2 * PowerPC integer and vector emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
22 #include "qemu/host-utils.h"
23 #include "exec/helper-proto.h"
24 #include "crypto/aes.h"
25 #include "fpu/softfloat.h"
26 #include "qapi/error.h"
27 #include "qemu/guest-random.h"
29 #include "helper_regs.h"
30 /*****************************************************************************/
31 /* Fixed point operations helpers */
33 static inline void helper_update_ov_legacy(CPUPPCState
*env
, int ov
)
36 env
->so
= env
->ov
= 1;
42 target_ulong
helper_divweu(CPUPPCState
*env
, target_ulong ra
, target_ulong rb
,
48 uint64_t dividend
= (uint64_t)ra
<< 32;
49 uint64_t divisor
= (uint32_t)rb
;
51 if (unlikely(divisor
== 0)) {
54 rt
= dividend
/ divisor
;
55 overflow
= rt
> UINT32_MAX
;
58 if (unlikely(overflow
)) {
59 rt
= 0; /* Undefined */
63 helper_update_ov_legacy(env
, overflow
);
66 return (target_ulong
)rt
;
69 target_ulong
helper_divwe(CPUPPCState
*env
, target_ulong ra
, target_ulong rb
,
75 int64_t dividend
= (int64_t)ra
<< 32;
76 int64_t divisor
= (int64_t)((int32_t)rb
);
78 if (unlikely((divisor
== 0) ||
79 ((divisor
== -1ull) && (dividend
== INT64_MIN
)))) {
82 rt
= dividend
/ divisor
;
83 overflow
= rt
!= (int32_t)rt
;
86 if (unlikely(overflow
)) {
87 rt
= 0; /* Undefined */
91 helper_update_ov_legacy(env
, overflow
);
94 return (target_ulong
)rt
;
97 #if defined(TARGET_PPC64)
99 uint64_t helper_divdeu(CPUPPCState
*env
, uint64_t ra
, uint64_t rb
, uint32_t oe
)
104 overflow
= divu128(&rt
, &ra
, rb
);
106 if (unlikely(overflow
)) {
107 rt
= 0; /* Undefined */
111 helper_update_ov_legacy(env
, overflow
);
117 uint64_t helper_divde(CPUPPCState
*env
, uint64_t rau
, uint64_t rbu
, uint32_t oe
)
120 int64_t ra
= (int64_t)rau
;
121 int64_t rb
= (int64_t)rbu
;
122 int overflow
= divs128(&rt
, &ra
, rb
);
124 if (unlikely(overflow
)) {
125 rt
= 0; /* Undefined */
129 helper_update_ov_legacy(env
, overflow
);
138 #if defined(TARGET_PPC64)
139 /* if x = 0xab, returns 0xababababababababa */
140 #define pattern(x) (((x) & 0xff) * (~(target_ulong)0 / 0xff))
143 * subtract 1 from each byte, and with inverse, check if MSB is set at each
145 * i.e. ((0x00 - 0x01) & ~(0x00)) & 0x80
146 * (0xFF & 0xFF) & 0x80 = 0x80 (zero found)
148 #define haszero(v) (((v) - pattern(0x01)) & ~(v) & pattern(0x80))
150 /* When you XOR the pattern and there is a match, that byte will be zero */
151 #define hasvalue(x, n) (haszero((x) ^ pattern(n)))
153 uint32_t helper_cmpeqb(target_ulong ra
, target_ulong rb
)
155 return hasvalue(rb
, ra
) ? CRF_GT
: 0;
163 * Return a random number.
165 uint64_t helper_darn32(void)
170 if (qemu_guest_getrandom(&ret
, sizeof(ret
), &err
) < 0) {
171 qemu_log_mask(LOG_UNIMP
, "darn: Crypto failure: %s",
172 error_get_pretty(err
));
180 uint64_t helper_darn64(void)
185 if (qemu_guest_getrandom(&ret
, sizeof(ret
), &err
) < 0) {
186 qemu_log_mask(LOG_UNIMP
, "darn: Crypto failure: %s",
187 error_get_pretty(err
));
195 uint64_t helper_bpermd(uint64_t rs
, uint64_t rb
)
200 for (i
= 0; i
< 8; i
++) {
201 int index
= (rs
>> (i
* 8)) & 0xFF;
203 if (rb
& PPC_BIT(index
)) {
213 target_ulong
helper_cmpb(target_ulong rs
, target_ulong rb
)
215 target_ulong mask
= 0xff;
219 for (i
= 0; i
< sizeof(target_ulong
); i
++) {
220 if ((rs
& mask
) == (rb
& mask
)) {
228 /* shift right arithmetic helper */
229 target_ulong
helper_sraw(CPUPPCState
*env
, target_ulong value
,
234 if (likely(!(shift
& 0x20))) {
235 if (likely((uint32_t)shift
!= 0)) {
237 ret
= (int32_t)value
>> shift
;
238 if (likely(ret
>= 0 || (value
& ((1 << shift
) - 1)) == 0)) {
239 env
->ca32
= env
->ca
= 0;
241 env
->ca32
= env
->ca
= 1;
244 ret
= (int32_t)value
;
245 env
->ca32
= env
->ca
= 0;
248 ret
= (int32_t)value
>> 31;
249 env
->ca32
= env
->ca
= (ret
!= 0);
251 return (target_long
)ret
;
254 #if defined(TARGET_PPC64)
255 target_ulong
helper_srad(CPUPPCState
*env
, target_ulong value
,
260 if (likely(!(shift
& 0x40))) {
261 if (likely((uint64_t)shift
!= 0)) {
263 ret
= (int64_t)value
>> shift
;
264 if (likely(ret
>= 0 || (value
& ((1ULL << shift
) - 1)) == 0)) {
265 env
->ca32
= env
->ca
= 0;
267 env
->ca32
= env
->ca
= 1;
270 ret
= (int64_t)value
;
271 env
->ca32
= env
->ca
= 0;
274 ret
= (int64_t)value
>> 63;
275 env
->ca32
= env
->ca
= (ret
!= 0);
281 #if defined(TARGET_PPC64)
282 target_ulong
helper_popcntb(target_ulong val
)
284 /* Note that we don't fold past bytes */
285 val
= (val
& 0x5555555555555555ULL
) + ((val
>> 1) &
286 0x5555555555555555ULL
);
287 val
= (val
& 0x3333333333333333ULL
) + ((val
>> 2) &
288 0x3333333333333333ULL
);
289 val
= (val
& 0x0f0f0f0f0f0f0f0fULL
) + ((val
>> 4) &
290 0x0f0f0f0f0f0f0f0fULL
);
294 target_ulong
helper_popcntw(target_ulong val
)
296 /* Note that we don't fold past words. */
297 val
= (val
& 0x5555555555555555ULL
) + ((val
>> 1) &
298 0x5555555555555555ULL
);
299 val
= (val
& 0x3333333333333333ULL
) + ((val
>> 2) &
300 0x3333333333333333ULL
);
301 val
= (val
& 0x0f0f0f0f0f0f0f0fULL
) + ((val
>> 4) &
302 0x0f0f0f0f0f0f0f0fULL
);
303 val
= (val
& 0x00ff00ff00ff00ffULL
) + ((val
>> 8) &
304 0x00ff00ff00ff00ffULL
);
305 val
= (val
& 0x0000ffff0000ffffULL
) + ((val
>> 16) &
306 0x0000ffff0000ffffULL
);
310 target_ulong
helper_popcntb(target_ulong val
)
312 /* Note that we don't fold past bytes */
313 val
= (val
& 0x55555555) + ((val
>> 1) & 0x55555555);
314 val
= (val
& 0x33333333) + ((val
>> 2) & 0x33333333);
315 val
= (val
& 0x0f0f0f0f) + ((val
>> 4) & 0x0f0f0f0f);
320 /*****************************************************************************/
321 /* PowerPC 601 specific instructions (POWER bridge) */
322 target_ulong
helper_div(CPUPPCState
*env
, target_ulong arg1
, target_ulong arg2
)
324 uint64_t tmp
= (uint64_t)arg1
<< 32 | env
->spr
[SPR_MQ
];
326 if (((int32_t)tmp
== INT32_MIN
&& (int32_t)arg2
== (int32_t)-1) ||
327 (int32_t)arg2
== 0) {
328 env
->spr
[SPR_MQ
] = 0;
331 env
->spr
[SPR_MQ
] = tmp
% arg2
;
332 return tmp
/ (int32_t)arg2
;
336 target_ulong
helper_divo(CPUPPCState
*env
, target_ulong arg1
,
339 uint64_t tmp
= (uint64_t)arg1
<< 32 | env
->spr
[SPR_MQ
];
341 if (((int32_t)tmp
== INT32_MIN
&& (int32_t)arg2
== (int32_t)-1) ||
342 (int32_t)arg2
== 0) {
343 env
->so
= env
->ov
= 1;
344 env
->spr
[SPR_MQ
] = 0;
347 env
->spr
[SPR_MQ
] = tmp
% arg2
;
348 tmp
/= (int32_t)arg2
;
349 if ((int32_t)tmp
!= tmp
) {
350 env
->so
= env
->ov
= 1;
358 target_ulong
helper_divs(CPUPPCState
*env
, target_ulong arg1
,
361 if (((int32_t)arg1
== INT32_MIN
&& (int32_t)arg2
== (int32_t)-1) ||
362 (int32_t)arg2
== 0) {
363 env
->spr
[SPR_MQ
] = 0;
366 env
->spr
[SPR_MQ
] = (int32_t)arg1
% (int32_t)arg2
;
367 return (int32_t)arg1
/ (int32_t)arg2
;
371 target_ulong
helper_divso(CPUPPCState
*env
, target_ulong arg1
,
374 if (((int32_t)arg1
== INT32_MIN
&& (int32_t)arg2
== (int32_t)-1) ||
375 (int32_t)arg2
== 0) {
376 env
->so
= env
->ov
= 1;
377 env
->spr
[SPR_MQ
] = 0;
381 env
->spr
[SPR_MQ
] = (int32_t)arg1
% (int32_t)arg2
;
382 return (int32_t)arg1
/ (int32_t)arg2
;
386 /*****************************************************************************/
387 /* 602 specific instructions */
388 /* mfrom is the most crazy instruction ever seen, imho ! */
389 /* Real implementation uses a ROM table. Do the same */
391 * Extremely decomposed:
393 * return 256 * log10(10 + 1.0) + 0.5
395 #if !defined(CONFIG_USER_ONLY)
396 target_ulong
helper_602_mfrom(target_ulong arg
)
398 if (likely(arg
< 602)) {
399 #include "mfrom_table.inc.c"
400 return mfrom_ROM_table
[arg
];
407 /*****************************************************************************/
408 /* Altivec extension helpers */
409 #if defined(HOST_WORDS_BIGENDIAN)
410 #define VECTOR_FOR_INORDER_I(index, element) \
411 for (index = 0; index < ARRAY_SIZE(r->element); index++)
413 #define VECTOR_FOR_INORDER_I(index, element) \
414 for (index = ARRAY_SIZE(r->element) - 1; index >= 0; index--)
417 /* Saturating arithmetic helpers. */
418 #define SATCVT(from, to, from_type, to_type, min, max) \
419 static inline to_type cvt##from##to(from_type x, int *sat) \
423 if (x < (from_type)min) { \
426 } else if (x > (from_type)max) { \
434 #define SATCVTU(from, to, from_type, to_type, min, max) \
435 static inline to_type cvt##from##to(from_type x, int *sat) \
439 if (x > (from_type)max) { \
447 SATCVT(sh
, sb
, int16_t, int8_t, INT8_MIN
, INT8_MAX
)
448 SATCVT(sw
, sh
, int32_t, int16_t, INT16_MIN
, INT16_MAX
)
449 SATCVT(sd
, sw
, int64_t, int32_t, INT32_MIN
, INT32_MAX
)
451 SATCVTU(uh
, ub
, uint16_t, uint8_t, 0, UINT8_MAX
)
452 SATCVTU(uw
, uh
, uint32_t, uint16_t, 0, UINT16_MAX
)
453 SATCVTU(ud
, uw
, uint64_t, uint32_t, 0, UINT32_MAX
)
454 SATCVT(sh
, ub
, int16_t, uint8_t, 0, UINT8_MAX
)
