Update GitHub action for new Meson based build
[qemu/ar7.git] / softmmu / memory.c
blob101dfc6a72e1106b3b345de2662c6fe0e3f9e841
1 /*
2 * Physical memory management
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
16 #include "qemu/osdep.h"
17 #include "qemu/log.h"
18 #include "qapi/error.h"
19 #include "cpu.h"
20 #include "exec/exec-all.h" /* qemu_sprint_backtrace */
21 #include "exec/memory.h"
22 #include "exec/address-spaces.h"
23 #include "qapi/visitor.h"
24 #include "qemu/bitops.h"
25 #include "qemu/error-report.h"
26 #include "qemu/main-loop.h"
27 #include "qemu/qemu-print.h"
28 #include "qemu-common.h" /* trace_unassigned */
29 #include "qom/object.h"
30 #include "trace.h"
32 #include "exec/memory-internal.h"
33 #include "exec/ram_addr.h"
34 #include "sysemu/kvm.h"
35 #include "sysemu/runstate.h"
36 #include "sysemu/tcg.h"
37 #include "sysemu/accel.h"
38 #include "hw/boards.h"
39 #include "migration/vmstate.h"
41 //#define DEBUG_UNASSIGNED
43 static unsigned memory_region_transaction_depth;
44 static bool memory_region_update_pending;
45 static bool ioeventfd_update_pending;
46 bool global_dirty_log;
48 static QTAILQ_HEAD(, MemoryListener) memory_listeners
49 = QTAILQ_HEAD_INITIALIZER(memory_listeners);
51 static QTAILQ_HEAD(, AddressSpace) address_spaces
52 = QTAILQ_HEAD_INITIALIZER(address_spaces);
54 static GHashTable *flat_views;
56 typedef struct AddrRange AddrRange;
59 * Note that signed integers are needed for negative offsetting in aliases
60 * (large MemoryRegion::alias_offset).
62 struct AddrRange {
63 Int128 start;
64 Int128 size;
67 static AddrRange addrrange_make(Int128 start, Int128 size)
69 return (AddrRange) { start, size };
72 static bool addrrange_equal(AddrRange r1, AddrRange r2)
74 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
77 static Int128 addrrange_end(AddrRange r)
79 return int128_add(r.start, r.size);
82 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
84 int128_addto(&range.start, delta);
85 return range;
88 static bool addrrange_contains(AddrRange range, Int128 addr)
90 return int128_ge(addr, range.start)
91 && int128_lt(addr, addrrange_end(range));
94 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
96 return addrrange_contains(r1, r2.start)
97 || addrrange_contains(r2, r1.start);
100 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
102 Int128 start = int128_max(r1.start, r2.start);
103 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
104 return addrrange_make(start, int128_sub(end, start));
107 enum ListenerDirection { Forward, Reverse };
109 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
110 do { \
111 MemoryListener *_listener; \
113 switch (_direction) { \
114 case Forward: \
115 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
116 if (_listener->_callback) { \
117 _listener->_callback(_listener, ##_args); \
120 break; \
121 case Reverse: \
122 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, link) { \
123 if (_listener->_callback) { \
124 _listener->_callback(_listener, ##_args); \
127 break; \
128 default: \
129 abort(); \
131 } while (0)
133 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
134 do { \
135 MemoryListener *_listener; \
137 switch (_direction) { \
138 case Forward: \
139 QTAILQ_FOREACH(_listener, &(_as)->listeners, link_as) { \
140 if (_listener->_callback) { \
