4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
39 #include <sys/param.h>
43 #include <sys/ioctl.h>
44 #include <linux/rtc.h>
45 /* For the benefit of older linux systems which don't supply it,
46 we use a local copy of hpet.h. */
47 /* #include <linux/hpet.h> */
56 #include "qemu-timer.h"
58 /* Conversion factor from emulated instructions to virtual clock ticks. */
59 int icount_time_shift
;
60 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
61 #define MAX_ICOUNT_SHIFT 10
62 /* Compensate for varying guest execution speed. */
63 int64_t qemu_icount_bias
;
64 static QEMUTimer
*icount_rt_timer
;
65 static QEMUTimer
*icount_vm_timer
;
67 /***********************************************************/
68 /* guest cycle counter */
70 typedef struct TimersState
{
71 int64_t cpu_ticks_prev
;
72 int64_t cpu_ticks_offset
;
73 int64_t cpu_clock_offset
;
74 int32_t cpu_ticks_enabled
;
78 TimersState timers_state
;
80 /* return the host CPU cycle counter and handle stop/restart */
81 int64_t cpu_get_ticks(void)
84 return cpu_get_icount();
86 if (!timers_state
.cpu_ticks_enabled
) {
87 return timers_state
.cpu_ticks_offset
;
90 ticks
= cpu_get_real_ticks();
91 if (timers_state
.cpu_ticks_prev
> ticks
) {
92 /* Note: non increasing ticks may happen if the host uses
94 timers_state
.cpu_ticks_offset
+= timers_state
.cpu_ticks_prev
- ticks
;
96 timers_state
.cpu_ticks_prev
= ticks
;
97 return ticks
+ timers_state
.cpu_ticks_offset
;
101 /* return the host CPU monotonic timer and handle stop/restart */
102 static int64_t cpu_get_clock(void)
105 if (!timers_state
.cpu_ticks_enabled
) {
106 return timers_state
.cpu_clock_offset
;
109 return ti
+ timers_state
.cpu_clock_offset
;
113 #ifndef CONFIG_IOTHREAD
114 static int64_t qemu_icount_delta(void)
117 return 5000 * (int64_t) 1000000;
118 } else if (use_icount
== 1) {
119 /* When not using an adaptive execution frequency
120 we tend to get badly out of sync with real time,
121 so just delay for a reasonable amount of time. */
124 return cpu_get_icount() - cpu_get_clock();
129 /* enable cpu_get_ticks() */
130 void cpu_enable_ticks(void)
132 if (!timers_state
.cpu_ticks_enabled
) {
133 timers_state
.cpu_ticks_offset
-= cpu_get_real_ticks();
134 timers_state
.cpu_clock_offset
-= get_clock();
135 timers_state
.cpu_ticks_enabled
= 1;
139 /* disable cpu_get_ticks() : the clock is stopped. You must not call
140 cpu_get_ticks() after that. */
141 void cpu_disable_ticks(void)
143 if (timers_state
.cpu_ticks_enabled
) {
144 timers_state
.cpu_ticks_offset
= cpu_get_ticks();
145 timers_state
.cpu_clock_offset
= cpu_get_clock();
146 timers_state
.cpu_ticks_enabled
= 0;
150 /***********************************************************/
153 #define QEMU_CLOCK_REALTIME 0
154 #define QEMU_CLOCK_VIRTUAL 1
155 #define QEMU_CLOCK_HOST 2
161 QEMUTimer
*warp_timer
;
166 int64_t expire_time
; /* in nanoseconds */
170 struct QEMUTimer
*next
;
173 struct qemu_alarm_timer
{
175 int (*start
)(struct qemu_alarm_timer
*t
);
176 void (*stop
)(struct qemu_alarm_timer
*t
);
177 void (*rearm
)(struct qemu_alarm_timer
*t
);
184 static struct qemu_alarm_timer
*alarm_timer
;
186 int qemu_alarm_pending(void)
188 return alarm_timer
->pending
;
191 static inline int alarm_has_dynticks(struct qemu_alarm_timer
*t
)
196 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer
*t
)
198 if (!alarm_has_dynticks(t
))
204 /* TODO: MIN_TIMER_REARM_NS should be optimized */
205 #define MIN_TIMER_REARM_NS 250000
209 static int win32_start_timer(struct qemu_alarm_timer
*t
);
210 static void win32_stop_timer(struct qemu_alarm_timer
*t
);
211 static void win32_rearm_timer(struct qemu_alarm_timer
*t
);
215 static int unix_start_timer(struct qemu_alarm_timer
*t
);
216 static void unix_stop_timer(struct qemu_alarm_timer
*t
);
220 static int dynticks_start_timer(struct qemu_alarm_timer
*t
);
221 static void dynticks_stop_timer(struct qemu_alarm_timer
*t
);
222 static void dynticks_rearm_timer(struct qemu_alarm_timer
*t
);
224 static int hpet_start_timer(struct qemu_alarm_timer
*t
);
225 static void hpet_stop_timer(struct qemu_alarm_timer
*t
);
227 static int rtc_start_timer(struct qemu_alarm_timer
*t
);
228 static void rtc_stop_timer(struct qemu_alarm_timer
*t
);
230 #endif /* __linux__ */
234 /* Correlation between real and virtual time is always going to be
235 fairly approximate, so ignore small variation.
