qemu-img: Convert invocation documentation to rST
[qemu/ar7.git] / exec.c
blob67e520d18ea5b65932f899b6c5981c74cfc15992
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
24 #include "qemu/cutils.h"
25 #include "cpu.h"
26 #include "exec/exec-all.h"
27 #include "exec/target_page.h"
28 #include "tcg/tcg.h"
29 #include "hw/qdev-core.h"
30 #include "hw/qdev-properties.h"
31 #if !defined(CONFIG_USER_ONLY)
32 #include "hw/boards.h"
33 #include "hw/xen/xen.h"
34 #endif
35 #include "sysemu/kvm.h"
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "qemu/timer.h"
39 #include "qemu/config-file.h"
40 #include "qemu/error-report.h"
41 #include "qemu/qemu-print.h"
42 #if defined(CONFIG_USER_ONLY)
43 #include "qemu.h"
44 #else /* !CONFIG_USER_ONLY */
45 #include "exec/memory.h"
46 #include "exec/ioport.h"
47 #include "sysemu/dma.h"
48 #include "sysemu/hostmem.h"
49 #include "sysemu/hw_accel.h"
50 #include "exec/address-spaces.h"
51 #include "sysemu/xen-mapcache.h"
52 #include "trace-root.h"
54 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
55 #include <linux/falloc.h>
56 #endif
58 #endif
59 #include "qemu/rcu_queue.h"
60 #include "qemu/main-loop.h"
61 #include "translate-all.h"
62 #include "sysemu/replay.h"
64 #include "exec/memory-internal.h"
65 #include "exec/ram_addr.h"
66 #include "exec/log.h"
68 #include "qemu/pmem.h"
70 #include "migration/vmstate.h"
72 #include "qemu/range.h"
73 #ifndef _WIN32
74 #include "qemu/mmap-alloc.h"
75 #endif
77 #include "monitor/monitor.h"
79 //#define DEBUG_SUBPAGE
81 #if !defined(CONFIG_USER_ONLY)
82 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
83 * are protected by the ramlist lock.
85 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
87 static MemoryRegion *system_memory;
88 static MemoryRegion *system_io;
90 AddressSpace address_space_io;
91 AddressSpace address_space_memory;
93 static MemoryRegion io_mem_unassigned;
94 #endif
96 CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
98 /* current CPU in the current thread. It is only valid inside
99 cpu_exec() */
100 __thread CPUState *current_cpu;
101 /* 0 = Do not count executed instructions.
102 1 = Precise instruction counting.
103 2 = Adaptive rate instruction counting. */
104 int use_icount;
106 uintptr_t qemu_host_page_size;
107 intptr_t qemu_host_page_mask;
109 #if !defined(CONFIG_USER_ONLY)
111 typedef struct PhysPageEntry PhysPageEntry;
113 struct PhysPageEntry {
114 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
115 uint32_t skip : 6;
116 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
117 uint32_t ptr : 26;
120 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
122 /* Size of the L2 (and L3, etc) page tables. */
123 #define ADDR_SPACE_BITS 64
125 #define P_L2_BITS 9
126 #define P_L2_SIZE (1 << P_L2_BITS)
128 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
130 typedef PhysPageEntry Node[P_L2_SIZE];
132 typedef struct PhysPageMap {
133 struct rcu_head rcu;
135 unsigned sections_nb;
136 unsigned sections_nb_alloc;
137 unsigned nodes_nb;
138 unsigned nodes_nb_alloc;
139 Node *nodes;
140 MemoryRegionSection *sections;
141 } PhysPageMap;
143 struct AddressSpaceDispatch {
144 MemoryRegionSection *mru_section;
145 /* This is a multi-level map on the physical address space.
146 * The bottom level has pointers to MemoryRegionSections.
148 PhysPageEntry phys_map;
149 PhysPageMap map;
152 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
153 typedef struct subpage_t {
154 MemoryRegion iomem;
155 FlatView *fv;
156 hwaddr base;
157 uint16_t sub_section[];
158 } subpage_t;
160 #define PHYS_SECTION_UNASSIGNED 0
162 static void io_mem_init(void);
163 static void memory_map_init(void);
164 static void tcg_log_global_after_sync(MemoryListener *listener);
165 static void tcg_commit(MemoryListener *listener);
168 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
169 * @cpu: the CPU whose AddressSpace this is
170 * @as: the AddressSpace itself
171 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
172 * @tcg_as_listener: listener for tracking changes to the AddressSpace
174 struct CPUAddressSpace {
175 CPUState *cpu;
176 AddressSpace *as;
177 struct AddressSpaceDispatch *memory_dispatch;
178 MemoryListener tcg_as_listener;
181 struct DirtyBitmapSnapshot {
182 ram_addr_t start;
183 ram_addr_t end;
184 unsigned long dirty[];
187 #endif
189 #if !defined(CONFIG_USER_ONLY)
191 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
193 static unsigned alloc_hint = 16;
194 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
195 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
196 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
197 alloc_hint = map->nodes_nb_alloc;
201 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
203 unsigned i;
204 uint32_t ret;
205 PhysPageEntry e;
206 PhysPageEntry *p;
208 ret = map->nodes_nb++;
209 p = map->nodes[ret];
210 assert(ret != PHYS_MAP_NODE_NIL);
211 assert(ret != map->nodes_nb_alloc);
213 e.skip = leaf ? 0 : 1;
214 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
215 for (i = 0; i < P_L2_SIZE; ++i) {
216 memcpy(&p[i], &e, sizeof(e));
218 return ret;
221 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
222 hwaddr *index, uint64_t *nb, uint16_t leaf,
223 int level)
225 PhysPageEntry *p;
226 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
228 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
229 lp->ptr = phys_map_node_alloc(map, level == 0);
231 p = map->nodes[lp->ptr];
232 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
234 while (*nb && lp < &p[P_L2_SIZE]) {
235 if ((*index & (step - 1)) == 0 && *nb >= step) {
236 lp->skip = 0;
237 lp->ptr = leaf;
238 *index += step;
239 *nb -= step;
240 } else {
241 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
243 ++lp;
247 static void phys_page_set(AddressSpaceDispatch *d,
248 hwaddr index, uint64_t nb,
249 uint16_t leaf)
251 /* Wildly overreserve - it doesn't matter much. */
252 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
254 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
257 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
258 * and update our entry so we can skip it and go directly to the destination.
260 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
262 unsigned valid_ptr = P_L2_SIZE;
263 int valid = 0;
264 PhysPageEntry *p;
265 int i;
267 if (lp->ptr == PHYS_MAP_NODE_NIL) {
268 return;
271 p = nodes[lp->ptr];
272 for (i = 0; i < P_L2_SIZE; i++) {
273 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
274 continue;
277 valid_ptr = i;
278 valid++;
279 if (p[i].skip) {
280 phys_page_compact(&p[i], nodes);
284 /* We can only compress if there's only one child. */
285 if (valid != 1) {
286 return;
289 assert(valid_ptr < P_L2_SIZE);
291 /* Don't compress if it won't fit in the # of bits we have. */
292 if (P_L2_LEVELS >= (1 << 6) &&
293 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
294 return;
297 lp->ptr = p[valid_ptr].ptr;
298 if (!p[valid_ptr].skip) {
299 /* If our only child is a leaf, make this a leaf. */
300 /* By design, we should have made this node a leaf to begin with so we
301 * should never reach here.
302 * But since it's so simple to handle this, let's do it just in case we
303 * change this rule.
305 lp->skip = 0;
306 } else {
307 lp->skip += p[valid_ptr].skip;
311 void address_space_dispatch_compact(AddressSpaceDispatch *d)
313 if (d->phys_map.skip) {
314 phys_page_compact(&d->phys_map, d->map.nodes);
318 static inline bool section_covers_addr(const MemoryRegionSection *section,
319 hwaddr addr)
321 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
322 * the section must cover the entire address space.
324 return int128_gethi(section->size) ||
325 range_covers_byte(section->offset_within_address_space,
326 int128_getlo(section->size), addr);
329 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
331 PhysPageEntry lp = d->phys_map, *p;
332 Node *nodes = d->map.nodes;
333 MemoryRegionSection *sections = d->map.sections;
334 hwaddr index = addr >> TARGET_PAGE_BITS;
335 int i;
337 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
338 if (lp.ptr == PHYS_MAP_NODE_NIL) {
339 return &sections[PHYS_SECTION_UNASSIGNED];
341 p = nodes[lp.ptr];
342 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
345 if (section_covers_addr(&sections[lp.ptr], addr)) {
346 return &sections[lp.ptr];
347 } else {
348 return &sections[PHYS_SECTION_UNASSIGNED];
352 /* Called from RCU critical section */
353 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
354 hwaddr addr,
355 bool resolve_subpage)
357 MemoryRegionSection *section = atomic_read(&d->mru_section);
358 subpage_t *subpage;
360 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
361 !section_covers_addr(section, addr)) {
362 section = phys_page_find(d, addr);
363 atomic_set(&d->mru_section, section);
365 if (resolve_subpage && section->mr->subpage) {
366 subpage = container_of(section->mr, subpage_t, iomem);
367 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
369 return section;
372 /* Called from RCU critical section */
373 static MemoryRegionSection *
374 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
375 hwaddr *plen, bool resolve_subpage)
377 MemoryRegionSection *section;
378 MemoryRegion *mr;
379 Int128 diff;
381 section = address_space_lookup_region(d, addr, resolve_subpage);
382 /* Compute offset within MemoryRegionSection */
383 addr -= section->offset_within_address_space;
385 /* Compute offset within MemoryRegion */
386 *xlat = addr + section->offset_within_region;
388 mr = section->mr;
390 /* MMIO registers can be expected to perform full-width accesses based only
391 * on their address, without considering adjacent registers that could
392 * decode to completely different MemoryRegions. When such registers
393 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
394 * regions overlap wildly. For this reason we cannot clamp the accesses
395 * here.
397 * If the length is small (as is the case for address_space_ldl/stl),
398 * everything works fine. If the incoming length is large, however,
399 * the caller really has to do the clamping through memory_access_size.
401 if (memory_region_is_ram(mr)) {
402 diff = int128_sub(section->size, int128_make64(addr));
403 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
405 return section;
409 * address_space_translate_iommu - translate an address through an IOMMU
410 * memory region and then through the target address space.
412 * @iommu_mr: the IOMMU memory region that we start the translation from
413 * @addr: the address to be translated through the MMU
414 * @xlat: the translated address offset within the destination memory region.
415 * It cannot be %NULL.
416 * @plen_out: valid read/write length of the translated address. It
417 * cannot be %NULL.
418 * @page_mask_out: page mask for the translated address. This
419 * should only be meaningful for IOMMU translated
420 * addresses, since there may be huge pages that this bit
421 * would tell. It can be %NULL if we don't care about it.
422 * @is_write: whether the translation operation is for write
423 * @is_mmio: whether this can be MMIO, set true if it can
424 * @target_as: the address space targeted by the IOMMU
425 * @attrs: transaction attributes
427 * This function is called from RCU critical section. It is the common
428 * part of flatview_do_translate and address_space_translate_cached.
430 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
431 hwaddr *xlat,
432 hwaddr *plen_out,
433 hwaddr *page_mask_out,
434 bool is_write,
435 bool is_mmio,
436 AddressSpace **target_as,
437 MemTxAttrs attrs)
439 MemoryRegionSection *section;
440 hwaddr page_mask = (hwaddr)-1;
442 do {
443 hwaddr addr = *xlat;
444 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
445 int iommu_idx = 0;
446 IOMMUTLBEntry iotlb;
448 if (imrc->attrs_to_index) {
449 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
452 iotlb = imrc->translate(iommu_mr, addr, is_write ?
453 IOMMU_WO : IOMMU_RO, iommu_idx);
455 if (!(iotlb.perm & (1 << is_write))) {
456 goto unassigned;
459 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
460 | (addr & iotlb.addr_mask));
461 page_mask &= iotlb.addr_mask;
462 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
463 *target_as = iotlb.target_as;
465 section = address_space_translate_internal(
466 address_space_to_dispatch(iotlb.target_as), addr, xlat,
467 plen_out, is_mmio);
469 iommu_mr = memory_region_get_iommu(section->mr);
470 } while (unlikely(iommu_mr));
472 if (page_mask_out) {
473 *page_mask_out = page_mask;
475 return *section;
477 unassigned:
478 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
482 * flatview_do_translate - translate an address in FlatView
484 * @fv: the flat view that we want to translate on
485 * @addr: the address to be translated in above address space
486 * @xlat: the translated address offset within memory region. It
487 * cannot be @NULL.
488 * @plen_out: valid read/write length of the translated address. It
489 * can be @NULL when we don't care about it.
490 * @page_mask_out: page mask for the translated address. This
491 * should only be meaningful for IOMMU translated
492 * addresses, since there may be huge pages that this bit
493 * would tell. It can be @NULL if we don't care about it.
