slirp: update with CVE-2019-14378 fix
[qemu/ar7.git] / hw / i386 / pc.c
blob549c43705096b423f77a1174f85fb6bcba7d9f92
1 /*
2 * QEMU PC System Emulator
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "hw/hw.h"
28 #include "hw/i386/pc.h"
29 #include "hw/char/serial.h"
30 #include "hw/char/parallel.h"
31 #include "hw/i386/apic.h"
32 #include "hw/i386/topology.h"
33 #include "hw/i386/fw_cfg.h"
34 #include "sysemu/cpus.h"
35 #include "hw/block/fdc.h"
36 #include "hw/ide.h"
37 #include "hw/pci/pci.h"
38 #include "hw/pci/pci_bus.h"
39 #include "hw/nvram/fw_cfg.h"
40 #include "hw/timer/hpet.h"
41 #include "hw/firmware/smbios.h"
42 #include "hw/loader.h"
43 #include "elf.h"
44 #include "multiboot.h"
45 #include "hw/timer/mc146818rtc.h"
46 #include "hw/dma/i8257.h"
47 #include "hw/timer/i8254.h"
48 #include "hw/input/i8042.h"
49 #include "hw/audio/pcspk.h"
50 #include "hw/pci/msi.h"
51 #include "hw/sysbus.h"
52 #include "sysemu/sysemu.h"
53 #include "sysemu/tcg.h"
54 #include "sysemu/numa.h"
55 #include "sysemu/kvm.h"
56 #include "sysemu/qtest.h"
57 #include "kvm_i386.h"
58 #include "hw/xen/xen.h"
59 #include "hw/xen/start_info.h"
60 #include "ui/qemu-spice.h"
61 #include "exec/memory.h"
62 #include "exec/address-spaces.h"
63 #include "sysemu/arch_init.h"
64 #include "qemu/bitmap.h"
65 #include "qemu/config-file.h"
66 #include "qemu/error-report.h"
67 #include "qemu/option.h"
68 #include "hw/acpi/acpi.h"
69 #include "hw/acpi/cpu_hotplug.h"
70 #include "hw/boards.h"
71 #include "acpi-build.h"
72 #include "hw/mem/pc-dimm.h"
73 #include "qapi/error.h"
74 #include "qapi/qapi-visit-common.h"
75 #include "qapi/visitor.h"
76 #include "qom/cpu.h"
77 #include "hw/nmi.h"
78 #include "hw/usb.h"
79 #include "hw/i386/intel_iommu.h"
80 #include "hw/net/ne2000-isa.h"
81 #include "standard-headers/asm-x86/bootparam.h"
82 #include "hw/virtio/virtio-pmem-pci.h"
83 #include "hw/mem/memory-device.h"
84 #include "sysemu/replay.h"
85 #include "qapi/qmp/qerror.h"
86 #include "config-devices.h"
88 /* debug PC/ISA interrupts */
89 //#define DEBUG_IRQ
91 #ifdef DEBUG_IRQ
92 #define DPRINTF(fmt, ...) \
93 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
94 #else
95 #define DPRINTF(fmt, ...)
96 #endif
98 #define E820_NR_ENTRIES 16
100 struct e820_entry {
101 uint64_t address;
102 uint64_t length;
103 uint32_t type;
104 } QEMU_PACKED __attribute((__aligned__(4)));
106 struct e820_table {
107 uint32_t count;
108 struct e820_entry entry[E820_NR_ENTRIES];
109 } QEMU_PACKED __attribute((__aligned__(4)));
111 static struct e820_table e820_reserve;
112 static struct e820_entry *e820_table;
113 static unsigned e820_entries;
114 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
116 /* Physical Address of PVH entry point read from kernel ELF NOTE */
117 static size_t pvh_start_addr;
119 GlobalProperty pc_compat_4_0[] = {};
120 const size_t pc_compat_4_0_len = G_N_ELEMENTS(pc_compat_4_0);
122 GlobalProperty pc_compat_3_1[] = {
123 { "intel-iommu", "dma-drain", "off" },
124 { "Opteron_G3" "-" TYPE_X86_CPU, "rdtscp", "off" },
125 { "Opteron_G4" "-" TYPE_X86_CPU, "rdtscp", "off" },
126 { "Opteron_G4" "-" TYPE_X86_CPU, "npt", "off" },
127 { "Opteron_G4" "-" TYPE_X86_CPU, "nrip-save", "off" },
128 { "Opteron_G5" "-" TYPE_X86_CPU, "rdtscp", "off" },
129 { "Opteron_G5" "-" TYPE_X86_CPU, "npt", "off" },
130 { "Opteron_G5" "-" TYPE_X86_CPU, "nrip-save", "off" },
131 { "EPYC" "-" TYPE_X86_CPU, "npt", "off" },
132 { "EPYC" "-" TYPE_X86_CPU, "nrip-save", "off" },
133 { "EPYC-IBPB" "-" TYPE_X86_CPU, "npt", "off" },
134 { "EPYC-IBPB" "-" TYPE_X86_CPU, "nrip-save", "off" },
135 { "Skylake-Client" "-" TYPE_X86_CPU, "mpx", "on" },
136 { "Skylake-Client-IBRS" "-" TYPE_X86_CPU, "mpx", "on" },
137 { "Skylake-Server" "-" TYPE_X86_CPU, "mpx", "on" },
138 { "Skylake-Server-IBRS" "-" TYPE_X86_CPU, "mpx", "on" },
139 { "Cascadelake-Server" "-" TYPE_X86_CPU, "mpx", "on" },
140 { "Icelake-Client" "-" TYPE_X86_CPU, "mpx", "on" },
141 { "Icelake-Server" "-" TYPE_X86_CPU, "mpx", "on" },
142 { "Cascadelake-Server" "-" TYPE_X86_CPU, "stepping", "5" },
143 { TYPE_X86_CPU, "x-intel-pt-auto-level", "off" },
145 const size_t pc_compat_3_1_len = G_N_ELEMENTS(pc_compat_3_1);
147 GlobalProperty pc_compat_3_0[] = {
148 { TYPE_X86_CPU, "x-hv-synic-kvm-only", "on" },
149 { "Skylake-Server" "-" TYPE_X86_CPU, "pku", "off" },
150 { "Skylake-Server-IBRS" "-" TYPE_X86_CPU, "pku", "off" },
152 const size_t pc_compat_3_0_len = G_N_ELEMENTS(pc_compat_3_0);
154 GlobalProperty pc_compat_2_12[] = {
155 { TYPE_X86_CPU, "legacy-cache", "on" },
156 { TYPE_X86_CPU, "topoext", "off" },
157 { "EPYC-" TYPE_X86_CPU, "xlevel", "0x8000000a" },
158 { "EPYC-IBPB-" TYPE_X86_CPU, "xlevel", "0x8000000a" },
160 const size_t pc_compat_2_12_len = G_N_ELEMENTS(pc_compat_2_12);
162 GlobalProperty pc_compat_2_11[] = {
163 { TYPE_X86_CPU, "x-migrate-smi-count", "off" },
164 { "Skylake-Server" "-" TYPE_X86_CPU, "clflushopt", "off" },
166 const size_t pc_compat_2_11_len = G_N_ELEMENTS(pc_compat_2_11);
168 GlobalProperty pc_compat_2_10[] = {
169 { TYPE_X86_CPU, "x-hv-max-vps", "0x40" },
170 { "i440FX-pcihost", "x-pci-hole64-fix", "off" },
171 { "q35-pcihost", "x-pci-hole64-fix", "off" },
173 const size_t pc_compat_2_10_len = G_N_ELEMENTS(pc_compat_2_10);
175 GlobalProperty pc_compat_2_9[] = {
176 { "mch", "extended-tseg-mbytes", "0" },
178 const size_t pc_compat_2_9_len = G_N_ELEMENTS(pc_compat_2_9);
180 GlobalProperty pc_compat_2_8[] = {
181 { TYPE_X86_CPU, "tcg-cpuid", "off" },
182 { "kvmclock", "x-mach-use-reliable-get-clock", "off" },
183 { "ICH9-LPC", "x-smi-broadcast", "off" },
184 { TYPE_X86_CPU, "vmware-cpuid-freq", "off" },
185 { "Haswell-" TYPE_X86_CPU, "stepping", "1" },
187 const size_t pc_compat_2_8_len = G_N_ELEMENTS(pc_compat_2_8);
189 GlobalProperty pc_compat_2_7[] = {
190 { TYPE_X86_CPU, "l3-cache", "off" },
191 { TYPE_X86_CPU, "full-cpuid-auto-level", "off" },
192 { "Opteron_G3" "-" TYPE_X86_CPU, "family", "15" },
193 { "Opteron_G3" "-" TYPE_X86_CPU, "model", "6" },
194 { "Opteron_G3" "-" TYPE_X86_CPU, "stepping", "1" },
195 { "isa-pcspk", "migrate", "off" },
197 const size_t pc_compat_2_7_len = G_N_ELEMENTS(pc_compat_2_7);
199 GlobalProperty pc_compat_2_6[] = {
200 { TYPE_X86_CPU, "cpuid-0xb", "off" },
201 { "vmxnet3", "romfile", "" },
202 { TYPE_X86_CPU, "fill-mtrr-mask", "off" },
203 { "apic-common", "legacy-instance-id", "on", }
205 const size_t pc_compat_2_6_len = G_N_ELEMENTS(pc_compat_2_6);
207 GlobalProperty pc_compat_2_5[] = {};
208 const size_t pc_compat_2_5_len = G_N_ELEMENTS(pc_compat_2_5);
210 GlobalProperty pc_compat_2_4[] = {
211 PC_CPU_MODEL_IDS("2.4.0")
212 { "Haswell-" TYPE_X86_CPU, "abm", "off" },
213 { "Haswell-noTSX-" TYPE_X86_CPU, "abm", "off" },
214 { "Broadwell-" TYPE_X86_CPU, "abm", "off" },
215 { "Broadwell-noTSX-" TYPE_X86_CPU, "abm", "off" },
216 { "host" "-" TYPE_X86_CPU, "host-cache-info", "on" },
217 { TYPE_X86_CPU, "check", "off" },
218 { "qemu64" "-" TYPE_X86_CPU, "sse4a", "on" },
219 { "qemu64" "-" TYPE_X86_CPU, "abm", "on" },
220 { "qemu64" "-" TYPE_X86_CPU, "popcnt", "on" },
221 { "qemu32" "-" TYPE_X86_CPU, "popcnt", "on" },
222 { "Opteron_G2" "-" TYPE_X86_CPU, "rdtscp", "on" },
223 { "Opteron_G3" "-" TYPE_X86_CPU, "rdtscp", "on" },
224 { "Opteron_G4" "-" TYPE_X86_CPU, "rdtscp", "on" },
225 { "Opteron_G5" "-" TYPE_X86_CPU, "rdtscp", "on", }
227 const size_t pc_compat_2_4_len = G_N_ELEMENTS(pc_compat_2_4);
229 GlobalProperty pc_compat_2_3[] = {
230 PC_CPU_MODEL_IDS("2.3.0")
231 { TYPE_X86_CPU, "arat", "off" },
232 { "qemu64" "-" TYPE_X86_CPU, "min-level", "4" },
233 { "kvm64" "-" TYPE_X86_CPU, "min-level", "5" },
234 { "pentium3" "-" TYPE_X86_CPU, "min-level", "2" },
235 { "n270" "-" TYPE_X86_CPU, "min-level", "5" },
236 { "Conroe" "-" TYPE_X86_CPU, "min-level", "4" },
237 { "Penryn" "-" TYPE_X86_CPU, "min-level", "4" },
238 { "Nehalem" "-" TYPE_X86_CPU, "min-level", "4" },
239 { "n270" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
240 { "Penryn" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
241 { "Conroe" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
242 { "Nehalem" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
243 { "Westmere" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
244 { "SandyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
245 { "IvyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
246 { "Haswell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
247 { "Haswell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
248 { "Broadwell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
249 { "Broadwell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
250 { TYPE_X86_CPU, "kvm-no-smi-migration", "on" },
252 const size_t pc_compat_2_3_len = G_N_ELEMENTS(pc_compat_2_3);
254 GlobalProperty pc_compat_2_2[] = {
255 PC_CPU_MODEL_IDS("2.2.0")
256 { "kvm64" "-" TYPE_X86_CPU, "vme", "off" },
257 { "kvm32" "-" TYPE_X86_CPU, "vme", "off" },
258 { "Conroe" "-" TYPE_X86_CPU, "vme", "off" },
259 { "Penryn" "-" TYPE_X86_CPU, "vme", "off" },
260 { "Nehalem" "-" TYPE_X86_CPU, "vme", "off" },
261 { "Westmere" "-" TYPE_X86_CPU, "vme", "off" },
262 { "SandyBridge" "-" TYPE_X86_CPU, "vme", "off" },
263 { "Haswell" "-" TYPE_X86_CPU, "vme", "off" },
264 { "Broadwell" "-" TYPE_X86_CPU, "vme", "off" },
265 { "Opteron_G1" "-" TYPE_X86_CPU, "vme", "off" },
266 { "Opteron_G2" "-" TYPE_X86_CPU, "vme", "off" },
267 { "Opteron_G3" "-" TYPE_X86_CPU, "vme", "off" },