455 SATCVT(sw
, uh
, int32_t, uint16_t, 0, UINT16_MAX
)
456 SATCVT(sd
, uw
, int64_t, uint32_t, 0, UINT32_MAX
)
460 void helper_lvsl(ppc_avr_t
*r
, target_ulong sh
)
462 int i
, j
= (sh
& 0xf);
464 for (i
= 0; i
< ARRAY_SIZE(r
->u8
); i
++) {
469 void helper_lvsr(ppc_avr_t
*r
, target_ulong sh
)
471 int i
, j
= 0x10 - (sh
& 0xf);
473 for (i
= 0; i
< ARRAY_SIZE(r
->u8
); i
++) {
478 void helper_mtvscr(CPUPPCState
*env
, uint32_t vscr
)
480 env
->vscr
= vscr
& ~(1u << VSCR_SAT
);
481 /* Which bit we set is completely arbitrary, but clear the rest. */
482 env
->vscr_sat
.u64
[0] = vscr
& (1u << VSCR_SAT
);
483 env
->vscr_sat
.u64
[1] = 0;
484 set_flush_to_zero((vscr
>> VSCR_NJ
) & 1, &env
->vec_status
);
487 uint32_t helper_mfvscr(CPUPPCState
*env
)
489 uint32_t sat
= (env
->vscr_sat
.u64
[0] | env
->vscr_sat
.u64
[1]) != 0;
490 return env
->vscr
| (sat
<< VSCR_SAT
);
493 static inline void set_vscr_sat(CPUPPCState
*env
)
495 /* The choice of non-zero value is arbitrary. */
496 env
->vscr_sat
.u32
[0] = 1;
499 void helper_vaddcuw(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
503 for (i
= 0; i
< ARRAY_SIZE(r
->u32
); i
++) {
504 r
->u32
[i
] = ~a
->u32
[i
] < b
->u32
[i
];
509 void helper_vprtybw(ppc_avr_t
*r
, ppc_avr_t
*b
)
512 for (i
= 0; i
< ARRAY_SIZE(r
->u32
); i
++) {
513 uint64_t res
= b
->u32
[i
] ^ (b
->u32
[i
] >> 16);
520 void helper_vprtybd(ppc_avr_t
*r
, ppc_avr_t
*b
)
523 for (i
= 0; i
< ARRAY_SIZE(r
->u64
); i
++) {
524 uint64_t res
= b
->u64
[i
] ^ (b
->u64
[i
] >> 32);
532 void helper_vprtybq(ppc_avr_t
*r
, ppc_avr_t
*b
)
534 uint64_t res
= b
->u64
[0] ^ b
->u64
[1];
538 r
->VsrD(1) = res
& 1;
542 #define VARITH_DO(name, op, element) \
543 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
547 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
548 r->element[i] = a->element[i] op b->element[i]; \
551 VARITH_DO(muluwm
, *, u32
)
555 #define VARITHFP(suffix, func) \
556 void helper_v##suffix(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, \
561 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
562 r->f32[i] = func(a->f32[i], b->f32[i], &env->vec_status); \
565 VARITHFP(addfp
, float32_add
)
566 VARITHFP(subfp
, float32_sub
)
567 VARITHFP(minfp
, float32_min
)
568 VARITHFP(maxfp
, float32_max
)
571 #define VARITHFPFMA(suffix, type) \
572 void helper_v##suffix(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, \
573 ppc_avr_t *b, ppc_avr_t *c) \
576 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
577 r->f32[i] = float32_muladd(a->f32[i], c->f32[i], b->f32[i], \
578 type, &env->vec_status); \
581 VARITHFPFMA(maddfp
, 0);
582 VARITHFPFMA(nmsubfp
, float_muladd_negate_result
| float_muladd_negate_c
);
585 #define VARITHSAT_CASE(type, op, cvt, element) \
587 type result = (type)a->element[i] op (type)b->element[i]; \
588 r->element[i] = cvt(result, &sat); \
591 #define VARITHSAT_DO(name, op, optype, cvt, element) \
592 void helper_v##name(ppc_avr_t *r, ppc_avr_t *vscr_sat, \
593 ppc_avr_t *a, ppc_avr_t *b, uint32_t desc) \
598 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
599 VARITHSAT_CASE(optype, op, cvt, element); \
602 vscr_sat->u32[0] = 1; \
605 #define VARITHSAT_SIGNED(suffix, element, optype, cvt) \
606 VARITHSAT_DO(adds##suffix##s, +, optype, cvt, element) \
607 VARITHSAT_DO(subs##suffix##s, -, optype, cvt, element)
608 #define VARITHSAT_UNSIGNED(suffix, element, optype, cvt) \
609 VARITHSAT_DO(addu##suffix##s, +, optype, cvt, element) \
610 VARITHSAT_DO(subu##suffix##s, -, optype, cvt, element)
611 VARITHSAT_SIGNED(b
, s8
, int16_t, cvtshsb
)
612 VARITHSAT_SIGNED(h
, s16
, int32_t, cvtswsh
)
613 VARITHSAT_SIGNED(w
, s32
, int64_t, cvtsdsw
)
614 VARITHSAT_UNSIGNED(b
, u8
, uint16_t, cvtshub
)
615 VARITHSAT_UNSIGNED(h
, u16
, uint32_t, cvtswuh
)
616 VARITHSAT_UNSIGNED(w
, u32
, uint64_t, cvtsduw
)
617 #undef VARITHSAT_CASE
619 #undef VARITHSAT_SIGNED
620 #undef VARITHSAT_UNSIGNED
622 #define VAVG_DO(name, element, etype) \
623 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
627 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
628 etype x = (etype)a->element[i] + (etype)b->element[i] + 1; \
629 r->element[i] = x >> 1; \
633 #define VAVG(type, signed_element, signed_type, unsigned_element, \
635 VAVG_DO(avgs##type, signed_element, signed_type) \
636 VAVG_DO(avgu##type, unsigned_element, unsigned_type)
637 VAVG(b
, s8
, int16_t, u8
, uint16_t)
638 VAVG(h
, s16
, int32_t, u16
, uint32_t)
639 VAVG(w
, s32
, int64_t, u32
, uint64_t)
643 #define VABSDU_DO(name, element) \
644 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
648 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
649 r->element[i] = (a->element[i] > b->element[i]) ? \
650 (a->element[i] - b->element[i]) : \
651 (b->element[i] - a->element[i]); \
656 * VABSDU - Vector absolute difference unsigned
657 * name - instruction mnemonic suffix (b: byte, h: halfword, w: word)
658 * element - element type to access from vector
660 #define VABSDU(type, element) \
661 VABSDU_DO(absdu##type, element)
668 #define VCF(suffix, cvt, element) \
669 void helper_vcf##suffix(CPUPPCState *env, ppc_avr_t *r, \
670 ppc_avr_t *b, uint32_t uim) \
674 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
675 float32 t = cvt(b->element[i], &env->vec_status); \
676 r->f32[i] = float32_scalbn(t, -uim, &env->vec_status); \
679 VCF(ux
, uint32_to_float32
, u32
)
680 VCF(sx
, int32_to_float32
, s32
)
683 #define VCMP_DO(suffix, compare, element, record) \
684 void helper_vcmp##suffix(CPUPPCState *env, ppc_avr_t *r, \
685 ppc_avr_t *a, ppc_avr_t *b) \
687 uint64_t ones = (uint64_t)-1; \
688 uint64_t all = ones; \
692 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
693 uint64_t result = (a->element[i] compare b->element[i] ? \
695 switch (sizeof(a->element[0])) { \
697 r->u64[i] = result; \
700 r->u32[i] = result; \
703 r->u16[i] = result; \
713 env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
716 #define VCMP(suffix, compare, element) \
717 VCMP_DO(suffix, compare, element, 0) \
718 VCMP_DO(suffix##_dot, compare, element, 1)
734 #define VCMPNE_DO(suffix, element, etype, cmpzero, record) \
735 void helper_vcmpne##suffix(CPUPPCState *env, ppc_avr_t *r, \
736 ppc_avr_t *a, ppc_avr_t *b) \
738 etype ones = (etype)-1; \
740 etype result, none = 0; \
743 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
745 result = ((a->element[i] == 0) \
746 || (b->element[i] == 0) \
747 || (a->element[i] != b->element[i]) ? \
750 result = (a->element[i] != b->element[i]) ? ones : 0x0; \
752 r->element[i] = result; \
757 env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
762 * VCMPNEZ - Vector compare not equal to zero
763 * suffix - instruction mnemonic suffix (b: byte, h: halfword, w: word)
764 * element - element type to access from vector
766 #define VCMPNE(suffix, element, etype, cmpzero) \
767 VCMPNE_DO(suffix, element, etype, cmpzero, 0) \
768 VCMPNE_DO(suffix##_dot, element, etype, cmpzero, 1)
769 VCMPNE(zb
, u8
, uint8_t, 1)
770 VCMPNE(zh
, u16
, uint16_t, 1)
771 VCMPNE(zw
, u32
, uint32_t, 1)
772 VCMPNE(b
, u8
, uint8_t, 0)
773 VCMPNE(h
, u16
, uint16_t, 0)
774 VCMPNE(w
, u32
, uint32_t, 0)
778 #define VCMPFP_DO(suffix, compare, order, record) \
779 void helper_vcmp##suffix(CPUPPCState *env, ppc_avr_t *r, \
780 ppc_avr_t *a, ppc_avr_t *b) \
782 uint32_t ones = (uint32_t)-1; \
783 uint32_t all = ones; \
787 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
789 int rel = float32_compare_quiet(a->f32[i], b->f32[i], \
791 if (rel == float_relation_unordered) { \
793 } else if (rel compare order) { \
798 r->u32[i] = result; \
803 env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
806 #define VCMPFP(suffix, compare, order) \
807 VCMPFP_DO(suffix, compare, order, 0) \
808 VCMPFP_DO(suffix##_dot, compare, order, 1)
809 VCMPFP(eqfp
, ==, float_relation_equal
)
810 VCMPFP(gefp
, !=, float_relation_less
)
811 VCMPFP(gtfp
, ==, float_relation_greater
)
815 static inline void vcmpbfp_internal(CPUPPCState
*env
, ppc_avr_t
*r
,
816 ppc_avr_t
*a
, ppc_avr_t
*b
, int record
)
821 for (i
= 0; i
< ARRAY_SIZE(r
->f32
); i
++) {
822 int le_rel
= float32_compare_quiet(a
->f32
[i
], b
->f32
[i
],
824 if (le_rel
== float_relation_unordered
) {
825 r
->u32
[i
] = 0xc0000000;
828 float32 bneg
= float32_chs(b
->f32
[i
]);
829 int ge_rel
= float32_compare_quiet(a
->f32
[i
], bneg
,
831 int le
= le_rel
!= float_relation_greater
;
832 int ge
= ge_rel
!= float_relation_less
;
834 r
->u32
[i
] = ((!le
) << 31) | ((!ge
) << 30);
835 all_in
|= (!le
| !ge
);
839 env
->crf
[6] = (all_in
== 0) << 1;
843 void helper_vcmpbfp(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
845 vcmpbfp_internal(env
, r
, a
, b
, 0);
