2 * Flash NAND memory emulation. Based on "16M x 8 Bit NAND Flash
3 * Memory" datasheet for the KM29U128AT / K9F2808U0A chips from
6 * Copyright (c) 2006 Openedhand Ltd.
7 * Written by Andrzej Zaborowski <balrog@zabor.org>
9 * Support for additional features based on "MT29F2G16ABCWP 2Gx16"
10 * datasheet from Micron Technology and "NAND02G-B2C" datasheet
11 * from ST Microelectronics.
13 * This code is licensed under the GNU GPL v2.
15 * Contributions after 2012-01-13 are licensed under the terms of the
16 * GNU GPL, version 2 or (at your option) any later version.
22 # include "hw/block/flash.h"
23 #include "sysemu/block-backend.h"
25 #include "qemu/error-report.h"
27 # define NAND_CMD_READ0 0x00
28 # define NAND_CMD_READ1 0x01
29 # define NAND_CMD_READ2 0x50
30 # define NAND_CMD_LPREAD2 0x30
31 # define NAND_CMD_NOSERIALREAD2 0x35
32 # define NAND_CMD_RANDOMREAD1 0x05
33 # define NAND_CMD_RANDOMREAD2 0xe0
34 # define NAND_CMD_READID 0x90
35 # define NAND_CMD_RESET 0xff
36 # define NAND_CMD_PAGEPROGRAM1 0x80
37 # define NAND_CMD_PAGEPROGRAM2 0x10
38 # define NAND_CMD_CACHEPROGRAM2 0x15
39 # define NAND_CMD_BLOCKERASE1 0x60
40 # define NAND_CMD_BLOCKERASE2 0xd0
41 # define NAND_CMD_READSTATUS 0x70
42 # define NAND_CMD_COPYBACKPRG1 0x85
44 # define NAND_IOSTATUS_ERROR (1 << 0)
45 # define NAND_IOSTATUS_PLANE0 (1 << 1)
46 # define NAND_IOSTATUS_PLANE1 (1 << 2)
47 # define NAND_IOSTATUS_PLANE2 (1 << 3)
48 # define NAND_IOSTATUS_PLANE3 (1 << 4)
49 # define NAND_IOSTATUS_READY (1 << 6)
50 # define NAND_IOSTATUS_UNPROTCT (1 << 7)
52 # define MAX_PAGE 0x800
55 typedef struct NANDFlashState NANDFlashState
;
56 struct NANDFlashState
{
57 DeviceState parent_obj
;
59 uint8_t manf_id
, chip_id
;
60 uint8_t buswidth
; /* in BYTES */
62 int page_shift
, oob_shift
, erase_shift
, addr_shift
;
67 uint8_t cle
, ale
, ce
, wp
, gnd
;
69 uint8_t io
[MAX_PAGE
+ MAX_OOB
+ 0x400];
79 void (*blk_write
)(NANDFlashState
*s
);
80 void (*blk_erase
)(NANDFlashState
*s
);
81 void (*blk_load
)(NANDFlashState
*s
, uint64_t addr
, int offset
);
83 uint32_t ioaddr_vmstate
;
86 #define TYPE_NAND "nand"
89 OBJECT_CHECK(NANDFlashState, (obj), TYPE_NAND)
91 static void mem_and(uint8_t *dest
, const uint8_t *src
, size_t n
)
93 /* Like memcpy() but we logical-AND the data into the destination */
95 for (i
= 0; i
< n
; i
++) {
100 # define NAND_NO_AUTOINCR 0x00000001
101 # define NAND_BUSWIDTH_16 0x00000002
102 # define NAND_NO_PADDING 0x00000004
103 # define NAND_CACHEPRG 0x00000008
104 # define NAND_COPYBACK 0x00000010
105 # define NAND_IS_AND 0x00000020