268 { "Opteron_G4" "-" TYPE_X86_CPU, "vme", "off" },
269 { "Opteron_G5" "-" TYPE_X86_CPU, "vme", "off" },
270 { "Haswell" "-" TYPE_X86_CPU, "f16c", "off" },
271 { "Haswell" "-" TYPE_X86_CPU, "rdrand", "off" },
272 { "Broadwell" "-" TYPE_X86_CPU, "f16c", "off" },
273 { "Broadwell" "-" TYPE_X86_CPU, "rdrand", "off" },
275 const size_t pc_compat_2_2_len = G_N_ELEMENTS(pc_compat_2_2);
277 GlobalProperty pc_compat_2_1[] = {
278 PC_CPU_MODEL_IDS("2.1.0")
279 { "coreduo" "-" TYPE_X86_CPU, "vmx", "on" },
280 { "core2duo" "-" TYPE_X86_CPU, "vmx", "on" },
282 const size_t pc_compat_2_1_len = G_N_ELEMENTS(pc_compat_2_1);
284 GlobalProperty pc_compat_2_0[] = {
285 PC_CPU_MODEL_IDS("2.0.0")
286 { "virtio-scsi-pci", "any_layout", "off" },
287 { "PIIX4_PM", "memory-hotplug-support", "off" },
288 { "apic", "version", "0x11" },
289 { "nec-usb-xhci", "superspeed-ports-first", "off" },
290 { "nec-usb-xhci", "force-pcie-endcap", "on" },
291 { "pci-serial", "prog_if", "0" },
292 { "pci-serial-2x", "prog_if", "0" },
293 { "pci-serial-4x", "prog_if", "0" },
294 { "virtio-net-pci", "guest_announce", "off" },
295 { "ICH9-LPC", "memory-hotplug-support", "off" },
296 { "xio3130-downstream", COMPAT_PROP_PCP, "off" },
297 { "ioh3420", COMPAT_PROP_PCP, "off" },
299 const size_t pc_compat_2_0_len = G_N_ELEMENTS(pc_compat_2_0);
301 GlobalProperty pc_compat_1_7[] = {
302 PC_CPU_MODEL_IDS("1.7.0")
303 { TYPE_USB_DEVICE, "msos-desc", "no" },
304 { "PIIX4_PM", "acpi-pci-hotplug-with-bridge-support", "off" },
305 { "hpet", HPET_INTCAP, "4" },
307 const size_t pc_compat_1_7_len = G_N_ELEMENTS(pc_compat_1_7);
309 GlobalProperty pc_compat_1_6[] = {
310 PC_CPU_MODEL_IDS("1.6.0")
311 { "e1000", "mitigation", "off" },
312 { "qemu64-" TYPE_X86_CPU, "model", "2" },
313 { "qemu32-" TYPE_X86_CPU, "model", "3" },
314 { "i440FX-pcihost", "short_root_bus", "1" },
315 { "q35-pcihost", "short_root_bus", "1" },
317 const size_t pc_compat_1_6_len = G_N_ELEMENTS(pc_compat_1_6);
319 GlobalProperty pc_compat_1_5[] = {
320 PC_CPU_MODEL_IDS("1.5.0")
321 { "Conroe-" TYPE_X86_CPU, "model", "2" },
322 { "Conroe-" TYPE_X86_CPU, "min-level", "2" },
323 { "Penryn-" TYPE_X86_CPU, "model", "2" },
324 { "Penryn-" TYPE_X86_CPU, "min-level", "2" },
325 { "Nehalem-" TYPE_X86_CPU, "model", "2" },
326 { "Nehalem-" TYPE_X86_CPU, "min-level", "2" },
327 { "virtio-net-pci", "any_layout", "off" },
328 { TYPE_X86_CPU, "pmu", "on" },
329 { "i440FX-pcihost", "short_root_bus", "0" },
330 { "q35-pcihost", "short_root_bus", "0" },
332 const size_t pc_compat_1_5_len = G_N_ELEMENTS(pc_compat_1_5);
334 GlobalProperty pc_compat_1_4[] = {
335 PC_CPU_MODEL_IDS("1.4.0")
336 { "scsi-hd", "discard_granularity", "0" },
337 { "scsi-cd", "discard_granularity", "0" },
338 { "scsi-disk", "discard_granularity", "0" },
339 { "ide-hd", "discard_granularity", "0" },
340 { "ide-cd", "discard_granularity", "0" },
341 { "ide-drive", "discard_granularity", "0" },
342 { "virtio-blk-pci", "discard_granularity", "0" },
343 /* DEV_NVECTORS_UNSPECIFIED as a uint32_t string: */
344 { "virtio-serial-pci", "vectors", "0xFFFFFFFF" },
345 { "virtio-net-pci", "ctrl_guest_offloads", "off" },
346 { "e1000", "romfile", "pxe-e1000.rom" },
347 { "ne2k_pci", "romfile", "pxe-ne2k_pci.rom" },
348 { "pcnet", "romfile", "pxe-pcnet.rom" },
349 { "rtl8139", "romfile", "pxe-rtl8139.rom" },
350 { "virtio-net-pci", "romfile", "pxe-virtio.rom" },
351 { "486-" TYPE_X86_CPU, "model", "0" },
352 { "n270" "-" TYPE_X86_CPU, "movbe", "off" },
353 { "Westmere" "-" TYPE_X86_CPU, "pclmulqdq", "off" },
355 const size_t pc_compat_1_4_len = G_N_ELEMENTS(pc_compat_1_4);
357 void gsi_handler(void *opaque, int n, int level)
359 GSIState *s = opaque;
361 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
362 if (n < ISA_NUM_IRQS) {
363 qemu_set_irq(s->i8259_irq[n], level);
365 qemu_set_irq(s->ioapic_irq[n], level);
368 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
369 unsigned size)
373 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
375 return 0xffffffffffffffffULL;
378 /* MSDOS compatibility mode FPU exception support */
379 static qemu_irq ferr_irq;
381 void pc_register_ferr_irq(qemu_irq irq)
383 ferr_irq = irq;
386 /* XXX: add IGNNE support */
387 void cpu_set_ferr(CPUX86State *s)
389 qemu_irq_raise(ferr_irq);
392 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
393 unsigned size)
395 qemu_irq_lower(ferr_irq);
398 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
400 return 0xffffffffffffffffULL;
403 /* TSC handling */
404 uint64_t cpu_get_tsc(CPUX86State *env)
406 return cpu_get_ticks();
409 /* IRQ handling */
410 int cpu_get_pic_interrupt(CPUX86State *env)
412 X86CPU *cpu = env_archcpu(env);
413 int intno;
415 if (!kvm_irqchip_in_kernel()) {
416 intno = apic_get_interrupt(cpu->apic_state);
417 if (intno >= 0) {
418 return intno;
420 /* read the irq from the PIC */
421 if (!apic_accept_pic_intr(cpu->apic_state)) {
422 return -1;
426 intno = pic_read_irq(isa_pic);
427 return intno;
430 static void pic_irq_request(void *opaque, int irq, int level)
432 CPUState *cs = first_cpu;
433 X86CPU *cpu = X86_CPU(cs);
435 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
436 if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
437 CPU_FOREACH(cs) {
438 cpu = X86_CPU(cs);
439 if (apic_accept_pic_intr(cpu->apic_state)) {
440 apic_deliver_pic_intr(cpu->apic_state, level);
443 } else {
444 if (level) {
445 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
446 } else {
447 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
452 /* PC cmos mappings */
454 #define REG_EQUIPMENT_BYTE 0x14
456 int cmos_get_fd_drive_type(FloppyDriveType fd0)
458 int val;
460 switch (fd0) {
461 case FLOPPY_DRIVE_TYPE_144:
462 /* 1.44 Mb 3"5 drive */
463 val = 4;
464 break;
465 case FLOPPY_DRIVE_TYPE_288:
466 /* 2.88 Mb 3"5 drive */
467 val = 5;
468 break;
469 case FLOPPY_DRIVE_TYPE_120:
470 /* 1.2 Mb 5"5 drive */
471 val = 2;
472 break;
473 case FLOPPY_DRIVE_TYPE_NONE:
474 default:
475 val = 0;
476 break;
478 return val;
481 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
482 int16_t cylinders, int8_t heads, int8_t sectors)
484 rtc_set_memory(s, type_ofs, 47);
485 rtc_set_memory(s, info_ofs, cylinders);
486 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
487 rtc_set_memory(s, info_ofs + 2, heads);
488 rtc_set_memory(s, info_ofs + 3, 0xff);
489 rtc_set_memory(s, info_ofs + 4, 0xff);
490 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
491 rtc_set_memory(s, info_ofs + 6, cylinders);
492 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
493 rtc_set_memory(s, info_ofs + 8, sectors);
496 /* convert boot_device letter to something recognizable by the bios */
497 static int boot_device2nibble(char boot_device)
499 switch(boot_device) {
500 case 'a':
501 case 'b':
502 return 0x01; /* floppy boot */
503 case 'c':
504 return 0x02; /* hard drive boot */
505 case 'd':
506 return 0x03; /* CD-ROM boot */
507 case 'n':
508 return 0x04; /* Network boot */
510 return 0;
513 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
515 #define PC_MAX_BOOT_DEVICES 3
516 int nbds, bds[3] = { 0, };
517 int i;
519 nbds = strlen(boot_device);
520 if (nbds > PC_MAX_BOOT_DEVICES) {
521 error_setg(errp, "Too many boot devices for PC");
522 return;
524 for (i = 0; i < nbds; i++) {
525 bds[i] = boot_device2nibble(boot_device[i]);
526 if (bds[i] == 0) {
527 error_setg(errp, "Invalid boot device for PC: '%c'",
528 boot_device[i]);
529 return;
532 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
533 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
536 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
538 set_boot_dev(opaque, boot_device, errp);
541 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
543 int val, nb, i;
544 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
545 FLOPPY_DRIVE_TYPE_NONE };
547 /* floppy type */
548 if (floppy) {
549 for (i = 0; i < 2; i++) {
550 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
553 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
554 cmos_get_fd_drive_type(fd_type[1]);
555 rtc_set_memory(rtc_state, 0x10, val);
557 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
558 nb = 0;
559 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
560 nb++;
562 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
563 nb++;
565 switch (nb) {
566 case 0:
567 break;
568 case 1:
569 val |= 0x01; /* 1 drive, ready for boot */
570 break;
571 case 2:
572 val |= 0x41; /* 2 drives, ready for boot */
573 break;
575 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
578 typedef struct pc_cmos_init_late_arg {
579 ISADevice *rtc_state;
580 BusState *idebus[2];
581 } pc_cmos_init_late_arg;
583 typedef struct check_fdc_state {
584 ISADevice *floppy;
585 bool multiple;
586 } CheckFdcState;
588 static int check_fdc(Object *obj, void *opaque)
590 CheckFdcState *state = opaque;
591 Object *fdc;
592 uint32_t iobase;
593 Error *local_err = NULL;
595 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
596 if (!fdc) {
597 return 0;
600 iobase = object_property_get_uint(obj, "iobase", &local_err);
601 if (local_err || iobase != 0x3f0) {
602 error_free(local_err);
603 return 0;
606 if (state->floppy) {
607 state->multiple = true;
608 } else {
609 state->floppy = ISA_DEVICE(obj);
611 return 0;
614 static const char * const fdc_container_path[] = {
615 "/unattached", "/peripheral", "/peripheral-anon"
619 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
620 * and ACPI objects.
