2 * Arm SSE (Subsystems for Embedded): IoTKit
4 * Copyright (c) 2018 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
12 #include "qemu/osdep.h"
14 #include "qapi/error.h"
16 #include "hw/sysbus.h"
17 #include "hw/registerfields.h"
18 #include "hw/arm/armsse.h"
19 #include "hw/arm/arm.h"
21 /* Format of the System Information block SYS_CONFIG register */
22 typedef enum SysConfigFormat
{
32 SysConfigFormat sys_config_format
;
40 static const ARMSSEInfo armsse_variants
[] = {
45 .sys_version
= 0x41743,
46 .sys_config_format
= IoTKitFormat
,
49 .has_cachectrl
= false,
50 .has_cpusecctrl
= false,
57 .sys_version
= 0x22041743,
58 .sys_config_format
= SSE200Format
,
61 .has_cachectrl
= true,
62 .has_cpusecctrl
= true,
67 static uint32_t armsse_sys_config_value(ARMSSE
*s
, const ARMSSEInfo
*info
)
69 /* Return the SYS_CONFIG value for this SSE */
72 switch (info
->sys_config_format
) {
75 sys_config
= deposit32(sys_config
, 0, 4, info
->sram_banks
);
76 sys_config
= deposit32(sys_config
, 4, 4, s
->sram_addr_width
- 12);
80 sys_config
= deposit32(sys_config
, 0, 4, info
->sram_banks
);
81 sys_config
= deposit32(sys_config
, 4, 5, s
->sram_addr_width
);
82 sys_config
= deposit32(sys_config
, 24, 4, 2);
83 if (info
->num_cpus
> 1) {
84 sys_config
= deposit32(sys_config
, 10, 1, 1);
85 sys_config
= deposit32(sys_config
, 20, 4, info
->sram_banks
- 1);
86 sys_config
= deposit32(sys_config
, 28, 4, 2);
90 g_assert_not_reached();
95 /* Clock frequency in HZ of the 32KHz "slow clock" */
96 #define S32KCLK (32 * 1000)
98 /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
99 static bool irq_is_common
[32] = {
101 /* 6, 7: per-CPU MHU interrupts */
103 /* 13: per-CPU icache interrupt */
109 /* 28, 29: per-CPU CTI interrupts */
110 /* 30, 31: reserved */
114 * Create an alias region in @container of @size bytes starting at @base
115 * which mirrors the memory starting at @orig.
117 static void make_alias(ARMSSE
*s
, MemoryRegion
*mr
, MemoryRegion
*container
,
118 const char *name
, hwaddr base
, hwaddr size
, hwaddr orig
)
120 memory_region_init_alias(mr
, NULL
, name
, container
, orig
, size
);
121 /* The alias is even lower priority than unimplemented_device regions */
122 memory_region_add_subregion_overlap(container
, base
, mr
, -1500);
125 static void irq_status_forwarder(void *opaque
, int n
, int level
)
127 qemu_irq destirq
= opaque
;
129 qemu_set_irq(destirq
, level
);
132 static void nsccfg_handler(void *opaque
, int n
, int level
)
134 ARMSSE
*s
= ARMSSE(opaque
);
139 static void armsse_forward_ppc(ARMSSE
*s
, const char *ppcname
, int ppcnum
)
141 /* Each of the 4 AHB and 4 APB PPCs that might be present in a
142 * system using the ARMSSE has a collection of control lines which
143 * are provided by the security controller and which we want to
144 * expose as control lines on the ARMSSE device itself, so the
145 * code using the ARMSSE can wire them up to the PPCs.
147 SplitIRQ
*splitter
= &s
->ppc_irq_splitter
[ppcnum
];
148 DeviceState
*armssedev
= DEVICE(s
);
149 DeviceState
*dev_secctl
= DEVICE(&s
->secctl
);
150 DeviceState
*dev_splitter
= DEVICE(splitter
);
153 name
= g_strdup_printf("%s_nonsec", ppcname
);
154 qdev_pass_gpios(dev_secctl
, armssedev
, name
);
156 name
= g_strdup_printf("%s_ap", ppcname
);
157 qdev_pass_gpios(dev_secctl
, armssedev
, name
);
159 name
= g_strdup_printf("%s_irq_enable", ppcname
);
160 qdev_pass_gpios(dev_secctl
, armssedev
, name
);
162 name
= g_strdup_printf("%s_irq_clear", ppcname
);
163 qdev_pass_gpios(dev_secctl
, armssedev
, name
);
166 /* irq_status is a little more tricky, because we need to
167 * split it so we can send it both to the security controller
168 * and to our OR gate for the NVIC interrupt line.
169 * Connect up the splitter's outputs, and create a GPIO input
170 * which will pass the line state to the input splitter.
172 name
= g_strdup_printf("%s_irq_status", ppcname
);
173 qdev_connect_gpio_out(dev_splitter
, 0,
174 qdev_get_gpio_in_named(dev_secctl
,
176 qdev_connect_gpio_out(dev_splitter
, 1,
177 qdev_get_gpio_in(DEVICE(&s
->ppc_irq_orgate
), ppcnum
));
178 s
->irq_status_in
[ppcnum
] = qdev_get_gpio_in(dev_splitter
, 0);
179 qdev_init_gpio_in_named_with_opaque(armssedev
, irq_status_forwarder
,
180 s
->irq_status_in
[ppcnum
], name
, 1);
184 static void armsse_forward_sec_resp_cfg(ARMSSE
*s
)
186 /* Forward the 3rd output from the splitter device as a
187 * named GPIO output of the armsse object.
189 DeviceState
*dev
= DEVICE(s
);
190 DeviceState
*dev_splitter
= DEVICE(&s
->sec_resp_splitter
);
192 qdev_init_gpio_out_named(dev
, &s
->sec_resp_cfg
, "sec_resp_cfg", 1);
193 s
->sec_resp_cfg_in
= qemu_allocate_irq(irq_status_forwarder
,
195 qdev_connect_gpio_out(dev_splitter
, 2, s
->sec_resp_cfg_in
);
198 static void armsse_init(Object
*obj
)
200 ARMSSE
*s
= ARMSSE(obj
);
201 ARMSSEClass
*asc
= ARMSSE_GET_CLASS(obj
);
202 const ARMSSEInfo
*info
= asc
->info
;
205 assert(info
->sram_banks
<= MAX_SRAM_BANKS
);
206 assert(info
->num_cpus
<= SSE_MAX_CPUS
);
208 memory_region_init(&s
->container
, obj
, "armsse-container", UINT64_MAX
);
210 for (i
= 0; i
< info
->num_cpus
; i
++) {
212 * We put each CPU in its own cluster as they are logically
213 * distinct and may be configured differently.
