target/arm: Move TLB related routines to tlb_helper.c
[qemu/ar7.git] / target / arm / internals.h
blob46a1313d69dc93ed0aa7b6f57ec1db2b9452f33d
1 /*
2 * QEMU ARM CPU -- internal functions and types
4 * Copyright (c) 2014 Linaro Ltd
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
20 * This header defines functions, types, etc which need to be shared
21 * between different source files within target/arm/ but which are
22 * private to it and not required by the rest of QEMU.
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
28 #include "hw/registerfields.h"
30 /* register banks for CPU modes */
31 #define BANK_USRSYS 0
32 #define BANK_SVC 1
33 #define BANK_ABT 2
34 #define BANK_UND 3
35 #define BANK_IRQ 4
36 #define BANK_FIQ 5
37 #define BANK_HYP 6
38 #define BANK_MON 7
40 static inline bool excp_is_internal(int excp)
42 /* Return true if this exception number represents a QEMU-internal
43 * exception that will not be passed to the guest.
45 return excp == EXCP_INTERRUPT
46 || excp == EXCP_HLT
47 || excp == EXCP_DEBUG
48 || excp == EXCP_HALTED
49 || excp == EXCP_EXCEPTION_EXIT
50 || excp == EXCP_KERNEL_TRAP
51 || excp == EXCP_SEMIHOST;
54 /* Scale factor for generic timers, ie number of ns per tick.
55 * This gives a 62.5MHz timer.
57 #define GTIMER_SCALE 16
59 /* Bit definitions for the v7M CONTROL register */
60 FIELD(V7M_CONTROL, NPRIV, 0, 1)
61 FIELD(V7M_CONTROL, SPSEL, 1, 1)
62 FIELD(V7M_CONTROL, FPCA, 2, 1)
63 FIELD(V7M_CONTROL, SFPA, 3, 1)
65 /* Bit definitions for v7M exception return payload */
66 FIELD(V7M_EXCRET, ES, 0, 1)
67 FIELD(V7M_EXCRET, RES0, 1, 1)
68 FIELD(V7M_EXCRET, SPSEL, 2, 1)
69 FIELD(V7M_EXCRET, MODE, 3, 1)
70 FIELD(V7M_EXCRET, FTYPE, 4, 1)
71 FIELD(V7M_EXCRET, DCRS, 5, 1)
72 FIELD(V7M_EXCRET, S, 6, 1)
73 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
75 /* Minimum value which is a magic number for exception return */
76 #define EXC_RETURN_MIN_MAGIC 0xff000000
77 /* Minimum number which is a magic number for function or exception return
78 * when using v8M security extension
80 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
82 /* We use a few fake FSR values for internal purposes in M profile.
83 * M profile cores don't have A/R format FSRs, but currently our
84 * get_phys_addr() code assumes A/R profile and reports failures via
85 * an A/R format FSR value. We then translate that into the proper
86 * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
87 * Mostly the FSR values we use for this are those defined for v7PMSA,
88 * since we share some of that codepath. A few kinds of fault are
89 * only for M profile and have no A/R equivalent, though, so we have
90 * to pick a value from the reserved range (which we never otherwise
91 * generate) to use for these.
92 * These values will never be visible to the guest.
94 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
95 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
97 /**
98 * raise_exception: Raise the specified exception.
99 * Raise a guest exception with the specified value, syndrome register
100 * and target exception level. This should be called from helper functions,
101 * and never returns because we will longjump back up to the CPU main loop.
103 void QEMU_NORETURN raise_exception(CPUARMState *env, uint32_t excp,
104 uint32_t syndrome, uint32_t target_el);
107 * Similarly, but also use unwinding to restore cpu state.
109 void QEMU_NORETURN raise_exception_ra(CPUARMState *env, uint32_t excp,
110 uint32_t syndrome, uint32_t target_el,
111 uintptr_t ra);
114 * For AArch64, map a given EL to an index in the banked_spsr array.
