2 * Block model of SPI controller present in
3 * Microsemi's SmartFusion2 and SmartFusion SoCs.
5 * Copyright (C) 2017 Subbaraya Sundeep <sundeep.lkml@gmail.com>
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 #include "qemu/osdep.h"
27 #include "hw/ssi/mss-spi.h"
29 #include "qemu/module.h"
31 #ifndef MSS_SPI_ERR_DEBUG
32 #define MSS_SPI_ERR_DEBUG 0
35 #define DB_PRINT_L(lvl, fmt, args...) do { \
36 if (MSS_SPI_ERR_DEBUG >= lvl) { \
37 qemu_log("%s: " fmt "\n", __func__, ## args); \
41 #define DB_PRINT(fmt, args...) DB_PRINT_L(1, fmt, ## args)
43 #define FIFO_CAPACITY 32
45 #define R_SPI_CONTROL 0
46 #define R_SPI_DFSIZE 1
47 #define R_SPI_STATUS 2
48 #define R_SPI_INTCLR 3
51 #define R_SPI_CLKGEN 6
56 #define S_TXDONE (1 << 0)
57 #define S_RXRDY (1 << 1)
58 #define S_RXCHOVRF (1 << 2)
59 #define S_RXFIFOFUL (1 << 4)
60 #define S_RXFIFOFULNXT (1 << 5)
61 #define S_RXFIFOEMP (1 << 6)
62 #define S_RXFIFOEMPNXT (1 << 7)
63 #define S_TXFIFOFUL (1 << 8)
64 #define S_TXFIFOFULNXT (1 << 9)
65 #define S_TXFIFOEMP (1 << 10)
66 #define S_TXFIFOEMPNXT (1 << 11)
67 #define S_FRAMESTART (1 << 12)
68 #define S_SSEL (1 << 13)
69 #define S_ACTIVE (1 << 14)
71 #define C_ENABLE (1 << 0)
72 #define C_MODE (1 << 1)
73 #define C_INTRXDATA (1 << 4)
74 #define C_INTTXDATA (1 << 5)
75 #define C_INTRXOVRFLO (1 << 6)
76 #define C_SPS (1 << 26)
77 #define C_BIGFIFO (1 << 29)
78 #define C_RESET (1 << 31)
80 #define FRAMESZ_MASK 0x3F
81 #define FMCOUNT_MASK 0x00FFFF00
82 #define FMCOUNT_SHIFT 8
83 #define FRAMESZ_MAX 32
85 static void txfifo_reset(MSSSpiState
*s
)
87 fifo32_reset(&s
->tx_fifo
);
89 s
->regs
[R_SPI_STATUS
] &= ~S_TXFIFOFUL
;
90 s
->regs
[R_SPI_STATUS
] |= S_TXFIFOEMP
;
93 static void rxfifo_reset(MSSSpiState
*s
)
95 fifo32_reset(&s
->rx_fifo
);
97 s
->regs
[R_SPI_STATUS
] &= ~S_RXFIFOFUL
;
98 s
->regs
[R_SPI_STATUS
] |= S_RXFIFOEMP
;
101 static void set_fifodepth(MSSSpiState
*s
)
103 unsigned int size
= s
->regs
[R_SPI_DFSIZE
] & FRAMESZ_MASK
;
107 } else if (size
<= 16) {
114 static void update_mis(MSSSpiState
*s
)
116 uint32_t reg
= s
->regs
[R_SPI_CONTROL
];
120 * form the Control register interrupt enable bits
121 * same as RIS, MIS and Interrupt clear registers for simplicity
123 tmp
= ((reg
& C_INTRXOVRFLO
) >> 4) | ((reg
& C_INTRXDATA
) >> 3) |
124 ((reg
& C_INTTXDATA
) >> 5);
125 s
->regs
[R_SPI_MIS
] |= tmp
& s
->regs
[R_SPI_RIS
];
128 static void spi_update_irq(MSSSpiState
*s
)
133 irq
= !!(s
->regs
[R_SPI_MIS
]);
135 qemu_set_irq(s
->irq
, irq
);
138 static void mss_spi_reset(DeviceState
*d
)
140 MSSSpiState
*s
= MSS_SPI(d
);
142 memset(s
->regs
, 0, sizeof s
->regs
);
143 s
->regs
[R_SPI_CONTROL
] = 0x80000102;
144 s
->regs
[R_SPI_DFSIZE
] = 0x4;
145 s
->regs
[R_SPI_STATUS
] = S_SSEL
| S_TXFIFOEMP
| S_RXFIFOEMP
;
146 s
->regs
[R_SPI_CLKGEN
] = 0x7;
147 s
->regs
[R_SPI_RIS
] = 0x0;
158 spi_read(void *opaque
, hwaddr addr
, unsigned int size
)
160 MSSSpiState
*s
= opaque
;
166 s
->regs
[R_SPI_STATUS
] &= ~S_RXFIFOFUL
;
167 s
->regs
[R_SPI_STATUS
] &= ~S_RXCHOVRF
;
168 if (fifo32_is_empty(&s
->rx_fifo
)) {
169 qemu_log_mask(LOG_GUEST_ERROR
