tests: Remove redundant assignment
[qemu/ar7.git] / block / io.c
blob40bd94f3235b5ae062a1bc08ccbafe8012ab1940
1 /*
2 * Block layer I/O functions
4 * Copyright (c) 2003 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/blockjob.h"
29 #include "block/block_int.h"
30 #include "qemu/cutils.h"
31 #include "qapi/error.h"
32 #include "qemu/error-report.h"
34 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
36 static BlockAIOCB *bdrv_co_aio_prw_vector(BdrvChild *child,
37 int64_t offset,
38 QEMUIOVector *qiov,
39 BdrvRequestFlags flags,
40 BlockCompletionFunc *cb,
41 void *opaque,
42 bool is_write);
43 static void coroutine_fn bdrv_co_do_rw(void *opaque);
44 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
45 int64_t offset, int count, BdrvRequestFlags flags);
47 void bdrv_parent_drained_begin(BlockDriverState *bs)
49 BdrvChild *c;
51 QLIST_FOREACH(c, &bs->parents, next_parent) {
52 if (c->role->drained_begin) {
53 c->role->drained_begin(c);
58 void bdrv_parent_drained_end(BlockDriverState *bs)
60 BdrvChild *c;
62 QLIST_FOREACH(c, &bs->parents, next_parent) {
63 if (c->role->drained_end) {
64 c->role->drained_end(c);
69 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
71 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
72 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
73 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
74 src->opt_mem_alignment);
75 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
76 src->min_mem_alignment);
77 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
80 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
82 BlockDriver *drv = bs->drv;
83 Error *local_err = NULL;
85 memset(&bs->bl, 0, sizeof(bs->bl));
87 if (!drv) {
88 return;
91 /* Default alignment based on whether driver has byte interface */
92 bs->bl.request_alignment = drv->bdrv_co_preadv ? 1 : 512;
94 /* Take some limits from the children as a default */
95 if (bs->file) {
96 bdrv_refresh_limits(bs->file->bs, &local_err);
97 if (local_err) {
98 error_propagate(errp, local_err);
99 return;
101 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
102 } else {
103 bs->bl.min_mem_alignment = 512;
104 bs->bl.opt_mem_alignment = getpagesize();
106 /* Safe default since most protocols use readv()/writev()/etc */
107 bs->bl.max_iov = IOV_MAX;
110 if (bs->backing) {
111 bdrv_refresh_limits(bs->backing->bs, &local_err);
112 if (local_err) {
113 error_propagate(errp, local_err);
114 return;
116 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
119 /* Then let the driver override it */
120 if (drv->bdrv_refresh_limits) {
121 drv->bdrv_refresh_limits(bs, errp);
126 * The copy-on-read flag is actually a reference count so multiple users may
127 * use the feature without worrying about clobbering its previous state.
128 * Copy-on-read stays enabled until all users have called to disable it.
130 void bdrv_enable_copy_on_read(BlockDriverState *bs)
132 bs->copy_on_read++;
135 void bdrv_disable_copy_on_read(BlockDriverState *bs)
137 assert(bs->copy_on_read > 0);
138 bs->copy_on_read--;
141 /* Check if any requests are in-flight (including throttled requests) */
142 bool bdrv_requests_pending(BlockDriverState *bs)
144 BdrvChild *child;
146 if (atomic_read(&bs->in_flight)) {
147 return true;
150 QLIST_FOREACH(child, &bs->children, next) {
151 if (bdrv_requests_pending(child->bs)) {
152 return true;
156 return false;
159 static bool bdrv_drain_recurse(BlockDriverState *bs)
161 BdrvChild *child, *tmp;
162 bool waited;
164 waited = BDRV_POLL_WHILE(bs, atomic_read(&bs->in_flight) > 0);
166 if (bs->drv && bs->drv->bdrv_drain) {
167 bs->drv->bdrv_drain(bs);
170 QLIST_FOREACH_SAFE(child, &bs->children, next, tmp) {
171 BlockDriverState *bs = child->bs;
172 bool in_main_loop =
173 qemu_get_current_aio_context() == qemu_get_aio_context();
174 assert(bs->refcnt > 0);
175 if (in_main_loop) {
176 /* In case the recursive bdrv_drain_recurse processes a
177 * block_job_defer_to_main_loop BH and modifies the graph,
178 * let's hold a reference to bs until we are done.
180 * IOThread doesn't have such a BH, and it is not safe to call
181 * bdrv_unref without BQL, so skip doing it there.
183 bdrv_ref(bs);
185 waited |= bdrv_drain_recurse(bs);
186 if (in_main_loop) {
187 bdrv_unref(bs);
191 return waited;
194 typedef struct {
195 Coroutine *co;
196 BlockDriverState *bs;
197 bool done;
198 } BdrvCoDrainData;
200 static void bdrv_co_drain_bh_cb(void *opaque)
202 BdrvCoDrainData *data = opaque;
203 Coroutine *co = data->co;
204 BlockDriverState *bs = data->bs;
206 bdrv_dec_in_flight(bs);
207 bdrv_drained_begin(bs);
208 data->done = true;
209 aio_co_wake(co);
212 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs)
214 BdrvCoDrainData data;
216 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
217 * other coroutines run if they were queued from
218 * qemu_co_queue_run_restart(). */
220 assert(qemu_in_coroutine());
221 data = (BdrvCoDrainData) {
222 .co = qemu_coroutine_self(),
223 .bs = bs,
224 .done = false,
226 bdrv_inc_in_flight(bs);
227 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs),
228 bdrv_co_drain_bh_cb, &data);
230 qemu_coroutine_yield();
231 /* If we are resumed from some other event (such as an aio completion or a
232 * timer callback), it is a bug in the caller that should be fixed. */
233 assert(data.done);
236 void bdrv_drained_begin(BlockDriverState *bs)
238 if (qemu_in_coroutine()) {
239 bdrv_co_yield_to_drain(bs);
240 return;
243 if (!bs->quiesce_counter++) {
244 aio_disable_external(bdrv_get_aio_context(bs));
245 bdrv_parent_drained_begin(bs);
248 bdrv_drain_recurse(bs);
251 void bdrv_drained_end(BlockDriverState *bs)
253 assert(bs->quiesce_counter > 0);
254 if (--bs->quiesce_counter > 0) {
255 return;
258 bdrv_parent_drained_end(bs);
259 aio_enable_external(bdrv_get_aio_context(bs));
263 * Wait for pending requests to complete on a single BlockDriverState subtree,
264 * and suspend block driver's internal I/O until next request arrives.
266 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
267 * AioContext.
269 * Only this BlockDriverState's AioContext is run, so in-flight requests must
270 * not depend on events in other AioContexts. In that case, use
271 * bdrv_drain_all() instead.
273 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
275 assert(qemu_in_coroutine());
276 bdrv_drained_begin(bs);
277 bdrv_drained_end(bs);
280 void bdrv_drain(BlockDriverState *bs)
282 bdrv_drained_begin(bs);
283 bdrv_drained_end(bs);
287 * Wait for pending requests to complete across all BlockDriverStates
289 * This function does not flush data to disk, use bdrv_flush_all() for that
290 * after calling this function.
292 * This pauses all block jobs and disables external clients. It must
293 * be paired with bdrv_drain_all_end().
295 * NOTE: no new block jobs or BlockDriverStates can be created between
296 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
298 void bdrv_drain_all_begin(void)
300 /* Always run first iteration so any pending completion BHs run */
301 bool waited = true;
302 BlockDriverState *bs;
303 BdrvNextIterator it;
304 BlockJob *job = NULL;
305 GSList *aio_ctxs = NULL, *ctx;
307 while ((job = block_job_next(job))) {
308 AioContext *aio_context = blk_get_aio_context(job->blk);
310 aio_context_acquire(aio_context);
311 block_job_pause(job);
312 aio_context_release(aio_context);
315 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
316 AioContext *aio_context = bdrv_get_aio_context(bs);
318 aio_context_acquire(aio_context);
319 bdrv_parent_drained_begin(bs);
320 aio_disable_external(aio_context);
321 aio_context_release(aio_context);
323 if (!g_slist_find(aio_ctxs, aio_context)) {
324 aio_ctxs = g_slist_prepend(aio_ctxs, aio_context);
328 /* Note that completion of an asynchronous I/O operation can trigger any
329 * number of other I/O operations on other devices---for example a
330 * coroutine can submit an I/O request to another device in response to
331 * request completion. Therefore we must keep looping until there was no
332 * more activity rather than simply draining each device independently.