622 ISADevice *pc_find_fdc0(void)
624 int i;
625 Object *container;
626 CheckFdcState state = { 0 };
628 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
629 container = container_get(qdev_get_machine(), fdc_container_path[i]);
630 object_child_foreach(container, check_fdc, &state);
633 if (state.multiple) {
634 warn_report("multiple floppy disk controllers with "
635 "iobase=0x3f0 have been found");
636 error_printf("the one being picked for CMOS setup might not reflect "
637 "your intent");
640 return state.floppy;
643 static void pc_cmos_init_late(void *opaque)
645 pc_cmos_init_late_arg *arg = opaque;
646 ISADevice *s = arg->rtc_state;
647 int16_t cylinders;
648 int8_t heads, sectors;
649 int val;
650 int i, trans;
652 val = 0;
653 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0,
654 &cylinders, &heads, &sectors) >= 0) {
655 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
656 val |= 0xf0;
658 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1,
659 &cylinders, &heads, &sectors) >= 0) {
660 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
661 val |= 0x0f;
663 rtc_set_memory(s, 0x12, val);
665 val = 0;
666 for (i = 0; i < 4; i++) {
667 /* NOTE: ide_get_geometry() returns the physical
668 geometry. It is always such that: 1 <= sects <= 63, 1
669 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
670 geometry can be different if a translation is done. */
671 if (arg->idebus[i / 2] &&
672 ide_get_geometry(arg->idebus[i / 2], i % 2,
673 &cylinders, &heads, &sectors) >= 0) {
674 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
675 assert((trans & ~3) == 0);
676 val |= trans << (i * 2);
679 rtc_set_memory(s, 0x39, val);
681 pc_cmos_init_floppy(s, pc_find_fdc0());
683 qemu_unregister_reset(pc_cmos_init_late, opaque);
686 void pc_cmos_init(PCMachineState *pcms,
687 BusState *idebus0, BusState *idebus1,
688 ISADevice *s)
690 int val;
691 static pc_cmos_init_late_arg arg;
693 /* various important CMOS locations needed by PC/Bochs bios */
695 /* memory size */
696 /* base memory (first MiB) */
697 val = MIN(pcms->below_4g_mem_size / KiB, 640);
698 rtc_set_memory(s, 0x15, val);
699 rtc_set_memory(s, 0x16, val >> 8);
700 /* extended memory (next 64MiB) */
701 if (pcms->below_4g_mem_size > 1 * MiB) {
702 val = (pcms->below_4g_mem_size - 1 * MiB) / KiB;
703 } else {
704 val = 0;
706 if (val > 65535)
707 val = 65535;
708 rtc_set_memory(s, 0x17, val);
709 rtc_set_memory(s, 0x18, val >> 8);
710 rtc_set_memory(s, 0x30, val);
711 rtc_set_memory(s, 0x31, val >> 8);
712 /* memory between 16MiB and 4GiB */
713 if (pcms->below_4g_mem_size > 16 * MiB) {
714 val = (pcms->below_4g_mem_size - 16 * MiB) / (64 * KiB);
715 } else {
716 val = 0;
718 if (val > 65535)
719 val = 65535;
720 rtc_set_memory(s, 0x34, val);
721 rtc_set_memory(s, 0x35, val >> 8);
722 /* memory above 4GiB */
723 val = pcms->above_4g_mem_size / 65536;
724 rtc_set_memory(s, 0x5b, val);
725 rtc_set_memory(s, 0x5c, val >> 8);
726 rtc_set_memory(s, 0x5d, val >> 16);
728 object_property_add_link(OBJECT(pcms), "rtc_state",
729 TYPE_ISA_DEVICE,
730 (Object **)&pcms->rtc,
731 object_property_allow_set_link,
732 OBJ_PROP_LINK_STRONG, &error_abort);
733 object_property_set_link(OBJECT(pcms), OBJECT(s),
734 "rtc_state", &error_abort);
736 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
738 val = 0;
739 val |= 0x02; /* FPU is there */
740 val |= 0x04; /* PS/2 mouse installed */
741 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
743 /* hard drives and FDC */
744 arg.rtc_state = s;
745 arg.idebus[0] = idebus0;
746 arg.idebus[1] = idebus1;
747 qemu_register_reset(pc_cmos_init_late, &arg);
750 #define TYPE_PORT92 "port92"
751 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
753 /* port 92 stuff: could be split off */
754 typedef struct Port92State {
755 ISADevice parent_obj;
757 MemoryRegion io;
758 uint8_t outport;
759 qemu_irq a20_out;
760 } Port92State;
762 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
763 unsigned size)
765 Port92State *s = opaque;
766 int oldval = s->outport;
768 DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
769 s->outport = val;
770 qemu_set_irq(s->a20_out, (val >> 1) & 1);
771 if ((val & 1) && !(oldval & 1)) {
772 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
776 static uint64_t port92_read(void *opaque, hwaddr addr,
777 unsigned size)
779 Port92State *s = opaque;
780 uint32_t ret;
782 ret = s->outport;
783 DPRINTF("port92: read 0x%02x\n", ret);
784 return ret;
787 static void port92_init(ISADevice *dev, qemu_irq a20_out)
789 qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
792 static const VMStateDescription vmstate_port92_isa = {
793 .name = "port92",
794 .version_id = 1,
795 .minimum_version_id = 1,
796 .fields = (VMStateField[]) {
797 VMSTATE_UINT8(outport, Port92State),
798 VMSTATE_END_OF_LIST()
802 static void port92_reset(DeviceState *d)
804 Port92State *s = PORT92(d);
806 s->outport &= ~1;
809 static const MemoryRegionOps port92_ops = {
810 .read = port92_read,
811 .write = port92_write,
812 .impl = {
813 .min_access_size = 1,
814 .max_access_size = 1,
816 .endianness = DEVICE_LITTLE_ENDIAN,
819 static void port92_initfn(Object *obj)
821 Port92State *s = PORT92(obj);
823 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
825 s->outport = 0;
827 qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
830 static void port92_realizefn(DeviceState *dev, Error **errp)
832 ISADevice *isadev = ISA_DEVICE(dev);
833 Port92State *s = PORT92(dev);
835 isa_register_ioport(isadev, &s->io, 0x92);
838 static void port92_class_initfn(ObjectClass *klass, void *data)
840 DeviceClass *dc = DEVICE_CLASS(klass);
842 dc->realize = port92_realizefn;
843 dc->reset = port92_reset;
844 dc->vmsd = &vmstate_port92_isa;
846 * Reason: unlike ordinary ISA devices, this one needs additional
847 * wiring: its A20 output line needs to be wired up by
848 * port92_init().
850 dc->user_creatable = false;
853 static const TypeInfo port92_info = {
854 .name = TYPE_PORT92,
855 .parent = TYPE_ISA_DEVICE,
856 .instance_size = sizeof(Port92State),
857 .instance_init = port92_initfn,
858 .class_init = port92_class_initfn,
861 static void port92_register_types(void)
863 type_register_static(&port92_info);
866 type_init(port92_register_types)
868 static void handle_a20_line_change(void *opaque, int irq, int level)
870 X86CPU *cpu = opaque;
872 /* XXX: send to all CPUs ? */
873 /* XXX: add logic to handle multiple A20 line sources */
874 x86_cpu_set_a20(cpu, level);
877 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
879 int index = le32_to_cpu(e820_reserve.count);
880 struct e820_entry *entry;
882 if (type != E820_RAM) {
883 /* old FW_CFG_E820_TABLE entry -- reservations only */
884 if (index >= E820_NR_ENTRIES) {
885 return -EBUSY;
887 entry = &e820_reserve.entry[index++];
889 entry->address = cpu_to_le64(address);
890 entry->length = cpu_to_le64(length);
891 entry->type = cpu_to_le32(type);
893 e820_reserve.count = cpu_to_le32(index);
896 /* new "etc/e820" file -- include ram too */
897 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
898 e820_table[e820_entries].address = cpu_to_le64(address);
899 e820_table[e820_entries].length = cpu_to_le64(length);
900 e820_table[e820_entries].type = cpu_to_le32(type);
901 e820_entries++;
903 return e820_entries;
906 int e820_get_num_entries(void)
908 return e820_entries;
911 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
913 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
914 *address = le64_to_cpu(e820_table[idx].address);
915 *length = le64_to_cpu(e820_table[idx].length);
916 return true;
918 return false;
921 /* Calculates initial APIC ID for a specific CPU index
923 * Currently we need to be able to calculate the APIC ID from the CPU index
924 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
925 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
926 * all CPUs up to max_cpus.
928 static uint32_t x86_cpu_apic_id_from_index(PCMachineState *pcms,
929 unsigned int cpu_index)
931 MachineState *ms = MACHINE(pcms);
932 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
933 uint32_t correct_id;
934 static bool warned;
936 correct_id = x86_apicid_from_cpu_idx(pcms->smp_dies, ms->smp.cores,
937 ms->smp.threads, cpu_index);
938 if (pcmc->compat_apic_id_mode) {
939 if (cpu_index != correct_id && !warned && !qtest_enabled()) {
940 error_report("APIC IDs set in compatibility mode, "
941 "CPU topology won't match the configuration");
942 warned = true;
944 return cpu_index;
945 } else {
946 return correct_id;
950 static void pc_build_smbios(PCMachineState *pcms)
952 uint8_t *smbios_tables, *smbios_anchor;
953 size_t smbios_tables_len, smbios_anchor_len;
954 struct smbios_phys_mem_area *mem_array;
955 unsigned i, array_count;
956 MachineState *ms = MACHINE(pcms);
957 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
959 /* tell smbios about cpuid version and features */
960 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
962 smbios_tables = smbios_get_table_legacy(ms, &smbios_tables_len);
963 if (smbios_tables) {
964 fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES,
965 smbios_tables, smbios_tables_len);
968 /* build the array of physical mem area from e820 table */
969 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
970 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
971 uint64_t addr, len;
973 if (e820_get_entry(i, E820_RAM, &addr, &len)) {
974 mem_array[array_count].address = addr;
975 mem_array[array_count].length = len;
976 array_count++;
979 smbios_get_tables(ms, mem_array, array_count,
980 &smbios_tables, &smbios_tables_len,
981 &smbios_anchor, &smbios_anchor_len);
982 g_free(mem_array);
984 if (smbios_anchor) {
985 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables",
986 smbios_tables, smbios_tables_len);
987 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor",
988 smbios_anchor, smbios_anchor_len);
992 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
994 FWCfgState *fw_cfg;
995 uint64_t *numa_fw_cfg;
996 int i;
997 const CPUArchIdList *cpus;
998 MachineClass *mc = MACHINE_GET_CLASS(pcms);
1000 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
1001 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1003 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
1005 * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
1006 * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
1007 * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
1008 * for CPU hotplug also uses APIC ID and not "CPU index".