848 void helper_vcmpbfp_dot(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
851 vcmpbfp_internal(env
, r
, a
, b
, 1);
854 #define VCT(suffix, satcvt, element) \
855 void helper_vct##suffix(CPUPPCState *env, ppc_avr_t *r, \
856 ppc_avr_t *b, uint32_t uim) \
860 float_status s = env->vec_status; \
862 set_float_rounding_mode(float_round_to_zero, &s); \
863 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
864 if (float32_is_any_nan(b->f32[i])) { \
867 float64 t = float32_to_float64(b->f32[i], &s); \
870 t = float64_scalbn(t, uim, &s); \
871 j = float64_to_int64(t, &s); \
872 r->element[i] = satcvt(j, &sat); \
879 VCT(uxs
, cvtsduw
, u32
)
880 VCT(sxs
, cvtsdsw
, s32
)
883 target_ulong
helper_vclzlsbb(ppc_avr_t
*r
)
885 target_ulong count
= 0;
887 for (i
= 0; i
< ARRAY_SIZE(r
->u8
); i
++) {
888 if (r
->VsrB(i
) & 0x01) {
896 target_ulong
helper_vctzlsbb(ppc_avr_t
*r
)
898 target_ulong count
= 0;
900 for (i
= ARRAY_SIZE(r
->u8
) - 1; i
>= 0; i
--) {
901 if (r
->VsrB(i
) & 0x01) {
909 void helper_vmhaddshs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
910 ppc_avr_t
*b
, ppc_avr_t
*c
)
915 for (i
= 0; i
< ARRAY_SIZE(r
->s16
); i
++) {
916 int32_t prod
= a
->s16
[i
] * b
->s16
[i
];
917 int32_t t
= (int32_t)c
->s16
[i
] + (prod
>> 15);
919 r
->s16
[i
] = cvtswsh(t
, &sat
);
927 void helper_vmhraddshs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
928 ppc_avr_t
*b
, ppc_avr_t
*c
)
933 for (i
= 0; i
< ARRAY_SIZE(r
->s16
); i
++) {
934 int32_t prod
= a
->s16
[i
] * b
->s16
[i
] + 0x00004000;
935 int32_t t
= (int32_t)c
->s16
[i
] + (prod
>> 15);
936 r
->s16
[i
] = cvtswsh(t
, &sat
);
944 void helper_vmladduhm(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
948 for (i
= 0; i
< ARRAY_SIZE(r
->s16
); i
++) {
949 int32_t prod
= a
->s16
[i
] * b
->s16
[i
];
950 r
->s16
[i
] = (int16_t) (prod
+ c
->s16
[i
]);
954 #define VMRG_DO(name, element, access, ofs) \
955 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
958 int i, half = ARRAY_SIZE(r->element) / 2; \
960 for (i = 0; i < half; i++) { \
961 result.access(i * 2 + 0) = a->access(i + ofs); \
962 result.access(i * 2 + 1) = b->access(i + ofs); \
967 #define VMRG(suffix, element, access) \
968 VMRG_DO(mrgl##suffix, element, access, half) \
969 VMRG_DO(mrgh##suffix, element, access, 0)
976 void helper_vmsummbm(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
977 ppc_avr_t
*b
, ppc_avr_t
*c
)
982 for (i
= 0; i
< ARRAY_SIZE(r
->s8
); i
++) {
983 prod
[i
] = (int32_t)a
->s8
[i
] * b
->u8
[i
];
986 VECTOR_FOR_INORDER_I(i
, s32
) {
987 r
->s32
[i
] = c
->s32
[i
] + prod
[4 * i
] + prod
[4 * i
+ 1] +
988 prod
[4 * i
+ 2] + prod
[4 * i
+ 3];
992 void helper_vmsumshm(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
993 ppc_avr_t
*b
, ppc_avr_t
*c
)
998 for (i
= 0; i
< ARRAY_SIZE(r
->s16
); i
++) {
999 prod
[i
] = a
->s16
[i
] * b
->s16
[i
];
1002 VECTOR_FOR_INORDER_I(i
, s32
) {
1003 r
->s32
[i
] = c
->s32
[i
] + prod
[2 * i
] + prod
[2 * i
+ 1];
1007 void helper_vmsumshs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
1008 ppc_avr_t
*b
, ppc_avr_t
*c
)
1014 for (i
= 0; i
< ARRAY_SIZE(r
->s16
); i
++) {
1015 prod
[i
] = (int32_t)a
->s16
[i
] * b
->s16
[i
];
1018 VECTOR_FOR_INORDER_I(i
, s32
) {
1019 int64_t t
= (int64_t)c
->s32
[i
] + prod
[2 * i
] + prod
[2 * i
+ 1];
1021 r
->u32
[i
] = cvtsdsw(t
, &sat
);
1029 void helper_vmsumubm(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
1030 ppc_avr_t
*b
, ppc_avr_t
*c
)
1035 for (i
= 0; i
< ARRAY_SIZE(r
->u8
); i
++) {
1036 prod
[i
] = a
->u8
[i
] * b
->u8
[i
];
1039 VECTOR_FOR_INORDER_I(i
, u32
) {
1040 r
->u32
[i
] = c
->u32
[i
] + prod
[4 * i
] + prod
[4 * i
+ 1] +
1041 prod
[4 * i
+ 2] + prod
[4 * i
+ 3];
1045 void helper_vmsumuhm(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
1046 ppc_avr_t
*b
, ppc_avr_t
*c
)
1051 for (i
= 0; i
< ARRAY_SIZE(r
->u16
); i
++) {
1052 prod
[i
] = a
->u16
[i
] * b
->u16
[i
];
1055 VECTOR_FOR_INORDER_I(i
, u32
) {
1056 r
->u32
[i
] = c
->u32
[i
] + prod
[2 * i
] + prod
[2 * i
+ 1];
1060 void helper_vmsumuhs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
1061 ppc_avr_t
*b
, ppc_avr_t
*c
)
1067 for (i
= 0; i
< ARRAY_SIZE(r
->u16
); i
++) {
1068 prod
[i
] = a
->u16
[i
] * b
->u16
[i
];
1071 VECTOR_FOR_INORDER_I(i
, s32
) {
1072 uint64_t t
= (uint64_t)c
->u32
[i
] + prod
[2 * i
] + prod
[2 * i
+ 1];
1074 r
->u32
[i
] = cvtuduw(t
, &sat
);
1082 #define VMUL_DO_EVN(name, mul_element, mul_access, prod_access, cast) \
1083 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1087 for (i = 0; i < ARRAY_SIZE(r->mul_element); i += 2) { \
1088 r->prod_access(i >> 1) = (cast)a->mul_access(i) * \
1089 (cast)b->mul_access(i); \
1093 #define VMUL_DO_ODD(name, mul_element, mul_access, prod_access, cast) \
1094 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1098 for (i = 0; i < ARRAY_SIZE(r->mul_element); i += 2) { \
1099 r->prod_access(i >> 1) = (cast)a->mul_access(i + 1) * \
1100 (cast)b->mul_access(i + 1); \
1104 #define VMUL(suffix, mul_element, mul_access, prod_access, cast) \
1105 VMUL_DO_EVN(mule##suffix, mul_element, mul_access, prod_access, cast) \
1106 VMUL_DO_ODD(mulo##suffix, mul_element, mul_access, prod_access, cast)
1107 VMUL(sb
, s8
, VsrSB
, VsrSH
, int16_t)
1108 VMUL(sh
, s16
, VsrSH
, VsrSW
, int32_t)
1109 VMUL(sw
, s32
, VsrSW
, VsrSD
, int64_t)
1110 VMUL(ub
, u8
, VsrB
, VsrH
, uint16_t)
1111 VMUL(uh
, u16
, VsrH
, VsrW
, uint32_t)
1112 VMUL(uw
, u32
, VsrW
, VsrD
, uint64_t)
1117 void helper_vperm(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
,
1123 for (i
= 0; i
< ARRAY_SIZE(r
->u8
); i
++) {
1124 int s
= c
->VsrB(i
) & 0x1f;
1125 int index
= s
& 0xf;
1128 result
.VsrB(i
) = b
->VsrB(index
);
1130 result
.VsrB(i
) = a
->VsrB(index
);
1136 void helper_vpermr(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
,
1142 for (i
= 0; i
< ARRAY_SIZE(r
->u8
); i
++) {
1143 int s
= c
->VsrB(i
) & 0x1f;
1144 int index
= 15 - (s
& 0xf);
1147 result
.VsrB(i
) = a
->VsrB(index
);
1149 result
.VsrB(i
) = b
->VsrB(index
);
1155 #if defined(HOST_WORDS_BIGENDIAN)
1156 #define VBPERMQ_INDEX(avr, i) ((avr)->u8[(i)])
1157 #define VBPERMD_INDEX(i) (i)
1158 #define VBPERMQ_DW(index) (((index) & 0x40) != 0)
1159 #define EXTRACT_BIT(avr, i, index) (extract64((avr)->u64[i], index, 1))
1161 #define VBPERMQ_INDEX(avr, i) ((avr)->u8[15 - (i)])
1162 #define VBPERMD_INDEX(i) (1 - i)
1163 #define VBPERMQ_DW(index) (((index) & 0x40) == 0)
1164 #define EXTRACT_BIT(avr, i, index) \
1165 (extract64((avr)->u64[1 - i], 63 - index, 1))
1168 void helper_vbpermd(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1171 ppc_avr_t result
= { .u64
= { 0, 0 } };
1172 VECTOR_FOR_INORDER_I(i
, u64
) {
1173 for (j
= 0; j
< 8; j
++) {
1174 int index
= VBPERMQ_INDEX(b
, (i
* 8) + j
);
1175 if (index
< 64 && EXTRACT_BIT(a
, i
, index
)) {
1176 result
.u64
[VBPERMD_INDEX(i
)] |= (0x80 >> j
);
1183 void helper_vbpermq(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1188 VECTOR_FOR_INORDER_I(i
, u8
) {
1189 int index
= VBPERMQ_INDEX(b
, i
);
1192 uint64_t mask
= (1ull << (63 - (index
& 0x3F)));
1193 if (a
->u64
[VBPERMQ_DW(index
)] & mask
) {
1194 perm
|= (0x8000 >> i
);
1203 #undef VBPERMQ_INDEX
1206 static const uint64_t VGBBD_MASKS
[256] = {
1207 0x0000000000000000ull
, /* 00 */
1208 0x0000000000000080ull
, /* 01 */
1209 0x0000000000008000ull
, /* 02 */
1210 0x0000000000008080ull
, /* 03 */
1211 0x0000000000800000ull
, /* 04 */
1212 0x0000000000800080ull
, /* 05 */
1213 0x0000000000808000ull
, /* 06 */
1214 0x0000000000808080ull
, /* 07 */
1215 0x0000000080000000ull
, /* 08 */
1216 0x0000000080000080ull
, /* 09 */
1217 0x0000000080008000ull
, /* 0A */
1218 0x0000000080008080ull
, /* 0B */
1219 0x0000000080800000ull
, /* 0C */
1220 0x0000000080800080ull
, /* 0D */
1221 0x0000000080808000ull
, /* 0E */
1222 0x0000000080808080ull
, /* 0F */
1223 0x0000008000000000ull
, /* 10 */
1224 0x0000008000000080ull
, /* 11 */
1225 0x0000008000008000ull
, /* 12 */
1226 0x0000008000008080ull
, /* 13 */
1227 0x0000008000800000ull
, /* 14 */
1228 0x0000008000800080ull
, /* 15 */
1229 0x0000008000808000ull
, /* 16 */
1230 0x0000008000808080ull
, /* 17 */
1231 0x0000008080000000ull
, /* 18 */
1232 0x0000008080000080ull
, /* 19 */
1233 0x0000008080008000ull
, /* 1A */
1234 0x0000008080008080ull
, /* 1B */
1235 0x0000008080800000ull
, /* 1C */
1236 0x0000008080800080ull
, /* 1D */
1237 0x0000008080808000ull
, /* 1E */
1238 0x0000008080808080ull
, /* 1F */
1239 0x0000800000000000ull
, /* 20 */
1240 0x0000800000000080ull
, /* 21 */
1241 0x0000800000008000ull
, /* 22 */
1242 0x0000800000008080ull
, /* 23 */
1243 0x0000800000800000ull
, /* 24 */
1244 0x0000800000800080ull
, /* 25 */
1245 0x0000800000808000ull
, /* 26 */