334 while (waited) {
335 waited = false;
337 for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) {
338 AioContext *aio_context = ctx->data;
340 aio_context_acquire(aio_context);
341 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
342 if (aio_context == bdrv_get_aio_context(bs)) {
343 waited |= bdrv_drain_recurse(bs);
346 aio_context_release(aio_context);
350 g_slist_free(aio_ctxs);
353 void bdrv_drain_all_end(void)
355 BlockDriverState *bs;
356 BdrvNextIterator it;
357 BlockJob *job = NULL;
359 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
360 AioContext *aio_context = bdrv_get_aio_context(bs);
362 aio_context_acquire(aio_context);
363 aio_enable_external(aio_context);
364 bdrv_parent_drained_end(bs);
365 aio_context_release(aio_context);
368 while ((job = block_job_next(job))) {
369 AioContext *aio_context = blk_get_aio_context(job->blk);
371 aio_context_acquire(aio_context);
372 block_job_resume(job);
373 aio_context_release(aio_context);
377 void bdrv_drain_all(void)
379 bdrv_drain_all_begin();
380 bdrv_drain_all_end();
384 * Remove an active request from the tracked requests list
386 * This function should be called when a tracked request is completing.
388 static void tracked_request_end(BdrvTrackedRequest *req)
390 if (req->serialising) {
391 req->bs->serialising_in_flight--;
394 QLIST_REMOVE(req, list);
395 qemu_co_queue_restart_all(&req->wait_queue);
399 * Add an active request to the tracked requests list
401 static void tracked_request_begin(BdrvTrackedRequest *req,
402 BlockDriverState *bs,
403 int64_t offset,
404 unsigned int bytes,
405 enum BdrvTrackedRequestType type)
407 *req = (BdrvTrackedRequest){
408 .bs = bs,
409 .offset = offset,
410 .bytes = bytes,
411 .type = type,
412 .co = qemu_coroutine_self(),
413 .serialising = false,
414 .overlap_offset = offset,
415 .overlap_bytes = bytes,
418 qemu_co_queue_init(&req->wait_queue);
420 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
423 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
425 int64_t overlap_offset = req->offset & ~(align - 1);
426 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
427 - overlap_offset;
429 if (!req->serialising) {
430 req->bs->serialising_in_flight++;
431 req->serialising = true;
434 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
435 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
439 * Round a region to cluster boundaries (sector-based)
441 void bdrv_round_sectors_to_clusters(BlockDriverState *bs,
442 int64_t sector_num, int nb_sectors,
443 int64_t *cluster_sector_num,
444 int *cluster_nb_sectors)
446 BlockDriverInfo bdi;
448 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
449 *cluster_sector_num = sector_num;
450 *cluster_nb_sectors = nb_sectors;
451 } else {
452 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
453 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
454 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
455 nb_sectors, c);
460 * Round a region to cluster boundaries
462 void bdrv_round_to_clusters(BlockDriverState *bs,
463 int64_t offset, unsigned int bytes,
464 int64_t *cluster_offset,
465 unsigned int *cluster_bytes)
467 BlockDriverInfo bdi;
469 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
470 *cluster_offset = offset;
471 *cluster_bytes = bytes;
472 } else {
473 int64_t c = bdi.cluster_size;
474 *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
475 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
479 static int bdrv_get_cluster_size(BlockDriverState *bs)
481 BlockDriverInfo bdi;
482 int ret;
484 ret = bdrv_get_info(bs, &bdi);
485 if (ret < 0 || bdi.cluster_size == 0) {
486 return bs->bl.request_alignment;
487 } else {
488 return bdi.cluster_size;
492 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
493 int64_t offset, unsigned int bytes)
495 /* aaaa bbbb */
496 if (offset >= req->overlap_offset + req->overlap_bytes) {
497 return false;
499 /* bbbb aaaa */
500 if (req->overlap_offset >= offset + bytes) {
501 return false;
503 return true;
506 void bdrv_inc_in_flight(BlockDriverState *bs)
508 atomic_inc(&bs->in_flight);
511 static void dummy_bh_cb(void *opaque)
515 void bdrv_wakeup(BlockDriverState *bs)
517 if (bs->wakeup) {
518 aio_bh_schedule_oneshot(qemu_get_aio_context(), dummy_bh_cb, NULL);
522 void bdrv_dec_in_flight(BlockDriverState *bs)
524 atomic_dec(&bs->in_flight);
525 bdrv_wakeup(bs);
528 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
530 BlockDriverState *bs = self->bs;
531 BdrvTrackedRequest *req;
532 bool retry;
533 bool waited = false;
535 if (!bs->serialising_in_flight) {
536 return false;
539 do {
540 retry = false;
541 QLIST_FOREACH(req, &bs->tracked_requests, list) {
542 if (req == self || (!req->serialising && !self->serialising)) {
543 continue;
545 if (tracked_request_overlaps(req, self->overlap_offset,
546 self->overlap_bytes))
548 /* Hitting this means there was a reentrant request, for
549 * example, a block driver issuing nested requests. This must
550 * never happen since it means deadlock.
552 assert(qemu_coroutine_self() != req->co);
554 /* If the request is already (indirectly) waiting for us, or
555 * will wait for us as soon as it wakes up, then just go on
556 * (instead of producing a deadlock in the former case). */
557 if (!req->waiting_for) {
558 self->waiting_for = req;
559 qemu_co_queue_wait(&req->wait_queue, NULL);
560 self->waiting_for = NULL;
561 retry = true;
562 waited = true;
563 break;
567 } while (retry);
569 return waited;
572 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
573 size_t size)
575 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
576 return -EIO;
579 if (!bdrv_is_inserted(bs)) {
580 return -ENOMEDIUM;
583 if (offset < 0) {
584 return -EIO;
587 return 0;
590 typedef struct RwCo {
591 BdrvChild *child;
592 int64_t offset;
593 QEMUIOVector *qiov;
594 bool is_write;
595 int ret;
596 BdrvRequestFlags flags;
597 } RwCo;
599 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
601 RwCo *rwco = opaque;
603 if (!rwco->is_write) {
604 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset,
605 rwco->qiov->size, rwco->qiov,
606 rwco->flags);
607 } else {
608 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset,
609 rwco->qiov->size, rwco->qiov,
610 rwco->flags);
615 * Process a vectored synchronous request using coroutines
617 static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
618 QEMUIOVector *qiov, bool is_write,
619 BdrvRequestFlags flags)
621 Coroutine *co;
622 RwCo rwco = {
623 .child = child,
624 .offset = offset,
625 .qiov = qiov,
626 .is_write = is_write,
627 .ret = NOT_DONE,
628 .flags = flags,
631 if (qemu_in_coroutine()) {
632 /* Fast-path if already in coroutine context */
633 bdrv_rw_co_entry(&rwco);
634 } else {
635 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco);
636 bdrv_coroutine_enter(child->bs, co);
637 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
639 return rwco.ret;
643 * Process a synchronous request using coroutines
645 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf,
646 int nb_sectors, bool is_write, BdrvRequestFlags flags)
648 QEMUIOVector qiov;
649 struct iovec iov = {
650 .iov_base = (void *)buf,
651 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
654 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
655 return -EINVAL;
658 qemu_iovec_init_external(&qiov, &iov, 1);
659 return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS,
660 &qiov, is_write, flags);
663 /* return < 0 if error. See bdrv_write() for the return codes */
664 int bdrv_read(BdrvChild *child, int64_t sector_num,
665 uint8_t *buf, int nb_sectors)
667 return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0);
670 /* Return < 0 if error. Important errors are:
671 -EIO generic I/O error (may happen for all errors)
672 -ENOMEDIUM No media inserted.
673 -EINVAL Invalid sector number or nb_sectors
674 -EACCES Trying to write a read-only device
676 int bdrv_write(BdrvChild *child, int64_t sector_num,
677 const uint8_t *buf, int nb_sectors)
679 return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
682 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
683 int count, BdrvRequestFlags flags)
685 QEMUIOVector qiov;
686 struct iovec iov = {
687 .iov_base = NULL,
688 .iov_len = count,
691 qemu_iovec_init_external(&qiov, &iov, 1);
692 return bdrv_prwv_co(child, offset, &qiov, true,
693 BDRV_REQ_ZERO_WRITE | flags);
697 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
698 * The operation is sped up by checking the block status and only writing
699 * zeroes to the device if they currently do not return zeroes. Optional
700 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
701 * BDRV_REQ_FUA).