1009 * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
1010 * but the "limit to the APIC ID values SeaBIOS may see".
1012 * So for compatibility reasons with old BIOSes we are stuck with
1013 * "etc/max-cpus" actually being apic_id_limit
1015 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
1016 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
1017 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
1018 acpi_tables, acpi_tables_len);
1019 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
1021 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
1022 &e820_reserve, sizeof(e820_reserve));
1023 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
1024 sizeof(struct e820_entry) * e820_entries);
1026 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
1027 /* allocate memory for the NUMA channel: one (64bit) word for the number
1028 * of nodes, one word for each VCPU->node and one word for each node to
1029 * hold the amount of memory.
1031 numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
1032 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
1033 cpus = mc->possible_cpu_arch_ids(MACHINE(pcms));
1034 for (i = 0; i < cpus->len; i++) {
1035 unsigned int apic_id = cpus->cpus[i].arch_id;
1036 assert(apic_id < pcms->apic_id_limit);
1037 numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id);
1039 for (i = 0; i < nb_numa_nodes; i++) {
1040 numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
1041 cpu_to_le64(numa_info[i].node_mem);
1043 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
1044 (1 + pcms->apic_id_limit + nb_numa_nodes) *
1045 sizeof(*numa_fw_cfg));
1047 return fw_cfg;
1050 static long get_file_size(FILE *f)
1052 long where, size;
1054 /* XXX: on Unix systems, using fstat() probably makes more sense */
1056 where = ftell(f);
1057 fseek(f, 0, SEEK_END);
1058 size = ftell(f);
1059 fseek(f, where, SEEK_SET);
1061 return size;
1064 struct setup_data {
1065 uint64_t next;
1066 uint32_t type;
1067 uint32_t len;
1068 uint8_t data[0];
1069 } __attribute__((packed));
1073 * The entry point into the kernel for PVH boot is different from
1074 * the native entry point. The PVH entry is defined by the x86/HVM
1075 * direct boot ABI and is available in an ELFNOTE in the kernel binary.
1077 * This function is passed to load_elf() when it is called from
1078 * load_elfboot() which then additionally checks for an ELF Note of
1079 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
1080 * parse the PVH entry address from the ELF Note.
1082 * Due to trickery in elf_opts.h, load_elf() is actually available as
1083 * load_elf32() or load_elf64() and this routine needs to be able
1084 * to deal with being called as 32 or 64 bit.
1086 * The address of the PVH entry point is saved to the 'pvh_start_addr'
1087 * global variable. (although the entry point is 32-bit, the kernel
1088 * binary can be either 32-bit or 64-bit).
1090 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
1092 size_t *elf_note_data_addr;
1094 /* Check if ELF Note header passed in is valid */
1095 if (arg1 == NULL) {
1096 return 0;
1099 if (is64) {
1100 struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
1101 uint64_t nhdr_size64 = sizeof(struct elf64_note);
1102 uint64_t phdr_align = *(uint64_t *)arg2;
1103 uint64_t nhdr_namesz = nhdr64->n_namesz;
1105 elf_note_data_addr =
1106 ((void *)nhdr64) + nhdr_size64 +
1107 QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
1108 } else {
1109 struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
1110 uint32_t nhdr_size32 = sizeof(struct elf32_note);
1111 uint32_t phdr_align = *(uint32_t *)arg2;
1112 uint32_t nhdr_namesz = nhdr32->n_namesz;
1114 elf_note_data_addr =
1115 ((void *)nhdr32) + nhdr_size32 +
1116 QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
1119 pvh_start_addr = *elf_note_data_addr;
1121 return pvh_start_addr;
1124 static bool load_elfboot(const char *kernel_filename,
1125 int kernel_file_size,
1126 uint8_t *header,
1127 size_t pvh_xen_start_addr,
1128 FWCfgState *fw_cfg)
1130 uint32_t flags = 0;
1131 uint32_t mh_load_addr = 0;
1132 uint32_t elf_kernel_size = 0;
1133 uint64_t elf_entry;
1134 uint64_t elf_low, elf_high;
1135 int kernel_size;
1137 if (ldl_p(header) != 0x464c457f) {
1138 return false; /* no elfboot */
1141 bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
1142 flags = elf_is64 ?
1143 ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
1145 if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
1146 error_report("elfboot unsupported flags = %x", flags);
1147 exit(1);
1150 uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
1151 kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
1152 NULL, &elf_note_type, &elf_entry,
1153 &elf_low, &elf_high, 0, I386_ELF_MACHINE,
1154 0, 0);
1156 if (kernel_size < 0) {
1157 error_report("Error while loading elf kernel");
1158 exit(1);
1160 mh_load_addr = elf_low;
1161 elf_kernel_size = elf_high - elf_low;
1163 if (pvh_start_addr == 0) {
1164 error_report("Error loading uncompressed kernel without PVH ELF Note");
1165 exit(1);
1167 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
1168 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
1169 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
1171 return true;
1174 static void load_linux(PCMachineState *pcms,
1175 FWCfgState *fw_cfg)
1177 uint16_t protocol;
1178 int setup_size, kernel_size, cmdline_size;
1179 int dtb_size, setup_data_offset;
1180 uint32_t initrd_max;
1181 uint8_t header[8192], *setup, *kernel;
1182 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
1183 FILE *f;
1184 char *vmode;
1185 MachineState *machine = MACHINE(pcms);
1186 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1187 struct setup_data *setup_data;
1188 const char *kernel_filename = machine->kernel_filename;
1189 const char *initrd_filename = machine->initrd_filename;
1190 const char *dtb_filename = machine->dtb;
1191 const char *kernel_cmdline = machine->kernel_cmdline;
1193 /* Align to 16 bytes as a paranoia measure */
1194 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
1196 /* load the kernel header */
1197 f = fopen(kernel_filename, "rb");
1198 if (!f || !(kernel_size = get_file_size(f)) ||
1199 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
1200 MIN(ARRAY_SIZE(header), kernel_size)) {
1201 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
1202 kernel_filename, strerror(errno));
1203 exit(1);
1206 /* kernel protocol version */
1207 #if 0
1208 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
1209 #endif
1210 if (ldl_p(header+0x202) == 0x53726448) {
1211 protocol = lduw_p(header+0x206);
1212 } else {
1214 * This could be a multiboot kernel. If it is, let's stop treating it
1215 * like a Linux kernel.
1216 * Note: some multiboot images could be in the ELF format (the same of
1217 * PVH), so we try multiboot first since we check the multiboot magic
1218 * header before to load it.
1220 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
1221 kernel_cmdline, kernel_size, header)) {
1222 return;
1225 * Check if the file is an uncompressed kernel file (ELF) and load it,
1226 * saving the PVH entry point used by the x86/HVM direct boot ABI.
1227 * If load_elfboot() is successful, populate the fw_cfg info.
1229 if (pcmc->pvh_enabled &&
1230 load_elfboot(kernel_filename, kernel_size,
1231 header, pvh_start_addr, fw_cfg)) {
1232 fclose(f);
1234 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1235 strlen(kernel_cmdline) + 1);
1236 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
1238 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
1239 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
1240 header, sizeof(header));
1242 /* load initrd */
1243 if (initrd_filename) {
1244 gsize initrd_size;
1245 gchar *initrd_data;
1246 GError *gerr = NULL;
1248 if (!g_file_get_contents(initrd_filename, &initrd_data,
1249 &initrd_size, &gerr)) {
1250 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1251 initrd_filename, gerr->message);
1252 exit(1);
1255 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
1256 if (initrd_size >= initrd_max) {
1257 fprintf(stderr, "qemu: initrd is too large, cannot support."
1258 "(max: %"PRIu32", need %"PRId64")\n",
1259 initrd_max, (uint64_t)initrd_size);
1260 exit(1);
1263 initrd_addr = (initrd_max - initrd_size) & ~4095;
1265 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1266 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1267 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
1268 initrd_size);
1271 option_rom[nb_option_roms].bootindex = 0;
1272 option_rom[nb_option_roms].name = "pvh.bin";
1273 nb_option_roms++;
1275 return;
1277 protocol = 0;
1280 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
1281 /* Low kernel */
1282 real_addr = 0x90000;
1283 cmdline_addr = 0x9a000 - cmdline_size;
1284 prot_addr = 0x10000;
1285 } else if (protocol < 0x202) {
1286 /* High but ancient kernel */
1287 real_addr = 0x90000;
1288 cmdline_addr = 0x9a000 - cmdline_size;
1289 prot_addr = 0x100000;
1290 } else {
1291 /* High and recent kernel */
1292 real_addr = 0x10000;
1293 cmdline_addr = 0x20000;
1294 prot_addr = 0x100000;
1297 #if 0
1298 fprintf(stderr,
1299 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
1300 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
1301 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
1302 real_addr,
1303 cmdline_addr,
1304 prot_addr);
1305 #endif
1307 /* highest address for loading the initrd */
1308 if (protocol >= 0x20c &&
1309 lduw_p(header+0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
1311 * Linux has supported initrd up to 4 GB for a very long time (2007,
1312 * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
1313 * though it only sets initrd_max to 2 GB to "work around bootloader
1314 * bugs". Luckily, QEMU firmware(which does something like bootloader)
1315 * has supported this.
1317 * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
1318 * be loaded into any address.
1320 * In addition, initrd_max is uint32_t simply because QEMU doesn't
1321 * support the 64-bit boot protocol (specifically the ext_ramdisk_image
1322 * field).
1324 * Therefore here just limit initrd_max to UINT32_MAX simply as well.
1326 initrd_max = UINT32_MAX;
1327 } else if (protocol >= 0x203) {
1328 initrd_max = ldl_p(header+0x22c);
1329 } else {
1330 initrd_max = 0x37ffffff;
1333 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
1334 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
1337 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
1338 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
1339 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
1341 if (protocol >= 0x202) {
1342 stl_p(header+0x228, cmdline_addr);
1343 } else {
1344 stw_p(header+0x20, 0xA33F);
1345 stw_p(header+0x22, cmdline_addr-real_addr);
1348 /* handle vga= parameter */
1349 vmode = strstr(kernel_cmdline, "vga=");
1350 if (vmode) {
1351 unsigned int video_mode;
1352 /* skip "vga=" */
1353 vmode += 4;
1354 if (!strncmp(vmode, "normal", 6)) {
1355 video_mode = 0xffff;
1356 } else if (!strncmp(vmode, "ext", 3)) {
1357 video_mode = 0xfffe;
1358 } else if (!strncmp(vmode, "ask", 3)) {
1359 video_mode = 0xfffd;
1360 } else {
1361 video_mode = strtol(vmode, NULL, 0);
1363 stw_p(header+0x1fa, video_mode);
1366 /* loader type */
1367 /* High nybble = B reserved for QEMU; low nybble is revision number.
1368 If this code is substantially changed, you may want to consider
1369 incrementing the revision. */
1370 if (protocol >= 0x200) {
1371 header[0x210] = 0xB0;
1373 /* heap */
1374 if (protocol >= 0x201) {
1375 header[0x211] |= 0x80; /* CAN_USE_HEAP */
1376 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
1379 /* load initrd */
1380 if (initrd_filename) {
1381 gsize initrd_size;
1382 gchar *initrd_data;
1383 GError *gerr = NULL;
1385 if (protocol < 0x200) {
1386 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
1387 exit(1);
1390 if (!g_file_get_contents(initrd_filename, &initrd_data,
1391 &initrd_size, &gerr)) {
1392 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1393 initrd_filename, gerr->message);
1394 exit(1);
1396 if (initrd_size >= initrd_max) {
1397 fprintf(stderr, "qemu: initrd is too large, cannot support."