1246 0x0000800000808080ull
, /* 27 */
1247 0x0000800080000000ull
, /* 28 */
1248 0x0000800080000080ull
, /* 29 */
1249 0x0000800080008000ull
, /* 2A */
1250 0x0000800080008080ull
, /* 2B */
1251 0x0000800080800000ull
, /* 2C */
1252 0x0000800080800080ull
, /* 2D */
1253 0x0000800080808000ull
, /* 2E */
1254 0x0000800080808080ull
, /* 2F */
1255 0x0000808000000000ull
, /* 30 */
1256 0x0000808000000080ull
, /* 31 */
1257 0x0000808000008000ull
, /* 32 */
1258 0x0000808000008080ull
, /* 33 */
1259 0x0000808000800000ull
, /* 34 */
1260 0x0000808000800080ull
, /* 35 */
1261 0x0000808000808000ull
, /* 36 */
1262 0x0000808000808080ull
, /* 37 */
1263 0x0000808080000000ull
, /* 38 */
1264 0x0000808080000080ull
, /* 39 */
1265 0x0000808080008000ull
, /* 3A */
1266 0x0000808080008080ull
, /* 3B */
1267 0x0000808080800000ull
, /* 3C */
1268 0x0000808080800080ull
, /* 3D */
1269 0x0000808080808000ull
, /* 3E */
1270 0x0000808080808080ull
, /* 3F */
1271 0x0080000000000000ull
, /* 40 */
1272 0x0080000000000080ull
, /* 41 */
1273 0x0080000000008000ull
, /* 42 */
1274 0x0080000000008080ull
, /* 43 */
1275 0x0080000000800000ull
, /* 44 */
1276 0x0080000000800080ull
, /* 45 */
1277 0x0080000000808000ull
, /* 46 */
1278 0x0080000000808080ull
, /* 47 */
1279 0x0080000080000000ull
, /* 48 */
1280 0x0080000080000080ull
, /* 49 */
1281 0x0080000080008000ull
, /* 4A */
1282 0x0080000080008080ull
, /* 4B */
1283 0x0080000080800000ull
, /* 4C */
1284 0x0080000080800080ull
, /* 4D */
1285 0x0080000080808000ull
, /* 4E */
1286 0x0080000080808080ull
, /* 4F */
1287 0x0080008000000000ull
, /* 50 */
1288 0x0080008000000080ull
, /* 51 */
1289 0x0080008000008000ull
, /* 52 */
1290 0x0080008000008080ull
, /* 53 */
1291 0x0080008000800000ull
, /* 54 */
1292 0x0080008000800080ull
, /* 55 */
1293 0x0080008000808000ull
, /* 56 */
1294 0x0080008000808080ull
, /* 57 */
1295 0x0080008080000000ull
, /* 58 */
1296 0x0080008080000080ull
, /* 59 */
1297 0x0080008080008000ull
, /* 5A */
1298 0x0080008080008080ull
, /* 5B */
1299 0x0080008080800000ull
, /* 5C */
1300 0x0080008080800080ull
, /* 5D */
1301 0x0080008080808000ull
, /* 5E */
1302 0x0080008080808080ull
, /* 5F */
1303 0x0080800000000000ull
, /* 60 */
1304 0x0080800000000080ull
, /* 61 */
1305 0x0080800000008000ull
, /* 62 */
1306 0x0080800000008080ull
, /* 63 */
1307 0x0080800000800000ull
, /* 64 */
1308 0x0080800000800080ull
, /* 65 */
1309 0x0080800000808000ull
, /* 66 */
1310 0x0080800000808080ull
, /* 67 */
1311 0x0080800080000000ull
, /* 68 */
1312 0x0080800080000080ull
, /* 69 */
1313 0x0080800080008000ull
, /* 6A */
1314 0x0080800080008080ull
, /* 6B */
1315 0x0080800080800000ull
, /* 6C */
1316 0x0080800080800080ull
, /* 6D */
1317 0x0080800080808000ull
, /* 6E */
1318 0x0080800080808080ull
, /* 6F */
1319 0x0080808000000000ull
, /* 70 */
1320 0x0080808000000080ull
, /* 71 */
1321 0x0080808000008000ull
, /* 72 */
1322 0x0080808000008080ull
, /* 73 */
1323 0x0080808000800000ull
, /* 74 */
1324 0x0080808000800080ull
, /* 75 */
1325 0x0080808000808000ull
, /* 76 */
1326 0x0080808000808080ull
, /* 77 */
1327 0x0080808080000000ull
, /* 78 */
1328 0x0080808080000080ull
, /* 79 */
1329 0x0080808080008000ull
, /* 7A */
1330 0x0080808080008080ull
, /* 7B */
1331 0x0080808080800000ull
, /* 7C */
1332 0x0080808080800080ull
, /* 7D */
1333 0x0080808080808000ull
, /* 7E */
1334 0x0080808080808080ull
, /* 7F */
1335 0x8000000000000000ull
, /* 80 */
1336 0x8000000000000080ull
, /* 81 */
1337 0x8000000000008000ull
, /* 82 */
1338 0x8000000000008080ull
, /* 83 */
1339 0x8000000000800000ull
, /* 84 */
1340 0x8000000000800080ull
, /* 85 */
1341 0x8000000000808000ull
, /* 86 */
1342 0x8000000000808080ull
, /* 87 */
1343 0x8000000080000000ull
, /* 88 */
1344 0x8000000080000080ull
, /* 89 */
1345 0x8000000080008000ull
, /* 8A */
1346 0x8000000080008080ull
, /* 8B */
1347 0x8000000080800000ull
, /* 8C */
1348 0x8000000080800080ull
, /* 8D */
1349 0x8000000080808000ull
, /* 8E */
1350 0x8000000080808080ull
, /* 8F */
1351 0x8000008000000000ull
, /* 90 */
1352 0x8000008000000080ull
, /* 91 */
1353 0x8000008000008000ull
, /* 92 */
1354 0x8000008000008080ull
, /* 93 */
1355 0x8000008000800000ull
, /* 94 */
1356 0x8000008000800080ull
, /* 95 */
1357 0x8000008000808000ull
, /* 96 */
1358 0x8000008000808080ull
, /* 97 */
1359 0x8000008080000000ull
, /* 98 */
1360 0x8000008080000080ull
, /* 99 */
1361 0x8000008080008000ull
, /* 9A */
1362 0x8000008080008080ull
, /* 9B */
1363 0x8000008080800000ull
, /* 9C */
1364 0x8000008080800080ull
, /* 9D */
1365 0x8000008080808000ull
, /* 9E */
1366 0x8000008080808080ull
, /* 9F */
1367 0x8000800000000000ull
, /* A0 */
1368 0x8000800000000080ull
, /* A1 */
1369 0x8000800000008000ull
, /* A2 */
1370 0x8000800000008080ull
, /* A3 */
1371 0x8000800000800000ull
, /* A4 */
1372 0x8000800000800080ull
, /* A5 */
1373 0x8000800000808000ull
, /* A6 */
1374 0x8000800000808080ull
, /* A7 */
1375 0x8000800080000000ull
, /* A8 */
1376 0x8000800080000080ull
, /* A9 */
1377 0x8000800080008000ull
, /* AA */
1378 0x8000800080008080ull
, /* AB */
1379 0x8000800080800000ull
, /* AC */
1380 0x8000800080800080ull
, /* AD */
1381 0x8000800080808000ull
, /* AE */
1382 0x8000800080808080ull
, /* AF */
1383 0x8000808000000000ull
, /* B0 */
1384 0x8000808000000080ull
, /* B1 */
1385 0x8000808000008000ull
, /* B2 */
1386 0x8000808000008080ull
, /* B3 */
1387 0x8000808000800000ull
, /* B4 */
1388 0x8000808000800080ull
, /* B5 */
1389 0x8000808000808000ull
, /* B6 */
1390 0x8000808000808080ull
, /* B7 */
1391 0x8000808080000000ull
, /* B8 */
1392 0x8000808080000080ull
, /* B9 */
1393 0x8000808080008000ull
, /* BA */
1394 0x8000808080008080ull
, /* BB */
1395 0x8000808080800000ull
, /* BC */
1396 0x8000808080800080ull
, /* BD */
1397 0x8000808080808000ull
, /* BE */
1398 0x8000808080808080ull
, /* BF */
1399 0x8080000000000000ull
, /* C0 */
1400 0x8080000000000080ull
, /* C1 */
1401 0x8080000000008000ull
, /* C2 */
1402 0x8080000000008080ull
, /* C3 */
1403 0x8080000000800000ull
, /* C4 */
1404 0x8080000000800080ull
, /* C5 */
1405 0x8080000000808000ull
, /* C6 */
1406 0x8080000000808080ull
, /* C7 */
1407 0x8080000080000000ull
, /* C8 */
1408 0x8080000080000080ull
, /* C9 */
1409 0x8080000080008000ull
, /* CA */
1410 0x8080000080008080ull
, /* CB */
1411 0x8080000080800000ull
, /* CC */
1412 0x8080000080800080ull
, /* CD */
1413 0x8080000080808000ull
, /* CE */
1414 0x8080000080808080ull
, /* CF */
1415 0x8080008000000000ull
, /* D0 */
1416 0x8080008000000080ull
, /* D1 */
1417 0x8080008000008000ull
, /* D2 */
1418 0x8080008000008080ull
, /* D3 */
1419 0x8080008000800000ull
, /* D4 */
1420 0x8080008000800080ull
, /* D5 */
1421 0x8080008000808000ull
, /* D6 */
1422 0x8080008000808080ull
, /* D7 */
1423 0x8080008080000000ull
, /* D8 */
1424 0x8080008080000080ull
, /* D9 */
1425 0x8080008080008000ull
, /* DA */
1426 0x8080008080008080ull
, /* DB */
1427 0x8080008080800000ull
, /* DC */
1428 0x8080008080800080ull
, /* DD */
1429 0x8080008080808000ull
, /* DE */
1430 0x8080008080808080ull
, /* DF */
1431 0x8080800000000000ull
, /* E0 */
1432 0x8080800000000080ull
, /* E1 */
1433 0x8080800000008000ull
, /* E2 */
1434 0x8080800000008080ull
, /* E3 */
1435 0x8080800000800000ull
, /* E4 */
1436 0x8080800000800080ull
, /* E5 */
1437 0x8080800000808000ull
, /* E6 */
1438 0x8080800000808080ull
, /* E7 */
1439 0x8080800080000000ull
, /* E8 */
1440 0x8080800080000080ull
, /* E9 */
1441 0x8080800080008000ull
, /* EA */
1442 0x8080800080008080ull
, /* EB */
1443 0x8080800080800000ull
, /* EC */
1444 0x8080800080800080ull
, /* ED */
1445 0x8080800080808000ull
, /* EE */
1446 0x8080800080808080ull
, /* EF */
1447 0x8080808000000000ull
, /* F0 */
1448 0x8080808000000080ull
, /* F1 */
1449 0x8080808000008000ull
, /* F2 */
1450 0x8080808000008080ull
, /* F3 */
1451 0x8080808000800000ull
, /* F4 */
1452 0x8080808000800080ull
, /* F5 */
1453 0x8080808000808000ull
, /* F6 */
1454 0x8080808000808080ull
, /* F7 */
1455 0x8080808080000000ull
, /* F8 */
1456 0x8080808080000080ull
, /* F9 */
1457 0x8080808080008000ull
, /* FA */
1458 0x8080808080008080ull
, /* FB */
1459 0x8080808080800000ull
, /* FC */
1460 0x8080808080800080ull
, /* FD */
1461 0x8080808080808000ull
, /* FE */
1462 0x8080808080808080ull
, /* FF */
1465 void helper_vgbbd(ppc_avr_t
*r
, ppc_avr_t
*b
)
1468 uint64_t t
[2] = { 0, 0 };
1470 VECTOR_FOR_INORDER_I(i
, u8
) {
1471 #if defined(HOST_WORDS_BIGENDIAN)
1472 t
[i
>> 3] |= VGBBD_MASKS
[b
->u8
[i
]] >> (i
& 7);
1474 t
[i
>> 3] |= VGBBD_MASKS
[b
->u8
[i
]] >> (7 - (i
& 7));
1482 #define PMSUM(name, srcfld, trgfld, trgtyp) \
1483 void helper_##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1486 trgtyp prod[sizeof(ppc_avr_t) / sizeof(a->srcfld[0])]; \