217 name
= g_strdup_printf("cluster%d", i
);
218 object_initialize_child(obj
, name
, &s
->cluster
[i
],
219 sizeof(s
->cluster
[i
]), TYPE_CPU_CLUSTER
,
221 qdev_prop_set_uint32(DEVICE(&s
->cluster
[i
]), "cluster-id", i
);
224 name
= g_strdup_printf("armv7m%d", i
);
225 sysbus_init_child_obj(OBJECT(&s
->cluster
[i
]), name
,
226 &s
->armv7m
[i
], sizeof(s
->armv7m
), TYPE_ARMV7M
);
227 qdev_prop_set_string(DEVICE(&s
->armv7m
[i
]), "cpu-type",
228 ARM_CPU_TYPE_NAME("cortex-m33"));
230 name
= g_strdup_printf("arm-sse-cpu-container%d", i
);
231 memory_region_init(&s
->cpu_container
[i
], obj
, name
, UINT64_MAX
);
234 name
= g_strdup_printf("arm-sse-container-alias%d", i
);
235 memory_region_init_alias(&s
->container_alias
[i
- 1], obj
,
236 name
, &s
->container
, 0, UINT64_MAX
);
241 sysbus_init_child_obj(obj
, "secctl", &s
->secctl
, sizeof(s
->secctl
),
243 sysbus_init_child_obj(obj
, "apb-ppc0", &s
->apb_ppc0
, sizeof(s
->apb_ppc0
),
245 sysbus_init_child_obj(obj
, "apb-ppc1", &s
->apb_ppc1
, sizeof(s
->apb_ppc1
),
247 for (i
= 0; i
< info
->sram_banks
; i
++) {
248 char *name
= g_strdup_printf("mpc%d", i
);
249 sysbus_init_child_obj(obj
, name
, &s
->mpc
[i
],
250 sizeof(s
->mpc
[i
]), TYPE_TZ_MPC
);
253 object_initialize_child(obj
, "mpc-irq-orgate", &s
->mpc_irq_orgate
,
254 sizeof(s
->mpc_irq_orgate
), TYPE_OR_IRQ
,
257 for (i
= 0; i
< IOTS_NUM_EXP_MPC
+ info
->sram_banks
; i
++) {
258 char *name
= g_strdup_printf("mpc-irq-splitter-%d", i
);
259 SplitIRQ
*splitter
= &s
->mpc_irq_splitter
[i
];
261 object_initialize_child(obj
, name
, splitter
, sizeof(*splitter
),
262 TYPE_SPLIT_IRQ
, &error_abort
, NULL
);
265 sysbus_init_child_obj(obj
, "timer0", &s
->timer0
, sizeof(s
->timer0
),
266 TYPE_CMSDK_APB_TIMER
);
267 sysbus_init_child_obj(obj
, "timer1", &s
->timer1
, sizeof(s
->timer1
),
268 TYPE_CMSDK_APB_TIMER
);
269 sysbus_init_child_obj(obj
, "s32ktimer", &s
->s32ktimer
, sizeof(s
->s32ktimer
),
270 TYPE_CMSDK_APB_TIMER
);
271 sysbus_init_child_obj(obj
, "dualtimer", &s
->dualtimer
, sizeof(s
->dualtimer
),
272 TYPE_CMSDK_APB_DUALTIMER
);
273 sysbus_init_child_obj(obj
, "s32kwatchdog", &s
->s32kwatchdog
,
274 sizeof(s
->s32kwatchdog
), TYPE_CMSDK_APB_WATCHDOG
);
275 sysbus_init_child_obj(obj
, "nswatchdog", &s
->nswatchdog
,
276 sizeof(s
->nswatchdog
), TYPE_CMSDK_APB_WATCHDOG
);
277 sysbus_init_child_obj(obj
, "swatchdog", &s
->swatchdog
,
278 sizeof(s
->swatchdog
), TYPE_CMSDK_APB_WATCHDOG
);
279 sysbus_init_child_obj(obj
, "armsse-sysctl", &s
->sysctl
,
280 sizeof(s
->sysctl
), TYPE_IOTKIT_SYSCTL
);
281 sysbus_init_child_obj(obj
, "armsse-sysinfo", &s
->sysinfo
,
282 sizeof(s
->sysinfo
), TYPE_IOTKIT_SYSINFO
);
283 if (info
->has_mhus
) {
284 sysbus_init_child_obj(obj
, "mhu0", &s
->mhu
[0], sizeof(s
->mhu
[0]),
285 TYPE_UNIMPLEMENTED_DEVICE
);
286 sysbus_init_child_obj(obj
, "mhu1", &s
->mhu
[1], sizeof(s
->mhu
[1]),
287 TYPE_UNIMPLEMENTED_DEVICE
);
289 if (info
->has_ppus
) {
290 for (i
= 0; i
< info
->num_cpus
; i
++) {
291 char *name
= g_strdup_printf("CPU%dCORE_PPU", i
);
292 int ppuidx
= CPU0CORE_PPU
+ i
;
294 sysbus_init_child_obj(obj
, name
, &s
->ppu
[ppuidx
],
295 sizeof(s
->ppu
[ppuidx
]),
296 TYPE_UNIMPLEMENTED_DEVICE
);
299 sysbus_init_child_obj(obj
, "DBG_PPU", &s
->ppu
[DBG_PPU
],
300 sizeof(s
->ppu
[DBG_PPU
]),
301 TYPE_UNIMPLEMENTED_DEVICE
);
302 for (i
= 0; i
< info
->sram_banks
; i
++) {
303 char *name
= g_strdup_printf("RAM%d_PPU", i
);
304 int ppuidx
= RAM0_PPU
+ i
;
306 sysbus_init_child_obj(obj
, name
, &s
->ppu
[ppuidx
],
307 sizeof(s
->ppu
[ppuidx
]),
308 TYPE_UNIMPLEMENTED_DEVICE
);
312 if (info
->has_cachectrl
) {
313 for (i
= 0; i
< info
->num_cpus
; i
++) {
314 char *name
= g_strdup_printf("cachectrl%d", i
);
316 sysbus_init_child_obj(obj
, name
, &s
->cachectrl
[i
],
317 sizeof(s
->cachectrl
[i
]),
318 TYPE_UNIMPLEMENTED_DEVICE
);
322 if (info
->has_cpusecctrl
) {
323 for (i
= 0; i
< info
->num_cpus
; i
++) {
324 char *name
= g_strdup_printf("cpusecctrl%d", i
);
326 sysbus_init_child_obj(obj
, name
, &s
->cpusecctrl
[i
],
327 sizeof(s
->cpusecctrl
