megasas: add MegaRAID SAS 2108 emulation
[qemu/ar7.git] / linux-user / qemu.h
blob8012cc2f5b866fde4ce62d8dea969cfe5e7a02b4
1 #ifndef QEMU_H
2 #define QEMU_H
4 #include <signal.h>
5 #include <string.h>
7 #include "cpu.h"
8 #include "exec/cpu_ldst.h"
10 #undef DEBUG_REMAP
11 #ifdef DEBUG_REMAP
12 #include <stdlib.h>
13 #endif /* DEBUG_REMAP */
15 #include "exec/user/abitypes.h"
17 #include "exec/user/thunk.h"
18 #include "syscall_defs.h"
19 #include "syscall.h"
20 #include "exec/gdbstub.h"
21 #include "qemu/queue.h"
23 #define THREAD __thread
25 /* This struct is used to hold certain information about the image.
26 * Basically, it replicates in user space what would be certain
27 * task_struct fields in the kernel
29 struct image_info {
30 abi_ulong load_bias;
31 abi_ulong load_addr;
32 abi_ulong start_code;
33 abi_ulong end_code;
34 abi_ulong start_data;
35 abi_ulong end_data;
36 abi_ulong start_brk;
37 abi_ulong brk;
38 abi_ulong start_mmap;
39 abi_ulong mmap;
40 abi_ulong rss;
41 abi_ulong start_stack;
42 abi_ulong stack_limit;
43 abi_ulong entry;
44 abi_ulong code_offset;
45 abi_ulong data_offset;
46 abi_ulong saved_auxv;
47 abi_ulong auxv_len;
48 abi_ulong arg_start;
49 abi_ulong arg_end;
50 uint32_t elf_flags;
51 int personality;
52 #ifdef CONFIG_USE_FDPIC
53 abi_ulong loadmap_addr;
54 uint16_t nsegs;
55 void *loadsegs;
56 abi_ulong pt_dynamic_addr;
57 struct image_info *other_info;
58 #endif
61 #ifdef TARGET_I386
62 /* Information about the current linux thread */
63 struct vm86_saved_state {
64 uint32_t eax; /* return code */
65 uint32_t ebx;
66 uint32_t ecx;
67 uint32_t edx;
68 uint32_t esi;
69 uint32_t edi;
70 uint32_t ebp;
71 uint32_t esp;
72 uint32_t eflags;
73 uint32_t eip;
74 uint16_t cs, ss, ds, es, fs, gs;
76 #endif
78 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
79 /* FPU emulator */
80 #include "nwfpe/fpa11.h"
81 #endif
83 #define MAX_SIGQUEUE_SIZE 1024
85 struct sigqueue {
86 struct sigqueue *next;
87 target_siginfo_t info;
90 struct emulated_sigtable {
91 int pending; /* true if signal is pending */
92 struct sigqueue *first;
93 struct sigqueue info; /* in order to always have memory for the
94 first signal, we put it here */
97 /* NOTE: we force a big alignment so that the stack stored after is
98 aligned too */
99 typedef struct TaskState {
100 pid_t ts_tid; /* tid (or pid) of this task */
101 #ifdef TARGET_ARM
102 # ifdef TARGET_ABI32
103 /* FPA state */
104 FPA11 fpa;
105 # endif
106 int swi_errno;
107 #endif
108 #ifdef TARGET_UNICORE32
109 int swi_errno;
110 #endif
111 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
112 abi_ulong target_v86;
113 struct vm86_saved_state vm86_saved_regs;
114 struct target_vm86plus_struct vm86plus;
115 uint32_t v86flags;
116 uint32_t v86mask;
117 #endif
118 abi_ulong child_tidptr;
119 #ifdef TARGET_M68K
120 int sim_syscalls;
121 abi_ulong tp_value;
122 #endif
123 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
124 /* Extra fields for semihosted binaries. */
125 uint32_t heap_base;
126 uint32_t heap_limit;
127 #endif
128 uint32_t stack_base;
129 int used; /* non zero if used */
130 bool sigsegv_blocked; /* SIGSEGV blocked by guest */
131 struct image_info *info;
132 struct linux_binprm *bprm;
134 struct emulated_sigtable sigtab[TARGET_NSIG];
135 struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */
136 struct sigqueue *first_free; /* first free siginfo queue entry */
137 int signal_pending; /* non zero if a signal may be pending */
138 } __attribute__((aligned(16))) TaskState;
140 extern char *exec_path;
141 void init_task_state(TaskState *ts);
142 void task_settid(TaskState *);
143 void stop_all_tasks(void);
144 extern const char *qemu_uname_release;
145 extern unsigned long mmap_min_addr;
147 /* ??? See if we can avoid exposing so much of the loader internals. */
149 * MAX_ARG_PAGES defines the number of pages allocated for arguments
150 * and envelope for the new program. 32 should suffice, this gives
151 * a maximum env+arg of 128kB w/4KB pages!