1488 VECTOR_FOR_INORDER_I(i, srcfld) { \
1490 for (j = 0; j < sizeof(a->srcfld[0]) * 8; j++) { \
1491 if (a->srcfld[i] & (1ull << j)) { \
1492 prod[i] ^= ((trgtyp)b->srcfld[i] << j); \
1497 VECTOR_FOR_INORDER_I(i, trgfld) { \
1498 r->trgfld[i] = prod[2 * i] ^ prod[2 * i + 1]; \
1502 PMSUM(vpmsumb
, u8
, u16
, uint16_t)
1503 PMSUM(vpmsumh
, u16
, u32
, uint32_t)
1504 PMSUM(vpmsumw
, u32
, u64
, uint64_t)
1506 void helper_vpmsumd(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1509 #ifdef CONFIG_INT128
1511 __uint128_t prod
[2];
1513 VECTOR_FOR_INORDER_I(i
, u64
) {
1515 for (j
= 0; j
< 64; j
++) {
1516 if (a
->u64
[i
] & (1ull << j
)) {
1517 prod
[i
] ^= (((__uint128_t
)b
->u64
[i
]) << j
);
1522 r
->u128
= prod
[0] ^ prod
[1];
1528 VECTOR_FOR_INORDER_I(i
, u64
) {
1529 prod
[i
].VsrD(1) = prod
[i
].VsrD(0) = 0;
1530 for (j
= 0; j
< 64; j
++) {
1531 if (a
->u64
[i
] & (1ull << j
)) {
1535 bshift
.VsrD(1) = b
->u64
[i
];
1537 bshift
.VsrD(0) = b
->u64
[i
] >> (64 - j
);
1538 bshift
.VsrD(1) = b
->u64
[i
] << j
;
1540 prod
[i
].VsrD(1) ^= bshift
.VsrD(1);
1541 prod
[i
].VsrD(0) ^= bshift
.VsrD(0);
1546 r
->VsrD(1) = prod
[0].VsrD(1) ^ prod
[1].VsrD(1);
1547 r
->VsrD(0) = prod
[0].VsrD(0) ^ prod
[1].VsrD(0);
1552 #if defined(HOST_WORDS_BIGENDIAN)
1557 void helper_vpkpx(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1561 #if defined(HOST_WORDS_BIGENDIAN)
1562 const ppc_avr_t
*x
[2] = { a
, b
};
1564 const ppc_avr_t
*x
[2] = { b
, a
};
1567 VECTOR_FOR_INORDER_I(i
, u64
) {
1568 VECTOR_FOR_INORDER_I(j
, u32
) {
1569 uint32_t e
= x
[i
]->u32
[j
];
1571 result
.u16
[4 * i
+ j
] = (((e
>> 9) & 0xfc00) |
1572 ((e
>> 6) & 0x3e0) |
1579 #define VPK(suffix, from, to, cvt, dosat) \
1580 void helper_vpk##suffix(CPUPPCState *env, ppc_avr_t *r, \
1581 ppc_avr_t *a, ppc_avr_t *b) \
1586 ppc_avr_t *a0 = PKBIG ? a : b; \
1587 ppc_avr_t *a1 = PKBIG ? b : a; \
1589 VECTOR_FOR_INORDER_I(i, from) { \
1590 result.to[i] = cvt(a0->from[i], &sat); \
1591 result.to[i + ARRAY_SIZE(r->from)] = cvt(a1->from[i], &sat);\
1594 if (dosat && sat) { \
1595 set_vscr_sat(env); \
1599 VPK(shss
, s16
, s8
, cvtshsb
, 1)
1600 VPK(shus
, s16
, u8
, cvtshub
, 1)
1601 VPK(swss
, s32
, s16
, cvtswsh
, 1)
1602 VPK(swus
, s32
, u16
, cvtswuh
, 1)
1603 VPK(sdss
, s64
, s32
, cvtsdsw
, 1)
1604 VPK(sdus
, s64
, u32
, cvtsduw
, 1)
1605 VPK(uhus
, u16
, u8
, cvtuhub
, 1)
1606 VPK(uwus
, u32
, u16
, cvtuwuh
, 1)
1607 VPK(udus
, u64
, u32
, cvtuduw
, 1)
1608 VPK(uhum
, u16
, u8
, I
, 0)
1609 VPK(uwum
, u32
, u16
, I
, 0)
1610 VPK(udum
, u64
, u32
, I
, 0)
1615 void helper_vrefp(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*b
)
1619 for (i
= 0; i
< ARRAY_SIZE(r
->f32
); i
++) {
1620 r
->f32
[i
] = float32_div(float32_one
, b
->f32
[i
], &env
->vec_status
);
1624 #define VRFI(suffix, rounding) \
1625 void helper_vrfi##suffix(CPUPPCState *env, ppc_avr_t *r, \
1629 float_status s = env->vec_status; \
1631 set_float_rounding_mode(rounding, &s); \
1632 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
1633 r->f32[i] = float32_round_to_int (b->f32[i], &s); \
1636 VRFI(n
, float_round_nearest_even
)
1637 VRFI(m
, float_round_down
)
1638 VRFI(p
, float_round_up
)
1639 VRFI(z
, float_round_to_zero
)
1642 #define VROTATE(suffix, element, mask) \
1643 void helper_vrl##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1647 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1648 unsigned int shift = b->element[i] & mask; \
1649 r->element[i] = (a->element[i] << shift) | \
1650 (a->element[i] >> (sizeof(a->element[0]) * 8 - shift)); \
1654 VROTATE(h
, u16
, 0xF)
1655 VROTATE(w
, u32
, 0x1F)
1656 VROTATE(d
, u64
, 0x3F)
1659 void helper_vrsqrtefp(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*b
)
1663 for (i
= 0; i
< ARRAY_SIZE(r
->f32
); i
++) {
1664 float32 t
= float32_sqrt(b
->f32
[i
], &env
->vec_status
);
1666 r
->f32
[i
] = float32_div(float32_one
, t
, &env
->vec_status
);
1670 #define VRLMI(name, size, element, insert) \
1671 void helper_##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1674 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1675 uint##size##_t src1 = a->element[i]; \
1676 uint##size##_t src2 = b->element[i]; \
1677 uint##size##_t src3 = r->element[i]; \
1678 uint##size##_t begin, end, shift, mask, rot_val; \
1680 shift = extract##size(src2, 0, 6); \
1681 end = extract##size(src2, 8, 6); \
1682 begin = extract##size(src2, 16, 6); \
1683 rot_val = rol##size(src1, shift); \
1684 mask = mask_u##size(begin, end); \
1686 r->element[i] = (rot_val & mask) | (src3 & ~mask); \
1688 r->element[i] = (rot_val & mask); \
1693 VRLMI(vrldmi
, 64, u64
, 1);
1694 VRLMI(vrlwmi
, 32, u32
, 1);
1695 VRLMI(vrldnm
, 64, u64
, 0);
1696 VRLMI(vrlwnm
, 32, u32
, 0);
1698 void helper_vsel(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
,
1701 r
->u64
[0] = (a
->u64
[0] & ~c
->u64
[0]) | (b
->u64
[0] & c
->u64
[0]);
1702 r
->u64
[1] = (a
->u64
[1] & ~c
->u64
[1]) | (b
->u64
[1] & c
->u64
[1]);
1705 void helper_vexptefp(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*b
)
1709 for (i
= 0; i
< ARRAY_SIZE(r
->f32
); i
++) {
1710 r
->f32
[i
] = float32_exp2(b
->f32
[i
], &env
->vec_status
);
1714 void helper_vlogefp(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*b
)
1718 for (i
= 0; i
< ARRAY_SIZE(r
->f32
); i
++) {
1719 r
->f32
[i
] = float32_log2(b
->f32
[i
], &env
->vec_status
);
1723 #if defined(HOST_WORDS_BIGENDIAN)
1724 #define VEXTU_X_DO(name, size, left) \
1725 target_ulong glue(helper_, name)(target_ulong a, ppc_avr_t *b) \
1729 index = (a & 0xf) * 8; \
1731 index = ((15 - (a & 0xf) + 1) * 8) - size; \
1733 return int128_getlo(int128_rshift(b->s128, index)) & \
1734 MAKE_64BIT_MASK(0, size); \
1737 #define VEXTU_X_DO(name, size, left) \
1738 target_ulong glue(helper_, name)(target_ulong a, ppc_avr_t *b) \
1742 index = ((15 - (a & 0xf) + 1) * 8) - size; \
1744 index = (a & 0xf) * 8; \
1746 return int128_getlo(int128_rshift(b->s128, index)) & \
1747 MAKE_64BIT_MASK(0, size); \
1751 VEXTU_X_DO(vextublx
, 8, 1)
1752 VEXTU_X_DO(vextuhlx
, 16, 1)
1753 VEXTU_X_DO(vextuwlx
, 32, 1)
1754 VEXTU_X_DO(vextubrx
, 8, 0)
1755 VEXTU_X_DO(vextuhrx
, 16, 0)
1756 VEXTU_X_DO(vextuwrx
, 32, 0)
1760 * The specification says that the results are undefined if all of the
1761 * shift counts are not identical. We check to make sure that they
1762 * are to conform to what real hardware appears to do.
1764 #define VSHIFT(suffix, leftp) \
1765 void helper_vs##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1767 int shift = b->VsrB(15) & 0x7; \
1771 for (i = 0; i < ARRAY_SIZE(r->u8); i++) { \
1772 doit = doit && ((b->u8[i] & 0x7) == shift); \
1777 } else if (leftp) { \
1778 uint64_t carry = a->VsrD(1) >> (64 - shift); \
1780 r->VsrD(0) = (a->VsrD(0) << shift) | carry; \
1781 r->VsrD(1) = a->VsrD(1) << shift; \
1783 uint64_t carry = a->VsrD(0) << (64 - shift); \
1785 r->VsrD(1) = (a->VsrD(1) >> shift) | carry; \
1786 r->VsrD(0) = a->VsrD(0) >> shift; \
1794 void helper_vslv(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1797 unsigned int shift
, bytes
, size
;
1799 size
= ARRAY_SIZE(r
->u8
);
1800 for (i
= 0; i
< size
; i
++) {
1801 shift
= b
->VsrB(i
) & 0x7; /* extract shift value */
1802 bytes
= (a
->VsrB(i
) << 8) + /* extract adjacent bytes */
1803 (((i
+ 1) < size
) ? a
->VsrB(i
+ 1) : 0);
1804 r
->VsrB(i
) = (bytes
<< shift
) >> 8; /* shift and store result */
1808 void helper_vsrv(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1811 unsigned int shift
, bytes
;
1814 * Use reverse order, as destination and source register can be
1815 * same. Its being modified in place saving temporary, reverse
1816 * order will guarantee that computed result is not fed back.
1818 for (i
= ARRAY_SIZE(r
->u8
) - 1; i
>= 0; i
--) {
1819 shift
= b
->VsrB(i
) & 0x7; /* extract shift value */
1820 bytes
= ((i
? a
->VsrB(i
- 1) : 0) << 8) + a
->VsrB(i
);
1821 /* extract adjacent bytes */
1822 r
->VsrB(i
) = (bytes
>> shift
) & 0xFF; /* shift and store result */
1826 void helper_vsldoi(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t shift
)
1828 int sh
= shift
& 0xf;
1832 for (i
= 0; i
< ARRAY_SIZE(r
->u8
); i
++) {
1835 result
.VsrB(i
) = b
->VsrB(index
- 0x10);
1837 result
.VsrB(i
) = a
->VsrB(index
);
1843 void helper_vslo(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1845 int sh
= (b
->VsrB(0xf) >> 3) & 0xf;
1847 #if defined(HOST_WORDS_BIGENDIAN)
1848 memmove(&r
->u8
[0], &a
->u8
[sh
], 16 - sh
);
1849 memset(&r
->u8
[16 - sh
], 0, sh
);
1851 memmove(&r
->u8
[sh
], &a
->u8
[0], 16 - sh
);
1852 memset(&r
->u8
[0], 0, sh
);
1856 #if defined(HOST_WORDS_BIGENDIAN)
1857 #define VINSERT(suffix, element) \
