rename WORDS_BIGENDIAN to HOST_WORDS_BIGENDIAN
[qemu/ar7.git] / vl.c
blobbb56644e2ffae61f3659d0111a7d8eb7d4bf89cc
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
32 /* Needed early for CONFIG_BSD etc. */
33 #include "config-host.h"
34 /* Needed early to override system queue definitions on BSD */
35 #include "sys-queue.h"
37 #ifndef _WIN32
38 #include <libgen.h>
39 #include <pwd.h>
40 #include <sys/times.h>
41 #include <sys/wait.h>
42 #include <termios.h>
43 #include <sys/mman.h>
44 #include <sys/ioctl.h>
45 #include <sys/resource.h>
46 #include <sys/socket.h>
47 #include <netinet/in.h>
48 #include <net/if.h>
49 #if defined(__NetBSD__)
50 #include <net/if_tap.h>
51 #endif
52 #ifdef __linux__
53 #include <linux/if_tun.h>
54 #endif
55 #include <arpa/inet.h>
56 #include <dirent.h>
57 #include <netdb.h>
58 #include <sys/select.h>
59 #ifdef CONFIG_BSD
60 #include <sys/stat.h>
61 #if defined(__FreeBSD__) || defined(__DragonFly__)
62 #include <libutil.h>
63 #else
64 #include <util.h>
65 #endif
66 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
67 #include <freebsd/stdlib.h>
68 #else
69 #ifdef __linux__
70 #include <pty.h>
71 #include <malloc.h>
72 #include <linux/rtc.h>
73 #include <sys/prctl.h>
75 /* For the benefit of older linux systems which don't supply it,
76 we use a local copy of hpet.h. */
77 /* #include <linux/hpet.h> */
78 #include "hpet.h"
80 #include <linux/ppdev.h>
81 #include <linux/parport.h>
82 #endif
83 #ifdef __sun__
84 #include <sys/stat.h>
85 #include <sys/ethernet.h>
86 #include <sys/sockio.h>
87 #include <netinet/arp.h>
88 #include <netinet/in.h>
89 #include <netinet/in_systm.h>
90 #include <netinet/ip.h>
91 #include <netinet/ip_icmp.h> // must come after ip.h
92 #include <netinet/udp.h>
93 #include <netinet/tcp.h>
94 #include <net/if.h>
95 #include <syslog.h>
96 #include <stropts.h>
97 #endif
98 #endif
99 #endif
101 #if defined(__OpenBSD__)
102 #include <util.h>
103 #endif
105 #if defined(CONFIG_VDE)
106 #include <libvdeplug.h>
107 #endif
109 #ifdef _WIN32
110 #include <windows.h>
111 #include <mmsystem.h>
112 #endif
114 #ifdef CONFIG_SDL
115 #if defined(__APPLE__) || defined(main)
116 #include <SDL.h>
117 int qemu_main(int argc, char **argv, char **envp);
118 int main(int argc, char **argv)
120 return qemu_main(argc, argv, NULL);
122 #undef main
123 #define main qemu_main
124 #endif
125 #endif /* CONFIG_SDL */
127 #ifdef CONFIG_COCOA
128 #undef main
129 #define main qemu_main
130 #endif /* CONFIG_COCOA */
132 #include "hw/hw.h"
133 #include "hw/boards.h"
134 #include "hw/usb.h"
135 #include "hw/pcmcia.h"
136 #include "hw/pc.h"
137 #include "hw/audiodev.h"
138 #include "hw/isa.h"
139 #include "hw/baum.h"
140 #include "hw/bt.h"
141 #include "hw/watchdog.h"
142 #include "hw/smbios.h"
143 #include "hw/xen.h"
144 #include "hw/qdev.h"
145 #include "bt-host.h"
146 #include "net.h"
147 #include "monitor.h"
148 #include "console.h"
149 #include "sysemu.h"
150 #include "gdbstub.h"
151 #include "qemu-timer.h"
152 #include "qemu-char.h"
153 #include "cache-utils.h"
154 #include "block.h"
155 #include "dma.h"
156 #include "audio/audio.h"
157 #include "migration.h"
158 #include "kvm.h"
159 #include "balloon.h"
160 #include "qemu-option.h"
162 #include "disas.h"
164 #include "exec-all.h"
166 #include "qemu_socket.h"
168 #include "slirp/libslirp.h"
170 //#define DEBUG_NET
171 //#define DEBUG_SLIRP
173 #define DEFAULT_RAM_SIZE 128
175 static const char *data_dir;
176 const char *bios_name = NULL;
177 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
178 to store the VM snapshots */
179 struct drivelist drives = TAILQ_HEAD_INITIALIZER(drives);
180 struct driveoptlist driveopts = TAILQ_HEAD_INITIALIZER(driveopts);
181 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
182 static DisplayState *display_state;
183 DisplayType display_type = DT_DEFAULT;
184 const char* keyboard_layout = NULL;
185 int64_t ticks_per_sec;
186 ram_addr_t ram_size;
187 int nb_nics;
188 NICInfo nd_table[MAX_NICS];
189 int vm_running;
190 static int autostart;
191 static int rtc_utc = 1;
192 static int rtc_date_offset = -1; /* -1 means no change */
193 int cirrus_vga_enabled = 1;
194 int std_vga_enabled = 0;
195 int vmsvga_enabled = 0;
196 int xenfb_enabled = 0;
197 #ifdef TARGET_SPARC
198 int graphic_width = 1024;
199 int graphic_height = 768;
200 int graphic_depth = 8;
201 #else
202 int graphic_width = 800;
203 int graphic_height = 600;
204 int graphic_depth = 15;
205 #endif
206 static int full_screen = 0;
207 #ifdef CONFIG_SDL
208 static int no_frame = 0;
209 #endif
210 int no_quit = 0;
211 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
212 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
213 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
214 #ifdef TARGET_I386
215 int win2k_install_hack = 0;
216 int rtc_td_hack = 0;
217 #endif
218 int usb_enabled = 0;
219 int singlestep = 0;
220 int smp_cpus = 1;
221 int max_cpus = 0;
222 const char *vnc_display;
223 int acpi_enabled = 1;
224 int no_hpet = 0;
225 int virtio_balloon = 1;
226 const char *virtio_balloon_devaddr;
227 int fd_bootchk = 1;
228 int no_reboot = 0;
229 int no_shutdown = 0;
230 int cursor_hide = 1;
231 int graphic_rotate = 0;
232 #ifndef _WIN32
233 int daemonize = 0;
234 #endif
235 WatchdogTimerModel *watchdog = NULL;
236 int watchdog_action = WDT_RESET;
237 const char *option_rom[MAX_OPTION_ROMS];
238 int nb_option_roms;
239 int semihosting_enabled = 0;
240 #ifdef TARGET_ARM
241 int old_param = 0;
242 #endif
243 const char *qemu_name;
244 int alt_grab = 0;
245 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
246 unsigned int nb_prom_envs = 0;
247 const char *prom_envs[MAX_PROM_ENVS];
248 #endif
249 int boot_menu;
251 int nb_numa_nodes;
252 uint64_t node_mem[MAX_NODES];
253 uint64_t node_cpumask[MAX_NODES];
255 static CPUState *cur_cpu;
256 static CPUState *next_cpu;
257 static int timer_alarm_pending = 1;
258 /* Conversion factor from emulated instructions to virtual clock ticks. */
259 static int icount_time_shift;
260 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
261 #define MAX_ICOUNT_SHIFT 10
262 /* Compensate for varying guest execution speed. */
263 static int64_t qemu_icount_bias;
264 static QEMUTimer *icount_rt_timer;
265 static QEMUTimer *icount_vm_timer;
266 static QEMUTimer *nographic_timer;
268 uint8_t qemu_uuid[16];
270 static QEMUBootSetHandler *boot_set_handler;
271 static void *boot_set_opaque;
273 /***********************************************************/
274 /* x86 ISA bus support */
276 target_phys_addr_t isa_mem_base = 0;
277 PicState2 *isa_pic;
279 /***********************************************************/
280 void hw_error(const char *fmt, ...)
282 va_list ap;
283 CPUState *env;
285 va_start(ap, fmt);
286 fprintf(stderr, "qemu: hardware error: ");
287 vfprintf(stderr, fmt, ap);
288 fprintf(stderr, "\n");
289 for(env = first_cpu; env != NULL; env = env->next_cpu) {
290 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
291 #ifdef TARGET_I386
292 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
293 #else
294 cpu_dump_state(env, stderr, fprintf, 0);
295 #endif
297 va_end(ap);
298 abort();
301 static void set_proc_name(const char *s)
303 #ifdef __linux__
304 char name[16];
305 if (!s)
306 return;
307 name[sizeof(name) - 1] = 0;
308 strncpy(name, s, sizeof(name));
309 /* Could rewrite argv[0] too, but that's a bit more complicated.
310 This simple way is enough for `top'. */
311 prctl(PR_SET_NAME, name);
312 #endif
315 /***************/
316 /* ballooning */
318 static QEMUBalloonEvent *qemu_balloon_event;
319 void *qemu_balloon_event_opaque;
321 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
323 qemu_balloon_event = func;
324 qemu_balloon_event_opaque = opaque;
327 void qemu_balloon(ram_addr_t target)
329 if (qemu_balloon_event)
330 qemu_balloon_event(qemu_balloon_event_opaque, target);
333 ram_addr_t qemu_balloon_status(void)
335 if (qemu_balloon_event)
336 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
337 return 0;
340 /***********************************************************/
341 /* keyboard/mouse */
343 static QEMUPutKBDEvent *qemu_put_kbd_event;
344 static void *qemu_put_kbd_event_opaque;
345 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
346 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
348 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
350 qemu_put_kbd_event_opaque = opaque;
351 qemu_put_kbd_event = func;
354 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
355 void *opaque, int absolute,
356 const char *name)
358 QEMUPutMouseEntry *s, *cursor;
360 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
362 s->qemu_put_mouse_event = func;
363 s->qemu_put_mouse_event_opaque = opaque;
364 s->qemu_put_mouse_event_absolute = absolute;
365 s->qemu_put_mouse_event_name = qemu_strdup(name);
366 s->next = NULL;
368 if (!qemu_put_mouse_event_head) {
369 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
370 return s;
373 cursor = qemu_put_mouse_event_head;
374 while (cursor->next != NULL)
375 cursor = cursor->next;
377 cursor->next = s;
378 qemu_put_mouse_event_current = s;
380 return s;
383 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
385 QEMUPutMouseEntry *prev = NULL, *cursor;
387 if (!qemu_put_mouse_event_head || entry == NULL)
388 return;
390 cursor = qemu_put_mouse_event_head;
391 while (cursor != NULL && cursor != entry) {
392 prev = cursor;
393 cursor = cursor->next;
396 if (cursor == NULL) // does not exist or list empty
397 return;
398 else if (prev == NULL) { // entry is head
399 qemu_put_mouse_event_head = cursor->next;
400 if (qemu_put_mouse_event_current == entry)
401 qemu_put_mouse_event_current = cursor->next;
402 qemu_free(entry->qemu_put_mouse_event_name);
403 qemu_free(entry);
404 return;
407 prev->next = entry->next;
409 if (qemu_put_mouse_event_current == entry)
410 qemu_put_mouse_event_current = prev;
412 qemu_free(entry->qemu_put_mouse_event_name);
413 qemu_free(entry);
416 void kbd_put_keycode(int keycode)
418 if (qemu_put_kbd_event) {
419 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
423 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
425 QEMUPutMouseEvent *mouse_event;
426 void *mouse_event_opaque;
427 int width;
429 if (!qemu_put_mouse_event_current) {
430 return;
433 mouse_event =
434 qemu_put_mouse_event_current->qemu_put_mouse_event;
435 mouse_event_opaque =
436 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
438 if (mouse_event) {
439 if (graphic_rotate) {
440 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
441 width = 0x7fff;
442 else
443 width = graphic_width - 1;
444 mouse_event(mouse_event_opaque,
445 width - dy, dx, dz, buttons_state);
446 } else
447 mouse_event(mouse_event_opaque,
448 dx, dy, dz, buttons_state);
452 int kbd_mouse_is_absolute(void)
454 if (!qemu_put_mouse_event_current)
455 return 0;
457 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
460 void do_info_mice(Monitor *mon)
462 QEMUPutMouseEntry *cursor;
463 int index = 0;
465 if (!qemu_put_mouse_event_head) {
466 monitor_printf(mon, "No mouse devices connected\n");
467 return;
470 monitor_printf(mon, "Mouse devices available:\n");
471 cursor = qemu_put_mouse_event_head;
472 while (cursor != NULL) {
473 monitor_printf(mon, "%c Mouse #%d: %s\n",
474 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
475 index, cursor->qemu_put_mouse_event_name);
476 index++;
477 cursor = cursor->next;
481 void do_mouse_set(Monitor *mon, int index)
483 QEMUPutMouseEntry *cursor;
484 int i = 0;
486 if (!qemu_put_mouse_event_head) {
487 monitor_printf(mon, "No mouse devices connected\n");
488 return;
491 cursor = qemu_put_mouse_event_head;
492 while (cursor != NULL && index != i) {
493 i++;
494 cursor = cursor->next;
497 if (cursor != NULL)
498 qemu_put_mouse_event_current = cursor;
499 else
500 monitor_printf(mon, "Mouse at given index not found\n");
503 /* compute with 96 bit intermediate result: (a*b)/c */
504 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
506 union {
507 uint64_t ll;
508 struct {
509 #ifdef HOST_WORDS_BIGENDIAN
510 uint32_t high, low;
511 #else
512 uint32_t low, high;
513 #endif
514 } l;
515 } u, res;
516 uint64_t rl, rh;
518 u.ll = a;
519 rl = (uint64_t)u.l.low * (uint64_t)b;
520 rh = (uint64_t)u.l.high * (uint64_t)b;
521 rh += (rl >> 32);
522 res.l.high = rh / c;
523 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
524 return res.ll;
527 /***********************************************************/
528 /* real time host monotonic timer */
530 #define QEMU_TIMER_BASE 1000000000LL
532 #ifdef WIN32
534 static int64_t clock_freq;
536 static void init_get_clock(void)
538 LARGE_INTEGER freq;
539 int ret;
540 ret = QueryPerformanceFrequency(&freq);
541 if (ret == 0) {
542 fprintf(stderr, "Could not calibrate ticks\n");
543 exit(1);
545 clock_freq = freq.QuadPart;
548 static int64_t get_clock(void)
550 LARGE_INTEGER ti;
551 QueryPerformanceCounter(&ti);
552 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
555 #else
557 static int use_rt_clock;
559 static void init_get_clock(void)
561 use_rt_clock = 0;
562 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
563 || defined(__DragonFly__)
565 struct timespec ts;
566 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
567 use_rt_clock = 1;
570 #endif
573 static int64_t get_clock(void)
575 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
576 || defined(__DragonFly__)
577 if (use_rt_clock) {
578 struct timespec ts;
579 clock_gettime(CLOCK_MONOTONIC, &ts);
580 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
581 } else
582 #endif
584 /* XXX: using gettimeofday leads to problems if the date
585 changes, so it should be avoided. */
586 struct timeval tv;
587 gettimeofday(&tv, NULL);
588 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
591 #endif
593 /* Return the virtual CPU time, based on the instruction counter. */
594 static int64_t cpu_get_icount(void)
596 int64_t icount;
597 CPUState *env = cpu_single_env;;
598 icount = qemu_icount;
599 if (env) {
600 if (!can_do_io(env))
601 fprintf(stderr, "Bad clock read\n");
602 icount -= (env->icount_decr.u16.low + env->icount_extra);
604 return qemu_icount_bias + (icount << icount_time_shift);
607 /***********************************************************/
608 /* guest cycle counter */
610 static int64_t cpu_ticks_prev;
611 static int64_t cpu_ticks_offset;
612 static int64_t cpu_clock_offset;
613 static int cpu_ticks_enabled;
615 /* return the host CPU cycle counter and handle stop/restart */
616 int64_t cpu_get_ticks(void)
618 if (use_icount) {
619 return cpu_get_icount();
621 if (!cpu_ticks_enabled) {
622 return cpu_ticks_offset;
623 } else {
624 int64_t ticks;
625 ticks = cpu_get_real_ticks();
626 if (cpu_ticks_prev > ticks) {
627 /* Note: non increasing ticks may happen if the host uses
628 software suspend */
629 cpu_ticks_offset += cpu_ticks_prev - ticks;
631 cpu_ticks_prev = ticks;
632 return ticks + cpu_ticks_offset;
636 /* return the host CPU monotonic timer and handle stop/restart */
637 static int64_t cpu_get_clock(void)
639 int64_t ti;
640 if (!cpu_ticks_enabled) {
641 return cpu_clock_offset;
642 } else {
643 ti = get_clock();
644 return ti + cpu_clock_offset;
648 /* enable cpu_get_ticks() */
649 void cpu_enable_ticks(void)
651 if (!cpu_ticks_enabled) {
652 cpu_ticks_offset -= cpu_get_real_ticks();
653 cpu_clock_offset -= get_clock();
654 cpu_ticks_enabled = 1;
658 /* disable cpu_get_ticks() : the clock is stopped. You must not call
659 cpu_get_ticks() after that. */
660 void cpu_disable_ticks(void)
662 if (cpu_ticks_enabled) {
663 cpu_ticks_offset = cpu_get_ticks();
664 cpu_clock_offset = cpu_get_clock();
665 cpu_ticks_enabled = 0;
669 /***********************************************************/
670 /* timers */
672 #define QEMU_TIMER_REALTIME 0
673 #define QEMU_TIMER_VIRTUAL 1
675 struct QEMUClock {
676 int type;
677 /* XXX: add frequency */
680 struct QEMUTimer {
681 QEMUClock *clock;
682 int64_t expire_time;
683 QEMUTimerCB *cb;
684 void *opaque;
685 struct QEMUTimer *next;
688 struct qemu_alarm_timer {
689 char const *name;
690 unsigned int flags;
692 int (*start)(struct qemu_alarm_timer *t);
693 void (*stop)(struct qemu_alarm_timer *t);
694 void (*rearm)(struct qemu_alarm_timer *t);
695 void *priv;
698 #define ALARM_FLAG_DYNTICKS 0x1
699 #define ALARM_FLAG_EXPIRED 0x2
701 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
703 return t && (t->flags & ALARM_FLAG_DYNTICKS);
706 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
708 if (!alarm_has_dynticks(t))
709 return;
711 t->rearm(t);
714 /* TODO: MIN_TIMER_REARM_US should be optimized */
715 #define MIN_TIMER_REARM_US 250
717 static struct qemu_alarm_timer *alarm_timer;
719 #ifdef _WIN32
721 struct qemu_alarm_win32 {
722 MMRESULT timerId;
723 unsigned int period;
724 } alarm_win32_data = {0, -1};
726 static int win32_start_timer(struct qemu_alarm_timer *t);
727 static void win32_stop_timer(struct qemu_alarm_timer *t);
728 static void win32_rearm_timer(struct qemu_alarm_timer *t);
730 #else
732 static int unix_start_timer(struct qemu_alarm_timer *t);
733 static void unix_stop_timer(struct qemu_alarm_timer *t);
735 #ifdef __linux__
737 static int dynticks_start_timer(struct qemu_alarm_timer *t);
738 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
739 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
741 static int hpet_start_timer(struct qemu_alarm_timer *t);
742 static void hpet_stop_timer(struct qemu_alarm_timer *t);
744 static int rtc_start_timer(struct qemu_alarm_timer *t);
745 static void rtc_stop_timer(struct qemu_alarm_timer *t);
747 #endif /* __linux__ */
749 #endif /* _WIN32 */
751 /* Correlation between real and virtual time is always going to be
752 fairly approximate, so ignore small variation.
753 When the guest is idle real and virtual time will be aligned in
754 the IO wait loop. */
755 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
757 static void icount_adjust(void)
759 int64_t cur_time;
760 int64_t cur_icount;
761 int64_t delta;
762 static int64_t last_delta;
763 /* If the VM is not running, then do nothing. */
764 if (!vm_running)
765 return;
767 cur_time = cpu_get_clock();
768 cur_icount = qemu_get_clock(vm_clock);
769 delta = cur_icount - cur_time;
770 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
771 if (delta > 0
772 && last_delta + ICOUNT_WOBBLE < delta * 2
773 && icount_time_shift > 0) {
774 /* The guest is getting too far ahead. Slow time down. */
775 icount_time_shift--;
777 if (delta < 0
778 && last_delta - ICOUNT_WOBBLE > delta * 2
779 && icount_time_shift < MAX_ICOUNT_SHIFT) {
780 /* The guest is getting too far behind. Speed time up. */
781 icount_time_shift++;
783 last_delta = delta;
784 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
787 static void icount_adjust_rt(void * opaque)
789 qemu_mod_timer(icount_rt_timer,
790 qemu_get_clock(rt_clock) + 1000);
791 icount_adjust();
794 static void icount_adjust_vm(void * opaque)
796 qemu_mod_timer(icount_vm_timer,
797 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
798 icount_adjust();
801 static void init_icount_adjust(void)
803 /* Have both realtime and virtual time triggers for speed adjustment.