236 When the guest is idle real and virtual time will be aligned in
238 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
240 static void icount_adjust(void)
245 static int64_t last_delta
;
246 /* If the VM is not running, then do nothing. */
250 cur_time
= cpu_get_clock();
251 cur_icount
= qemu_get_clock_ns(vm_clock
);
252 delta
= cur_icount
- cur_time
;
253 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
255 && last_delta
+ ICOUNT_WOBBLE
< delta
* 2
256 && icount_time_shift
> 0) {
257 /* The guest is getting too far ahead. Slow time down. */
261 && last_delta
- ICOUNT_WOBBLE
> delta
* 2
262 && icount_time_shift
< MAX_ICOUNT_SHIFT
) {
263 /* The guest is getting too far behind. Speed time up. */
267 qemu_icount_bias
= cur_icount
- (qemu_icount
<< icount_time_shift
);
270 static void icount_adjust_rt(void * opaque
)
272 qemu_mod_timer(icount_rt_timer
,
273 qemu_get_clock_ms(rt_clock
) + 1000);
277 static void icount_adjust_vm(void * opaque
)
279 qemu_mod_timer(icount_vm_timer
,
280 qemu_get_clock_ns(vm_clock
) + get_ticks_per_sec() / 10);
284 int64_t qemu_icount_round(int64_t count
)
286 return (count
+ (1 << icount_time_shift
) - 1) >> icount_time_shift
;
289 static struct qemu_alarm_timer alarm_timers
[] = {
292 {"dynticks", dynticks_start_timer
,
293 dynticks_stop_timer
, dynticks_rearm_timer
, NULL
},
294 /* HPET - if available - is preferred */
295 {"hpet", hpet_start_timer
, hpet_stop_timer
, NULL
, NULL
},
296 /* ...otherwise try RTC */
297 {"rtc", rtc_start_timer
, rtc_stop_timer
, NULL
, NULL
},
299 {"unix", unix_start_timer
, unix_stop_timer
, NULL
, NULL
},
301 {"dynticks", win32_start_timer
,
302 win32_stop_timer
, win32_rearm_timer
, NULL
},
303 {"win32", win32_start_timer
,
304 win32_stop_timer
, NULL
, NULL
},
309 static void show_available_alarms(void)
313 printf("Available alarm timers, in order of precedence:\n");
314 for (i
= 0; alarm_timers
[i
].name
; i
++)
315 printf("%s\n", alarm_timers
[i
].name
);
318 void configure_alarms(char const *opt
)
322 int count
= ARRAY_SIZE(alarm_timers
) - 1;
325 struct qemu_alarm_timer tmp
;
327 if (!strcmp(opt
, "?")) {
328 show_available_alarms();
332 arg
= qemu_strdup(opt
);
334 /* Reorder the array */
335 name
= strtok(arg
, ",");
337 for (i
= 0; i
< count
&& alarm_timers
[i
].name
; i
++) {
338 if (!strcmp(alarm_timers
[i
].name
, name
))
343 fprintf(stderr
, "Unknown clock %s\n", name
);
352 tmp
= alarm_timers
[i
];
353 alarm_timers
[i
] = alarm_timers
[cur
];
354 alarm_timers
[cur
] = tmp
;
358 name
= strtok(NULL
, ",");
364 /* Disable remaining timers */
365 for (i
= cur
; i
< count
; i
++)
366 alarm_timers
[i
].name
= NULL
;
368 show_available_alarms();
373 #define QEMU_NUM_CLOCKS 3
377 QEMUClock
*host_clock
;
379 static QEMUTimer
*active_timers
[QEMU_NUM_CLOCKS
];
381 static QEMUClock
*qemu_new_clock(int type
)
384 clock
= qemu_mallocz(sizeof(QEMUClock
));
390 void qemu_clock_enable(QEMUClock
*clock
, int enabled
)
392 clock
->enabled
= enabled
;
395 static int64_t vm_clock_warp_start
;
397 static void icount_warp_rt(void *opaque
)
399 if (vm_clock_warp_start
== -1) {
404 int64_t clock
= qemu_get_clock_ns(rt_clock
);
405 int64_t warp_delta
= clock
- vm_clock_warp_start
;
406 if (use_icount
== 1) {
407 qemu_icount_bias
+= warp_delta
;
410 * In adaptive mode, do not let the vm_clock run too
411 * far ahead of real time.