153 #define MAX_ARG_PAGES 33
155 /* Read a good amount of data initially, to hopefully get all the
156 program headers loaded. */
157 #define BPRM_BUF_SIZE 1024
160 * This structure is used to hold the arguments that are
161 * used when loading binaries.
163 struct linux_binprm {
164 char buf[BPRM_BUF_SIZE] __attribute__((aligned));
165 void *page[MAX_ARG_PAGES];
166 abi_ulong p;
167 int fd;
168 int e_uid, e_gid;
169 int argc, envc;
170 char **argv;
171 char **envp;
172 char * filename; /* Name of binary */
173 int (*core_dump)(int, const CPUArchState *); /* coredump routine */
176 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
177 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
178 abi_ulong stringp, int push_ptr);
179 int loader_exec(int fdexec, const char *filename, char **argv, char **envp,
180 struct target_pt_regs * regs, struct image_info *infop,
181 struct linux_binprm *);
183 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info);
184 int load_flt_binary(struct linux_binprm *bprm, struct image_info *info);
186 abi_long memcpy_to_target(abi_ulong dest, const void *src,
187 unsigned long len);
188 void target_set_brk(abi_ulong new_brk);
189 abi_long do_brk(abi_ulong new_brk);
190 void syscall_init(void);
191 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
192 abi_long arg2, abi_long arg3, abi_long arg4,
193 abi_long arg5, abi_long arg6, abi_long arg7,
194 abi_long arg8);
195 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
196 extern THREAD CPUState *thread_cpu;
197 void cpu_loop(CPUArchState *env);
198 char *target_strerror(int err);
199 int get_osversion(void);
200 void init_qemu_uname_release(void);
201 void fork_start(void);
202 void fork_end(int child);
204 /* Creates the initial guest address space in the host memory space using
205 * the given host start address hint and size. The guest_start parameter
206 * specifies the start address of the guest space. guest_base will be the
207 * difference between the host start address computed by this function and
208 * guest_start. If fixed is specified, then the mapped address space must
209 * start at host_start. The real start address of the mapped memory space is
210 * returned or -1 if there was an error.
212 unsigned long init_guest_space(unsigned long host_start,
213 unsigned long host_size,
214 unsigned long guest_start,
215 bool fixed);
217 #include "qemu/log.h"
219 /* syscall.c */
220 int host_to_target_waitstatus(int status);
222 /* strace.c */
223 void print_syscall(int num,
224 abi_long arg1, abi_long arg2, abi_long arg3,
225 abi_long arg4, abi_long arg5, abi_long arg6);
226 void print_syscall_ret(int num, abi_long arg1);
227 extern int do_strace;
229 /* signal.c */
230 void process_pending_signals(CPUArchState *cpu_env);
231 void signal_init(void);
232 int queue_signal(CPUArchState *env, int sig, target_siginfo_t *info);
233 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
234 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
235 int target_to_host_signal(int sig);
236 int host_to_target_signal(int sig);
237 long do_sigreturn(CPUArchState *env);
238 long do_rt_sigreturn(CPUArchState *env);
239 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
240 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
242 #ifdef TARGET_I386
243 /* vm86.c */
244 void save_v86_state(CPUX86State *env);
245 void handle_vm86_trap(CPUX86State *env, int trapno);
246 void handle_vm86_fault(CPUX86State *env);
247 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
248 #elif defined(TARGET_SPARC64)
249 void sparc64_set_context(CPUSPARCState *env);
250 void sparc64_get_context(CPUSPARCState *env);
251 #endif
253 /* mmap.c */
254 int target_mprotect(abi_ulong start, abi_ulong len, int prot);
255 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
256 int flags, int fd, abi_ulong offset);
257 int target_munmap(abi_ulong start, abi_ulong len);
258 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
259 abi_ulong new_size, unsigned long flags,
260 abi_ulong new_addr);
261 int target_msync(abi_ulong start, abi_ulong len, int flags);
262 extern unsigned long last_brk;
263 extern abi_ulong mmap_next_start;
264 void mmap_lock(void);
265 void mmap_unlock(void);
266 abi_ulong mmap_find_vma(abi_ulong, abi_ulong);
267 void cpu_list_lock(void);
268 void cpu_list_unlock(void);
269 void mmap_fork_start(void);
270 void mmap_fork_end(int child);
272 /* main.c */
273 extern unsigned long guest_stack_size;
275 /* user access */
277 #define VERIFY_READ 0
278 #define VERIFY_WRITE 1 /* implies read access */
280 static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
282 return page_check_range((target_ulong)addr, size,
283 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
286 /* NOTE __get_user and __put_user use host pointers and don't check access.