703 * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
705 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
707 int64_t target_sectors, ret, nb_sectors, sector_num = 0;
708 BlockDriverState *bs = child->bs;
709 BlockDriverState *file;
710 int n;
712 target_sectors = bdrv_nb_sectors(bs);
713 if (target_sectors < 0) {
714 return target_sectors;
717 for (;;) {
718 nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS);
719 if (nb_sectors <= 0) {
720 return 0;
722 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n, &file);
723 if (ret < 0) {
724 error_report("error getting block status at sector %" PRId64 ": %s",
725 sector_num, strerror(-ret));
726 return ret;
728 if (ret & BDRV_BLOCK_ZERO) {
729 sector_num += n;
730 continue;
732 ret = bdrv_pwrite_zeroes(child, sector_num << BDRV_SECTOR_BITS,
733 n << BDRV_SECTOR_BITS, flags);
734 if (ret < 0) {
735 error_report("error writing zeroes at sector %" PRId64 ": %s",
736 sector_num, strerror(-ret));
737 return ret;
739 sector_num += n;
743 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
745 int ret;
747 ret = bdrv_prwv_co(child, offset, qiov, false, 0);
748 if (ret < 0) {
749 return ret;
752 return qiov->size;
755 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
757 QEMUIOVector qiov;
758 struct iovec iov = {
759 .iov_base = (void *)buf,
760 .iov_len = bytes,
763 if (bytes < 0) {
764 return -EINVAL;
767 qemu_iovec_init_external(&qiov, &iov, 1);
768 return bdrv_preadv(child, offset, &qiov);
771 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
773 int ret;
775 ret = bdrv_prwv_co(child, offset, qiov, true, 0);
776 if (ret < 0) {
777 return ret;
780 return qiov->size;
783 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
785 QEMUIOVector qiov;
786 struct iovec iov = {
787 .iov_base = (void *) buf,
788 .iov_len = bytes,
791 if (bytes < 0) {
792 return -EINVAL;
795 qemu_iovec_init_external(&qiov, &iov, 1);
796 return bdrv_pwritev(child, offset, &qiov);
800 * Writes to the file and ensures that no writes are reordered across this
801 * request (acts as a barrier)
803 * Returns 0 on success, -errno in error cases.
805 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
806 const void *buf, int count)
808 int ret;
810 ret = bdrv_pwrite(child, offset, buf, count);
811 if (ret < 0) {
812 return ret;
815 ret = bdrv_flush(child->bs);
816 if (ret < 0) {
817 return ret;
820 return 0;
823 typedef struct CoroutineIOCompletion {
824 Coroutine *coroutine;
825 int ret;
826 } CoroutineIOCompletion;
828 static void bdrv_co_io_em_complete(void *opaque, int ret)
830 CoroutineIOCompletion *co = opaque;
832 co->ret = ret;
833 aio_co_wake(co->coroutine);
836 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
837 uint64_t offset, uint64_t bytes,
838 QEMUIOVector *qiov, int flags)
840 BlockDriver *drv = bs->drv;
841 int64_t sector_num;
842 unsigned int nb_sectors;
844 assert(!(flags & ~BDRV_REQ_MASK));
846 if (drv->bdrv_co_preadv) {
847 return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
850 sector_num = offset >> BDRV_SECTOR_BITS;
851 nb_sectors = bytes >> BDRV_SECTOR_BITS;
853 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
854 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
855 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
857 if (drv->bdrv_co_readv) {
858 return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
859 } else {
860 BlockAIOCB *acb;
861 CoroutineIOCompletion co = {
862 .coroutine = qemu_coroutine_self(),
865 acb = bs->drv->bdrv_aio_readv(bs, sector_num, qiov, nb_sectors,
866 bdrv_co_io_em_complete, &co);
867 if (acb == NULL) {
868 return -EIO;
869 } else {
870 qemu_coroutine_yield();
871 return co.ret;
876 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
877 uint64_t offset, uint64_t bytes,
878 QEMUIOVector *qiov, int flags)
880 BlockDriver *drv = bs->drv;
881 int64_t sector_num;
882 unsigned int nb_sectors;
883 int ret;
885 assert(!(flags & ~BDRV_REQ_MASK));
887 if (drv->bdrv_co_pwritev) {
888 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
889 flags & bs->supported_write_flags);
890 flags &= ~bs->supported_write_flags;
891 goto emulate_flags;
894 sector_num = offset >> BDRV_SECTOR_BITS;
895 nb_sectors = bytes >> BDRV_SECTOR_BITS;
897 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
898 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
899 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
901 if (drv->bdrv_co_writev_flags) {
902 ret = drv->bdrv_co_writev_flags(bs, sector_num, nb_sectors, qiov,
903 flags & bs->supported_write_flags);
904 flags &= ~bs->supported_write_flags;
905 } else if (drv->bdrv_co_writev) {
906 assert(!bs->supported_write_flags);
907 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
908 } else {
909 BlockAIOCB *acb;
910 CoroutineIOCompletion co = {
911 .coroutine = qemu_coroutine_self(),
914 acb = bs->drv->bdrv_aio_writev(bs, sector_num, qiov, nb_sectors,
915 bdrv_co_io_em_complete, &co);
916 if (acb == NULL) {
917 ret = -EIO;
918 } else {
919 qemu_coroutine_yield();
920 ret = co.ret;
924 emulate_flags:
925 if (ret == 0 && (flags & BDRV_REQ_FUA)) {
926 ret = bdrv_co_flush(bs);
929 return ret;
932 static int coroutine_fn
933 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
934 uint64_t bytes, QEMUIOVector *qiov)
936 BlockDriver *drv = bs->drv;
938 if (!drv->bdrv_co_pwritev_compressed) {
939 return -ENOTSUP;
942 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
945 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
946 int64_t offset, unsigned int bytes, QEMUIOVector *qiov)
948 BlockDriverState *bs = child->bs;
950 /* Perform I/O through a temporary buffer so that users who scribble over
951 * their read buffer while the operation is in progress do not end up
952 * modifying the image file. This is critical for zero-copy guest I/O
953 * where anything might happen inside guest memory.
955 void *bounce_buffer;
957 BlockDriver *drv = bs->drv;
958 struct iovec iov;
959 QEMUIOVector bounce_qiov;
960 int64_t cluster_offset;
961 unsigned int cluster_bytes;
962 size_t skip_bytes;
963 int ret;
965 /* FIXME We cannot require callers to have write permissions when all they
966 * are doing is a read request. If we did things right, write permissions
967 * would be obtained anyway, but internally by the copy-on-read code. As
968 * long as it is implemented here rather than in a separat filter driver,
969 * the copy-on-read code doesn't have its own BdrvChild, however, for which
970 * it could request permissions. Therefore we have to bypass the permission
971 * system for the moment. */
972 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
974 /* Cover entire cluster so no additional backing file I/O is required when
975 * allocating cluster in the image file.
977 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
979 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
980 cluster_offset, cluster_bytes);
982 iov.iov_len = cluster_bytes;
983 iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len);
984 if (bounce_buffer == NULL) {
985 ret = -ENOMEM;
986 goto err;
989 qemu_iovec_init_external(&bounce_qiov, &iov, 1);
991 ret = bdrv_driver_preadv(bs, cluster_offset, cluster_bytes,
992 &bounce_qiov, 0);
993 if (ret < 0) {
994 goto err;
997 if (drv->bdrv_co_pwrite_zeroes &&
998 buffer_is_zero(bounce_buffer, iov.iov_len)) {
999 /* FIXME: Should we (perhaps conditionally) be setting
1000 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1001 * that still correctly reads as zero? */
1002 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, cluster_bytes, 0);
1003 } else {
1004 /* This does not change the data on the disk, it is not necessary
1005 * to flush even in cache=writethrough mode.
1007 ret = bdrv_driver_pwritev(bs, cluster_offset, cluster_bytes,
1008 &bounce_qiov, 0);
1011 if (ret < 0) {
1012 /* It might be okay to ignore write errors for guest requests. If this
1013 * is a deliberate copy-on-read then we don't want to ignore the error.
1014 * Simply report it in all cases.
1016 goto err;
1019 skip_bytes = offset - cluster_offset;
1020 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes, bytes);
1022 err:
1023 qemu_vfree(bounce_buffer);
1024 return ret;
1028 * Forwards an already correctly aligned request to the BlockDriver. This
1029 * handles copy on read, zeroing after EOF, and fragmentation of large
1030 * reads; any other features must be implemented by the caller.
