2 * QEMU support -- ARM Power Control specific functions.
4 * Copyright (c) 2016 Jean-Christophe Dubois
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
11 #include "qemu/osdep.h"
14 #include "internals.h"
15 #include "arm-powerctl.h"
17 #include "qemu/main-loop.h"
19 #ifndef DEBUG_ARM_POWERCTL
20 #define DEBUG_ARM_POWERCTL 0
23 #define DPRINTF(fmt, args...) \
25 if (DEBUG_ARM_POWERCTL) { \
26 fprintf(stderr, "[ARM]%s: " fmt , __func__, ##args); \
30 CPUState
*arm_get_cpu_by_id(uint64_t id
)
34 DPRINTF("cpu %" PRId64
"\n", id
);
37 ARMCPU
*armcpu
= ARM_CPU(cpu
);
39 if (armcpu
->mp_affinity
== id
) {
44 qemu_log_mask(LOG_GUEST_ERROR
,
45 "[ARM]%s: Requesting unknown CPU %" PRId64
"\n",
59 static void arm_set_cpu_on_async_work(CPUState
*target_cpu_state
,
62 ARMCPU
*target_cpu
= ARM_CPU(target_cpu_state
);
63 struct CpuOnInfo
*info
= (struct CpuOnInfo
*) data
.host_ptr
;
65 /* Initialize the cpu we are turning on */
66 cpu_reset(target_cpu_state
);
67 target_cpu_state
->halted
= 0;
69 if (info
->target_aa64
) {
70 if ((info
->target_el
< 3) && arm_feature(&target_cpu
->env
,
73 * As target mode is AArch64, we need to set lower
74 * exception level (the requested level 2) to AArch64
76 target_cpu
->env
.cp15
.scr_el3
|= SCR_RW
;
79 if ((info
->target_el
< 2) && arm_feature(&target_cpu
->env
,
82 * As target mode is AArch64, we need to set lower
83 * exception level (the requested level 1) to AArch64
85 target_cpu
->env
.cp15
.hcr_el2
|= HCR_RW
;
88 target_cpu
->env
.pstate
= aarch64_pstate_mode(info
->target_el
, true);
90 /* We are requested to boot in AArch32 mode */
91 static const uint32_t mode_for_el
[] = { 0,
96 cpsr_write(&target_cpu
->env
, mode_for_el
[info
->target_el
], CPSR_M
,
100 if (info
->target_el
== 3) {
101 /* Processor is in secure mode */
102 target_cpu
->env
.cp15
.scr_el3
&= ~SCR_NS
;
104 /* Processor is not in secure mode */
105 target_cpu
->env
.cp15
.scr_el3
|= SCR_NS
;
108 * If QEMU is providing the equivalent of EL3 firmware, then we need
109 * to make sure a CPU targeting EL2 comes out of reset with a
110 * functional HVC insn.
112 if (arm_feature(&target_cpu
->env
, ARM_FEATURE_EL3
)
113 && info
->target_el
== 2) {
114 target_cpu
->env
.cp15
.scr_el3
|= SCR_HCE
;
118 /* We check if the started CPU is now at the correct level */
119 assert(info
->target_el
== arm_current_el(&target_cpu
->env
));
121 if (info
->target_aa64
) {
122 target_cpu
->env
.xregs
[0] = info
->context_id
;
124 target_cpu
->env
.regs
[0] = info
->context_id
;
127 /* Start the new CPU at the requested address */
128 cpu_set_pc(target_cpu_state
, info
->entry
);
132 /* Finally set the power status */
133 assert(qemu_mutex_iothread_locked());
134 target_cpu
->power_state
= PSCI_ON
;
137 int arm_set_cpu_on(uint64_t cpuid
, uint64_t entry
, uint64_t context_id
,
138 uint32_t target_el
, bool target_aa64
)
140 CPUState
*target_cpu_state
;
142 struct CpuOnInfo
*info
;
144 assert(qemu_mutex_iothread_locked());
146 DPRINTF("cpu %" PRId64
" (EL %d, %s) @ 0x%" PRIx64
" with R0 = 0x%" PRIx64
147 "\n", cpuid
, target_el
, target_aa64
? "aarch64" : "aarch32", entry
,
150 /* requested EL level need to be in the 1 to 3 range */
151 assert((target_el
> 0) && (target_el
< 4));
153 if (target_aa64
&& (entry
& 3)) {
155 * if we are booting in AArch64 mode then "entry" needs to be 4 bytes
158 return QEMU_ARM_POWERCTL_INVALID_PARAM
;
161 /* Retrieve the cpu we are powering up */
162 target_cpu_state
= arm_get_cpu_by_id(cpuid
);
163 if (!target_cpu_state
) {
164 /* The cpu was not found */
165 return QEMU_ARM_POWERCTL_INVALID_PARAM
;
168 target_cpu
= ARM_CPU(target_cpu_state
);
169 if (target_cpu
->power_state
== PSCI_ON
) {
170 qemu_log_mask(LOG_GUEST_ERROR
,
171 "[ARM]%s: CPU %" PRId64
" is already on\n",
173 return QEMU_ARM_POWERCTL_ALREADY_ON
;
177 * The newly brought CPU is requested to enter the exception level
178 * "target_el" and be in the requested mode (AArch64 or AArch32).