804 The realtime trigger catches emulated time passing too slowly,
805 the virtual time trigger catches emulated time passing too fast.
806 Realtime triggers occur even when idle, so use them less frequently
807 than VM triggers. */
808 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
809 qemu_mod_timer(icount_rt_timer,
810 qemu_get_clock(rt_clock) + 1000);
811 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
812 qemu_mod_timer(icount_vm_timer,
813 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
816 static struct qemu_alarm_timer alarm_timers[] = {
817 #ifndef _WIN32
818 #ifdef __linux__
819 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
820 dynticks_stop_timer, dynticks_rearm_timer, NULL},
821 /* HPET - if available - is preferred */
822 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
823 /* ...otherwise try RTC */
824 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
825 #endif
826 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
827 #else
828 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
829 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
830 {"win32", 0, win32_start_timer,
831 win32_stop_timer, NULL, &alarm_win32_data},
832 #endif
833 {NULL, }
836 static void show_available_alarms(void)
838 int i;
840 printf("Available alarm timers, in order of precedence:\n");
841 for (i = 0; alarm_timers[i].name; i++)
842 printf("%s\n", alarm_timers[i].name);
845 static void configure_alarms(char const *opt)
847 int i;
848 int cur = 0;
849 int count = ARRAY_SIZE(alarm_timers) - 1;
850 char *arg;
851 char *name;
852 struct qemu_alarm_timer tmp;
854 if (!strcmp(opt, "?")) {
855 show_available_alarms();
856 exit(0);
859 arg = strdup(opt);
861 /* Reorder the array */
862 name = strtok(arg, ",");
863 while (name) {
864 for (i = 0; i < count && alarm_timers[i].name; i++) {
865 if (!strcmp(alarm_timers[i].name, name))
866 break;
869 if (i == count) {
870 fprintf(stderr, "Unknown clock %s\n", name);
871 goto next;
874 if (i < cur)
875 /* Ignore */
876 goto next;
878 /* Swap */
879 tmp = alarm_timers[i];
880 alarm_timers[i] = alarm_timers[cur];
881 alarm_timers[cur] = tmp;
883 cur++;
884 next:
885 name = strtok(NULL, ",");
888 free(arg);
890 if (cur) {
891 /* Disable remaining timers */
892 for (i = cur; i < count; i++)
893 alarm_timers[i].name = NULL;
894 } else {
895 show_available_alarms();
896 exit(1);
900 QEMUClock *rt_clock;
901 QEMUClock *vm_clock;
903 static QEMUTimer *active_timers[2];
905 static QEMUClock *qemu_new_clock(int type)
907 QEMUClock *clock;
908 clock = qemu_mallocz(sizeof(QEMUClock));
909 clock->type = type;
910 return clock;
913 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
915 QEMUTimer *ts;
917 ts = qemu_mallocz(sizeof(QEMUTimer));
918 ts->clock = clock;
919 ts->cb = cb;
920 ts->opaque = opaque;
921 return ts;
924 void qemu_free_timer(QEMUTimer *ts)
926 qemu_free(ts);
929 /* stop a timer, but do not dealloc it */
930 void qemu_del_timer(QEMUTimer *ts)
932 QEMUTimer **pt, *t;
934 /* NOTE: this code must be signal safe because
935 qemu_timer_expired() can be called from a signal. */
936 pt = &active_timers[ts->clock->type];
937 for(;;) {
938 t = *pt;
939 if (!t)
940 break;
941 if (t == ts) {
942 *pt = t->next;
943 break;
945 pt = &t->next;
949 /* modify the current timer so that it will be fired when current_time
950 >= expire_time. The corresponding callback will be called. */
951 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
953 QEMUTimer **pt, *t;
955 qemu_del_timer(ts);
957 /* add the timer in the sorted list */
958 /* NOTE: this code must be signal safe because
959 qemu_timer_expired() can be called from a signal. */
960 pt = &active_timers[ts->clock->type];
961 for(;;) {
962 t = *pt;
963 if (!t)
964 break;
965 if (t->expire_time > expire_time)
966 break;
967 pt = &t->next;
969 ts->expire_time = expire_time;
970 ts->next = *pt;
971 *pt = ts;
973 /* Rearm if necessary */
974 if (pt == &active_timers[ts->clock->type]) {
975 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
976 qemu_rearm_alarm_timer(alarm_timer);
978 /* Interrupt execution to force deadline recalculation. */
979 if (use_icount)
980 qemu_notify_event();
984 int qemu_timer_pending(QEMUTimer *ts)
986 QEMUTimer *t;
987 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
988 if (t == ts)
989 return 1;
991 return 0;
994 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
996 if (!timer_head)
997 return 0;
998 return (timer_head->expire_time <= current_time);
1001 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1003 QEMUTimer *ts;
1005 for(;;) {
1006 ts = *ptimer_head;
1007 if (!ts || ts->expire_time > current_time)
1008 break;
1009 /* remove timer from the list before calling the callback */
1010 *ptimer_head = ts->next;
1011 ts->next = NULL;
1013 /* run the callback (the timer list can be modified) */
1014 ts->cb(ts->opaque);
1018 int64_t qemu_get_clock(QEMUClock *clock)
1020 switch(clock->type) {
1021 case QEMU_TIMER_REALTIME:
1022 return get_clock() / 1000000;
1023 default:
1024 case QEMU_TIMER_VIRTUAL:
1025 if (use_icount) {
1026 return cpu_get_icount();
1027 } else {
1028 return cpu_get_clock();
1033 static void init_timers(void)
1035 init_get_clock();
1036 ticks_per_sec = QEMU_TIMER_BASE;
1037 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1038 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1041 /* save a timer */
1042 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1044 uint64_t expire_time;
1046 if (qemu_timer_pending(ts)) {
1047 expire_time = ts->expire_time;
1048 } else {
1049 expire_time = -1;
1051 qemu_put_be64(f, expire_time);
1054 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1056 uint64_t expire_time;
1058 expire_time = qemu_get_be64(f);
1059 if (expire_time != -1) {
1060 qemu_mod_timer(ts, expire_time);
1061 } else {
1062 qemu_del_timer(ts);
1066 static void timer_save(QEMUFile *f, void *opaque)
1068 if (cpu_ticks_enabled) {
1069 hw_error("cannot save state if virtual timers are running");
1071 qemu_put_be64(f, cpu_ticks_offset);
1072 qemu_put_be64(f, ticks_per_sec);
1073 qemu_put_be64(f, cpu_clock_offset);
1076 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1078 if (version_id != 1 && version_id != 2)
1079 return -EINVAL;
1080 if (cpu_ticks_enabled) {
1081 return -EINVAL;
1083 cpu_ticks_offset=qemu_get_be64(f);
1084 ticks_per_sec=qemu_get_be64(f);
1085 if (version_id == 2) {
1086 cpu_clock_offset=qemu_get_be64(f);
1088 return 0;
1091 static void qemu_event_increment(void);
1093 #ifdef _WIN32
1094 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1095 DWORD_PTR dwUser, DWORD_PTR dw1,
1096 DWORD_PTR dw2)
1097 #else
1098 static void host_alarm_handler(int host_signum)
1099 #endif
1101 #if 0
1102 #define DISP_FREQ 1000
1104 static int64_t delta_min = INT64_MAX;
1105 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1106 static int count;
1107 ti = qemu_get_clock(vm_clock);
1108 if (last_clock != 0) {
1109 delta = ti - last_clock;
1110 if (delta < delta_min)
1111 delta_min = delta;
1112 if (delta > delta_max)
1113 delta_max = delta;
1114 delta_cum += delta;
1115 if (++count == DISP_FREQ) {
1116 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1117 muldiv64(delta_min, 1000000, ticks_per_sec),
1118 muldiv64(delta_max, 1000000, ticks_per_sec),
1119 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1120 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1121 count = 0;
1122 delta_min = INT64_MAX;
1123 delta_max = 0;
1124 delta_cum = 0;
1127 last_clock = ti;
1129 #endif
1130 if (alarm_has_dynticks(alarm_timer) ||
1131 (!use_icount &&
1132 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1133 qemu_get_clock(vm_clock))) ||
1134 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1135 qemu_get_clock(rt_clock))) {
1136 qemu_event_increment();
1137 if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1139 #ifndef CONFIG_IOTHREAD
1140 if (next_cpu) {
1141 /* stop the currently executing cpu because a timer occured */
1142 cpu_exit(next_cpu);
1143 #ifdef CONFIG_KQEMU
1144 if (next_cpu->kqemu_enabled) {
1145 kqemu_cpu_interrupt(next_cpu);
1147 #endif
1149 #endif
1150 timer_alarm_pending = 1;
1151 qemu_notify_event();
1155 static int64_t qemu_next_deadline(void)
1157 int64_t delta;
1159 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1160 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1161 qemu_get_clock(vm_clock);
1162 } else {
1163 /* To avoid problems with overflow limit this to 2^32. */
1164 delta = INT32_MAX;
1167 if (delta < 0)
1168 delta = 0;
1170 return delta;
1173 #if defined(__linux__) || defined(_WIN32)
1174 static uint64_t qemu_next_deadline_dyntick(void)
1176 int64_t delta;
1177 int64_t rtdelta;
1179 if (use_icount)
1180 delta = INT32_MAX;
1181 else
1182 delta = (qemu_next_deadline() + 999) / 1000;
1184 if (active_timers[QEMU_TIMER_REALTIME]) {
1185 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1186 qemu_get_clock(rt_clock))*1000;
1187 if (rtdelta < delta)
1188 delta = rtdelta;
1191 if (delta < MIN_TIMER_REARM_US)
1192 delta = MIN_TIMER_REARM_US;
1194 return delta;
1196 #endif
1198 #ifndef _WIN32
1200 /* Sets a specific flag */
1201 static int fcntl_setfl(int fd, int flag)
1203 int flags;
1205 flags = fcntl(fd, F_GETFL);
1206 if (flags == -1)
1207 return -errno;
1209 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1210 return -errno;
1212 return 0;
1215 #if defined(__linux__)
1217 #define RTC_FREQ 1024
1219 static void enable_sigio_timer(int fd)
1221 struct sigaction act;
1223 /* timer signal */
1224 sigfillset(&act.sa_mask);
1225 act.sa_flags = 0;
1226 act.sa_handler = host_alarm_handler;
1228 sigaction(SIGIO, &act, NULL);
1229 fcntl_setfl(fd, O_ASYNC);
1230 fcntl(fd, F_SETOWN, getpid());
1233 static int hpet_start_timer(struct qemu_alarm_timer *t)
1235 struct hpet_info info;
1236 int r, fd;
1238 fd = open("/dev/hpet", O_RDONLY);
1239 if (fd < 0)
1240 return -1;
1242 /* Set frequency */
1243 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1244 if (r < 0) {
1245 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1246 "error, but for better emulation accuracy type:\n"
1247 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1248 goto fail;
1251 /* Check capabilities */
1252 r = ioctl(fd, HPET_INFO, &info);
1253 if (r < 0)
1254 goto fail;
1256 /* Enable periodic mode */
1257 r = ioctl(fd, HPET_EPI, 0);
1258 if (info.hi_flags && (r < 0))
1259 goto fail;
1261 /* Enable interrupt */
1262 r = ioctl(fd, HPET_IE_ON, 0);
1263 if (r < 0)
1264 goto fail;
1266 enable_sigio_timer(fd);
1267 t->priv = (void *)(long)fd;
1269 return 0;
1270 fail:
1271 close(fd);
1272 return -1;
1275 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1277 int fd = (long)t->priv;
1279 close(fd);
1282 static int rtc_start_timer(struct qemu_alarm_timer *t)
1284 int rtc_fd;
1285 unsigned long current_rtc_freq = 0;
1287 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1288 if (rtc_fd < 0)
1289 return -1;
1290 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1291 if (current_rtc_freq != RTC_FREQ &&
1292 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1293 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1294 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1295 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1296 goto fail;
1298 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1299 fail:
1300 close(rtc_fd);
1301 return -1;
1304 enable_sigio_timer(rtc_fd);
1306 t->priv = (void *)(long)rtc_fd;
1308 return 0;
1311 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1313 int rtc_fd = (long)t->priv;
1315 close(rtc_fd);
1318 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1320 struct sigevent ev;
1321 timer_t host_timer;
1322 struct sigaction act;
1324 sigfillset(&act.sa_mask);
1325 act.sa_flags = 0;
1326 act.sa_handler = host_alarm_handler;
1328 sigaction(SIGALRM, &act, NULL);
1331 * Initialize ev struct to 0 to avoid valgrind complaining
1332 * about uninitialized data in timer_create call
1334 memset(&ev, 0, sizeof(ev));
1335 ev.sigev_value.sival_int = 0;
1336 ev.sigev_notify = SIGEV_SIGNAL;
1337 ev.sigev_signo = SIGALRM;
1339 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1340 perror("timer_create");
1342 /* disable dynticks */
1343 fprintf(stderr, "Dynamic Ticks disabled\n");
1345 return -1;
1348 t->priv = (void *)(long)host_timer;
1350 return 0;
1353 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1355 timer_t host_timer = (timer_t)(long)t->priv;
1357 timer_delete(host_timer);
1360 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1362 timer_t host_timer = (timer_t)(long)t->priv;
1363 struct itimerspec timeout;
1364 int64_t nearest_delta_us = INT64_MAX;
1365 int64_t current_us;
1367 if (!active_timers[QEMU_TIMER_REALTIME] &&
1368 !active_timers[QEMU_TIMER_VIRTUAL])
1369 return;
1371 nearest_delta_us = qemu_next_deadline_dyntick();
1373 /* check whether a timer is already running */
1374 if (timer_gettime(host_timer, &timeout)) {
1375 perror("gettime");
1376 fprintf(stderr, "Internal timer error: aborting\n");
1377 exit(1);
1379 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1380 if (current_us && current_us <= nearest_delta_us)
1381 return;
1383 timeout.it_interval.tv_sec = 0;
1384 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1385 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1386 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1387 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1388 perror("settime");
1389 fprintf(stderr, "Internal timer error: aborting\n");
1390 exit(1);
1394 #endif /* defined(__linux__) */
1396 static int unix_start_timer(struct qemu_alarm_timer *t)
1398 struct sigaction act;
1399 struct itimerval itv;
1400 int err;
1402 /* timer signal */
1403 sigfillset(&act.sa_mask);
1404 act.sa_flags = 0;
1405 act.sa_handler = host_alarm_handler;
1407 sigaction(SIGALRM, &act, NULL);
1409 itv.it_interval.tv_sec = 0;
1410 /* for i386 kernel 2.6 to get 1 ms */
1411 itv.it_interval.tv_usec = 999;
1412 itv.it_value.tv_sec = 0;
1413 itv.it_value.tv_usec = 10 * 1000;
1415 err = setitimer(ITIMER_REAL, &itv, NULL);
1416 if (err)
1417 return -1;
1419 return 0;
1422 static void unix_stop_timer(struct qemu_alarm_timer *t)
1424 struct itimerval itv;
1426 memset(&itv, 0, sizeof(itv));
1427 setitimer(ITIMER_REAL, &itv, NULL);
1430 #endif /* !defined(_WIN32) */
1433 #ifdef _WIN32
1435 static int win32_start_timer(struct qemu_alarm_timer *t)
1437 TIMECAPS tc;
1438 struct qemu_alarm_win32 *data = t->priv;
1439 UINT flags;
1441 memset(&tc, 0, sizeof(tc));
1442 timeGetDevCaps(&tc, sizeof(tc));
1444 if (data->period < tc.wPeriodMin)
1445 data->period = tc.wPeriodMin;
1447 timeBeginPeriod(data->period);
1449 flags = TIME_CALLBACK_FUNCTION;
1450 if (alarm_has_dynticks(t))
1451 flags |= TIME_ONESHOT;
1452 else
1453 flags |= TIME_PERIODIC;
1455 data->timerId = timeSetEvent(1, // interval (ms)
1456 data->period, // resolution
1457 host_alarm_handler, // function
1458 (DWORD)t, // parameter
1459 flags);
1461 if (!data->timerId) {
1462 perror("Failed to initialize win32 alarm timer");
1463 timeEndPeriod(data->period);
1464 return -1;
1467 return 0;
1470 static void win32_stop_timer(struct qemu_alarm_timer *t)
1472 struct qemu_alarm_win32 *data = t->priv;
1474 timeKillEvent(data->timerId);
1475 timeEndPeriod(data->period);
1478 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1480 struct qemu_alarm_win32 *data = t->priv;
1481 uint64_t nearest_delta_us;
1483 if (!active_timers[QEMU_TIMER_REALTIME] &&
1484 !active_timers[QEMU_TIMER_VIRTUAL])
1485 return;
1487 nearest_delta_us = qemu_next_deadline_dyntick();
1488 nearest_delta_us /= 1000;
1490 timeKillEvent(data->timerId);
1492 data->timerId = timeSetEvent(1,
1493 data->period,
1494 host_alarm_handler,
1495 (DWORD)t,
1496 TIME_ONESHOT | TIME_PERIODIC);
1498 if (!data->timerId) {
1499 perror("Failed to re-arm win32 alarm timer");
1501 timeEndPeriod(data->period);
1502 exit(1);
1506 #endif /* _WIN32 */
1508 static int init_timer_alarm(void)
1510 struct qemu_alarm_timer *t = NULL;
1511 int i, err = -1;
1513 for (i = 0; alarm_timers[i].name; i++) {
1514 t = &alarm_timers[i];
1516 err = t->start(t);
1517 if (!err)
1518 break;
1521 if (err) {
1522 err = -ENOENT;
1523 goto fail;
1526 alarm_timer = t;
1528 return 0;
1530 fail:
1531 return err;
1534 static void quit_timers(void)
1536 alarm_timer->stop(alarm_timer);
1537 alarm_timer = NULL;
1540 /***********************************************************/
1541 /* host time/date access */
1542 void qemu_get_timedate(struct tm *tm, int offset)
1544 time_t ti;
1545 struct tm *ret;
1547 time(&ti);
1548 ti += offset;
1549 if (rtc_date_offset == -1) {
1550 if (rtc_utc)
1551 ret = gmtime(&ti);
1552 else
1553 ret = localtime(&ti);
1554 } else {
1555 ti -= rtc_date_offset;
1556 ret = gmtime(&ti);
1559 memcpy(tm, ret, sizeof(struct tm));
1562 int qemu_timedate_diff(struct tm *tm)
1564 time_t seconds;
1566 if (rtc_date_offset == -1)
1567 if (rtc_utc)
1568 seconds = mktimegm(tm);
1569 else
1570 seconds = mktime(tm);
1571 else
1572 seconds = mktimegm(tm) + rtc_date_offset;
1574 return seconds - time(NULL);
1577 #ifdef _WIN32
1578 static void socket_cleanup(void)
1580 WSACleanup();
1583 static int socket_init(void)
1585 WSADATA Data;
1586 int ret, err;
1588 ret = WSAStartup(MAKEWORD(2,2), &Data);
1589 if (ret != 0) {
1590 err = WSAGetLastError();
1591 fprintf(stderr, "WSAStartup: %d\n", err);
1592 return -1;
1594 atexit(socket_cleanup);
1595 return 0;
1597 #endif
1599 /***********************************************************/