494 * @is_write: whether the translation operation is for write
495 * @is_mmio: whether this can be MMIO, set true if it can
496 * @target_as: the address space targeted by the IOMMU
497 * @attrs: memory transaction attributes
499 * This function is called from RCU critical section
501 static MemoryRegionSection flatview_do_translate(FlatView *fv,
502 hwaddr addr,
503 hwaddr *xlat,
504 hwaddr *plen_out,
505 hwaddr *page_mask_out,
506 bool is_write,
507 bool is_mmio,
508 AddressSpace **target_as,
509 MemTxAttrs attrs)
511 MemoryRegionSection *section;
512 IOMMUMemoryRegion *iommu_mr;
513 hwaddr plen = (hwaddr)(-1);
515 if (!plen_out) {
516 plen_out = &plen;
519 section = address_space_translate_internal(
520 flatview_to_dispatch(fv), addr, xlat,
521 plen_out, is_mmio);
523 iommu_mr = memory_region_get_iommu(section->mr);
524 if (unlikely(iommu_mr)) {
525 return address_space_translate_iommu(iommu_mr, xlat,
526 plen_out, page_mask_out,
527 is_write, is_mmio,
528 target_as, attrs);
530 if (page_mask_out) {
531 /* Not behind an IOMMU, use default page size. */
532 *page_mask_out = ~TARGET_PAGE_MASK;
535 return *section;
538 /* Called from RCU critical section */
539 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
540 bool is_write, MemTxAttrs attrs)
542 MemoryRegionSection section;
543 hwaddr xlat, page_mask;
546 * This can never be MMIO, and we don't really care about plen,
547 * but page mask.
549 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
550 NULL, &page_mask, is_write, false, &as,
551 attrs);
553 /* Illegal translation */
554 if (section.mr == &io_mem_unassigned) {
555 goto iotlb_fail;
558 /* Convert memory region offset into address space offset */
559 xlat += section.offset_within_address_space -
560 section.offset_within_region;
562 return (IOMMUTLBEntry) {
563 .target_as = as,
564 .iova = addr & ~page_mask,
565 .translated_addr = xlat & ~page_mask,
566 .addr_mask = page_mask,
567 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
568 .perm = IOMMU_RW,
571 iotlb_fail:
572 return (IOMMUTLBEntry) {0};
575 /* Called from RCU critical section */
576 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
577 hwaddr *plen, bool is_write,
578 MemTxAttrs attrs)
580 MemoryRegion *mr;
581 MemoryRegionSection section;
582 AddressSpace *as = NULL;
584 /* This can be MMIO, so setup MMIO bit. */
585 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
586 is_write, true, &as, attrs);
587 mr = section.mr;
589 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
590 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
591 *plen = MIN(page, *plen);
594 return mr;
597 typedef struct TCGIOMMUNotifier {
598 IOMMUNotifier n;
599 MemoryRegion *mr;
600 CPUState *cpu;
601 int iommu_idx;
602 bool active;
603 } TCGIOMMUNotifier;
605 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
607 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
609 if (!notifier->active) {
610 return;
612 tlb_flush(notifier->cpu);
613 notifier->active = false;
614 /* We leave the notifier struct on the list to avoid reallocating it later.
615 * Generally the number of IOMMUs a CPU deals with will be small.
616 * In any case we can't unregister the iommu notifier from a notify
617 * callback.
621 static void tcg_register_iommu_notifier(CPUState *cpu,
622 IOMMUMemoryRegion *iommu_mr,
623 int iommu_idx)
625 /* Make sure this CPU has an IOMMU notifier registered for this
626 * IOMMU/IOMMU index combination, so that we can flush its TLB
627 * when the IOMMU tells us the mappings we've cached have changed.
629 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
630 TCGIOMMUNotifier *notifier;
631 Error *err = NULL;
632 int i, ret;
634 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
635 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
636 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
637 break;
640 if (i == cpu->iommu_notifiers->len) {
641 /* Not found, add a new entry at the end of the array */
642 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
643 notifier = g_new0(TCGIOMMUNotifier, 1);
644 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
646 notifier->mr = mr;
647 notifier->iommu_idx = iommu_idx;
648 notifier->cpu = cpu;
649 /* Rather than trying to register interest in the specific part
650 * of the iommu's address space that we've accessed and then
651 * expand it later as subsequent accesses touch more of it, we
652 * just register interest in the whole thing, on the assumption
653 * that iommu reconfiguration will be rare.
655 iommu_notifier_init(&notifier->n,
656 tcg_iommu_unmap_notify,
657 IOMMU_NOTIFIER_UNMAP,
659 HWADDR_MAX,
660 iommu_idx);
661 ret = memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
662 &err);
663 if (ret) {
664 error_report_err(err);
665 exit(1);
669 if (!notifier->active) {
670 notifier->active = true;
674 static void tcg_iommu_free_notifier_list(CPUState *cpu)
676 /* Destroy the CPU's notifier list */
677 int i;
678 TCGIOMMUNotifier *notifier;
680 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
681 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
682 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
683 g_free(notifier);
685 g_array_free(cpu->iommu_notifiers, true);
688 /* Called from RCU critical section */
689 MemoryRegionSection *
690 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
691 hwaddr *xlat, hwaddr *plen,
692 MemTxAttrs attrs, int *prot)
694 MemoryRegionSection *section;
695 IOMMUMemoryRegion *iommu_mr;
696 IOMMUMemoryRegionClass *imrc;
697 IOMMUTLBEntry iotlb;
698 int iommu_idx;
699 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
701 for (;;) {
702 section = address_space_translate_internal(d, addr, &addr, plen, false);
704 iommu_mr = memory_region_get_iommu(section->mr);
705 if (!iommu_mr) {
706 break;
709 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
711 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
712 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
713 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
714 * doesn't short-cut its translation table walk.
716 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
717 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
718 | (addr & iotlb.addr_mask));
719 /* Update the caller's prot bits to remove permissions the IOMMU
720 * is giving us a failure response for. If we get down to no
721 * permissions left at all we can give up now.
723 if (!(iotlb.perm & IOMMU_RO)) {
724 *prot &= ~(PAGE_READ | PAGE_EXEC);
726 if (!(iotlb.perm & IOMMU_WO)) {
727 *prot &= ~PAGE_WRITE;
730 if (!*prot) {
731 goto translate_fail;
734 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
737 assert(!memory_region_is_iommu(section->mr));
738 *xlat = addr;
739 return section;
741 translate_fail:
742 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
744 #endif
746 #if !defined(CONFIG_USER_ONLY)
748 static int cpu_common_post_load(void *opaque, int version_id)
750 CPUState *cpu = opaque;
752 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
753 version_id is increased. */
754 cpu->interrupt_request &= ~0x01;
755 tlb_flush(cpu);
757 /* loadvm has just updated the content of RAM, bypassing the
758 * usual mechanisms that ensure we flush TBs for writes to
759 * memory we've translated code from. So we must flush all TBs,
760 * which will now be stale.
762 tb_flush(cpu);
764 return 0;
767 static int cpu_common_pre_load(void *opaque)
769 CPUState *cpu = opaque;
771 cpu->exception_index = -1;
773 return 0;
776 static bool cpu_common_exception_index_needed(void *opaque)
778 CPUState *cpu = opaque;
780 return tcg_enabled() && cpu->exception_index != -1;
783 static const VMStateDescription vmstate_cpu_common_exception_index = {
784 .name = "cpu_common/exception_index",
785 .version_id = 1,
786 .minimum_version_id = 1,
787 .needed = cpu_common_exception_index_needed,
788 .fields = (VMStateField[]) {
789 VMSTATE_INT32(exception_index, CPUState),
790 VMSTATE_END_OF_LIST()
794 static bool cpu_common_crash_occurred_needed(void *opaque)
796 CPUState *cpu = opaque;
798 return cpu->crash_occurred;
801 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
802 .name = "cpu_common/crash_occurred",
803 .version_id = 1,
804 .minimum_version_id = 1,
805 .needed = cpu_common_crash_occurred_needed,
806 .fields = (VMStateField[]) {
807 VMSTATE_BOOL(crash_occurred, CPUState),
808 VMSTATE_END_OF_LIST()
812 const VMStateDescription vmstate_cpu_common = {
813 .name = "cpu_common",
814 .version_id = 1,
815 .minimum_version_id = 1,
816 .pre_load = cpu_common_pre_load,
817 .post_load = cpu_common_post_load,
818 .fields = (VMStateField[]) {
819 VMSTATE_UINT32(halted, CPUState),
820 VMSTATE_UINT32(interrupt_request, CPUState),
821 VMSTATE_END_OF_LIST()
823 .subsections = (const VMStateDescription*[]) {
824 &vmstate_cpu_common_exception_index,
825 &vmstate_cpu_common_crash_occurred,
826 NULL
830 #endif
832 CPUState *qemu_get_cpu(int index)
834 CPUState *cpu;
836 CPU_FOREACH(cpu) {
837 if (cpu->cpu_index == index) {
838 return cpu;
842 return NULL;
845 #if !defined(CONFIG_USER_ONLY)
846 void cpu_address_space_init(CPUState *cpu, int asidx,
847 const char *prefix, MemoryRegion *mr)
849 CPUAddressSpace *newas;
850 AddressSpace *as = g_new0(AddressSpace, 1);
851 char *as_name;
853 assert(mr);
854 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
855 address_space_init(as, mr, as_name);
856 g_free(as_name);
858 /* Target code should have set num_ases before calling us */
859 assert(asidx < cpu->num_ases);
861 if (asidx == 0) {
862 /* address space 0 gets the convenience alias */
863 cpu->as = as;
866 /* KVM cannot currently support multiple address spaces. */
867 assert(asidx == 0 || !kvm_enabled());
869 if (!cpu->cpu_ases) {
870 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
873 newas = &cpu->cpu_ases[asidx];
874 newas->cpu = cpu;
875 newas->as = as;
876 if (tcg_enabled()) {
877 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
878 newas->tcg_as_listener.commit = tcg_commit;
879 memory_listener_register(&newas->tcg_as_listener, as);
883 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
885 /* Return the AddressSpace corresponding to the specified index */
886 return cpu->cpu_ases[asidx].as;
888 #endif
890 void cpu_exec_unrealizefn(CPUState *cpu)
892 CPUClass *cc = CPU_GET_CLASS(cpu);
894 cpu_list_remove(cpu);
896 if (cc->vmsd != NULL) {
897 vmstate_unregister(NULL, cc->vmsd, cpu);
899 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
900 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
902 #ifndef CONFIG_USER_ONLY
903 tcg_iommu_free_notifier_list(cpu);
904 #endif
907 Property cpu_common_props[] = {
908 #ifndef CONFIG_USER_ONLY
909 /* Create a memory property for softmmu CPU object,
910 * so users can wire up its memory. (This can't go in hw/core/cpu.c
911 * because that file is compiled only once for both user-mode
912 * and system builds.) The default if no link is set up is to use
913 * the system address space.
915 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
916 MemoryRegion *),
917 #endif
918 DEFINE_PROP_END_OF_LIST(),
921 void cpu_exec_initfn(CPUState *cpu)
923 cpu->as = NULL;
924 cpu->num_ases = 0;
926 #ifndef CONFIG_USER_ONLY
927 cpu->thread_id = qemu_get_thread_id();
928 cpu->memory = system_memory;
929 object_ref(OBJECT(cpu->memory));
930 #endif
933 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
935 CPUClass *cc = CPU_GET_CLASS(cpu);
936 static bool tcg_target_initialized;
938 cpu_list_add(cpu);
940 if (tcg_enabled() && !tcg_target_initialized) {
941 tcg_target_initialized = true;
942 cc->tcg_initialize();
944 tlb_init(cpu);
946 qemu_plugin_vcpu_init_hook(cpu);
948 #ifndef CONFIG_USER_ONLY
949 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
950 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
952 if (cc->vmsd != NULL) {
953 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
956 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
957 #endif
960 const char *parse_cpu_option(const char *cpu_option)
962 ObjectClass *oc;
963 CPUClass *cc;
964 gchar **model_pieces;
965 const char *cpu_type;
967 model_pieces = g_strsplit(cpu_option, ",", 2);
968 if (!model_pieces[0]) {
969 error_report("-cpu option cannot be empty");
970 exit(1);
973 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
974 if (oc == NULL) {
975 error_report("unable to find CPU model '%s'", model_pieces[0]);
976 g_strfreev(model_pieces);
977 exit(EXIT_FAILURE);
980 cpu_type = object_class_get_name(oc);
981 cc = CPU_CLASS(oc);
982 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
983 g_strfreev(model_pieces);
984 return cpu_type;
987 #if defined(CONFIG_USER_ONLY)
988 void tb_invalidate_phys_addr(target_ulong addr)
990 mmap_lock();
991 tb_invalidate_phys_page_range(addr, addr + 1);
992 mmap_unlock();
995 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
997 tb_invalidate_phys_addr(pc);
999 #else
1000 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1002 ram_addr_t ram_addr;
1003 MemoryRegion *mr;
1004 hwaddr l = 1;
1006 if (!tcg_enabled()) {
1007 return;
1010 RCU_READ_LOCK_GUARD();
1011 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1012 if (!(memory_region_is_ram(mr)
1013 || memory_region_is_romd(mr))) {
1014 return;
1016 ram_addr = memory_region_get_ram_addr(mr) + addr;
1017 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1);
1020 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1022 MemTxAttrs attrs;
1023 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
1024 int asidx = cpu_asidx_from_attrs(cpu, attrs);
1025 if (phys != -1) {
1026 /* Locks grabbed by tb_invalidate_phys_addr */
1027 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
1028 phys | (pc & ~TARGET_PAGE_MASK), attrs);
1031 #endif
1033 #ifndef CONFIG_USER_ONLY
1034 /* Add a watchpoint. */
1035 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1036 int flags, CPUWatchpoint **watchpoint)
1038 CPUWatchpoint *wp;
1040 /* forbid ranges which are empty or run off the end of the address space */
1041 if (len == 0 || (addr + len - 1) < addr) {
1042 error_report("tried to set invalid watchpoint at %"
1043 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1044 return -EINVAL;
1046 wp = g_malloc(sizeof(*wp));
1048 wp->vaddr = addr;
1049 wp->len = len;
1050 wp->flags = flags;
1052 /* keep all GDB-injected watchpoints in front */
1053 if (flags & BP_GDB) {
1054 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1055 } else {
1056 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1059 tlb_flush_page(cpu, addr);
1061 if (watchpoint)
1062 *watchpoint = wp;
1063 return 0;
1066 /* Remove a specific watchpoint. */
1067 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1068 int flags)
1070 CPUWatchpoint *wp;
1072 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1073 if (addr == wp->vaddr && len == wp->len
1074 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1075 cpu_watchpoint_remove_by_ref(cpu, wp);
1076 return 0;
1079 return -ENOENT;
1082 /* Remove a specific watchpoint by reference. */
1083 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1085 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1087 tlb_flush_page(cpu, watchpoint->vaddr);
1089 g_free(watchpoint);
1092 /* Remove all matching watchpoints. */
1093 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1095 CPUWatchpoint *wp, *next;
1097 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1098 if (wp->flags & mask) {
1099 cpu_watchpoint_remove_by_ref(cpu, wp);
1104 /* Return true if this watchpoint address matches the specified
1105 * access (ie the address range covered by the watchpoint overlaps
1106 * partially or completely with the address range covered by the
1107 * access).