115 * Note that this mapping and the AArch32 mapping defined in bank_number()
116 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
117 * mandated mapping between each other.
119 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
121 static const unsigned int map[4] = {
122 [1] = BANK_SVC, /* EL1. */
123 [2] = BANK_HYP, /* EL2. */
124 [3] = BANK_MON, /* EL3. */
126 assert(el >= 1 && el <= 3);
127 return map[el];
130 /* Map CPU modes onto saved register banks. */
131 static inline int bank_number(int mode)
133 switch (mode) {
134 case ARM_CPU_MODE_USR:
135 case ARM_CPU_MODE_SYS:
136 return BANK_USRSYS;
137 case ARM_CPU_MODE_SVC:
138 return BANK_SVC;
139 case ARM_CPU_MODE_ABT:
140 return BANK_ABT;
141 case ARM_CPU_MODE_UND:
142 return BANK_UND;
143 case ARM_CPU_MODE_IRQ:
144 return BANK_IRQ;
145 case ARM_CPU_MODE_FIQ:
146 return BANK_FIQ;
147 case ARM_CPU_MODE_HYP:
148 return BANK_HYP;
149 case ARM_CPU_MODE_MON:
150 return BANK_MON;
152 g_assert_not_reached();
156 * r14_bank_number: Map CPU mode onto register bank for r14
158 * Given an AArch32 CPU mode, return the index into the saved register
159 * banks to use for the R14 (LR) in that mode. This is the same as
160 * bank_number(), except for the special case of Hyp mode, where
161 * R14 is shared with USR and SYS, unlike its R13 and SPSR.
162 * This should be used as the index into env->banked_r14[], and
163 * bank_number() used for the index into env->banked_r13[] and
164 * env->banked_spsr[].
166 static inline int r14_bank_number(int mode)
168 return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
171 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
172 void arm_translate_init(void);
174 enum arm_fprounding {
175 FPROUNDING_TIEEVEN,
176 FPROUNDING_POSINF,
177 FPROUNDING_NEGINF,
178 FPROUNDING_ZERO,
179 FPROUNDING_TIEAWAY,
180 FPROUNDING_ODD
183 int arm_rmode_to_sf(int rmode);
185 static inline void aarch64_save_sp(CPUARMState *env, int el)
187 if (env->pstate & PSTATE_SP) {
188 env->sp_el[el] = env->xregs[31];
189 } else {
190 env->sp_el[0] = env->xregs[31];
194 static inline void aarch64_restore_sp(CPUARMState *env, int el)
196 if (env->pstate & PSTATE_SP) {
197 env->xregs[31] = env->sp_el[el];
198 } else {
199 env->xregs[31] = env->sp_el[0];
203 static inline void update_spsel(CPUARMState *env, uint32_t imm)
205 unsigned int cur_el = arm_current_el(env);
206 /* Update PSTATE SPSel bit; this requires us to update the
207 * working stack pointer in xregs[31].
209 if (!((imm ^ env->pstate) & PSTATE_SP)) {
210 return;
212 aarch64_save_sp(env, cur_el);
213 env->pstate = deposit32(env->pstate, 0, 1, imm);
215 /* We rely on illegal updates to SPsel from EL0 to get trapped
216 * at translation time.
218 assert(cur_el >= 1 && cur_el <= 3);
219 aarch64_restore_sp(env, cur_el);
223 * arm_pamax
224 * @cpu: ARMCPU
226 * Returns the implementation defined bit-width of physical addresses.
227 * The ARMv8 reference manuals refer to this as PAMax().
229 static inline unsigned int arm_pamax(ARMCPU *cpu)
231 static const unsigned int pamax_map[] = {
232 [0] = 32,
233 [1] = 36,
234 [2] = 40,
235 [3] = 42,
236 [4] = 44,
237 [5] = 48,
239 unsigned int parange =
240 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
242 /* id_aa64mmfr0 is a read-only register so values outside of the
243 * supported mappings can be considered an implementation error. */
244 assert(parange < ARRAY_SIZE(pamax_map));
245 return pamax_map[parange];
248 /* Return true if extended addresses are enabled.