1600 /* Bluetooth support */
1601 static int nb_hcis;
1602 static int cur_hci;
1603 static struct HCIInfo *hci_table[MAX_NICS];
1605 static struct bt_vlan_s {
1606 struct bt_scatternet_s net;
1607 int id;
1608 struct bt_vlan_s *next;
1609 } *first_bt_vlan;
1611 /* find or alloc a new bluetooth "VLAN" */
1612 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1614 struct bt_vlan_s **pvlan, *vlan;
1615 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1616 if (vlan->id == id)
1617 return &vlan->net;
1619 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1620 vlan->id = id;
1621 pvlan = &first_bt_vlan;
1622 while (*pvlan != NULL)
1623 pvlan = &(*pvlan)->next;
1624 *pvlan = vlan;
1625 return &vlan->net;
1628 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1632 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1634 return -ENOTSUP;
1637 static struct HCIInfo null_hci = {
1638 .cmd_send = null_hci_send,
1639 .sco_send = null_hci_send,
1640 .acl_send = null_hci_send,
1641 .bdaddr_set = null_hci_addr_set,
1644 struct HCIInfo *qemu_next_hci(void)
1646 if (cur_hci == nb_hcis)
1647 return &null_hci;
1649 return hci_table[cur_hci++];
1652 static struct HCIInfo *hci_init(const char *str)
1654 char *endp;
1655 struct bt_scatternet_s *vlan = 0;
1657 if (!strcmp(str, "null"))
1658 /* null */
1659 return &null_hci;
1660 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1661 /* host[:hciN] */
1662 return bt_host_hci(str[4] ? str + 5 : "hci0");
1663 else if (!strncmp(str, "hci", 3)) {
1664 /* hci[,vlan=n] */
1665 if (str[3]) {
1666 if (!strncmp(str + 3, ",vlan=", 6)) {
1667 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1668 if (*endp)
1669 vlan = 0;
1671 } else
1672 vlan = qemu_find_bt_vlan(0);
1673 if (vlan)
1674 return bt_new_hci(vlan);
1677 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1679 return 0;
1682 static int bt_hci_parse(const char *str)
1684 struct HCIInfo *hci;
1685 bdaddr_t bdaddr;
1687 if (nb_hcis >= MAX_NICS) {
1688 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1689 return -1;
1692 hci = hci_init(str);
1693 if (!hci)
1694 return -1;
1696 bdaddr.b[0] = 0x52;
1697 bdaddr.b[1] = 0x54;
1698 bdaddr.b[2] = 0x00;
1699 bdaddr.b[3] = 0x12;
1700 bdaddr.b[4] = 0x34;
1701 bdaddr.b[5] = 0x56 + nb_hcis;
1702 hci->bdaddr_set(hci, bdaddr.b);
1704 hci_table[nb_hcis++] = hci;
1706 return 0;
1709 static void bt_vhci_add(int vlan_id)
1711 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
1713 if (!vlan->slave)
1714 fprintf(stderr, "qemu: warning: adding a VHCI to "
1715 "an empty scatternet %i\n", vlan_id);
1717 bt_vhci_init(bt_new_hci(vlan));
1720 static struct bt_device_s *bt_device_add(const char *opt)
1722 struct bt_scatternet_s *vlan;
1723 int vlan_id = 0;
1724 char *endp = strstr(opt, ",vlan=");
1725 int len = (endp ? endp - opt : strlen(opt)) + 1;
1726 char devname[10];
1728 pstrcpy(devname, MIN(sizeof(devname), len), opt);
1730 if (endp) {
1731 vlan_id = strtol(endp + 6, &endp, 0);
1732 if (*endp) {
1733 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
1734 return 0;
1738 vlan = qemu_find_bt_vlan(vlan_id);
1740 if (!vlan->slave)
1741 fprintf(stderr, "qemu: warning: adding a slave device to "
1742 "an empty scatternet %i\n", vlan_id);
1744 if (!strcmp(devname, "keyboard"))
1745 return bt_keyboard_init(vlan);
1747 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
1748 return 0;
1751 static int bt_parse(const char *opt)
1753 const char *endp, *p;
1754 int vlan;
1756 if (strstart(opt, "hci", &endp)) {
1757 if (!*endp || *endp == ',') {
1758 if (*endp)
1759 if (!strstart(endp, ",vlan=", 0))
1760 opt = endp + 1;
1762 return bt_hci_parse(opt);
1764 } else if (strstart(opt, "vhci", &endp)) {
1765 if (!*endp || *endp == ',') {
1766 if (*endp) {
1767 if (strstart(endp, ",vlan=", &p)) {
1768 vlan = strtol(p, (char **) &endp, 0);
1769 if (*endp) {
1770 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
1771 return 1;
1773 } else {
1774 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
1775 return 1;
1777 } else
1778 vlan = 0;
1780 bt_vhci_add(vlan);
1781 return 0;
1783 } else if (strstart(opt, "device:", &endp))
1784 return !bt_device_add(endp);
1786 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
1787 return 1;
1790 /***********************************************************/
1791 /* QEMU Block devices */
1793 #define HD_ALIAS "index=%d,media=disk"
1794 #define CDROM_ALIAS "index=2,media=cdrom"
1795 #define FD_ALIAS "index=%d,if=floppy"
1796 #define PFLASH_ALIAS "if=pflash"
1797 #define MTD_ALIAS "if=mtd"
1798 #define SD_ALIAS "index=0,if=sd"
1800 static QemuOptsList drive_opt_list = {
1801 .name = "drive",
1802 .head = TAILQ_HEAD_INITIALIZER(drive_opt_list.head),
1803 .desc = {
1805 .name = "bus",
1806 .type = QEMU_OPT_NUMBER,
1807 .help = "bus number",
1809 .name = "unit",
1810 .type = QEMU_OPT_NUMBER,
1811 .help = "unit number (i.e. lun for scsi)",
1813 .name = "if",
1814 .type = QEMU_OPT_STRING,
1815 .help = "interface (ide, scsi, sd, mtd, floppy, pflash, virtio)",
1817 .name = "index",
1818 .type = QEMU_OPT_NUMBER,
1820 .name = "cyls",
1821 .type = QEMU_OPT_NUMBER,
1822 .help = "number of cylinders (ide disk geometry)",
1824 .name = "heads",
1825 .type = QEMU_OPT_NUMBER,
1826 .help = "number of heads (ide disk geometry)",
1828 .name = "secs",
1829 .type = QEMU_OPT_NUMBER,
1830 .help = "number of sectors (ide disk geometry)",
1832 .name = "trans",
1833 .type = QEMU_OPT_STRING,
1834 .help = "chs translation (auto, lba. none)",
1836 .name = "media",
1837 .type = QEMU_OPT_STRING,
1838 .help = "media type (disk, cdrom)",
1840 .name = "snapshot",
1841 .type = QEMU_OPT_BOOL,
1843 .name = "file",
1844 .type = QEMU_OPT_STRING,
1845 .help = "disk image",
1847 .name = "cache",
1848 .type = QEMU_OPT_STRING,
1849 .help = "host cache usage (none, writeback, writethrough)",
1851 .name = "format",
1852 .type = QEMU_OPT_STRING,
1853 .help = "disk format (raw, qcow2, ...)",
1855 .name = "serial",
1856 .type = QEMU_OPT_STRING,
1858 .name = "werror",
1859 .type = QEMU_OPT_STRING,
1861 .name = "addr",
1862 .type = QEMU_OPT_STRING,
1863 .help = "pci address (virtio only)",
1865 { /* end if list */ }
1869 QemuOpts *drive_add(const char *file, const char *fmt, ...)
1871 va_list ap;
1872 char optstr[1024];
1873 QemuOpts *opts;
1875 va_start(ap, fmt);
1876 vsnprintf(optstr, sizeof(optstr), fmt, ap);
1877 va_end(ap);
1879 opts = qemu_opts_parse(&drive_opt_list, optstr, NULL);
1880 if (!opts) {
1881 fprintf(stderr, "%s: huh? duplicate? (%s)\n",
1882 __FUNCTION__, optstr);
1883 return NULL;
1885 if (file)
1886 qemu_opt_set(opts, "file", file);
1887 return opts;
1890 DriveInfo *drive_get(BlockInterfaceType type, int bus, int unit)
1892 DriveInfo *dinfo;
1894 /* seek interface, bus and unit */
1896 TAILQ_FOREACH(dinfo, &drives, next) {
1897 if (dinfo->type == type &&
1898 dinfo->bus == bus &&
1899 dinfo->unit == unit)
1900 return dinfo;
1903 return NULL;
1906 DriveInfo *drive_get_by_id(char *id)
1908 DriveInfo *dinfo;
1910 TAILQ_FOREACH(dinfo, &drives, next) {
1911 if (strcmp(id, dinfo->id))
1912 continue;
1913 return dinfo;
1915 return NULL;
1918 int drive_get_max_bus(BlockInterfaceType type)
1920 int max_bus;
1921 DriveInfo *dinfo;
1923 max_bus = -1;
1924 TAILQ_FOREACH(dinfo, &drives, next) {
1925 if(dinfo->type == type &&
1926 dinfo->bus > max_bus)
1927 max_bus = dinfo->bus;
1929 return max_bus;
1932 const char *drive_get_serial(BlockDriverState *bdrv)
1934 DriveInfo *dinfo;
1936 TAILQ_FOREACH(dinfo, &drives, next) {
1937 if (dinfo->bdrv == bdrv)
1938 return dinfo->serial;
1941 return "\0";
1944 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
1946 DriveInfo *dinfo;
1948 TAILQ_FOREACH(dinfo, &drives, next) {
1949 if (dinfo->bdrv == bdrv)
1950 return dinfo->onerror;
1953 return BLOCK_ERR_STOP_ENOSPC;
1956 static void bdrv_format_print(void *opaque, const char *name)
1958 fprintf(stderr, " %s", name);
1961 void drive_uninit(BlockDriverState *bdrv)
1963 DriveInfo *dinfo;
1965 TAILQ_FOREACH(dinfo, &drives, next) {
1966 if (dinfo->bdrv != bdrv)
1967 continue;
1968 qemu_opts_del(dinfo->opts);
1969 TAILQ_REMOVE(&drives, dinfo, next);
1970 qemu_free(dinfo);
1971 break;
1975 DriveInfo *drive_init(QemuOpts *opts, void *opaque,
1976 int *fatal_error)
1978 const char *buf;
1979 const char *file = NULL;
1980 char devname[128];
1981 const char *serial;
1982 const char *mediastr = "";
1983 BlockInterfaceType type;
1984 enum { MEDIA_DISK, MEDIA_CDROM } media;
1985 int bus_id, unit_id;
1986 int cyls, heads, secs, translation;
1987 BlockDriver *drv = NULL;
1988 QEMUMachine *machine = opaque;
1989 int max_devs;
1990 int index;
1991 int cache;
1992 int bdrv_flags, onerror;
1993 const char *devaddr;
1994 DriveInfo *dinfo;
1995 int snapshot = 0;
1997 *fatal_error = 1;
1999 translation = BIOS_ATA_TRANSLATION_AUTO;
2000 cache = 1;
2002 if (machine->use_scsi) {
2003 type = IF_SCSI;
2004 max_devs = MAX_SCSI_DEVS;
2005 pstrcpy(devname, sizeof(devname), "scsi");
2006 } else {
2007 type = IF_IDE;
2008 max_devs = MAX_IDE_DEVS;
2009 pstrcpy(devname, sizeof(devname), "ide");
2011 media = MEDIA_DISK;
2013 /* extract parameters */
2014 bus_id = qemu_opt_get_number(opts, "bus", 0);
2015 unit_id = qemu_opt_get_number(opts, "unit", -1);
2016 index = qemu_opt_get_number(opts, "index", -1);
2018 cyls = qemu_opt_get_number(opts, "cyls", 0);
2019 heads = qemu_opt_get_number(opts, "heads", 0);
2020 secs = qemu_opt_get_number(opts, "secs", 0);
2022 snapshot = qemu_opt_get_bool(opts, "snapshot", 0);
2024 file = qemu_opt_get(opts, "file");
2025 serial = qemu_opt_get(opts, "serial");
2027 if ((buf = qemu_opt_get(opts, "if")) != NULL) {
2028 pstrcpy(devname, sizeof(devname), buf);
2029 if (!strcmp(buf, "ide")) {
2030 type = IF_IDE;
2031 max_devs = MAX_IDE_DEVS;
2032 } else if (!strcmp(buf, "scsi")) {
2033 type = IF_SCSI;
2034 max_devs = MAX_SCSI_DEVS;
2035 } else if (!strcmp(buf, "floppy")) {
2036 type = IF_FLOPPY;
2037 max_devs = 0;
2038 } else if (!strcmp(buf, "pflash")) {
2039 type = IF_PFLASH;
2040 max_devs = 0;
2041 } else if (!strcmp(buf, "mtd")) {
2042 type = IF_MTD;
2043 max_devs = 0;
2044 } else if (!strcmp(buf, "sd")) {
2045 type = IF_SD;
2046 max_devs = 0;
2047 } else if (!strcmp(buf, "virtio")) {
2048 type = IF_VIRTIO;
2049 max_devs = 0;
2050 } else if (!strcmp(buf, "xen")) {
2051 type = IF_XEN;
2052 max_devs = 0;
2053 } else {
2054 fprintf(stderr, "qemu: unsupported bus type '%s'\n", buf);
2055 return NULL;
2059 if (cyls || heads || secs) {
2060 if (cyls < 1 || cyls > 16383) {
2061 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", buf);
2062 return NULL;
2064 if (heads < 1 || heads > 16) {
2065 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", buf);
2066 return NULL;
2068 if (secs < 1 || secs > 63) {
2069 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", buf);
2070 return NULL;
2074 if ((buf = qemu_opt_get(opts, "trans")) != NULL) {
2075 if (!cyls) {
2076 fprintf(stderr,
2077 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2078 buf);
2079 return NULL;
2081 if (!strcmp(buf, "none"))
2082 translation = BIOS_ATA_TRANSLATION_NONE;
2083 else if (!strcmp(buf, "lba"))
2084 translation = BIOS_ATA_TRANSLATION_LBA;
2085 else if (!strcmp(buf, "auto"))
2086 translation = BIOS_ATA_TRANSLATION_AUTO;
2087 else {
2088 fprintf(stderr, "qemu: '%s' invalid translation type\n", buf);
2089 return NULL;
2093 if ((buf = qemu_opt_get(opts, "media")) != NULL) {
2094 if (!strcmp(buf, "disk")) {
2095 media = MEDIA_DISK;
2096 } else if (!strcmp(buf, "cdrom")) {
2097 if (cyls || secs || heads) {
2098 fprintf(stderr,
2099 "qemu: '%s' invalid physical CHS format\n", buf);
2100 return NULL;
2102 media = MEDIA_CDROM;
2103 } else {
2104 fprintf(stderr, "qemu: '%s' invalid media\n", buf);
2105 return NULL;
2109 if ((buf = qemu_opt_get(opts, "cache")) != NULL) {
2110 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2111 cache = 0;
2112 else if (!strcmp(buf, "writethrough"))
2113 cache = 1;
2114 else if (!strcmp(buf, "writeback"))
2115 cache = 2;
2116 else {
2117 fprintf(stderr, "qemu: invalid cache option\n");
2118 return NULL;
2122 if ((buf = qemu_opt_get(opts, "format")) != NULL) {
2123 if (strcmp(buf, "?") == 0) {
2124 fprintf(stderr, "qemu: Supported formats:");
2125 bdrv_iterate_format(bdrv_format_print, NULL);
2126 fprintf(stderr, "\n");
2127 return NULL;
2129 drv = bdrv_find_format(buf);
2130 if (!drv) {
2131 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2132 return NULL;
2136 onerror = BLOCK_ERR_STOP_ENOSPC;
2137 if ((buf = qemu_opt_get(opts, "werror")) != NULL) {
2138 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2139 fprintf(stderr, "werror is no supported by this format\n");
2140 return NULL;
2142 if (!strcmp(buf, "ignore"))
2143 onerror = BLOCK_ERR_IGNORE;
2144 else if (!strcmp(buf, "enospc"))
2145 onerror = BLOCK_ERR_STOP_ENOSPC;
2146 else if (!strcmp(buf, "stop"))
2147 onerror = BLOCK_ERR_STOP_ANY;
2148 else if (!strcmp(buf, "report"))
2149 onerror = BLOCK_ERR_REPORT;
2150 else {
2151 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2152 return NULL;
2156 if ((devaddr = qemu_opt_get(opts, "addr")) != NULL) {
2157 if (type != IF_VIRTIO) {
2158 fprintf(stderr, "addr is not supported\n");
2159 return NULL;
2163 /* compute bus and unit according index */
2165 if (index != -1) {
2166 if (bus_id != 0 || unit_id != -1) {
2167 fprintf(stderr,
2168 "qemu: index cannot be used with bus and unit\n");
2169 return NULL;
2171 if (max_devs == 0)
2173 unit_id = index;
2174 bus_id = 0;
2175 } else {
2176 unit_id = index % max_devs;
2177 bus_id = index / max_devs;
2181 /* if user doesn't specify a unit_id,
2182 * try to find the first free
2185 if (unit_id == -1) {
2186 unit_id = 0;
2187 while (drive_get(type, bus_id, unit_id) != NULL) {
2188 unit_id++;
2189 if (max_devs && unit_id >= max_devs) {
2190 unit_id -= max_devs;
2191 bus_id++;
2196 /* check unit id */
2198 if (max_devs && unit_id >= max_devs) {
2199 fprintf(stderr, "qemu: unit %d too big (max is %d)\n",
2200 unit_id, max_devs - 1);
2201 return NULL;
2205 * ignore multiple definitions
2208 if (drive_get(type, bus_id, unit_id) != NULL) {
2209 *fatal_error = 0;
2210 return NULL;
2213 /* init */
2215 dinfo = qemu_mallocz(sizeof(*dinfo));
2216 if ((buf = qemu_opt_get(opts, "id")) != NULL) {
2217 dinfo->id = qemu_strdup(buf);
2218 } else {
2219 /* no id supplied -> create one */
2220 dinfo->id = qemu_mallocz(32);
2221 if (type == IF_IDE || type == IF_SCSI)
2222 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2223 if (max_devs)
2224 snprintf(dinfo->id, 32, "%s%i%s%i",
2225 devname, bus_id, mediastr, unit_id);
2226 else
2227 snprintf(dinfo->id, 32, "%s%s%i",
2228 devname, mediastr, unit_id);
2230 dinfo->bdrv = bdrv_new(dinfo->id);
2231 dinfo->devaddr = devaddr;
2232 dinfo->type = type;
2233 dinfo->bus = bus_id;
2234 dinfo->unit = unit_id;
2235 dinfo->onerror = onerror;
2236 dinfo->opts = opts;
2237 if (serial)
2238 strncpy(dinfo->serial, serial, sizeof(serial));
2239 TAILQ_INSERT_TAIL(&drives, dinfo, next);
2241 switch(type) {
2242 case IF_IDE:
2243 case IF_SCSI:
2244 case IF_XEN:
2245 switch(media) {
2246 case MEDIA_DISK:
2247 if (cyls != 0) {
2248 bdrv_set_geometry_hint(dinfo->bdrv, cyls, heads, secs);
2249 bdrv_set_translation_hint(dinfo->bdrv, translation);
2251 break;
2252 case MEDIA_CDROM:
2253 bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_CDROM);
2254 break;
2256 break;
2257 case IF_SD:
2258 /* FIXME: This isn't really a floppy, but it's a reasonable
2259 approximation. */
2260 case IF_FLOPPY:
2261 bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_FLOPPY);
2262 break;
2263 case IF_PFLASH:
2264 case IF_MTD:
2265 case IF_VIRTIO:
2266 break;
2267 case IF_COUNT:
2268 abort();
2270 if (!file) {
2271 *fatal_error = 0;
2272 return NULL;
2274 bdrv_flags = 0;
2275 if (snapshot) {
2276 bdrv_flags |= BDRV_O_SNAPSHOT;
2277 cache = 2; /* always use write-back with snapshot */
2279 if (cache == 0) /* no caching */
2280 bdrv_flags |= BDRV_O_NOCACHE;
2281 else if (cache == 2) /* write-back */
2282 bdrv_flags |= BDRV_O_CACHE_WB;
2283 if (bdrv_open2(dinfo->bdrv, file, bdrv_flags, drv) < 0) {
2284 fprintf(stderr, "qemu: could not open disk image %s\n",
2285 file);
2286 return NULL;
2288 if (bdrv_key_required(dinfo->bdrv))
2289 autostart = 0;
2290 *fatal_error = 0;
2291 return dinfo;
2294 static int drive_init_func(QemuOpts *opts, void *opaque)
2296 QEMUMachine *machine = opaque;
2297 int fatal_error = 0;
2299 if (drive_init(opts, machine, &fatal_error) == NULL) {
2300 if (fatal_error)
2301 return 1;
2303 return 0;
2306 static int drive_enable_snapshot(QemuOpts *opts, void *opaque)
2308 if (NULL == qemu_opt_get(opts, "snapshot")) {
2309 qemu_opt_set(opts, "snapshot", "on");
2311 return 0;
2314 void qemu_register_boot_set(QEMUBootSetHandler *func, void *opaque)
2316 boot_set_handler = func;
2317 boot_set_opaque = opaque;
2320 int qemu_boot_set(const char *boot_devices)
2322 if (!boot_set_handler) {
2323 return -EINVAL;
2325 return boot_set_handler(boot_set_opaque, boot_devices);
2328 static int parse_bootdevices(char *devices)
2330 /* We just do some generic consistency checks */
2331 const char *p;
2332 int bitmap = 0;
2334 for (p = devices; *p != '\0'; p++) {
2335 /* Allowed boot devices are:
2336 * a-b: floppy disk drives
2337 * c-f: IDE disk drives
2338 * g-m: machine implementation dependant drives
2339 * n-p: network devices
2340 * It's up to each machine implementation to check if the given boot
2341 * devices match the actual hardware implementation and firmware
2342 * features.