106 # define NAND_4PAGE_ARRAY 0x00000040
107 # define NAND_NO_READRDY 0x00000100
108 # define NAND_SAMSUNG_LP (NAND_NO_PADDING | NAND_COPYBACK)
112 # define PAGE(addr) ((addr) >> ADDR_SHIFT)
113 # define PAGE_START(page) (PAGE(page) * (PAGE_SIZE + OOB_SIZE))
114 # define PAGE_MASK ((1 << ADDR_SHIFT) - 1)
115 # define OOB_SHIFT (PAGE_SHIFT - 5)
116 # define OOB_SIZE (1 << OOB_SHIFT)
117 # define SECTOR(addr) ((addr) >> (9 + ADDR_SHIFT - PAGE_SHIFT))
118 # define SECTOR_OFFSET(addr) ((addr) & ((511 >> PAGE_SHIFT) << 8))
120 # define PAGE_SIZE 256
121 # define PAGE_SHIFT 8
122 # define PAGE_SECTORS 1
123 # define ADDR_SHIFT 8
125 # define PAGE_SIZE 512
126 # define PAGE_SHIFT 9
127 # define PAGE_SECTORS 1
128 # define ADDR_SHIFT 8
130 # define PAGE_SIZE 2048
131 # define PAGE_SHIFT 11
132 # define PAGE_SECTORS 4
133 # define ADDR_SHIFT 16
136 /* Information based on Linux drivers/mtd/nand/nand_ids.c */
137 static const struct {
143 } nand_flash_ids
[0x100] = {
144 [0 ... 0xff] = { 0 },
146 [0x6e] = { 1, 8, 8, 4, 0 },
147 [0x64] = { 2, 8, 8, 4, 0 },
148 [0x6b] = { 4, 8, 9, 4, 0 },
149 [0xe8] = { 1, 8, 8, 4, 0 },
150 [0xec] = { 1, 8, 8, 4, 0 },
151 [0xea] = { 2, 8, 8, 4, 0 },
152 [0xd5] = { 4, 8, 9, 4, 0 },
153 [0xe3] = { 4, 8, 9, 4, 0 },
154 [0xe5] = { 4, 8, 9, 4, 0 },
155 [0xd6] = { 8, 8, 9, 4, 0 },
157 [0x39] = { 8, 8, 9, 4, 0 },
158 [0xe6] = { 8, 8, 9, 4, 0 },
159 [0x49] = { 8, 16, 9, 4, NAND_BUSWIDTH_16
},
160 [0x59] = { 8, 16, 9, 4, NAND_BUSWIDTH_16
},
162 [0x33] = { 16, 8, 9, 5, 0 },
163 [0x73] = { 16, 8, 9, 5, 0 },
164 [0x43] = { 16, 16, 9, 5, NAND_BUSWIDTH_16
},
165 [0x53] = { 16, 16, 9, 5, NAND_BUSWIDTH_16
},
167 [0x35] = { 32, 8, 9, 5, 0 },
168 [0x75] = { 32, 8, 9, 5, 0 },
169 [0x45] = { 32, 16, 9, 5, NAND_BUSWIDTH_16
},
170 [0x55] = { 32, 16, 9, 5, NAND_BUSWIDTH_16
},
172 [0x36] = { 64, 8, 9, 5, 0 },
173 [0x76] = { 64, 8, 9, 5, 0 },
174 [0x46] = { 64, 16, 9, 5, NAND_BUSWIDTH_16
},
175 [0x56] = { 64, 16, 9, 5, NAND_BUSWIDTH_16
},
177 [0x78] = { 128, 8, 9, 5, 0 },
178 [0x39] = { 128, 8, 9, 5, 0 },
179 [0x79] = { 128, 8, 9, 5, 0 },
180 [0x72] = { 128, 16, 9, 5, NAND_BUSWIDTH_16
},
181 [0x49] = { 128, 16, 9, 5, NAND_BUSWIDTH_16
},
182 [0x74] = { 128, 16, 9, 5, NAND_BUSWIDTH_16
},
183 [0x59] = { 128, 16, 9, 5, NAND_BUSWIDTH_16
},
185 [0x71] = { 256, 8, 9, 5, 0 },
188 * These are the new chips with large page size. The pagesize and the
189 * erasesize is determined from the extended id bytes
191 # define LP_OPTIONS (NAND_SAMSUNG_LP | NAND_NO_READRDY | NAND_NO_AUTOINCR)
192 # define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16)