1398 "(max: %"PRIu32", need %"PRId64")\n",
1399 initrd_max, (uint64_t)initrd_size);
1400 exit(1);
1403 initrd_addr = (initrd_max-initrd_size) & ~4095;
1405 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1406 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1407 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
1409 stl_p(header+0x218, initrd_addr);
1410 stl_p(header+0x21c, initrd_size);
1413 /* load kernel and setup */
1414 setup_size = header[0x1f1];
1415 if (setup_size == 0) {
1416 setup_size = 4;
1418 setup_size = (setup_size+1)*512;
1419 if (setup_size > kernel_size) {
1420 fprintf(stderr, "qemu: invalid kernel header\n");
1421 exit(1);
1423 kernel_size -= setup_size;
1425 setup = g_malloc(setup_size);
1426 kernel = g_malloc(kernel_size);
1427 fseek(f, 0, SEEK_SET);
1428 if (fread(setup, 1, setup_size, f) != setup_size) {
1429 fprintf(stderr, "fread() failed\n");
1430 exit(1);
1432 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1433 fprintf(stderr, "fread() failed\n");
1434 exit(1);
1436 fclose(f);
1438 /* append dtb to kernel */
1439 if (dtb_filename) {
1440 if (protocol < 0x209) {
1441 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1442 exit(1);
1445 dtb_size = get_image_size(dtb_filename);
1446 if (dtb_size <= 0) {
1447 fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1448 dtb_filename, strerror(errno));
1449 exit(1);
1452 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1453 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1454 kernel = g_realloc(kernel, kernel_size);
1456 stq_p(header+0x250, prot_addr + setup_data_offset);
1458 setup_data = (struct setup_data *)(kernel + setup_data_offset);
1459 setup_data->next = 0;
1460 setup_data->type = cpu_to_le32(SETUP_DTB);
1461 setup_data->len = cpu_to_le32(dtb_size);
1463 load_image_size(dtb_filename, setup_data->data, dtb_size);
1466 memcpy(setup, header, MIN(sizeof(header), setup_size));
1468 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1469 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1470 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1472 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1473 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1474 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1476 option_rom[nb_option_roms].bootindex = 0;
1477 option_rom[nb_option_roms].name = "linuxboot.bin";
1478 if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1479 option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1481 nb_option_roms++;
1484 #define NE2000_NB_MAX 6
1486 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1487 0x280, 0x380 };
1488 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1490 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1492 static int nb_ne2k = 0;
1494 if (nb_ne2k == NE2000_NB_MAX)
1495 return;
1496 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1497 ne2000_irq[nb_ne2k], nd);
1498 nb_ne2k++;
1501 DeviceState *cpu_get_current_apic(void)
1503 if (current_cpu) {
1504 X86CPU *cpu = X86_CPU(current_cpu);
1505 return cpu->apic_state;
1506 } else {
1507 return NULL;
1511 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1513 X86CPU *cpu = opaque;
1515 if (level) {
1516 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1520 static void pc_new_cpu(PCMachineState *pcms, int64_t apic_id, Error **errp)
1522 Object *cpu = NULL;
1523 Error *local_err = NULL;
1524 CPUX86State *env = NULL;
1526 cpu = object_new(MACHINE(pcms)->cpu_type);
1528 env = &X86_CPU(cpu)->env;
1529 env->nr_dies = pcms->smp_dies;
1531 object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
1532 object_property_set_bool(cpu, true, "realized", &local_err);
1534 object_unref(cpu);
1535 error_propagate(errp, local_err);
1539 * This function is very similar to smp_parse()
1540 * in hw/core/machine.c but includes CPU die support.
1542 void pc_smp_parse(MachineState *ms, QemuOpts *opts)
1544 PCMachineState *pcms = PC_MACHINE(ms);
1546 if (opts) {
1547 unsigned cpus = qemu_opt_get_number(opts, "cpus", 0);
1548 unsigned sockets = qemu_opt_get_number(opts, "sockets", 0);
1549 unsigned dies = qemu_opt_get_number(opts, "dies", 1);
1550 unsigned cores = qemu_opt_get_number(opts, "cores", 0);
1551 unsigned threads = qemu_opt_get_number(opts, "threads", 0);
1553 /* compute missing values, prefer sockets over cores over threads */
1554 if (cpus == 0 || sockets == 0) {
1555 cores = cores > 0 ? cores : 1;
1556 threads = threads > 0 ? threads : 1;
1557 if (cpus == 0) {
1558 sockets = sockets > 0 ? sockets : 1;
1559 cpus = cores * threads * dies * sockets;
1560 } else {
1561 ms->smp.max_cpus =
1562 qemu_opt_get_number(opts, "maxcpus", cpus);
1563 sockets = ms->smp.max_cpus / (cores * threads * dies);
1565 } else if (cores == 0) {
1566 threads = threads > 0 ? threads : 1;
1567 cores = cpus / (sockets * dies * threads);
1568 cores = cores > 0 ? cores : 1;
1569 } else if (threads == 0) {
1570 threads = cpus / (cores * dies * sockets);
1571 threads = threads > 0 ? threads : 1;
1572 } else if (sockets * dies * cores * threads < cpus) {
1573 error_report("cpu topology: "
1574 "sockets (%u) * dies (%u) * cores (%u) * threads (%u) < "
1575 "smp_cpus (%u)",
1576 sockets, dies, cores, threads, cpus);
1577 exit(1);
1580 ms->smp.max_cpus =
1581 qemu_opt_get_number(opts, "maxcpus", cpus);
1583 if (ms->smp.max_cpus < cpus) {
1584 error_report("maxcpus must be equal to or greater than smp");
1585 exit(1);
1588 if (sockets * dies * cores * threads > ms->smp.max_cpus) {
1589 error_report("cpu topology: "
1590 "sockets (%u) * dies (%u) * cores (%u) * threads (%u) > "
1591 "maxcpus (%u)",
1592 sockets, dies, cores, threads,
1593 ms->smp.max_cpus);
1594 exit(1);
1597 if (sockets * dies * cores * threads != ms->smp.max_cpus) {
1598 warn_report("Invalid CPU topology deprecated: "
1599 "sockets (%u) * dies (%u) * cores (%u) * threads (%u) "
1600 "!= maxcpus (%u)",
1601 sockets, dies, cores, threads,
1602 ms->smp.max_cpus);
1605 ms->smp.cpus = cpus;
1606 ms->smp.cores = cores;
1607 ms->smp.threads = threads;
1608 pcms->smp_dies = dies;
1611 if (ms->smp.cpus > 1) {
1612 Error *blocker = NULL;
1613 error_setg(&blocker, QERR_REPLAY_NOT_SUPPORTED, "smp");
1614 replay_add_blocker(blocker);
1618 void pc_hot_add_cpu(MachineState *ms, const int64_t id, Error **errp)
1620 PCMachineState *pcms = PC_MACHINE(ms);
1621 int64_t apic_id = x86_cpu_apic_id_from_index(pcms, id);
1622 Error *local_err = NULL;
1624 if (id < 0) {
1625 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1626 return;
1629 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1630 error_setg(errp, "Unable to add CPU: %" PRIi64
1631 ", resulting APIC ID (%" PRIi64 ") is too large",
1632 id, apic_id);
1633 return;
1636 pc_new_cpu(PC_MACHINE(ms), apic_id, &local_err);
1637 if (local_err) {
1638 error_propagate(errp, local_err);
1639 return;
1643 void pc_cpus_init(PCMachineState *pcms)
1645 int i;
1646 const CPUArchIdList *possible_cpus;
1647 MachineState *ms = MACHINE(pcms);
1648 MachineClass *mc = MACHINE_GET_CLASS(pcms);
1649 PCMachineClass *pcmc = PC_MACHINE_CLASS(mc);
1651 x86_cpu_set_default_version(pcmc->default_cpu_version);
1653 /* Calculates the limit to CPU APIC ID values
1655 * Limit for the APIC ID value, so that all
1656 * CPU APIC IDs are < pcms->apic_id_limit.
1658 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1660 pcms->apic_id_limit = x86_cpu_apic_id_from_index(pcms,
1661 ms->smp.max_cpus - 1) + 1;
1662 possible_cpus = mc->possible_cpu_arch_ids(ms);
1663 for (i = 0; i < ms->smp.cpus; i++) {
1664 pc_new_cpu(pcms, possible_cpus->cpus[i].arch_id, &error_fatal);
1668 static void pc_build_feature_control_file(PCMachineState *pcms)
1670 MachineState *ms = MACHINE(pcms);
1671 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
1672 CPUX86State *env = &cpu->env;
1673 uint32_t unused, ecx, edx;
1674 uint64_t feature_control_bits = 0;
1675 uint64_t *val;
1677 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1678 if (ecx & CPUID_EXT_VMX) {
1679 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1682 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1683 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1684 (env->mcg_cap & MCG_LMCE_P)) {
1685 feature_control_bits |= FEATURE_CONTROL_LMCE;
1688 if (!feature_control_bits) {
1689 return;
1692 val = g_malloc(sizeof(*val));
1693 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1694 fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1697 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
1699 if (cpus_count > 0xff) {
1700 /* If the number of CPUs can't be represented in 8 bits, the
1701 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
1702 * to make old BIOSes fail more predictably.
1704 rtc_set_memory(rtc, 0x5f, 0);
1705 } else {
1706 rtc_set_memory(rtc, 0x5f, cpus_count - 1);
1710 static
1711 void pc_machine_done(Notifier *notifier, void *data)
1713 PCMachineState *pcms = container_of(notifier,
1714 PCMachineState, machine_done);
1715 PCIBus *bus = pcms->bus;
1717 /* set the number of CPUs */
1718 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1720 if (bus) {
1721 int extra_hosts = 0;
1723 QLIST_FOREACH(bus, &bus->child, sibling) {
1724 /* look for expander root buses */
1725 if (pci_bus_is_root(bus)) {
1726 extra_hosts++;
1729 if (extra_hosts && pcms->fw_cfg) {
1730 uint64_t *val = g_malloc(sizeof(*val));
1731 *val = cpu_to_le64(extra_hosts);
1732 fw_cfg_add_file(pcms->fw_cfg,
1733 "etc/extra-pci-roots", val, sizeof(*val));
1737 acpi_setup();
1738 if (pcms->fw_cfg) {
1739 pc_build_smbios(pcms);
1740 pc_build_feature_control_file(pcms);
1741 /* update FW_CFG_NB_CPUS to account for -device added CPUs */
1742 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1745 if (pcms->apic_id_limit > 255 && !xen_enabled()) {
1746 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
1748 if (!iommu || !x86_iommu_ir_supported(X86_IOMMU_DEVICE(iommu)) ||
1749 iommu->intr_eim != ON_OFF_AUTO_ON) {
1750 error_report("current -smp configuration requires "
1751 "Extended Interrupt Mode enabled. "
1752 "You can add an IOMMU using: "
1753 "-device intel-iommu,intremap=on,eim=on");
1754 exit(EXIT_FAILURE);
1759 void pc_guest_info_init(PCMachineState *pcms)
1761 int i;
1763 pcms->apic_xrupt_override = kvm_allows_irq0_override();
1764 pcms->numa_nodes = nb_numa_nodes;
1765 pcms->node_mem = g_malloc0(pcms->numa_nodes *
1766 sizeof *pcms->node_mem);
1767 for (i = 0; i < nb_numa_nodes; i++) {
1768 pcms->node_mem[i] = numa_info[i].node_mem;
1771 pcms->machine_done.notify = pc_machine_done;
1772 qemu_add_machine_init_done_notifier(&pcms->machine_done);
1775 /* setup pci memory address space mapping into system address space */
1776 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1777 MemoryRegion *pci_address_space)
1779 /* Set to lower priority than RAM */
1780 memory_region_add_subregion_overlap(system_memory, 0x0,
1781 pci_address_space, -1);
1784 void xen_load_linux(PCMachineState *pcms)
1786 int i;
1787 FWCfgState *fw_cfg;
1789 assert(MACHINE(pcms)->kernel_filename != NULL);
1791 fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1792 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1793 rom_set_fw(fw_cfg);
1795 load_linux(pcms, fw_cfg);
1796 for (i = 0; i < nb_option_roms; i++) {
1797 assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1798 !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1799 !strcmp(option_rom[i].name, "pvh.bin") ||
1800 !strcmp(option_rom[i].name, "multiboot.bin"));
1801 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1803 pcms->fw_cfg = fw_cfg;
1806 void pc_memory_init(PCMachineState *pcms,
1807 MemoryRegion *system_memory,
1808 MemoryRegion *rom_memory,
1809 MemoryRegion **ram_memory)
1811 int linux_boot, i;
1812 MemoryRegion *ram, *option_rom_mr;
1813 MemoryRegion *ram_below_4g, *ram_above_4g;
1814 FWCfgState *fw_cfg;
1815 MachineState *machine = MACHINE(pcms);
1816 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1818 assert(machine->ram_size == pcms->below_4g_mem_size +
1819 pcms->above_4g_mem_size);
1821 linux_boot = (machine->kernel_filename != NULL);
1823 /* Allocate RAM. We allocate it as a single memory region and use
1824 * aliases to address portions of it, mostly for backwards compatibility
1825 * with older qemus that used qemu_ram_alloc().