2344 if (*p < 'a' || *p > 'p') {
2345 fprintf(stderr, "Invalid boot device '%c'\n", *p);
2346 exit(1);
2348 if (bitmap & (1 << (*p - 'a'))) {
2349 fprintf(stderr, "Boot device '%c' was given twice\n", *p);
2350 exit(1);
2352 bitmap |= 1 << (*p - 'a');
2354 return bitmap;
2357 static void restore_boot_devices(void *opaque)
2359 char *standard_boot_devices = opaque;
2361 qemu_boot_set(standard_boot_devices);
2363 qemu_unregister_reset(restore_boot_devices, standard_boot_devices);
2364 qemu_free(standard_boot_devices);
2367 static void numa_add(const char *optarg)
2369 char option[128];
2370 char *endptr;
2371 unsigned long long value, endvalue;
2372 int nodenr;
2374 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2375 if (!strcmp(option, "node")) {
2376 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2377 nodenr = nb_numa_nodes;
2378 } else {
2379 nodenr = strtoull(option, NULL, 10);
2382 if (get_param_value(option, 128, "mem", optarg) == 0) {
2383 node_mem[nodenr] = 0;
2384 } else {
2385 value = strtoull(option, &endptr, 0);
2386 switch (*endptr) {
2387 case 0: case 'M': case 'm':
2388 value <<= 20;
2389 break;
2390 case 'G': case 'g':
2391 value <<= 30;
2392 break;
2394 node_mem[nodenr] = value;
2396 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2397 node_cpumask[nodenr] = 0;
2398 } else {
2399 value = strtoull(option, &endptr, 10);
2400 if (value >= 64) {
2401 value = 63;
2402 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2403 } else {
2404 if (*endptr == '-') {
2405 endvalue = strtoull(endptr+1, &endptr, 10);
2406 if (endvalue >= 63) {
2407 endvalue = 62;
2408 fprintf(stderr,
2409 "only 63 CPUs in NUMA mode supported.\n");
2411 value = (1 << (endvalue + 1)) - (1 << value);
2412 } else {
2413 value = 1 << value;
2416 node_cpumask[nodenr] = value;
2418 nb_numa_nodes++;
2420 return;
2423 /***********************************************************/
2424 /* USB devices */
2426 static USBPort *used_usb_ports;
2427 static USBPort *free_usb_ports;
2429 /* ??? Maybe change this to register a hub to keep track of the topology. */
2430 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2431 usb_attachfn attach)
2433 port->opaque = opaque;
2434 port->index = index;
2435 port->attach = attach;
2436 port->next = free_usb_ports;
2437 free_usb_ports = port;
2440 int usb_device_add_dev(USBDevice *dev)
2442 USBPort *port;
2444 /* Find a USB port to add the device to. */
2445 port = free_usb_ports;
2446 if (!port->next) {
2447 USBDevice *hub;
2449 /* Create a new hub and chain it on. */
2450 free_usb_ports = NULL;
2451 port->next = used_usb_ports;
2452 used_usb_ports = port;
2454 hub = usb_hub_init(VM_USB_HUB_SIZE);
2455 usb_attach(port, hub);
2456 port = free_usb_ports;
2459 free_usb_ports = port->next;
2460 port->next = used_usb_ports;
2461 used_usb_ports = port;
2462 usb_attach(port, dev);
2463 return 0;
2466 static void usb_msd_password_cb(void *opaque, int err)
2468 USBDevice *dev = opaque;
2470 if (!err)
2471 usb_device_add_dev(dev);
2472 else
2473 dev->handle_destroy(dev);
2476 static int usb_device_add(const char *devname, int is_hotplug)
2478 const char *p;
2479 USBDevice *dev;
2481 if (!free_usb_ports)
2482 return -1;
2484 if (strstart(devname, "host:", &p)) {
2485 dev = usb_host_device_open(p);
2486 } else if (!strcmp(devname, "mouse")) {
2487 dev = usb_mouse_init();
2488 } else if (!strcmp(devname, "tablet")) {
2489 dev = usb_tablet_init();
2490 } else if (!strcmp(devname, "keyboard")) {
2491 dev = usb_keyboard_init();
2492 } else if (strstart(devname, "disk:", &p)) {
2493 BlockDriverState *bs;
2495 dev = usb_msd_init(p);
2496 if (!dev)
2497 return -1;
2498 bs = usb_msd_get_bdrv(dev);
2499 if (bdrv_key_required(bs)) {
2500 autostart = 0;
2501 if (is_hotplug) {
2502 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2503 dev);
2504 return 0;
2507 } else if (!strcmp(devname, "wacom-tablet")) {
2508 dev = usb_wacom_init();
2509 } else if (strstart(devname, "serial:", &p)) {
2510 dev = usb_serial_init(p);
2511 #ifdef CONFIG_BRLAPI
2512 } else if (!strcmp(devname, "braille")) {
2513 dev = usb_baum_init();
2514 #endif
2515 } else if (strstart(devname, "net:", &p)) {
2516 int nic = nb_nics;
2518 if (net_client_init(NULL, "nic", p) < 0)
2519 return -1;
2520 nd_table[nic].model = "usb";
2521 dev = usb_net_init(&nd_table[nic]);
2522 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2523 dev = usb_bt_init(devname[2] ? hci_init(p) :
2524 bt_new_hci(qemu_find_bt_vlan(0)));
2525 } else {
2526 return -1;
2528 if (!dev)
2529 return -1;
2531 return usb_device_add_dev(dev);
2534 int usb_device_del_addr(int bus_num, int addr)
2536 USBPort *port;
2537 USBPort **lastp;
2538 USBDevice *dev;
2540 if (!used_usb_ports)
2541 return -1;
2543 if (bus_num != 0)
2544 return -1;
2546 lastp = &used_usb_ports;
2547 port = used_usb_ports;
2548 while (port && port->dev->addr != addr) {
2549 lastp = &port->next;
2550 port = port->next;
2553 if (!port)
2554 return -1;
2556 dev = port->dev;
2557 *lastp = port->next;
2558 usb_attach(port, NULL);
2559 dev->handle_destroy(dev);
2560 port->next = free_usb_ports;
2561 free_usb_ports = port;
2562 return 0;
2565 static int usb_device_del(const char *devname)
2567 int bus_num, addr;
2568 const char *p;
2570 if (strstart(devname, "host:", &p))
2571 return usb_host_device_close(p);
2573 if (!used_usb_ports)
2574 return -1;
2576 p = strchr(devname, '.');
2577 if (!p)
2578 return -1;
2579 bus_num = strtoul(devname, NULL, 0);
2580 addr = strtoul(p + 1, NULL, 0);
2582 return usb_device_del_addr(bus_num, addr);
2585 static int usb_parse(const char *cmdline)
2587 return usb_device_add(cmdline, 0);
2590 void do_usb_add(Monitor *mon, const char *devname)
2592 usb_device_add(devname, 1);
2595 void do_usb_del(Monitor *mon, const char *devname)
2597 usb_device_del(devname);
2600 void usb_info(Monitor *mon)
2602 USBDevice *dev;
2603 USBPort *port;
2604 const char *speed_str;
2606 if (!usb_enabled) {
2607 monitor_printf(mon, "USB support not enabled\n");
2608 return;
2611 for (port = used_usb_ports; port; port = port->next) {
2612 dev = port->dev;
2613 if (!dev)
2614 continue;
2615 switch(dev->speed) {
2616 case USB_SPEED_LOW:
2617 speed_str = "1.5";
2618 break;
2619 case USB_SPEED_FULL:
2620 speed_str = "12";
2621 break;
2622 case USB_SPEED_HIGH:
2623 speed_str = "480";
2624 break;
2625 default:
2626 speed_str = "?";
2627 break;
2629 monitor_printf(mon, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2630 0, dev->addr, speed_str, dev->devname);
2634 /***********************************************************/
2635 /* PCMCIA/Cardbus */
2637 static struct pcmcia_socket_entry_s {
2638 PCMCIASocket *socket;
2639 struct pcmcia_socket_entry_s *next;
2640 } *pcmcia_sockets = 0;
2642 void pcmcia_socket_register(PCMCIASocket *socket)
2644 struct pcmcia_socket_entry_s *entry;
2646 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2647 entry->socket = socket;
2648 entry->next = pcmcia_sockets;
2649 pcmcia_sockets = entry;
2652 void pcmcia_socket_unregister(PCMCIASocket *socket)
2654 struct pcmcia_socket_entry_s *entry, **ptr;
2656 ptr = &pcmcia_sockets;
2657 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2658 if (entry->socket == socket) {
2659 *ptr = entry->next;
2660 qemu_free(entry);
2664 void pcmcia_info(Monitor *mon)
2666 struct pcmcia_socket_entry_s *iter;
2668 if (!pcmcia_sockets)
2669 monitor_printf(mon, "No PCMCIA sockets\n");
2671 for (iter = pcmcia_sockets; iter; iter = iter->next)
2672 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2673 iter->socket->attached ? iter->socket->card_string :
2674 "Empty");
2677 /***********************************************************/
2678 /* register display */
2680 struct DisplayAllocator default_allocator = {
2681 defaultallocator_create_displaysurface,
2682 defaultallocator_resize_displaysurface,
2683 defaultallocator_free_displaysurface
2686 void register_displaystate(DisplayState *ds)
2688 DisplayState **s;
2689 s = &display_state;
2690 while (*s != NULL)
2691 s = &(*s)->next;
2692 ds->next = NULL;
2693 *s = ds;
2696 DisplayState *get_displaystate(void)
2698 return display_state;
2701 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2703 if(ds->allocator == &default_allocator) ds->allocator = da;
2704 return ds->allocator;
2707 /* dumb display */
2709 static void dumb_display_init(void)
2711 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2712 ds->allocator = &default_allocator;
2713 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2714 register_displaystate(ds);
2717 /***********************************************************/
2718 /* I/O handling */
2720 typedef struct IOHandlerRecord {
2721 int fd;
2722 IOCanRWHandler *fd_read_poll;
2723 IOHandler *fd_read;
2724 IOHandler *fd_write;
2725 int deleted;
2726 void *opaque;
2727 /* temporary data */
2728 struct pollfd *ufd;
2729 struct IOHandlerRecord *next;
2730 } IOHandlerRecord;
2732 static IOHandlerRecord *first_io_handler;
2734 /* XXX: fd_read_poll should be suppressed, but an API change is
2735 necessary in the character devices to suppress fd_can_read(). */
2736 int qemu_set_fd_handler2(int fd,
2737 IOCanRWHandler *fd_read_poll,
2738 IOHandler *fd_read,
2739 IOHandler *fd_write,
2740 void *opaque)
2742 IOHandlerRecord **pioh, *ioh;
2744 if (!fd_read && !fd_write) {
2745 pioh = &first_io_handler;
2746 for(;;) {
2747 ioh = *pioh;
2748 if (ioh == NULL)
2749 break;
2750 if (ioh->fd == fd) {
2751 ioh->deleted = 1;
2752 break;
2754 pioh = &ioh->next;
2756 } else {
2757 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2758 if (ioh->fd == fd)
2759 goto found;
2761 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2762 ioh->next = first_io_handler;
2763 first_io_handler = ioh;
2764 found:
2765 ioh->fd = fd;
2766 ioh->fd_read_poll = fd_read_poll;
2767 ioh->fd_read = fd_read;
2768 ioh->fd_write = fd_write;
2769 ioh->opaque = opaque;
2770 ioh->deleted = 0;
2772 return 0;
2775 int qemu_set_fd_handler(int fd,
2776 IOHandler *fd_read,
2777 IOHandler *fd_write,
2778 void *opaque)
2780 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2783 #ifdef _WIN32
2784 /***********************************************************/
2785 /* Polling handling */
2787 typedef struct PollingEntry {
2788 PollingFunc *func;
2789 void *opaque;
2790 struct PollingEntry *next;
2791 } PollingEntry;
2793 static PollingEntry *first_polling_entry;
2795 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2797 PollingEntry **ppe, *pe;
2798 pe = qemu_mallocz(sizeof(PollingEntry));
2799 pe->func = func;
2800 pe->opaque = opaque;
2801 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2802 *ppe = pe;
2803 return 0;
2806 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2808 PollingEntry **ppe, *pe;
2809 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2810 pe = *ppe;
2811 if (pe->func == func && pe->opaque == opaque) {
2812 *ppe = pe->next;
2813 qemu_free(pe);
2814 break;
2819 /***********************************************************/
2820 /* Wait objects support */
2821 typedef struct WaitObjects {
2822 int num;
2823 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
2824 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
2825 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
2826 } WaitObjects;
2828 static WaitObjects wait_objects = {0};
2830 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2832 WaitObjects *w = &wait_objects;
2834 if (w->num >= MAXIMUM_WAIT_OBJECTS)
2835 return -1;
2836 w->events[w->num] = handle;
2837 w->func[w->num] = func;
2838 w->opaque[w->num] = opaque;
2839 w->num++;
2840 return 0;
2843 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2845 int i, found;
2846 WaitObjects *w = &wait_objects;
2848 found = 0;
2849 for (i = 0; i < w->num; i++) {
2850 if (w->events[i] == handle)
2851 found = 1;
2852 if (found) {
2853 w->events[i] = w->events[i + 1];
2854 w->func[i] = w->func[i + 1];
2855 w->opaque[i] = w->opaque[i + 1];
2858 if (found)
2859 w->num--;
2861 #endif
2863 /***********************************************************/
2864 /* ram save/restore */
2866 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
2868 int v;
2870 v = qemu_get_byte(f);
2871 switch(v) {
2872 case 0:
2873 if (qemu_get_buffer(f, buf, len) != len)
2874 return -EIO;
2875 break;
2876 case 1:
2877 v = qemu_get_byte(f);
2878 memset(buf, v, len);
2879 break;
2880 default:
2881 return -EINVAL;
2884 if (qemu_file_has_error(f))
2885 return -EIO;
2887 return 0;
2890 static int ram_load_v1(QEMUFile *f, void *opaque)
2892 int ret;
2893 ram_addr_t i;
2895 if (qemu_get_be32(f) != last_ram_offset)
2896 return -EINVAL;
2897 for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) {
2898 ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE);
2899 if (ret)
2900 return ret;
2902 return 0;
2905 #define BDRV_HASH_BLOCK_SIZE 1024
2906 #define IOBUF_SIZE 4096
2907 #define RAM_CBLOCK_MAGIC 0xfabe
2909 typedef struct RamDecompressState {
2910 z_stream zstream;
2911 QEMUFile *f;
2912 uint8_t buf[IOBUF_SIZE];
2913 } RamDecompressState;
2915 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
2917 int ret;
2918 memset(s, 0, sizeof(*s));
2919 s->f = f;
2920 ret = inflateInit(&s->zstream);
2921 if (ret != Z_OK)
2922 return -1;
2923 return 0;
2926 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
2928 int ret, clen;
2930 s->zstream.avail_out = len;
2931 s->zstream.next_out = buf;
2932 while (s->zstream.avail_out > 0) {
2933 if (s->zstream.avail_in == 0) {
2934 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
2935 return -1;
2936 clen = qemu_get_be16(s->f);
2937 if (clen > IOBUF_SIZE)
2938 return -1;
2939 qemu_get_buffer(s->f, s->buf, clen);
2940 s->zstream.avail_in = clen;
2941 s->zstream.next_in = s->buf;
2943 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
2944 if (ret != Z_OK && ret != Z_STREAM_END) {
2945 return -1;
2948 return 0;
2951 static void ram_decompress_close(RamDecompressState *s)
2953 inflateEnd(&s->zstream);
2956 #define RAM_SAVE_FLAG_FULL 0x01
2957 #define RAM_SAVE_FLAG_COMPRESS 0x02
2958 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
2959 #define RAM_SAVE_FLAG_PAGE 0x08
2960 #define RAM_SAVE_FLAG_EOS 0x10
2962 static int is_dup_page(uint8_t *page, uint8_t ch)
2964 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
2965 uint32_t *array = (uint32_t *)page;
2966 int i;
2968 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
2969 if (array[i] != val)
2970 return 0;
2973 return 1;
2976 static int ram_save_block(QEMUFile *f)
2978 static ram_addr_t current_addr = 0;
2979 ram_addr_t saved_addr = current_addr;
2980 ram_addr_t addr = 0;
2981 int found = 0;
2983 while (addr < last_ram_offset) {
2984 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
2985 uint8_t *p;
2987 cpu_physical_memory_reset_dirty(current_addr,
2988 current_addr + TARGET_PAGE_SIZE,
2989 MIGRATION_DIRTY_FLAG);
2991 p = qemu_get_ram_ptr(current_addr);
2993 if (is_dup_page(p, *p)) {
2994 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
2995 qemu_put_byte(f, *p);
2996 } else {
2997 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
2998 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
3001 found = 1;
3002 break;
3004 addr += TARGET_PAGE_SIZE;
3005 current_addr = (saved_addr + addr) % last_ram_offset;
3008 return found;
3011 static uint64_t bytes_transferred = 0;
3013 static ram_addr_t ram_save_remaining(void)
3015 ram_addr_t addr;
3016 ram_addr_t count = 0;
3018 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3019 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3020 count++;
3023 return count;
3026 uint64_t ram_bytes_remaining(void)
3028 return ram_save_remaining() * TARGET_PAGE_SIZE;
3031 uint64_t ram_bytes_transferred(void)
3033 return bytes_transferred;
3036 uint64_t ram_bytes_total(void)
3038 return last_ram_offset;
3041 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3043 ram_addr_t addr;
3044 uint64_t bytes_transferred_last;
3045 double bwidth = 0;
3046 uint64_t expected_time = 0;
3048 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) {
3049 qemu_file_set_error(f);
3050 return 0;
3053 if (stage == 1) {
3054 /* Make sure all dirty bits are set */
3055 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3056 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3057 cpu_physical_memory_set_dirty(addr);
3060 /* Enable dirty memory tracking */
3061 cpu_physical_memory_set_dirty_tracking(1);
3063 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
3066 bytes_transferred_last = bytes_transferred;
3067 bwidth = get_clock();
3069 while (!qemu_file_rate_limit(f)) {
3070 int ret;
3072 ret = ram_save_block(f);
3073 bytes_transferred += ret * TARGET_PAGE_SIZE;
3074 if (ret == 0) /* no more blocks */
3075 break;
3078 bwidth = get_clock() - bwidth;
3079 bwidth = (bytes_transferred - bytes_transferred_last) / bwidth;
3081 /* if we haven't transferred anything this round, force expected_time to a
3082 * a very high value, but without crashing */
3083 if (bwidth == 0)
3084 bwidth = 0.000001;
3086 /* try transferring iterative blocks of memory */
3088 if (stage == 3) {
3090 /* flush all remaining blocks regardless of rate limiting */
3091 while (ram_save_block(f) != 0) {
3092 bytes_transferred += TARGET_PAGE_SIZE;
3094 cpu_physical_memory_set_dirty_tracking(0);
3097 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3099 expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
3101 return (stage == 2) && (expected_time <= migrate_max_downtime());
3104 static int ram_load_dead(QEMUFile *f, void *opaque)
3106 RamDecompressState s1, *s = &s1;
3107 uint8_t buf[10];
3108 ram_addr_t i;
3110 if (ram_decompress_open(s, f) < 0)
3111 return -EINVAL;