1109 static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
1110 vaddr addr, vaddr len)
1112 /* We know the lengths are non-zero, but a little caution is
1113 * required to avoid errors in the case where the range ends
1114 * exactly at the top of the address space and so addr + len
1115 * wraps round to zero.
1117 vaddr wpend = wp->vaddr + wp->len - 1;
1118 vaddr addrend = addr + len - 1;
1120 return !(addr > wpend || wp->vaddr > addrend);
1123 /* Return flags for watchpoints that match addr + prot. */
1124 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
1126 CPUWatchpoint *wp;
1127 int ret = 0;
1129 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1130 if (watchpoint_address_matches(wp, addr, TARGET_PAGE_SIZE)) {
1131 ret |= wp->flags;
1134 return ret;
1136 #endif /* !CONFIG_USER_ONLY */
1138 /* Add a breakpoint. */
1139 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1140 CPUBreakpoint **breakpoint)
1142 CPUBreakpoint *bp;
1144 bp = g_malloc(sizeof(*bp));
1146 bp->pc = pc;
1147 bp->flags = flags;
1149 /* keep all GDB-injected breakpoints in front */
1150 if (flags & BP_GDB) {
1151 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1152 } else {
1153 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1156 breakpoint_invalidate(cpu, pc);
1158 if (breakpoint) {
1159 *breakpoint = bp;
1161 return 0;
1164 /* Remove a specific breakpoint. */
1165 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1167 CPUBreakpoint *bp;
1169 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1170 if (bp->pc == pc && bp->flags == flags) {
1171 cpu_breakpoint_remove_by_ref(cpu, bp);
1172 return 0;
1175 return -ENOENT;
1178 /* Remove a specific breakpoint by reference. */
1179 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
1181 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1183 breakpoint_invalidate(cpu, breakpoint->pc);
1185 g_free(breakpoint);
1188 /* Remove all matching breakpoints. */
1189 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1191 CPUBreakpoint *bp, *next;
1193 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1194 if (bp->flags & mask) {
1195 cpu_breakpoint_remove_by_ref(cpu, bp);
1200 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1201 CPU loop after each instruction */
1202 void cpu_single_step(CPUState *cpu, int enabled)
1204 if (cpu->singlestep_enabled != enabled) {
1205 cpu->singlestep_enabled = enabled;
1206 if (kvm_enabled()) {
1207 kvm_update_guest_debug(cpu, 0);
1208 } else {
1209 /* must flush all the translated code to avoid inconsistencies */
1210 /* XXX: only flush what is necessary */
1211 tb_flush(cpu);
1216 void cpu_abort(CPUState *cpu, const char *fmt, ...)
1218 va_list ap;
1219 va_list ap2;
1221 va_start(ap, fmt);
1222 va_copy(ap2, ap);
1223 fprintf(stderr, "qemu: fatal: ");
1224 vfprintf(stderr, fmt, ap);
1225 fprintf(stderr, "\n");
1226 cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1227 if (qemu_log_separate()) {
1228 FILE *logfile = qemu_log_lock();
1229 qemu_log("qemu: fatal: ");
1230 qemu_log_vprintf(fmt, ap2);
1231 qemu_log("\n");
1232 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1233 qemu_log_flush();
1234 qemu_log_unlock(logfile);
1235 qemu_log_close();
1237 va_end(ap2);
1238 va_end(ap);
1239 replay_finish();
1240 #if defined(CONFIG_USER_ONLY)
1242 struct sigaction act;
1243 sigfillset(&act.sa_mask);
1244 act.sa_handler = SIG_DFL;
1245 act.sa_flags = 0;
1246 sigaction(SIGABRT, &act, NULL);
1248 #endif
1249 abort();
1252 #if !defined(CONFIG_USER_ONLY)
1253 /* Called from RCU critical section */
1254 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1256 RAMBlock *block;
1258 block = atomic_rcu_read(&ram_list.mru_block);
1259 if (block && addr - block->offset < block->max_length) {
1260 return block;
1262 RAMBLOCK_FOREACH(block) {
1263 if (addr - block->offset < block->max_length) {
1264 goto found;
1268 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1269 abort();
1271 found:
1272 /* It is safe to write mru_block outside the iothread lock. This
1273 * is what happens:
1275 * mru_block = xxx
1276 * rcu_read_unlock()
1277 * xxx removed from list
1278 * rcu_read_lock()
1279 * read mru_block
1280 * mru_block = NULL;
1281 * call_rcu(reclaim_ramblock, xxx);
1282 * rcu_read_unlock()
1284 * atomic_rcu_set is not needed here. The block was already published
1285 * when it was placed into the list. Here we're just making an extra
1286 * copy of the pointer.
1288 ram_list.mru_block = block;
1289 return block;
1292 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1294 CPUState *cpu;
1295 ram_addr_t start1;
1296 RAMBlock *block;
1297 ram_addr_t end;
1299 assert(tcg_enabled());
1300 end = TARGET_PAGE_ALIGN(start + length);
1301 start &= TARGET_PAGE_MASK;
1303 RCU_READ_LOCK_GUARD();
1304 block = qemu_get_ram_block(start);
1305 assert(block == qemu_get_ram_block(end - 1));
1306 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1307 CPU_FOREACH(cpu) {
1308 tlb_reset_dirty(cpu, start1, length);
1312 /* Note: start and end must be within the same ram block. */
1313 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1314 ram_addr_t length,
1315 unsigned client)
1317 DirtyMemoryBlocks *blocks;
1318 unsigned long end, page;
1319 bool dirty = false;
1320 RAMBlock *ramblock;
1321 uint64_t mr_offset, mr_size;
1323 if (length == 0) {
1324 return false;
1327 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1328 page = start >> TARGET_PAGE_BITS;
1330 WITH_RCU_READ_LOCK_GUARD() {
1331 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1332 ramblock = qemu_get_ram_block(start);
1333 /* Range sanity check on the ramblock */
1334 assert(start >= ramblock->offset &&
1335 start + length <= ramblock->offset + ramblock->used_length);
1337 while (page < end) {
1338 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1339 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1340 unsigned long num = MIN(end - page,
1341 DIRTY_MEMORY_BLOCK_SIZE - offset);
1343 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1344 offset, num);
1345 page += num;
1348 mr_offset = (ram_addr_t)(page << TARGET_PAGE_BITS) - ramblock->offset;
1349 mr_size = (end - page) << TARGET_PAGE_BITS;
1350 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
1353 if (dirty && tcg_enabled()) {
1354 tlb_reset_dirty_range_all(start, length);
1357 return dirty;
1360 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1361 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
1363 DirtyMemoryBlocks *blocks;
1364 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
1365 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1366 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1367 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1368 DirtyBitmapSnapshot *snap;
1369 unsigned long page, end, dest;
1371 snap = g_malloc0(sizeof(*snap) +
1372 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1373 snap->start = first;
1374 snap->end = last;
1376 page = first >> TARGET_PAGE_BITS;
1377 end = last >> TARGET_PAGE_BITS;
1378 dest = 0;
1380 WITH_RCU_READ_LOCK_GUARD() {
1381 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1383 while (page < end) {
1384 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1385 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1386 unsigned long num = MIN(end - page,
1387 DIRTY_MEMORY_BLOCK_SIZE - offset);
1389 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1390 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1391 offset >>= BITS_PER_LEVEL;
1393 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1394 blocks->blocks[idx] + offset,
1395 num);
1396 page += num;
1397 dest += num >> BITS_PER_LEVEL;
1401 if (tcg_enabled()) {
1402 tlb_reset_dirty_range_all(start, length);
1405 memory_region_clear_dirty_bitmap(mr, offset, length);
1407 return snap;
1410 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1411 ram_addr_t start,
1412 ram_addr_t length)
1414 unsigned long page, end;
1416 assert(start >= snap->start);
1417 assert(start + length <= snap->end);
1419 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1420 page = (start - snap->start) >> TARGET_PAGE_BITS;
1422 while (page < end) {
1423 if (test_bit(page, snap->dirty)) {
1424 return true;
1426 page++;
1428 return false;
1431 /* Called from RCU critical section */
1432 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1433 MemoryRegionSection *section)
1435 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1436 return section - d->map.sections;
1438 #endif /* defined(CONFIG_USER_ONLY) */
1440 #if !defined(CONFIG_USER_ONLY)
1442 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1443 uint16_t section);
1444 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1446 static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1447 qemu_anon_ram_alloc;
1450 * Set a custom physical guest memory alloator.
1451 * Accelerators with unusual needs may need this. Hopefully, we can
1452 * get rid of it eventually.
1454 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1456 phys_mem_alloc = alloc;
1459 static uint16_t phys_section_add(PhysPageMap *map,
1460 MemoryRegionSection *section)
1462 /* The physical section number is ORed with a page-aligned
1463 * pointer to produce the iotlb entries. Thus it should
1464 * never overflow into the page-aligned value.
1466 assert(map->sections_nb < TARGET_PAGE_SIZE);
1468 if (map->sections_nb == map->sections_nb_alloc) {
1469 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1470 map->sections = g_renew(MemoryRegionSection, map->sections,
1471 map->sections_nb_alloc);
1473 map->sections[map->sections_nb] = *section;
1474 memory_region_ref(section->mr);
1475 return map->sections_nb++;
1478 static void phys_section_destroy(MemoryRegion *mr)
1480 bool have_sub_page = mr->subpage;
1482 memory_region_unref(mr);
1484 if (have_sub_page) {
1485 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1486 object_unref(OBJECT(&subpage->iomem));
1487 g_free(subpage);
1491 static void phys_sections_free(PhysPageMap *map)
1493 while (map->sections_nb > 0) {
1494 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1495 phys_section_destroy(section->mr);
1497 g_free(map->sections);
1498 g_free(map->nodes);
1501 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1503 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1504 subpage_t *subpage;
1505 hwaddr base = section->offset_within_address_space
1506 & TARGET_PAGE_MASK;
1507 MemoryRegionSection *existing = phys_page_find(d, base);
1508 MemoryRegionSection subsection = {
1509 .offset_within_address_space = base,
1510 .size = int128_make64(TARGET_PAGE_SIZE),
1512 hwaddr start, end;
1514 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1516 if (!(existing->mr->subpage)) {
1517 subpage = subpage_init(fv, base);
1518 subsection.fv = fv;
1519 subsection.mr = &subpage->iomem;
1520 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1521 phys_section_add(&d->map, &subsection));
1522 } else {
1523 subpage = container_of(existing->mr, subpage_t, iomem);
1525 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1526 end = start + int128_get64(section->size) - 1;
1527 subpage_register(subpage, start, end,
1528 phys_section_add(&d->map, section));
1532 static void register_multipage(FlatView *fv,
1533 MemoryRegionSection *section)
1535 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1536 hwaddr start_addr = section->offset_within_address_space;
1537 uint16_t section_index = phys_section_add(&d->map, section);
1538 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1539 TARGET_PAGE_BITS));
1541 assert(num_pages);
1542 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1546 * The range in *section* may look like this:
1548 * |s|PPPPPPP|s|
1550 * where s stands for subpage and P for page.
