target-arm: A64: Emulate the SMC insn
[qemu/ar7.git] / target-arm / internals.h
blob1486595916ca3857ddef81253483af05616acf18
1 /*
2 * QEMU ARM CPU -- internal functions and types
4 * Copyright (c) 2014 Linaro Ltd
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
20 * This header defines functions, types, etc which need to be shared
21 * between different source files within target-arm/ but which are
22 * private to it and not required by the rest of QEMU.
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
28 static inline bool excp_is_internal(int excp)
30 /* Return true if this exception number represents a QEMU-internal
31 * exception that will not be passed to the guest.
33 return excp == EXCP_INTERRUPT
34 || excp == EXCP_HLT
35 || excp == EXCP_DEBUG
36 || excp == EXCP_HALTED
37 || excp == EXCP_EXCEPTION_EXIT
38 || excp == EXCP_KERNEL_TRAP
39 || excp == EXCP_STREX;
42 /* Exception names for debug logging; note that not all of these
43 * precisely correspond to architectural exceptions.
45 static const char * const excnames[] = {
46 [EXCP_UDEF] = "Undefined Instruction",
47 [EXCP_SWI] = "SVC",
48 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
49 [EXCP_DATA_ABORT] = "Data Abort",
50 [EXCP_IRQ] = "IRQ",
51 [EXCP_FIQ] = "FIQ",
52 [EXCP_BKPT] = "Breakpoint",
53 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
54 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
55 [EXCP_STREX] = "QEMU intercept of STREX",
56 [EXCP_HVC] = "Hypervisor Call",
57 [EXCP_HYP_TRAP] = "Hypervisor Trap",
58 [EXCP_SMC] = "Secure Monitor Call",
61 static inline void arm_log_exception(int idx)
63 if (qemu_loglevel_mask(CPU_LOG_INT)) {
64 const char *exc = NULL;
66 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
67 exc = excnames[idx];
69 if (!exc) {
70 exc = "unknown";
72 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
76 /* Scale factor for generic timers, ie number of ns per tick.
77 * This gives a 62.5MHz timer.
79 #define GTIMER_SCALE 16
82 * For AArch64, map a given EL to an index in the banked_spsr array.
84 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
86 static const unsigned int map[4] = {
87 [1] = 0, /* EL1. */
88 [2] = 6, /* EL2. */
89 [3] = 7, /* EL3. */
91 assert(el >= 1 && el <= 3);
92 return map[el];
95 int bank_number(int mode);
96 void switch_mode(CPUARMState *, int);
97 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
98 void arm_translate_init(void);
100 enum arm_fprounding {
101 FPROUNDING_TIEEVEN,
102 FPROUNDING_POSINF,
103 FPROUNDING_NEGINF,
104 FPROUNDING_ZERO,
105 FPROUNDING_TIEAWAY,
106 FPROUNDING_ODD
109 int arm_rmode_to_sf(int rmode);
111 static inline void aarch64_save_sp(CPUARMState *env, int el)
113 if (env->pstate & PSTATE_SP) {
114 env->sp_el[el] = env->xregs[31];
115 } else {
116 env->sp_el[0] = env->xregs[31];
120 static inline void aarch64_restore_sp(CPUARMState *env, int el)
122 if (env->pstate & PSTATE_SP) {
123 env->xregs[31] = env->sp_el[el];
124 } else {
125 env->xregs[31] = env->sp_el[0];
129 static inline void update_spsel(CPUARMState *env, uint32_t imm)
131 unsigned int cur_el = arm_current_pl(env);
132 /* Update PSTATE SPSel bit; this requires us to update the
133 * working stack pointer in xregs[31].
135 if (!((imm ^ env->pstate) & PSTATE_SP)) {
136 return;
138 aarch64_save_sp(env, cur_el);
139 env->pstate = deposit32(env->pstate, 0, 1, imm);
141 /* We rely on illegal updates to SPsel from EL0 to get trapped
142 * at translation time.
144 assert(cur_el >= 1 && cur_el <= 3);
145 aarch64_restore_sp(env, cur_el);
148 /* Return true if extended addresses are enabled.
149 * This is always the case if our translation regime is 64 bit,
150 * but depends on TTBCR.EAE for 32 bit.