1858 void helper_vinsert##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \
1860 memmove(&r->u8[index], &b->u8[8 - sizeof(r->element[0])], \
1861 sizeof(r->element[0])); \
1864 #define VINSERT(suffix, element) \
1865 void helper_vinsert##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \
1867 uint32_t d = (16 - index) - sizeof(r->element[0]); \
1868 memmove(&r->u8[d], &b->u8[8], sizeof(r->element[0])); \
1876 #if defined(HOST_WORDS_BIGENDIAN)
1877 #define VEXTRACT(suffix, element) \
1878 void helper_vextract##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \
1880 uint32_t es = sizeof(r->element[0]); \
1881 memmove(&r->u8[8 - es], &b->u8[index], es); \
1882 memset(&r->u8[8], 0, 8); \
1883 memset(&r->u8[0], 0, 8 - es); \
1886 #define VEXTRACT(suffix, element) \
1887 void helper_vextract##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \
1889 uint32_t es = sizeof(r->element[0]); \
1890 uint32_t s = (16 - index) - es; \
1891 memmove(&r->u8[8], &b->u8[s], es); \
1892 memset(&r->u8[0], 0, 8); \
1893 memset(&r->u8[8 + es], 0, 8 - es); \
1902 void helper_xxextractuw(CPUPPCState
*env
, ppc_vsr_t
*xt
,
1903 ppc_vsr_t
*xb
, uint32_t index
)
1906 size_t es
= sizeof(uint32_t);
1911 for (i
= 0; i
< es
; i
++, ext_index
++) {
1912 t
.VsrB(8 - es
+ i
) = xb
->VsrB(ext_index
% 16);
1918 void helper_xxinsertw(CPUPPCState
*env
, ppc_vsr_t
*xt
,
1919 ppc_vsr_t
*xb
, uint32_t index
)
1922 size_t es
= sizeof(uint32_t);
1923 int ins_index
, i
= 0;
1926 for (i
= 0; i
< es
&& ins_index
< 16; i
++, ins_index
++) {
1927 t
.VsrB(ins_index
) = xb
->VsrB(8 - es
+ i
);
1933 #define VEXT_SIGNED(name, element, cast) \
1934 void helper_##name(ppc_avr_t *r, ppc_avr_t *b) \
1937 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1938 r->element[i] = (cast)b->element[i]; \
1941 VEXT_SIGNED(vextsb2w
, s32
, int8_t)
1942 VEXT_SIGNED(vextsb2d
, s64
, int8_t)
1943 VEXT_SIGNED(vextsh2w
, s32
, int16_t)
1944 VEXT_SIGNED(vextsh2d
, s64
, int16_t)
1945 VEXT_SIGNED(vextsw2d
, s64
, int32_t)
1948 #define VNEG(name, element) \
1949 void helper_##name(ppc_avr_t *r, ppc_avr_t *b) \
1952 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1953 r->element[i] = -b->element[i]; \
1960 void helper_vsro(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1962 int sh
= (b
->VsrB(0xf) >> 3) & 0xf;
1964 #if defined(HOST_WORDS_BIGENDIAN)
1965 memmove(&r
->u8
[sh
], &a
->u8
[0], 16 - sh
);
1966 memset(&r
->u8
[0], 0, sh
);
1968 memmove(&r
->u8
[0], &a
->u8
[sh
], 16 - sh
);
1969 memset(&r
->u8
[16 - sh
], 0, sh
);
1973 void helper_vsubcuw(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1977 for (i
= 0; i
< ARRAY_SIZE(r
->u32
); i
++) {
1978 r
->u32
[i
] = a
->u32
[i
] >= b
->u32
[i
];
1982 void helper_vsumsws(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1989 upper
= ARRAY_SIZE(r
->s32
) - 1;
1990 t
= (int64_t)b
->VsrSW(upper
);
1991 for (i
= 0; i
< ARRAY_SIZE(r
->s32
); i
++) {
1993 result
.VsrSW(i
) = 0;
1995 result
.VsrSW(upper
) = cvtsdsw(t
, &sat
);
2003 void helper_vsum2sws(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2010 for (i
= 0; i
< ARRAY_SIZE(r
->u64
); i
++) {
2011 int64_t t
= (int64_t)b
->VsrSW(upper
+ i
* 2);
2014 for (j
= 0; j
< ARRAY_SIZE(r
->u64
); j
++) {
2015 t
+= a
->VsrSW(2 * i
+ j
);
2017 result
.VsrSW(upper
+ i
* 2) = cvtsdsw(t
, &sat
);
2026 void helper_vsum4sbs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2031 for (i
= 0; i
< ARRAY_SIZE(r
->s32
); i
++) {
2032 int64_t t
= (int64_t)b
->s32
[i
];
2034 for (j
= 0; j
< ARRAY_SIZE(r
->s32
); j
++) {
2035 t
+= a
->s8
[4 * i
+ j
];
2037 r
->s32
[i
] = cvtsdsw(t
, &sat
);
2045 void helper_vsum4shs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2050 for (i
= 0; i
< ARRAY_SIZE(r
->s32
); i
++) {
2051 int64_t t
= (int64_t)b
->s32
[i
];
2053 t
+= a
->s16
[2 * i
] + a
->s16
[2 * i
+ 1];
2054 r
->s32
[i
] = cvtsdsw(t
, &sat
);
2062 void helper_vsum4ubs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2067 for (i
= 0; i
< ARRAY_SIZE(r
->u32
); i
++) {
2068 uint64_t t
= (uint64_t)b
->u32
[i
];
2070 for (j
= 0; j
< ARRAY_SIZE(r
->u32
); j
++) {
2071 t
+= a
->u8
[4 * i
+ j
];
2073 r
->u32
[i
] = cvtuduw(t
, &sat
);
2081 #if defined(HOST_WORDS_BIGENDIAN)
2088 #define VUPKPX(suffix, hi) \
2089 void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b) \
2094 for (i = 0; i < ARRAY_SIZE(r->u32); i++) { \
2095 uint16_t e = b->u16[hi ? i : i + 4]; \
2096 uint8_t a = (e >> 15) ? 0xff : 0; \
2097 uint8_t r = (e >> 10) & 0x1f; \
2098 uint8_t g = (e >> 5) & 0x1f; \
2099 uint8_t b = e & 0x1f; \
2101 result.u32[i] = (a << 24) | (r << 16) | (g << 8) | b; \
2109 #define VUPK(suffix, unpacked, packee, hi) \
2110 void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b) \
2116 for (i = 0; i < ARRAY_SIZE(r->unpacked); i++) { \
2117 result.unpacked[i] = b->packee[i]; \
2120 for (i = ARRAY_SIZE(r->unpacked); i < ARRAY_SIZE(r->packee); \
2122 result.unpacked[i - ARRAY_SIZE(r->unpacked)] = b->packee[i]; \
2127 VUPK(hsb
, s16
, s8
, UPKHI
)
2128 VUPK(hsh
, s32
, s16
, UPKHI
)
2129 VUPK(hsw
, s64
, s32
, UPKHI
)
2130 VUPK(lsb
, s16
, s8
, UPKLO
)
2131 VUPK(lsh
, s32
, s16
, UPKLO
)
2132 VUPK(lsw
, s64
, s32
, UPKLO
)
2137 #define VGENERIC_DO(name, element) \
2138 void helper_v##name(ppc_avr_t *r, ppc_avr_t *b) \
2142 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2143 r->element[i] = name(b->element[i]); \
2147 #define clzb(v) ((v) ? clz32((uint32_t)(v) << 24) : 8)
2148 #define clzh(v) ((v) ? clz32((uint32_t)(v) << 16) : 16)
2149 #define clzw(v) clz32((v))
2150 #define clzd(v) clz64((v))
2152 VGENERIC_DO(clzb
, u8
)
2153 VGENERIC_DO(clzh
, u16
)
2154 VGENERIC_DO(clzw
, u32
)
2155 VGENERIC_DO(clzd
, u64
)
2162 #define ctzb(v) ((v) ? ctz32(v) : 8)
2163 #define ctzh(v) ((v) ? ctz32(v) : 16)
2164 #define ctzw(v) ctz32((v))
2165 #define ctzd(v) ctz64((v))
2167 VGENERIC_DO(ctzb
, u8
)
2168 VGENERIC_DO(ctzh
, u16
)
2169 VGENERIC_DO(ctzw
, u32
)
2170 VGENERIC_DO(ctzd
, u64
)
2177 #define popcntb(v) ctpop8(v)
2178 #define popcnth(v) ctpop16(v)
2179 #define popcntw(v) ctpop32(v)
2180 #define popcntd(v) ctpop64(v)
2182 VGENERIC_DO(popcntb
, u8
)
2183 VGENERIC_DO(popcnth
, u16
)
2184 VGENERIC_DO(popcntw
, u32
)
2185 VGENERIC_DO(popcntd
, u64
)
2194 #if defined(HOST_WORDS_BIGENDIAN)
2195 #define QW_ONE { .u64 = { 0, 1 } }
2197 #define QW_ONE { .u64 = { 1, 0 } }
2200 #ifndef CONFIG_INT128
2202 static inline void avr_qw_not(ppc_avr_t
*t
, ppc_avr_t a
)
2204 t
->u64
[0] = ~a
.u64
[0];
2205 t
->u64
[1] = ~a
.u64
[1];
2208 static int avr_qw_cmpu(ppc_avr_t a
, ppc_avr_t b
)
2210 if (a
.VsrD(0) < b
.VsrD(0)) {
2212 } else if (a
.VsrD(0) > b
.VsrD(0)) {
2214 } else if (a
.VsrD(1) < b
.VsrD(1)) {
2216 } else if (a
.VsrD(1) > b
.VsrD(1)) {
2223 static void avr_qw_add(ppc_avr_t
*t
, ppc_avr_t a
, ppc_avr_t b
)
2225 t
->VsrD(1) = a
.VsrD(1) + b
.VsrD(1);
2226 t
->VsrD(0) = a
.VsrD(0) + b
.VsrD(0) +
2227 (~a
.VsrD(1) < b
.VsrD(1));
2230 static int avr_qw_addc(ppc_avr_t
*t
, ppc_avr_t a
, ppc_avr_t b
)
2233 t
->VsrD(1) = a
.VsrD(1) + b
.VsrD(1);
2234 t
->VsrD(0) = a
.VsrD(0) + b
.VsrD(0) +
2235 (~a
.VsrD(1) < b
.VsrD(1));
2236 avr_qw_not(¬_a
, a
);
2237 return avr_qw_cmpu(not_a
, b
) < 0;
2242 void helper_vadduqm(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2244 #ifdef CONFIG_INT128
2245 r
->u128
= a
->u128
+ b
->u128
;
2247 avr_qw_add(r
, *a
, *b
);
2251 void helper_vaddeuqm(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
2253 #ifdef CONFIG_INT128
2254 r
->u128
= a
->u128
+ b
->u128
+ (c
->u128
& 1);
2257 if (c
->VsrD(1) & 1) {
2261 tmp
.VsrD(1) = c
->VsrD(1) & 1;
2262 avr_qw_add(&tmp
, *a
, tmp
);
2263 avr_qw_add(r
, tmp
, *b
);
2265 avr_qw_add(r
, *a
, *b
);
2270 void helper_vaddcuq(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2272 #ifdef CONFIG_INT128
2273 r
->u128
= (~a
->u128
< b
->u128
);
2277 avr_qw_not(¬_a
, *a
);
2280 r
->VsrD(1) = (avr_qw_cmpu(not_a
, *b
) < 0);
2284 void helper_vaddecuq(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
2286 #ifdef CONFIG_INT128
2287 int carry_out
= (~a
->u128
< b
->u128
);
2288 if (!carry_out
&& (c
->u128
& 1)) {
2289 carry_out
= ((a
->u128
+ b
->u128
+ 1) == 0) &&
2290 ((a
->u128
!= 0) || (b
->u128
!= 0));
2292 r
->u128
= carry_out
;
2295 int carry_in
= c
->VsrD(1) & 1;
2299 carry_out
= avr_qw_addc(&tmp
, *a
, *b
);
2301 if (!carry_out
&& carry_in
) {
2302 ppc_avr_t one
= QW_ONE
;
2303 carry_out
= avr_qw_addc(&tmp
, tmp
, one
);
2306 r
->VsrD(1) = carry_out
;
2310 void helper_vsubuqm(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2312 #ifdef CONFIG_INT128
2313 r
->u128
= a
->u128
- b
->u128
;
2316 ppc_avr_t one
= QW_ONE
;
2318 avr_qw_not(&tmp
, *b
);
2319 avr_qw_add(&tmp
, *a
, tmp
);
2320 avr_qw_add(r
, tmp
, one
);
2324 void helper_vsubeuqm(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