413 int64_t cur_time
= cpu_get_clock();
414 int64_t cur_icount
= qemu_get_clock_ns(vm_clock
);
415 int64_t delta
= cur_time
- cur_icount
;
416 qemu_icount_bias
+= MIN(warp_delta
, delta
);
418 if (qemu_timer_expired(active_timers
[QEMU_CLOCK_VIRTUAL
],
419 qemu_get_clock_ns(vm_clock
))) {
423 vm_clock_warp_start
= -1;
426 void qemu_clock_warp(QEMUClock
*clock
)
430 if (!clock
->warp_timer
) {
435 * There are too many global variables to make the "warp" behavior
436 * applicable to other clocks. But a clock argument removes the
437 * need for if statements all over the place.
439 assert(clock
== vm_clock
);
442 * If the CPUs have been sleeping, advance the vm_clock timer now. This
443 * ensures that the deadline for the timer is computed correctly below.
444 * This also makes sure that the insn counter is synchronized before the
445 * CPU starts running, in case the CPU is woken by an event other than
446 * the earliest vm_clock timer.
448 icount_warp_rt(NULL
);
449 if (!all_cpu_threads_idle() || !active_timers
[clock
->type
]) {
450 qemu_del_timer(clock
->warp_timer
);
454 vm_clock_warp_start
= qemu_get_clock_ns(rt_clock
);
455 deadline
= qemu_next_icount_deadline();
458 * Ensure the vm_clock proceeds even when the virtual CPU goes to
459 * sleep. Otherwise, the CPU might be waiting for a future timer
460 * interrupt to wake it up, but the interrupt never comes because
461 * the vCPU isn't running any insns and thus doesn't advance the
464 * An extreme solution for this problem would be to never let VCPUs
465 * sleep in icount mode if there is a pending vm_clock timer; rather
466 * time could just advance to the next vm_clock event. Instead, we
467 * do stop VCPUs and only advance vm_clock after some "real" time,
468 * (related to the time left until the next event) has passed. This
469 * rt_clock timer will do this. This avoids that the warps are too
470 * visible externally---for example, you will not be sending network
471 * packets continously instead of every 100ms.