,
170 "%s: Reading empty RX_FIFO\n",
173 ret
= fifo32_pop(&s
->rx_fifo
);
175 if (fifo32_is_empty(&s
->rx_fifo
)) {
176 s
->regs
[R_SPI_STATUS
] |= S_RXFIFOEMP
;
182 ret
= s
->regs
[R_SPI_MIS
];
186 if (addr
< ARRAY_SIZE(s
->regs
)) {
189 qemu_log_mask(LOG_GUEST_ERROR
,
190 "%s: Bad offset 0x%" HWADDR_PRIx
"\n", __func__
,
197 DB_PRINT("addr=0x%" HWADDR_PRIx
" = 0x%" PRIx32
, addr
* 4, ret
);
202 static void assert_cs(MSSSpiState
*s
)
204 qemu_set_irq(s
->cs_line
, 0);
207 static void deassert_cs(MSSSpiState
*s
)
209 qemu_set_irq(s
->cs_line
, 1);
212 static void spi_flush_txfifo(MSSSpiState
*s
)
216 bool sps
= !!(s
->regs
[R_SPI_CONTROL
] & C_SPS
);
219 * Chip Select(CS) is automatically controlled by this controller.
220 * If SPS bit is set in Control register then CS is asserted
221 * until all the frames set in frame count of Control register are
222 * transferred. If SPS is not set then CS pulses between frames.
223 * Note that Slave Select register specifies which of the CS line
224 * has to be controlled automatically by controller. Bits SS[7:1] are for
225 * masters in FPGA fabric since we model only Microcontroller subsystem
226 * of Smartfusion2 we control only one CS(SS[0]) line.
228 while (!fifo32_is_empty(&s
->tx_fifo
) && s
->frame_count
) {
231 s
->regs
[R_SPI_STATUS
] &= ~(S_TXDONE
| S_RXRDY
);
233 tx
= fifo32_pop(&s
->tx_fifo
);
234 DB_PRINT("data tx:0x%" PRIx32
, tx
);
235 rx
= ssi_transfer(s
->spi
, tx
);
236 DB_PRINT("data rx:0x%" PRIx32
, rx
);
238 if (fifo32_num_used(&s
->rx_fifo
) == s
->fifo_depth
) {
239 s
->regs
[R_SPI_STATUS
] |= S_RXCHOVRF
;
240 s
->regs
[R_SPI_RIS
] |= S_RXCHOVRF
;
242 fifo32_push(&s
->rx_fifo
, rx
);
243 s
->regs
[R_SPI_STATUS
] &= ~S_RXFIFOEMP
;
244 if (fifo32_num_used(&s
->rx_fifo
) == (s
->fifo_depth
- 1)) {
245 s
->regs
[R_SPI_STATUS
] |= S_RXFIFOFULNXT
;
246 } else if (fifo32_num_used(&s
->rx_fifo
) == s
->fifo_depth
) {
247 s
->regs
[R_SPI_STATUS
] |= S_RXFIFOFUL
;
256 if (!s
->frame_count
) {
257 s
->frame_count
= (s
->regs
[R_SPI_CONTROL
] & FMCOUNT_MASK
) >>
260 s
->regs
[R_SPI_RIS
] |= S_TXDONE
| S_RXRDY
;
261 s
->regs
[R_SPI_STATUS
] |= S_TXDONE
| S_RXRDY
;
265 static void spi_write(void *opaque
, hwaddr addr
,
266 uint64_t val64
, unsigned int size
)
268 MSSSpiState
*s
= opaque
;
269 uint32_t value
= val64
;
271 DB_PRINT("addr=0x%" HWADDR_PRIx
" =0x%" PRIx32
, addr
, value
);
276 /* adding to already full FIFO */
277 if (fifo32_num_used(&s
->tx_fifo
) == s
->fifo_depth
) {
280 s
->regs
[R_SPI_STATUS
] &= ~S_TXFIFOEMP
;
281 fifo32_push(&s
->tx_fifo
, value
);
282 if (fifo32_num_used(&s
->tx_fifo
) == (s
->fifo_depth
- 1)) {
283 s
->regs
[R_SPI_STATUS
] |= S_TXFIFOFULNXT
;
284 } else if (fifo32_num_used(&s
->tx_fifo
) == s
->fifo_depth
) {
285 s
->regs
[R_SPI_STATUS
] |= S_TXFIFOFUL
;
293 s
->regs
[R_SPI_CONTROL
] = value
;
294 if (value
& C_BIGFIFO
) {
299 s
->enabled
= value
& C_ENABLE
;
300 s
->frame_count
= (value
& FMCOUNT_MASK
) >> FMCOUNT_SHIFT
;
301 if (value
& C_RESET
) {
302 mss_spi_reset(DEVICE(s
));
311 * [31:6] bits are reserved bits and for future use.