2326 #ifdef CONFIG_INT128
2327 r
->u128
= a
->u128
+ ~b
->u128
+ (c
->u128
& 1);
2331 avr_qw_not(&tmp
, *b
);
2332 avr_qw_add(&sum
, *a
, tmp
);
2335 tmp
.VsrD(1) = c
->VsrD(1) & 1;
2336 avr_qw_add(r
, sum
, tmp
);
2340 void helper_vsubcuq(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2342 #ifdef CONFIG_INT128
2343 r
->u128
= (~a
->u128
< ~b
->u128
) ||
2344 (a
->u128
+ ~b
->u128
== (__uint128_t
)-1);
2346 int carry
= (avr_qw_cmpu(*a
, *b
) > 0);
2349 avr_qw_not(&tmp
, *b
);
2350 avr_qw_add(&tmp
, *a
, tmp
);
2351 carry
= ((tmp
.VsrSD(0) == -1ull) && (tmp
.VsrSD(1) == -1ull));
2358 void helper_vsubecuq(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
2360 #ifdef CONFIG_INT128
2362 (~a
->u128
< ~b
->u128
) ||
2363 ((c
->u128
& 1) && (a
->u128
+ ~b
->u128
== (__uint128_t
)-1));
2365 int carry_in
= c
->VsrD(1) & 1;
2366 int carry_out
= (avr_qw_cmpu(*a
, *b
) > 0);
2367 if (!carry_out
&& carry_in
) {
2369 avr_qw_not(&tmp
, *b
);
2370 avr_qw_add(&tmp
, *a
, tmp
);
2371 carry_out
= ((tmp
.VsrD(0) == -1ull) && (tmp
.VsrD(1) == -1ull));
2375 r
->VsrD(1) = carry_out
;
2379 #define BCD_PLUS_PREF_1 0xC
2380 #define BCD_PLUS_PREF_2 0xF
2381 #define BCD_PLUS_ALT_1 0xA
2382 #define BCD_NEG_PREF 0xD
2383 #define BCD_NEG_ALT 0xB
2384 #define BCD_PLUS_ALT_2 0xE
2385 #define NATIONAL_PLUS 0x2B
2386 #define NATIONAL_NEG 0x2D
2388 #if defined(HOST_WORDS_BIGENDIAN)
2389 #define BCD_DIG_BYTE(n) (15 - ((n) / 2))
2391 #define BCD_DIG_BYTE(n) ((n) / 2)
2394 static int bcd_get_sgn(ppc_avr_t
*bcd
)
2396 switch (bcd
->u8
[BCD_DIG_BYTE(0)] & 0xF) {
2397 case BCD_PLUS_PREF_1
:
2398 case BCD_PLUS_PREF_2
:
2399 case BCD_PLUS_ALT_1
:
2400 case BCD_PLUS_ALT_2
:
2418 static int bcd_preferred_sgn(int sgn
, int ps
)
2421 return (ps
== 0) ? BCD_PLUS_PREF_1
: BCD_PLUS_PREF_2
;
2423 return BCD_NEG_PREF
;
2427 static uint8_t bcd_get_digit(ppc_avr_t
*bcd
, int n
, int *invalid
)
2431 result
= bcd
->u8
[BCD_DIG_BYTE(n
)] >> 4;
2433 result
= bcd
->u8
[BCD_DIG_BYTE(n
)] & 0xF;
2436 if (unlikely(result
> 9)) {
2442 static void bcd_put_digit(ppc_avr_t
*bcd
, uint8_t digit
, int n
)
2445 bcd
->u8
[BCD_DIG_BYTE(n
)] &= 0x0F;
2446 bcd
->u8
[BCD_DIG_BYTE(n
)] |= (digit
<< 4);
2448 bcd
->u8
[BCD_DIG_BYTE(n
)] &= 0xF0;
2449 bcd
->u8
[BCD_DIG_BYTE(n
)] |= digit
;
2453 static bool bcd_is_valid(ppc_avr_t
*bcd
)
2458 if (bcd_get_sgn(bcd
) == 0) {
2462 for (i
= 1; i
< 32; i
++) {
2463 bcd_get_digit(bcd
, i
, &invalid
);
2464 if (unlikely(invalid
)) {
2471 static int bcd_cmp_zero(ppc_avr_t
*bcd
)
2473 if (bcd
->VsrD(0) == 0 && (bcd
->VsrD(1) >> 4) == 0) {
2476 return (bcd_get_sgn(bcd
) == 1) ? CRF_GT
: CRF_LT
;
2480 static uint16_t get_national_digit(ppc_avr_t
*reg
, int n
)
2482 return reg
->VsrH(7 - n
);
2485 static void set_national_digit(ppc_avr_t
*reg
, uint8_t val
, int n
)
2487 reg
->VsrH(7 - n
) = val
;
2490 static int bcd_cmp_mag(ppc_avr_t
*a
, ppc_avr_t
*b
)
2494 for (i
= 31; i
> 0; i
--) {
2495 uint8_t dig_a
= bcd_get_digit(a
, i
, &invalid
);
2496 uint8_t dig_b
= bcd_get_digit(b
, i
, &invalid
);
2497 if (unlikely(invalid
)) {
2498 return 0; /* doesn't matter */
2499 } else if (dig_a
> dig_b
) {
2501 } else if (dig_a
< dig_b
) {
2509 static void bcd_add_mag(ppc_avr_t
*t
, ppc_avr_t
*a
, ppc_avr_t
*b
, int *invalid
,
2514 for (i
= 1; i
<= 31; i
++) {
2515 uint8_t digit
= bcd_get_digit(a
, i
, invalid
) +
2516 bcd_get_digit(b
, i
, invalid
) + carry
;
2524 bcd_put_digit(t
, digit
, i
);
2530 static void bcd_sub_mag(ppc_avr_t
*t
, ppc_avr_t
*a
, ppc_avr_t
*b
, int *invalid
,
2536 for (i
= 1; i
<= 31; i
++) {
2537 uint8_t digit
= bcd_get_digit(a
, i
, invalid
) -
2538 bcd_get_digit(b
, i
, invalid
) + carry
;
2546 bcd_put_digit(t
, digit
, i
);
2552 uint32_t helper_bcdadd(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t ps
)
2555 int sgna
= bcd_get_sgn(a
);
2556 int sgnb
= bcd_get_sgn(b
);
2557 int invalid
= (sgna
== 0) || (sgnb
== 0);
2560 ppc_avr_t result
= { .u64
= { 0, 0 } };
2564 result
.u8
[BCD_DIG_BYTE(0)] = bcd_preferred_sgn(sgna
, ps
);
2565 bcd_add_mag(&result
, a
, b
, &invalid
, &overflow
);
2566 cr
= bcd_cmp_zero(&result
);
2568 int magnitude
= bcd_cmp_mag(a
, b
);
2569 if (magnitude
> 0) {
2570 result
.u8
[BCD_DIG_BYTE(0)] = bcd_preferred_sgn(sgna
, ps
);
2571 bcd_sub_mag(&result
, a
, b
, &invalid
, &overflow
);
2572 cr
= (sgna
> 0) ? CRF_GT
: CRF_LT
;
2573 } else if (magnitude
< 0) {
2574 result
.u8
[BCD_DIG_BYTE(0)] = bcd_preferred_sgn(sgnb
, ps
);
2575 bcd_sub_mag(&result
, b
, a
, &invalid
, &overflow
);
2576 cr
= (sgnb
> 0) ? CRF_GT
: CRF_LT
;
2578 result
.u8
[BCD_DIG_BYTE(0)] = bcd_preferred_sgn(0, ps
);
2584 if (unlikely(invalid
)) {
2585 result
.VsrD(0) = result
.VsrD(1) = -1;
2587 } else if (overflow
) {
2596 uint32_t helper_bcdsub(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t ps
)
2598 ppc_avr_t bcopy
= *b
;
2599 int sgnb
= bcd_get_sgn(b
);
2601 bcd_put_digit(&bcopy
, BCD_PLUS_PREF_1
, 0);
2602 } else if (sgnb
> 0) {
2603 bcd_put_digit(&bcopy
, BCD_NEG_PREF
, 0);
2605 /* else invalid ... defer to bcdadd code for proper handling */
2607 return helper_bcdadd(r
, a
, &bcopy
, ps
);
2610 uint32_t helper_bcdcfn(ppc_avr_t
*r
, ppc_avr_t
*b
, uint32_t ps
)
2614 uint16_t national
= 0;
2615 uint16_t sgnb
= get_national_digit(b
, 0);
2616 ppc_avr_t ret
= { .u64
= { 0, 0 } };
2617 int invalid
= (sgnb
!= NATIONAL_PLUS
&& sgnb
!= NATIONAL_NEG
);
2619 for (i
= 1; i
< 8; i
++) {
2620 national
= get_national_digit(b
, i
);
2621 if (unlikely(national
< 0x30 || national
> 0x39)) {
2626 bcd_put_digit(&ret
, national
& 0xf, i
);
2629 if (sgnb
== NATIONAL_PLUS
) {
2630 bcd_put_digit(&ret
, (ps
== 0) ? BCD_PLUS_PREF_1
: BCD_PLUS_PREF_2
, 0);
2632 bcd_put_digit(&ret
, BCD_NEG_PREF
, 0);
2635 cr
= bcd_cmp_zero(&ret
);
2637 if (unlikely(invalid
)) {
2646 uint32_t helper_bcdctn(ppc_avr_t
*r
, ppc_avr_t
*b
, uint32_t ps
)
2650 int sgnb
= bcd_get_sgn(b
);
2651 int invalid
= (sgnb
== 0);
2652 ppc_avr_t ret
= { .u64
= { 0, 0 } };
2654 int ox_flag
= (b
->VsrD(0) != 0) || ((b
->VsrD(1) >> 32) != 0);
2656 for (i
= 1; i
< 8; i
++) {
2657 set_national_digit(&ret
, 0x30 + bcd_get_digit(b
, i
, &invalid
), i
);
2659 if (unlikely(invalid
)) {
2663 set_national_digit(&ret
, (sgnb
== -1) ? NATIONAL_NEG
: NATIONAL_PLUS
, 0);
2665 cr
= bcd_cmp_zero(b
);
2671 if (unlikely(invalid
)) {
2680 uint32_t helper_bcdcfz(ppc_avr_t
*r
, ppc_avr_t
*b
, uint32_t ps
)
2686 int zone_lead
= ps
? 0xF : 0x3;
2688 ppc_avr_t ret
= { .u64
= { 0, 0 } };
2689 int sgnb
= b
->u8
[BCD_DIG_BYTE(0)] >> 4;
2691 if (unlikely((sgnb
< 0xA) && ps
)) {
2695 for (i
= 0; i
< 16; i
++) {
2696 zone_digit
= i
? b
->u8
[BCD_DIG_BYTE(i
* 2)] >> 4 : zone_lead
;
2697 digit
= b
->u8
[BCD_DIG_BYTE(i
* 2)] & 0xF;
2698 if (unlikely(zone_digit
!= zone_lead
|| digit
> 0x9)) {
2703 bcd_put_digit(&ret
, digit
, i
+ 1);
2706 if ((ps
&& (sgnb
== 0xB || sgnb
== 0xD)) ||
2707 (!ps
&& (sgnb
& 0x4))) {
2708 bcd_put_digit(&ret
, BCD_NEG_PREF
, 0);
2710 bcd_put_digit(&ret
, BCD_PLUS_PREF_1
, 0);
2713 cr
= bcd_cmp_zero(&ret
);
2715 if (unlikely(invalid
)) {
2724 uint32_t helper_bcdctz(ppc_avr_t
*r
, ppc_avr_t
*b
, uint32_t ps
)
2729 int sgnb
= bcd_get_sgn(b
);
2730 int zone_lead
= (ps
) ? 0xF0 : 0x30;
2731 int invalid
= (sgnb
== 0);
2732 ppc_avr_t ret
= { .u64
= { 0, 0 } };
2734 int ox_flag
= ((b
->VsrD(0) >> 4) != 0);
2736 for (i
= 0; i
< 16; i
++) {
2737 digit
= bcd_get_digit(b
, i
+ 1, &invalid
);
2739 if (unlikely(invalid
)) {
2743 ret
.u8
[BCD_DIG_BYTE(i
* 2)] = zone_lead
+ digit
;
2747 bcd_put_digit(&ret
, (sgnb
== 1) ? 0xC : 0xD, 1);
2749 bcd_put_digit(&ret
, (sgnb
== 1) ? 0x3 : 0x7, 1);
2752 cr
= bcd_cmp_zero(b
);
2758 if (unlikely(invalid
)) {
2767 uint32_t helper_bcdcfsq(ppc_avr_t
*r
, ppc_avr_t
*b
, uint32_t ps
)
2773 ppc_avr_t ret
= { .u64
= { 0, 0 } };
2775 if (b
->VsrSD(0) < 0) {
2776 lo_value
= -b
->VsrSD(1);
2777 hi_value
= ~b
->VsrD(0) + !lo_value
;
2778 bcd_put_digit(&ret
, 0xD, 0);
2780 lo_value
= b
->VsrD(1);
2781 hi_value
= b
->VsrD(0);
2782 bcd_put_digit(&ret
, bcd_preferred_sgn(0, ps
), 0);
2785 if (divu128(&lo_value
, &hi_value
, 1000000000000000ULL) ||
2786 lo_value
> 9999999999999999ULL) {
2790 for (i
= 1; i
< 16; hi_value
/= 10, i
++) {
2791 bcd_put_digit(&ret
, hi_value
% 10, i
);
2794 for (; i
< 32; lo_value
/= 10, i
++) {
2795 bcd_put_digit(&ret
, lo_value
% 10, i
);
2798 cr
|= bcd_cmp_zero(&ret
);
2805 uint32_t helper_bcdctsq(ppc_avr_t
*r
, ppc_avr_t
*b
, uint32_t ps
)
2812 uint64_t hi_value
= 0;
2813 int sgnb
= bcd_get_sgn(b
);
2814 int invalid
= (sgnb
== 0);
2816 lo_value
= bcd_get_digit(b
, 31, &invalid
);
2817 for (i
= 30; i
> 0; i
--) {
2818 mulu64(&lo_value
, &carry
, lo_value
, 10ULL);
2819 mulu64(&hi_value
, &unused
, hi_value
, 10ULL);
2820 lo_value