473 qemu_mod_timer(clock
->warp_timer
, vm_clock_warp_start
+ deadline
);
479 QEMUTimer
*qemu_new_timer(QEMUClock
*clock
, int scale
,
480 QEMUTimerCB
*cb
, void *opaque
)
484 ts
= qemu_mallocz(sizeof(QEMUTimer
));
492 void qemu_free_timer(QEMUTimer
*ts
)
497 /* stop a timer, but do not dealloc it */
498 void qemu_del_timer(QEMUTimer
*ts
)
502 /* NOTE: this code must be signal safe because
503 qemu_timer_expired() can be called from a signal. */
504 pt
= &active_timers
[ts
->clock
->type
];
517 /* modify the current timer so that it will be fired when current_time
518 >= expire_time. The corresponding callback will be called. */
519 static void qemu_mod_timer_ns(QEMUTimer
*ts
, int64_t expire_time
)
525 /* add the timer in the sorted list */
526 /* NOTE: this code must be signal safe because
527 qemu_timer_expired() can be called from a signal. */
528 pt
= &active_timers
[ts
->clock
->type
];
533 if (t
->expire_time
> expire_time
)
537 ts
->expire_time
= expire_time
;
541 /* Rearm if necessary */
542 if (pt
== &active_timers
[ts
->clock
->type
]) {
543 if (!alarm_timer
->pending
) {
544 qemu_rearm_alarm_timer(alarm_timer
);
546 /* Interrupt execution to force deadline recalculation. */
547 qemu_clock_warp(ts
->clock
);
554 /* modify the current timer so that it will be fired when current_time
555 >= expire_time. The corresponding callback will be called. */
556 void qemu_mod_timer(QEMUTimer
*ts
, int64_t expire_time
)
558 qemu_mod_timer_ns(ts
, expire_time
* ts
->scale
);
561 int qemu_timer_pending(QEMUTimer
*ts
)
564 for(t
= active_timers
[ts
->clock
->type
]; t
!= NULL
; t
= t
->next
) {
571 int qemu_timer_expired(QEMUTimer
*timer_head
, int64_t current_time
)
575 return (timer_head
->expire_time
<= current_time
* timer_head
->scale
);
578 static void qemu_run_timers(QEMUClock
*clock
)
580 QEMUTimer
**ptimer_head
, *ts
;
581 int64_t current_time
;
586 current_time
= qemu_get_clock_ns(clock
);
587 ptimer_head
= &active_timers
[clock
->type
];
590 if (!ts
|| ts
->expire_time
> current_time
)
592 /* remove timer from the list before calling the callback */
593 *ptimer_head
= ts
->next
;
596 /* run the callback (the timer list can be modified) */
601 int64_t qemu_get_clock_ns(QEMUClock
*clock
)
603 switch(clock
->type
) {
604 case QEMU_CLOCK_REALTIME
:
607 case QEMU_CLOCK_VIRTUAL
:
609 return cpu_get_icount();
611 return cpu_get_clock();
613 case QEMU_CLOCK_HOST
:
614 return get_clock_realtime();
618 void init_clocks(void)
620 rt_clock
= qemu_new_clock(QEMU_CLOCK_REALTIME
);
621 vm_clock
= qemu_new_clock(QEMU_CLOCK_VIRTUAL
);
622 host_clock
= qemu_new_clock(QEMU_CLOCK_HOST
);
624 rtc_clock
= host_clock
;
628 void qemu_put_timer(QEMUFile
*f
, QEMUTimer
*ts
)
630 uint64_t expire_time
;
632 if (qemu_timer_pending(ts
)) {
633 expire_time
= ts
->expire_time
;
637 qemu_put_be64(f
, expire_time
);
640 void qemu_get_timer(QEMUFile
*f
, QEMUTimer
*ts
)
642 uint64_t expire_time
;
644 expire_time
= qemu_get_be64(f
);
645 if (expire_time
!= -1) {
646 qemu_mod_timer_ns(ts
, expire_time
);
652 static const VMStateDescription vmstate_timers
= {
655 .minimum_version_id
= 1,
656 .minimum_version_id_old
= 1,
657 .fields
= (VMStateField
[]) {
658 VMSTATE_INT64(cpu_ticks_offset
, TimersState
),
659 VMSTATE_INT64(dummy
, TimersState
),
660 VMSTATE_INT64_V(cpu_clock_offset
, TimersState
, 2),
661 VMSTATE_END_OF_LIST()
665 void configure_icount(const char *option
)
667 vmstate_register(NULL
, 0, &vmstate_timers
, &timers_state
);
671 #ifdef CONFIG_IOTHREAD
672 vm_clock
->warp_timer
= qemu_new_timer_ns(rt_clock
, icount_warp_rt
, NULL
);
675 if (strcmp(option
, "auto") != 0) {
676 icount_time_shift
= strtol(option
, NULL
, 0);
683 /* 125MIPS seems a reasonable initial guess at the guest speed.
684 It will be corrected fairly quickly anyway. */
685 icount_time_shift
= 3;
687 /* Have both realtime and virtual time triggers for speed adjustment.
688 The realtime trigger catches emulated time passing too slowly,
689 the virtual time trigger catches emulated time passing too fast.