3112 for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) {
3113 if (ram_decompress_buf(s, buf, 1) < 0) {
3114 fprintf(stderr, "Error while reading ram block header\n");
3115 goto error;
3117 if (buf[0] == 0) {
3118 if (ram_decompress_buf(s, qemu_get_ram_ptr(i),
3119 BDRV_HASH_BLOCK_SIZE) < 0) {
3120 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3121 goto error;
3123 } else {
3124 error:
3125 printf("Error block header\n");
3126 return -EINVAL;
3129 ram_decompress_close(s);
3131 return 0;
3134 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3136 ram_addr_t addr;
3137 int flags;
3139 if (version_id == 1)
3140 return ram_load_v1(f, opaque);
3142 if (version_id == 2) {
3143 if (qemu_get_be32(f) != last_ram_offset)
3144 return -EINVAL;
3145 return ram_load_dead(f, opaque);
3148 if (version_id != 3)
3149 return -EINVAL;
3151 do {
3152 addr = qemu_get_be64(f);
3154 flags = addr & ~TARGET_PAGE_MASK;
3155 addr &= TARGET_PAGE_MASK;
3157 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3158 if (addr != last_ram_offset)
3159 return -EINVAL;
3162 if (flags & RAM_SAVE_FLAG_FULL) {
3163 if (ram_load_dead(f, opaque) < 0)
3164 return -EINVAL;
3167 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3168 uint8_t ch = qemu_get_byte(f);
3169 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3170 #ifndef _WIN32
3171 if (ch == 0 &&
3172 (!kvm_enabled() || kvm_has_sync_mmu())) {
3173 madvise(qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE, MADV_DONTNEED);
3175 #endif
3176 } else if (flags & RAM_SAVE_FLAG_PAGE)
3177 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3178 } while (!(flags & RAM_SAVE_FLAG_EOS));
3180 return 0;
3183 void qemu_service_io(void)
3185 qemu_notify_event();
3188 /***********************************************************/
3189 /* bottom halves (can be seen as timers which expire ASAP) */
3191 struct QEMUBH {
3192 QEMUBHFunc *cb;
3193 void *opaque;
3194 int scheduled;
3195 int idle;
3196 int deleted;
3197 QEMUBH *next;
3200 static QEMUBH *first_bh = NULL;
3202 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3204 QEMUBH *bh;
3205 bh = qemu_mallocz(sizeof(QEMUBH));
3206 bh->cb = cb;
3207 bh->opaque = opaque;
3208 bh->next = first_bh;
3209 first_bh = bh;
3210 return bh;
3213 int qemu_bh_poll(void)
3215 QEMUBH *bh, **bhp;
3216 int ret;
3218 ret = 0;
3219 for (bh = first_bh; bh; bh = bh->next) {
3220 if (!bh->deleted && bh->scheduled) {
3221 bh->scheduled = 0;
3222 if (!bh->idle)
3223 ret = 1;
3224 bh->idle = 0;
3225 bh->cb(bh->opaque);
3229 /* remove deleted bhs */
3230 bhp = &first_bh;
3231 while (*bhp) {
3232 bh = *bhp;
3233 if (bh->deleted) {
3234 *bhp = bh->next;
3235 qemu_free(bh);
3236 } else
3237 bhp = &bh->next;
3240 return ret;
3243 void qemu_bh_schedule_idle(QEMUBH *bh)
3245 if (bh->scheduled)
3246 return;
3247 bh->scheduled = 1;
3248 bh->idle = 1;
3251 void qemu_bh_schedule(QEMUBH *bh)
3253 if (bh->scheduled)
3254 return;
3255 bh->scheduled = 1;
3256 bh->idle = 0;
3257 /* stop the currently executing CPU to execute the BH ASAP */
3258 qemu_notify_event();
3261 void qemu_bh_cancel(QEMUBH *bh)
3263 bh->scheduled = 0;
3266 void qemu_bh_delete(QEMUBH *bh)
3268 bh->scheduled = 0;
3269 bh->deleted = 1;
3272 static void qemu_bh_update_timeout(int *timeout)
3274 QEMUBH *bh;
3276 for (bh = first_bh; bh; bh = bh->next) {
3277 if (!bh->deleted && bh->scheduled) {
3278 if (bh->idle) {
3279 /* idle bottom halves will be polled at least
3280 * every 10ms */
3281 *timeout = MIN(10, *timeout);
3282 } else {
3283 /* non-idle bottom halves will be executed
3284 * immediately */
3285 *timeout = 0;
3286 break;
3292 /***********************************************************/
3293 /* machine registration */
3295 static QEMUMachine *first_machine = NULL;
3296 QEMUMachine *current_machine = NULL;
3298 int qemu_register_machine(QEMUMachine *m)
3300 QEMUMachine **pm;
3301 pm = &first_machine;
3302 while (*pm != NULL)
3303 pm = &(*pm)->next;
3304 m->next = NULL;
3305 *pm = m;
3306 return 0;
3309 static QEMUMachine *find_machine(const char *name)
3311 QEMUMachine *m;
3313 for(m = first_machine; m != NULL; m = m->next) {
3314 if (!strcmp(m->name, name))
3315 return m;
3316 if (m->alias && !strcmp(m->alias, name))
3317 return m;
3319 return NULL;
3322 static QEMUMachine *find_default_machine(void)
3324 QEMUMachine *m;
3326 for(m = first_machine; m != NULL; m = m->next) {
3327 if (m->is_default) {
3328 return m;
3331 return NULL;
3334 /***********************************************************/
3335 /* main execution loop */
3337 static void gui_update(void *opaque)
3339 uint64_t interval = GUI_REFRESH_INTERVAL;
3340 DisplayState *ds = opaque;
3341 DisplayChangeListener *dcl = ds->listeners;
3343 dpy_refresh(ds);
3345 while (dcl != NULL) {
3346 if (dcl->gui_timer_interval &&
3347 dcl->gui_timer_interval < interval)
3348 interval = dcl->gui_timer_interval;
3349 dcl = dcl->next;
3351 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3354 static void nographic_update(void *opaque)
3356 uint64_t interval = GUI_REFRESH_INTERVAL;
3358 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3361 struct vm_change_state_entry {
3362 VMChangeStateHandler *cb;
3363 void *opaque;
3364 LIST_ENTRY (vm_change_state_entry) entries;
3367 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3369 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3370 void *opaque)
3372 VMChangeStateEntry *e;
3374 e = qemu_mallocz(sizeof (*e));
3376 e->cb = cb;
3377 e->opaque = opaque;
3378 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3379 return e;
3382 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3384 LIST_REMOVE (e, entries);
3385 qemu_free (e);
3388 static void vm_state_notify(int running, int reason)
3390 VMChangeStateEntry *e;
3392 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3393 e->cb(e->opaque, running, reason);
3397 static void resume_all_vcpus(void);
3398 static void pause_all_vcpus(void);
3400 void vm_start(void)
3402 if (!vm_running) {
3403 cpu_enable_ticks();
3404 vm_running = 1;
3405 vm_state_notify(1, 0);
3406 qemu_rearm_alarm_timer(alarm_timer);
3407 resume_all_vcpus();
3411 /* reset/shutdown handler */
3413 typedef struct QEMUResetEntry {
3414 TAILQ_ENTRY(QEMUResetEntry) entry;
3415 QEMUResetHandler *func;
3416 void *opaque;
3417 } QEMUResetEntry;
3419 static TAILQ_HEAD(reset_handlers, QEMUResetEntry) reset_handlers =
3420 TAILQ_HEAD_INITIALIZER(reset_handlers);
3421 static int reset_requested;
3422 static int shutdown_requested;
3423 static int powerdown_requested;
3424 static int debug_requested;
3425 static int vmstop_requested;
3427 int qemu_shutdown_requested(void)
3429 int r = shutdown_requested;
3430 shutdown_requested = 0;
3431 return r;
3434 int qemu_reset_requested(void)
3436 int r = reset_requested;
3437 reset_requested = 0;
3438 return r;
3441 int qemu_powerdown_requested(void)
3443 int r = powerdown_requested;
3444 powerdown_requested = 0;
3445 return r;
3448 static int qemu_debug_requested(void)
3450 int r = debug_requested;
3451 debug_requested = 0;
3452 return r;
3455 static int qemu_vmstop_requested(void)
3457 int r = vmstop_requested;
3458 vmstop_requested = 0;
3459 return r;
3462 static void do_vm_stop(int reason)
3464 if (vm_running) {
3465 cpu_disable_ticks();
3466 vm_running = 0;
3467 pause_all_vcpus();
3468 vm_state_notify(0, reason);
3472 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3474 QEMUResetEntry *re = qemu_mallocz(sizeof(QEMUResetEntry));
3476 re->func = func;
3477 re->opaque = opaque;
3478 TAILQ_INSERT_TAIL(&reset_handlers, re, entry);
3481 void qemu_unregister_reset(QEMUResetHandler *func, void *opaque)
3483 QEMUResetEntry *re;
3485 TAILQ_FOREACH(re, &reset_handlers, entry) {
3486 if (re->func == func && re->opaque == opaque) {
3487 TAILQ_REMOVE(&reset_handlers, re, entry);
3488 qemu_free(re);
3489 return;
3494 void qemu_system_reset(void)
3496 QEMUResetEntry *re, *nre;
3498 /* reset all devices */
3499 TAILQ_FOREACH_SAFE(re, &reset_handlers, entry, nre) {
3500 re->func(re->opaque);
3504 void qemu_system_reset_request(void)
3506 if (no_reboot) {
3507 shutdown_requested = 1;
3508 } else {
3509 reset_requested = 1;
3511 qemu_notify_event();
3514 void qemu_system_shutdown_request(void)
3516 shutdown_requested = 1;
3517 qemu_notify_event();
3520 void qemu_system_powerdown_request(void)
3522 powerdown_requested = 1;
3523 qemu_notify_event();
3526 #ifdef CONFIG_IOTHREAD
3527 static void qemu_system_vmstop_request(int reason)
3529 vmstop_requested = reason;
3530 qemu_notify_event();
3532 #endif
3534 #ifndef _WIN32
3535 static int io_thread_fd = -1;
3537 static void qemu_event_increment(void)
3539 static const char byte = 0;
3541 if (io_thread_fd == -1)
3542 return;
3544 write(io_thread_fd, &byte, sizeof(byte));
3547 static void qemu_event_read(void *opaque)
3549 int fd = (unsigned long)opaque;
3550 ssize_t len;
3552 /* Drain the notify pipe */
3553 do {
3554 char buffer[512];
3555 len = read(fd, buffer, sizeof(buffer));
3556 } while ((len == -1 && errno == EINTR) || len > 0);
3559 static int qemu_event_init(void)
3561 int err;
3562 int fds[2];
3564 err = pipe(fds);
3565 if (err == -1)
3566 return -errno;
3568 err = fcntl_setfl(fds[0], O_NONBLOCK);
3569 if (err < 0)
3570 goto fail;
3572 err = fcntl_setfl(fds[1], O_NONBLOCK);
3573 if (err < 0)
3574 goto fail;
3576 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3577 (void *)(unsigned long)fds[0]);
3579 io_thread_fd = fds[1];
3580 return 0;
3582 fail:
3583 close(fds[0]);
3584 close(fds[1]);
3585 return err;
3587 #else
3588 HANDLE qemu_event_handle;
3590 static void dummy_event_handler(void *opaque)
3594 static int qemu_event_init(void)
3596 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3597 if (!qemu_event_handle) {
3598 perror("Failed CreateEvent");
3599 return -1;
3601 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3602 return 0;
3605 static void qemu_event_increment(void)
3607 SetEvent(qemu_event_handle);
3609 #endif
3611 static int cpu_can_run(CPUState *env)
3613 if (env->stop)
3614 return 0;
3615 if (env->stopped)
3616 return 0;
3617 return 1;
3620 #ifndef CONFIG_IOTHREAD
3621 static int qemu_init_main_loop(void)
3623 return qemu_event_init();
3626 void qemu_init_vcpu(void *_env)
3628 CPUState *env = _env;
3630 if (kvm_enabled())
3631 kvm_init_vcpu(env);
3632 return;
3635 int qemu_cpu_self(void *env)
3637 return 1;
3640 static void resume_all_vcpus(void)
3644 static void pause_all_vcpus(void)
3648 void qemu_cpu_kick(void *env)
3650 return;
3653 void qemu_notify_event(void)
3655 CPUState *env = cpu_single_env;
3657 if (env) {
3658 cpu_exit(env);
3659 #ifdef USE_KQEMU
3660 if (env->kqemu_enabled)
3661 kqemu_cpu_interrupt(env);
3662 #endif
3666 #define qemu_mutex_lock_iothread() do { } while (0)
3667 #define qemu_mutex_unlock_iothread() do { } while (0)
3669 void vm_stop(int reason)
3671 do_vm_stop(reason);
3674 #else /* CONFIG_IOTHREAD */
3676 #include "qemu-thread.h"
3678 QemuMutex qemu_global_mutex;
3679 static QemuMutex qemu_fair_mutex;
3681 static QemuThread io_thread;
3683 static QemuThread *tcg_cpu_thread;
3684 static QemuCond *tcg_halt_cond;
3686 static int qemu_system_ready;
3687 /* cpu creation */
3688 static QemuCond qemu_cpu_cond;
3689 /* system init */
3690 static QemuCond qemu_system_cond;
3691 static QemuCond qemu_pause_cond;
3693 static void block_io_signals(void);
3694 static void unblock_io_signals(void);
3695 static int tcg_has_work(void);
3697 static int qemu_init_main_loop(void)
3699 int ret;
3701 ret = qemu_event_init();
3702 if (ret)
3703 return ret;
3705 qemu_cond_init(&qemu_pause_cond);
3706 qemu_mutex_init(&qemu_fair_mutex);
3707 qemu_mutex_init(&qemu_global_mutex);
3708 qemu_mutex_lock(&qemu_global_mutex);
3710 unblock_io_signals();
3711 qemu_thread_self(&io_thread);
3713 return 0;
3716 static void qemu_wait_io_event(CPUState *env)
3718 while (!tcg_has_work())
3719 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3721 qemu_mutex_unlock(&qemu_global_mutex);
3724 * Users of qemu_global_mutex can be starved, having no chance
3725 * to acquire it since this path will get to it first.
3726 * So use another lock to provide fairness.
3728 qemu_mutex_lock(&qemu_fair_mutex);
3729 qemu_mutex_unlock(&qemu_fair_mutex);
3731 qemu_mutex_lock(&qemu_global_mutex);
3732 if (env->stop) {
3733 env->stop = 0;
3734 env->stopped = 1;
3735 qemu_cond_signal(&qemu_pause_cond);
3739 static int qemu_cpu_exec(CPUState *env);
3741 static void *kvm_cpu_thread_fn(void *arg)
3743 CPUState *env = arg;
3745 block_io_signals();
3746 qemu_thread_self(env->thread);
3748 /* signal CPU creation */
3749 qemu_mutex_lock(&qemu_global_mutex);
3750 env->created = 1;
3751 qemu_cond_signal(&qemu_cpu_cond);
3753 /* and wait for machine initialization */
3754 while (!qemu_system_ready)
3755 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3757 while (1) {
3758 if (cpu_can_run(env))
3759 qemu_cpu_exec(env);
3760 qemu_wait_io_event(env);
3763 return NULL;
3766 static void tcg_cpu_exec(void);
3768 static void *tcg_cpu_thread_fn(void *arg)
3770 CPUState *env = arg;
3772 block_io_signals();
3773 qemu_thread_self(env->thread);
3775 /* signal CPU creation */
3776 qemu_mutex_lock(&qemu_global_mutex);
3777 for (env = first_cpu; env != NULL; env = env->next_cpu)
3778 env->created = 1;
3779 qemu_cond_signal(&qemu_cpu_cond);
3781 /* and wait for machine initialization */
3782 while (!qemu_system_ready)
3783 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3785 while (1) {
3786 tcg_cpu_exec();
3787 qemu_wait_io_event(cur_cpu);
3790 return NULL;
3793 void qemu_cpu_kick(void *_env)
3795 CPUState *env = _env;
3796 qemu_cond_broadcast(env->halt_cond);
3797 if (kvm_enabled())
3798 qemu_thread_signal(env->thread, SIGUSR1);
3801 int qemu_cpu_self(void *env)
3803 return (cpu_single_env != NULL);
3806 static void cpu_signal(int sig)
3808 if (cpu_single_env)
3809 cpu_exit(cpu_single_env);
3812 static void block_io_signals(void)
3814 sigset_t set;
3815 struct sigaction sigact;
3817 sigemptyset(&set);
3818 sigaddset(&set, SIGUSR2);
3819 sigaddset(&set, SIGIO);
3820 sigaddset(&set, SIGALRM);
3821 pthread_sigmask(SIG_BLOCK, &set, NULL);
3823 sigemptyset(&set);
3824 sigaddset(&set, SIGUSR1);
3825 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3827 memset(&sigact, 0, sizeof(sigact));
3828 sigact.sa_handler = cpu_signal;
3829 sigaction(SIGUSR1, &sigact, NULL);
3832 static void unblock_io_signals(void)
3834 sigset_t set;
3836 sigemptyset(&set);
3837 sigaddset(&set, SIGUSR2);
3838 sigaddset(&set, SIGIO);
3839 sigaddset(&set, SIGALRM);
3840 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3842 sigemptyset(&set);
3843 sigaddset(&set, SIGUSR1);
3844 pthread_sigmask(SIG_BLOCK, &set, NULL);
3847 static void qemu_signal_lock(unsigned int msecs)
3849 qemu_mutex_lock(&qemu_fair_mutex);
3851 while (qemu_mutex_trylock(&qemu_global_mutex)) {
3852 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
3853 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
3854 break;
3856 qemu_mutex_unlock(&qemu_fair_mutex);
3859 static void qemu_mutex_lock_iothread(void)
3861 if (kvm_enabled()) {
3862 qemu_mutex_lock(&qemu_fair_mutex);
3863 qemu_mutex_lock(&qemu_global_mutex);
3864 qemu_mutex_unlock(&qemu_fair_mutex);
3865 } else
3866 qemu_signal_lock(100);
3869 static void qemu_mutex_unlock_iothread(void)
3871 qemu_mutex_unlock(&qemu_global_mutex);
3874 static int all_vcpus_paused(void)
3876 CPUState *penv = first_cpu;
3878 while (penv) {
3879 if (!penv->stopped)
3880 return 0;
3881 penv = (CPUState *)penv->next_cpu;
3884 return 1;
3887 static void pause_all_vcpus(void)
3889 CPUState *penv = first_cpu;
3891 while (penv) {
3892 penv->stop = 1;
3893 qemu_thread_signal(penv->thread, SIGUSR1);
3894 qemu_cpu_kick(penv);
3895 penv = (CPUState *)penv->next_cpu;
3898 while (!all_vcpus_paused()) {
3899 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
3900 penv = first_cpu;
3901 while (penv) {
3902 qemu_thread_signal(penv->thread, SIGUSR1);
3903 penv = (CPUState *)penv->next_cpu;
3908 static void resume_all_vcpus(void)
3910 CPUState *penv = first_cpu;
3912 while (penv) {
3913 penv->stop = 0;
3914 penv->stopped = 0;
3915 qemu_thread_signal(penv->thread, SIGUSR1);
3916 qemu_cpu_kick(penv);
3917 penv = (CPUState *)penv->next_cpu;
3921 static void tcg_init_vcpu(void *_env)
3923 CPUState *env = _env;
3924 /* share a single thread for all cpus with TCG */
3925 if (!tcg_cpu_thread) {
3926 env->thread = qemu_mallocz(sizeof(QemuThread));
3927 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3928 qemu_cond_init(env->halt_cond);
3929 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
3930 while (env->created == 0)
3931 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3932 tcg_cpu_thread = env->thread;
3933 tcg_halt_cond = env->halt_cond;
3934 } else {
3935 env->thread = tcg_cpu_thread;
3936 env->halt_cond = tcg_halt_cond;
3940 static void kvm_start_vcpu(CPUState *env)
3942 kvm_init_vcpu(env);
3943 env->thread = qemu_mallocz(sizeof(QemuThread));
3944 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3945 qemu_cond_init(env->halt_cond);
3946 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
3947 while (env->created == 0)
3948 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3951 void qemu_init_vcpu(void *_env)
3953 CPUState *env = _env;
3955 if (kvm_enabled())
3956 kvm_start_vcpu(env);
3957 else
3958 tcg_init_vcpu(env);
3961 void qemu_notify_event(void)
3963 qemu_event_increment();
3966 void vm_stop(int reason)
3968 QemuThread me;
3969 qemu_thread_self(&me);
3971 if (!qemu_thread_equal(&me, &io_thread)) {
3972 qemu_system_vmstop_request(reason);
3974 * FIXME: should not return to device code in case
3975 * vm_stop() has been requested.