[i
]),
328 TYPE_UNIMPLEMENTED_DEVICE
);
332 if (info
->has_cpuid
) {
333 for (i
= 0; i
< info
->num_cpus
; i
++) {
334 char *name
= g_strdup_printf("cpuid%d", i
);
336 sysbus_init_child_obj(obj
, name
, &s
->cpuid
[i
],
342 object_initialize_child(obj
, "nmi-orgate", &s
->nmi_orgate
,
343 sizeof(s
->nmi_orgate
), TYPE_OR_IRQ
,
345 object_initialize_child(obj
, "ppc-irq-orgate", &s
->ppc_irq_orgate
,
346 sizeof(s
->ppc_irq_orgate
), TYPE_OR_IRQ
,
348 object_initialize_child(obj
, "sec-resp-splitter", &s
->sec_resp_splitter
,
349 sizeof(s
->sec_resp_splitter
), TYPE_SPLIT_IRQ
,
351 for (i
= 0; i
< ARRAY_SIZE(s
->ppc_irq_splitter
); i
++) {
352 char *name
= g_strdup_printf("ppc-irq-splitter-%d", i
);
353 SplitIRQ
*splitter
= &s
->ppc_irq_splitter
[i
];
355 object_initialize_child(obj
, name
, splitter
, sizeof(*splitter
),
356 TYPE_SPLIT_IRQ
, &error_abort
, NULL
);
359 if (info
->num_cpus
> 1) {
360 for (i
= 0; i
< ARRAY_SIZE(s
->cpu_irq_splitter
); i
++) {
361 if (irq_is_common
[i
]) {
362 char *name
= g_strdup_printf("cpu-irq-splitter%d", i
);
363 SplitIRQ
*splitter
= &s
->cpu_irq_splitter
[i
];
365 object_initialize_child(obj
, name
, splitter
, sizeof(*splitter
),
366 TYPE_SPLIT_IRQ
, &error_abort
, NULL
);
373 static void armsse_exp_irq(void *opaque
, int n
, int level
)
375 qemu_irq
*irqarray
= opaque
;
377 qemu_set_irq(irqarray
[n
], level
);
380 static void armsse_mpcexp_status(void *opaque
, int n
, int level
)
382 ARMSSE
*s
= ARMSSE(opaque
);
383 qemu_set_irq(s
->mpcexp_status_in
[n
], level
);
386 static qemu_irq
armsse_get_common_irq_in(ARMSSE
*s
, int irqno
)
389 * Return a qemu_irq which can be used to signal IRQ n to
390 * all CPUs in the SSE.
392 ARMSSEClass
*asc
= ARMSSE_GET_CLASS(s
);
393 const ARMSSEInfo
*info
= asc
->info
;
395 assert(irq_is_common
[irqno
]);
397 if (info
->num_cpus
== 1) {
398 /* Only one CPU -- just connect directly to it */
399 return qdev_get_gpio_in(DEVICE(&s
->armv7m
[0]), irqno
);
401 /* Connect to the splitter which feeds all CPUs */
402 return qdev_get_gpio_in(DEVICE(&s
->cpu_irq_splitter
[irqno
]), 0);
406 static void map_ppu(ARMSSE
*s
, int ppuidx
, const char *name
, hwaddr addr
)
408 /* Map a PPU unimplemented device stub */
409 DeviceState
*dev
= DEVICE(&s
->ppu
[ppuidx
]);
411 qdev_prop_set_string(dev
, "name", name
);
412 qdev_prop_set_uint64(dev
, "size", 0x1000);
413 qdev_init_nofail(dev
);
414 sysbus_mmio_map(SYS_BUS_DEVICE(&s
->ppu
[ppuidx
]), 0, addr
);
417 static void armsse_realize(DeviceState
*dev
, Error
**errp
)
419 ARMSSE
*s
= ARMSSE(dev
);
420 ARMSSEClass
*asc
= ARMSSE_GET_CLASS(dev
);
421 const ARMSSEInfo
*info
= asc
->info
;
425 SysBusDevice
*sbd_apb_ppc0
;
426 SysBusDevice
*sbd_secctl
;
427 DeviceState
*dev_apb_ppc0
;
428 DeviceState
*dev_apb_ppc1
;
429 DeviceState
*dev_secctl
;
430 DeviceState
*dev_splitter
;
431 uint32_t addr_width_max
;
433 if (!s
->board_memory
) {
434 error_setg(errp
, "memory property was not set");
438 if (!s
->mainclk_frq
) {
439 error_setg(errp
, "MAINCLK property was not set");
443 /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
444 assert(is_power_of_2(info
->sram_banks
));
445 addr_width_max
= 24 - ctz32(info
->sram_banks
);
446 if (s
->sram_addr_width
< 1 || s
->sram_addr_width
> addr_width_max
) {
447 error_setg(errp
, "SRAM_ADDR_WIDTH must be between 1 and %d",
452 /* Handling of which devices should be available only to secure
453 * code is usually done differently for M profile than for A profile.
454 * Instead of putting some devices only into the secure address space,
455 * devices exist in both address spaces but with hard-wired security
456 * permissions that will cause the CPU to fault for non-secure accesses.
458 * The ARMSSE has an IDAU (Implementation Defined Access Unit),
459 * which specifies hard-wired security permissions for different
460 * areas of the physical address space. For the ARMSSE IDAU, the
461 * top 4 bits of the physical address are the IDAU region ID, and
462 * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
463 * region, otherwise it is an S region.