1032 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1033 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1034 int64_t align, QEMUIOVector *qiov, int flags)
1036 BlockDriverState *bs = child->bs;
1037 int64_t total_bytes, max_bytes;
1038 int ret = 0;
1039 uint64_t bytes_remaining = bytes;
1040 int max_transfer;
1042 assert(is_power_of_2(align));
1043 assert((offset & (align - 1)) == 0);
1044 assert((bytes & (align - 1)) == 0);
1045 assert(!qiov || bytes == qiov->size);
1046 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1047 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1048 align);
1050 /* TODO: We would need a per-BDS .supported_read_flags and
1051 * potential fallback support, if we ever implement any read flags
1052 * to pass through to drivers. For now, there aren't any
1053 * passthrough flags. */
1054 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ)));
1056 /* Handle Copy on Read and associated serialisation */
1057 if (flags & BDRV_REQ_COPY_ON_READ) {
1058 /* If we touch the same cluster it counts as an overlap. This
1059 * guarantees that allocating writes will be serialized and not race
1060 * with each other for the same cluster. For example, in copy-on-read
1061 * it ensures that the CoR read and write operations are atomic and
1062 * guest writes cannot interleave between them. */
1063 mark_request_serialising(req, bdrv_get_cluster_size(bs));
1066 if (!(flags & BDRV_REQ_NO_SERIALISING)) {
1067 wait_serialising_requests(req);
1070 if (flags & BDRV_REQ_COPY_ON_READ) {
1071 int64_t start_sector = offset >> BDRV_SECTOR_BITS;
1072 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1073 unsigned int nb_sectors = end_sector - start_sector;
1074 int pnum;
1076 ret = bdrv_is_allocated(bs, start_sector, nb_sectors, &pnum);
1077 if (ret < 0) {
1078 goto out;
1081 if (!ret || pnum != nb_sectors) {
1082 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov);
1083 goto out;
1087 /* Forward the request to the BlockDriver, possibly fragmenting it */
1088 total_bytes = bdrv_getlength(bs);
1089 if (total_bytes < 0) {
1090 ret = total_bytes;
1091 goto out;
1094 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1095 if (bytes <= max_bytes && bytes <= max_transfer) {
1096 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0);
1097 goto out;
1100 while (bytes_remaining) {
1101 int num;
1103 if (max_bytes) {
1104 QEMUIOVector local_qiov;
1106 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1107 assert(num);
1108 qemu_iovec_init(&local_qiov, qiov->niov);
1109 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1111 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1112 num, &local_qiov, 0);
1113 max_bytes -= num;
1114 qemu_iovec_destroy(&local_qiov);
1115 } else {
1116 num = bytes_remaining;
1117 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0,
1118 bytes_remaining);
1120 if (ret < 0) {
1121 goto out;
1123 bytes_remaining -= num;
1126 out:
1127 return ret < 0 ? ret : 0;
1131 * Handle a read request in coroutine context
1133 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1134 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1135 BdrvRequestFlags flags)
1137 BlockDriverState *bs = child->bs;
1138 BlockDriver *drv = bs->drv;
1139 BdrvTrackedRequest req;
1141 uint64_t align = bs->bl.request_alignment;
1142 uint8_t *head_buf = NULL;
1143 uint8_t *tail_buf = NULL;
1144 QEMUIOVector local_qiov;
1145 bool use_local_qiov = false;
1146 int ret;
1148 if (!drv) {
1149 return -ENOMEDIUM;
1152 ret = bdrv_check_byte_request(bs, offset, bytes);
1153 if (ret < 0) {
1154 return ret;
1157 bdrv_inc_in_flight(bs);
1159 /* Don't do copy-on-read if we read data before write operation */
1160 if (bs->copy_on_read && !(flags & BDRV_REQ_NO_SERIALISING)) {
1161 flags |= BDRV_REQ_COPY_ON_READ;
1164 /* Align read if necessary by padding qiov */
1165 if (offset & (align - 1)) {
1166 head_buf = qemu_blockalign(bs, align);
1167 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1168 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1169 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1170 use_local_qiov = true;
1172 bytes += offset & (align - 1);
1173 offset = offset & ~(align - 1);
1176 if ((offset + bytes) & (align - 1)) {
1177 if (!use_local_qiov) {
1178 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1179 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1180 use_local_qiov = true;
1182 tail_buf = qemu_blockalign(bs, align);
1183 qemu_iovec_add(&local_qiov, tail_buf,
1184 align - ((offset + bytes) & (align - 1)));
1186 bytes = ROUND_UP(bytes, align);
1189 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1190 ret = bdrv_aligned_preadv(child, &req, offset, bytes, align,
1191 use_local_qiov ? &local_qiov : qiov,
1192 flags);
1193 tracked_request_end(&req);
1194 bdrv_dec_in_flight(bs);
1196 if (use_local_qiov) {
1197 qemu_iovec_destroy(&local_qiov);
1198 qemu_vfree(head_buf);
1199 qemu_vfree(tail_buf);
1202 return ret;
1205 static int coroutine_fn bdrv_co_do_readv(BdrvChild *child,
1206 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1207 BdrvRequestFlags flags)
1209 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1210 return -EINVAL;
1213 return bdrv_co_preadv(child, sector_num << BDRV_SECTOR_BITS,
1214 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1217 int coroutine_fn bdrv_co_readv(BdrvChild *child, int64_t sector_num,
1218 int nb_sectors, QEMUIOVector *qiov)
1220 trace_bdrv_co_readv(child->bs, sector_num, nb_sectors);
1222 return bdrv_co_do_readv(child, sector_num, nb_sectors, qiov, 0);
1225 /* Maximum buffer for write zeroes fallback, in bytes */
1226 #define MAX_WRITE_ZEROES_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
1228 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1229 int64_t offset, int count, BdrvRequestFlags flags)
1231 BlockDriver *drv = bs->drv;
1232 QEMUIOVector qiov;
1233 struct iovec iov = {0};
1234 int ret = 0;
1235 bool need_flush = false;
1236 int head = 0;
1237 int tail = 0;
1239 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1240 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1241 bs->bl.request_alignment);
1242 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1243 MAX_WRITE_ZEROES_BOUNCE_BUFFER);
1245 assert(alignment % bs->bl.request_alignment == 0);
1246 head = offset % alignment;
1247 tail = (offset + count) % alignment;
1248 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1249 assert(max_write_zeroes >= bs->bl.request_alignment);
1251 while (count > 0 && !ret) {
1252 int num = count;
1254 /* Align request. Block drivers can expect the "bulk" of the request
1255 * to be aligned, and that unaligned requests do not cross cluster
1256 * boundaries.
1258 if (head) {
1259 /* Make a small request up to the first aligned sector. For
1260 * convenience, limit this request to max_transfer even if
1261 * we don't need to fall back to writes. */
1262 num = MIN(MIN(count, max_transfer), alignment - head);
1263 head = (head + num) % alignment;
1264 assert(num < max_write_zeroes);
1265 } else if (tail && num > alignment) {
1266 /* Shorten the request to the last aligned sector. */
1267 num -= tail;
1270 /* limit request size */
1271 if (num > max_write_zeroes) {
1272 num = max_write_zeroes;
1275 ret = -ENOTSUP;
1276 /* First try the efficient write zeroes operation */
1277 if (drv->bdrv_co_pwrite_zeroes) {
1278 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1279 flags & bs->supported_zero_flags);
1280 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1281 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1282 need_flush = true;
1284 } else {
1285 assert(!bs->supported_zero_flags);
1288 if (ret == -ENOTSUP) {
1289 /* Fall back to bounce buffer if write zeroes is unsupported */
1290 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1292 if ((flags & BDRV_REQ_FUA) &&
1293 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1294 /* No need for bdrv_driver_pwrite() to do a fallback
1295 * flush on each chunk; use just one at the end */
1296 write_flags &= ~BDRV_REQ_FUA;
1297 need_flush = true;
1299 num = MIN(num, max_transfer);
1300 iov.iov_len = num;
1301 if (iov.iov_base == NULL) {
1302 iov.iov_base = qemu_try_blockalign(bs, num);
1303 if (iov.iov_base == NULL) {
1304 ret = -ENOMEM;
1305 goto fail;
1307 memset(iov.iov_base, 0, num);
1309 qemu_iovec_init_external(&qiov, &iov, 1);
1311 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags);
1313 /* Keep bounce buffer around if it is big enough for all
1314 * all future requests.
1316 if (num < max_transfer) {
1317 qemu_vfree(iov.iov_base);
1318 iov.iov_base = NULL;
1322 offset += num;
1323 count -= num;
1326 fail:
1327 if (ret == 0 && need_flush) {
1328 ret = bdrv_co_flush(bs);
1330 qemu_vfree(iov.iov_base);
1331 return ret;
1335 * Forwards an already correctly aligned write request to the BlockDriver,
1336 * after possibly fragmenting it.