690 Realtime triggers occur even when idle, so use them less frequently
692 icount_rt_timer
= qemu_new_timer_ms(rt_clock
, icount_adjust_rt
, NULL
);
693 qemu_mod_timer(icount_rt_timer
,
694 qemu_get_clock_ms(rt_clock
) + 1000);
695 icount_vm_timer
= qemu_new_timer_ns(vm_clock
, icount_adjust_vm
, NULL
);
696 qemu_mod_timer(icount_vm_timer
,
697 qemu_get_clock_ns(vm_clock
) + get_ticks_per_sec() / 10);
700 void qemu_run_all_timers(void)
702 alarm_timer
->pending
= 0;
704 /* rearm timer, if not periodic */
705 if (alarm_timer
->expired
) {
706 alarm_timer
->expired
= 0;
707 qemu_rearm_alarm_timer(alarm_timer
);
712 qemu_run_timers(vm_clock
);
715 qemu_run_timers(rt_clock
);
716 qemu_run_timers(host_clock
);
719 static int64_t qemu_next_alarm_deadline(void);
722 static void CALLBACK
host_alarm_handler(PVOID lpParam
, BOOLEAN unused
)
724 static void host_alarm_handler(int host_signum
)
727 struct qemu_alarm_timer
*t
= alarm_timer
;
732 #define DISP_FREQ 1000
734 static int64_t delta_min
= INT64_MAX
;
735 static int64_t delta_max
, delta_cum
, last_clock
, delta
, ti
;
737 ti
= qemu_get_clock_ns(vm_clock
);
738 if (last_clock
!= 0) {
739 delta
= ti
- last_clock
;
740 if (delta
< delta_min
)
742 if (delta
> delta_max
)
745 if (++count
== DISP_FREQ
) {
746 printf("timer: min=%" PRId64
" us max=%" PRId64
" us avg=%" PRId64
" us avg_freq=%0.3f Hz\n",
747 muldiv64(delta_min
, 1000000, get_ticks_per_sec()),
748 muldiv64(delta_max
, 1000000, get_ticks_per_sec()),
749 muldiv64(delta_cum
, 1000000 / DISP_FREQ
, get_ticks_per_sec()),
750 (double)get_ticks_per_sec() / ((double)delta_cum
/ DISP_FREQ
));
752 delta_min
= INT64_MAX
;
760 if (alarm_has_dynticks(t
) ||
761 qemu_next_alarm_deadline () <= 0) {
762 t
->expired
= alarm_has_dynticks(t
);
768 int64_t qemu_next_icount_deadline(void)
770 /* To avoid problems with overflow limit this to 2^32. */
771 int64_t delta
= INT32_MAX
;
774 if (active_timers
[QEMU_CLOCK_VIRTUAL
]) {
775 delta
= active_timers
[QEMU_CLOCK_VIRTUAL
]->expire_time
-
776 qemu_get_clock_ns(vm_clock
);
785 static int64_t qemu_next_alarm_deadline(void)
790 if (!use_icount
&& active_timers
[QEMU_CLOCK_VIRTUAL
]) {
791 delta
= active_timers
[QEMU_CLOCK_VIRTUAL
]->expire_time
-
792 qemu_get_clock_ns(vm_clock
);
796 if (active_timers
[QEMU_CLOCK_HOST
]) {
797 int64_t hdelta
= active_timers
[QEMU_CLOCK_HOST
]->expire_time
-
798 qemu_get_clock_ns(host_clock
);
802 if (active_timers
[QEMU_CLOCK_REALTIME
]) {
803 rtdelta
= (active_timers
[QEMU_CLOCK_REALTIME
]->expire_time
-
804 qemu_get_clock_ns(rt_clock
));
812 #if defined(__linux__)
814 #define RTC_FREQ 1024
816 static void enable_sigio_timer(int fd
)
818 struct sigaction act
;
821 sigfillset(&act
.sa_mask
);
823 act
.sa_handler
= host_alarm_handler
;
825 sigaction(SIGIO
, &act
, NULL
);
826 fcntl_setfl(fd
, O_ASYNC
);
827 fcntl(fd
, F_SETOWN
, getpid());
830 static int hpet_start_timer(struct qemu_alarm_timer
*t
)
832 struct hpet_info info
;
835 fd
= qemu_open("/dev/hpet", O_RDONLY
);
840 r
= ioctl(fd
, HPET_IRQFREQ
, RTC_FREQ
);
842 fprintf(stderr
, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