195 [0xa2] = { 64, 8, 0, 0, LP_OPTIONS
},
196 [0xf2] = { 64, 8, 0, 0, LP_OPTIONS
},
197 [0xb2] = { 64, 16, 0, 0, LP_OPTIONS16
},
198 [0xc2] = { 64, 16, 0, 0, LP_OPTIONS16
},
201 [0xa1] = { 128, 8, 0, 0, LP_OPTIONS
},
202 [0xf1] = { 128, 8, 0, 0, LP_OPTIONS
},
203 [0xb1] = { 128, 16, 0, 0, LP_OPTIONS16
},
204 [0xc1] = { 128, 16, 0, 0, LP_OPTIONS16
},
207 [0xaa] = { 256, 8, 0, 0, LP_OPTIONS
},
208 [0xda] = { 256, 8, 0, 0, LP_OPTIONS
},
209 [0xba] = { 256, 16, 0, 0, LP_OPTIONS16
},
210 [0xca] = { 256, 16, 0, 0, LP_OPTIONS16
},
213 [0xac] = { 512, 8, 0, 0, LP_OPTIONS
},
214 [0xdc] = { 512, 8, 0, 0, LP_OPTIONS
},
215 [0xbc] = { 512, 16, 0, 0, LP_OPTIONS16
},
216 [0xcc] = { 512, 16, 0, 0, LP_OPTIONS16
},
219 [0xa3] = { 1024, 8, 0, 0, LP_OPTIONS
},
220 [0xd3] = { 1024, 8, 0, 0, LP_OPTIONS
},
221 [0xb3] = { 1024, 16, 0, 0, LP_OPTIONS16
},
222 [0xc3] = { 1024, 16, 0, 0, LP_OPTIONS16
},
225 [0xa5] = { 2048, 8, 0, 0, LP_OPTIONS
},
226 [0xd5] = { 2048, 8, 0, 0, LP_OPTIONS
},
227 [0xb5] = { 2048, 16, 0, 0, LP_OPTIONS16
},
228 [0xc5] = { 2048, 16, 0, 0, LP_OPTIONS16
},
231 static void nand_reset(DeviceState
*dev
)
233 NANDFlashState
*s
= NAND(dev
);
234 s
->cmd
= NAND_CMD_READ0
;
239 s
->status
&= NAND_IOSTATUS_UNPROTCT
;
240 s
->status
|= NAND_IOSTATUS_READY
;
243 static inline void nand_pushio_byte(NANDFlashState
*s
, uint8_t value
)
245 s
->ioaddr
[s
->iolen
++] = value
;
246 for (value
= s
->buswidth
; --value
;) {
247 s
->ioaddr
[s
->iolen
++] = 0;
251 static void nand_command(NANDFlashState
*s
)
259 case NAND_CMD_READID
:
262 nand_pushio_byte(s
, s
->manf_id
);
263 nand_pushio_byte(s
, s
->chip_id
);
264 nand_pushio_byte(s
, 'Q'); /* Don't-care byte (often 0xa5) */
265 if (nand_flash_ids
[s
->chip_id
].options
& NAND_SAMSUNG_LP
) {
266 /* Page Size, Block Size, Spare Size; bit 6 indicates
267 * 8 vs 16 bit width NAND.
269 nand_pushio_byte(s
, (s
->buswidth
== 2) ? 0x55 : 0x15);
271 nand_pushio_byte(s
, 0xc0); /* Multi-plane */
275 case NAND_CMD_RANDOMREAD2
:
276 case NAND_CMD_NOSERIALREAD2
:
277 if (!(nand_flash_ids
[s
->chip_id
].options
& NAND_SAMSUNG_LP
))
279 offset
= s
->addr
& ((1 << s
->addr_shift
) - 1);
280 s
->blk_load(s
, s
->addr
, offset
);
282 s
->iolen
= (1 << s
->page_shift
) - offset
;
284 s
->iolen
= (1 << s
->page_shift
) + (1 << s
->oob_shift
) - offset
;
288 nand_reset(DEVICE(s
));
291 case NAND_CMD_PAGEPROGRAM1
:
296 case NAND_CMD_PAGEPROGRAM2
:
302 case NAND_CMD_BLOCKERASE1
:
305 case NAND_CMD_BLOCKERASE2
:
306 s
->addr
&= (1ull << s
->addrlen
* 8) - 1;
307 s
->addr
<<= nand_flash_ids
[s
->chip_id
].options
& NAND_SAMSUNG_LP
?