1552 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1554 MemoryRegionSection remain = *section;
1555 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1557 /* register first subpage */
1558 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1559 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1560 - remain.offset_within_address_space;
1562 MemoryRegionSection now = remain;
1563 now.size = int128_min(int128_make64(left), now.size);
1564 register_subpage(fv, &now);
1565 if (int128_eq(remain.size, now.size)) {
1566 return;
1568 remain.size = int128_sub(remain.size, now.size);
1569 remain.offset_within_address_space += int128_get64(now.size);
1570 remain.offset_within_region += int128_get64(now.size);
1573 /* register whole pages */
1574 if (int128_ge(remain.size, page_size)) {
1575 MemoryRegionSection now = remain;
1576 now.size = int128_and(now.size, int128_neg(page_size));
1577 register_multipage(fv, &now);
1578 if (int128_eq(remain.size, now.size)) {
1579 return;
1581 remain.size = int128_sub(remain.size, now.size);
1582 remain.offset_within_address_space += int128_get64(now.size);
1583 remain.offset_within_region += int128_get64(now.size);
1586 /* register last subpage */
1587 register_subpage(fv, &remain);
1590 void qemu_flush_coalesced_mmio_buffer(void)
1592 if (kvm_enabled())
1593 kvm_flush_coalesced_mmio_buffer();
1596 void qemu_mutex_lock_ramlist(void)
1598 qemu_mutex_lock(&ram_list.mutex);
1601 void qemu_mutex_unlock_ramlist(void)
1603 qemu_mutex_unlock(&ram_list.mutex);
1606 void ram_block_dump(Monitor *mon)
1608 RAMBlock *block;
1609 char *psize;
1611 RCU_READ_LOCK_GUARD();
1612 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1613 "Block Name", "PSize", "Offset", "Used", "Total");
1614 RAMBLOCK_FOREACH(block) {
1615 psize = size_to_str(block->page_size);
1616 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1617 " 0x%016" PRIx64 "\n", block->idstr, psize,
1618 (uint64_t)block->offset,
1619 (uint64_t)block->used_length,
1620 (uint64_t)block->max_length);
1621 g_free(psize);
1625 #ifdef __linux__
1627 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1628 * may or may not name the same files / on the same filesystem now as
1629 * when we actually open and map them. Iterate over the file
1630 * descriptors instead, and use qemu_fd_getpagesize().
1632 static int find_min_backend_pagesize(Object *obj, void *opaque)
1634 long *hpsize_min = opaque;
1636 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1637 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1638 long hpsize = host_memory_backend_pagesize(backend);
1640 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1641 *hpsize_min = hpsize;
1645 return 0;
1648 static int find_max_backend_pagesize(Object *obj, void *opaque)
1650 long *hpsize_max = opaque;
1652 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1653 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1654 long hpsize = host_memory_backend_pagesize(backend);
1656 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1657 *hpsize_max = hpsize;
1661 return 0;
1665 * TODO: We assume right now that all mapped host memory backends are
1666 * used as RAM, however some might be used for different purposes.
1668 long qemu_minrampagesize(void)
1670 long hpsize = LONG_MAX;
1671 long mainrampagesize;
1672 Object *memdev_root;
1673 MachineState *ms = MACHINE(qdev_get_machine());
1675 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1677 /* it's possible we have memory-backend objects with
1678 * hugepage-backed RAM. these may get mapped into system
1679 * address space via -numa parameters or memory hotplug
1680 * hooks. we want to take these into account, but we
1681 * also want to make sure these supported hugepage
1682 * sizes are applicable across the entire range of memory
1683 * we may boot from, so we take the min across all
1684 * backends, and assume normal pages in cases where a
1685 * backend isn't backed by hugepages.
1687 memdev_root = object_resolve_path("/objects", NULL);
1688 if (memdev_root) {
1689 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1691 if (hpsize == LONG_MAX) {
1692 /* No additional memory regions found ==> Report main RAM page size */
1693 return mainrampagesize;
1696 /* If NUMA is disabled or the NUMA nodes are not backed with a
1697 * memory-backend, then there is at least one node using "normal" RAM,
1698 * so if its page size is smaller we have got to report that size instead.
1700 if (hpsize > mainrampagesize &&
1701 (ms->numa_state == NULL ||
1702 ms->numa_state->num_nodes == 0 ||
1703 ms->numa_state->nodes[0].node_memdev == NULL)) {
1704 static bool warned;
1705 if (!warned) {
1706 error_report("Huge page support disabled (n/a for main memory).");
1707 warned = true;
1709 return mainrampagesize;
1712 return hpsize;
1715 long qemu_maxrampagesize(void)
1717 long pagesize = qemu_mempath_getpagesize(mem_path);
1718 Object *memdev_root = object_resolve_path("/objects", NULL);
1720 if (memdev_root) {
1721 object_child_foreach(memdev_root, find_max_backend_pagesize,
1722 &pagesize);
1724 return pagesize;
1726 #else
1727 long qemu_minrampagesize(void)
1729 return qemu_real_host_page_size;
1731 long qemu_maxrampagesize(void)
1733 return qemu_real_host_page_size;
1735 #endif
1737 #ifdef CONFIG_POSIX
1738 static int64_t get_file_size(int fd)
1740 int64_t size;
1741 #if defined(__linux__)
1742 struct stat st;
1744 if (fstat(fd, &st) < 0) {
1745 return -errno;
1748 /* Special handling for devdax character devices */
1749 if (S_ISCHR(st.st_mode)) {
1750 g_autofree char *subsystem_path = NULL;
1751 g_autofree char *subsystem = NULL;
1753 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1754 major(st.st_rdev), minor(st.st_rdev));
1755 subsystem = g_file_read_link(subsystem_path, NULL);
1757 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1758 g_autofree char *size_path = NULL;
1759 g_autofree char *size_str = NULL;
1761 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1762 major(st.st_rdev), minor(st.st_rdev));
1764 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1765 return g_ascii_strtoll(size_str, NULL, 0);
1769 #endif /* defined(__linux__) */
1771 /* st.st_size may be zero for special files yet lseek(2) works */
1772 size = lseek(fd, 0, SEEK_END);
1773 if (size < 0) {
1774 return -errno;
1776 return size;
1779 static int file_ram_open(const char *path,
1780 const char *region_name,
1781 bool *created,
1782 Error **errp)
1784 char *filename;
1785 char *sanitized_name;
1786 char *c;
1787 int fd = -1;
1789 *created = false;
1790 for (;;) {
1791 fd = open(path, O_RDWR);
1792 if (fd >= 0) {
1793 /* @path names an existing file, use it */
1794 break;
1796 if (errno == ENOENT) {
1797 /* @path names a file that doesn't exist, create it */
1798 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1799 if (fd >= 0) {
1800 *created = true;
1801 break;
1803 } else if (errno == EISDIR) {
1804 /* @path names a directory, create a file there */
1805 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1806 sanitized_name = g_strdup(region_name);
1807 for (c = sanitized_name; *c != '\0'; c++) {
1808 if (*c == '/') {
1809 *c = '_';
1813 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1814 sanitized_name);
1815 g_free(sanitized_name);
1817 fd = mkstemp(filename);
1818 if (fd >= 0) {
1819 unlink(filename);
1820 g_free(filename);
1821 break;
1823 g_free(filename);
1825 if (errno != EEXIST && errno != EINTR) {
1826 error_setg_errno(errp, errno,
1827 "can't open backing store %s for guest RAM",
1828 path);
1829 return -1;
1832 * Try again on EINTR and EEXIST. The latter happens when
1833 * something else creates the file between our two open().
1837 return fd;
1840 static void *file_ram_alloc(RAMBlock *block,
1841 ram_addr_t memory,
1842 int fd,
1843 bool truncate,
1844 Error **errp)
1846 Error *err = NULL;
1847 MachineState *ms = MACHINE(qdev_get_machine());
1848 void *area;
1850 block->page_size = qemu_fd_getpagesize(fd);
1851 if (block->mr->align % block->page_size) {
1852 error_setg(errp, "alignment 0x%" PRIx64
1853 " must be multiples of page size 0x%zx",
1854 block->mr->align, block->page_size);
1855 return NULL;
1856 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1857 error_setg(errp, "alignment 0x%" PRIx64
1858 " must be a power of two", block->mr->align);
1859 return NULL;
1861 block->mr->align = MAX(block->page_size, block->mr->align);
1862 #if defined(__s390x__)
1863 if (kvm_enabled()) {
1864 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1866 #endif
1868 if (memory < block->page_size) {
1869 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1870 "or larger than page size 0x%zx",
1871 memory, block->page_size);
1872 return NULL;
1875 memory = ROUND_UP(memory, block->page_size);
1878 * ftruncate is not supported by hugetlbfs in older
1879 * hosts, so don't bother bailing out on errors.
1880 * If anything goes wrong with it under other filesystems,
1881 * mmap will fail.
1883 * Do not truncate the non-empty backend file to avoid corrupting
1884 * the existing data in the file. Disabling shrinking is not
1885 * enough. For example, the current vNVDIMM implementation stores
1886 * the guest NVDIMM labels at the end of the backend file. If the
1887 * backend file is later extended, QEMU will not be able to find
1888 * those labels. Therefore, extending the non-empty backend file
1889 * is disabled as well.
1891 if (truncate && ftruncate(fd, memory)) {
1892 perror("ftruncate");
1895 area = qemu_ram_mmap(fd, memory, block->mr->align,
1896 block->flags & RAM_SHARED, block->flags & RAM_PMEM);
1897 if (area == MAP_FAILED) {
1898 error_setg_errno(errp, errno,
1899 "unable to map backing store for guest RAM");
1900 return NULL;
1903 if (mem_prealloc) {
1904 os_mem_prealloc(fd, area, memory, ms->smp.cpus, &err);
1905 if (err) {
1906 error_propagate(errp, err);
1907 qemu_ram_munmap(fd, area, memory);
1908 return NULL;
1912 block->fd = fd;
1913 return area;
1915 #endif
1917 /* Allocate space within the ram_addr_t space that governs the
1918 * dirty bitmaps.
1919 * Called with the ramlist lock held.
1921 static ram_addr_t find_ram_offset(ram_addr_t size)
1923 RAMBlock *block, *next_block;
1924 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1926 assert(size != 0); /* it would hand out same offset multiple times */
1928 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1929 return 0;
1932 RAMBLOCK_FOREACH(block) {
1933 ram_addr_t candidate, next = RAM_ADDR_MAX;
1935 /* Align blocks to start on a 'long' in the bitmap
1936 * which makes the bitmap sync'ing take the fast path.
1938 candidate = block->offset + block->max_length;
1939 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1941 /* Search for the closest following block
1942 * and find the gap.
1944 RAMBLOCK_FOREACH(next_block) {
1945 if (next_block->offset >= candidate) {
1946 next = MIN(next, next_block->offset);
1950 /* If it fits remember our place and remember the size
1951 * of gap, but keep going so that we might find a smaller
1952 * gap to fill so avoiding fragmentation.
1954 if (next - candidate >= size && next - candidate < mingap) {
1955 offset = candidate;
1956 mingap = next - candidate;
1959 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1962 if (offset == RAM_ADDR_MAX) {
1963 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1964 (uint64_t)size);
1965 abort();
1968 trace_find_ram_offset(size, offset);
1970 return offset;
1973 static unsigned long last_ram_page(void)
1975 RAMBlock *block;
1976 ram_addr_t last = 0;
1978 RCU_READ_LOCK_GUARD();
1979 RAMBLOCK_FOREACH(block) {
1980 last = MAX(last, block->offset + block->max_length);
1982 return last >> TARGET_PAGE_BITS;
1985 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1987 int ret;
1989 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1990 if (!machine_dump_guest_core(current_machine)) {
1991 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1992 if (ret) {
1993 perror("qemu_madvise");
1994 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1995 "but dump_guest_core=off specified\n");
2000 const char *qemu_ram_get_idstr(RAMBlock *rb)
2002 return rb->idstr;
2005 void *qemu_ram_get_host_addr(RAMBlock *rb)
2007 return rb->host;
2010 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
2012 return rb->offset;
2015 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
2017 return rb->used_length;
2020 bool qemu_ram_is_shared(RAMBlock *rb)
2022 return rb->flags & RAM_SHARED;
2025 /* Note: Only set at the start of postcopy */
2026 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
2028 return rb->flags & RAM_UF_ZEROPAGE;
2031 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
2033 rb->flags |= RAM_UF_ZEROPAGE;
2036 bool qemu_ram_is_migratable(RAMBlock *rb)
2038 return rb->flags & RAM_MIGRATABLE;
2041 void qemu_ram_set_migratable(RAMBlock *rb)
2043 rb->flags |= RAM_MIGRATABLE;
2046 void qemu_ram_unset_migratable(RAMBlock *rb)
2048 rb->flags &= ~RAM_MIGRATABLE;
2051 /* Called with iothread lock held. */
2052 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2054 RAMBlock *block;
2056 assert(new_block);
2057 assert(!new_block->idstr[0]);
2059 if (dev) {
2060 char *id = qdev_get_dev_path(dev);
2061 if (id) {
2062 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2063 g_free(id);
2066 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2068 RCU_READ_LOCK_GUARD();
2069 RAMBLOCK_FOREACH(block) {
2070 if (block != new_block &&
2071 !strcmp(block->idstr, new_block->idstr)) {
2072 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2073 new_block->idstr);
2074 abort();
2079 /* Called with iothread lock held. */
2080 void qemu_ram_unset_idstr(RAMBlock *block)
2082 /* FIXME: arch_init.c assumes that this is not called throughout
2083 * migration. Ignore the problem since hot-unplug during migration
2084 * does not work anyway.