3977 if (cpu_single_env) {
3978 cpu_exit(cpu_single_env);
3979 cpu_single_env->stop = 1;
3981 return;
3983 do_vm_stop(reason);
3986 #endif
3989 #ifdef _WIN32
3990 static void host_main_loop_wait(int *timeout)
3992 int ret, ret2, i;
3993 PollingEntry *pe;
3996 /* XXX: need to suppress polling by better using win32 events */
3997 ret = 0;
3998 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
3999 ret |= pe->func(pe->opaque);
4001 if (ret == 0) {
4002 int err;
4003 WaitObjects *w = &wait_objects;
4005 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
4006 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
4007 if (w->func[ret - WAIT_OBJECT_0])
4008 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
4010 /* Check for additional signaled events */
4011 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
4013 /* Check if event is signaled */
4014 ret2 = WaitForSingleObject(w->events[i], 0);
4015 if(ret2 == WAIT_OBJECT_0) {
4016 if (w->func[i])
4017 w->func[i](w->opaque[i]);
4018 } else if (ret2 == WAIT_TIMEOUT) {
4019 } else {
4020 err = GetLastError();
4021 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
4024 } else if (ret == WAIT_TIMEOUT) {
4025 } else {
4026 err = GetLastError();
4027 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
4031 *timeout = 0;
4033 #else
4034 static void host_main_loop_wait(int *timeout)
4037 #endif
4039 void main_loop_wait(int timeout)
4041 IOHandlerRecord *ioh;
4042 fd_set rfds, wfds, xfds;
4043 int ret, nfds;
4044 struct timeval tv;
4046 qemu_bh_update_timeout(&timeout);
4048 host_main_loop_wait(&timeout);
4050 /* poll any events */
4051 /* XXX: separate device handlers from system ones */
4052 nfds = -1;
4053 FD_ZERO(&rfds);
4054 FD_ZERO(&wfds);
4055 FD_ZERO(&xfds);
4056 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4057 if (ioh->deleted)
4058 continue;
4059 if (ioh->fd_read &&
4060 (!ioh->fd_read_poll ||
4061 ioh->fd_read_poll(ioh->opaque) != 0)) {
4062 FD_SET(ioh->fd, &rfds);
4063 if (ioh->fd > nfds)
4064 nfds = ioh->fd;
4066 if (ioh->fd_write) {
4067 FD_SET(ioh->fd, &wfds);
4068 if (ioh->fd > nfds)
4069 nfds = ioh->fd;
4073 tv.tv_sec = timeout / 1000;
4074 tv.tv_usec = (timeout % 1000) * 1000;
4076 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
4078 qemu_mutex_unlock_iothread();
4079 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
4080 qemu_mutex_lock_iothread();
4081 if (ret > 0) {
4082 IOHandlerRecord **pioh;
4084 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4085 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
4086 ioh->fd_read(ioh->opaque);
4088 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
4089 ioh->fd_write(ioh->opaque);
4093 /* remove deleted IO handlers */
4094 pioh = &first_io_handler;
4095 while (*pioh) {
4096 ioh = *pioh;
4097 if (ioh->deleted) {
4098 *pioh = ioh->next;
4099 qemu_free(ioh);
4100 } else
4101 pioh = &ioh->next;
4105 slirp_select_poll(&rfds, &wfds, &xfds, (ret < 0));
4107 /* rearm timer, if not periodic */
4108 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
4109 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
4110 qemu_rearm_alarm_timer(alarm_timer);
4113 /* vm time timers */
4114 if (vm_running) {
4115 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
4116 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
4117 qemu_get_clock(vm_clock));
4120 /* real time timers */
4121 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
4122 qemu_get_clock(rt_clock));
4124 /* Check bottom-halves last in case any of the earlier events triggered
4125 them. */
4126 qemu_bh_poll();
4130 static int qemu_cpu_exec(CPUState *env)
4132 int ret;
4133 #ifdef CONFIG_PROFILER
4134 int64_t ti;
4135 #endif
4137 #ifdef CONFIG_PROFILER
4138 ti = profile_getclock();
4139 #endif
4140 if (use_icount) {
4141 int64_t count;
4142 int decr;
4143 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
4144 env->icount_decr.u16.low = 0;
4145 env->icount_extra = 0;
4146 count = qemu_next_deadline();
4147 count = (count + (1 << icount_time_shift) - 1)
4148 >> icount_time_shift;
4149 qemu_icount += count;
4150 decr = (count > 0xffff) ? 0xffff : count;
4151 count -= decr;
4152 env->icount_decr.u16.low = decr;
4153 env->icount_extra = count;
4155 ret = cpu_exec(env);
4156 #ifdef CONFIG_PROFILER
4157 qemu_time += profile_getclock() - ti;
4158 #endif
4159 if (use_icount) {
4160 /* Fold pending instructions back into the
4161 instruction counter, and clear the interrupt flag. */
4162 qemu_icount -= (env->icount_decr.u16.low
4163 + env->icount_extra);
4164 env->icount_decr.u32 = 0;
4165 env->icount_extra = 0;
4167 return ret;
4170 static void tcg_cpu_exec(void)
4172 int ret = 0;
4174 if (next_cpu == NULL)
4175 next_cpu = first_cpu;
4176 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
4177 CPUState *env = cur_cpu = next_cpu;
4179 if (!vm_running)
4180 break;
4181 if (timer_alarm_pending) {
4182 timer_alarm_pending = 0;
4183 break;
4185 if (cpu_can_run(env))
4186 ret = qemu_cpu_exec(env);
4187 if (ret == EXCP_DEBUG) {
4188 gdb_set_stop_cpu(env);
4189 debug_requested = 1;
4190 break;
4195 static int cpu_has_work(CPUState *env)
4197 if (env->stop)
4198 return 1;
4199 if (env->stopped)
4200 return 0;
4201 if (!env->halted)
4202 return 1;
4203 if (qemu_cpu_has_work(env))
4204 return 1;
4205 return 0;
4208 static int tcg_has_work(void)
4210 CPUState *env;
4212 for (env = first_cpu; env != NULL; env = env->next_cpu)
4213 if (cpu_has_work(env))
4214 return 1;
4215 return 0;
4218 static int qemu_calculate_timeout(void)
4220 #ifndef CONFIG_IOTHREAD
4221 int timeout;
4223 if (!vm_running)
4224 timeout = 5000;
4225 else if (tcg_has_work())
4226 timeout = 0;
4227 else if (!use_icount)
4228 timeout = 5000;
4229 else {
4230 /* XXX: use timeout computed from timers */
4231 int64_t add;
4232 int64_t delta;
4233 /* Advance virtual time to the next event. */
4234 if (use_icount == 1) {
4235 /* When not using an adaptive execution frequency
4236 we tend to get badly out of sync with real time,
4237 so just delay for a reasonable amount of time. */
4238 delta = 0;
4239 } else {
4240 delta = cpu_get_icount() - cpu_get_clock();
4242 if (delta > 0) {
4243 /* If virtual time is ahead of real time then just
4244 wait for IO. */
4245 timeout = (delta / 1000000) + 1;
4246 } else {
4247 /* Wait for either IO to occur or the next
4248 timer event. */
4249 add = qemu_next_deadline();
4250 /* We advance the timer before checking for IO.
4251 Limit the amount we advance so that early IO
4252 activity won't get the guest too far ahead. */
4253 if (add > 10000000)
4254 add = 10000000;
4255 delta += add;
4256 add = (add + (1 << icount_time_shift) - 1)
4257 >> icount_time_shift;
4258 qemu_icount += add;
4259 timeout = delta / 1000000;
4260 if (timeout < 0)
4261 timeout = 0;
4265 return timeout;
4266 #else /* CONFIG_IOTHREAD */
4267 return 1000;
4268 #endif
4271 static int vm_can_run(void)
4273 if (powerdown_requested)
4274 return 0;
4275 if (reset_requested)
4276 return 0;
4277 if (shutdown_requested)
4278 return 0;
4279 if (debug_requested)
4280 return 0;
4281 return 1;
4284 static void main_loop(void)
4286 int r;
4288 #ifdef CONFIG_IOTHREAD
4289 qemu_system_ready = 1;
4290 qemu_cond_broadcast(&qemu_system_cond);
4291 #endif
4293 for (;;) {
4294 do {
4295 #ifdef CONFIG_PROFILER
4296 int64_t ti;
4297 #endif
4298 #ifndef CONFIG_IOTHREAD
4299 tcg_cpu_exec();
4300 #endif
4301 #ifdef CONFIG_PROFILER
4302 ti = profile_getclock();
4303 #endif
4304 main_loop_wait(qemu_calculate_timeout());
4305 #ifdef CONFIG_PROFILER
4306 dev_time += profile_getclock() - ti;
4307 #endif
4308 } while (vm_can_run());
4310 if (qemu_debug_requested())
4311 vm_stop(EXCP_DEBUG);
4312 if (qemu_shutdown_requested()) {
4313 if (no_shutdown) {
4314 vm_stop(0);
4315 no_shutdown = 0;
4316 } else
4317 break;
4319 if (qemu_reset_requested()) {
4320 pause_all_vcpus();
4321 qemu_system_reset();
4322 resume_all_vcpus();
4324 if (qemu_powerdown_requested())
4325 qemu_system_powerdown();
4326 if ((r = qemu_vmstop_requested()))
4327 vm_stop(r);
4329 pause_all_vcpus();
4332 static void version(void)
4334 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4337 static void help(int exitcode)
4339 version();
4340 printf("usage: %s [options] [disk_image]\n"
4341 "\n"
4342 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4343 "\n"
4344 #define DEF(option, opt_arg, opt_enum, opt_help) \
4345 opt_help
4346 #define DEFHEADING(text) stringify(text) "\n"
4347 #include "qemu-options.h"
4348 #undef DEF
4349 #undef DEFHEADING
4350 #undef GEN_DOCS
4351 "\n"
4352 "During emulation, the following keys are useful:\n"
4353 "ctrl-alt-f toggle full screen\n"
4354 "ctrl-alt-n switch to virtual console 'n'\n"
4355 "ctrl-alt toggle mouse and keyboard grab\n"
4356 "\n"
4357 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4359 "qemu",
4360 DEFAULT_RAM_SIZE,
4361 #ifndef _WIN32
4362 DEFAULT_NETWORK_SCRIPT,
4363 DEFAULT_NETWORK_DOWN_SCRIPT,
4364 #endif
4365 DEFAULT_GDBSTUB_PORT,
4366 "/tmp/qemu.log");
4367 exit(exitcode);
4370 #define HAS_ARG 0x0001
4372 enum {
4373 #define DEF(option, opt_arg, opt_enum, opt_help) \
4374 opt_enum,
4375 #define DEFHEADING(text)
4376 #include "qemu-options.h"
4377 #undef DEF
4378 #undef DEFHEADING
4379 #undef GEN_DOCS
4382 typedef struct QEMUOption {
4383 const char *name;
4384 int flags;
4385 int index;
4386 } QEMUOption;
4388 static const QEMUOption qemu_options[] = {
4389 { "h", 0, QEMU_OPTION_h },
4390 #define DEF(option, opt_arg, opt_enum, opt_help) \
4391 { option, opt_arg, opt_enum },
4392 #define DEFHEADING(text)
4393 #include "qemu-options.h"
4394 #undef DEF
4395 #undef DEFHEADING
4396 #undef GEN_DOCS
4397 { NULL },
4400 #ifdef HAS_AUDIO
4401 struct soundhw soundhw[] = {
4402 #ifdef HAS_AUDIO_CHOICE
4403 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4405 "pcspk",
4406 "PC speaker",
4409 { .init_isa = pcspk_audio_init }
4411 #endif
4413 #ifdef CONFIG_SB16
4415 "sb16",
4416 "Creative Sound Blaster 16",
4419 { .init_isa = SB16_init }
4421 #endif
4423 #ifdef CONFIG_CS4231A
4425 "cs4231a",
4426 "CS4231A",
4429 { .init_isa = cs4231a_init }
4431 #endif
4433 #ifdef CONFIG_ADLIB
4435 "adlib",
4436 #ifdef HAS_YMF262
4437 "Yamaha YMF262 (OPL3)",
4438 #else
4439 "Yamaha YM3812 (OPL2)",
4440 #endif
4443 { .init_isa = Adlib_init }
4445 #endif
4447 #ifdef CONFIG_GUS
4449 "gus",
4450 "Gravis Ultrasound GF1",
4453 { .init_isa = GUS_init }
4455 #endif
4457 #ifdef CONFIG_AC97
4459 "ac97",
4460 "Intel 82801AA AC97 Audio",
4463 { .init_pci = ac97_init }
4465 #endif
4467 #ifdef CONFIG_ES1370
4469 "es1370",
4470 "ENSONIQ AudioPCI ES1370",
4473 { .init_pci = es1370_init }
4475 #endif
4477 #endif /* HAS_AUDIO_CHOICE */
4479 { NULL, NULL, 0, 0, { NULL } }
4482 static void select_soundhw (const char *optarg)
4484 struct soundhw *c;
4486 if (*optarg == '?') {
4487 show_valid_cards:
4489 printf ("Valid sound card names (comma separated):\n");
4490 for (c = soundhw; c->name; ++c) {
4491 printf ("%-11s %s\n", c->name, c->descr);
4493 printf ("\n-soundhw all will enable all of the above\n");
4494 exit (*optarg != '?');
4496 else {
4497 size_t l;
4498 const char *p;
4499 char *e;
4500 int bad_card = 0;
4502 if (!strcmp (optarg, "all")) {
4503 for (c = soundhw; c->name; ++c) {
4504 c->enabled = 1;
4506 return;
4509 p = optarg;
4510 while (*p) {
4511 e = strchr (p, ',');
4512 l = !e ? strlen (p) : (size_t) (e - p);
4514 for (c = soundhw; c->name; ++c) {
4515 if (!strncmp (c->name, p, l)) {
4516 c->enabled = 1;
4517 break;
4521 if (!c->name) {
4522 if (l > 80) {
4523 fprintf (stderr,
4524 "Unknown sound card name (too big to show)\n");
4526 else {
4527 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4528 (int) l, p);
4530 bad_card = 1;
4532 p += l + (e != NULL);
4535 if (bad_card)
4536 goto show_valid_cards;
4539 #endif
4541 static void select_vgahw (const char *p)
4543 const char *opts;
4545 cirrus_vga_enabled = 0;
4546 std_vga_enabled = 0;
4547 vmsvga_enabled = 0;
4548 xenfb_enabled = 0;
4549 if (strstart(p, "std", &opts)) {
4550 std_vga_enabled = 1;
4551 } else if (strstart(p, "cirrus", &opts)) {
4552 cirrus_vga_enabled = 1;
4553 } else if (strstart(p, "vmware", &opts)) {
4554 vmsvga_enabled = 1;
4555 } else if (strstart(p, "xenfb", &opts)) {
4556 xenfb_enabled = 1;
4557 } else if (!strstart(p, "none", &opts)) {
4558 invalid_vga:
4559 fprintf(stderr, "Unknown vga type: %s\n", p);
4560 exit(1);
4562 while (*opts) {
4563 const char *nextopt;
4565 if (strstart(opts, ",retrace=", &nextopt)) {
4566 opts = nextopt;
4567 if (strstart(opts, "dumb", &nextopt))
4568 vga_retrace_method = VGA_RETRACE_DUMB;
4569 else if (strstart(opts, "precise", &nextopt))
4570 vga_retrace_method = VGA_RETRACE_PRECISE;
4571 else goto invalid_vga;
4572 } else goto invalid_vga;
4573 opts = nextopt;
4577 #ifdef TARGET_I386
4578 static int balloon_parse(const char *arg)
4580 char buf[128];
4581 const char *p;
4583 if (!strcmp(arg, "none")) {
4584 virtio_balloon = 0;
4585 } else if (!strncmp(arg, "virtio", 6)) {
4586 virtio_balloon = 1;
4587 if (arg[6] == ',') {
4588 p = arg + 7;
4589 if (get_param_value(buf, sizeof(buf), "addr", p)) {
4590 virtio_balloon_devaddr = strdup(buf);
4593 } else {
4594 return -1;
4596 return 0;
4598 #endif
4600 #ifdef _WIN32
4601 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4603 exit(STATUS_CONTROL_C_EXIT);
4604 return TRUE;
4606 #endif
4608 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4610 int ret;
4612 if(strlen(str) != 36)
4613 return -1;
4615 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4616 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4617 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4619 if(ret != 16)
4620 return -1;
4622 #ifdef TARGET_I386
4623 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4624 #endif
4626 return 0;
4629 #define MAX_NET_CLIENTS 32
4631 #ifndef _WIN32
4633 static void termsig_handler(int signal)
4635 qemu_system_shutdown_request();
4638 static void sigchld_handler(int signal)
4640 waitpid(-1, NULL, WNOHANG);
4643 static void sighandler_setup(void)
4645 struct sigaction act;
4647 memset(&act, 0, sizeof(act));
4648 act.sa_handler = termsig_handler;
4649 sigaction(SIGINT, &act, NULL);
4650 sigaction(SIGHUP, &act, NULL);
4651 sigaction(SIGTERM, &act, NULL);
4653 act.sa_handler = sigchld_handler;
4654 act.sa_flags = SA_NOCLDSTOP;
4655 sigaction(SIGCHLD, &act, NULL);
4658 #endif
4660 #ifdef _WIN32
4661 /* Look for support files in the same directory as the executable. */
4662 static char *find_datadir(const char *argv0)
4664 char *p;
4665 char buf[MAX_PATH];
4666 DWORD len;
4668 len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
4669 if (len == 0) {
4670 return NULL;
4673 buf[len] = 0;
4674 p = buf + len - 1;
4675 while (p != buf && *p != '\\')
4676 p--;
4677 *p = 0;
4678 if (access(buf, R_OK) == 0) {
4679 return qemu_strdup(buf);
4681 return NULL;
4683 #else /* !_WIN32 */
4685 /* Find a likely location for support files using the location of the binary.