249 * This is always the case if our translation regime is 64 bit,
250 * but depends on TTBCR.EAE for 32 bit.
252 static inline bool extended_addresses_enabled(CPUARMState *env)
254 TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
255 return arm_el_is_aa64(env, 1) ||
256 (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
259 /* Valid Syndrome Register EC field values */
260 enum arm_exception_class {
261 EC_UNCATEGORIZED = 0x00,
262 EC_WFX_TRAP = 0x01,
263 EC_CP15RTTRAP = 0x03,
264 EC_CP15RRTTRAP = 0x04,
265 EC_CP14RTTRAP = 0x05,
266 EC_CP14DTTRAP = 0x06,
267 EC_ADVSIMDFPACCESSTRAP = 0x07,
268 EC_FPIDTRAP = 0x08,
269 EC_PACTRAP = 0x09,
270 EC_CP14RRTTRAP = 0x0c,
271 EC_BTITRAP = 0x0d,
272 EC_ILLEGALSTATE = 0x0e,
273 EC_AA32_SVC = 0x11,
274 EC_AA32_HVC = 0x12,
275 EC_AA32_SMC = 0x13,
276 EC_AA64_SVC = 0x15,
277 EC_AA64_HVC = 0x16,
278 EC_AA64_SMC = 0x17,
279 EC_SYSTEMREGISTERTRAP = 0x18,
280 EC_SVEACCESSTRAP = 0x19,
281 EC_INSNABORT = 0x20,
282 EC_INSNABORT_SAME_EL = 0x21,
283 EC_PCALIGNMENT = 0x22,
284 EC_DATAABORT = 0x24,
285 EC_DATAABORT_SAME_EL = 0x25,
286 EC_SPALIGNMENT = 0x26,
287 EC_AA32_FPTRAP = 0x28,
288 EC_AA64_FPTRAP = 0x2c,
289 EC_SERROR = 0x2f,
290 EC_BREAKPOINT = 0x30,
291 EC_BREAKPOINT_SAME_EL = 0x31,
292 EC_SOFTWARESTEP = 0x32,
293 EC_SOFTWARESTEP_SAME_EL = 0x33,
294 EC_WATCHPOINT = 0x34,
295 EC_WATCHPOINT_SAME_EL = 0x35,
296 EC_AA32_BKPT = 0x38,
297 EC_VECTORCATCH = 0x3a,
298 EC_AA64_BKPT = 0x3c,
301 #define ARM_EL_EC_SHIFT 26
302 #define ARM_EL_IL_SHIFT 25
303 #define ARM_EL_ISV_SHIFT 24
304 #define ARM_EL_IL (1 << ARM_EL_IL_SHIFT)
305 #define ARM_EL_ISV (1 << ARM_EL_ISV_SHIFT)
307 static inline uint32_t syn_get_ec(uint32_t syn)
309 return syn >> ARM_EL_EC_SHIFT;
312 /* Utility functions for constructing various kinds of syndrome value.
313 * Note that in general we follow the AArch64 syndrome values; in a
314 * few cases the value in HSR for exceptions taken to AArch32 Hyp
315 * mode differs slightly, and we fix this up when populating HSR in
316 * arm_cpu_do_interrupt_aarch32_hyp().
317 * The exception is FP/SIMD access traps -- these report extra information
318 * when taking an exception to AArch32. For those we include the extra coproc
319 * and TA fields, and mask them out when taking the exception to AArch64.