465 * The various devices and RAMs are generally all mapped twice,
466 * once into a region that the IDAU defines as secure and once
467 * into a non-secure region. They sit behind either a Memory
468 * Protection Controller (for RAM) or a Peripheral Protection
469 * Controller (for devices), which allow a more fine grained
470 * configuration of whether non-secure accesses are permitted.
472 * (The other place that guest software can configure security
473 * permissions is in the architected SAU (Security Attribution
474 * Unit), which is entirely inside the CPU. The IDAU can upgrade
475 * the security attributes for a region to more restrictive than
476 * the SAU specifies, but cannot downgrade them.)
478 * 0x10000000..0x1fffffff alias of 0x00000000..0x0fffffff
479 * 0x20000000..0x2007ffff 32KB FPGA block RAM
480 * 0x30000000..0x3fffffff alias of 0x20000000..0x2fffffff
481 * 0x40000000..0x4000ffff base peripheral region 1
482 * 0x40010000..0x4001ffff CPU peripherals (none for ARMSSE)
483 * 0x40020000..0x4002ffff system control element peripherals
484 * 0x40080000..0x400fffff base peripheral region 2
485 * 0x50000000..0x5fffffff alias of 0x40000000..0x4fffffff
488 memory_region_add_subregion_overlap(&s
->container
, 0, s
->board_memory
, -2);
490 for (i
= 0; i
< info
->num_cpus
; i
++) {
491 DeviceState
*cpudev
= DEVICE(&s
->armv7m
[i
]);
492 Object
*cpuobj
= OBJECT(&s
->armv7m
[i
]);
496 qdev_prop_set_uint32(cpudev
, "num-irq", s
->exp_numirq
+ 32);
498 * In real hardware the initial Secure VTOR is set from the INITSVTOR0
499 * register in the IoT Kit System Control Register block, and the
500 * initial value of that is in turn specifiable by the FPGA that
501 * instantiates the IoT Kit. In QEMU we don't implement this wrinkle,
502 * and simply set the CPU's init-svtor to the IoT Kit default value.
503 * In SSE-200 the situation is similar, except that the default value
504 * is a reset-time signal input. Typically a board using the SSE-200
505 * will have a system control processor whose boot firmware initializes
506 * the INITSVTOR* registers before powering up the CPUs in any case,
507 * so the hardware's default value doesn't matter. QEMU doesn't emulate
508 * the control processor, so instead we behave in the way that the
509 * firmware does. The initial value is configurable by the board code
510 * to match whatever its firmware does.
512 qdev_prop_set_uint32(cpudev
, "init-svtor", s
->init_svtor
);
514 * Start all CPUs except CPU0 powered down. In real hardware it is
515 * a configurable property of the SSE-200 which CPUs start powered up
516 * (via the CPUWAIT0_RST and CPUWAIT1_RST parameters), but since all
517 * the boards we care about start CPU0 and leave CPU1 powered off,
518 * we hard-code that for now. We can add QOM properties for this
519 * later if necessary.
522 object_property_set_bool(cpuobj
, true, "start-powered-off", &err
);
524 error_propagate(errp
, err
);
530 memory_region_add_subregion_overlap(&s
->cpu_container
[i
], 0,
531 &s
->container_alias
[i
- 1], -1);
533 memory_region_add_subregion_overlap(&s
->cpu_container
[i
], 0,
536 object_property_set_link(cpuobj
, OBJECT(&s
->cpu_container
[i
]),
539 error_propagate(errp
, err
);
542 object_property_set_link(cpuobj
, OBJECT(s
), "idau", &err
);
544 error_propagate(errp
, err
);
547 object_property_set_bool(cpuobj
, true, "realized", &err
);
549 error_propagate(errp
, err
);
553 * The cluster must be realized after the armv7m container, as
554 * the container's CPU object is only created on realize, and the
555 * CPU must exist and have been parented into the cluster before
556 * the cluster is realized.
558 object_property_set_bool(OBJECT(&s
->cluster
[i
]),
559 true, "realized", &err
);
561 error_propagate(errp
, err
);
565 /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
566 s
->exp_irqs
[i
] = g_new(qemu_irq
, s
->exp_numirq
);
567 for (j
= 0; j
< s
->exp_numirq
; j
++) {
568 s
->exp_irqs
[i
][j
] = qdev_get_gpio_in(cpudev
, j
+ 32);
571 gpioname
= g_strdup("EXP_IRQ");
573 gpioname
= g_strdup_printf("EXP_CPU%d_IRQ", i
);
575 qdev_init_gpio_in_named_with_opaque(dev
, armsse_exp_irq
,
577 gpioname
, s
->exp_numirq
);
581 /* Wire up the splitters that connect common IRQs to all CPUs */
582 if (info
->num_cpus
> 1) {
583 for (i
= 0; i
< ARRAY_SIZE(s
->cpu_irq_splitter
); i
++) {
584 if (irq_is_common
[i
]) {
585 Object
*splitter
= OBJECT(&s
->cpu_irq_splitter
[i
]);
586 DeviceState
*devs
= DEVICE(splitter
);
589 object_property_set_int(splitter
, info
->num_cpus
,
592 error_propagate(errp
, err
);
595 object_property_set_bool(splitter
, true, "realized", &err
);
597 error_propagate(errp
, err
);
600 for (cpunum
= 0; cpunum
< info
->num_cpus
; cpunum
++) {
601 DeviceState
*cpudev
= DEVICE(&s
->armv7m
[cpunum
]);
603 qdev_connect_gpio_out(devs
, cpunum
,
604 qdev_get_gpio_in(cpudev
, i
));
610 /* Set up the big aliases first */
611 make_alias(s
, &s
->alias1
, &s
->container
, "alias 1",
612 0x10000000, 0x10000000, 0x00000000);
613 make_alias(s
, &s
->alias2
, &s
->container
,
614 "alias 2", 0x30000000, 0x10000000, 0x20000000);
615 /* The 0x50000000..0x5fffffff region is not a pure alias: it has
616 * a few extra devices that only appear there (generally the
617 * control interfaces for the protection controllers).
618 * We implement this by mapping those devices over the top of this
619 * alias MR at a higher priority. Some of the devices in this range
620 * are per-CPU, so we must put this alias in the per-cpu containers.
