_MASK
)))) {
11571 * ASPEN is set, but FPCA/SFPA indicate that there is no
11572 * active FP context; we must create a new FP context before
11573 * executing any FP insn.
11575 flags
= FIELD_DP32(flags
, TBFLAG_A32
, NEW_FP_CTXT_NEEDED
, 1);
11578 bool is_secure
= env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_S_MASK
;
11579 if (env
->v7m
.fpccr
[is_secure
] & R_V7M_FPCCR_LSPACT_MASK
) {
11580 flags
= FIELD_DP32(flags
, TBFLAG_A32
, LSPACT
, 1);
11584 * Note that XSCALE_CPAR shares bits with VECSTRIDE.
11585 * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
11587 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
11588 flags
= FIELD_DP32(flags
, TBFLAG_A32
,
11589 XSCALE_CPAR
, env
->cp15
.c15_cpar
);
11591 flags
= FIELD_DP32(flags
, TBFLAG_A32
, VECLEN
,
11593 flags
= FIELD_DP32(flags
, TBFLAG_A32
, VECSTRIDE
,
11594 env
->vfp
.vec_stride
);
11596 if (env
->vfp
.xregs
[ARM_VFP_FPEXC
] & (1 << 30)) {
11597 flags
= FIELD_DP32(flags
, TBFLAG_A32
, VFPEN
, 1);
11601 flags
= FIELD_DP32(flags
, TBFLAG_A32
, THUMB
, env
->thumb
);
11602 flags
= FIELD_DP32(flags
, TBFLAG_A32
, CONDEXEC
, env
->condexec_bits
);
11603 pstate_for_ss
= env
->uncached_cpsr
;
11607 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
11608 * states defined in the ARM ARM for software singlestep:
11609 * SS_ACTIVE PSTATE.SS State
11610 * 0 x Inactive (the TB flag for SS is always 0)
11611 * 1 0 Active-pending
11612 * 1 1 Active-not-pending
11613 * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB.
11615 if (FIELD_EX32(flags
, TBFLAG_ANY
, SS_ACTIVE
) &&
11616 (pstate_for_ss
& PSTATE_SS
)) {
11617 flags
= FIELD_DP32(flags
, TBFLAG_ANY
, PSTATE_SS
, 1);
11623 #ifdef TARGET_AARCH64
11625 * The manual says that when SVE is enabled and VQ is widened the
11626 * implementation is allowed to zero the previously inaccessible
11627 * portion of the registers. The corollary to that is that when
11628 * SVE is enabled and VQ is narrowed we are also allowed to zero
11629 * the now inaccessible portion of the registers.
11631 * The intent of this is that no predicate bit beyond VQ is ever set.
11632 * Which means that some operations on predicate registers themselves
11633 * may operate on full uint64_t or even unrolled across the maximum
11634 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
11635 * may well be cheaper than conditionals to restrict the operation
11636 * to the relevant portion of a uint16_t[16].
11638 void aarch64_sve_narrow_vq(CPUARMState
*env
, unsigned vq
)
11643 assert(vq
>= 1 && vq
<= ARM_MAX_VQ
);
11644 assert(vq
<= env_archcpu(env
)->sve_max_vq
);
11646 /* Zap the high bits of the zregs. */
11647 for (i
= 0; i
< 32; i
++) {
11648 memset(&env
->vfp
.zregs
[i
].d
[2 * vq
], 0, 16 * (ARM_MAX_VQ
- vq
));
11651 /* Zap the high bits of the pregs and ffr. */
11654 pmask
= ~(-1ULL << (16 * (vq
& 3)));
11656 for (j
= vq
/ 4; j
< ARM_MAX_VQ
/ 4; j
++) {
11657 for (i
= 0; i
< 17; ++i
) {
11658 env
->vfp
.pregs
[i
].p
[j
] &= pmask
;
11665 * Notice a change in SVE vector size when changing EL.
11667 void aarch64_sve_change_el(CPUARMState
*env
, int old_el
,
11668 int new_el
, bool el0_a64
)
11670 ARMCPU
*cpu
= env_archcpu(env
);
11671 int old_len
, new_len
;
11672 bool old_a64
, new_a64
;
11674 /* Nothing to do if no SVE. */
11675 if (!cpu_isar_feature(aa64_sve
, cpu
)) {
11679 /* Nothing to do if FP is disabled in either EL. */
11680 if (fp_exception_el(env
, old_el
) || fp_exception_el(env
, new_el
)) {
11685 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
11686 * at ELx, or not available because the EL is in AArch32 state, then
11687 * for all purposes other than a direct read, the ZCR_ELx.LEN field
11688 * has an effective value of 0".
11690 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
11691 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
11692 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
11693 * we already have the correct register contents when encountering the
11694 * vq0->vq0 transition between EL0->EL1.
11696 old_a64
= old_el
? arm_el_is_aa64(env
, old_el
) : el0_a64
;
11697 old_len
= (old_a64
&& !sve_exception_el(env
, old_el
)
11698 ? sve_zcr_len_for_el(env
, old_el
) : 0);
11699 new_a64
= new_el
? arm_el_is_aa64(env
, new_el
) : el0_a64
;
11700 new_len
= (new_a64
&& !sve_exception_el(env
, new_el
)
11701 ? sve_zcr_len_for_el(env
, new_el
) : 0);
11703 /* When changing vector length, clear inaccessible state. */
11704 if (new_len
< old_len
) {
11705 aarch64_sve_narrow_vq(env
, new_len
+ 1);