2086 if (block) {
2087 memset(block->idstr, 0, sizeof(block->idstr));
2091 size_t qemu_ram_pagesize(RAMBlock *rb)
2093 return rb->page_size;
2096 /* Returns the largest size of page in use */
2097 size_t qemu_ram_pagesize_largest(void)
2099 RAMBlock *block;
2100 size_t largest = 0;
2102 RAMBLOCK_FOREACH(block) {
2103 largest = MAX(largest, qemu_ram_pagesize(block));
2106 return largest;
2109 static int memory_try_enable_merging(void *addr, size_t len)
2111 if (!machine_mem_merge(current_machine)) {
2112 /* disabled by the user */
2113 return 0;
2116 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2119 /* Only legal before guest might have detected the memory size: e.g. on
2120 * incoming migration, or right after reset.
2122 * As memory core doesn't know how is memory accessed, it is up to
2123 * resize callback to update device state and/or add assertions to detect
2124 * misuse, if necessary.
2126 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2128 assert(block);
2130 newsize = HOST_PAGE_ALIGN(newsize);
2132 if (block->used_length == newsize) {
2133 return 0;
2136 if (!(block->flags & RAM_RESIZEABLE)) {
2137 error_setg_errno(errp, EINVAL,
2138 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2139 " in != 0x" RAM_ADDR_FMT, block->idstr,
2140 newsize, block->used_length);
2141 return -EINVAL;
2144 if (block->max_length < newsize) {
2145 error_setg_errno(errp, EINVAL,
2146 "Length too large: %s: 0x" RAM_ADDR_FMT
2147 " > 0x" RAM_ADDR_FMT, block->idstr,
2148 newsize, block->max_length);
2149 return -EINVAL;
2152 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2153 block->used_length = newsize;
2154 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2155 DIRTY_CLIENTS_ALL);
2156 memory_region_set_size(block->mr, newsize);
2157 if (block->resized) {
2158 block->resized(block->idstr, newsize, block->host);
2160 return 0;
2164 * Trigger sync on the given ram block for range [start, start + length]
2165 * with the backing store if one is available.
2166 * Otherwise no-op.
2167 * @Note: this is supposed to be a synchronous op.
2169 void qemu_ram_writeback(RAMBlock *block, ram_addr_t start, ram_addr_t length)
2171 void *addr = ramblock_ptr(block, start);
2173 /* The requested range should fit in within the block range */
2174 g_assert((start + length) <= block->used_length);
2176 #ifdef CONFIG_LIBPMEM
2177 /* The lack of support for pmem should not block the sync */
2178 if (ramblock_is_pmem(block)) {
2179 pmem_persist(addr, length);
2180 return;
2182 #endif
2183 if (block->fd >= 0) {
2185 * Case there is no support for PMEM or the memory has not been
2186 * specified as persistent (or is not one) - use the msync.
2187 * Less optimal but still achieves the same goal
2189 if (qemu_msync(addr, length, block->fd)) {
2190 warn_report("%s: failed to sync memory range: start: "
2191 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
2192 __func__, start, length);
2197 /* Called with ram_list.mutex held */
2198 static void dirty_memory_extend(ram_addr_t old_ram_size,
2199 ram_addr_t new_ram_size)
2201 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2202 DIRTY_MEMORY_BLOCK_SIZE);
2203 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2204 DIRTY_MEMORY_BLOCK_SIZE);
2205 int i;
2207 /* Only need to extend if block count increased */
2208 if (new_num_blocks <= old_num_blocks) {
2209 return;
2212 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2213 DirtyMemoryBlocks *old_blocks;
2214 DirtyMemoryBlocks *new_blocks;
2215 int j;
2217 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2218 new_blocks = g_malloc(sizeof(*new_blocks) +
2219 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2221 if (old_num_blocks) {
2222 memcpy(new_blocks->blocks, old_blocks->blocks,
2223 old_num_blocks * sizeof(old_blocks->blocks[0]));
2226 for (j = old_num_blocks; j < new_num_blocks; j++) {
2227 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2230 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2232 if (old_blocks) {
2233 g_free_rcu(old_blocks, rcu);
2238 static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2240 RAMBlock *block;
2241 RAMBlock *last_block = NULL;
2242 ram_addr_t old_ram_size, new_ram_size;
2243 Error *err = NULL;
2245 old_ram_size = last_ram_page();
2247 qemu_mutex_lock_ramlist();
2248 new_block->offset = find_ram_offset(new_block->max_length);
2250 if (!new_block->host) {
2251 if (xen_enabled()) {
2252 xen_ram_alloc(new_block->offset, new_block->max_length,
2253 new_block->mr, &err);
2254 if (err) {
2255 error_propagate(errp, err);
2256 qemu_mutex_unlock_ramlist();
2257 return;
2259 } else {
2260 new_block->host = phys_mem_alloc(new_block->max_length,
2261 &new_block->mr->align, shared);
2262 if (!new_block->host) {
2263 error_setg_errno(errp, errno,
2264 "cannot set up guest memory '%s'",
2265 memory_region_name(new_block->mr));
2266 qemu_mutex_unlock_ramlist();
2267 return;
2269 memory_try_enable_merging(new_block->host, new_block->max_length);
2273 new_ram_size = MAX(old_ram_size,
2274 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2275 if (new_ram_size > old_ram_size) {
2276 dirty_memory_extend(old_ram_size, new_ram_size);
2278 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2279 * QLIST (which has an RCU-friendly variant) does not have insertion at
2280 * tail, so save the last element in last_block.
2282 RAMBLOCK_FOREACH(block) {
2283 last_block = block;
2284 if (block->max_length < new_block->max_length) {
2285 break;
2288 if (block) {
2289 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2290 } else if (last_block) {
2291 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2292 } else { /* list is empty */
2293 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2295 ram_list.mru_block = NULL;
2297 /* Write list before version */
2298 smp_wmb();
2299 ram_list.version++;
2300 qemu_mutex_unlock_ramlist();
2302 cpu_physical_memory_set_dirty_range(new_block->offset,
2303 new_block->used_length,
2304 DIRTY_CLIENTS_ALL);
2306 if (new_block->host) {
2307 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2308 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2309 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2310 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
2311 ram_block_notify_add(new_block->host, new_block->max_length);
2315 #ifdef CONFIG_POSIX
2316 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2317 uint32_t ram_flags, int fd,
2318 Error **errp)
2320 RAMBlock *new_block;
2321 Error *local_err = NULL;
2322 int64_t file_size;
2324 /* Just support these ram flags by now. */
2325 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2327 if (xen_enabled()) {
2328 error_setg(errp, "-mem-path not supported with Xen");
2329 return NULL;
2332 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2333 error_setg(errp,
2334 "host lacks kvm mmu notifiers, -mem-path unsupported");
2335 return NULL;
2338 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2340 * file_ram_alloc() needs to allocate just like
2341 * phys_mem_alloc, but we haven't bothered to provide
2342 * a hook there.
2344 error_setg(errp,
2345 "-mem-path not supported with this accelerator");
2346 return NULL;
2349 size = HOST_PAGE_ALIGN(size);
2350 file_size = get_file_size(fd);
2351 if (file_size > 0 && file_size < size) {
2352 error_setg(errp, "backing store %s size 0x%" PRIx64
2353 " does not match 'size' option 0x" RAM_ADDR_FMT,
2354 mem_path, file_size, size);
2355 return NULL;
2358 new_block = g_malloc0(sizeof(*new_block));
2359 new_block->mr = mr;
2360 new_block->used_length = size;
2361 new_block->max_length = size;
2362 new_block->flags = ram_flags;
2363 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2364 if (!new_block->host) {
2365 g_free(new_block);
2366 return NULL;
2369 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2370 if (local_err) {
2371 g_free(new_block);
2372 error_propagate(errp, local_err);
2373 return NULL;
2375 return new_block;
2380 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2381 uint32_t ram_flags, const char *mem_path,
2382 Error **errp)
2384 int fd;
2385 bool created;
2386 RAMBlock *block;
2388 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2389 if (fd < 0) {
2390 return NULL;
2393 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
2394 if (!block) {
2395 if (created) {
2396 unlink(mem_path);
2398 close(fd);
2399 return NULL;
2402 return block;
2404 #endif
2406 static
2407 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2408 void (*resized)(const char*,
2409 uint64_t length,
2410 void *host),
2411 void *host, bool resizeable, bool share,
2412 MemoryRegion *mr, Error **errp)
2414 RAMBlock *new_block;
2415 Error *local_err = NULL;
2417 size = HOST_PAGE_ALIGN(size);
2418 max_size = HOST_PAGE_ALIGN(max_size);
2419 new_block = g_malloc0(sizeof(*new_block));
2420 new_block->mr = mr;
2421 new_block->resized = resized;
2422 new_block->used_length = size;
2423 new_block->max_length = max_size;
2424 assert(max_size >= size);
2425 new_block->fd = -1;
2426 new_block->page_size = qemu_real_host_page_size;
2427 new_block->host = host;
2428 if (host) {
2429 new_block->flags |= RAM_PREALLOC;
2431 if (resizeable) {
2432 new_block->flags |= RAM_RESIZEABLE;
2434 ram_block_add(new_block, &local_err, share);
2435 if (local_err) {
2436 g_free(new_block);
2437 error_propagate(errp, local_err);
2438 return NULL;
2440 return new_block;
2443 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2444 MemoryRegion *mr, Error **errp)
2446 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2447 false, mr, errp);
2450 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2451 MemoryRegion *mr, Error **errp)
2453 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2454 share, mr, errp);
2457 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2458 void (*resized)(const char*,
2459 uint64_t length,
2460 void *host),
2461 MemoryRegion *mr, Error **errp)
2463 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2464 false, mr, errp);
2467 static void reclaim_ramblock(RAMBlock *block)
2469 if (block->flags & RAM_PREALLOC) {
2471 } else if (xen_enabled()) {
2472 xen_invalidate_map_cache_entry(block->host);
2473 #ifndef _WIN32
2474 } else if (block->fd >= 0) {
2475 qemu_ram_munmap(block->fd, block->host, block->max_length);
2476 close(block->fd);
2477 #endif
2478 } else {
2479 qemu_anon_ram_free(block->host, block->max_length);
2481 g_free(block);
2484 void qemu_ram_free(RAMBlock *block)
2486 if (!block) {
2487 return;
2490 if (block->host) {
2491 ram_block_notify_remove(block->host, block->max_length);
2494 qemu_mutex_lock_ramlist();
2495 QLIST_REMOVE_RCU(block, next);
2496 ram_list.mru_block = NULL;
2497 /* Write list before version */
2498 smp_wmb();
2499 ram_list.version++;
2500 call_rcu(block, reclaim_ramblock, rcu);
2501 qemu_mutex_unlock_ramlist();
2504 #ifndef _WIN32
2505 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2507 RAMBlock *block;
2508 ram_addr_t offset;
2509 int flags;
2510 void *area, *vaddr;
2512 RAMBLOCK_FOREACH(block) {
2513 offset = addr - block->offset;
2514 if (offset < block->max_length) {
2515 vaddr = ramblock_ptr(block, offset);
2516 if (block->flags & RAM_PREALLOC) {
2518 } else if (xen_enabled()) {
2519 abort();
2520 } else {
2521 flags = MAP_FIXED;
2522 if (block->fd >= 0) {
2523 flags |= (block->flags & RAM_SHARED ?
2524 MAP_SHARED : MAP_PRIVATE);
2525 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2526 flags, block->fd, offset);
2527 } else {
2529 * Remap needs to match alloc. Accelerators that
2530 * set phys_mem_alloc never remap. If they did,
2531 * we'd need a remap hook here.
2533 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2535 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2536 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2537 flags, -1, 0);
2539 if (area != vaddr) {
2540 error_report("Could not remap addr: "
2541 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2542 length, addr);
2543 exit(1);
2545 memory_try_enable_merging(vaddr, length);
2546 qemu_ram_setup_dump(vaddr, length);
2551 #endif /* !_WIN32 */
2553 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2554 * This should not be used for general purpose DMA. Use address_space_map
2555 * or address_space_rw instead. For local memory (e.g. video ram) that the
2556 * device owns, use memory_region_get_ram_ptr.
2558 * Called within RCU critical section.