622 for (i
= 0; i
< info
->num_cpus
; i
++) {
623 make_alias(s
, &s
->alias3
[i
], &s
->cpu_container
[i
],
624 "alias 3", 0x50000000, 0x10000000, 0x40000000);
627 /* Security controller */
628 object_property_set_bool(OBJECT(&s
->secctl
), true, "realized", &err
);
630 error_propagate(errp
, err
);
633 sbd_secctl
= SYS_BUS_DEVICE(&s
->secctl
);
634 dev_secctl
= DEVICE(&s
->secctl
);
635 sysbus_mmio_map(sbd_secctl
, 0, 0x50080000);
636 sysbus_mmio_map(sbd_secctl
, 1, 0x40080000);
638 s
->nsc_cfg_in
= qemu_allocate_irq(nsccfg_handler
, s
, 1);
639 qdev_connect_gpio_out_named(dev_secctl
, "nsc_cfg", 0, s
->nsc_cfg_in
);
641 /* The sec_resp_cfg output from the security controller must be split into
642 * multiple lines, one for each of the PPCs within the ARMSSE and one
643 * that will be an output from the ARMSSE to the system.
645 object_property_set_int(OBJECT(&s
->sec_resp_splitter
), 3,
648 error_propagate(errp
, err
);
651 object_property_set_bool(OBJECT(&s
->sec_resp_splitter
), true,
654 error_propagate(errp
, err
);
657 dev_splitter
= DEVICE(&s
->sec_resp_splitter
);
658 qdev_connect_gpio_out_named(dev_secctl
, "sec_resp_cfg", 0,
659 qdev_get_gpio_in(dev_splitter
, 0));
661 /* Each SRAM bank lives behind its own Memory Protection Controller */
662 for (i
= 0; i
< info
->sram_banks
; i
++) {
663 char *ramname
= g_strdup_printf("armsse.sram%d", i
);
664 SysBusDevice
*sbd_mpc
;
665 uint32_t sram_bank_size
= 1 << s
->sram_addr_width
;
667 memory_region_init_ram(&s
->sram
[i
], NULL
, ramname
,
668 sram_bank_size
, &err
);
671 error_propagate(errp
, err
);
674 object_property_set_link(OBJECT(&s
->mpc
[i
]), OBJECT(&s
->sram
[i
]),
677 error_propagate(errp
, err
);
680 object_property_set_bool(OBJECT(&s
->mpc
[i
]), true, "realized", &err
);
682 error_propagate(errp
, err
);
685 /* Map the upstream end of the MPC into the right place... */
686 sbd_mpc
= SYS_BUS_DEVICE(&s
->mpc
[i
]);
687 memory_region_add_subregion(&s
->container
,
688 0x20000000 + i
* sram_bank_size
,
689 sysbus_mmio_get_region(sbd_mpc
, 1));
690 /* ...and its register interface */
691 memory_region_add_subregion(&s
->container
, 0x50083000 + i
* 0x1000,
692 sysbus_mmio_get_region(sbd_mpc
, 0));
695 /* We must OR together lines from the MPC splitters to go to the NVIC */
696 object_property_set_int(OBJECT(&s
->mpc_irq_orgate
),
697 IOTS_NUM_EXP_MPC
+ info
->sram_banks
,
700 error_propagate(errp
, err
);
703 object_property_set_bool(OBJECT(&s
->mpc_irq_orgate
), true,
706 error_propagate(errp
, err
);
709 qdev_connect_gpio_out(DEVICE(&s
->mpc_irq_orgate
), 0,
710 armsse_get_common_irq_in(s
, 9));
712 /* Devices behind APB PPC0:
715 * 0x40002000: dual timer
716 * 0x40003000: MHU0 (SSE-200 only)
717 * 0x40004000: MHU1 (SSE-200 only)
718 * We must configure and realize each downstream device and connect
719 * it to the appropriate PPC port; then we can realize the PPC and
720 * map its upstream ends to the right place in the container.
722 qdev_prop_set_uint32(DEVICE(&s
->timer0
), "pclk-frq", s
->mainclk_frq
);
723 object_property_set_bool(OBJECT(&s
->timer0
), true, "realized", &err
);
725 error_propagate(errp
, err
);
728 sysbus_connect_irq(SYS_BUS_DEVICE(&s
->timer0
), 0,
729 armsse_get_common_irq_in(s
, 3));
730 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->timer0
), 0);
731 object_property_set_link(OBJECT(&s
->apb_ppc0
), OBJECT(mr
), "port[0]", &err
);
733 error_propagate(errp
, err
);
737 qdev_prop_set_uint32(DEVICE(&s
->timer1
), "pclk-frq", s
->mainclk_frq
);
738 object_property_set_bool(OBJECT(&s
->timer1
), true, "realized", &err
);
740 error_propagate(errp
, err
);
743 sysbus_connect_irq(SYS_BUS_DEVICE(&s
->timer1
), 0,
744 armsse_get_common_irq_in(s
, 4));
745 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->timer1
), 0);
746 object_property_set_link(OBJECT(&s
->apb_ppc0
), OBJECT(mr
), "port[1]", &err
);
748 error_propagate(errp
, err
);
753 qdev_prop_set_uint32(DEVICE(&s
->dualtimer
), "pclk-frq", s
->mainclk_frq
);
754 object_property_set_bool(OBJECT(&s
->dualtimer
), true, "realized", &err
);
756 error_propagate(errp
, err
);
759 sysbus_connect_irq(SYS_BUS_DEVICE(&s
->dualtimer
), 0,
760 armsse_get_common_irq_in(s
, 5));
761 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->dualtimer
), 0);
762 object_property_set_link(OBJECT(&s
->apb_ppc0
), OBJECT(mr
), "port[2]", &err
);
764 error_propagate(errp
, err
);
768 if (info
->has_mhus
) {
769 for (i
= 0; i
< ARRAY_SIZE(s
->mhu
); i
++) {
773 name
= g_strdup_printf("MHU%d", i
);
774 qdev_prop_set_string(DEVICE(&s
->mhu
[i
]), "name", name
);
775 qdev_prop_set_uint64(DEVICE(&s
->mhu
[i
]), "size", 0x1000);
776 object_property_set_bool(OBJECT(&s
->mhu
[i
]), true,
780 error_propagate(errp
, err
);
783 port
= g_strdup_printf("port[%d]", i
+ 3);
784 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->mhu
[i
]), 0);
785 object_property_set_link(OBJECT(&s
->apb_ppc0
), OBJECT(mr
),
789 error_propagate(errp
, err
);
795 object_property_set_bool(OBJECT(&s
->apb_ppc0
), true, "realized", &err
);
797 error_propagate(errp
, err
);
801 sbd_apb_ppc0
= SYS_BUS_DEVICE(&s
->apb_ppc0
);
802 dev_apb_ppc0
= DEVICE(&s
->apb_ppc0
);
804 mr
= sysbus_mmio_get_region(sbd_apb_ppc0
, 0);
805 memory_region_add_subregion(&s
->container
, 0x40000000, mr
);
806 mr
= sysbus_mmio_get_region(sbd_apb_ppc0
, 1);
807 memory_region_add_subregion(&s
->container
, 0x40001000, mr
);
808 mr
= sysbus_mmio_get_region(sbd_apb_ppc0
, 2);
809 memory_region_add_subregion(&s
->container
, 0x40002000, mr
);
810 if (info
->has_mhus
) {
811 mr