+= bcd_get_digit(b
, i
, &invalid
);
2823 if (unlikely(invalid
)) {
2829 r
->VsrSD(1) = -lo_value
;
2830 r
->VsrSD(0) = ~hi_value
+ !r
->VsrSD(1);
2832 r
->VsrSD(1) = lo_value
;
2833 r
->VsrSD(0) = hi_value
;
2836 cr
= bcd_cmp_zero(b
);
2838 if (unlikely(invalid
)) {
2845 uint32_t helper_bcdcpsgn(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t ps
)
2850 if (bcd_get_sgn(a
) == 0 || bcd_get_sgn(b
) == 0) {
2855 bcd_put_digit(r
, b
->u8
[BCD_DIG_BYTE(0)] & 0xF, 0);
2857 for (i
= 1; i
< 32; i
++) {
2858 bcd_get_digit(a
, i
, &invalid
);
2859 bcd_get_digit(b
, i
, &invalid
);
2860 if (unlikely(invalid
)) {
2865 return bcd_cmp_zero(r
);
2868 uint32_t helper_bcdsetsgn(ppc_avr_t
*r
, ppc_avr_t
*b
, uint32_t ps
)
2870 int sgnb
= bcd_get_sgn(b
);
2873 bcd_put_digit(r
, bcd_preferred_sgn(sgnb
, ps
), 0);
2875 if (bcd_is_valid(b
) == false) {
2879 return bcd_cmp_zero(r
);
2882 uint32_t helper_bcds(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t ps
)
2885 #if defined(HOST_WORDS_BIGENDIAN)
2890 bool ox_flag
= false;
2891 int sgnb
= bcd_get_sgn(b
);
2893 ret
.VsrD(1) &= ~0xf;
2895 if (bcd_is_valid(b
) == false) {
2899 if (unlikely(i
> 31)) {
2901 } else if (unlikely(i
< -31)) {
2906 ulshift(&ret
.VsrD(1), &ret
.VsrD(0), i
* 4, &ox_flag
);
2908 urshift(&ret
.VsrD(1), &ret
.VsrD(0), -i
* 4);
2910 bcd_put_digit(&ret
, bcd_preferred_sgn(sgnb
, ps
), 0);
2914 cr
= bcd_cmp_zero(r
);
2922 uint32_t helper_bcdus(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t ps
)
2927 bool ox_flag
= false;
2930 for (i
= 0; i
< 32; i
++) {
2931 bcd_get_digit(b
, i
, &invalid
);
2933 if (unlikely(invalid
)) {
2938 #if defined(HOST_WORDS_BIGENDIAN)
2945 ret
.VsrD(1) = ret
.VsrD(0) = 0;
2946 } else if (i
<= -32) {
2947 ret
.VsrD(1) = ret
.VsrD(0) = 0;
2949 ulshift(&ret
.VsrD(1), &ret
.VsrD(0), i
* 4, &ox_flag
);
2951 urshift(&ret
.VsrD(1), &ret
.VsrD(0), -i
* 4);
2955 cr
= bcd_cmp_zero(r
);
2963 uint32_t helper_bcdsr(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t ps
)
2968 bool ox_flag
= false;
2969 int sgnb
= bcd_get_sgn(b
);
2971 ret
.VsrD(1) &= ~0xf;
2973 #if defined(HOST_WORDS_BIGENDIAN)
2975 ppc_avr_t bcd_one
= { .u64
= { 0, 0x10 } };
2978 ppc_avr_t bcd_one
= { .u64
= { 0x10, 0 } };
2981 if (bcd_is_valid(b
) == false) {
2985 if (unlikely(i
> 31)) {
2987 } else if (unlikely(i
< -31)) {
2992 ulshift(&ret
.VsrD(1), &ret
.VsrD(0), i
* 4, &ox_flag
);
2994 urshift(&ret
.VsrD(1), &ret
.VsrD(0), -i
* 4);
2996 if (bcd_get_digit(&ret
, 0, &invalid
) >= 5) {
2997 bcd_add_mag(&ret
, &ret
, &bcd_one
, &invalid
, &unused
);
3000 bcd_put_digit(&ret
, bcd_preferred_sgn(sgnb
, ps
), 0);
3002 cr
= bcd_cmp_zero(&ret
);
3011 uint32_t helper_bcdtrunc(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t ps
)
3014 uint32_t ox_flag
= 0;
3015 #if defined(HOST_WORDS_BIGENDIAN)
3016 int i
= a
->s16
[3] + 1;
3018 int i
= a
->s16
[4] + 1;
3022 if (bcd_is_valid(b
) == false) {
3026 if (i
> 16 && i
< 32) {
3027 mask
= (uint64_t)-1 >> (128 - i
* 4);
3028 if (ret
.VsrD(0) & ~mask
) {
3032 ret
.VsrD(0) &= mask
;
3033 } else if (i
>= 0 && i
<= 16) {
3034 mask
= (uint64_t)-1 >> (64 - i
* 4);
3035 if (ret
.VsrD(0) || (ret
.VsrD(1) & ~mask
)) {
3039 ret
.VsrD(1) &= mask
;
3042 bcd_put_digit(&ret
, bcd_preferred_sgn(bcd_get_sgn(b
), ps
), 0);
3045 return bcd_cmp_zero(&ret
) | ox_flag
;
3048 uint32_t helper_bcdutrunc(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t ps
)
3052 uint32_t ox_flag
= 0;
3056 for (i
= 0; i
< 32; i
++) {
3057 bcd_get_digit(b
, i
, &invalid
);
3059 if (unlikely(invalid
)) {
3064 #if defined(HOST_WORDS_BIGENDIAN)
3069 if (i
> 16 && i
< 33) {
3070 mask
= (uint64_t)-1 >> (128 - i
* 4);
3071 if (ret
.VsrD(0) & ~mask
) {
3075 ret
.VsrD(0) &= mask
;
3076 } else if (i
> 0 && i
<= 16) {
3077 mask
= (uint64_t)-1 >> (64 - i
* 4);
3078 if (ret
.VsrD(0) || (ret
.VsrD(1) & ~mask
)) {
3082 ret
.VsrD(1) &= mask
;
3084 } else if (i
== 0) {
3085 if (ret
.VsrD(0) || ret
.VsrD(1)) {
3088 ret
.VsrD(0) = ret
.VsrD(1) = 0;
3092 if (r
->VsrD(0) == 0 && r
->VsrD(1) == 0) {
3093 return ox_flag
| CRF_EQ
;
3096 return ox_flag
| CRF_GT
;
3099 void helper_vsbox(ppc_avr_t
*r
, ppc_avr_t
*a
)
3102 VECTOR_FOR_INORDER_I(i
, u8
) {
3103 r
->u8
[i
] = AES_sbox
[a
->u8
[i
]];
3107 void helper_vcipher(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
3112 VECTOR_FOR_INORDER_I(i
, u32
) {
3113 result
.VsrW(i
) = b
->VsrW(i
) ^
3114 (AES_Te0
[a
->VsrB(AES_shifts
[4 * i
+ 0])] ^
3115 AES_Te1
[a
->VsrB(AES_shifts
[4 * i
+ 1])] ^
3116 AES_Te2
[a
->VsrB(AES_shifts
[4 * i
+ 2])] ^
3117 AES_Te3
[a
->VsrB(AES_shifts
[4 * i
+ 3])]);
3122 void helper_vcipherlast(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
3127 VECTOR_FOR_INORDER_I(i
, u8
) {
3128 result
.VsrB(i
) = b
->VsrB(i
) ^ (AES_sbox
[a
->VsrB(AES_shifts
[i
])]);
3133 void helper_vncipher(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
3135 /* This differs from what is written in ISA V2.07. The RTL is */
3136 /* incorrect and will be fixed in V2.07B. */
3140 VECTOR_FOR_INORDER_I(i
, u8
) {
3141 tmp
.VsrB(i
) = b
->VsrB(i
) ^ AES_isbox
[a
->VsrB(AES_ishifts
[i
])];
3144 VECTOR_FOR_INORDER_I(i
, u32
) {
3146 AES_imc
[tmp
.VsrB(4 * i
+ 0)][0] ^
3147 AES_imc
[tmp
.VsrB(4 * i
+ 1)][1] ^
3148 AES_imc
[tmp
.VsrB(4 * i
+ 2)][2] ^
3149 AES_imc
[tmp
.VsrB(4 * i
+ 3)][3];
3153 void helper_vncipherlast(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
3158 VECTOR_FOR_INORDER_I(i
, u8
) {
3159 result
.VsrB(i
) = b
->VsrB(i
) ^ (AES_isbox
[a
->VsrB(AES_ishifts
[i
])]);
3164 void helper_vshasigmaw(ppc_avr_t
*r
, ppc_avr_t
*a
, uint32_t st_six
)
3166 int st
= (st_six
& 0x10) != 0;
3167 int six
= st_six
& 0xF;
3170 for (i
= 0; i
< ARRAY_SIZE(r
->u32
); i
++) {
3172 if ((six
& (0x8 >> i
)) == 0) {
3173 r
->VsrW(i
) = ror32(a
->VsrW(i
), 7) ^
3174 ror32(a
->VsrW(i
), 18) ^
3176 } else { /* six.bit[i] == 1 */
3177 r
->VsrW(i
) = ror32(a
->VsrW(i
), 17) ^
3178 ror32(a
->VsrW(i
), 19) ^
3181 } else { /* st == 1 */
3182 if ((six
& (0x8 >> i
)) == 0) {
3183 r
->VsrW(i
) = ror32(a
->VsrW(i
), 2) ^
3184 ror32(a
->VsrW(i
), 13) ^
3185 ror32(a
->VsrW(i
), 22);
3186 } else { /* six.bit[i] == 1 */
3187 r
->VsrW(i
) = ror32(a
->VsrW(i
), 6) ^
3188 ror32(a
->VsrW(i
), 11) ^
3189 ror32(a
->VsrW(i
), 25);
3195 void helper_vshasigmad(ppc_avr_t
*r
, ppc_avr_t
*a
, uint32_t st_six
)
3197 int st
= (st_six
& 0x10) != 0;
3198 int six
= st_six
& 0xF;
3201 for (i
= 0; i
< ARRAY_SIZE(r
->u64
); i
++) {
3203 if ((six
& (0x8 >> (2 * i
))) == 0) {
3204 r
->VsrD(i
) = ror64(a
->VsrD(i
), 1) ^
3205 ror64(a
->VsrD(i
), 8) ^
3207 } else { /* six.bit[2*i] == 1 */
3208 r
->VsrD(i
) = ror64(a
->VsrD(i
), 19) ^
3209 ror64(a
->VsrD(i
), 61) ^
3212 } else { /* st == 1 */
3213 if ((six
& (0x8 >> (2 * i
))) == 0) {
3214 r
->VsrD(i
) = ror64(a
->VsrD(i
), 28) ^
3215 ror64(a
->VsrD(i
), 34) ^
3216 ror64(a
->VsrD(i
), 39);
3217 } else { /* six.bit[2*i] == 1 */
3218 r
->VsrD(i
) = ror64(a
->VsrD(i
), 14) ^
3219 ror64(a
->VsrD(i
), 18) ^
3220 ror64(a
->VsrD(i
), 41);
3226 void helper_vpermxor(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
3231 for (i
= 0; i
< ARRAY_SIZE(r
->u8
); i
++) {
3232 int indexA
= c
->VsrB(i
) >> 4;
3233 int indexB
= c
->VsrB(i
) & 0xF;
3235 result
.VsrB(i
) = a
->VsrB(indexA
) ^ b
->VsrB(indexB
);
3240 #undef VECTOR_FOR_INORDER_I
3242 /*****************************************************************************/
3243 /* SPE extension helpers */
3244 /* Use a table to make this quicker */
3245 static const uint8_t hbrev
[16] = {
3246 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
3247 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
3250 static inline uint8_t byte_reverse(uint8_t val
)
3252 return hbrev
[val
>> 4] | (hbrev
[val
& 0xF] << 4);
3255 static inline uint32_t word_reverse(uint32_t val
)
3257 return byte_reverse(val
>> 24) | (byte_reverse(val
>> 16) << 8) |
3258 (byte_reverse(val
>> 8) << 16) | (byte_reverse(val
) << 24);
3261 #define MASKBITS 16 /* Random value - to be fixed (implementation dependent) */
3262 target_ulong
helper_brinc(target_ulong arg1
, target_ulong arg2
)
3264 uint32_t a
, b
, d
, mask
;
3266 mask
= UINT32_MAX
>> (32 - MASKBITS
);
3269 d
= word_reverse(1 + word_reverse(a
| ~b
));
3270 return (arg1
& ~mask
) | (d
& b
);
3273 uint32_t helper_cntlsw32(uint32_t val
)
3275 if (val
& 0x80000000) {
3282 uint32_t helper_cntlzw32(uint32_t val
)
3288 target_ulong
helper_dlmzb(CPUPPCState
*env
, target_ulong high
,
3289 target_ulong low
, uint32_t update_Rc
)
3295 for (mask
= 0xFF000000; mask
!= 0; mask
= mask
>> 8) {
3296 if ((high
& mask
) == 0) {
3304 for (mask
= 0xFF000000; mask
!= 0; mask
= mask
>> 8) {
3305 if ((low
& mask
) == 0) {
3318 env
->xer
= (env
->xer
& ~0x7F) | i
;
3320 env
->crf
[0] |= xer_so
;