141 _listener->_callback(_listener, _section, ##_args); \
144 break; \
145 case Reverse: \
146 QTAILQ_FOREACH_REVERSE(_listener, &(_as)->listeners, link_as) { \
147 if (_listener->_callback) { \
148 _listener->_callback(_listener, _section, ##_args); \
151 break; \
152 default: \
153 abort(); \
155 } while (0)
157 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
158 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
159 do { \
160 MemoryRegionSection mrs = section_from_flat_range(fr, \
161 address_space_to_flatview(as)); \
162 MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args); \
163 } while(0)
165 struct CoalescedMemoryRange {
166 AddrRange addr;
167 QTAILQ_ENTRY(CoalescedMemoryRange) link;
170 struct MemoryRegionIoeventfd {
171 AddrRange addr;
172 bool match_data;
173 uint64_t data;
174 EventNotifier *e;
177 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd *a,
178 MemoryRegionIoeventfd *b)
180 if (int128_lt(a->addr.start, b->addr.start)) {
181 return true;
182 } else if (int128_gt(a->addr.start, b->addr.start)) {
183 return false;
184 } else if (int128_lt(a->addr.size, b->addr.size)) {
185 return true;
186 } else if (int128_gt(a->addr.size, b->addr.size)) {
187 return false;
188 } else if (a->match_data < b->match_data) {
189 return true;
190 } else if (a->match_data > b->match_data) {
191 return false;
192 } else if (a->match_data) {
193 if (a->data < b->data) {
194 return true;
195 } else if (a->data > b->data) {
196 return false;
199 if (a->e < b->e) {
200 return true;
201 } else if (a->e > b->e) {
202 return false;
204 return false;
207 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd *a,
208 MemoryRegionIoeventfd *b)
210 if (int128_eq(a->addr.start, b->addr.start) &&
211 (!int128_nz(a->addr.size) || !int128_nz(b->addr.size) ||
212 (int128_eq(a->addr.size, b->addr.size) &&
213 (a->match_data == b->match_data) &&
214 ((a->match_data && (a->data == b->data)) || !a->match_data) &&
215 (a->e == b->e))))
216 return true;
218 return false;
221 /* Range of memory in the global map. Addresses are absolute. */
222 struct FlatRange {
223 MemoryRegion *mr;
224 hwaddr offset_in_region;
225 AddrRange addr;
226 uint8_t dirty_log_mask;
227 bool romd_mode;
228 bool readonly;
229 bool nonvolatile;
232 #define FOR_EACH_FLAT_RANGE(var, view) \
233 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
235 static inline MemoryRegionSection
236 section_from_flat_range(FlatRange *fr, FlatView *fv)
238 return (MemoryRegionSection) {
239 .mr = fr->mr,
240 .fv = fv,
241 .offset_within_region = fr->offset_in_region,
242 .size = fr->addr.size,
243 .offset_within_address_space = int128_get64(fr->addr.start),
244 .readonly = fr->readonly,
245 .nonvolatile = fr->nonvolatile,
249 static bool flatrange_equal(FlatRange *a, FlatRange *b)
251 return a->mr == b->mr
252 && addrrange_equal(a->addr, b->addr)
253 && a->offset_in_region == b->offset_in_region
254 && a->romd_mode == b->romd_mode
255 && a->readonly == b->readonly
256 && a->nonvolatile == b->nonvolatile;
259 static FlatView *flatview_new(MemoryRegion *mr_root)
261 FlatView *view;
263 view = g_new0(FlatView, 1);
264 view->ref = 1;
265 view->root = mr_root;
266 memory_region_ref(mr_root);
267 trace_flatview_new(view, mr_root);
269 return view;
272 /* Insert a range into a given position. Caller is responsible for maintaining
273 * sorting order.