= sysbus_mmio_get_region(sbd_apb_ppc0
, 3);
812 memory_region_add_subregion(&s
->container
, 0x40003000, mr
);
813 mr
= sysbus_mmio_get_region(sbd_apb_ppc0
, 4);
814 memory_region_add_subregion(&s
->container
, 0x40004000, mr
);
816 for (i
= 0; i
< IOTS_APB_PPC0_NUM_PORTS
; i
++) {
817 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc0_nonsec", i
,
818 qdev_get_gpio_in_named(dev_apb_ppc0
,
820 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc0_ap", i
,
821 qdev_get_gpio_in_named(dev_apb_ppc0
,
824 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc0_irq_enable", 0,
825 qdev_get_gpio_in_named(dev_apb_ppc0
,
827 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc0_irq_clear", 0,
828 qdev_get_gpio_in_named(dev_apb_ppc0
,
830 qdev_connect_gpio_out(dev_splitter
, 0,
831 qdev_get_gpio_in_named(dev_apb_ppc0
,
834 /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
835 * ones) are sent individually to the security controller, and also
836 * ORed together to give a single combined PPC interrupt to the NVIC.
838 object_property_set_int(OBJECT(&s
->ppc_irq_orgate
),
839 NUM_PPCS
, "num-lines", &err
);
841 error_propagate(errp
, err
);
844 object_property_set_bool(OBJECT(&s
->ppc_irq_orgate
), true,
847 error_propagate(errp
, err
);
850 qdev_connect_gpio_out(DEVICE(&s
->ppc_irq_orgate
), 0,
851 armsse_get_common_irq_in(s
, 10));
854 * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
855 * private per-CPU region (all these devices are SSE-200 only):
856 * 0x50010000: L1 icache control registers
857 * 0x50011000: CPUSECCTRL (CPU local security control registers)
858 * 0x4001f000 and 0x5001f000: CPU_IDENTITY register block
860 if (info
->has_cachectrl
) {
861 for (i
= 0; i
< info
->num_cpus
; i
++) {
862 char *name
= g_strdup_printf("cachectrl%d", i
);
865 qdev_prop_set_string(DEVICE(&s
->cachectrl
[i
]), "name", name
);
867 qdev_prop_set_uint64(DEVICE(&s
->cachectrl
[i
]), "size", 0x1000);
868 object_property_set_bool(OBJECT(&s
->cachectrl
[i
]), true,
871 error_propagate(errp
, err
);
875 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->cachectrl
[i
]), 0);
876 memory_region_add_subregion(&s
->cpu_container
[i
], 0x50010000, mr
);
879 if (info
->has_cpusecctrl
) {
880 for (i
= 0; i
< info
->num_cpus
; i
++) {
881 char *name
= g_strdup_printf("CPUSECCTRL%d", i
);
884 qdev_prop_set_string(DEVICE(&s
->cpusecctrl
[i
]), "name", name
);
886 qdev_prop_set_uint64(DEVICE(&s
->cpusecctrl
[i
]), "size", 0x1000);
887 object_property_set_bool(OBJECT(&s
->cpusecctrl
[i
]), true,
890 error_propagate(errp
, err
);
894 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->cpusecctrl
[i
]), 0);
895 memory_region_add_subregion(&s
->cpu_container
[i
], 0x50011000, mr
);
898 if (info
->has_cpuid
) {
899 for (i
= 0; i
< info
->num_cpus
; i
++) {
902 qdev_prop_set_uint32(DEVICE(&s
->cpuid
[i
]), "CPUID", i
);
903 object_property_set_bool(OBJECT(&s
->cpuid
[i
]), true,
906 error_propagate(errp
, err
);
910 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->cpuid
[i
]), 0);
911 memory_region_add_subregion(&s
->cpu_container
[i
], 0x4001F000, mr
);
915 /* 0x40020000 .. 0x4002ffff : ARMSSE system control peripheral region */
916 /* Devices behind APB PPC1:
917 * 0x4002f000: S32K timer
919 qdev_prop_set_uint32(DEVICE(&s
->s32ktimer
), "pclk-frq", S32KCLK
);
920 object_property_set_bool(OBJECT(&s
->s32ktimer
), true, "realized", &err
);
922 error_propagate(errp
, err
);
925 sysbus_connect_irq(SYS_BUS_DEVICE(&s
->s32ktimer
), 0,
926 armsse_get_common_irq_in(s
, 2));
927 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->s32ktimer
), 0);
928 object_property_set_link(OBJECT(&s
->apb_ppc1
), OBJECT(mr
), "port[0]", &err
);
930 error_propagate(errp
, err
);
934 object_property_set_bool(OBJECT(&s
->apb_ppc1
), true, "realized", &err
);
936 error_propagate(errp
, err
);
939 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->apb_ppc1
), 0);
940 memory_region_add_subregion(&s
->container
, 0x4002f000, mr
);
942 dev_apb_ppc1
= DEVICE(&s
->apb_ppc1
);
943 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc1_nonsec", 0,
944 qdev_get_gpio_in_named(dev_apb_ppc1
,
946 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc1_ap", 0,
947 qdev_get_gpio_in_named(dev_apb_ppc1
,
949 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc1_irq_enable", 0,
950 qdev_get_gpio_in_named(dev_apb_ppc1
,
952 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc1_irq_clear", 0,
953 qdev_get_gpio_in_named(dev_apb_ppc1
,
955 qdev_connect_gpio_out(dev_splitter
, 1,
956 qdev_get_gpio_in_named(dev_apb_ppc1
,
959 object_property_set_int(OBJECT(&s
->sysinfo
), info
->sys_version
,
960 "SYS_VERSION", &err
);
962 error_propagate(errp
, err
);
965 object_property_set_int(OBJECT(&s
->sysinfo
),
966 armsse_sys_config_value(s
, info
),
969 error_propagate(errp
, err
);
972 object_property_set_bool(OBJECT(&s
->sysinfo
), true, "realized", &err
);
974 error_propagate(errp
, err
);
977 /* System information registers */
978 sysbus_mmio_map(SYS_BUS_DEVICE(&s
->sysinfo
), 0, 0x40020000);
979 /* System control registers */
980 object_property_set_bool(OBJECT(&s
->sysctl
), true, "realized", &err
);
982 error_propagate(errp
, err
);
985 sysbus_mmio_map(SYS_BUS_DEVICE(&s
->sysctl
), 0, 0x50021000);
987 if (info
->has_ppus
) {
988 /* CPUnCORE_PPU for each CPU */
989 for (i
= 0; i
< info
->num_cpus
; i
++) {
990 char *name
= g_strdup_printf("CPU%dCORE_PPU", i
);
992 map_ppu(s
, CPU0CORE_PPU
+ i
, name
, 0x50023000 + i
* 0x2000);
994 * We don't support CPU debug so don't create the
995 * CPU0DEBUG_PPU at 0x50024000 and 0x50026000.