1827 ram = g_malloc(sizeof(*ram));
1828 memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1829 machine->ram_size);
1830 *ram_memory = ram;
1831 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1832 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1833 0, pcms->below_4g_mem_size);
1834 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1835 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1836 if (pcms->above_4g_mem_size > 0) {
1837 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1838 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1839 pcms->below_4g_mem_size,
1840 pcms->above_4g_mem_size);
1841 memory_region_add_subregion(system_memory, 0x100000000ULL,
1842 ram_above_4g);
1843 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1846 if (!pcmc->has_reserved_memory &&
1847 (machine->ram_slots ||
1848 (machine->maxram_size > machine->ram_size))) {
1849 MachineClass *mc = MACHINE_GET_CLASS(machine);
1851 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1852 mc->name);
1853 exit(EXIT_FAILURE);
1856 /* always allocate the device memory information */
1857 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
1859 /* initialize device memory address space */
1860 if (pcmc->has_reserved_memory &&
1861 (machine->ram_size < machine->maxram_size)) {
1862 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
1864 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1865 error_report("unsupported amount of memory slots: %"PRIu64,
1866 machine->ram_slots);
1867 exit(EXIT_FAILURE);
1870 if (QEMU_ALIGN_UP(machine->maxram_size,
1871 TARGET_PAGE_SIZE) != machine->maxram_size) {
1872 error_report("maximum memory size must by aligned to multiple of "
1873 "%d bytes", TARGET_PAGE_SIZE);
1874 exit(EXIT_FAILURE);
1877 machine->device_memory->base =
1878 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1 * GiB);
1880 if (pcmc->enforce_aligned_dimm) {
1881 /* size device region assuming 1G page max alignment per slot */
1882 device_mem_size += (1 * GiB) * machine->ram_slots;
1885 if ((machine->device_memory->base + device_mem_size) <
1886 device_mem_size) {
1887 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1888 machine->maxram_size);
1889 exit(EXIT_FAILURE);
1892 memory_region_init(&machine->device_memory->mr, OBJECT(pcms),
1893 "device-memory", device_mem_size);
1894 memory_region_add_subregion(system_memory, machine->device_memory->base,
1895 &machine->device_memory->mr);
1898 /* Initialize PC system firmware */
1899 pc_system_firmware_init(pcms, rom_memory);
1901 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1902 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1903 &error_fatal);
1904 if (pcmc->pci_enabled) {
1905 memory_region_set_readonly(option_rom_mr, true);
1907 memory_region_add_subregion_overlap(rom_memory,
1908 PC_ROM_MIN_VGA,
1909 option_rom_mr,
1912 fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1914 rom_set_fw(fw_cfg);
1916 if (pcmc->has_reserved_memory && machine->device_memory->base) {
1917 uint64_t *val = g_malloc(sizeof(*val));
1918 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1919 uint64_t res_mem_end = machine->device_memory->base;
1921 if (!pcmc->broken_reserved_end) {
1922 res_mem_end += memory_region_size(&machine->device_memory->mr);
1924 *val = cpu_to_le64(ROUND_UP(res_mem_end, 1 * GiB));
1925 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1928 if (linux_boot) {
1929 load_linux(pcms, fw_cfg);
1932 for (i = 0; i < nb_option_roms; i++) {
1933 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1935 pcms->fw_cfg = fw_cfg;
1937 /* Init default IOAPIC address space */
1938 pcms->ioapic_as = &address_space_memory;
1942 * The 64bit pci hole starts after "above 4G RAM" and
1943 * potentially the space reserved for memory hotplug.
1945 uint64_t pc_pci_hole64_start(void)
1947 PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
1948 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1949 MachineState *ms = MACHINE(pcms);
1950 uint64_t hole64_start = 0;
1952 if (pcmc->has_reserved_memory && ms->device_memory->base) {
1953 hole64_start = ms->device_memory->base;
1954 if (!pcmc->broken_reserved_end) {
1955 hole64_start += memory_region_size(&ms->device_memory->mr);
1957 } else {
1958 hole64_start = 0x100000000ULL + pcms->above_4g_mem_size;
1961 return ROUND_UP(hole64_start, 1 * GiB);
1964 qemu_irq pc_allocate_cpu_irq(void)
1966 return qemu_allocate_irq(pic_irq_request, NULL, 0);
1969 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1971 DeviceState *dev = NULL;
1973 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1974 if (pci_bus) {
1975 PCIDevice *pcidev = pci_vga_init(pci_bus);
1976 dev = pcidev ? &pcidev->qdev : NULL;
1977 } else if (isa_bus) {
1978 ISADevice *isadev = isa_vga_init(isa_bus);
1979 dev = isadev ? DEVICE(isadev) : NULL;
1981 rom_reset_order_override();
1982 return dev;
1985 static const MemoryRegionOps ioport80_io_ops = {
1986 .write = ioport80_write,
1987 .read = ioport80_read,
1988 .endianness = DEVICE_NATIVE_ENDIAN,
1989 .impl = {
1990 .min_access_size = 1,
1991 .max_access_size = 1,
1995 static const MemoryRegionOps ioportF0_io_ops = {
1996 .write = ioportF0_write,
1997 .read = ioportF0_read,
1998 .endianness = DEVICE_NATIVE_ENDIAN,
1999 .impl = {
2000 .min_access_size = 1,
2001 .max_access_size = 1,
2005 static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool no_vmport)
2007 int i;
2008 DriveInfo *fd[MAX_FD];
2009 qemu_irq *a20_line;
2010 ISADevice *i8042, *port92, *vmmouse;
2012 serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS);
2013 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
2015 for (i = 0; i < MAX_FD; i++) {
2016 fd[i] = drive_get(IF_FLOPPY, 0, i);
2017 create_fdctrl |= !!fd[i];
2019 if (create_fdctrl) {
2020 fdctrl_init_isa(isa_bus, fd);
2023 i8042 = isa_create_simple(isa_bus, "i8042");
2024 if (!no_vmport) {
2025 vmport_init(isa_bus);
2026 vmmouse = isa_try_create(isa_bus, "vmmouse");
2027 } else {
2028 vmmouse = NULL;
2030 if (vmmouse) {
2031 DeviceState *dev = DEVICE(vmmouse);
2032 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
2033 qdev_init_nofail(dev);
2035 port92 = isa_create_simple(isa_bus, "port92");
2037 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
2038 i8042_setup_a20_line(i8042, a20_line[0]);
2039 port92_init(port92, a20_line[1]);
2040 g_free(a20_line);
2043 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
2044 ISADevice **rtc_state,
2045 bool create_fdctrl,
2046 bool no_vmport,
2047 bool has_pit,
2048 uint32_t hpet_irqs)
2050 int i;
2051 DeviceState *hpet = NULL;
2052 int pit_isa_irq = 0;
2053 qemu_irq pit_alt_irq = NULL;
2054 qemu_irq rtc_irq = NULL;
2055 ISADevice *pit = NULL;
2056 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
2057 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
2059 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
2060 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
2062 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
2063 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
2066 * Check if an HPET shall be created.
2068 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
2069 * when the HPET wants to take over. Thus we have to disable the latter.
2071 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
2072 /* In order to set property, here not using sysbus_try_create_simple */
2073 hpet = qdev_try_create(NULL, TYPE_HPET);
2074 if (hpet) {
2075 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
2076 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
2077 * IRQ8 and IRQ2.
2079 uint8_t compat = object_property_get_uint(OBJECT(hpet),
2080 HPET_INTCAP, NULL);
2081 if (!compat) {
2082 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
2084 qdev_init_nofail(hpet);
2085 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
2087 for (i = 0; i < GSI_NUM_PINS; i++) {
2088 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
2090 pit_isa_irq = -1;
2091 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
2092 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
2095 *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq);
2097 qemu_register_boot_set(pc_boot_set, *rtc_state);
2099 if (!xen_enabled() && has_pit) {
2100 if (kvm_pit_in_kernel()) {
2101 pit = kvm_pit_init(isa_bus, 0x40);
2102 } else {
2103 pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
2105 if (hpet) {
2106 /* connect PIT to output control line of the HPET */
2107 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
2109 pcspk_init(isa_bus, pit);
2112 i8257_dma_init(isa_bus, 0);
2114 /* Super I/O */
2115 pc_superio_init(isa_bus, create_fdctrl, no_vmport);
2118 void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus)
2120 int i;
2122 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
2123 for (i = 0; i < nb_nics; i++) {
2124 NICInfo *nd = &nd_table[i];
2125 const char *model = nd->model ? nd->model : pcmc->default_nic_model;
2127 if (g_str_equal(model, "ne2k_isa")) {
2128 pc_init_ne2k_isa(isa_bus, nd);
2129 } else {
2130 pci_nic_init_nofail(nd, pci_bus, model, NULL);
2133 rom_reset_order_override();
2136 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
2138 DeviceState *dev;
2139 SysBusDevice *d;
2140 unsigned int i;
2142 if (kvm_ioapic_in_kernel()) {
2143 dev = qdev_create(NULL, TYPE_KVM_IOAPIC);
2144 } else {
2145 dev = qdev_create(NULL, TYPE_IOAPIC);
2147 if (parent_name) {
2148 object_property_add_child(object_resolve_path(parent_name, NULL),
2149 "ioapic", OBJECT(dev), NULL);
2151 qdev_init_nofail(dev);
2152 d = SYS_BUS_DEVICE(dev);
2153 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
2155 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
2156 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
2160 static void pc_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2161 Error **errp)
2163 const PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2164 const PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
2165 const MachineState *ms = MACHINE(hotplug_dev);
2166 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2167 const uint64_t legacy_align = TARGET_PAGE_SIZE;
2168 Error *local_err = NULL;
2171 * When -no-acpi is used with Q35 machine type, no ACPI is built,
2172 * but pcms->acpi_dev is still created. Check !acpi_enabled in
2173 * addition to cover this case.