1338 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1339 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1340 int64_t align, QEMUIOVector *qiov, int flags)
1342 BlockDriverState *bs = child->bs;
1343 BlockDriver *drv = bs->drv;
1344 bool waited;
1345 int ret;
1347 int64_t start_sector = offset >> BDRV_SECTOR_BITS;
1348 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1349 uint64_t bytes_remaining = bytes;
1350 int max_transfer;
1352 assert(is_power_of_2(align));
1353 assert((offset & (align - 1)) == 0);
1354 assert((bytes & (align - 1)) == 0);
1355 assert(!qiov || bytes == qiov->size);
1356 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1357 assert(!(flags & ~BDRV_REQ_MASK));
1358 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1359 align);
1361 waited = wait_serialising_requests(req);
1362 assert(!waited || !req->serialising);
1363 assert(req->overlap_offset <= offset);
1364 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1365 assert(child->perm & BLK_PERM_WRITE);
1366 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE);
1368 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1370 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1371 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1372 qemu_iovec_is_zero(qiov)) {
1373 flags |= BDRV_REQ_ZERO_WRITE;
1374 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1375 flags |= BDRV_REQ_MAY_UNMAP;
1379 if (ret < 0) {
1380 /* Do nothing, write notifier decided to fail this request */
1381 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1382 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1383 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1384 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1385 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov);
1386 } else if (bytes <= max_transfer) {
1387 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1388 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags);
1389 } else {
1390 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1391 while (bytes_remaining) {
1392 int num = MIN(bytes_remaining, max_transfer);
1393 QEMUIOVector local_qiov;
1394 int local_flags = flags;
1396 assert(num);
1397 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1398 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1399 /* If FUA is going to be emulated by flush, we only
1400 * need to flush on the last iteration */
1401 local_flags &= ~BDRV_REQ_FUA;
1403 qemu_iovec_init(&local_qiov, qiov->niov);
1404 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1406 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1407 num, &local_qiov, local_flags);
1408 qemu_iovec_destroy(&local_qiov);
1409 if (ret < 0) {
1410 break;
1412 bytes_remaining -= num;
1415 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1417 ++bs->write_gen;
1418 bdrv_set_dirty(bs, start_sector, end_sector - start_sector);
1420 if (bs->wr_highest_offset < offset + bytes) {
1421 bs->wr_highest_offset = offset + bytes;
1424 if (ret >= 0) {
1425 bs->total_sectors = MAX(bs->total_sectors, end_sector);
1426 ret = 0;
1429 return ret;
1432 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
1433 int64_t offset,
1434 unsigned int bytes,
1435 BdrvRequestFlags flags,
1436 BdrvTrackedRequest *req)
1438 BlockDriverState *bs = child->bs;
1439 uint8_t *buf = NULL;
1440 QEMUIOVector local_qiov;
1441 struct iovec iov;
1442 uint64_t align = bs->bl.request_alignment;
1443 unsigned int head_padding_bytes, tail_padding_bytes;
1444 int ret = 0;
1446 head_padding_bytes = offset & (align - 1);
1447 tail_padding_bytes = (align - (offset + bytes)) & (align - 1);
1450 assert(flags & BDRV_REQ_ZERO_WRITE);
1451 if (head_padding_bytes || tail_padding_bytes) {
1452 buf = qemu_blockalign(bs, align);
1453 iov = (struct iovec) {
1454 .iov_base = buf,
1455 .iov_len = align,
1457 qemu_iovec_init_external(&local_qiov, &iov, 1);
1459 if (head_padding_bytes) {
1460 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1462 /* RMW the unaligned part before head. */
1463 mark_request_serialising(req, align);
1464 wait_serialising_requests(req);
1465 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1466 ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align,
1467 align, &local_qiov, 0);
1468 if (ret < 0) {
1469 goto fail;
1471 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1473 memset(buf + head_padding_bytes, 0, zero_bytes);
1474 ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align,
1475 align, &local_qiov,
1476 flags & ~BDRV_REQ_ZERO_WRITE);
1477 if (ret < 0) {
1478 goto fail;
1480 offset += zero_bytes;
1481 bytes -= zero_bytes;
1484 assert(!bytes || (offset & (align - 1)) == 0);
1485 if (bytes >= align) {
1486 /* Write the aligned part in the middle. */
1487 uint64_t aligned_bytes = bytes & ~(align - 1);
1488 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
1489 NULL, flags);
1490 if (ret < 0) {
1491 goto fail;
1493 bytes -= aligned_bytes;
1494 offset += aligned_bytes;
1497 assert(!bytes || (offset & (align - 1)) == 0);
1498 if (bytes) {
1499 assert(align == tail_padding_bytes + bytes);
1500 /* RMW the unaligned part after tail. */
1501 mark_request_serialising(req, align);
1502 wait_serialising_requests(req);
1503 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1504 ret = bdrv_aligned_preadv(child, req, offset, align,
1505 align, &local_qiov, 0);
1506 if (ret < 0) {
1507 goto fail;
1509 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1511 memset(buf, 0, bytes);
1512 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
1513 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1515 fail:
1516 qemu_vfree(buf);
1517 return ret;
1522 * Handle a write request in coroutine context
1524 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
1525 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1526 BdrvRequestFlags flags)
1528 BlockDriverState *bs = child->bs;
1529 BdrvTrackedRequest req;
1530 uint64_t align = bs->bl.request_alignment;
1531 uint8_t *head_buf = NULL;
1532 uint8_t *tail_buf = NULL;
1533 QEMUIOVector local_qiov;
1534 bool use_local_qiov = false;
1535 int ret;
1537 if (!bs->drv) {
1538 return -ENOMEDIUM;
1540 if (bs->read_only) {
1541 return -EPERM;
1543 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1545 ret = bdrv_check_byte_request(bs, offset, bytes);
1546 if (ret < 0) {
1547 return ret;
1550 bdrv_inc_in_flight(bs);
1552 * Align write if necessary by performing a read-modify-write cycle.
1553 * Pad qiov with the read parts and be sure to have a tracked request not
1554 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1556 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1558 if (!qiov) {
1559 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
1560 goto out;
1563 if (offset & (align - 1)) {
1564 QEMUIOVector head_qiov;
1565 struct iovec head_iov;
1567 mark_request_serialising(&req, align);
1568 wait_serialising_requests(&req);
1570 head_buf = qemu_blockalign(bs, align);
1571 head_iov = (struct iovec) {
1572 .iov_base = head_buf,
1573 .iov_len = align,
1575 qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1577 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1578 ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align,
1579 align, &head_qiov, 0);
1580 if (ret < 0) {
1581 goto fail;
1583 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1585 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1586 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1587 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1588 use_local_qiov = true;
1590 bytes += offset & (align - 1);
1591 offset = offset & ~(align - 1);
1593 /* We have read the tail already if the request is smaller
1594 * than one aligned block.
1596 if (bytes < align) {
1597 qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes);
1598 bytes = align;
1602 if ((offset + bytes) & (align - 1)) {
1603 QEMUIOVector tail_qiov;
1604 struct iovec tail_iov;
1605 size_t tail_bytes;
1606 bool waited;
1608 mark_request_serialising(&req, align);
1609 waited = wait_serialising_requests(&req);
1610 assert(!waited || !use_local_qiov);
1612 tail_buf = qemu_blockalign(bs, align);
1613 tail_iov = (struct iovec) {
1614 .iov_base = tail_buf,
1615 .iov_len = align,
1617 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1619 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1620 ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1),
1621 align, align, &tail_qiov, 0);
1622 if (ret < 0) {
1623 goto fail;
1625 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1627 if (!use_local_qiov) {
1628 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1629 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1630 use_local_qiov = true;
1633 tail_bytes = (offset + bytes) & (align - 1);
1634 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1636 bytes = ROUND_UP(bytes, align);
1639 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
1640 use_local_qiov ? &local_qiov : qiov,
1641 flags);
1643 fail:
1645 if (use_local_qiov) {
1646 qemu_iovec_destroy(&local_qiov);
1648 qemu_vfree(head_buf);
1649 qemu_vfree(tail_buf);
1650 out:
1651 tracked_request_end(&req);
1652 bdrv_dec_in_flight(bs);
1653 return ret;
1656 static int coroutine_fn bdrv_co_do_writev(BdrvChild *child,
1657 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1658 BdrvRequestFlags flags)
1660 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1661 return -EINVAL;
1664 return bdrv_co_pwritev(child, sector_num << BDRV_SECTOR_BITS,
1665 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1668 int coroutine_fn bdrv_co_writev(BdrvChild *child, int64_t sector_num,
1669 int nb_sectors, QEMUIOVector *qiov)
1671 trace_bdrv_co_writev(child->bs, sector_num, nb_sectors);
1673 return bdrv_co_do_writev(child, sector_num, nb_sectors, qiov, 0);
1676 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
1677 int count, BdrvRequestFlags flags)
1679 trace_bdrv_co_pwrite_zeroes(child->bs, offset, count, flags);
1681 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
1682 flags &= ~BDRV_REQ_MAY_UNMAP;
1685 return bdrv_co_pwritev(child, offset, count, NULL,
1686 BDRV_REQ_ZERO_WRITE | flags);
1690 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
1692 int bdrv_flush_all(void)
1694 BdrvNextIterator it;
1695 BlockDriverState *bs = NULL;
1696 int result = 0;
1698 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
1699 AioContext *aio_context = bdrv_get_aio_context(bs);
1700 int ret;
1702 aio_context_acquire(aio_context);
1703 ret = bdrv_flush(bs);
1704 if (ret < 0 && !result) {
1705 result = ret;
1707 aio_context_release(aio_context);
1710 return result;
1714 typedef struct BdrvCoGetBlockStatusData {
1715 BlockDriverState *bs;
1716 BlockDriverState *base;
1717 BlockDriverState **file;
1718 int64_t sector_num;
1719 int nb_sectors;
1720 int *pnum;
1721 int64_t ret;
1722 bool done;
1723 } BdrvCoGetBlockStatusData;
1726 * Returns the allocation status of the specified sectors.