999 map_ppu(s
, DBG_PPU
, "DBG_PPU", 0x50029000);
1001 for (i
= 0; i
< info
->sram_banks
; i
++) {
1002 char *name
= g_strdup_printf("RAM%d_PPU", i
);
1004 map_ppu(s
, RAM0_PPU
+ i
, name
, 0x5002a000 + i
* 0x1000);
1009 /* This OR gate wires together outputs from the secure watchdogs to NMI */
1010 object_property_set_int(OBJECT(&s
->nmi_orgate
), 2, "num-lines", &err
);
1012 error_propagate(errp
, err
);
1015 object_property_set_bool(OBJECT(&s
->nmi_orgate
), true, "realized", &err
);
1017 error_propagate(errp
, err
);
1020 qdev_connect_gpio_out(DEVICE(&s
->nmi_orgate
), 0,
1021 qdev_get_gpio_in_named(DEVICE(&s
->armv7m
), "NMI", 0));
1023 qdev_prop_set_uint32(DEVICE(&s
->s32kwatchdog
), "wdogclk-frq", S32KCLK
);
1024 object_property_set_bool(OBJECT(&s
->s32kwatchdog
), true, "realized", &err
);
1026 error_propagate(errp
, err
);
1029 sysbus_connect_irq(SYS_BUS_DEVICE(&s
->s32kwatchdog
), 0,
1030 qdev_get_gpio_in(DEVICE(&s
->nmi_orgate
), 0));
1031 sysbus_mmio_map(SYS_BUS_DEVICE(&s
->s32kwatchdog
), 0, 0x5002e000);
1033 /* 0x40080000 .. 0x4008ffff : ARMSSE second Base peripheral region */
1035 qdev_prop_set_uint32(DEVICE(&s
->nswatchdog
), "wdogclk-frq", s
->mainclk_frq
);
1036 object_property_set_bool(OBJECT(&s
->nswatchdog
), true, "realized", &err
);
1038 error_propagate(errp
, err
);
1041 sysbus_connect_irq(SYS_BUS_DEVICE(&s
->nswatchdog
), 0,
1042 armsse_get_common_irq_in(s
, 1));
1043 sysbus_mmio_map(SYS_BUS_DEVICE(&s
->nswatchdog
), 0, 0x40081000);
1045 qdev_prop_set_uint32(DEVICE(&s
->swatchdog
), "wdogclk-frq", s
->mainclk_frq
);
1046 object_property_set_bool(OBJECT(&s
->swatchdog
), true, "realized", &err
);
1048 error_propagate(errp
, err
);
1051 sysbus_connect_irq(SYS_BUS_DEVICE(&s
->swatchdog
), 0,
1052 qdev_get_gpio_in(DEVICE(&s
->nmi_orgate
), 1));
1053 sysbus_mmio_map(SYS_BUS_DEVICE(&s
->swatchdog
), 0, 0x50081000);
1055 for (i
= 0; i
< ARRAY_SIZE(s
->ppc_irq_splitter
); i
++) {
1056 Object
*splitter
= OBJECT(&s
->ppc_irq_splitter
[i
]);
1058 object_property_set_int(splitter
, 2, "num-lines", &err
);
1060 error_propagate(errp
, err
);
1063 object_property_set_bool(splitter
, true, "realized", &err
);
1065 error_propagate(errp
, err
);
1070 for (i
= 0; i
< IOTS_NUM_AHB_EXP_PPC
; i
++) {
1071 char *ppcname
= g_strdup_printf("ahb_ppcexp%d", i
);
1073 armsse_forward_ppc(s
, ppcname
, i
);
1077 for (i
= 0; i
< IOTS_NUM_APB_EXP_PPC
; i
++) {
1078 char *ppcname
= g_strdup_printf("apb_ppcexp%d", i
);
1080 armsse_forward_ppc(s
, ppcname
, i
+ IOTS_NUM_AHB_EXP_PPC
);
1084 for (i
= NUM_EXTERNAL_PPCS
; i
< NUM_PPCS
; i
++) {
1085 /* Wire up IRQ splitter for internal PPCs */
1086 DeviceState
*devs
= DEVICE(&s
->ppc_irq_splitter
[i
]);
1087 char *gpioname
= g_strdup_printf("apb_ppc%d_irq_status",
1088 i
- NUM_EXTERNAL_PPCS
);
1089 TZPPC
*ppc
= (i
== NUM_EXTERNAL_PPCS
) ? &s
->apb_ppc0
: &s
->apb_ppc1
;
1091 qdev_connect_gpio_out(devs
, 0,
1092 qdev_get_gpio_in_named(dev_secctl
, gpioname
, 0));
1093 qdev_connect_gpio_out(devs
, 1,
1094 qdev_get_gpio_in(DEVICE(&s
->ppc_irq_orgate
), i
));
1095 qdev_connect_gpio_out_named(DEVICE(ppc
), "irq", 0,
1096 qdev_get_gpio_in(devs
, 0));
1100 /* Wire up the splitters for the MPC IRQs */
1101 for (i
= 0; i
< IOTS_NUM_EXP_MPC
+ info
->sram_banks
; i
++) {
1102 SplitIRQ
*splitter
= &s
->mpc_irq_splitter
[i
];
1103 DeviceState
*dev_splitter
= DEVICE(splitter
);
1105 object_property_set_int(OBJECT(splitter
), 2, "num-lines", &err
);
1107 error_propagate(errp
, err
);
1110 object_property_set_bool(OBJECT(splitter
), true, "realized", &err
);
1112 error_propagate(errp
, err
);
1116 if (i
< IOTS_NUM_EXP_MPC
) {
1117 /* Splitter input is from GPIO input line */
1118 s
->mpcexp_status_in
[i
] = qdev_get_gpio_in(dev_splitter
, 0);