2560 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2562 RAMBlock *block = ram_block;
2564 if (block == NULL) {
2565 block = qemu_get_ram_block(addr);
2566 addr -= block->offset;
2569 if (xen_enabled() && block->host == NULL) {
2570 /* We need to check if the requested address is in the RAM
2571 * because we don't want to map the entire memory in QEMU.
2572 * In that case just map until the end of the page.
2574 if (block->offset == 0) {
2575 return xen_map_cache(addr, 0, 0, false);
2578 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2580 return ramblock_ptr(block, addr);
2583 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2584 * but takes a size argument.
2586 * Called within RCU critical section.
2588 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2589 hwaddr *size, bool lock)
2591 RAMBlock *block = ram_block;
2592 if (*size == 0) {
2593 return NULL;
2596 if (block == NULL) {
2597 block = qemu_get_ram_block(addr);
2598 addr -= block->offset;
2600 *size = MIN(*size, block->max_length - addr);
2602 if (xen_enabled() && block->host == NULL) {
2603 /* We need to check if the requested address is in the RAM
2604 * because we don't want to map the entire memory in QEMU.
2605 * In that case just map the requested area.
2607 if (block->offset == 0) {
2608 return xen_map_cache(addr, *size, lock, lock);
2611 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2614 return ramblock_ptr(block, addr);
2617 /* Return the offset of a hostpointer within a ramblock */
2618 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2620 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2621 assert((uintptr_t)host >= (uintptr_t)rb->host);
2622 assert(res < rb->max_length);
2624 return res;
2628 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2629 * in that RAMBlock.
2631 * ptr: Host pointer to look up
2632 * round_offset: If true round the result offset down to a page boundary
2633 * *ram_addr: set to result ram_addr
2634 * *offset: set to result offset within the RAMBlock
2636 * Returns: RAMBlock (or NULL if not found)
2638 * By the time this function returns, the returned pointer is not protected
2639 * by RCU anymore. If the caller is not within an RCU critical section and
2640 * does not hold the iothread lock, it must have other means of protecting the
2641 * pointer, such as a reference to the region that includes the incoming
2642 * ram_addr_t.
2644 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2645 ram_addr_t *offset)
2647 RAMBlock *block;
2648 uint8_t *host = ptr;
2650 if (xen_enabled()) {
2651 ram_addr_t ram_addr;
2652 RCU_READ_LOCK_GUARD();
2653 ram_addr = xen_ram_addr_from_mapcache(ptr);
2654 block = qemu_get_ram_block(ram_addr);
2655 if (block) {
2656 *offset = ram_addr - block->offset;
2658 return block;
2661 RCU_READ_LOCK_GUARD();
2662 block = atomic_rcu_read(&ram_list.mru_block);
2663 if (block && block->host && host - block->host < block->max_length) {
2664 goto found;
2667 RAMBLOCK_FOREACH(block) {
2668 /* This case append when the block is not mapped. */
2669 if (block->host == NULL) {
2670 continue;
2672 if (host - block->host < block->max_length) {
2673 goto found;
2677 return NULL;
2679 found:
2680 *offset = (host - block->host);
2681 if (round_offset) {
2682 *offset &= TARGET_PAGE_MASK;
2684 return block;
2688 * Finds the named RAMBlock
2690 * name: The name of RAMBlock to find
2692 * Returns: RAMBlock (or NULL if not found)
2694 RAMBlock *qemu_ram_block_by_name(const char *name)
2696 RAMBlock *block;
2698 RAMBLOCK_FOREACH(block) {
2699 if (!strcmp(name, block->idstr)) {
2700 return block;
2704 return NULL;
2707 /* Some of the softmmu routines need to translate from a host pointer
2708 (typically a TLB entry) back to a ram offset. */
2709 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2711 RAMBlock *block;
2712 ram_addr_t offset;
2714 block = qemu_ram_block_from_host(ptr, false, &offset);
2715 if (!block) {
2716 return RAM_ADDR_INVALID;
2719 return block->offset + offset;
2722 /* Generate a debug exception if a watchpoint has been hit. */
2723 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
2724 MemTxAttrs attrs, int flags, uintptr_t ra)
2726 CPUClass *cc = CPU_GET_CLASS(cpu);
2727 CPUWatchpoint *wp;
2729 assert(tcg_enabled());
2730 if (cpu->watchpoint_hit) {
2732 * We re-entered the check after replacing the TB.
2733 * Now raise the debug interrupt so that it will
2734 * trigger after the current instruction.
2736 qemu_mutex_lock_iothread();
2737 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2738 qemu_mutex_unlock_iothread();
2739 return;
2742 addr = cc->adjust_watchpoint_address(cpu, addr, len);
2743 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2744 if (watchpoint_address_matches(wp, addr, len)
2745 && (wp->flags & flags)) {
2746 if (flags == BP_MEM_READ) {
2747 wp->flags |= BP_WATCHPOINT_HIT_READ;
2748 } else {
2749 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2751 wp->hitaddr = MAX(addr, wp->vaddr);
2752 wp->hitattrs = attrs;
2753 if (!cpu->watchpoint_hit) {
2754 if (wp->flags & BP_CPU &&
2755 !cc->debug_check_watchpoint(cpu, wp)) {
2756 wp->flags &= ~BP_WATCHPOINT_HIT;
2757 continue;
2759 cpu->watchpoint_hit = wp;
2761 mmap_lock();
2762 tb_check_watchpoint(cpu, ra);
2763 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2764 cpu->exception_index = EXCP_DEBUG;
2765 mmap_unlock();
2766 cpu_loop_exit_restore(cpu, ra);
2767 } else {
2768 /* Force execution of one insn next time. */
2769 cpu->cflags_next_tb = 1 | curr_cflags();
2770 mmap_unlock();
2771 if (ra) {
2772 cpu_restore_state(cpu, ra, true);
2774 cpu_loop_exit_noexc(cpu);
2777 } else {
2778 wp->flags &= ~BP_WATCHPOINT_HIT;
2783 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2784 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
2785 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2786 const uint8_t *buf, hwaddr len);
2787 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2788 bool is_write, MemTxAttrs attrs);
2790 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2791 unsigned len, MemTxAttrs attrs)
2793 subpage_t *subpage = opaque;
2794 uint8_t buf[8];
2795 MemTxResult res;
2797 #if defined(DEBUG_SUBPAGE)
2798 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2799 subpage, len, addr);
2800 #endif
2801 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2802 if (res) {
2803 return res;
2805 *data = ldn_p(buf, len);
2806 return MEMTX_OK;
2809 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2810 uint64_t value, unsigned len, MemTxAttrs attrs)
2812 subpage_t *subpage = opaque;
2813 uint8_t buf[8];
2815 #if defined(DEBUG_SUBPAGE)
2816 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2817 " value %"PRIx64"\n",
2818 __func__, subpage, len, addr, value);
2819 #endif
2820 stn_p(buf, len, value);
2821 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2824 static bool subpage_accepts(void *opaque, hwaddr addr,
2825 unsigned len, bool is_write,
2826 MemTxAttrs attrs)
2828 subpage_t *subpage = opaque;
2829 #if defined(DEBUG_SUBPAGE)
2830 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2831 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2832 #endif
2834 return flatview_access_valid(subpage->fv, addr + subpage->base,
2835 len, is_write, attrs);
2838 static const MemoryRegionOps subpage_ops = {
2839 .read_with_attrs = subpage_read,
2840 .write_with_attrs = subpage_write,
2841 .impl.min_access_size = 1,
2842 .impl.max_access_size = 8,
2843 .valid.min_access_size = 1,
2844 .valid.max_access_size = 8,
2845 .valid.accepts = subpage_accepts,
2846 .endianness = DEVICE_NATIVE_ENDIAN,
2849 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2850 uint16_t section)
2852 int idx, eidx;
2854 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2855 return -1;
2856 idx = SUBPAGE_IDX(start);
2857 eidx = SUBPAGE_IDX(end);
2858 #if defined(DEBUG_SUBPAGE)
2859 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2860 __func__, mmio, start, end, idx, eidx, section);
2861 #endif
2862 for (; idx <= eidx; idx++) {
2863 mmio->sub_section[idx] = section;
2866 return 0;
2869 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2871 subpage_t *mmio;
2873 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2874 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2875 mmio->fv = fv;
2876 mmio->base = base;
2877 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2878 NULL, TARGET_PAGE_SIZE);
2879 mmio->iomem.subpage = true;
2880 #if defined(DEBUG_SUBPAGE)
2881 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2882 mmio, base, TARGET_PAGE_SIZE);
2883 #endif
2885 return mmio;
2888 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2890 assert(fv);
2891 MemoryRegionSection section = {
2892 .fv = fv,
2893 .mr = mr,
2894 .offset_within_address_space = 0,
2895 .offset_within_region = 0,
2896 .size = int128_2_64(),
2899 return phys_section_add(map, &section);
2902 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2903 hwaddr index, MemTxAttrs attrs)
2905 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2906 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2907 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2908 MemoryRegionSection *sections = d->map.sections;
2910 return &sections[index & ~TARGET_PAGE_MASK];
2913 static void io_mem_init(void)
2915 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2916 NULL, UINT64_MAX);
2919 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2921 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2922 uint16_t n;
2924 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2925 assert(n == PHYS_SECTION_UNASSIGNED);
2927 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2929 return d;
2932 void address_space_dispatch_free(AddressSpaceDispatch *d)
2934 phys_sections_free(&d->map);
2935 g_free(d);
2938 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2942 static void tcg_log_global_after_sync(MemoryListener *listener)
2944 CPUAddressSpace *cpuas;
2946 /* Wait for the CPU to end the current TB. This avoids the following
2947 * incorrect race:
2949 * vCPU migration
2950 * ---------------------- -------------------------
2951 * TLB check -> slow path
2952 * notdirty_mem_write
2953 * write to RAM
2954 * mark dirty
2955 * clear dirty flag
2956 * TLB check -> fast path
2957 * read memory
2958 * write to RAM
2960 * by pushing the migration thread's memory read after the vCPU thread has
2961 * written the memory.
2963 if (replay_mode == REPLAY_MODE_NONE) {
2965 * VGA can make calls to this function while updating the screen.
2966 * In record/replay mode this causes a deadlock, because
2967 * run_on_cpu waits for rr mutex. Therefore no races are possible
2968 * in this case and no need for making run_on_cpu when
2969 * record/replay is not enabled.
2971 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2972 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2976 static void tcg_commit(MemoryListener *listener)
2978 CPUAddressSpace *cpuas;
2979 AddressSpaceDispatch *d;
2981 assert(tcg_enabled());
2982 /* since each CPU stores ram addresses in its TLB cache, we must
2983 reset the modified entries */
2984 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2985 cpu_reloading_memory_map();
2986 /* The CPU and TLB are protected by the iothread lock.
2987 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2988 * may have split the RCU critical section.
2990 d = address_space_to_dispatch(cpuas->as);
2991 atomic_rcu_set(&cpuas->memory_dispatch, d);
2992 tlb_flush(cpuas->cpu);
2995 static void memory_map_init(void)
2997 system_memory = g_malloc(sizeof(*system_memory));
2999 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
3000 address_space_init(&address_space_memory, system_memory, "memory");
3002 system_io = g_malloc(sizeof(*system_io));
3003 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
3004 65536);
3005 address_space_init(&address_space_io, system_io, "I/O");
3008 MemoryRegion *get_system_memory(void)
3010 return system_memory;
3013 MemoryRegion *get_system_io(void)
3015 return system_io;
3018 #endif /* !defined(CONFIG_USER_ONLY) */
3020 /* physical memory access (slow version, mainly for debug) */
3021 #if defined(CONFIG_USER_ONLY)
3022 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3023 uint8_t *buf, target_ulong len, int is_write)
3025 int flags;
3026 target_ulong l, page;
3027 void * p;
3029 while (len > 0) {
3030 page = addr & TARGET_PAGE_MASK;
3031 l = (page + TARGET_PAGE_SIZE) - addr;
3032 if (l > len)
3033 l = len;
3034 flags = page_get_flags(page);
3035 if (!(flags & PAGE_VALID))
3036 return -1;
3037 if (is_write) {
3038 if (!(flags & PAGE_WRITE))
3039 return -1;
3040 /* XXX: this code should not depend on lock_user */
3041 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3042 return -1;
3043 memcpy(p, buf, l);
3044 unlock_user(p, addr, l);
3045 } else {
3046 if (!(flags & PAGE_READ))
3047 return -1;
3048 /* XXX: this code should not depend on lock_user */
3049 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3050 return -1;
3051 memcpy(buf, p, l);
3052 unlock_user(p, addr, 0);
3054 len -= l;
3055 buf += l;
3056 addr += l;
3058 return 0;
3061 #else
3063 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
3064 hwaddr length)
3066 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3067 addr += memory_region_get_ram_addr(mr);
3069 /* No early return if dirty_log_mask is or becomes 0, because
3070 * cpu_physical_memory_set_dirty_range will still call
3071 * xen_modified_memory.
3073 if (dirty_log_mask) {
3074 dirty_log_mask =
3075 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3077 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3078 assert(tcg_enabled());
3079 tb_invalidate_phys_range(addr, addr + length);
3080 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3082 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3085 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3088 * In principle this function would work on other memory region types too,
3089 * but the ROM device use case is the only one where this operation is
3090 * necessary. Other memory regions should use the
3091 * address_space_read/write() APIs.