1727 * Drivers not implementing the functionality are assumed to not support
1728 * backing files, hence all their sectors are reported as allocated.
1730 * If 'sector_num' is beyond the end of the disk image the return value is 0
1731 * and 'pnum' is set to 0.
1733 * 'pnum' is set to the number of sectors (including and immediately following
1734 * the specified sector) that are known to be in the same
1735 * allocated/unallocated state.
1737 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
1738 * beyond the end of the disk image it will be clamped.
1740 * If returned value is positive and BDRV_BLOCK_OFFSET_VALID bit is set, 'file'
1741 * points to the BDS which the sector range is allocated in.
1743 static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs,
1744 int64_t sector_num,
1745 int nb_sectors, int *pnum,
1746 BlockDriverState **file)
1748 int64_t total_sectors;
1749 int64_t n;
1750 int64_t ret, ret2;
1752 total_sectors = bdrv_nb_sectors(bs);
1753 if (total_sectors < 0) {
1754 return total_sectors;
1757 if (sector_num >= total_sectors) {
1758 *pnum = 0;
1759 return 0;
1762 n = total_sectors - sector_num;
1763 if (n < nb_sectors) {
1764 nb_sectors = n;
1767 if (!bs->drv->bdrv_co_get_block_status) {
1768 *pnum = nb_sectors;
1769 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1770 if (bs->drv->protocol_name) {
1771 ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE);
1773 return ret;
1776 *file = NULL;
1777 bdrv_inc_in_flight(bs);
1778 ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum,
1779 file);
1780 if (ret < 0) {
1781 *pnum = 0;
1782 goto out;
1785 if (ret & BDRV_BLOCK_RAW) {
1786 assert(ret & BDRV_BLOCK_OFFSET_VALID);
1787 ret = bdrv_get_block_status(*file, ret >> BDRV_SECTOR_BITS,
1788 *pnum, pnum, file);
1789 goto out;
1792 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
1793 ret |= BDRV_BLOCK_ALLOCATED;
1794 } else {
1795 if (bdrv_unallocated_blocks_are_zero(bs)) {
1796 ret |= BDRV_BLOCK_ZERO;
1797 } else if (bs->backing) {
1798 BlockDriverState *bs2 = bs->backing->bs;
1799 int64_t nb_sectors2 = bdrv_nb_sectors(bs2);
1800 if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) {
1801 ret |= BDRV_BLOCK_ZERO;
1806 if (*file && *file != bs &&
1807 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
1808 (ret & BDRV_BLOCK_OFFSET_VALID)) {
1809 BlockDriverState *file2;
1810 int file_pnum;
1812 ret2 = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS,
1813 *pnum, &file_pnum, &file2);
1814 if (ret2 >= 0) {
1815 /* Ignore errors. This is just providing extra information, it
1816 * is useful but not necessary.
1818 if (!file_pnum) {
1819 /* !file_pnum indicates an offset at or beyond the EOF; it is
1820 * perfectly valid for the format block driver to point to such
1821 * offsets, so catch it and mark everything as zero */
1822 ret |= BDRV_BLOCK_ZERO;
1823 } else {
1824 /* Limit request to the range reported by the protocol driver */
1825 *pnum = file_pnum;
1826 ret |= (ret2 & BDRV_BLOCK_ZERO);
1831 out:
1832 bdrv_dec_in_flight(bs);
1833 return ret;
1836 static int64_t coroutine_fn bdrv_co_get_block_status_above(BlockDriverState *bs,
1837 BlockDriverState *base,
1838 int64_t sector_num,
1839 int nb_sectors,
1840 int *pnum,
1841 BlockDriverState **file)
1843 BlockDriverState *p;
1844 int64_t ret = 0;
1846 assert(bs != base);
1847 for (p = bs; p != base; p = backing_bs(p)) {
1848 ret = bdrv_co_get_block_status(p, sector_num, nb_sectors, pnum, file);
1849 if (ret < 0 || ret & BDRV_BLOCK_ALLOCATED) {
1850 break;
1852 /* [sector_num, pnum] unallocated on this layer, which could be only
1853 * the first part of [sector_num, nb_sectors]. */
1854 nb_sectors = MIN(nb_sectors, *pnum);
1856 return ret;
1859 /* Coroutine wrapper for bdrv_get_block_status_above() */
1860 static void coroutine_fn bdrv_get_block_status_above_co_entry(void *opaque)
1862 BdrvCoGetBlockStatusData *data = opaque;
1864 data->ret = bdrv_co_get_block_status_above(data->bs, data->base,
1865 data->sector_num,
1866 data->nb_sectors,
1867 data->pnum,
1868 data->file);
1869 data->done = true;
1873 * Synchronous wrapper around bdrv_co_get_block_status_above().
1875 * See bdrv_co_get_block_status_above() for details.
1877 int64_t bdrv_get_block_status_above(BlockDriverState *bs,
1878 BlockDriverState *base,
1879 int64_t sector_num,
1880 int nb_sectors, int *pnum,
1881 BlockDriverState **file)
1883 Coroutine *co;
1884 BdrvCoGetBlockStatusData data = {
1885 .bs = bs,
1886 .base = base,
1887 .file = file,
1888 .sector_num = sector_num,
1889 .nb_sectors = nb_sectors,
1890 .pnum = pnum,
1891 .done = false,
1894 if (qemu_in_coroutine()) {
1895 /* Fast-path if already in coroutine context */
1896 bdrv_get_block_status_above_co_entry(&data);
1897 } else {
1898 co = qemu_coroutine_create(bdrv_get_block_status_above_co_entry,
1899 &data);
1900 bdrv_coroutine_enter(bs, co);
1901 BDRV_POLL_WHILE(bs, !data.done);
1903 return data.ret;
1906 int64_t bdrv_get_block_status(BlockDriverState *bs,
1907 int64_t sector_num,
1908 int nb_sectors, int *pnum,
1909 BlockDriverState **file)
1911 return bdrv_get_block_status_above(bs, backing_bs(bs),
1912 sector_num, nb_sectors, pnum, file);
1915 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num,
1916 int nb_sectors, int *pnum)
1918 BlockDriverState *file;
1919 int64_t ret = bdrv_get_block_status(bs, sector_num, nb_sectors, pnum,
1920 &file);
1921 if (ret < 0) {
1922 return ret;
1924 return !!(ret & BDRV_BLOCK_ALLOCATED);
1928 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
1930 * Return true if the given sector is allocated in any image between
1931 * BASE and TOP (inclusive). BASE can be NULL to check if the given
1932 * sector is allocated in any image of the chain. Return false otherwise.
1934 * 'pnum' is set to the number of sectors (including and immediately following
1935 * the specified sector) that are known to be in the same
1936 * allocated/unallocated state.
1939 int bdrv_is_allocated_above(BlockDriverState *top,
1940 BlockDriverState *base,
1941 int64_t sector_num,
1942 int nb_sectors, int *pnum)
1944 BlockDriverState *intermediate;
1945 int ret, n = nb_sectors;
1947 intermediate = top;
1948 while (intermediate && intermediate != base) {
1949 int pnum_inter;
1950 ret = bdrv_is_allocated(intermediate, sector_num, nb_sectors,
1951 &pnum_inter);
1952 if (ret < 0) {
1953 return ret;
1954 } else if (ret) {
1955 *pnum = pnum_inter;
1956 return 1;
1960 * [sector_num, nb_sectors] is unallocated on top but intermediate
1961 * might have
1963 * [sector_num+x, nr_sectors] allocated.