843 "error, but for better emulation accuracy type:\n"
844 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
848 /* Check capabilities */
849 r
= ioctl(fd
, HPET_INFO
, &info
);
853 /* Enable periodic mode */
854 r
= ioctl(fd
, HPET_EPI
, 0);
855 if (info
.hi_flags
&& (r
< 0))
858 /* Enable interrupt */
859 r
= ioctl(fd
, HPET_IE_ON
, 0);
863 enable_sigio_timer(fd
);
864 t
->priv
= (void *)(long)fd
;
872 static void hpet_stop_timer(struct qemu_alarm_timer
*t
)
874 int fd
= (long)t
->priv
;
879 static int rtc_start_timer(struct qemu_alarm_timer
*t
)
882 unsigned long current_rtc_freq
= 0;
884 TFR(rtc_fd
= qemu_open("/dev/rtc", O_RDONLY
));
887 ioctl(rtc_fd
, RTC_IRQP_READ
, ¤t_rtc_freq
);
888 if (current_rtc_freq
!= RTC_FREQ
&&
889 ioctl(rtc_fd
, RTC_IRQP_SET
, RTC_FREQ
) < 0) {
890 fprintf(stderr
, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
891 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
892 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
895 if (ioctl(rtc_fd
, RTC_PIE_ON
, 0) < 0) {
901 enable_sigio_timer(rtc_fd
);
903 t
->priv
= (void *)(long)rtc_fd
;
908 static void rtc_stop_timer(struct qemu_alarm_timer
*t
)
910 int rtc_fd
= (long)t
->priv
;
915 static int dynticks_start_timer(struct qemu_alarm_timer
*t
)
919 struct sigaction act
;
921 sigfillset(&act
.sa_mask
);
923 act
.sa_handler
= host_alarm_handler
;
925 sigaction(SIGALRM
, &act
, NULL
);
928 * Initialize ev struct to 0 to avoid valgrind complaining
929 * about uninitialized data in timer_create call
931 memset(&ev
, 0, sizeof(ev
));
932 ev
.sigev_value
.sival_int
= 0;
933 ev
.sigev_notify
= SIGEV_SIGNAL
;
934 ev
.sigev_signo
= SIGALRM
;
936 if (timer_create(CLOCK_REALTIME
, &ev
, &host_timer
)) {
937 perror("timer_create");
939 /* disable dynticks */
940 fprintf(stderr
, "Dynamic Ticks disabled\n");
945 t
->priv
= (void *)(long)host_timer
;
950 static void dynticks_stop_timer(struct qemu_alarm_timer
*t
)
952 timer_t host_timer
= (timer_t
)(long)t
->priv
;
954 timer_delete(host_timer
);
957 static void dynticks_rearm_timer(struct qemu_alarm_timer
*t
)
959 timer_t host_timer
= (timer_t
)(long)t
->priv
;
960 struct itimerspec timeout
;
961 int64_t nearest_delta_ns
= INT64_MAX
;
964 assert(alarm_has_dynticks(t
));
965 if (!active_timers
[QEMU_CLOCK_REALTIME
] &&
966 !active_timers
[QEMU_CLOCK_VIRTUAL
] &&
967 !active_timers
[QEMU_CLOCK_HOST
])
970 nearest_delta_ns
= qemu_next_alarm_deadline();
971 if (nearest_delta_ns
< MIN_TIMER_REARM_NS
)
972 nearest_delta_ns
= MIN_TIMER_REARM_NS
;
974 /* check whether a timer is already running */
975 if (timer_gettime(host_timer
, &timeout
)) {
977 fprintf(stderr
, "Internal timer error: aborting\n");
980 current_ns
= timeout
.it_value
.tv_sec
* 1000000000LL + timeout
.it_value
.tv_nsec
;
981 if (current_ns
&& current_ns
<= nearest_delta_ns
)
984 timeout
.it_interval
.tv_sec
= 0;
985 timeout
.it_interval
.tv_nsec
= 0; /* 0 for one-shot timer */
986 timeout
.it_value
.tv_sec
= nearest_delta_ns
/ 1000000000;
987 timeout
.it_value
.tv_nsec
= nearest_delta_ns
% 1000000000;
988 if (timer_settime(host_timer
, 0 /* RELATIVE */, &timeout
, NULL
)) {
990 fprintf(stderr