321 static inline uint32_t syn_uncategorized(void)
323 return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL;
326 static inline uint32_t syn_aa64_svc(uint32_t imm16)
328 return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
331 static inline uint32_t syn_aa64_hvc(uint32_t imm16)
333 return (EC_AA64_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
336 static inline uint32_t syn_aa64_smc(uint32_t imm16)
338 return (EC_AA64_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
341 static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_16bit)
343 return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
344 | (is_16bit ? 0 : ARM_EL_IL);
347 static inline uint32_t syn_aa32_hvc(uint32_t imm16)
349 return (EC_AA32_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
352 static inline uint32_t syn_aa32_smc(void)
354 return (EC_AA32_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL;
357 static inline uint32_t syn_aa64_bkpt(uint32_t imm16)
359 return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
362 static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_16bit)
364 return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
365 | (is_16bit ? 0 : ARM_EL_IL);
368 static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2,
369 int crn, int crm, int rt,
370 int isread)
372 return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL
373 | (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5)
374 | (crm << 1) | isread;
377 static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2,
378 int crn, int crm, int rt, int isread,
379 bool is_16bit)
381 return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT)
382 | (is_16bit ? 0 : ARM_EL_IL)
383 | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
384 | (crn << 10) | (rt << 5) | (crm << 1) | isread;
387 static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2,
388 int crn, int crm, int rt, int isread,
389 bool is_16bit)
391 return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT)
392 | (is_16bit ? 0 : ARM_EL_IL)
393 | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
394 | (crn << 10) | (rt << 5) | (crm << 1) | isread;
397 static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm,
398 int rt, int rt2, int isread,
399 bool is_16bit)
401 return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT)
402 | (is_16bit ? 0 : ARM_EL_IL)
403 | (cv << 24) | (cond << 20) | (opc1 << 16)
404 | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
407 static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm,
408 int rt, int rt2, int isread,
409 bool is_16bit)
411 return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT)
412 | (is_16bit ? 0 : ARM_EL_IL)
413 | (cv << 24) | (cond << 20) | (opc1 << 16)
414 | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
417 static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_16bit)
419 /* AArch32 FP trap or any AArch64 FP/SIMD trap: TA == 0 coproc == 0xa */
420 return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
421 | (is_16bit ? 0 : ARM_EL_IL)
422 | (cv << 24) | (cond << 20) | 0xa;
425 static inline uint32_t syn_simd_access_trap(int cv, int cond, bool is_16bit)
427 /* AArch32 SIMD trap: TA == 1 coproc == 0 */
428 return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
429 | (is_16bit ? 0 : ARM_EL_IL)
430 | (cv << 24) | (cond << 20) | (1 << 5);
433 static inline uint32_t syn_sve_access_trap(void)
435 return EC_SVEACCESSTRAP << ARM_EL_EC_SHIFT;
438 static inline uint32_t syn_pactrap(void)
440 return EC_PACTRAP << ARM_EL_EC_SHIFT;
443 static inline uint32_t syn_btitrap(int btype)
445 return (EC_BTITRAP << ARM_EL_EC_SHIFT) | btype;
448 static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc)
450 return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
451 | ARM_EL_IL | (ea << 9) | (s1ptw << 7) | fsc;
454 static inline uint32_t syn_data_abort_no_iss(int same_el,
455 int ea, int cm, int s1ptw,
456 int wnr, int fsc)
458 return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
459 | ARM_EL_IL
460 | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
463 static inline uint32_t syn_data_abort_with_iss(int same_el,
464 int sas, int sse, int srt,
465 int sf, int ar,
466 int ea, int cm, int s1ptw,
467 int wnr, int fsc,
468 bool is_16bit)
470 return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
471 | (is_16bit ? 0 : ARM_EL_IL)
472 | ARM_EL_ISV | (sas << 22) | (sse << 21) | (srt << 16)
473 | (sf << 15) | (ar << 14)
474 | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
477 static inline uint32_t syn_swstep(int same_el, int isv, int ex)
479 return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
480 | ARM_EL_IL | (isv << 24) | (ex << 6) | 0x22;
483 static inline uint32_t syn_watchpoint(int same_el, int cm, int wnr)
485 return (EC_WATCHPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
486 | ARM_EL_IL | (cm << 8) | (wnr << 6) | 0x22;
489 static inline uint32_t syn_breakpoint(int same_el)
491 return (EC_BREAKPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
492 | ARM_EL_IL | 0x22;
495 static inline uint32_t syn_wfx(int cv, int cond, int ti, bool is_16bit)
497 return (EC_WFX_TRAP << ARM_EL_EC_SHIFT) |
498 (is_16bit ? 0 : (1 << ARM_EL_IL_SHIFT)) |
499 (cv << 24) | (cond << 20) | ti;
502 /* Update a QEMU watchpoint based on the information the guest has set in the
503 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
505 void hw_watchpoint_update(ARMCPU *cpu, int n);
506 /* Update the QEMU watchpoints for every guest watchpoint. This does a
507 * complete delete-and-reinstate of the QEMU watchpoint list and so is
508 * suitable for use after migration or on reset.