1965 if (n > pnum_inter &&
1966 (intermediate == top ||
1967 sector_num + pnum_inter < intermediate->total_sectors)) {
1968 n = pnum_inter;
1971 intermediate = backing_bs(intermediate);
1974 *pnum = n;
1975 return 0;
1978 typedef struct BdrvVmstateCo {
1979 BlockDriverState *bs;
1980 QEMUIOVector *qiov;
1981 int64_t pos;
1982 bool is_read;
1983 int ret;
1984 } BdrvVmstateCo;
1986 static int coroutine_fn
1987 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
1988 bool is_read)
1990 BlockDriver *drv = bs->drv;
1992 if (!drv) {
1993 return -ENOMEDIUM;
1994 } else if (drv->bdrv_load_vmstate) {
1995 return is_read ? drv->bdrv_load_vmstate(bs, qiov, pos)
1996 : drv->bdrv_save_vmstate(bs, qiov, pos);
1997 } else if (bs->file) {
1998 return bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
2001 return -ENOTSUP;
2004 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
2006 BdrvVmstateCo *co = opaque;
2007 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
2010 static inline int
2011 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2012 bool is_read)
2014 if (qemu_in_coroutine()) {
2015 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read);
2016 } else {
2017 BdrvVmstateCo data = {
2018 .bs = bs,
2019 .qiov = qiov,
2020 .pos = pos,
2021 .is_read = is_read,
2022 .ret = -EINPROGRESS,
2024 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data);
2026 bdrv_coroutine_enter(bs, co);
2027 while (data.ret == -EINPROGRESS) {
2028 aio_poll(bdrv_get_aio_context(bs), true);
2030 return data.ret;
2034 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2035 int64_t pos, int size)
2037 QEMUIOVector qiov;
2038 struct iovec iov = {
2039 .iov_base = (void *) buf,
2040 .iov_len = size,
2042 int ret;
2044 qemu_iovec_init_external(&qiov, &iov, 1);
2046 ret = bdrv_writev_vmstate(bs, &qiov, pos);
2047 if (ret < 0) {
2048 return ret;
2051 return size;
2054 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2056 return bdrv_rw_vmstate(bs, qiov, pos, false);
2059 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2060 int64_t pos, int size)
2062 QEMUIOVector qiov;
2063 struct iovec iov = {
2064 .iov_base = buf,
2065 .iov_len = size,
2067 int ret;
2069 qemu_iovec_init_external(&qiov, &iov, 1);
2070 ret = bdrv_readv_vmstate(bs, &qiov, pos);
2071 if (ret < 0) {
2072 return ret;
2075 return size;
2078 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2080 return bdrv_rw_vmstate(bs, qiov, pos, true);
2083 /**************************************************************/
2084 /* async I/Os */
2086 BlockAIOCB *bdrv_aio_readv(BdrvChild *child, int64_t sector_num,
2087 QEMUIOVector *qiov, int nb_sectors,
2088 BlockCompletionFunc *cb, void *opaque)
2090 trace_bdrv_aio_readv(child->bs, sector_num, nb_sectors, opaque);
2092 assert(nb_sectors << BDRV_SECTOR_BITS == qiov->size);
2093 return bdrv_co_aio_prw_vector(child, sector_num << BDRV_SECTOR_BITS, qiov,
2094 0, cb, opaque, false);
2097 BlockAIOCB *bdrv_aio_writev(BdrvChild *child, int64_t sector_num,
2098 QEMUIOVector *qiov, int nb_sectors,
2099 BlockCompletionFunc *cb, void *opaque)
2101 trace_bdrv_aio_writev(child->bs, sector_num, nb_sectors, opaque);
2103 assert(nb_sectors << BDRV_SECTOR_BITS == qiov->size);
2104 return bdrv_co_aio_prw_vector(child, sector_num << BDRV_SECTOR_BITS, qiov,
2105 0, cb, opaque, true);
2108 void bdrv_aio_cancel(BlockAIOCB *acb)
2110 qemu_aio_ref(acb);
2111 bdrv_aio_cancel_async(acb);
2112 while (acb->refcnt > 1) {
2113 if (acb->aiocb_info->get_aio_context) {
2114 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2115 } else if (acb->bs) {
2116 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2117 * assert that we're not using an I/O thread. Thread-safe
2118 * code should use bdrv_aio_cancel_async exclusively.
2120 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2121 aio_poll(bdrv_get_aio_context(acb->bs), true);
2122 } else {
2123 abort();
2126 qemu_aio_unref(acb);
2129 /* Async version of aio cancel. The caller is not blocked if the acb implements
2130 * cancel_async, otherwise we do nothing and let the request normally complete.
2131 * In either case the completion callback must be called. */
2132 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2134 if (acb->aiocb_info->cancel_async) {
2135 acb->aiocb_info->cancel_async(acb);
2139 /**************************************************************/
2140 /* async block device emulation */
2142 typedef struct BlockRequest {
2143 union {
2144 /* Used during read, write, trim */
2145 struct {
2146 int64_t offset;
2147 int bytes;
2148 int flags;
2149 QEMUIOVector *qiov;
2151 /* Used during ioctl */
2152 struct {
2153 int req;
2154 void *buf;
2157 BlockCompletionFunc *cb;
2158 void *opaque;
2160 int error;
2161 } BlockRequest;
2163 typedef struct BlockAIOCBCoroutine {
2164 BlockAIOCB common;
2165 BdrvChild *child;
2166 BlockRequest req;
2167 bool is_write;
2168 bool need_bh;
2169 bool *done;
2170 } BlockAIOCBCoroutine;
2172 static const AIOCBInfo bdrv_em_co_aiocb_info = {
2173 .aiocb_size = sizeof(BlockAIOCBCoroutine),
2176 static void bdrv_co_complete(BlockAIOCBCoroutine *acb)
2178 if (!acb->need_bh) {
2179 bdrv_dec_in_flight(acb->common.bs);
2180 acb->common.cb(acb->common.opaque, acb->req.error);
2181 qemu_aio_unref(acb);
2185 static void bdrv_co_em_bh(void *opaque)
2187 BlockAIOCBCoroutine *acb = opaque;
2189 assert(!acb->need_bh);
2190 bdrv_co_complete(acb);
2193 static void bdrv_co_maybe_schedule_bh(BlockAIOCBCoroutine *acb)
2195 acb->need_bh = false;
2196 if (acb->req.error != -EINPROGRESS) {
2197 BlockDriverState *bs = acb->common.bs;
2199 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs), bdrv_co_em_bh, acb);
2203 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
2204 static void coroutine_fn bdrv_co_do_rw(void *opaque)
2206 BlockAIOCBCoroutine *acb = opaque;
2208 if (!acb->is_write) {
2209 acb->req.error = bdrv_co_preadv(acb->child, acb->req.offset,
2210 acb->req.qiov->size, acb->req.qiov, acb->req.flags);
2211 } else {
2212 acb->req.error = bdrv_co_pwritev(acb->child, acb->req.offset,
2213 acb->req.qiov->size, acb->req.qiov, acb->req.flags);
2216 bdrv_co_complete(acb);
2219 static BlockAIOCB *bdrv_co_aio_prw_vector(BdrvChild *child,
2220 int64_t offset,
2221 QEMUIOVector *qiov,
2222 BdrvRequestFlags flags,
2223 BlockCompletionFunc *cb,
2224 void *opaque,
2225 bool is_write)
2227 Coroutine *co;
2228 BlockAIOCBCoroutine *acb;
2230 /* Matched by bdrv_co_complete's bdrv_dec_in_flight. */
2231 bdrv_inc_in_flight(child->bs);
2233 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, child->bs, cb, opaque);
2234 acb->child = child;
2235 acb->need_bh = true;
2236 acb->req.error = -EINPROGRESS;
2237 acb->req.offset = offset;
2238 acb->req.qiov = qiov;
2239 acb->req.flags = flags;
2240 acb->is_write = is_write;
2242 co = qemu_coroutine_create(bdrv_co_do_rw, acb);
2243 bdrv_coroutine_enter(child->bs, co);
2245 bdrv_co_maybe_schedule_bh(acb);
2246 return &acb->common;
2249 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
2251 BlockAIOCBCoroutine *acb = opaque;
2252 BlockDriverState *bs = acb->common.bs;
2254 acb->req.error = bdrv_co_flush(bs);
2255 bdrv_co_complete(acb);
2258 BlockAIOCB *bdrv_aio_flush(BlockDriverState *bs,
2259 BlockCompletionFunc *cb, void *opaque)
2261 trace_bdrv_aio_flush(bs, opaque);
2263 Coroutine *co;
2264 BlockAIOCBCoroutine *acb;
2266 /* Matched by bdrv_co_complete's bdrv_dec_in_flight. */
2267 bdrv_inc_in_flight(bs);
2269 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2270 acb->need_bh = true;
2271 acb->req.error = -EINPROGRESS;
2273 co = qemu_coroutine_create(bdrv_aio_flush_co_entry, acb);
2274 bdrv_coroutine_enter(bs, co);
2276 bdrv_co_maybe_schedule_bh(acb);
2277 return &acb->common;
2280 /**************************************************************/
2281 /* Coroutine block device emulation */
2283 typedef struct FlushCo {
2284 BlockDriverState *bs;
2285 int ret;
2286 } FlushCo;
2289 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2291 FlushCo *rwco = opaque;
2293 rwco->ret = bdrv_co_flush(rwco->bs);
2296 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2298 int current_gen;
2299 int ret = 0;
2301 bdrv_inc_in_flight(bs);
2303 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2304 bdrv_is_sg(bs)) {
2305 goto early_exit;
2308 current_gen = bs->write_gen;
2310 /* Wait until any previous flushes are completed */
2311 while (bs->active_flush_req) {
2312 qemu_co_queue_wait(&bs->flush_queue, NULL);
2315 bs->active_flush_req = true;
2317 /* Write back all layers by calling one driver function */
2318 if (bs->drv->bdrv_co_flush) {
2319 ret = bs->drv->bdrv_co_flush(bs);
2320 goto out;
2323 /* Write back cached data to the OS even with cache=unsafe */
2324 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2325 if (bs->drv->bdrv_co_flush_to_os) {
2326 ret = bs->drv->bdrv_co_flush_to_os(bs);
2327 if (ret < 0) {
2328 goto out;
2332 /* But don't actually force it to the disk with cache=unsafe */
2333 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2334 goto flush_parent;
2337 /* Check if we really need to flush anything */
2338 if (bs->flushed_gen == current_gen) {
2339 goto flush_parent;
2342 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2343 if (bs->drv->bdrv_co_flush_to_disk) {
2344 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2345 } else if (bs->drv->bdrv_aio_flush) {
2346 BlockAIOCB *acb;
2347 CoroutineIOCompletion co = {
2348 .coroutine = qemu_coroutine_self(),
2351 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2352 if (acb == NULL) {
2353 ret = -EIO;
2354 } else {
2355 qemu_coroutine_yield();
2356 ret = co.ret;
2358 } else {
2360 * Some block drivers always operate in either writethrough or unsafe
2361 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2362 * know how the server works (because the behaviour is hardcoded or
2363 * depends on server-side configuration), so we can't ensure that
2364 * everything is safe on disk. Returning an error doesn't work because
2365 * that would break guests even if the server operates in writethrough
2366 * mode.