315 case NAND_CMD_READSTATUS
:
318 nand_pushio_byte(s
, s
->status
);
322 printf("%s: Unknown NAND command 0x%02x\n", __FUNCTION__
, s
->cmd
);
326 static void nand_pre_save(void *opaque
)
328 NANDFlashState
*s
= NAND(opaque
);
330 s
->ioaddr_vmstate
= s
->ioaddr
- s
->io
;
333 static int nand_post_load(void *opaque
, int version_id
)
335 NANDFlashState
*s
= NAND(opaque
);
337 if (s
->ioaddr_vmstate
> sizeof(s
->io
)) {
340 s
->ioaddr
= s
->io
+ s
->ioaddr_vmstate
;
345 static const VMStateDescription vmstate_nand
= {
348 .minimum_version_id
= 1,
349 .pre_save
= nand_pre_save
,
350 .post_load
= nand_post_load
,
351 .fields
= (VMStateField
[]) {
352 VMSTATE_UINT8(cle
, NANDFlashState
),
353 VMSTATE_UINT8(ale
, NANDFlashState
),
354 VMSTATE_UINT8(ce
, NANDFlashState
),
355 VMSTATE_UINT8(wp
, NANDFlashState
),
356 VMSTATE_UINT8(gnd
, NANDFlashState
),
357 VMSTATE_BUFFER(io
, NANDFlashState
),
358 VMSTATE_UINT32(ioaddr_vmstate
, NANDFlashState
),
359 VMSTATE_INT32(iolen
, NANDFlashState
),
360 VMSTATE_UINT32(cmd
, NANDFlashState
),
361 VMSTATE_UINT64(addr
, NANDFlashState
),
362 VMSTATE_INT32(addrlen
, NANDFlashState
),
363 VMSTATE_INT32(status
, NANDFlashState
),
364 VMSTATE_INT32(offset
, NANDFlashState
),
365 /* XXX: do we want to save s->storage too? */
366 VMSTATE_END_OF_LIST()
370 static void nand_realize(DeviceState
*dev
, Error
**errp
)
373 NANDFlashState
*s
= NAND(dev
);
375 s
->buswidth
= nand_flash_ids
[s
->chip_id
].width
>> 3;
376 s
->size
= nand_flash_ids
[s
->chip_id
].size
<< 20;
377 if (nand_flash_ids
[s
->chip_id
].options
& NAND_SAMSUNG_LP
) {
381 s
->page_shift
= nand_flash_ids
[s
->chip_id
].page_shift
;
382 s
->erase_shift
= nand_flash_ids
[s
->chip_id
].erase_shift
;
385 switch (1 << s
->page_shift
) {
396 error_setg(errp
, "Unsupported NAND block size %#x",
401 pagesize
= 1 << s
->oob_shift
;
404 if (blk_is_read_only(s
->blk
)) {
405 error_setg(errp
, "Can't use a read-only drive");
408 if (blk_getlength(s
->blk
) >=
409 (s
->pages
<< s
->page_shift
) + (s
->pages
<< s
->oob_shift
)) {
414 pagesize
+= 1 << s
->page_shift
;
417 s
->storage
= (uint8_t *) memset(g_malloc(s
->pages
* pagesize
),
418 0xff, s
->pages
* pagesize
);
420 /* Give s->ioaddr a sane value in case we save state before it is used. */
424 static Property nand_properties
[] = {
425 DEFINE_PROP_UINT8("manufacturer_id", NANDFlashState
, manf_id
, 0),
426 DEFINE_PROP_UINT8("chip_id", NANDFlashState
, chip_id
, 0),
427 DEFINE_PROP_DRIVE("drive", NANDFlashState
, blk
),
428 DEFINE_PROP_END_OF_LIST(),
431 static void nand_class_init(ObjectClass
*klass
, void *data
)
433 DeviceClass
*dc
= DEVICE_CLASS(klass
);
435 dc
->realize
= nand_realize
;
436 dc
->reset
= nand_reset
;
437 dc
->vmsd
= &vmstate_nand
;
438 dc
->props
= nand_properties
;
441 static const TypeInfo nand_info
= {
443 .parent
= TYPE_DEVICE
,
444 .instance_size
= sizeof(NANDFlashState
),
445 .class_init
= nand_class_init
,
448 static void nand_register_types(void)
450 type_register_static(&nand_info
);
454 * Chip inputs are CLE, ALE, CE, WP, GND and eight I/O pins. Chip
455 * outputs are R/B and eight I/O pins.
457 * CE, WP and R/B are active low.