275 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
277 if (view->nr == view->nr_allocated) {
278 view->nr_allocated = MAX(2 * view->nr, 10);
279 view->ranges = g_realloc(view->ranges,
280 view->nr_allocated * sizeof(*view->ranges));
282 memmove(view->ranges + pos + 1, view->ranges + pos,
283 (view->nr - pos) * sizeof(FlatRange));
284 view->ranges[pos] = *range;
285 memory_region_ref(range->mr);
286 ++view->nr;
289 static void flatview_destroy(FlatView *view)
291 int i;
293 trace_flatview_destroy(view, view->root);
294 if (view->dispatch) {
295 address_space_dispatch_free(view->dispatch);
297 for (i = 0; i < view->nr; i++) {
298 memory_region_unref(view->ranges[i].mr);
300 g_free(view->ranges);
301 memory_region_unref(view->root);
302 g_free(view);
305 static bool flatview_ref(FlatView *view)
307 return qatomic_fetch_inc_nonzero(&view->ref) > 0;
310 void flatview_unref(FlatView *view)
312 if (qatomic_fetch_dec(&view->ref) == 1) {
313 trace_flatview_destroy_rcu(view, view->root);
314 assert(view->root);
315 call_rcu(view, flatview_destroy, rcu);
319 static bool can_merge(FlatRange *r1, FlatRange *r2)
321 return int128_eq(addrrange_end(r1->addr), r2->addr.start)
322 && r1->mr == r2->mr
323 && int128_eq(int128_add(int128_make64(r1->offset_in_region),
324 r1->addr.size),
325 int128_make64(r2->offset_in_region))
326 && r1->dirty_log_mask == r2->dirty_log_mask
327 && r1->romd_mode == r2->romd_mode
328 && r1->readonly == r2->readonly
329 && r1->nonvolatile == r2->nonvolatile;
332 /* Attempt to simplify a view by merging adjacent ranges */
333 static void flatview_simplify(FlatView *view)
335 unsigned i, j, k;
337 i = 0;
338 while (i < view->nr) {
339 j = i + 1;
340 while (j < view->nr
341 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
342 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
343 ++j;
345 ++i;
346 for (k = i; k < j; k++) {
347 memory_region_unref(view->ranges[k].mr);
349 memmove(&view->ranges[i], &view->ranges[j],
350 (view->nr - j) * sizeof(view->ranges[j]));
351 view->nr -= j - i;
355 static bool memory_region_big_endian(MemoryRegion *mr)
357 #ifdef TARGET_WORDS_BIGENDIAN
358 return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
359 #else
360 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
361 #endif
364 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, MemOp op)
366 if ((op & MO_BSWAP) != devend_memop(mr->ops->endianness)) {
367 switch (op & MO_SIZE) {
368 case MO_8:
369 break;
370 case MO_16:
371 *data = bswap16(*data);
372 break;
373 case MO_32:
374 *data = bswap32(*data);
375 break;
376 case MO_64:
377 *data = bswap64(*data);
378 break;
379 default:
380 g_assert_not_reached();
385 static inline void memory_region_shift_read_access(uint64_t *value,
386 signed shift,
387 uint64_t mask,
388 uint64_t tmp)
390 if (shift >= 0) {
391 *value |= (tmp & mask) << shift;
392 } else {
393 *value |= (tmp & mask) >> -shift;
397 static inline uint64_t memory_region_shift_write_access(uint64_t *value,
398 signed shift,
399 uint64_t mask)
401 uint64_t tmp;
403 if (shift >= 0) {
404 tmp = (*value >> shift) & mask;
405 } else {
406 tmp = (*value << -shift) & mask;
409 return tmp;
412 static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
414 MemoryRegion *root;
415 hwaddr abs_addr = offset;
417 abs_addr += mr->addr;
418 for (root = mr; root->container; ) {
419 root = root->container;
420 abs_addr += root->addr;
423 return abs_addr;
426 static int get_cpu_index(void)
428 if (current_cpu) {
429 return current_cpu->cpu_index;
431 return -1;
434 static MemTxResult memory_region_read_accessor(MemoryRegion *mr,
435 hwaddr addr,
436 uint64_t *value,
437 unsigned size,
438 signed shift,
439 uint64_t mask,
440 MemTxAttrs attrs)
442 uint64_t tmp;
444 tmp = mr->ops->read(mr->opaque, addr, size);
445 if (mr->subpage) {
446 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
447 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
448 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
449 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
451 memory_region_shift_read_access(value, shift, mask, tmp);
452 return MEMTX_OK;
455 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
456 hwaddr addr,
457 uint64_t *value,
458 unsigned size,
459 signed shift,
460 uint64_t mask,
461 MemTxAttrs attrs)