287 These are usually used to access struct data members once the struct has
288 been locked - usually with lock_user_struct. */
290 /* Tricky points:
291 - Use __builtin_choose_expr to avoid type promotion from ?:,
292 - Invalid sizes result in a compile time error stemming from
293 the fact that abort has no parameters.
294 - It's easier to use the endian-specific unaligned load/store
295 functions than host-endian unaligned load/store plus tswapN. */
297 #define __put_user_e(x, hptr, e) \
298 (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \
299 __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \
300 __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \
301 __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \
302 ((hptr), (x)), (void)0)
304 #define __get_user_e(x, hptr, e) \
305 ((x) = (typeof(*hptr))( \
306 __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \
307 __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \
308 __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \
309 __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \
310 (hptr)), (void)0)
312 #ifdef TARGET_WORDS_BIGENDIAN
313 # define __put_user(x, hptr) __put_user_e(x, hptr, be)
314 # define __get_user(x, hptr) __get_user_e(x, hptr, be)
315 #else
316 # define __put_user(x, hptr) __put_user_e(x, hptr, le)
317 # define __get_user(x, hptr) __get_user_e(x, hptr, le)
318 #endif
320 /* put_user()/get_user() take a guest address and check access */
321 /* These are usually used to access an atomic data type, such as an int,
322 * that has been passed by address. These internally perform locking
323 * and unlocking on the data type.
325 #define put_user(x, gaddr, target_type) \
326 ({ \
327 abi_ulong __gaddr = (gaddr); \
328 target_type *__hptr; \
329 abi_long __ret = 0; \
330 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
331 __put_user((x), __hptr); \
332 unlock_user(__hptr, __gaddr, sizeof(target_type)); \
333 } else \
334 __ret = -TARGET_EFAULT; \
335 __ret; \
338 #define get_user(x, gaddr, target_type) \
339 ({ \
340 abi_ulong __gaddr = (gaddr); \
341 target_type *__hptr; \
342 abi_long __ret = 0; \
343 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
344 __get_user((x), __hptr); \
345 unlock_user(__hptr, __gaddr, 0); \
346 } else { \
347 /* avoid warning */ \
348 (x) = 0; \
349 __ret = -TARGET_EFAULT; \
351 __ret; \
354 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
355 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
356 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
357 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
358 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
359 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
360 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
361 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
362 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t)
363 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t)
365 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
366 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
367 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
368 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
369 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
370 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
371 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
372 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
373 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t)
374 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t)
376 /* copy_from_user() and copy_to_user() are usually used to copy data
377 * buffers between the target and host. These internally perform
378 * locking/unlocking of the memory.
380 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
381 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
383 /* Functions for accessing guest memory. The tget and tput functions
384 read/write single values, byteswapping as necessary. The lock_user function
385 gets a pointer to a contiguous area of guest memory, but does not perform
386 any byteswapping. lock_user may return either a pointer to the guest
387 memory, or a temporary buffer. */
389 /* Lock an area of guest memory into the host. If copy is true then the
390 host area will have the same contents as the guest. */
391 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
393 if (!access_ok(type, guest_addr, len))
394 return NULL;
395 #ifdef DEBUG_REMAP
397 void *addr;
398 addr = malloc(len);
399 if (copy)
400 memcpy(addr, g2h(guest_addr), len);
401 else
402 memset(addr, 0, len);
403 return addr;
405 #else
406 return g2h(guest_addr);
407 #endif
410 /* Unlock an area of guest memory. The first LEN bytes must be
411 flushed back to guest memory. host_ptr = NULL is explicitly
412 allowed and does nothing. */
413 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
414 long len)
417 #ifdef DEBUG_REMAP
418 if (!host_ptr)
419 return;
420 if (host_ptr == g2h(guest_addr))
421 return;
422 if (len > 0)
423 memcpy(g2h(guest_addr), host_ptr, len);
424 free(host_ptr);
425 #endif
428 /* Return the length of a string in target memory or -TARGET_EFAULT if
429 access error. */
430 abi_long target_strlen(abi_ulong gaddr);
432 /* Like lock_user but for null terminated strings. */
433 static inline void *lock_user_string(abi_ulong guest_addr)
435 abi_long len;
436 len = target_strlen(guest_addr);
437 if (len < 0)
438 return NULL;
439 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
442 /* Helper macros for locking/unlocking a target struct. */
443 #define lock_user_struct(type, host_ptr, guest_addr, copy) \
444 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
445 #define unlock_user_struct(host_ptr, guest_addr, copy) \
446 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
448 #include <pthread.h>
450 /* Include target-specific struct and function definitions;
451 * they may need access to the target-independent structures
452 * above, so include them last.
454 #include "target_cpu.h"
455 #include "target_signal.h"
456 #include "target_structs.h"
458 #endif /* QEMU_H */