459 void nand_setpins(DeviceState
*dev
, uint8_t cle
, uint8_t ale
,
460 uint8_t ce
, uint8_t wp
, uint8_t gnd
)
462 NANDFlashState
*s
= NAND(dev
);
470 s
->status
|= NAND_IOSTATUS_UNPROTCT
;
472 s
->status
&= ~NAND_IOSTATUS_UNPROTCT
;
476 void nand_getpins(DeviceState
*dev
, int *rb
)
481 void nand_setio(DeviceState
*dev
, uint32_t value
)
484 NANDFlashState
*s
= NAND(dev
);
486 if (!s
->ce
&& s
->cle
) {
487 if (nand_flash_ids
[s
->chip_id
].options
& NAND_SAMSUNG_LP
) {
488 if (s
->cmd
== NAND_CMD_READ0
&& value
== NAND_CMD_LPREAD2
)
490 if (value
== NAND_CMD_RANDOMREAD1
) {
491 s
->addr
&= ~((1 << s
->addr_shift
) - 1);
496 if (value
== NAND_CMD_READ0
) {
498 } else if (value
== NAND_CMD_READ1
) {
500 value
= NAND_CMD_READ0
;
501 } else if (value
== NAND_CMD_READ2
) {
502 s
->offset
= 1 << s
->page_shift
;
503 value
= NAND_CMD_READ0
;
508 if (s
->cmd
== NAND_CMD_READSTATUS
||
509 s
->cmd
== NAND_CMD_PAGEPROGRAM2
||
510 s
->cmd
== NAND_CMD_BLOCKERASE1
||
511 s
->cmd
== NAND_CMD_BLOCKERASE2
||
512 s
->cmd
== NAND_CMD_NOSERIALREAD2
||
513 s
->cmd
== NAND_CMD_RANDOMREAD2
||
514 s
->cmd
== NAND_CMD_RESET
) {
518 if (s
->cmd
!= NAND_CMD_RANDOMREAD2
) {
524 unsigned int shift
= s
->addrlen
* 8;
525 unsigned int mask
= ~(0xff << shift
);
526 unsigned int v
= value
<< shift
;
528 s
->addr
= (s
->addr
& mask
) | v
;
531 switch (s
->addrlen
) {
533 if (s
->cmd
== NAND_CMD_READID
) {
537 case 2: /* fix cache address as a byte address */
538 s
->addr
<<= (s
->buswidth
- 1);
541 if (!(nand_flash_ids
[s
->chip_id
].options
& NAND_SAMSUNG_LP
) &&
542 (s
->cmd
== NAND_CMD_READ0
||
543 s
->cmd
== NAND_CMD_PAGEPROGRAM1
)) {
548 if ((nand_flash_ids
[s
->chip_id
].options
& NAND_SAMSUNG_LP
) &&
549 nand_flash_ids
[s
->chip_id
].size
< 256 && /* 1Gb or less */
550 (s
->cmd
== NAND_CMD_READ0
||
551 s
->cmd
== NAND_CMD_PAGEPROGRAM1
)) {
556 if ((nand_flash_ids
[s
->chip_id
].options
& NAND_SAMSUNG_LP
) &&
557 nand_flash_ids
[s
->chip_id
].size
>= 256 && /* 2Gb or more */
558 (s
->cmd
== NAND_CMD_READ0
||
559 s
->cmd
== NAND_CMD_PAGEPROGRAM1
)) {
568 if (!s
->cle
&& !s
->ale
&& s
->cmd
== NAND_CMD_PAGEPROGRAM1
) {
569 if (s
->iolen
< (1 << s
->page_shift
) + (1 << s
->oob_shift
)) {
570 for (i
= s
->buswidth
; i
--; value
>>= 8) {
571 s
->io
[s
->iolen
++] = (uint8_t) (value
& 0xff);
574 } else if (!s
->cle
&& !s
->ale
&& s
->cmd
== NAND_CMD_COPYBACKPRG1
) {
575 if ((s
->addr
& ((1 << s
->addr_shift
) - 1)) <
576 (1 << s
->page_shift
) + (1 << s
->oob_shift
)) {
577 for (i
= s
->buswidth
; i
--; s
->addr
++, value
>>= 8) {
578 s
->io
[s
->iolen
+ (s
->addr
& ((1 << s
->addr_shift
) - 1))] =
579 (uint8_t) (value
& 0xff);
585 uint32_t nand_getio(DeviceState
*dev
)
589 NANDFlashState
*s
= NAND(dev
);
591 /* Allow sequential reading */
592 if (!s