, "Internal timer error: aborting\n");
995 #endif /* defined(__linux__) */
999 static int unix_start_timer(struct qemu_alarm_timer
*t
)
1001 struct sigaction act
;
1002 struct itimerval itv
;
1006 sigfillset(&act
.sa_mask
);
1008 act
.sa_handler
= host_alarm_handler
;
1010 sigaction(SIGALRM
, &act
, NULL
);
1012 itv
.it_interval
.tv_sec
= 0;
1013 /* for i386 kernel 2.6 to get 1 ms */
1014 itv
.it_interval
.tv_usec
= 999;
1015 itv
.it_value
.tv_sec
= 0;
1016 itv
.it_value
.tv_usec
= 10 * 1000;
1018 err
= setitimer(ITIMER_REAL
, &itv
, NULL
);
1025 static void unix_stop_timer(struct qemu_alarm_timer
*t
)
1027 struct itimerval itv
;
1029 memset(&itv
, 0, sizeof(itv
));
1030 setitimer(ITIMER_REAL
, &itv
, NULL
);
1033 #endif /* !defined(_WIN32) */
1038 static int win32_start_timer(struct qemu_alarm_timer
*t
)
1043 /* If you call ChangeTimerQueueTimer on a one-shot timer (its period
1044 is zero) that has already expired, the timer is not updated. Since
1045 creating a new timer is relatively expensive, set a bogus one-hour
1046 interval in the dynticks case. */
1047 success
= CreateTimerQueueTimer(&hTimer
,
1052 alarm_has_dynticks(t
) ? 3600000 : 1,
1053 WT_EXECUTEINTIMERTHREAD
);
1056 fprintf(stderr
, "Failed to initialize win32 alarm timer: %ld\n",
1061 t
->priv
= (PVOID
) hTimer
;
1065 static void win32_stop_timer(struct qemu_alarm_timer
*t
)
1067 HANDLE hTimer
= t
->priv
;
1070 DeleteTimerQueueTimer(NULL
, hTimer
, NULL
);
1074 static void win32_rearm_timer(struct qemu_alarm_timer
*t
)
1076 HANDLE hTimer
= t
->priv
;
1077 int nearest_delta_ms
;
1080 assert(alarm_has_dynticks(t
));
1081 if (!active_timers
[QEMU_CLOCK_REALTIME
] &&
1082 !active_timers
[QEMU_CLOCK_VIRTUAL
] &&
1083 !active_timers
[QEMU_CLOCK_HOST
])
1086 nearest_delta_ms
= (qemu_next_alarm_deadline() + 999999) / 1000000;
1087 if (nearest_delta_ms
< 1) {
1088 nearest_delta_ms
= 1;
1090 success
= ChangeTimerQueueTimer(NULL
,
1096 fprintf(stderr
, "Failed to rearm win32 alarm timer: %ld\n",
1105 static void alarm_timer_on_change_state_rearm(void *opaque
, int running
, int reason
)
1108 qemu_rearm_alarm_timer((struct qemu_alarm_timer
*) opaque
);
1111 int init_timer_alarm(void)
1113 struct qemu_alarm_timer
*t
= NULL
;
1116 for (i
= 0; alarm_timers
[i
].name
; i
++) {
1117 t
= &alarm_timers
[i
];
1129 /* first event is at time 0 */
1132 qemu_add_vm_change_state_handler(alarm_timer_on_change_state_rearm
, t
);
1140 void quit_timers(void)
1142 struct qemu_alarm_timer
*t
= alarm_timer
;
1147 int qemu_calculate_timeout(void)
1149 #ifndef CONFIG_IOTHREAD
1155 /* XXX: use timeout computed from timers */
1158 /* Advance virtual time to the next event. */
1159 delta
= qemu_icount_delta();
1161 /* If virtual time is ahead of real time then just
1163 timeout
= (delta
+ 999999) / 1000000;
1165 /* Wait for either IO to occur or the next
1167 add
= qemu_next_icount_deadline();
1168 /* We advance the timer before checking for IO.
1169 Limit the amount we advance so that early IO
1170 activity won't get the guest too far ahead. */
1174 qemu_icount
+= qemu_icount_round (add
);
1175 timeout
= delta
/ 1000000;
1182 #else /* CONFIG_IOTHREAD */