2175 if (!pcms->acpi_dev || !acpi_enabled) {
2176 error_setg(errp,
2177 "memory hotplug is not enabled: missing acpi device or acpi disabled");
2178 return;
2181 if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2182 error_setg(errp, "nvdimm is not enabled: missing 'nvdimm' in '-M'");
2183 return;
2186 hotplug_handler_pre_plug(pcms->acpi_dev, dev, &local_err);
2187 if (local_err) {
2188 error_propagate(errp, local_err);
2189 return;
2192 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev),
2193 pcmc->enforce_aligned_dimm ? NULL : &legacy_align, errp);
2196 static void pc_memory_plug(HotplugHandler *hotplug_dev,
2197 DeviceState *dev, Error **errp)
2199 Error *local_err = NULL;
2200 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2201 MachineState *ms = MACHINE(hotplug_dev);
2202 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2204 pc_dimm_plug(PC_DIMM(dev), MACHINE(pcms), &local_err);
2205 if (local_err) {
2206 goto out;
2209 if (is_nvdimm) {
2210 nvdimm_plug(ms->nvdimms_state);
2213 hotplug_handler_plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
2214 out:
2215 error_propagate(errp, local_err);
2218 static void pc_memory_unplug_request(HotplugHandler *hotplug_dev,
2219 DeviceState *dev, Error **errp)
2221 Error *local_err = NULL;
2222 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2225 * When -no-acpi is used with Q35 machine type, no ACPI is built,
2226 * but pcms->acpi_dev is still created. Check !acpi_enabled in
2227 * addition to cover this case.
2229 if (!pcms->acpi_dev || !acpi_enabled) {
2230 error_setg(&local_err,
2231 "memory hotplug is not enabled: missing acpi device or acpi disabled");
2232 goto out;
2235 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2236 error_setg(&local_err,
2237 "nvdimm device hot unplug is not supported yet.");
2238 goto out;
2241 hotplug_handler_unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev,
2242 &local_err);
2243 out:
2244 error_propagate(errp, local_err);
2247 static void pc_memory_unplug(HotplugHandler *hotplug_dev,
2248 DeviceState *dev, Error **errp)
2250 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2251 Error *local_err = NULL;
2253 hotplug_handler_unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2254 if (local_err) {
2255 goto out;
2258 pc_dimm_unplug(PC_DIMM(dev), MACHINE(pcms));
2259 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
2260 out:
2261 error_propagate(errp, local_err);
2264 static int pc_apic_cmp(const void *a, const void *b)
2266 CPUArchId *apic_a = (CPUArchId *)a;
2267 CPUArchId *apic_b = (CPUArchId *)b;
2269 return apic_a->arch_id - apic_b->arch_id;
2272 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id
2273 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
2274 * entry corresponding to CPU's apic_id returns NULL.
2276 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2278 CPUArchId apic_id, *found_cpu;
2280 apic_id.arch_id = id;
2281 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
2282 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
2283 pc_apic_cmp);
2284 if (found_cpu && idx) {
2285 *idx = found_cpu - ms->possible_cpus->cpus;
2287 return found_cpu;
2290 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
2291 DeviceState *dev, Error **errp)
2293 CPUArchId *found_cpu;
2294 Error *local_err = NULL;
2295 X86CPU *cpu = X86_CPU(dev);
2296 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2298 if (pcms->acpi_dev) {
2299 hotplug_handler_plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2300 if (local_err) {
2301 goto out;
2305 /* increment the number of CPUs */
2306 pcms->boot_cpus++;
2307 if (pcms->rtc) {
2308 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
2310 if (pcms->fw_cfg) {
2311 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
2314 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
2315 found_cpu->cpu = OBJECT(dev);
2316 out:
2317 error_propagate(errp, local_err);
2319 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
2320 DeviceState *dev, Error **errp)
2322 int idx = -1;
2323 Error *local_err = NULL;
2324 X86CPU *cpu = X86_CPU(dev);
2325 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2327 if (!pcms->acpi_dev) {
2328 error_setg(&local_err, "CPU hot unplug not supported without ACPI");
2329 goto out;
2332 pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
2333 assert(idx != -1);
2334 if (idx == 0) {
2335 error_setg(&local_err, "Boot CPU is unpluggable");
2336 goto out;
2339 hotplug_handler_unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev,
2340 &local_err);
2341 if (local_err) {
2342 goto out;
2345 out:
2346 error_propagate(errp, local_err);
2350 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
2351 DeviceState *dev, Error **errp)
2353 CPUArchId *found_cpu;
2354 Error *local_err = NULL;
2355 X86CPU *cpu = X86_CPU(dev);
2356 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2358 hotplug_handler_unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2359 if (local_err) {
2360 goto out;
2363 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
2364 found_cpu->cpu = NULL;
2365 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
2367 /* decrement the number of CPUs */
2368 pcms->boot_cpus--;
2369 /* Update the number of CPUs in CMOS */
2370 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
2371 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
2372 out:
2373 error_propagate(errp, local_err);
2376 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
2377 DeviceState *dev, Error **errp)
2379 int idx;
2380 CPUState *cs;
2381 CPUArchId *cpu_slot;
2382 X86CPUTopoInfo topo;
2383 X86CPU *cpu = X86_CPU(dev);
2384 CPUX86State *env = &cpu->env;
2385 MachineState *ms = MACHINE(hotplug_dev);
2386 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2387 unsigned int smp_cores = ms->smp.cores;
2388 unsigned int smp_threads = ms->smp.threads;
2390 if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
2391 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
2392 ms->cpu_type);
2393 return;
2396 env->nr_dies = pcms->smp_dies;
2399 * If APIC ID is not set,
2400 * set it based on socket/die/core/thread properties.
2402 if (cpu->apic_id == UNASSIGNED_APIC_ID) {
2403 int max_socket = (ms->smp.max_cpus - 1) /
2404 smp_threads / smp_cores / pcms->smp_dies;
2406 if (cpu->socket_id < 0) {
2407 error_setg(errp, "CPU socket-id is not set");
2408 return;
2409 } else if (cpu->socket_id > max_socket) {
2410 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
2411 cpu->socket_id, max_socket);
2412 return;
2413 } else if (cpu->die_id > pcms->smp_dies - 1) {
2414 error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u",
2415 cpu->die_id, max_socket);
2416 return;
2418 if (cpu->core_id < 0) {
2419 error_setg(errp, "CPU core-id is not set");
2420 return;
2421 } else if (cpu->core_id > (smp_cores - 1)) {
2422 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
2423 cpu->core_id, smp_cores - 1);
2424 return;
2426 if (cpu->thread_id < 0) {
2427 error_setg(errp, "CPU thread-id is not set");
2428 return;
2429 } else if (cpu->thread_id > (smp_threads - 1)) {
2430 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
2431 cpu->thread_id, smp_threads - 1);
2432 return;
2435 topo.pkg_id = cpu->socket_id;
2436 topo.die_id = cpu->die_id;
2437 topo.core_id = cpu->core_id;
2438 topo.smt_id = cpu->thread_id;
2439 cpu->apic_id = apicid_from_topo_ids(pcms->smp_dies, smp_cores,
2440 smp_threads, &topo);
2443 cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
2444 if (!cpu_slot) {
2445 MachineState *ms = MACHINE(pcms);
2447 x86_topo_ids_from_apicid(cpu->apic_id, pcms->smp_dies,
2448 smp_cores, smp_threads, &topo);
2449 error_setg(errp,
2450 "Invalid CPU [socket: %u, die: %u, core: %u, thread: %u] with"
2451 " APIC ID %" PRIu32 ", valid index range 0:%d",
2452 topo.pkg_id, topo.die_id, topo.core_id, topo.smt_id,
2453 cpu->apic_id, ms->possible_cpus->len - 1);
2454 return;
2457 if (cpu_slot->cpu) {
2458 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
2459 idx, cpu->apic_id);
2460 return;
2463 /* if 'address' properties socket-id/core-id/thread-id are not set, set them
2464 * so that machine_query_hotpluggable_cpus would show correct values
2466 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
2467 * once -smp refactoring is complete and there will be CPU private
2468 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
2469 x86_topo_ids_from_apicid(cpu->apic_id, pcms->smp_dies,
2470 smp_cores, smp_threads, &topo);
2471 if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
2472 error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
2473 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
2474 return;
2476 cpu->socket_id = topo.pkg_id;
2478 if (cpu->die_id != -1 && cpu->die_id != topo.die_id) {
2479 error_setg(errp, "property die-id: %u doesn't match set apic-id:"
2480 " 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo.die_id);
2481 return;
2483 cpu->die_id = topo.die_id;
2485 if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
2486 error_setg(errp, "property core-id: %u doesn't match set apic-id:"
2487 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
2488 return;
2490 cpu->core_id = topo.core_id;
2492 if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
2493 error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
2494 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
2495 return;
2497 cpu->thread_id = topo.smt_id;
2499 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) &&
2500 !kvm_hv_vpindex_settable()) {
2501 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
2502 return;
2505 cs = CPU(cpu);
2506 cs->cpu_index = idx;
2508 numa_cpu_pre_plug(cpu_slot, dev, errp);
2511 static void pc_virtio_pmem_pci_pre_plug(HotplugHandler *hotplug_dev,
2512 DeviceState *dev, Error **errp)
2514 HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev);
2515 Error *local_err = NULL;
2517 if (!hotplug_dev2) {
2519 * Without a bus hotplug handler, we cannot control the plug/unplug
2520 * order. This should never be the case on x86, however better add
2521 * a safety net.
2523 error_setg(errp, "virtio-pmem-pci not supported on this bus.");
2524 return;
2527 * First, see if we can plug this memory device at all. If that
2528 * succeeds, branch of to the actual hotplug handler.
2530 memory_device_pre_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev), NULL,
2531 &local_err);
2532 if (!local_err) {
2533 hotplug_handler_pre_plug(hotplug_dev2, dev, &local_err);
2535 error_propagate(errp, local_err);
2538 static void pc_virtio_pmem_pci_plug(HotplugHandler *hotplug_dev,
2539 DeviceState *dev, Error **errp)
2541 HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev);
2542 Error *local_err = NULL;
2545 * Plug the memory device first and then branch off to the actual
2546 * hotplug handler. If that one fails, we can easily undo the memory
2547 * device bits.