->iolen
&& s
->cmd
== NAND_CMD_READ0
) {
593 offset
= (int) (s
->addr
& ((1 << s
->addr_shift
) - 1)) + s
->offset
;
596 s
->blk_load(s
, s
->addr
, offset
);
598 s
->iolen
= (1 << s
->page_shift
) - offset
;
600 s
->iolen
= (1 << s
->page_shift
) + (1 << s
->oob_shift
) - offset
;
603 if (s
->ce
|| s
->iolen
<= 0) {
607 for (offset
= s
->buswidth
; offset
--;) {
608 x
|= s
->ioaddr
[offset
] << (offset
<< 3);
610 /* after receiving READ STATUS command all subsequent reads will
611 * return the status register value until another command is issued
613 if (s
->cmd
!= NAND_CMD_READSTATUS
) {
614 s
->addr
+= s
->buswidth
;
615 s
->ioaddr
+= s
->buswidth
;
616 s
->iolen
-= s
->buswidth
;
621 uint32_t nand_getbuswidth(DeviceState
*dev
)
623 NANDFlashState
*s
= (NANDFlashState
*) dev
;
624 return s
->buswidth
<< 3;
627 DeviceState
*nand_init(BlockBackend
*blk
, int manf_id
, int chip_id
)
631 if (nand_flash_ids
[chip_id
].size
== 0) {
632 hw_error("%s: Unsupported NAND chip ID.\n", __FUNCTION__
);
634 dev
= DEVICE(object_new(TYPE_NAND
));
635 qdev_prop_set_uint8(dev
, "manufacturer_id", manf_id
);
636 qdev_prop_set_uint8(dev
, "chip_id", chip_id
);
638 qdev_prop_set_drive_nofail(dev
, "drive", blk
);
641 qdev_init_nofail(dev
);
645 type_init(nand_register_types
)
649 /* Program a single page */
650 static void glue(nand_blk_write_
, PAGE_SIZE
)(NANDFlashState
*s
)
652 uint64_t off
, page
, sector
, soff
;
653 uint8_t iobuf
[(PAGE_SECTORS
+ 2) * 0x200];
654 if (PAGE(s
->addr
) >= s
->pages
)
658 mem_and(s
->storage
+ PAGE_START(s
->addr
) + (s
->addr
& PAGE_MASK
) +
659 s
->offset
, s
->io
, s
->iolen
);
660 } else if (s
->mem_oob
) {
661 sector
= SECTOR(s
->addr
);
662 off
= (s
->addr
& PAGE_MASK
) + s
->offset
;
663 soff
= SECTOR_OFFSET(s
->addr
);
664 if (blk_read(s
->blk
, sector
, iobuf
, PAGE_SECTORS
) < 0) {
665 printf("%s: read error in sector %" PRIu64
"\n", __func__
, sector
);
669 mem_and(iobuf
+ (soff
| off
), s
->io
, MIN(s
->iolen
, PAGE_SIZE
- off
));
670 if (off
+ s
->iolen
> PAGE_SIZE
) {
671 page
= PAGE(s
->addr
);
672 mem_and(s
->storage
+ (page
<< OOB_SHIFT
), s
->io
+ PAGE_SIZE
- off
,
673 MIN(OOB_SIZE
, off
+ s
->iolen
- PAGE_SIZE
));
676 if (blk_write(s
->blk
, sector
, iobuf
, PAGE_SECTORS
) < 0) {
677 printf("%s: write error in sector %" PRIu64
"\n", __func__
, sector
);
680 off
= PAGE_START(s
->addr
) + (s
->addr
& PAGE_MASK
) + s
->offset
;
683 if (blk_read(s
->blk
, sector
, iobuf
, PAGE_SECTORS
+ 2) < 0) {
684 printf("%s: read error in sector %" PRIu64
"\n", __func__
, sector
);
688 mem_and(iobuf
+ soff
, s
->io
, s
->iolen
);
690 if (blk_write(s
->blk
, sector
, iobuf
, PAGE_SECTORS
+ 2) < 0) {
691 printf("%s: write error in sector %" PRIu64
"\n", __func__
, sector
);
697 /* Erase a single block */