2368 * Let's hope the user knows what he's doing.
2370 ret = 0;
2373 if (ret < 0) {
2374 goto out;
2377 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2378 * in the case of cache=unsafe, so there are no useless flushes.
2380 flush_parent:
2381 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2382 out:
2383 /* Notify any pending flushes that we have completed */
2384 if (ret == 0) {
2385 bs->flushed_gen = current_gen;
2387 bs->active_flush_req = false;
2388 /* Return value is ignored - it's ok if wait queue is empty */
2389 qemu_co_queue_next(&bs->flush_queue);
2391 early_exit:
2392 bdrv_dec_in_flight(bs);
2393 return ret;
2396 int bdrv_flush(BlockDriverState *bs)
2398 Coroutine *co;
2399 FlushCo flush_co = {
2400 .bs = bs,
2401 .ret = NOT_DONE,
2404 if (qemu_in_coroutine()) {
2405 /* Fast-path if already in coroutine context */
2406 bdrv_flush_co_entry(&flush_co);
2407 } else {
2408 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co);
2409 bdrv_coroutine_enter(bs, co);
2410 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE);
2413 return flush_co.ret;
2416 typedef struct DiscardCo {
2417 BlockDriverState *bs;
2418 int64_t offset;
2419 int count;
2420 int ret;
2421 } DiscardCo;
2422 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque)
2424 DiscardCo *rwco = opaque;
2426 rwco->ret = bdrv_co_pdiscard(rwco->bs, rwco->offset, rwco->count);
2429 int coroutine_fn bdrv_co_pdiscard(BlockDriverState *bs, int64_t offset,
2430 int count)
2432 BdrvTrackedRequest req;
2433 int max_pdiscard, ret;
2434 int head, tail, align;
2436 if (!bs->drv) {
2437 return -ENOMEDIUM;
2440 ret = bdrv_check_byte_request(bs, offset, count);
2441 if (ret < 0) {
2442 return ret;
2443 } else if (bs->read_only) {
2444 return -EPERM;
2446 assert(!(bs->open_flags & BDRV_O_INACTIVE));
2448 /* Do nothing if disabled. */
2449 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2450 return 0;
2453 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2454 return 0;
2457 /* Discard is advisory, but some devices track and coalesce
2458 * unaligned requests, so we must pass everything down rather than
2459 * round here. Still, most devices will just silently ignore
2460 * unaligned requests (by returning -ENOTSUP), so we must fragment
2461 * the request accordingly. */
2462 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2463 assert(align % bs->bl.request_alignment == 0);
2464 head = offset % align;
2465 tail = (offset + count) % align;
2467 bdrv_inc_in_flight(bs);
2468 tracked_request_begin(&req, bs, offset, count, BDRV_TRACKED_DISCARD);
2470 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, &req);
2471 if (ret < 0) {
2472 goto out;
2475 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2476 align);
2477 assert(max_pdiscard >= bs->bl.request_alignment);
2479 while (count > 0) {
2480 int ret;
2481 int num = count;
2483 if (head) {
2484 /* Make small requests to get to alignment boundaries. */
2485 num = MIN(count, align - head);
2486 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
2487 num %= bs->bl.request_alignment;
2489 head = (head + num) % align;
2490 assert(num < max_pdiscard);
2491 } else if (tail) {
2492 if (num > align) {
2493 /* Shorten the request to the last aligned cluster. */
2494 num -= tail;
2495 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
2496 tail > bs->bl.request_alignment) {
2497 tail %= bs->bl.request_alignment;
2498 num -= tail;
2501 /* limit request size */
2502 if (num > max_pdiscard) {
2503 num = max_pdiscard;
2506 if (bs->drv->bdrv_co_pdiscard) {
2507 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2508 } else {
2509 BlockAIOCB *acb;
2510 CoroutineIOCompletion co = {
2511 .coroutine = qemu_coroutine_self(),
2514 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2515 bdrv_co_io_em_complete, &co);
2516 if (acb == NULL) {
2517 ret = -EIO;
2518 goto out;
2519 } else {
2520 qemu_coroutine_yield();
2521 ret = co.ret;
2524 if (ret && ret != -ENOTSUP) {
2525 goto out;
2528 offset += num;
2529 count -= num;
2531 ret = 0;
2532 out:
2533 ++bs->write_gen;
2534 bdrv_set_dirty(bs, req.offset >> BDRV_SECTOR_BITS,
2535 req.bytes >> BDRV_SECTOR_BITS);
2536 tracked_request_end(&req);
2537 bdrv_dec_in_flight(bs);
2538 return ret;
2541 int bdrv_pdiscard(BlockDriverState *bs, int64_t offset, int count)
2543 Coroutine *co;
2544 DiscardCo rwco = {
2545 .bs = bs,
2546 .offset = offset,
2547 .count = count,
2548 .ret = NOT_DONE,
2551 if (qemu_in_coroutine()) {
2552 /* Fast-path if already in coroutine context */
2553 bdrv_pdiscard_co_entry(&rwco);
2554 } else {
2555 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco);
2556 bdrv_coroutine_enter(bs, co);
2557 BDRV_POLL_WHILE(bs, rwco.ret == NOT_DONE);
2560 return rwco.ret;
2563 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
2565 BlockDriver *drv = bs->drv;
2566 CoroutineIOCompletion co = {
2567 .coroutine = qemu_coroutine_self(),
2569 BlockAIOCB *acb;
2571 bdrv_inc_in_flight(bs);
2572 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
2573 co.ret = -ENOTSUP;
2574 goto out;
2577 if (drv->bdrv_co_ioctl) {
2578 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
2579 } else {
2580 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2581 if (!acb) {
2582 co.ret = -ENOTSUP;
2583 goto out;
2585 qemu_coroutine_yield();
2587 out:
2588 bdrv_dec_in_flight(bs);
2589 return co.ret;
2592 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2594 return qemu_memalign(bdrv_opt_mem_align(bs), size);
2597 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2599 return memset(qemu_blockalign(bs, size), 0, size);
2602 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2604 size_t align = bdrv_opt_mem_align(bs);
2606 /* Ensure that NULL is never returned on success */
2607 assert(align > 0);
2608 if (size == 0) {
2609 size = align;
2612 return qemu_try_memalign(align, size);
2615 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2617 void *mem = qemu_try_blockalign(bs, size);
2619 if (mem) {
2620 memset(mem, 0, size);
2623 return mem;
2627 * Check if all memory in this vector is sector aligned.
2629 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2631 int i;
2632 size_t alignment = bdrv_min_mem_align(bs);
2634 for (i = 0; i < qiov->niov; i++) {
2635 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2636 return false;
2638 if (qiov->iov[i].iov_len % alignment) {
2639 return false;
2643 return true;
2646 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2647 NotifierWithReturn *notifier)
2649 notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2652 void bdrv_io_plug(BlockDriverState *bs)
2654 BdrvChild *child;
2656 QLIST_FOREACH(child, &bs->children, next) {
2657 bdrv_io_plug(child->bs);
2660 if (bs->io_plugged++ == 0) {
2661 BlockDriver *drv = bs->drv;
2662 if (drv && drv->bdrv_io_plug) {
2663 drv->bdrv_io_plug(bs);
2668 void bdrv_io_unplug(BlockDriverState *bs)
2670 BdrvChild *child;
2672 assert(bs->io_plugged);
2673 if (--bs->io_plugged == 0) {
2674 BlockDriver *drv = bs->drv;
2675 if (drv && drv->bdrv_io_unplug) {
2676 drv->bdrv_io_unplug(bs);
2680 QLIST_FOREACH(child, &bs->children, next) {
2681 bdrv_io_unplug(child->bs);