2549 memory_device_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev));
2550 hotplug_handler_plug(hotplug_dev2, dev, &local_err);
2551 if (local_err) {
2552 memory_device_unplug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev));
2554 error_propagate(errp, local_err);
2557 static void pc_virtio_pmem_pci_unplug_request(HotplugHandler *hotplug_dev,
2558 DeviceState *dev, Error **errp)
2560 /* We don't support virtio pmem hot unplug */
2561 error_setg(errp, "virtio pmem device unplug not supported.");
2564 static void pc_virtio_pmem_pci_unplug(HotplugHandler *hotplug_dev,
2565 DeviceState *dev, Error **errp)
2567 /* We don't support virtio pmem hot unplug */
2570 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2571 DeviceState *dev, Error **errp)
2573 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2574 pc_memory_pre_plug(hotplug_dev, dev, errp);
2575 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2576 pc_cpu_pre_plug(hotplug_dev, dev, errp);
2577 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
2578 pc_virtio_pmem_pci_pre_plug(hotplug_dev, dev, errp);
2582 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2583 DeviceState *dev, Error **errp)
2585 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2586 pc_memory_plug(hotplug_dev, dev, errp);
2587 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2588 pc_cpu_plug(hotplug_dev, dev, errp);
2589 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
2590 pc_virtio_pmem_pci_plug(hotplug_dev, dev, errp);
2594 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2595 DeviceState *dev, Error **errp)
2597 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2598 pc_memory_unplug_request(hotplug_dev, dev, errp);
2599 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2600 pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
2601 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
2602 pc_virtio_pmem_pci_unplug_request(hotplug_dev, dev, errp);
2603 } else {
2604 error_setg(errp, "acpi: device unplug request for not supported device"
2605 " type: %s", object_get_typename(OBJECT(dev)));
2609 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2610 DeviceState *dev, Error **errp)
2612 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2613 pc_memory_unplug(hotplug_dev, dev, errp);
2614 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2615 pc_cpu_unplug_cb(hotplug_dev, dev, errp);
2616 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
2617 pc_virtio_pmem_pci_unplug(hotplug_dev, dev, errp);
2618 } else {
2619 error_setg(errp, "acpi: device unplug for not supported device"
2620 " type: %s", object_get_typename(OBJECT(dev)));
2624 static HotplugHandler *pc_get_hotplug_handler(MachineState *machine,
2625 DeviceState *dev)
2627 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2628 object_dynamic_cast(OBJECT(dev), TYPE_CPU) ||
2629 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
2630 return HOTPLUG_HANDLER(machine);
2633 return NULL;
2636 static void
2637 pc_machine_get_device_memory_region_size(Object *obj, Visitor *v,
2638 const char *name, void *opaque,
2639 Error **errp)
2641 MachineState *ms = MACHINE(obj);
2642 int64_t value = 0;
2644 if (ms->device_memory) {
2645 value = memory_region_size(&ms->device_memory->mr);
2648 visit_type_int(v, name, &value, errp);
2651 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2652 const char *name, void *opaque,
2653 Error **errp)
2655 PCMachineState *pcms = PC_MACHINE(obj);
2656 uint64_t value = pcms->max_ram_below_4g;
2658 visit_type_size(v, name, &value, errp);
2661 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2662 const char *name, void *opaque,
2663 Error **errp)
2665 PCMachineState *pcms = PC_MACHINE(obj);
2666 Error *error = NULL;
2667 uint64_t value;
2669 visit_type_size(v, name, &value, &error);
2670 if (error) {
2671 error_propagate(errp, error);
2672 return;
2674 if (value > 4 * GiB) {
2675 error_setg(&error,
2676 "Machine option 'max-ram-below-4g=%"PRIu64
2677 "' expects size less than or equal to 4G", value);
2678 error_propagate(errp, error);
2679 return;
2682 if (value < 1 * MiB) {
2683 warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
2684 "BIOS may not work with less than 1MiB", value);
2687 pcms->max_ram_below_4g = value;
2690 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2691 void *opaque, Error **errp)
2693 PCMachineState *pcms = PC_MACHINE(obj);
2694 OnOffAuto vmport = pcms->vmport;
2696 visit_type_OnOffAuto(v, name, &vmport, errp);
2699 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2700 void *opaque, Error **errp)
2702 PCMachineState *pcms = PC_MACHINE(obj);
2704 visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2707 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2709 bool smm_available = false;
2711 if (pcms->smm == ON_OFF_AUTO_OFF) {
2712 return false;
2715 if (tcg_enabled() || qtest_enabled()) {
2716 smm_available = true;
2717 } else if (kvm_enabled()) {
2718 smm_available = kvm_has_smm();
2721 if (smm_available) {
2722 return true;
2725 if (pcms->smm == ON_OFF_AUTO_ON) {
2726 error_report("System Management Mode not supported by this hypervisor.");
2727 exit(1);
2729 return false;
2732 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2733 void *opaque, Error **errp)
2735 PCMachineState *pcms = PC_MACHINE(obj);
2736 OnOffAuto smm = pcms->smm;
2738 visit_type_OnOffAuto(v, name, &smm, errp);
2741 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2742 void *opaque, Error **errp)
2744 PCMachineState *pcms = PC_MACHINE(obj);
2746 visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2749 static bool pc_machine_get_smbus(Object *obj, Error **errp)
2751 PCMachineState *pcms = PC_MACHINE(obj);
2753 return pcms->smbus_enabled;
2756 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp)
2758 PCMachineState *pcms = PC_MACHINE(obj);
2760 pcms->smbus_enabled = value;
2763 static bool pc_machine_get_sata(Object *obj, Error **errp)
2765 PCMachineState *pcms = PC_MACHINE(obj);
2767 return pcms->sata_enabled;
2770 static void pc_machine_set_sata(Object *obj, bool value, Error **errp)
2772 PCMachineState *pcms = PC_MACHINE(obj);
2774 pcms->sata_enabled = value;
2777 static bool pc_machine_get_pit(Object *obj, Error **errp)
2779 PCMachineState *pcms = PC_MACHINE(obj);
2781 return pcms->pit_enabled;
2784 static void pc_machine_set_pit(Object *obj, bool value, Error **errp)
2786 PCMachineState *pcms = PC_MACHINE(obj);
2788 pcms->pit_enabled = value;
2791 static void pc_machine_initfn(Object *obj)
2793 PCMachineState *pcms = PC_MACHINE(obj);
2795 pcms->max_ram_below_4g = 0; /* use default */
2796 pcms->smm = ON_OFF_AUTO_AUTO;
2797 #ifdef CONFIG_VMPORT
2798 pcms->vmport = ON_OFF_AUTO_AUTO;
2799 #else
2800 pcms->vmport = ON_OFF_AUTO_OFF;
2801 #endif /* CONFIG_VMPORT */
2802 /* acpi build is enabled by default if machine supports it */
2803 pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build;
2804 pcms->smbus_enabled = true;
2805 pcms->sata_enabled = true;
2806 pcms->pit_enabled = true;
2807 pcms->smp_dies = 1;
2809 pc_system_flash_create(pcms);
2812 static void pc_machine_reset(MachineState *machine)
2814 CPUState *cs;
2815 X86CPU *cpu;
2817 qemu_devices_reset();
2819 /* Reset APIC after devices have been reset to cancel
2820 * any changes that qemu_devices_reset() might have done.
2822 CPU_FOREACH(cs) {
2823 cpu = X86_CPU(cs);
2825 if (cpu->apic_state) {
2826 device_reset(cpu->apic_state);
2831 static CpuInstanceProperties
2832 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2834 MachineClass *mc = MACHINE_GET_CLASS(ms);
2835 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2837 assert(cpu_index < possible_cpus->len);
2838 return possible_cpus->cpus[cpu_index].props;
2841 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx)
2843 X86CPUTopoInfo topo;
2844 PCMachineState *pcms = PC_MACHINE(ms);
2846 assert(idx < ms->possible_cpus->len);
2847 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
2848 pcms->smp_dies, ms->smp.cores,
2849 ms->smp.threads, &topo);
2850 return topo.pkg_id % nb_numa_nodes;
2853 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms)
2855 PCMachineState *pcms = PC_MACHINE(ms);
2856 int i;
2857 unsigned int max_cpus = ms->smp.max_cpus;
2859 if (ms->possible_cpus) {
2861 * make sure that max_cpus hasn't changed since the first use, i.e.
2862 * -smp hasn't been parsed after it
2864 assert(ms->possible_cpus->len == max_cpus);
2865 return ms->possible_cpus;
2868 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2869 sizeof(CPUArchId) * max_cpus);
2870 ms->possible_cpus->len = max_cpus;
2871 for (i = 0; i < ms->possible_cpus->len; i++) {
2872 X86CPUTopoInfo topo;
2874 ms->possible_cpus->cpus[i].type = ms->cpu_type;
2875 ms->possible_cpus->cpus[i].vcpus_count = 1;
2876 ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(pcms, i);
2877 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
2878 pcms->smp_dies, ms->smp.cores,
2879 ms->smp.threads, &topo);
2880 ms->possible_cpus->cpus[i].props.has_socket_id = true;
2881 ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
2882 ms->possible_cpus->cpus[i].props.has_die_id = true;
2883 ms->possible_cpus->cpus[i].props.die_id = topo.die_id;
2884 ms->possible_cpus->cpus[i].props.has_core_id = true;
2885 ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
2886 ms->possible_cpus->cpus[i].props.has_thread_id = true;
2887 ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
2889 return ms->possible_cpus;
2892 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2894 /* cpu index isn't used */
2895 CPUState *cs;
2897 CPU_FOREACH(cs) {
2898 X86CPU *cpu = X86_CPU(cs);
2900 if (!cpu->apic_state) {
2901 cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2902 } else {
2903 apic_deliver_nmi(cpu->apic_state);
2908 static void pc_machine_class_init(ObjectClass *oc, void *data)
2910 MachineClass *mc = MACHINE_CLASS(oc);
2911 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2912 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2913 NMIClass *nc = NMI_CLASS(oc);
2915 pcmc->pci_enabled = true;
2916 pcmc->has_acpi_build = true;
2917 pcmc->rsdp_in_ram = true;
2918 pcmc->smbios_defaults = true;
2919 pcmc->smbios_uuid_encoded = true;
2920 pcmc->gigabyte_align = true;
2921 pcmc->has_reserved_memory = true;
2922 pcmc->kvmclock_enabled = true;
2923 pcmc->enforce_aligned_dimm = true;
2924 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2925 * to be used at the moment, 32K should be enough for a while. */
2926 pcmc->acpi_data_size = 0x20000 + 0x8000;
2927 pcmc->save_tsc_khz = true;
2928 pcmc->linuxboot_dma_enabled = true;
2929 pcmc->pvh_enabled = true;
2930 assert(!mc->get_hotplug_handler);
2931 mc->get_hotplug_handler = pc_get_hotplug_handler;
2932 mc->cpu_index_to_instance_props = pc_cpu_index_to_props;
2933 mc->get_default_cpu_node_id = pc_get_default_cpu_node_id;
2934 mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2935 mc->auto_enable_numa_with_memhp = true;
2936 mc->has_hotpluggable_cpus = true;
2937 mc->default_boot_order = "cad";
2938 mc->hot_add_cpu = pc_hot_add_cpu;
2939 mc->smp_parse = pc_smp_parse;
2940 mc->block_default_type = IF_IDE;
2941 mc->max_cpus = 255;
2942 mc->reset = pc_machine_reset;
2943 hc->pre_plug = pc_machine_device_pre_plug_cb;
2944 hc->plug = pc_machine_device_plug_cb;
2945 hc->unplug_request = pc_machine_device_unplug_request_cb;
2946 hc->unplug = pc_machine_device_unplug_cb;
2947 nc->nmi_monitor_handler = x86_nmi;
2948 mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE;
2949 mc->nvdimm_supported = true;
2950 mc->numa_mem_supported = true;
2952 object_class_property_add(oc, PC_MACHINE_DEVMEM_REGION_SIZE, "int",
2953 pc_machine_get_device_memory_region_size, NULL,
2954 NULL, NULL, &error_abort);
2956 object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2957 pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g,
2958 NULL, NULL, &error_abort);
2960 object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G,
2961 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
2963 object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto",
2964 pc_machine_get_smm, pc_machine_set_smm,
2965 NULL, NULL, &error_abort);
2966 object_class_property_set_description(oc, PC_MACHINE_SMM,
2967 "Enable SMM (pc & q35)", &error_abort);
2969 object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto",
2970 pc_machine_get_vmport, pc_machine_set_vmport,
2971 NULL, NULL, &error_abort);
2972 object_class_property_set_description(oc, PC_MACHINE_VMPORT,
2973 "Enable vmport (pc & q35)", &error_abort);
2975 object_class_property_add_bool(oc, PC_MACHINE_SMBUS,
2976 pc_machine_get_smbus, pc_machine_set_smbus, &error_abort);
2978 object_class_property_add_bool(oc, PC_MACHINE_SATA,
2979 pc_machine_get_sata, pc_machine_set_sata, &error_abort);
2981 object_class_property_add_bool(oc, PC_MACHINE_PIT,
2982 pc_machine_get_pit, pc_machine_set_pit, &error_abort);
2985 static const TypeInfo pc_machine_info = {
2986 .name = TYPE_PC_MACHINE,
2987 .parent = TYPE_MACHINE,
2988 .abstract = true,
2989 .instance_size = sizeof(PCMachineState),
2990 .instance_init = pc_machine_initfn,
2991 .class_size = sizeof(PCMachineClass),
2992 .class_init = pc_machine_class_init,
2993 .interfaces = (InterfaceInfo[]) {
2994 { TYPE_HOTPLUG_HANDLER },
2995 { TYPE_NMI },
3000 static void pc_machine_register_types(void)
3002 type_register_static(&pc_machine_info);
3005 type_init(pc_machine_register_types)