698 static void glue(nand_blk_erase_
, PAGE_SIZE
)(NANDFlashState
*s
)
700 uint64_t i
, page
, addr
;
701 uint8_t iobuf
[0x200] = { [0 ... 0x1ff] = 0xff, };
702 addr
= s
->addr
& ~((1 << (ADDR_SHIFT
+ s
->erase_shift
)) - 1);
704 if (PAGE(addr
) >= s
->pages
) {
709 memset(s
->storage
+ PAGE_START(addr
),
710 0xff, (PAGE_SIZE
+ OOB_SIZE
) << s
->erase_shift
);
711 } else if (s
->mem_oob
) {
712 memset(s
->storage
+ (PAGE(addr
) << OOB_SHIFT
),
713 0xff, OOB_SIZE
<< s
->erase_shift
);
715 page
= SECTOR(addr
+ (ADDR_SHIFT
+ s
->erase_shift
));
716 for (; i
< page
; i
++)
717 if (blk_write(s
->blk
, i
, iobuf
, 1) < 0) {
718 printf("%s: write error in sector %" PRIu64
"\n", __func__
, i
);
721 addr
= PAGE_START(addr
);
723 if (blk_read(s
->blk
, page
, iobuf
, 1) < 0) {
724 printf("%s: read error in sector %" PRIu64
"\n", __func__
, page
);
726 memset(iobuf
+ (addr
& 0x1ff), 0xff, (~addr
& 0x1ff) + 1);
727 if (blk_write(s
->blk
, page
, iobuf
, 1) < 0) {
728 printf("%s: write error in sector %" PRIu64
"\n", __func__
, page
);
731 memset(iobuf
, 0xff, 0x200);
732 i
= (addr
& ~0x1ff) + 0x200;
733 for (addr
+= ((PAGE_SIZE
+ OOB_SIZE
) << s
->erase_shift
) - 0x200;
734 i
< addr
; i
+= 0x200) {
735 if (blk_write(s
->blk
, i
>> 9, iobuf
, 1) < 0) {
736 printf("%s: write error in sector %" PRIu64
"\n",
742 if (blk_read(s
->blk
, page
, iobuf
, 1) < 0) {
743 printf("%s: read error in sector %" PRIu64
"\n", __func__
, page
);
745 memset(iobuf
, 0xff, ((addr
- 1) & 0x1ff) + 1);
746 if (blk_write(s
->blk
, page
, iobuf
, 1) < 0) {
747 printf("%s: write error in sector %" PRIu64
"\n", __func__
, page
);
752 static void glue(nand_blk_load_
, PAGE_SIZE
)(NANDFlashState
*s
,
753 uint64_t addr
, int offset
)
755 if (PAGE(addr
) >= s
->pages
) {
761 if (blk_read(s
->blk
, SECTOR(addr
), s
->io
, PAGE_SECTORS
) < 0) {
762 printf("%s: read error in sector %" PRIu64
"\n",
763 __func__
, SECTOR(addr
));
765 memcpy(s
->io
+ SECTOR_OFFSET(s
->addr
) + PAGE_SIZE
,
766 s
->storage
+ (PAGE(s
->addr
) << OOB_SHIFT
),
768 s
->ioaddr
= s
->io
+ SECTOR_OFFSET(s
->addr
) + offset
;
770 if (blk_read(s
->blk
, PAGE_START(addr
) >> 9,
771 s
->io
, (PAGE_SECTORS
+ 2)) < 0) {
772 printf("%s: read error in sector %" PRIu64
"\n",
773 __func__
, PAGE_START(addr
) >> 9);
775 s
->ioaddr
= s
->io
+ (PAGE_START(addr
) & 0x1ff) + offset
;
778 memcpy(s
->io
, s
->storage
+ PAGE_START(s
->addr
) +
779 offset
, PAGE_SIZE
+ OOB_SIZE
- offset
);
784 static void glue(nand_init_
, PAGE_SIZE
)(NANDFlashState
*s
)
786 s
->oob_shift
= PAGE_SHIFT
- 5;
787 s
->pages
= s
->size
>> PAGE_SHIFT
;
788 s
->addr_shift
= ADDR_SHIFT
;
790 s
->blk_erase
= glue(nand_blk_erase_
, PAGE_SIZE
);
791 s
->blk_write
= glue(nand_blk_write_
, PAGE_SIZE
);
792 s
->blk_load
= glue(nand_blk_load_
, PAGE_SIZE
);