181 if (((target_el
== 3) && !arm_feature(&target_cpu
->env
, ARM_FEATURE_EL3
)) ||
182 ((target_el
== 2) && !arm_feature(&target_cpu
->env
, ARM_FEATURE_EL2
))) {
184 * The CPU does not support requested level
186 return QEMU_ARM_POWERCTL_INVALID_PARAM
;
189 if (!target_aa64
&& arm_feature(&target_cpu
->env
, ARM_FEATURE_AARCH64
)) {
191 * For now we don't support booting an AArch64 CPU in AArch32 mode
192 * TODO: We should add this support later
194 qemu_log_mask(LOG_UNIMP
,
195 "[ARM]%s: Starting AArch64 CPU %" PRId64
196 " in AArch32 mode is not supported yet\n",
198 return QEMU_ARM_POWERCTL_INVALID_PARAM
;
202 * If another CPU has powered the target on we are in the state
203 * ON_PENDING and additional attempts to power on the CPU should
204 * fail (see 6.6 Implementation CPU_ON/CPU_OFF races in the PSCI
207 if (target_cpu
->power_state
== PSCI_ON_PENDING
) {
208 qemu_log_mask(LOG_GUEST_ERROR
,
209 "[ARM]%s: CPU %" PRId64
" is already powering on\n",
211 return QEMU_ARM_POWERCTL_ON_PENDING
;
214 /* To avoid racing with a CPU we are just kicking off we do the
215 * final bit of preparation for the work in the target CPUs
218 info
= g_new(struct CpuOnInfo
, 1);
220 info
->context_id
= context_id
;
221 info
->target_el
= target_el
;
222 info
->target_aa64
= target_aa64
;
224 async_run_on_cpu(target_cpu_state
, arm_set_cpu_on_async_work
,
225 RUN_ON_CPU_HOST_PTR(info
));
227 /* We are good to go */
228 return QEMU_ARM_POWERCTL_RET_SUCCESS
;
231 static void arm_set_cpu_off_async_work(CPUState
*target_cpu_state
,
232 run_on_cpu_data data
)
234 ARMCPU
*target_cpu
= ARM_CPU(target_cpu_state
);
236 assert(qemu_mutex_iothread_locked());
237 target_cpu
->power_state
= PSCI_OFF
;
238 target_cpu_state
->halted
= 1;
239 target_cpu_state
->exception_index
= EXCP_HLT
;
242 int arm_set_cpu_off(uint64_t cpuid
)
244 CPUState
*target_cpu_state
;
247 assert(qemu_mutex_iothread_locked());
249 DPRINTF("cpu %" PRId64
"\n", cpuid
);
251 /* change to the cpu we are powering up */
252 target_cpu_state
= arm_get_cpu_by_id(cpuid
);
253 if (!target_cpu_state
) {
254 return QEMU_ARM_POWERCTL_INVALID_PARAM
;
256 target_cpu
= ARM_CPU(target_cpu_state
);
257 if (target_cpu
->power_state
== PSCI_OFF
) {
258 qemu_log_mask(LOG_GUEST_ERROR
,
259 "[ARM]%s: CPU %" PRId64
" is already off\n",
261 return QEMU_ARM_POWERCTL_IS_OFF
;
264 /* Queue work to run under the target vCPUs context */
265 async_run_on_cpu(target_cpu_state
, arm_set_cpu_off_async_work
,
268 return QEMU_ARM_POWERCTL_RET_SUCCESS
;
271 static void arm_reset_cpu_async_work(CPUState
*target_cpu_state
,
272 run_on_cpu_data data
)
275 cpu_reset(target_cpu_state
);
278 int arm_reset_cpu(uint64_t cpuid
)
280 CPUState
*target_cpu_state
;
283 assert(qemu_mutex_iothread_locked());
285 DPRINTF("cpu %" PRId64
"\n", cpuid
);
287 /* change to the cpu we are resetting */
288 target_cpu_state
= arm_get_cpu_by_id(cpuid
);
289 if (!target_cpu_state
) {
290 return QEMU_ARM_POWERCTL_INVALID_PARAM
;
292 target_cpu
= ARM_CPU(target_cpu_state
);
294 if (target_cpu
->power_state
== PSCI_OFF
) {
295 qemu_log_mask(LOG_GUEST_ERROR
,
296 "[ARM]%s: CPU %" PRId64
" is off\n",
298 return QEMU_ARM_POWERCTL_IS_OFF
;
301 /* Queue work to run under the target vCPUs context */
302 async_run_on_cpu(target_cpu_state
, arm_reset_cpu_async_work
,
305 return QEMU_ARM_POWERCTL_RET_SUCCESS
;