510 void hw_watchpoint_update_all(ARMCPU *cpu);
511 /* Update a QEMU breakpoint based on the information the guest has set in the
512 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
514 void hw_breakpoint_update(ARMCPU *cpu, int n);
515 /* Update the QEMU breakpoints for every guest breakpoint. This does a
516 * complete delete-and-reinstate of the QEMU breakpoint list and so is
517 * suitable for use after migration or on reset.
519 void hw_breakpoint_update_all(ARMCPU *cpu);
521 /* Callback function for checking if a watchpoint should trigger. */
522 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
524 /* Adjust addresses (in BE32 mode) before testing against watchpoint
525 * addresses.
527 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
529 /* Callback function for when a watchpoint or breakpoint triggers. */
530 void arm_debug_excp_handler(CPUState *cs);
532 #ifdef CONFIG_USER_ONLY
533 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
535 return false;
537 #else
538 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
539 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
540 /* Actually handle a PSCI call */
541 void arm_handle_psci_call(ARMCPU *cpu);
542 #endif
545 * arm_clear_exclusive: clear the exclusive monitor
546 * @env: CPU env
547 * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
549 static inline void arm_clear_exclusive(CPUARMState *env)
551 env->exclusive_addr = -1;
555 * ARMFaultType: type of an ARM MMU fault
556 * This corresponds to the v8A pseudocode's Fault enumeration,
557 * with extensions for QEMU internal conditions.
559 typedef enum ARMFaultType {
560 ARMFault_None,
561 ARMFault_AccessFlag,
562 ARMFault_Alignment,
563 ARMFault_Background,
564 ARMFault_Domain,
565 ARMFault_Permission,
566 ARMFault_Translation,
567 ARMFault_AddressSize,
568 ARMFault_SyncExternal,
569 ARMFault_SyncExternalOnWalk,
570 ARMFault_SyncParity,
571 ARMFault_SyncParityOnWalk,
572 ARMFault_AsyncParity,
573 ARMFault_AsyncExternal,
574 ARMFault_Debug,
575 ARMFault_TLBConflict,
576 ARMFault_Lockdown,
577 ARMFault_Exclusive,
578 ARMFault_ICacheMaint,
579 ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
580 ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
581 } ARMFaultType;
584 * ARMMMUFaultInfo: Information describing an ARM MMU Fault
585 * @type: Type of fault
586 * @level: Table walk level (for translation, access flag and permission faults)
587 * @domain: Domain of the fault address (for non-LPAE CPUs only)
588 * @s2addr: Address that caused a fault at stage 2
589 * @stage2: True if we faulted at stage 2
590 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
591 * @ea: True if we should set the EA (external abort type) bit in syndrome
593 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
594 struct ARMMMUFaultInfo {
595 ARMFaultType type;
596 target_ulong s2addr;
597 int level;
598 int domain;
599 bool stage2;
600 bool s1ptw;
601 bool ea;
605 * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
606 * Compare pseudocode EncodeSDFSC(), though unlike that function
607 * we set up a whole FSR-format code including domain field and
608 * putting the high bit of the FSC into bit 10.