312 * [5:0] are for frame size. Only [5:0] bits are validated
313 * during write, [31:6] bits are untouched.
315 if ((value
& FRAMESZ_MASK
) > FRAMESZ_MAX
) {
316 qemu_log_mask(LOG_GUEST_ERROR
, "%s: Incorrect size %u provided."
317 "Maximum frame size is %u\n",
318 __func__
, value
& FRAMESZ_MASK
, FRAMESZ_MAX
);
321 s
->regs
[R_SPI_DFSIZE
] = value
;
325 s
->regs
[R_SPI_INTCLR
] = value
;
326 if (value
& S_TXDONE
) {
327 s
->regs
[R_SPI_RIS
] &= ~S_TXDONE
;
329 if (value
& S_RXRDY
) {
330 s
->regs
[R_SPI_RIS
] &= ~S_RXRDY
;
332 if (value
& S_RXCHOVRF
) {
333 s
->regs
[R_SPI_RIS
] &= ~S_RXCHOVRF
;
340 qemu_log_mask(LOG_GUEST_ERROR
,
341 "%s: Write to read only register 0x%" HWADDR_PRIx
"\n",
346 if (addr
< ARRAY_SIZE(s
->regs
)) {
347 s
->regs
[addr
] = value
;
349 qemu_log_mask(LOG_GUEST_ERROR
,
350 "%s: Bad offset 0x%" HWADDR_PRIx
"\n", __func__
,
359 static const MemoryRegionOps spi_ops
= {
362 .endianness
= DEVICE_NATIVE_ENDIAN
,
364 .min_access_size
= 1,
369 static void mss_spi_realize(DeviceState
*dev
, Error
**errp
)
371 MSSSpiState
*s
= MSS_SPI(dev
);
372 SysBusDevice
*sbd
= SYS_BUS_DEVICE(dev
);
374 s
->spi
= ssi_create_bus(dev
, "spi");
376 sysbus_init_irq(sbd
, &s
->irq
);
377 ssi_auto_connect_slaves(dev
, &s
->cs_line
, s
->spi
);
378 sysbus_init_irq(sbd
, &s
->cs_line
);
380 memory_region_init_io(&s
->mmio
, OBJECT(s
), &spi_ops
, s
,
381 TYPE_MSS_SPI
, R_SPI_MAX
* 4);
382 sysbus_init_mmio(sbd
, &s
->mmio
);
384 fifo32_create(&s
->tx_fifo
, FIFO_CAPACITY
);
385 fifo32_create(&s
->rx_fifo
, FIFO_CAPACITY
);
388 static const VMStateDescription vmstate_mss_spi
= {
389 .name
= TYPE_MSS_SPI
,
391 .minimum_version_id
= 1,
392 .fields
= (VMStateField
[]) {
393 VMSTATE_FIFO32(tx_fifo
, MSSSpiState
),
394 VMSTATE_FIFO32(rx_fifo
, MSSSpiState
),
395 VMSTATE_UINT32_ARRAY(regs
, MSSSpiState
, R_SPI_MAX
),
396 VMSTATE_END_OF_LIST()
400 static void mss_spi_class_init(ObjectClass
*klass
, void *data
)
402 DeviceClass
*dc
= DEVICE_CLASS(klass
);
404 dc
->realize
= mss_spi_realize
;
405 dc
->reset
= mss_spi_reset
;
406 dc
->vmsd
= &vmstate_mss_spi
;
409 static const TypeInfo mss_spi_info
= {
410 .name
= TYPE_MSS_SPI
,
411 .parent
= TYPE_SYS_BUS_DEVICE
,
412 .instance_size
= sizeof(MSSSpiState
),
413 .class_init
= mss_spi_class_init
,
416 static void mss_spi_register_types(void)
418 type_register_static(&mss_spi_info
);
421 type_init(mss_spi_register_types
)