152 static inline bool extended_addresses_enabled(CPUARMState *env)
154 return arm_el_is_aa64(env, 1)
155 || ((arm_feature(env, ARM_FEATURE_LPAE)
156 && (env->cp15.c2_control & TTBCR_EAE)));
159 /* Valid Syndrome Register EC field values */
160 enum arm_exception_class {
161 EC_UNCATEGORIZED = 0x00,
162 EC_WFX_TRAP = 0x01,
163 EC_CP15RTTRAP = 0x03,
164 EC_CP15RRTTRAP = 0x04,
165 EC_CP14RTTRAP = 0x05,
166 EC_CP14DTTRAP = 0x06,
167 EC_ADVSIMDFPACCESSTRAP = 0x07,
168 EC_FPIDTRAP = 0x08,
169 EC_CP14RRTTRAP = 0x0c,
170 EC_ILLEGALSTATE = 0x0e,
171 EC_AA32_SVC = 0x11,
172 EC_AA32_HVC = 0x12,
173 EC_AA32_SMC = 0x13,
174 EC_AA64_SVC = 0x15,
175 EC_AA64_HVC = 0x16,
176 EC_AA64_SMC = 0x17,
177 EC_SYSTEMREGISTERTRAP = 0x18,
178 EC_INSNABORT = 0x20,
179 EC_INSNABORT_SAME_EL = 0x21,
180 EC_PCALIGNMENT = 0x22,
181 EC_DATAABORT = 0x24,
182 EC_DATAABORT_SAME_EL = 0x25,
183 EC_SPALIGNMENT = 0x26,
184 EC_AA32_FPTRAP = 0x28,
185 EC_AA64_FPTRAP = 0x2c,
186 EC_SERROR = 0x2f,
187 EC_BREAKPOINT = 0x30,
188 EC_BREAKPOINT_SAME_EL = 0x31,
189 EC_SOFTWARESTEP = 0x32,
190 EC_SOFTWARESTEP_SAME_EL = 0x33,
191 EC_WATCHPOINT = 0x34,
192 EC_WATCHPOINT_SAME_EL = 0x35,
193 EC_AA32_BKPT = 0x38,
194 EC_VECTORCATCH = 0x3a,
195 EC_AA64_BKPT = 0x3c,
198 #define ARM_EL_EC_SHIFT 26
199 #define ARM_EL_IL_SHIFT 25
200 #define ARM_EL_IL (1 << ARM_EL_IL_SHIFT)
202 /* Utility functions for constructing various kinds of syndrome value.
203 * Note that in general we follow the AArch64 syndrome values; in a
204 * few cases the value in HSR for exceptions taken to AArch32 Hyp
205 * mode differs slightly, so if we ever implemented Hyp mode then the
206 * syndrome value would need some massaging on exception entry.
207 * (One example of this is that AArch64 defaults to IL bit set for
208 * exceptions which don't specifically indicate information about the
209 * trapping instruction, whereas AArch32 defaults to IL bit clear.)
211 static inline uint32_t syn_uncategorized(void)
213 return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL;
216 static inline uint32_t syn_aa64_svc(uint32_t imm16)
218 return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
221 static inline uint32_t syn_aa64_hvc(uint32_t imm16)
223 return (EC_AA64_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
226 static inline uint32_t syn_aa64_smc(uint32_t imm16)
228 return (EC_AA64_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
231 static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_thumb)
233 return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
234 | (is_thumb ? 0 : ARM_EL_IL);
237 static inline uint32_t syn_aa64_bkpt(uint32_t imm16)
239 return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
242 static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_thumb)
244 return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
245 | (is_thumb ? 0 : ARM_EL_IL);
248 static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2,
249 int crn, int crm, int rt,
250 int isread)
252 return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL
253 | (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5)
254 | (crm << 1) | isread;
257 static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2,
258 int crn, int crm, int rt, int isread,
259 bool is_thumb)
261 return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT)
262 | (is_thumb ? 0 : ARM_EL_IL)
263 | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
264 | (crn << 10) | (rt << 5) | (crm << 1) | isread;
267 static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2,
268 int crn, int crm, int rt, int isread,
269 bool is_thumb)
271 return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT)
272 | (is_thumb ? 0 : ARM_EL_IL)
273 | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
274 | (crn << 10) | (rt << 5) | (crm << 1) | isread;
277 static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm,
278 int rt, int rt2, int isread,
279 bool is_thumb)
281 return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT)
282 | (is_thumb ? 0 : ARM_EL_IL)
283 | (cv << 24) | (cond << 20) | (opc1 << 16)
284 | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
287 static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm,
288 int rt, int rt2, int isread,
289 bool is_thumb)
291 return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT)
292 | (is_thumb ? 0 : ARM_EL_IL)
293 | (cv << 24) | (cond << 20) | (opc1 << 16)
294 | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
297 static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_thumb)
299 return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
300 | (is_thumb ? 0 : ARM_EL_IL)
301 | (cv << 24) | (cond << 20);
304 static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc)
306 return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
307 | (ea << 9) | (s1ptw << 7) | fsc;
310 static inline uint32_t syn_data_abort(int same_el, int ea, int cm, int s1ptw,
311 int wnr, int fsc)
313 return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
314 | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
317 static inline uint32_t syn_swstep(int same_el, int isv, int ex)
319 return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
320 | (isv << 24) | (ex << 6) | 0x22;
323 static inline uint32_t syn_watchpoint(int same_el, int cm, int wnr)
325 return (EC_WATCHPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
326 | (cm << 8) | (wnr << 6) | 0x22;
329 static inline uint32_t syn_breakpoint(int same_el)
331 return (EC_BREAKPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
332 | ARM_EL_IL | 0x22;
335 /* Update a QEMU watchpoint based on the information the guest has set in the
336 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
338 void hw_watchpoint_update(ARMCPU *cpu, int n);
339 /* Update the QEMU watchpoints for every guest watchpoint. This does a
340 * complete delete-and-reinstate of the QEMU watchpoint list and so is
341 * suitable for use after migration or on reset.
343 void hw_watchpoint_update_all(ARMCPU *cpu);
344 /* Update a QEMU breakpoint based on the information the guest has set in the
345 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
347 void hw_breakpoint_update(ARMCPU *cpu, int n);
348 /* Update the QEMU breakpoints for every guest breakpoint. This does a
349 * complete delete-and-reinstate of the QEMU breakpoint list and so is
350 * suitable for use after migration or on reset.
352 void hw_breakpoint_update_all(ARMCPU *cpu);
354 /* Callback function for when a watchpoint or breakpoint triggers. */
355 void arm_debug_excp_handler(CPUState *cs);
357 #endif