610 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
612 uint32_t fsc;
614 switch (fi->type) {
615 case ARMFault_None:
616 return 0;
617 case ARMFault_AccessFlag:
618 fsc = fi->level == 1 ? 0x3 : 0x6;
619 break;
620 case ARMFault_Alignment:
621 fsc = 0x1;
622 break;
623 case ARMFault_Permission:
624 fsc = fi->level == 1 ? 0xd : 0xf;
625 break;
626 case ARMFault_Domain:
627 fsc = fi->level == 1 ? 0x9 : 0xb;
628 break;
629 case ARMFault_Translation:
630 fsc = fi->level == 1 ? 0x5 : 0x7;
631 break;
632 case ARMFault_SyncExternal:
633 fsc = 0x8 | (fi->ea << 12);
634 break;
635 case ARMFault_SyncExternalOnWalk:
636 fsc = fi->level == 1 ? 0xc : 0xe;
637 fsc |= (fi->ea << 12);
638 break;
639 case ARMFault_SyncParity:
640 fsc = 0x409;
641 break;
642 case ARMFault_SyncParityOnWalk:
643 fsc = fi->level == 1 ? 0x40c : 0x40e;
644 break;
645 case ARMFault_AsyncParity:
646 fsc = 0x408;
647 break;
648 case ARMFault_AsyncExternal:
649 fsc = 0x406 | (fi->ea << 12);
650 break;
651 case ARMFault_Debug:
652 fsc = 0x2;
653 break;
654 case ARMFault_TLBConflict:
655 fsc = 0x400;
656 break;
657 case ARMFault_Lockdown:
658 fsc = 0x404;
659 break;
660 case ARMFault_Exclusive:
661 fsc = 0x405;
662 break;
663 case ARMFault_ICacheMaint:
664 fsc = 0x4;
665 break;
666 case ARMFault_Background:
667 fsc = 0x0;
668 break;
669 case ARMFault_QEMU_NSCExec:
670 fsc = M_FAKE_FSR_NSC_EXEC;
671 break;
672 case ARMFault_QEMU_SFault:
673 fsc = M_FAKE_FSR_SFAULT;
674 break;
675 default:
676 /* Other faults can't occur in a context that requires a
677 * short-format status code.
679 g_assert_not_reached();
682 fsc |= (fi->domain << 4);
683 return fsc;
687 * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
688 * Compare pseudocode EncodeLDFSC(), though unlike that function
689 * we fill in also the LPAE bit 9 of a DFSR format.
691 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
693 uint32_t fsc;
695 switch (fi->type) {
696 case ARMFault_None:
697 return 0;
698 case ARMFault_AddressSize:
699 fsc = fi->level & 3;
700 break;
701 case ARMFault_AccessFlag:
702 fsc = (fi->level & 3) | (0x2 << 2);
703 break;
704 case ARMFault_Permission:
705 fsc = (fi->level & 3) | (0x3 << 2);
706 break;
707 case ARMFault_Translation:
708 fsc = (fi->level & 3) | (0x1 << 2);
709 break;
710 case ARMFault_SyncExternal:
711 fsc = 0x10 | (fi->ea << 12);
712 break;
713 case ARMFault_SyncExternalOnWalk:
714 fsc = (fi->level & 3) | (0x5 << 2) | (fi->ea << 12);
715 break;
716 case ARMFault_SyncParity:
717 fsc = 0x18;
718 break;
719 case ARMFault_SyncParityOnWalk:
720 fsc = (fi->level & 3) | (0x7 << 2);
721 break;
722 case ARMFault_AsyncParity:
723 fsc = 0x19;
724 break;
725 case ARMFault_AsyncExternal:
726 fsc = 0x11 | (fi->ea << 12);
727 break;
728 case ARMFault_Alignment:
729 fsc = 0x21;
730 break;
731 case ARMFault_Debug:
732 fsc = 0x22;
733 break;
734 case ARMFault_TLBConflict:
735 fsc = 0x30;
736 break;
737 case ARMFault_Lockdown:
738 fsc = 0x34;
739 break;
740 case ARMFault_Exclusive:
741 fsc = 0x35;
742 break;
743 default:
744 /* Other faults can't occur in a context that requires a
745 * long-format status code.