1119 qdev_connect_gpio_out(dev_splitter
, 0,
1120 qdev_get_gpio_in_named(dev_secctl
,
1121 "mpcexp_status", i
));
1123 /* Splitter input is from our own MPC */
1124 qdev_connect_gpio_out_named(DEVICE(&s
->mpc
[i
- IOTS_NUM_EXP_MPC
]),
1126 qdev_get_gpio_in(dev_splitter
, 0));
1127 qdev_connect_gpio_out(dev_splitter
, 0,
1128 qdev_get_gpio_in_named(dev_secctl
,
1132 qdev_connect_gpio_out(dev_splitter
, 1,
1133 qdev_get_gpio_in(DEVICE(&s
->mpc_irq_orgate
), i
));
1135 /* Create GPIO inputs which will pass the line state for our
1136 * mpcexp_irq inputs to the correct splitter devices.
1138 qdev_init_gpio_in_named(dev
, armsse_mpcexp_status
, "mpcexp_status",
1141 armsse_forward_sec_resp_cfg(s
);
1143 /* Forward the MSC related signals */
1144 qdev_pass_gpios(dev_secctl
, dev
, "mscexp_status");
1145 qdev_pass_gpios(dev_secctl
, dev
, "mscexp_clear");
1146 qdev_pass_gpios(dev_secctl
, dev
, "mscexp_ns");
1147 qdev_connect_gpio_out_named(dev_secctl
, "msc_irq", 0,
1148 armsse_get_common_irq_in(s
, 11));
1151 * Expose our container region to the board model; this corresponds
1152 * to the AHB Slave Expansion ports which allow bus master devices
1153 * (eg DMA controllers) in the board model to make transactions into
1154 * devices in the ARMSSE.
1156 sysbus_init_mmio(SYS_BUS_DEVICE(s
), &s
->container
);
1158 system_clock_scale
= NANOSECONDS_PER_SECOND
/ s
->mainclk_frq
;
1161 static void armsse_idau_check(IDAUInterface
*ii
, uint32_t address
,
1162 int *iregion
, bool *exempt
, bool *ns
, bool *nsc
)
1165 * For ARMSSE systems the IDAU responses are simple logical functions
1166 * of the address bits. The NSC attribute is guest-adjustable via the
1167 * NSCCFG register in the security controller.
1169 ARMSSE
*s
= ARMSSE(ii
);
1170 int region
= extract32(address
, 28, 4);
1172 *ns
= !(region
& 1);
1173 *nsc
= (region
== 1 && (s
->nsccfg
& 1)) || (region
== 3 && (s
->nsccfg
& 2));
1174 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1175 *exempt
= (address
& 0xeff00000) == 0xe0000000;
1179 static const VMStateDescription armsse_vmstate
= {
1182 .minimum_version_id
= 1,
1183 .fields
= (VMStateField
[]) {
1184 VMSTATE_UINT32(nsccfg
, ARMSSE
),
1185 VMSTATE_END_OF_LIST()
1189 static Property armsse_properties
[] = {
1190 DEFINE_PROP_LINK("memory", ARMSSE
, board_memory
, TYPE_MEMORY_REGION
,
1192 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE
, exp_numirq
, 64),
1193 DEFINE_PROP_UINT32("MAINCLK", ARMSSE
, mainclk_frq
, 0),
1194 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE
, sram_addr_width
, 15),
1195 DEFINE_PROP_UINT32("init-svtor", ARMSSE
, init_svtor
, 0x10000000),
1196 DEFINE_PROP_END_OF_LIST()
1199 static void armsse_reset(DeviceState
*dev
)
1201 ARMSSE
*s
= ARMSSE(dev
);
1206 static void armsse_class_init(ObjectClass
*klass
, void *data
)
1208 DeviceClass
*dc
= DEVICE_CLASS(klass
);
1209 IDAUInterfaceClass
*iic
= IDAU_INTERFACE_CLASS(klass
);
1210 ARMSSEClass
*asc
= ARMSSE_CLASS(klass
);
1212 dc
->realize
= armsse_realize
;
1213 dc
->vmsd
= &armsse_vmstate
;
1214 dc
->props
= armsse_properties
;
1215 dc
->reset
= armsse_reset
;
1216 iic
->check
= armsse_idau_check
;
1220 static const TypeInfo armsse_info
= {
1221 .name
= TYPE_ARMSSE
,
1222 .parent
= TYPE_SYS_BUS_DEVICE
,
1223 .instance_size
= sizeof(ARMSSE
),
1224 .instance_init
= armsse_init
,
1226 .interfaces
= (InterfaceInfo
[]) {
1227 { TYPE_IDAU_INTERFACE
},
1232 static void armsse_register_types(void)
1236 type_register_static(&armsse_info
);
1238 for (i
= 0; i
< ARRAY_SIZE(armsse_variants
); i
++) {
1240 .name
= armsse_variants
[i
].name
,
1241 .parent
= TYPE_ARMSSE
,
1242 .class_init
= armsse_class_init
,
1243 .class_data
= (void *)&armsse_variants
[i
],
1249 type_init(armsse_register_types
);