4686 For installed binaries this will be "$bindir/../share/qemu". When
4687 running from the build tree this will be "$bindir/../pc-bios". */
4688 #define SHARE_SUFFIX "/share/qemu"
4689 #define BUILD_SUFFIX "/pc-bios"
4690 static char *find_datadir(const char *argv0)
4692 char *dir;
4693 char *p = NULL;
4694 char *res;
4695 #ifdef PATH_MAX
4696 char buf[PATH_MAX];
4697 #endif
4698 size_t max_len;
4700 #if defined(__linux__)
4702 int len;
4703 len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
4704 if (len > 0) {
4705 buf[len] = 0;
4706 p = buf;
4709 #elif defined(__FreeBSD__)
4711 int len;
4712 len = readlink("/proc/curproc/file", buf, sizeof(buf) - 1);
4713 if (len > 0) {
4714 buf[len] = 0;
4715 p = buf;
4718 #endif
4719 /* If we don't have any way of figuring out the actual executable
4720 location then try argv[0]. */
4721 if (!p) {
4722 #ifdef PATH_MAX
4723 p = buf;
4724 #endif
4725 p = realpath(argv0, p);
4726 if (!p) {
4727 return NULL;
4730 dir = dirname(p);
4731 dir = dirname(dir);
4733 max_len = strlen(dir) +
4734 MAX(strlen(SHARE_SUFFIX), strlen(BUILD_SUFFIX)) + 1;
4735 res = qemu_mallocz(max_len);
4736 snprintf(res, max_len, "%s%s", dir, SHARE_SUFFIX);
4737 if (access(res, R_OK)) {
4738 snprintf(res, max_len, "%s%s", dir, BUILD_SUFFIX);
4739 if (access(res, R_OK)) {
4740 qemu_free(res);
4741 res = NULL;
4744 #ifndef PATH_MAX
4745 free(p);
4746 #endif
4747 return res;
4749 #undef SHARE_SUFFIX
4750 #undef BUILD_SUFFIX
4751 #endif
4753 char *qemu_find_file(int type, const char *name)
4755 int len;
4756 const char *subdir;
4757 char *buf;
4759 /* If name contains path separators then try it as a straight path. */
4760 if ((strchr(name, '/') || strchr(name, '\\'))
4761 && access(name, R_OK) == 0) {
4762 return strdup(name);
4764 switch (type) {
4765 case QEMU_FILE_TYPE_BIOS:
4766 subdir = "";
4767 break;
4768 case QEMU_FILE_TYPE_KEYMAP:
4769 subdir = "keymaps/";
4770 break;
4771 default:
4772 abort();
4774 len = strlen(data_dir) + strlen(name) + strlen(subdir) + 2;
4775 buf = qemu_mallocz(len);
4776 snprintf(buf, len, "%s/%s%s", data_dir, subdir, name);
4777 if (access(buf, R_OK)) {
4778 qemu_free(buf);
4779 return NULL;
4781 return buf;
4784 struct device_config {
4785 enum {
4786 DEV_GENERIC, /* -device */
4787 DEV_USB, /* -usbdevice */
4788 DEV_BT, /* -bt */
4789 } type;
4790 const char *cmdline;
4791 TAILQ_ENTRY(device_config) next;
4793 TAILQ_HEAD(, device_config) device_configs = TAILQ_HEAD_INITIALIZER(device_configs);
4795 static void add_device_config(int type, const char *cmdline)
4797 struct device_config *conf;
4799 conf = qemu_mallocz(sizeof(*conf));
4800 conf->type = type;
4801 conf->cmdline = cmdline;
4802 TAILQ_INSERT_TAIL(&device_configs, conf, next);
4805 static int foreach_device_config(int type, int (*func)(const char *cmdline))
4807 struct device_config *conf;
4808 int rc;
4810 TAILQ_FOREACH(conf, &device_configs, next) {
4811 if (conf->type != type)
4812 continue;
4813 rc = func(conf->cmdline);
4814 if (0 != rc)
4815 return rc;
4817 return 0;
4820 static int generic_parse(const char *cmdline)
4822 DeviceState *dev;
4824 dev = qdev_device_add(cmdline);
4825 if (!dev)
4826 return -1;
4827 return 0;
4830 int main(int argc, char **argv, char **envp)
4832 const char *gdbstub_dev = NULL;
4833 uint32_t boot_devices_bitmap = 0;
4834 int i;
4835 int snapshot, linux_boot, net_boot;
4836 const char *initrd_filename;
4837 const char *kernel_filename, *kernel_cmdline;
4838 char boot_devices[33] = "cad"; /* default to HD->floppy->CD-ROM */
4839 DisplayState *ds;
4840 DisplayChangeListener *dcl;
4841 int cyls, heads, secs, translation;
4842 const char *net_clients[MAX_NET_CLIENTS];
4843 int nb_net_clients;
4844 QemuOpts *hda_opts = NULL;
4845 int optind;
4846 const char *r, *optarg;
4847 CharDriverState *monitor_hd = NULL;
4848 const char *monitor_device;
4849 const char *serial_devices[MAX_SERIAL_PORTS];
4850 int serial_device_index;
4851 const char *parallel_devices[MAX_PARALLEL_PORTS];
4852 int parallel_device_index;
4853 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4854 int virtio_console_index;
4855 const char *loadvm = NULL;
4856 QEMUMachine *machine;
4857 const char *cpu_model;
4858 #ifndef _WIN32
4859 int fds[2];
4860 #endif
4861 int tb_size;
4862 const char *pid_file = NULL;
4863 const char *incoming = NULL;
4864 #ifndef _WIN32
4865 int fd = 0;
4866 struct passwd *pwd = NULL;
4867 const char *chroot_dir = NULL;
4868 const char *run_as = NULL;
4869 #endif
4870 CPUState *env;
4871 int show_vnc_port = 0;
4873 qemu_cache_utils_init(envp);
4875 LIST_INIT (&vm_change_state_head);
4876 #ifndef _WIN32
4878 struct sigaction act;
4879 sigfillset(&act.sa_mask);
4880 act.sa_flags = 0;
4881 act.sa_handler = SIG_IGN;
4882 sigaction(SIGPIPE, &act, NULL);
4884 #else
4885 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4886 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4887 QEMU to run on a single CPU */
4889 HANDLE h;
4890 DWORD mask, smask;
4891 int i;
4892 h = GetCurrentProcess();
4893 if (GetProcessAffinityMask(h, &mask, &smask)) {
4894 for(i = 0; i < 32; i++) {
4895 if (mask & (1 << i))
4896 break;
4898 if (i != 32) {
4899 mask = 1 << i;
4900 SetProcessAffinityMask(h, mask);
4904 #endif
4906 module_call_init(MODULE_INIT_MACHINE);
4907 machine = find_default_machine();
4908 cpu_model = NULL;
4909 initrd_filename = NULL;
4910 ram_size = 0;
4911 snapshot = 0;
4912 kernel_filename = NULL;
4913 kernel_cmdline = "";
4914 cyls = heads = secs = 0;
4915 translation = BIOS_ATA_TRANSLATION_AUTO;
4916 monitor_device = "vc:80Cx24C";
4918 serial_devices[0] = "vc:80Cx24C";
4919 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4920 serial_devices[i] = NULL;
4921 serial_device_index = 0;
4923 parallel_devices[0] = "vc:80Cx24C";
4924 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4925 parallel_devices[i] = NULL;
4926 parallel_device_index = 0;
4928 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4929 virtio_consoles[i] = NULL;
4930 virtio_console_index = 0;
4932 for (i = 0; i < MAX_NODES; i++) {
4933 node_mem[i] = 0;
4934 node_cpumask[i] = 0;
4937 nb_net_clients = 0;
4938 nb_numa_nodes = 0;
4939 nb_nics = 0;
4941 tb_size = 0;
4942 autostart= 1;
4944 register_watchdogs();
4946 optind = 1;
4947 for(;;) {
4948 if (optind >= argc)
4949 break;
4950 r = argv[optind];
4951 if (r[0] != '-') {
4952 hda_opts = drive_add(argv[optind++], HD_ALIAS, 0);
4953 } else {
4954 const QEMUOption *popt;
4956 optind++;
4957 /* Treat --foo the same as -foo. */
4958 if (r[1] == '-')
4959 r++;
4960 popt = qemu_options;
4961 for(;;) {
4962 if (!popt->name) {
4963 fprintf(stderr, "%s: invalid option -- '%s'\n",
4964 argv[0], r);
4965 exit(1);
4967 if (!strcmp(popt->name, r + 1))
4968 break;
4969 popt++;
4971 if (popt->flags & HAS_ARG) {
4972 if (optind >= argc) {
4973 fprintf(stderr, "%s: option '%s' requires an argument\n",
4974 argv[0], r);
4975 exit(1);
4977 optarg = argv[optind++];
4978 } else {
4979 optarg = NULL;
4982 switch(popt->index) {
4983 case QEMU_OPTION_M:
4984 machine = find_machine(optarg);
4985 if (!machine) {
4986 QEMUMachine *m;
4987 printf("Supported machines are:\n");
4988 for(m = first_machine; m != NULL; m = m->next) {
4989 if (m->alias)
4990 printf("%-10s %s (alias of %s)\n",
4991 m->alias, m->desc, m->name);
4992 printf("%-10s %s%s\n",
4993 m->name, m->desc,
4994 m->is_default ? " (default)" : "");
4996 exit(*optarg != '?');
4998 break;
4999 case QEMU_OPTION_cpu:
5000 /* hw initialization will check this */
5001 if (*optarg == '?') {
5002 /* XXX: implement xxx_cpu_list for targets that still miss it */
5003 #if defined(cpu_list)
5004 cpu_list(stdout, &fprintf);
5005 #endif
5006 exit(0);
5007 } else {
5008 cpu_model = optarg;
5010 break;
5011 case QEMU_OPTION_initrd:
5012 initrd_filename = optarg;
5013 break;
5014 case QEMU_OPTION_hda:
5015 if (cyls == 0)
5016 hda_opts = drive_add(optarg, HD_ALIAS, 0);
5017 else
5018 hda_opts = drive_add(optarg, HD_ALIAS
5019 ",cyls=%d,heads=%d,secs=%d%s",
5020 0, cyls, heads, secs,
5021 translation == BIOS_ATA_TRANSLATION_LBA ?
5022 ",trans=lba" :
5023 translation == BIOS_ATA_TRANSLATION_NONE ?
5024 ",trans=none" : "");
5025 break;
5026 case QEMU_OPTION_hdb:
5027 case QEMU_OPTION_hdc:
5028 case QEMU_OPTION_hdd:
5029 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
5030 break;
5031 case QEMU_OPTION_drive:
5032 drive_add(NULL, "%s", optarg);
5033 break;
5034 case QEMU_OPTION_mtdblock:
5035 drive_add(optarg, MTD_ALIAS);
5036 break;
5037 case QEMU_OPTION_sd:
5038 drive_add(optarg, SD_ALIAS);
5039 break;
5040 case QEMU_OPTION_pflash:
5041 drive_add(optarg, PFLASH_ALIAS);
5042 break;
5043 case QEMU_OPTION_snapshot:
5044 snapshot = 1;
5045 break;
5046 case QEMU_OPTION_hdachs:
5048 const char *p;
5049 p = optarg;
5050 cyls = strtol(p, (char **)&p, 0);
5051 if (cyls < 1 || cyls > 16383)
5052 goto chs_fail;
5053 if (*p != ',')
5054 goto chs_fail;
5055 p++;
5056 heads = strtol(p, (char **)&p, 0);
5057 if (heads < 1 || heads > 16)
5058 goto chs_fail;
5059 if (*p != ',')
5060 goto chs_fail;
5061 p++;
5062 secs = strtol(p, (char **)&p, 0);
5063 if (secs < 1 || secs > 63)
5064 goto chs_fail;
5065 if (*p == ',') {
5066 p++;
5067 if (!strcmp(p, "none"))
5068 translation = BIOS_ATA_TRANSLATION_NONE;
5069 else if (!strcmp(p, "lba"))
5070 translation = BIOS_ATA_TRANSLATION_LBA;
5071 else if (!strcmp(p, "auto"))
5072 translation = BIOS_ATA_TRANSLATION_AUTO;
5073 else
5074 goto chs_fail;
5075 } else if (*p != '\0') {
5076 chs_fail:
5077 fprintf(stderr, "qemu: invalid physical CHS format\n");
5078 exit(1);
5080 if (hda_opts != NULL) {
5081 char num[16];
5082 snprintf(num, sizeof(num), "%d", cyls);
5083 qemu_opt_set(hda_opts, "cyls", num);
5084 snprintf(num, sizeof(num), "%d", heads);
5085 qemu_opt_set(hda_opts, "heads", num);
5086 snprintf(num, sizeof(num), "%d", secs);
5087 qemu_opt_set(hda_opts, "secs", num);
5088 if (translation == BIOS_ATA_TRANSLATION_LBA)
5089 qemu_opt_set(hda_opts, "trans", "lba");
5090 if (translation == BIOS_ATA_TRANSLATION_NONE)
5091 qemu_opt_set(hda_opts, "trans", "none");
5094 break;
5095 case QEMU_OPTION_numa:
5096 if (nb_numa_nodes >= MAX_NODES) {
5097 fprintf(stderr, "qemu: too many NUMA nodes\n");
5098 exit(1);
5100 numa_add(optarg);
5101 break;
5102 case QEMU_OPTION_nographic:
5103 display_type = DT_NOGRAPHIC;
5104 break;
5105 #ifdef CONFIG_CURSES
5106 case QEMU_OPTION_curses:
5107 display_type = DT_CURSES;
5108 break;
5109 #endif
5110 case QEMU_OPTION_portrait:
5111 graphic_rotate = 1;
5112 break;
5113 case QEMU_OPTION_kernel:
5114 kernel_filename = optarg;
5115 break;
5116 case QEMU_OPTION_append:
5117 kernel_cmdline = optarg;
5118 break;
5119 case QEMU_OPTION_cdrom:
5120 drive_add(optarg, CDROM_ALIAS);
5121 break;
5122 case QEMU_OPTION_boot:
5124 static const char * const params[] = {
5125 "order", "once", "menu", NULL
5127 char buf[sizeof(boot_devices)];
5128 char *standard_boot_devices;
5129 int legacy = 0;
5131 if (!strchr(optarg, '=')) {
5132 legacy = 1;
5133 pstrcpy(buf, sizeof(buf), optarg);
5134 } else if (check_params(buf, sizeof(buf), params, optarg) < 0) {
5135 fprintf(stderr,
5136 "qemu: unknown boot parameter '%s' in '%s'\n",
5137 buf, optarg);
5138 exit(1);
5141 if (legacy ||
5142 get_param_value(buf, sizeof(buf), "order", optarg)) {
5143 boot_devices_bitmap = parse_bootdevices(buf);
5144 pstrcpy(boot_devices, sizeof(boot_devices), buf);
5146 if (!legacy) {
5147 if (get_param_value(buf, sizeof(buf),
5148 "once", optarg)) {
5149 boot_devices_bitmap |= parse_bootdevices(buf);
5150 standard_boot_devices = qemu_strdup(boot_devices);
5151 pstrcpy(boot_devices, sizeof(boot_devices), buf);
5152 qemu_register_reset(restore_boot_devices,
5153 standard_boot_devices);
5155 if (get_param_value(buf, sizeof(buf),
5156 "menu", optarg)) {
5157 if (!strcmp(buf, "on")) {
5158 boot_menu = 1;
5159 } else if (!strcmp(buf, "off")) {
5160 boot_menu = 0;
5161 } else {
5162 fprintf(stderr,
5163 "qemu: invalid option value '%s'\n",
5164 buf);
5165 exit(1);
5170 break;
5171 case QEMU_OPTION_fda:
5172 case QEMU_OPTION_fdb:
5173 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5174 break;
5175 #ifdef TARGET_I386
5176 case QEMU_OPTION_no_fd_bootchk:
5177 fd_bootchk = 0;
5178 break;
5179 #endif
5180 case QEMU_OPTION_net:
5181 if (nb_net_clients >= MAX_NET_CLIENTS) {
5182 fprintf(stderr, "qemu: too many network clients\n");
5183 exit(1);
5185 net_clients[nb_net_clients] = optarg;
5186 nb_net_clients++;
5187 break;
5188 #ifdef CONFIG_SLIRP
5189 case QEMU_OPTION_tftp:
5190 legacy_tftp_prefix = optarg;
5191 break;
5192 case QEMU_OPTION_bootp:
5193 legacy_bootp_filename = optarg;
5194 break;
5195 #ifndef _WIN32
5196 case QEMU_OPTION_smb:
5197 net_slirp_smb(optarg);
5198 break;
5199 #endif
5200 case QEMU_OPTION_redir:
5201 net_slirp_redir(optarg);
5202 break;
5203 #endif
5204 case QEMU_OPTION_bt:
5205 add_device_config(DEV_BT, optarg);
5206 break;
5207 #ifdef HAS_AUDIO
5208 case QEMU_OPTION_audio_help:
5209 AUD_help ();
5210 exit (0);
5211 break;
5212 case QEMU_OPTION_soundhw:
5213 select_soundhw (optarg);
5214 break;
5215 #endif
5216 case QEMU_OPTION_h:
5217 help(0);
5218 break;
5219 case QEMU_OPTION_version:
5220 version();
5221 exit(0);
5222 break;
5223 case QEMU_OPTION_m: {
5224 uint64_t value;
5225 char *ptr;
5227 value = strtoul(optarg, &ptr, 10);
5228 switch (*ptr) {
5229 case 0: case 'M': case 'm':
5230 value <<= 20;
5231 break;
5232 case 'G': case 'g':
5233 value <<= 30;
5234 break;
5235 default:
5236 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5237 exit(1);
5240 /* On 32-bit hosts, QEMU is limited by virtual address space */
5241 if (value > (2047 << 20)
5242 #ifndef CONFIG_KQEMU
5243 && HOST_LONG_BITS == 32
5244 #endif
5246 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5247 exit(1);
5249 if (value != (uint64_t)(ram_addr_t)value) {
5250 fprintf(stderr, "qemu: ram size too large\n");
5251 exit(1);
5253 ram_size = value;
5254 break;
5256 case QEMU_OPTION_d:
5258 int mask;
5259 const CPULogItem *item;
5261 mask = cpu_str_to_log_mask(optarg);
5262 if (!mask) {
5263 printf("Log items (comma separated):\n");
5264 for(item = cpu_log_items; item->mask != 0; item++) {
5265 printf("%-10s %s\n", item->name, item->help);
5267 exit(1);
5269 cpu_set_log(mask);
5271 break;
5272 case QEMU_OPTION_s:
5273 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5274 break;
5275 case QEMU_OPTION_gdb:
5276 gdbstub_dev = optarg;
5277 break;
5278 case QEMU_OPTION_L:
5279 data_dir = optarg;
5280 break;
5281 case QEMU_OPTION_bios:
5282 bios_name = optarg;
5283 break;
5284 case QEMU_OPTION_singlestep:
5285 singlestep = 1;
5286 break;
5287 case QEMU_OPTION_S:
5288 autostart = 0;
5289 break;
5290 #ifndef _WIN32
5291 case QEMU_OPTION_k:
5292 keyboard_layout = optarg;
5293 break;
5294 #endif
5295 case QEMU_OPTION_localtime:
5296 rtc_utc = 0;
5297 break;
5298 case QEMU_OPTION_vga:
5299 select_vgahw (optarg);
5300 break;
5301 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5302 case QEMU_OPTION_g:
5304 const char *p;
5305 int w, h, depth;
5306 p = optarg;
5307 w = strtol(p, (char **)&p, 10);
5308 if (w <= 0) {
5309 graphic_error:
5310 fprintf(stderr, "qemu: invalid resolution or depth\n");
5311 exit(1);
5313 if (*p != 'x')
5314 goto graphic_error;
5315 p++;
5316 h = strtol(p, (char **)&p, 10);
5317 if (h <= 0)
5318 goto graphic_error;
5319 if (*p == 'x') {
5320 p++;
5321 depth = strtol(p, (char **)&p, 10);
5322 if (depth != 8 && depth != 15 && depth != 16 &&
5323 depth != 24 && depth != 32)
5324 goto graphic_error;
5325 } else if (*p == '\0') {
5326 depth = graphic_depth;
5327 } else {
5328 goto graphic_error;
5331 graphic_width = w;
5332 graphic_height = h;
5333 graphic_depth = depth;
5335 break;
5336 #endif
5337 case QEMU_OPTION_echr:
5339 char *r;
5340 term_escape_char = strtol(optarg, &r, 0);
5341 if (r == optarg)
5342 printf("Bad argument to echr\n");
5343 break;
5345 case QEMU_OPTION_monitor:
5346 monitor_device = optarg;
5347 break;
5348 case QEMU_OPTION_serial:
5349 if (serial_device_index >= MAX_SERIAL_PORTS) {
5350 fprintf(stderr, "qemu: too many serial ports\n");
5351 exit(1);
5353 serial_devices[serial_device_index] = optarg;
5354 serial_device_index++;
5355 break;
5356 case QEMU_OPTION_watchdog:
5357 i = select_watchdog(optarg);
5358 if (i > 0)
5359 exit (i == 1 ? 1 : 0);
5360 break;
5361 case QEMU_OPTION_watchdog_action:
5362 if (select_watchdog_action(optarg) == -1) {
5363 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5364 exit(1);
5366 break;
5367 case QEMU_OPTION_virtiocon:
5368 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5369 fprintf(stderr, "qemu: too many virtio consoles\n");
5370 exit(1);
5372 virtio_consoles[virtio_console_index] = optarg;
5373 virtio_console_index++;
5374 break;
5375 case QEMU_OPTION_parallel:
5376 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5377 fprintf(stderr, "qemu: too many parallel ports\n");
5378 exit(1);
5380 parallel_devices[parallel_device_index] = optarg;
5381 parallel_device_index++;
5382 break;
5383 case QEMU_OPTION_loadvm:
5384 loadvm = optarg;
5385 break;
5386 case QEMU_OPTION_full_screen:
5387 full_screen = 1;
5388 break;
5389 #ifdef CONFIG_SDL
5390 case QEMU_OPTION_no_frame:
5391 no_frame = 1;
5392 break;
5393 case QEMU_OPTION_alt_grab:
5394 alt_grab = 1;
5395 break;
5396 case QEMU_OPTION_no_quit:
5397 no_quit = 1;
5398 break;
5399 case QEMU_OPTION_sdl:
5400 display_type = DT_SDL;
5401 break;
5402 #endif
5403 case QEMU_OPTION_pidfile:
5404 pid_file = optarg;
5405 break;
5406 #ifdef TARGET_I386
5407 case QEMU_OPTION_win2k_hack:
5408 win2k_install_hack = 1;
5409 break;
5410 case QEMU_OPTION_rtc_td_hack:
5411 rtc_td_hack = 1;
5412 break;
5413 case QEMU_OPTION_acpitable:
5414 if(acpi_table_add(optarg) < 0) {
5415 fprintf(stderr, "Wrong acpi table provided\n");
5416 exit(1);
5418 break;
5419 case QEMU_OPTION_smbios:
5420 if(smbios_entry_add(optarg) < 0) {
5421 fprintf(stderr, "Wrong smbios provided\n");
5422 exit(1);
5424 break;
5425 #endif
5426 #ifdef CONFIG_KQEMU
5427 case QEMU_OPTION_enable_kqemu:
5428 kqemu_allowed = 1;
5429 break;
5430 case QEMU_OPTION_kernel_kqemu:
5431 kqemu_allowed = 2;
5432 break;
5433 #endif
5434 #ifdef CONFIG_KVM
5435 case QEMU_OPTION_enable_kvm:
5436 kvm_allowed = 1;
5437 #ifdef CONFIG_KQEMU
5438 kqemu_allowed = 0;
5439 #endif
5440 break;
5441 #endif
5442 case QEMU_OPTION_usb:
5443 usb_enabled = 1;
5444 break;
5445 case QEMU_OPTION_usbdevice:
5446 usb_enabled = 1;
5447 add_device_config(DEV_USB, optarg);
5448 break;
5449 case QEMU_OPTION_device:
5450 add_device_config(DEV_GENERIC, optarg);
5451 break;
5452 case QEMU_OPTION_smp:
5454 char *p;
5455 char option[128];
5456 smp_cpus = strtol(optarg, &p, 10);
5457 if (smp_cpus < 1) {
5458 fprintf(stderr, "Invalid number of CPUs\n");
5459 exit(1);
5461 if (*p++ != ',')
5462 break;
5463 if (get_param_value(option, 128, "maxcpus", p))
5464 max_cpus = strtol(option, NULL, 0);
5465 if (max_cpus < smp_cpus) {
5466 fprintf(stderr, "maxcpus must be equal to or greater than "
5467 "smp\n");
5468 exit(1);
5470 if (max_cpus > 255) {
5471 fprintf(stderr, "Unsupported number of maxcpus\n");
5472 exit(1);
5474 break;
5476 case QEMU_OPTION_vnc:
5477 display_type = DT_VNC;
5478 vnc_display = optarg;
5479 break;
5480 #ifdef TARGET_I386
5481 case QEMU_OPTION_no_acpi:
5482 acpi_enabled = 0;
5483 break;
5484 case QEMU_OPTION_no_hpet:
5485 no_hpet = 1;
5486 break;
5487 case QEMU_OPTION_balloon:
5488 if (balloon_parse(optarg) < 0) {
5489 fprintf(stderr, "Unknown -balloon argument %s\n", optarg);
5490 exit(1);
5492 break;
5493 #endif
5494 case QEMU_OPTION_no_reboot:
5495 no_reboot = 1;
5496 break;
5497 case QEMU_OPTION_no_shutdown:
5498 no_shutdown = 1;
5499 break;
5500 case QEMU_OPTION_show_cursor:
5501 cursor_hide = 0;
5502 break;
5503 case QEMU_OPTION_uuid:
5504 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5505 fprintf(stderr, "Fail to parse UUID string."