747 g_assert_not_reached();
750 fsc |= 1 << 9;
751 return fsc;
754 static inline bool arm_extabort_type(MemTxResult result)
756 /* The EA bit in syndromes and fault status registers is an
757 * IMPDEF classification of external aborts. ARM implementations
758 * usually use this to indicate AXI bus Decode error (0) or
759 * Slave error (1); in QEMU we follow that.
761 return result != MEMTX_DECODE_ERROR;
764 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
765 MMUAccessType access_type, int mmu_idx,
766 bool probe, uintptr_t retaddr);
768 /* Return true if the stage 1 translation regime is using LPAE format page
769 * tables */
770 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
772 /* Raise a data fault alignment exception for the specified virtual address */
773 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
774 MMUAccessType access_type,
775 int mmu_idx, uintptr_t retaddr);
777 /* arm_cpu_do_transaction_failed: handle a memory system error response
778 * (eg "no device/memory present at address") by raising an external abort
779 * exception
781 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
782 vaddr addr, unsigned size,
783 MMUAccessType access_type,
784 int mmu_idx, MemTxAttrs attrs,
785 MemTxResult response, uintptr_t retaddr);
787 /* Call any registered EL change hooks */
788 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
790 ARMELChangeHook *hook, *next;
791 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
792 hook->hook(cpu, hook->opaque);
795 static inline void arm_call_el_change_hook(ARMCPU *cpu)
797 ARMELChangeHook *hook, *next;
798 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
799 hook->hook(cpu, hook->opaque);
803 /* Return true if this address translation regime is secure */
804 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
806 switch (mmu_idx) {
807 case ARMMMUIdx_S12NSE0:
808 case ARMMMUIdx_S12NSE1:
809 case ARMMMUIdx_S1NSE0:
810 case ARMMMUIdx_S1NSE1:
811 case ARMMMUIdx_S1E2:
812 case ARMMMUIdx_S2NS:
813 case ARMMMUIdx_MPrivNegPri:
814 case ARMMMUIdx_MUserNegPri:
815 case ARMMMUIdx_MPriv:
816 case ARMMMUIdx_MUser:
817 return false;
818 case ARMMMUIdx_S1E3:
819 case ARMMMUIdx_S1SE0:
820 case ARMMMUIdx_S1SE1:
821 case ARMMMUIdx_MSPrivNegPri:
822 case ARMMMUIdx_MSUserNegPri:
823 case ARMMMUIdx_MSPriv:
824 case ARMMMUIdx_MSUser:
825 return true;
826 default:
827 g_assert_not_reached();
831 /* Return the FSR value for a debug exception (watchpoint, hardware
832 * breakpoint or BKPT insn) targeting the specified exception level.
834 static inline uint32_t arm_debug_exception_fsr(CPUARMState *env)
836 ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
837 int target_el = arm_debug_target_el(env);
838 bool using_lpae = false;
840 if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
841 using_lpae = true;
842 } else {
843 if (arm_feature(env, ARM_FEATURE_LPAE) &&
844 (env->cp15.tcr_el[target_el].raw_tcr & TTBCR_EAE)) {
845 using_lpae = true;
849 if (using_lpae) {
850 return arm_fi_to_lfsc(&fi);
851 } else {
852 return arm_fi_to_sfsc(&fi);
856 /* Note make_memop_idx reserves 4 bits for mmu_idx, and MO_BSWAP is bit 3.