3093 assert(memory_region_is_romd(mr));
3095 invalidate_and_set_dirty(mr, addr, size);
3098 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3100 unsigned access_size_max = mr->ops->valid.max_access_size;
3102 /* Regions are assumed to support 1-4 byte accesses unless
3103 otherwise specified. */
3104 if (access_size_max == 0) {
3105 access_size_max = 4;
3108 /* Bound the maximum access by the alignment of the address. */
3109 if (!mr->ops->impl.unaligned) {
3110 unsigned align_size_max = addr & -addr;
3111 if (align_size_max != 0 && align_size_max < access_size_max) {
3112 access_size_max = align_size_max;
3116 /* Don't attempt accesses larger than the maximum. */
3117 if (l > access_size_max) {
3118 l = access_size_max;
3120 l = pow2floor(l);
3122 return l;
3125 static bool prepare_mmio_access(MemoryRegion *mr)
3127 bool unlocked = !qemu_mutex_iothread_locked();
3128 bool release_lock = false;
3130 if (unlocked && mr->global_locking) {
3131 qemu_mutex_lock_iothread();
3132 unlocked = false;
3133 release_lock = true;
3135 if (mr->flush_coalesced_mmio) {
3136 if (unlocked) {
3137 qemu_mutex_lock_iothread();
3139 qemu_flush_coalesced_mmio_buffer();
3140 if (unlocked) {
3141 qemu_mutex_unlock_iothread();
3145 return release_lock;
3148 /* Called within RCU critical section. */
3149 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3150 MemTxAttrs attrs,
3151 const uint8_t *buf,
3152 hwaddr len, hwaddr addr1,
3153 hwaddr l, MemoryRegion *mr)
3155 uint8_t *ptr;
3156 uint64_t val;
3157 MemTxResult result = MEMTX_OK;
3158 bool release_lock = false;
3160 for (;;) {
3161 if (!memory_access_is_direct(mr, true)) {
3162 release_lock |= prepare_mmio_access(mr);
3163 l = memory_access_size(mr, l, addr1);
3164 /* XXX: could force current_cpu to NULL to avoid
3165 potential bugs */
3166 val = ldn_he_p(buf, l);
3167 result |= memory_region_dispatch_write(mr, addr1, val,
3168 size_memop(l), attrs);
3169 } else {
3170 /* RAM case */
3171 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3172 memcpy(ptr, buf, l);
3173 invalidate_and_set_dirty(mr, addr1, l);
3176 if (release_lock) {
3177 qemu_mutex_unlock_iothread();
3178 release_lock = false;
3181 len -= l;
3182 buf += l;
3183 addr += l;
3185 if (!len) {
3186 break;
3189 l = len;
3190 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3193 return result;
3196 /* Called from RCU critical section. */
3197 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3198 const uint8_t *buf, hwaddr len)
3200 hwaddr l;
3201 hwaddr addr1;
3202 MemoryRegion *mr;
3203 MemTxResult result = MEMTX_OK;
3205 l = len;
3206 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3207 result = flatview_write_continue(fv, addr, attrs, buf, len,
3208 addr1, l, mr);
3210 return result;
3213 /* Called within RCU critical section. */
3214 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3215 MemTxAttrs attrs, uint8_t *buf,
3216 hwaddr len, hwaddr addr1, hwaddr l,
3217 MemoryRegion *mr)
3219 uint8_t *ptr;
3220 uint64_t val;
3221 MemTxResult result = MEMTX_OK;
3222 bool release_lock = false;
3224 for (;;) {
3225 if (!memory_access_is_direct(mr, false)) {
3226 /* I/O case */
3227 release_lock |= prepare_mmio_access(mr);
3228 l = memory_access_size(mr, l, addr1);
3229 result |= memory_region_dispatch_read(mr, addr1, &val,
3230 size_memop(l), attrs);
3231 stn_he_p(buf, l, val);
3232 } else {
3233 /* RAM case */
3234 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3235 memcpy(buf, ptr, l);
3238 if (release_lock) {
3239 qemu_mutex_unlock_iothread();
3240 release_lock = false;
3243 len -= l;
3244 buf += l;
3245 addr += l;
3247 if (!len) {
3248 break;
3251 l = len;
3252 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3255 return result;
3258 /* Called from RCU critical section. */
3259 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3260 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3262 hwaddr l;
3263 hwaddr addr1;
3264 MemoryRegion *mr;
3266 l = len;
3267 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3268 return flatview_read_continue(fv, addr, attrs, buf, len,
3269 addr1, l, mr);
3272 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3273 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3275 MemTxResult result = MEMTX_OK;
3276 FlatView *fv;
3278 if (len > 0) {
3279 RCU_READ_LOCK_GUARD();
3280 fv = address_space_to_flatview(as);
3281 result = flatview_read(fv, addr, attrs, buf, len);
3284 return result;
3287 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3288 MemTxAttrs attrs,
3289 const uint8_t *buf, hwaddr len)
3291 MemTxResult result = MEMTX_OK;
3292 FlatView *fv;
3294 if (len > 0) {
3295 RCU_READ_LOCK_GUARD();
3296 fv = address_space_to_flatview(as);
3297 result = flatview_write(fv, addr, attrs, buf, len);
3300 return result;
3303 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3304 uint8_t *buf, hwaddr len, bool is_write)
3306 if (is_write) {
3307 return address_space_write(as, addr, attrs, buf, len);
3308 } else {
3309 return address_space_read_full(as, addr, attrs, buf, len);
3313 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3314 hwaddr len, int is_write)
3316 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3317 buf, len, is_write);
3320 enum write_rom_type {
3321 WRITE_DATA,
3322 FLUSH_CACHE,
3325 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3326 hwaddr addr,
3327 MemTxAttrs attrs,
3328 const uint8_t *buf,
3329 hwaddr len,
3330 enum write_rom_type type)
3332 hwaddr l;
3333 uint8_t *ptr;
3334 hwaddr addr1;
3335 MemoryRegion *mr;
3337 RCU_READ_LOCK_GUARD();
3338 while (len > 0) {
3339 l = len;
3340 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3342 if (!(memory_region_is_ram(mr) ||
3343 memory_region_is_romd(mr))) {
3344 l = memory_access_size(mr, l, addr1);
3345 } else {
3346 /* ROM/RAM case */
3347 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3348 switch (type) {
3349 case WRITE_DATA:
3350 memcpy(ptr, buf, l);
3351 invalidate_and_set_dirty(mr, addr1, l);
3352 break;
3353 case FLUSH_CACHE:
3354 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3355 break;
3358 len -= l;
3359 buf += l;
3360 addr += l;
3362 return MEMTX_OK;
3365 /* used for ROM loading : can write in RAM and ROM */
3366 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3367 MemTxAttrs attrs,
3368 const uint8_t *buf, hwaddr len)
3370 return address_space_write_rom_internal(as, addr, attrs,
3371 buf, len, WRITE_DATA);
3374 void cpu_flush_icache_range(hwaddr start, hwaddr len)
3377 * This function should do the same thing as an icache flush that was
3378 * triggered from within the guest. For TCG we are always cache coherent,
3379 * so there is no need to flush anything. For KVM / Xen we need to flush
3380 * the host's instruction cache at least.
3382 if (tcg_enabled()) {
3383 return;
3386 address_space_write_rom_internal(&address_space_memory,
3387 start, MEMTXATTRS_UNSPECIFIED,
3388 NULL, len, FLUSH_CACHE);
3391 typedef struct {
3392 MemoryRegion *mr;
3393 void *buffer;
3394 hwaddr addr;
3395 hwaddr len;
3396 bool in_use;
3397 } BounceBuffer;
3399 static BounceBuffer bounce;
3401 typedef struct MapClient {
3402 QEMUBH *bh;
3403 QLIST_ENTRY(MapClient) link;
3404 } MapClient;
3406 QemuMutex map_client_list_lock;
3407 static QLIST_HEAD(, MapClient) map_client_list
3408 = QLIST_HEAD_INITIALIZER(map_client_list);
3410 static void cpu_unregister_map_client_do(MapClient *client)
3412 QLIST_REMOVE(client, link);
3413 g_free(client);
3416 static void cpu_notify_map_clients_locked(void)
3418 MapClient *client;
3420 while (!QLIST_EMPTY(&map_client_list)) {
3421 client = QLIST_FIRST(&map_client_list);
3422 qemu_bh_schedule(client->bh);
3423 cpu_unregister_map_client_do(client);
3427 void cpu_register_map_client(QEMUBH *bh)
3429 MapClient *client = g_malloc(sizeof(*client));
3431 qemu_mutex_lock(&map_client_list_lock);
3432 client->bh = bh;
3433 QLIST_INSERT_HEAD(&map_client_list, client, link);
3434 if (!atomic_read(&bounce.in_use)) {
3435 cpu_notify_map_clients_locked();
3437 qemu_mutex_unlock(&map_client_list_lock);
3440 void cpu_exec_init_all(void)
3442 qemu_mutex_init(&ram_list.mutex);
3443 /* The data structures we set up here depend on knowing the page size,
3444 * so no more changes can be made after this point.
3445 * In an ideal world, nothing we did before we had finished the
3446 * machine setup would care about the target page size, and we could
3447 * do this much later, rather than requiring board models to state
3448 * up front what their requirements are.
3450 finalize_target_page_bits();
3451 io_mem_init();
3452 memory_map_init();
3453 qemu_mutex_init(&map_client_list_lock);
3456 void cpu_unregister_map_client(QEMUBH *bh)
3458 MapClient *client;
3460 qemu_mutex_lock(&map_client_list_lock);
3461 QLIST_FOREACH(client, &map_client_list, link) {
3462 if (client->bh == bh) {
3463 cpu_unregister_map_client_do(client);
3464 break;
3467 qemu_mutex_unlock(&map_client_list_lock);
3470 static void cpu_notify_map_clients(void)
3472 qemu_mutex_lock(&map_client_list_lock);
3473 cpu_notify_map_clients_locked();
3474 qemu_mutex_unlock(&map_client_list_lock);
3477 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3478 bool is_write, MemTxAttrs attrs)
3480 MemoryRegion *mr;
3481 hwaddr l, xlat;
3483 while (len > 0) {
3484 l = len;
3485 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3486 if (!memory_access_is_direct(mr, is_write)) {
3487 l = memory_access_size(mr, l, addr);
3488 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3489 return false;
3493 len -= l;
3494 addr += l;
3496 return true;
3499 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3500 hwaddr len, bool is_write,
3501 MemTxAttrs attrs)
3503 FlatView *fv;
3504 bool result;
3506 RCU_READ_LOCK_GUARD();
3507 fv = address_space_to_flatview(as);
3508 result = flatview_access_valid(fv, addr, len, is_write, attrs);
3509 return result;
3512 static hwaddr
3513 flatview_extend_translation(FlatView *fv, hwaddr addr,
3514 hwaddr target_len,
3515 MemoryRegion *mr, hwaddr base, hwaddr len,
3516 bool is_write, MemTxAttrs attrs)
3518 hwaddr done = 0;
3519 hwaddr xlat;
3520 MemoryRegion *this_mr;
3522 for (;;) {
3523 target_len -= len;
3524 addr += len;
3525 done += len;
3526 if (target_len == 0) {
3527 return done;
3530 len = target_len;
3531 this_mr = flatview_translate(fv, addr, &xlat,
3532 &len, is_write, attrs);
3533 if (this_mr != mr || xlat != base + done) {
3534 return done;
3539 /* Map a physical memory region into a host virtual address.
3540 * May map a subset of the requested range, given by and returned in *plen.
3541 * May return NULL if resources needed to perform the mapping are exhausted.
3542 * Use only for reads OR writes - not for read-modify-write operations.
3543 * Use cpu_register_map_client() to know when retrying the map operation is
3544 * likely to succeed.
3546 void *address_space_map(AddressSpace *as,
3547 hwaddr addr,
3548 hwaddr *plen,
3549 bool is_write,
3550 MemTxAttrs attrs)
3552 hwaddr len = *plen;
3553 hwaddr l, xlat;
3554 MemoryRegion *mr;
3555 void *ptr;
3556 FlatView *fv;
3558 if (len == 0) {
3559 return NULL;
3562 l = len;
3563 RCU_READ_LOCK_GUARD();
3564 fv = address_space_to_flatview(as);
3565 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3567 if (!memory_access_is_direct(mr, is_write)) {
3568 if (atomic_xchg(&bounce.in_use, true)) {
3569 return NULL;
3571 /* Avoid unbounded allocations */
3572 l = MIN(l, TARGET_PAGE_SIZE);
3573 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3574 bounce.addr = addr;
3575 bounce.len = l;
3577 memory_region_ref(mr);
3578 bounce.mr = mr;
3579 if (!is_write) {
3580 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3581 bounce.buffer, l);
3584 *plen = l;
3585 return bounce.buffer;
3589 memory_region_ref(mr);
3590 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3591 l, is_write, attrs);
3592 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3594 return ptr;
3597 /* Unmaps a memory region previously mapped by address_space_map().