5506 " Wrong format.\n");
5507 exit(1);
5509 break;
5510 #ifndef _WIN32
5511 case QEMU_OPTION_daemonize:
5512 daemonize = 1;
5513 break;
5514 #endif
5515 case QEMU_OPTION_option_rom:
5516 if (nb_option_roms >= MAX_OPTION_ROMS) {
5517 fprintf(stderr, "Too many option ROMs\n");
5518 exit(1);
5520 option_rom[nb_option_roms] = optarg;
5521 nb_option_roms++;
5522 break;
5523 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5524 case QEMU_OPTION_semihosting:
5525 semihosting_enabled = 1;
5526 break;
5527 #endif
5528 case QEMU_OPTION_name:
5529 qemu_name = qemu_strdup(optarg);
5531 char *p = strchr(qemu_name, ',');
5532 if (p != NULL) {
5533 *p++ = 0;
5534 if (strncmp(p, "process=", 8)) {
5535 fprintf(stderr, "Unknown subargument %s to -name", p);
5536 exit(1);
5538 p += 8;
5539 set_proc_name(p);
5542 break;
5543 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5544 case QEMU_OPTION_prom_env:
5545 if (nb_prom_envs >= MAX_PROM_ENVS) {
5546 fprintf(stderr, "Too many prom variables\n");
5547 exit(1);
5549 prom_envs[nb_prom_envs] = optarg;
5550 nb_prom_envs++;
5551 break;
5552 #endif
5553 #ifdef TARGET_ARM
5554 case QEMU_OPTION_old_param:
5555 old_param = 1;
5556 break;
5557 #endif
5558 case QEMU_OPTION_clock:
5559 configure_alarms(optarg);
5560 break;
5561 case QEMU_OPTION_startdate:
5563 struct tm tm;
5564 time_t rtc_start_date;
5565 if (!strcmp(optarg, "now")) {
5566 rtc_date_offset = -1;
5567 } else {
5568 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5569 &tm.tm_year,
5570 &tm.tm_mon,
5571 &tm.tm_mday,
5572 &tm.tm_hour,
5573 &tm.tm_min,
5574 &tm.tm_sec) == 6) {
5575 /* OK */
5576 } else if (sscanf(optarg, "%d-%d-%d",
5577 &tm.tm_year,
5578 &tm.tm_mon,
5579 &tm.tm_mday) == 3) {
5580 tm.tm_hour = 0;
5581 tm.tm_min = 0;
5582 tm.tm_sec = 0;
5583 } else {
5584 goto date_fail;
5586 tm.tm_year -= 1900;
5587 tm.tm_mon--;
5588 rtc_start_date = mktimegm(&tm);
5589 if (rtc_start_date == -1) {
5590 date_fail:
5591 fprintf(stderr, "Invalid date format. Valid format are:\n"
5592 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5593 exit(1);
5595 rtc_date_offset = time(NULL) - rtc_start_date;
5598 break;
5599 case QEMU_OPTION_tb_size:
5600 tb_size = strtol(optarg, NULL, 0);
5601 if (tb_size < 0)
5602 tb_size = 0;
5603 break;
5604 case QEMU_OPTION_icount:
5605 use_icount = 1;
5606 if (strcmp(optarg, "auto") == 0) {
5607 icount_time_shift = -1;
5608 } else {
5609 icount_time_shift = strtol(optarg, NULL, 0);
5611 break;
5612 case QEMU_OPTION_incoming:
5613 incoming = optarg;
5614 break;
5615 #ifndef _WIN32
5616 case QEMU_OPTION_chroot:
5617 chroot_dir = optarg;
5618 break;
5619 case QEMU_OPTION_runas:
5620 run_as = optarg;
5621 break;
5622 #endif
5623 #ifdef CONFIG_XEN
5624 case QEMU_OPTION_xen_domid:
5625 xen_domid = atoi(optarg);
5626 break;
5627 case QEMU_OPTION_xen_create:
5628 xen_mode = XEN_CREATE;
5629 break;
5630 case QEMU_OPTION_xen_attach:
5631 xen_mode = XEN_ATTACH;
5632 break;
5633 #endif
5638 /* If no data_dir is specified then try to find it relative to the
5639 executable path. */
5640 if (!data_dir) {
5641 data_dir = find_datadir(argv[0]);
5643 /* If all else fails use the install patch specified when building. */
5644 if (!data_dir) {
5645 data_dir = CONFIG_QEMU_SHAREDIR;
5648 #if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5649 if (kvm_allowed && kqemu_allowed) {
5650 fprintf(stderr,
5651 "You can not enable both KVM and kqemu at the same time\n");
5652 exit(1);
5654 #endif
5657 * Default to max_cpus = smp_cpus, in case the user doesn't
5658 * specify a max_cpus value.
5660 if (!max_cpus)
5661 max_cpus = smp_cpus;
5663 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5664 if (smp_cpus > machine->max_cpus) {
5665 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5666 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5667 machine->max_cpus);
5668 exit(1);
5671 if (display_type == DT_NOGRAPHIC) {
5672 if (serial_device_index == 0)
5673 serial_devices[0] = "stdio";
5674 if (parallel_device_index == 0)
5675 parallel_devices[0] = "null";
5676 if (strncmp(monitor_device, "vc", 2) == 0)
5677 monitor_device = "stdio";
5680 #ifndef _WIN32
5681 if (daemonize) {
5682 pid_t pid;
5684 if (pipe(fds) == -1)
5685 exit(1);
5687 pid = fork();
5688 if (pid > 0) {
5689 uint8_t status;
5690 ssize_t len;
5692 close(fds[1]);
5694 again:
5695 len = read(fds[0], &status, 1);
5696 if (len == -1 && (errno == EINTR))
5697 goto again;
5699 if (len != 1)
5700 exit(1);
5701 else if (status == 1) {
5702 fprintf(stderr, "Could not acquire pidfile\n");
5703 exit(1);
5704 } else
5705 exit(0);
5706 } else if (pid < 0)
5707 exit(1);
5709 setsid();
5711 pid = fork();
5712 if (pid > 0)
5713 exit(0);
5714 else if (pid < 0)
5715 exit(1);
5717 umask(027);
5719 signal(SIGTSTP, SIG_IGN);
5720 signal(SIGTTOU, SIG_IGN);
5721 signal(SIGTTIN, SIG_IGN);
5724 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5725 if (daemonize) {
5726 uint8_t status = 1;
5727 write(fds[1], &status, 1);
5728 } else
5729 fprintf(stderr, "Could not acquire pid file\n");
5730 exit(1);
5732 #endif
5734 #ifdef CONFIG_KQEMU
5735 if (smp_cpus > 1)
5736 kqemu_allowed = 0;
5737 #endif
5738 if (qemu_init_main_loop()) {
5739 fprintf(stderr, "qemu_init_main_loop failed\n");
5740 exit(1);
5742 linux_boot = (kernel_filename != NULL);
5744 if (!linux_boot && *kernel_cmdline != '\0') {
5745 fprintf(stderr, "-append only allowed with -kernel option\n");
5746 exit(1);
5749 if (!linux_boot && initrd_filename != NULL) {
5750 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5751 exit(1);
5754 #ifndef _WIN32
5755 /* Win32 doesn't support line-buffering and requires size >= 2 */
5756 setvbuf(stdout, NULL, _IOLBF, 0);
5757 #endif
5759 init_timers();
5760 if (init_timer_alarm() < 0) {
5761 fprintf(stderr, "could not initialize alarm timer\n");
5762 exit(1);
5764 if (use_icount && icount_time_shift < 0) {
5765 use_icount = 2;
5766 /* 125MIPS seems a reasonable initial guess at the guest speed.
5767 It will be corrected fairly quickly anyway. */
5768 icount_time_shift = 3;
5769 init_icount_adjust();
5772 #ifdef _WIN32
5773 socket_init();
5774 #endif
5776 /* init network clients */
5777 if (nb_net_clients == 0) {
5778 /* if no clients, we use a default config */
5779 net_clients[nb_net_clients++] = "nic";
5780 #ifdef CONFIG_SLIRP
5781 net_clients[nb_net_clients++] = "user";
5782 #endif
5785 for(i = 0;i < nb_net_clients; i++) {
5786 if (net_client_parse(net_clients[i]) < 0)
5787 exit(1);
5790 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5791 net_set_boot_mask(net_boot);
5793 net_client_check();
5795 /* init the bluetooth world */
5796 if (foreach_device_config(DEV_BT, bt_parse))
5797 exit(1);
5799 /* init the memory */
5800 if (ram_size == 0)
5801 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5803 #ifdef CONFIG_KQEMU
5804 /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
5805 guest ram allocation. It needs to go away. */
5806 if (kqemu_allowed) {
5807 kqemu_phys_ram_size = ram_size + 8 * 1024 * 1024 + 4 * 1024 * 1024;
5808 kqemu_phys_ram_base = qemu_vmalloc(kqemu_phys_ram_size);
5809 if (!kqemu_phys_ram_base) {
5810 fprintf(stderr, "Could not allocate physical memory\n");
5811 exit(1);
5814 #endif
5816 /* init the dynamic translator */
5817 cpu_exec_init_all(tb_size * 1024 * 1024);
5819 bdrv_init();
5821 /* we always create the cdrom drive, even if no disk is there */
5822 drive_add(NULL, CDROM_ALIAS);
5824 /* we always create at least one floppy */
5825 drive_add(NULL, FD_ALIAS, 0);
5827 /* we always create one sd slot, even if no card is in it */
5828 drive_add(NULL, SD_ALIAS);
5830 /* open the virtual block devices */
5831 if (snapshot)
5832 qemu_opts_foreach(&drive_opt_list, drive_enable_snapshot, NULL, 0);
5833 if (qemu_opts_foreach(&drive_opt_list, drive_init_func, machine, 1) != 0)
5834 exit(1);
5836 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5837 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5839 #ifndef _WIN32
5840 /* must be after terminal init, SDL library changes signal handlers */
5841 sighandler_setup();
5842 #endif
5844 /* Maintain compatibility with multiple stdio monitors */
5845 if (!strcmp(monitor_device,"stdio")) {
5846 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5847 const char *devname = serial_devices[i];
5848 if (devname && !strcmp(devname,"mon:stdio")) {
5849 monitor_device = NULL;
5850 break;
5851 } else if (devname && !strcmp(devname,"stdio")) {
5852 monitor_device = NULL;
5853 serial_devices[i] = "mon:stdio";
5854 break;
5859 if (nb_numa_nodes > 0) {
5860 int i;
5862 if (nb_numa_nodes > smp_cpus) {
5863 nb_numa_nodes = smp_cpus;
5866 /* If no memory size if given for any node, assume the default case
5867 * and distribute the available memory equally across all nodes
5869 for (i = 0; i < nb_numa_nodes; i++) {
5870 if (node_mem[i] != 0)
5871 break;
5873 if (i == nb_numa_nodes) {
5874 uint64_t usedmem = 0;
5876 /* On Linux, the each node's border has to be 8MB aligned,
5877 * the final node gets the rest.
5879 for (i = 0; i < nb_numa_nodes - 1; i++) {
5880 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5881 usedmem += node_mem[i];
5883 node_mem[i] = ram_size - usedmem;
5886 for (i = 0; i < nb_numa_nodes; i++) {
5887 if (node_cpumask[i] != 0)
5888 break;
5890 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5891 * must cope with this anyway, because there are BIOSes out there in
5892 * real machines which also use this scheme.
5894 if (i == nb_numa_nodes) {
5895 for (i = 0; i < smp_cpus; i++) {
5896 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5901 if (kvm_enabled()) {
5902 int ret;
5904 ret = kvm_init(smp_cpus);
5905 if (ret < 0) {
5906 fprintf(stderr, "failed to initialize KVM\n");
5907 exit(1);
5911 if (monitor_device) {
5912 monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
5913 if (!monitor_hd) {
5914 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5915 exit(1);
5919 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5920 const char *devname = serial_devices[i];
5921 if (devname && strcmp(devname, "none")) {
5922 char label[32];
5923 snprintf(label, sizeof(label), "serial%d", i);
5924 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5925 if (!serial_hds[i]) {
5926 fprintf(stderr, "qemu: could not open serial device '%s'\n",
5927 devname);
5928 exit(1);
5933 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5934 const char *devname = parallel_devices[i];
5935 if (devname && strcmp(devname, "none")) {
5936 char label[32];
5937 snprintf(label, sizeof(label), "parallel%d", i);
5938 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5939 if (!parallel_hds[i]) {
5940 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5941 devname);
5942 exit(1);
5947 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5948 const char *devname = virtio_consoles[i];
5949 if (devname && strcmp(devname, "none")) {
5950 char label[32];
5951 snprintf(label, sizeof(label), "virtcon%d", i);
5952 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5953 if (!virtcon_hds[i]) {
5954 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5955 devname);
5956 exit(1);
5961 module_call_init(MODULE_INIT_DEVICE);
5963 if (machine->compat_props) {
5964 qdev_prop_register_compat(machine->compat_props);
5966 machine->init(ram_size, boot_devices,
5967 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5970 for (env = first_cpu; env != NULL; env = env->next_cpu) {
5971 for (i = 0; i < nb_numa_nodes; i++) {
5972 if (node_cpumask[i] & (1 << env->cpu_index)) {
5973 env->numa_node = i;
5978 current_machine = machine;
5980 /* init USB devices */
5981 if (usb_enabled) {
5982 foreach_device_config(DEV_USB, usb_parse);
5985 /* init generic devices */
5986 if (foreach_device_config(DEV_GENERIC, generic_parse))
5987 exit(1);
5989 if (!display_state)
5990 dumb_display_init();
5991 /* just use the first displaystate for the moment */
5992 ds = display_state;
5994 if (display_type == DT_DEFAULT) {
5995 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
5996 display_type = DT_SDL;
5997 #else
5998 display_type = DT_VNC;
5999 vnc_display = "localhost:0,to=99";
6000 show_vnc_port = 1;
6001 #endif
6005 switch (display_type) {
6006 case DT_NOGRAPHIC:
6007 break;
6008 #if defined(CONFIG_CURSES)
6009 case DT_CURSES:
6010 curses_display_init(ds, full_screen);
6011 break;
6012 #endif
6013 #if defined(CONFIG_SDL)
6014 case DT_SDL:
6015 sdl_display_init(ds, full_screen, no_frame);
6016 break;
6017 #elif defined(CONFIG_COCOA)
6018 case DT_SDL:
6019 cocoa_display_init(ds, full_screen);
6020 break;
6021 #endif
6022 case DT_VNC:
6023 vnc_display_init(ds);
6024 if (vnc_display_open(ds, vnc_display) < 0)
6025 exit(1);
6027 if (show_vnc_port) {
6028 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
6030 break;
6031 default:
6032 break;
6034 dpy_resize(ds);
6036 dcl = ds->listeners;
6037 while (dcl != NULL) {
6038 if (dcl->dpy_refresh != NULL) {
6039 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
6040 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
6042 dcl = dcl->next;
6045 if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
6046 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
6047 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
6050 text_consoles_set_display(display_state);
6051 qemu_chr_initial_reset();
6053 if (monitor_device && monitor_hd)
6054 monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT);
6056 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
6057 const char *devname = serial_devices[i];
6058 if (devname && strcmp(devname, "none")) {
6059 if (strstart(devname, "vc", 0))
6060 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
6064 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
6065 const char *devname = parallel_devices[i];
6066 if (devname && strcmp(devname, "none")) {
6067 if (strstart(devname, "vc", 0))
6068 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
6072 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
6073 const char *devname = virtio_consoles[i];
6074 if (virtcon_hds[i] && devname) {
6075 if (strstart(devname, "vc", 0))
6076 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
6080 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
6081 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
6082 gdbstub_dev);
6083 exit(1);
6086 if (loadvm)
6087 do_loadvm(cur_mon, loadvm);
6089 if (incoming) {
6090 autostart = 0;
6091 qemu_start_incoming_migration(incoming);
6094 if (autostart)
6095 vm_start();
6097 #ifndef _WIN32
6098 if (daemonize) {
6099 uint8_t status = 0;
6100 ssize_t len;
6102 again1:
6103 len = write(fds[1], &status, 1);
6104 if (len == -1 && (errno == EINTR))
6105 goto again1;
6107 if (len != 1)
6108 exit(1);
6110 chdir("/");
6111 TFR(fd = open("/dev/null", O_RDWR));
6112 if (fd == -1)
6113 exit(1);
6116 if (run_as) {
6117 pwd = getpwnam(run_as);
6118 if (!pwd) {
6119 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
6120 exit(1);
6124 if (chroot_dir) {
6125 if (chroot(chroot_dir) < 0) {
6126 fprintf(stderr, "chroot failed\n");
6127 exit(1);
6129 chdir("/");
6132 if (run_as) {
6133 if (setgid(pwd->pw_gid) < 0) {
6134 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6135 exit(1);
6137 if (setuid(pwd->pw_uid) < 0) {
6138 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6139 exit(1);
6141 if (setuid(0) != -1) {
6142 fprintf(stderr, "Dropping privileges failed\n");
6143 exit(1);
6147 if (daemonize) {
6148 dup2(fd, 0);
6149 dup2(fd, 1);
6150 dup2(fd, 2);
6152 close(fd);
6154 #endif
6156 main_loop();
6157 quit_timers();
6158 net_cleanup();
6160 return 0;