857 * Thus a TCGMemOpIdx, without any MO_ALIGN bits, fits in 8 bits.
859 #define MEMOPIDX_SHIFT 8
862 * v7m_using_psp: Return true if using process stack pointer
863 * Return true if the CPU is currently using the process stack
864 * pointer, or false if it is using the main stack pointer.
866 static inline bool v7m_using_psp(CPUARMState *env)
868 /* Handler mode always uses the main stack; for thread mode
869 * the CONTROL.SPSEL bit determines the answer.
870 * Note that in v7M it is not possible to be in Handler mode with
871 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
873 return !arm_v7m_is_handler_mode(env) &&
874 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
878 * v7m_sp_limit: Return SP limit for current CPU state
879 * Return the SP limit value for the current CPU security state
880 * and stack pointer.
882 static inline uint32_t v7m_sp_limit(CPUARMState *env)
884 if (v7m_using_psp(env)) {
885 return env->v7m.psplim[env->v7m.secure];
886 } else {
887 return env->v7m.msplim[env->v7m.secure];
892 * aarch32_mode_name(): Return name of the AArch32 CPU mode
893 * @psr: Program Status Register indicating CPU mode
895 * Returns, for debug logging purposes, a printable representation
896 * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
897 * the low bits of the specified PSR.
899 static inline const char *aarch32_mode_name(uint32_t psr)
901 static const char cpu_mode_names[16][4] = {
902 "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
903 "???", "???", "hyp", "und", "???", "???", "???", "sys"
906 return cpu_mode_names[psr & 0xf];
910 * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
912 * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
913 * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
914 * Must be called with the iothread lock held.
916 void arm_cpu_update_virq(ARMCPU *cpu);
919 * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
921 * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
922 * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
923 * Must be called with the iothread lock held.
925 void arm_cpu_update_vfiq(ARMCPU *cpu);
928 * arm_mmu_idx:
929 * @env: The cpu environment
931 * Return the full ARMMMUIdx for the current translation regime.
933 ARMMMUIdx arm_mmu_idx(CPUARMState *env);
936 * arm_stage1_mmu_idx:
937 * @env: The cpu environment
939 * Return the ARMMMUIdx for the stage1 traversal for the current regime.
941 #ifdef CONFIG_USER_ONLY
942 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
944 return ARMMMUIdx_S1NSE0;
946 #else
947 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
948 #endif
951 * Parameters of a given virtual address, as extracted from the
952 * translation control register (TCR) for a given regime.
954 typedef struct ARMVAParameters {
955 unsigned tsz : 8;
956 unsigned select : 1;
957 bool tbi : 1;
958 bool tbid : 1;
959 bool epd : 1;
960 bool hpd : 1;
961 bool using16k : 1;
962 bool using64k : 1;
963 } ARMVAParameters;
965 ARMVAParameters aa64_va_parameters_both(CPUARMState *env, uint64_t va,
966 ARMMMUIdx mmu_idx);
967 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
968 ARMMMUIdx mmu_idx, bool data);
970 static inline int exception_target_el(CPUARMState *env)
972 int target_el = MAX(1, arm_current_el(env));
975 * No such thing as secure EL1 if EL3 is aarch32,
976 * so update the target EL to EL3 in this case.
978 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
979 target_el = 3;
982 return target_el;
985 #ifndef CONFIG_USER_ONLY
987 /* Cacheability and shareability attributes for a memory access */
988 typedef struct ARMCacheAttrs {
989 unsigned int attrs:8; /* as in the MAIR register encoding */
990 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
991 } ARMCacheAttrs;
993 bool get_phys_addr(CPUARMState *env, target_ulong address,
994 MMUAccessType access_type, ARMMMUIdx mmu_idx,
995 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
996 target_ulong *page_size,
997 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
999 #endif /* !CONFIG_USER_ONLY */
1001 #endif