3598 * Will also mark the memory as dirty if is_write == 1. access_len gives
3599 * the amount of memory that was actually read or written by the caller.
3601 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3602 int is_write, hwaddr access_len)
3604 if (buffer != bounce.buffer) {
3605 MemoryRegion *mr;
3606 ram_addr_t addr1;
3608 mr = memory_region_from_host(buffer, &addr1);
3609 assert(mr != NULL);
3610 if (is_write) {
3611 invalidate_and_set_dirty(mr, addr1, access_len);
3613 if (xen_enabled()) {
3614 xen_invalidate_map_cache_entry(buffer);
3616 memory_region_unref(mr);
3617 return;
3619 if (is_write) {
3620 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3621 bounce.buffer, access_len);
3623 qemu_vfree(bounce.buffer);
3624 bounce.buffer = NULL;
3625 memory_region_unref(bounce.mr);
3626 atomic_mb_set(&bounce.in_use, false);
3627 cpu_notify_map_clients();
3630 void *cpu_physical_memory_map(hwaddr addr,
3631 hwaddr *plen,
3632 int is_write)
3634 return address_space_map(&address_space_memory, addr, plen, is_write,
3635 MEMTXATTRS_UNSPECIFIED);
3638 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3639 int is_write, hwaddr access_len)
3641 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3644 #define ARG1_DECL AddressSpace *as
3645 #define ARG1 as
3646 #define SUFFIX
3647 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3648 #define RCU_READ_LOCK(...) rcu_read_lock()
3649 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3650 #include "memory_ldst.inc.c"
3652 int64_t address_space_cache_init(MemoryRegionCache *cache,
3653 AddressSpace *as,
3654 hwaddr addr,
3655 hwaddr len,
3656 bool is_write)
3658 AddressSpaceDispatch *d;
3659 hwaddr l;
3660 MemoryRegion *mr;
3662 assert(len > 0);
3664 l = len;
3665 cache->fv = address_space_get_flatview(as);
3666 d = flatview_to_dispatch(cache->fv);
3667 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3669 mr = cache->mrs.mr;
3670 memory_region_ref(mr);
3671 if (memory_access_is_direct(mr, is_write)) {
3672 /* We don't care about the memory attributes here as we're only
3673 * doing this if we found actual RAM, which behaves the same
3674 * regardless of attributes; so UNSPECIFIED is fine.
3676 l = flatview_extend_translation(cache->fv, addr, len, mr,
3677 cache->xlat, l, is_write,
3678 MEMTXATTRS_UNSPECIFIED);
3679 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3680 } else {
3681 cache->ptr = NULL;
3684 cache->len = l;
3685 cache->is_write = is_write;
3686 return l;
3689 void address_space_cache_invalidate(MemoryRegionCache *cache,
3690 hwaddr addr,
3691 hwaddr access_len)
3693 assert(cache->is_write);
3694 if (likely(cache->ptr)) {
3695 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3699 void address_space_cache_destroy(MemoryRegionCache *cache)
3701 if (!cache->mrs.mr) {
3702 return;
3705 if (xen_enabled()) {
3706 xen_invalidate_map_cache_entry(cache->ptr);
3708 memory_region_unref(cache->mrs.mr);
3709 flatview_unref(cache->fv);
3710 cache->mrs.mr = NULL;
3711 cache->fv = NULL;
3714 /* Called from RCU critical section. This function has the same
3715 * semantics as address_space_translate, but it only works on a
3716 * predefined range of a MemoryRegion that was mapped with
3717 * address_space_cache_init.
3719 static inline MemoryRegion *address_space_translate_cached(
3720 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3721 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3723 MemoryRegionSection section;
3724 MemoryRegion *mr;
3725 IOMMUMemoryRegion *iommu_mr;
3726 AddressSpace *target_as;
3728 assert(!cache->ptr);
3729 *xlat = addr + cache->xlat;
3731 mr = cache->mrs.mr;
3732 iommu_mr = memory_region_get_iommu(mr);
3733 if (!iommu_mr) {
3734 /* MMIO region. */
3735 return mr;
3738 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3739 NULL, is_write, true,
3740 &target_as, attrs);
3741 return section.mr;
3744 /* Called from RCU critical section. address_space_read_cached uses this
3745 * out of line function when the target is an MMIO or IOMMU region.
3747 void
3748 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3749 void *buf, hwaddr len)
3751 hwaddr addr1, l;
3752 MemoryRegion *mr;
3754 l = len;
3755 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3756 MEMTXATTRS_UNSPECIFIED);
3757 flatview_read_continue(cache->fv,
3758 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3759 addr1, l, mr);
3762 /* Called from RCU critical section. address_space_write_cached uses this
3763 * out of line function when the target is an MMIO or IOMMU region.
3765 void
3766 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3767 const void *buf, hwaddr len)
3769 hwaddr addr1, l;
3770 MemoryRegion *mr;
3772 l = len;
3773 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3774 MEMTXATTRS_UNSPECIFIED);
3775 flatview_write_continue(cache->fv,
3776 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3777 addr1, l, mr);
3780 #define ARG1_DECL MemoryRegionCache *cache
3781 #define ARG1 cache
3782 #define SUFFIX _cached_slow
3783 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3784 #define RCU_READ_LOCK() ((void)0)
3785 #define RCU_READ_UNLOCK() ((void)0)
3786 #include "memory_ldst.inc.c"
3788 /* virtual memory access for debug (includes writing to ROM) */
3789 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3790 uint8_t *buf, target_ulong len, int is_write)
3792 hwaddr phys_addr;
3793 target_ulong l, page;
3795 cpu_synchronize_state(cpu);
3796 while (len > 0) {
3797 int asidx;
3798 MemTxAttrs attrs;
3800 page = addr & TARGET_PAGE_MASK;
3801 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3802 asidx = cpu_asidx_from_attrs(cpu, attrs);
3803 /* if no physical page mapped, return an error */
3804 if (phys_addr == -1)
3805 return -1;
3806 l = (page + TARGET_PAGE_SIZE) - addr;
3807 if (l > len)
3808 l = len;
3809 phys_addr += (addr & ~TARGET_PAGE_MASK);
3810 if (is_write) {
3811 address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3812 attrs, buf, l);
3813 } else {
3814 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3815 attrs, buf, l, 0);
3817 len -= l;
3818 buf += l;
3819 addr += l;
3821 return 0;
3825 * Allows code that needs to deal with migration bitmaps etc to still be built
3826 * target independent.
3828 size_t qemu_target_page_size(void)
3830 return TARGET_PAGE_SIZE;
3833 int qemu_target_page_bits(void)
3835 return TARGET_PAGE_BITS;
3838 int qemu_target_page_bits_min(void)
3840 return TARGET_PAGE_BITS_MIN;
3842 #endif
3844 bool target_words_bigendian(void)
3846 #if defined(TARGET_WORDS_BIGENDIAN)
3847 return true;
3848 #else
3849 return false;
3850 #endif
3853 #ifndef CONFIG_USER_ONLY
3854 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3856 MemoryRegion*mr;
3857 hwaddr l = 1;
3858 bool res;
3860 RCU_READ_LOCK_GUARD();
3861 mr = address_space_translate(&address_space_memory,
3862 phys_addr, &phys_addr, &l, false,
3863 MEMTXATTRS_UNSPECIFIED);
3865 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3866 return res;
3869 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3871 RAMBlock *block;
3872 int ret = 0;
3874 RCU_READ_LOCK_GUARD();
3875 RAMBLOCK_FOREACH(block) {
3876 ret = func(block, opaque);
3877 if (ret) {
3878 break;
3881 return ret;
3885 * Unmap pages of memory from start to start+length such that
3886 * they a) read as 0, b) Trigger whatever fault mechanism
3887 * the OS provides for postcopy.
3888 * The pages must be unmapped by the end of the function.
3889 * Returns: 0 on success, none-0 on failure
3892 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3894 int ret = -1;
3896 uint8_t *host_startaddr = rb->host + start;
3898 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3899 error_report("ram_block_discard_range: Unaligned start address: %p",
3900 host_startaddr);
3901 goto err;
3904 if ((start + length) <= rb->used_length) {
3905 bool need_madvise, need_fallocate;
3906 if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3907 error_report("ram_block_discard_range: Unaligned length: %zx",
3908 length);
3909 goto err;
3912 errno = ENOTSUP; /* If we are missing MADVISE etc */
3914 /* The logic here is messy;
3915 * madvise DONTNEED fails for hugepages
3916 * fallocate works on hugepages and shmem
3918 need_madvise = (rb->page_size == qemu_host_page_size);
3919 need_fallocate = rb->fd != -1;
3920 if (need_fallocate) {
3921 /* For a file, this causes the area of the file to be zero'd
3922 * if read, and for hugetlbfs also causes it to be unmapped
3923 * so a userfault will trigger.
3925 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3926 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3927 start, length);
3928 if (ret) {
3929 ret = -errno;
3930 error_report("ram_block_discard_range: Failed to fallocate "
3931 "%s:%" PRIx64 " +%zx (%d)",
3932 rb->idstr, start, length, ret);
3933 goto err;
3935 #else
3936 ret = -ENOSYS;
3937 error_report("ram_block_discard_range: fallocate not available/file"
3938 "%s:%" PRIx64 " +%zx (%d)",
3939 rb->idstr, start, length, ret);
3940 goto err;
3941 #endif
3943 if (need_madvise) {
3944 /* For normal RAM this causes it to be unmapped,
3945 * for shared memory it causes the local mapping to disappear
3946 * and to fall back on the file contents (which we just
3947 * fallocate'd away).
3949 #if defined(CONFIG_MADVISE)
3950 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3951 if (ret) {
3952 ret = -errno;
3953 error_report("ram_block_discard_range: Failed to discard range "
3954 "%s:%" PRIx64 " +%zx (%d)",
3955 rb->idstr, start, length, ret);
3956 goto err;
3958 #else
3959 ret = -ENOSYS;
3960 error_report("ram_block_discard_range: MADVISE not available"
3961 "%s:%" PRIx64 " +%zx (%d)",
3962 rb->idstr, start, length, ret);
3963 goto err;
3964 #endif
3966 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3967 need_madvise, need_fallocate, ret);
3968 } else {
3969 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3970 "/%zx/" RAM_ADDR_FMT")",
3971 rb->idstr, start, length, rb->used_length);
3974 err:
3975 return ret;
3978 bool ramblock_is_pmem(RAMBlock *rb)
3980 return rb->flags & RAM_PMEM;
3983 #endif
3985 void page_size_init(void)
3987 /* NOTE: we can always suppose that qemu_host_page_size >=
3988 TARGET_PAGE_SIZE */
3989 if (qemu_host_page_size == 0) {
3990 qemu_host_page_size = qemu_real_host_page_size;
3992 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3993 qemu_host_page_size = TARGET_PAGE_SIZE;
3995 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
3998 #if !defined(CONFIG_USER_ONLY)
4000 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
4002 if (start == end - 1) {
4003 qemu_printf("\t%3d ", start);
4004 } else {
4005 qemu_printf("\t%3d..%-3d ", start, end - 1);
4007 qemu_printf(" skip=%d ", skip);
4008 if (ptr == PHYS_MAP_NODE_NIL) {
4009 qemu_printf(" ptr=NIL");
4010 } else if (!skip) {
4011 qemu_printf(" ptr=#%d", ptr);
4012 } else {
4013 qemu_printf(" ptr=[%d]", ptr);
4015 qemu_printf("\n");
4018 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4019 int128_sub((size), int128_one())) : 0)
4021 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
4023 int i;
4025 qemu_printf(" Dispatch\n");
4026 qemu_printf(" Physical sections\n");
4028 for (i = 0; i < d->map.sections_nb; ++i) {
4029 MemoryRegionSection *s = d->map.sections + i;
4030 const char *names[] = { " [unassigned]", " [not dirty]",
4031 " [ROM]", " [watch]" };
4033 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
4034 " %s%s%s%s%s",
4036 s->offset_within_address_space,
4037 s->offset_within_address_space + MR_SIZE(s->mr->size),
4038 s->mr->name ? s->mr->name : "(noname)",
4039 i < ARRAY_SIZE(names) ? names[i] : "",
4040 s->mr == root ? " [ROOT]" : "",
4041 s == d->mru_section ? " [MRU]" : "",
4042 s->mr->is_iommu ? " [iommu]" : "");
4044 if (s->mr->alias) {
4045 qemu_printf(" alias=%s", s->mr->alias->name ?
4046 s->mr->alias->name : "noname");
4048 qemu_printf("\n");
4051 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4052 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4053 for (i = 0; i < d->map.nodes_nb; ++i) {
4054 int j, jprev;
4055 PhysPageEntry prev;
4056 Node *n = d->map.nodes + i;
4058 qemu_printf(" [%d]\n", i);
4060 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4061 PhysPageEntry *pe = *n + j;
4063 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4064 continue;
4067 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4069 jprev = j;
4070 prev = *pe;
4073 if (jprev != ARRAY_SIZE(*n)) {
4074 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4079 #endif