463 uint64_t tmp = 0;
464 MemTxResult r;
466 r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
467 if (mr->subpage) {
468 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
469 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
470 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
471 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
473 memory_region_shift_read_access(value, shift, mask, tmp);
474 return r;
477 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
478 hwaddr addr,
479 uint64_t *value,
480 unsigned size,
481 signed shift,
482 uint64_t mask,
483 MemTxAttrs attrs)
485 uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
487 if (mr->subpage) {
488 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
489 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
490 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
491 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
493 mr->ops->write(mr->opaque, addr, tmp, size);
494 return MEMTX_OK;
497 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
498 hwaddr addr,
499 uint64_t *value,
500 unsigned size,
501 signed shift,
502 uint64_t mask,
503 MemTxAttrs attrs)
505 uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
507 if (mr->subpage) {
508 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
509 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
510 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
511 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
513 return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
516 static MemTxResult access_with_adjusted_size(hwaddr addr,
517 uint64_t *value,
518 unsigned size,
519 unsigned access_size_min,
520 unsigned access_size_max,
521 MemTxResult (*access_fn)
522 (MemoryRegion *mr,
523 hwaddr addr,
524 uint64_t *value,
525 unsigned size,
526 signed shift,
527 uint64_t mask,
528 MemTxAttrs attrs),
529 MemoryRegion *mr,
530 MemTxAttrs attrs)
532 uint64_t access_mask;
533 unsigned access_size;
534 unsigned i;
535 MemTxResult r = MEMTX_OK;
537 if (!access_size_min) {
538 access_size_min = 1;
540 if (!access_size_max) {
541 access_size_max = 4;
544 /* FIXME: support unaligned access? */
545 access_size = MAX(MIN(size, access_size_max), access_size_min);
546 access_mask = MAKE_64BIT_MASK(0, access_size * 8);
547 if (memory_region_big_endian(mr)) {
548 for (i = 0; i < size; i += access_size) {
549 r |= access_fn(mr, addr + i, value, access_size,
550 (size - access_size - i) * 8, access_mask, attrs);
552 } else {
553 for (i = 0; i < size; i += access_size) {
554 r |= access_fn(mr, addr + i, value, access_size, i * 8,
555 access_mask, attrs);
558 return r;
561 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
563 AddressSpace *as;
565 while (mr->container) {
566 mr = mr->container;
568 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
569 if (mr == as->root) {
570 return as;
573 return NULL;
576 /* Render a memory region into the global view. Ranges in @view obscure
577 * ranges in @mr.
579 static void render_memory_region(FlatView *view,
580 MemoryRegion *mr,
581 Int128 base,
582 AddrRange clip,
583 bool readonly,
584 bool nonvolatile)
586 MemoryRegion *subregion;
587 unsigned i;
588 hwaddr offset_in_region;
589 Int128 remain;
590 Int128 now;
591 FlatRange fr;
592 AddrRange tmp;
594 if (!mr->enabled) {
595 return;
598 int128_addto(&base, int128_make64(mr->addr));
599 readonly |= mr->readonly;
600 nonvolatile |= mr->nonvolatile;
602 tmp = addrrange_make(base, mr->size);
604 if (!addrrange_intersects(tmp, clip)) {
605 return;
608 clip = addrrange_intersection(tmp, clip);
610 if (mr->alias) {
611 int128_subfrom(&base, int128_make64(mr->alias->addr));
612 int128_subfrom(&base, int128_make64(mr->alias_offset));
613 render_memory_region(view, mr->alias, base, clip,
614 readonly, nonvolatile);
615 return;
618 /* Render subregions in priority order. */
619 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
620 render_memory_region(view, subregion, base, clip,
621 readonly, nonvolatile);
624 if (!mr->terminates) {
625 return;
628 offset_in_region = int128_get64(int128_sub(clip.start, base));
629 base = clip.start;
630 remain = clip.size;
632 fr.mr = mr;
633 fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
634 fr.romd_mode = mr->romd_mode;
635 fr.readonly = readonly;
636 fr.nonvolatile = nonvolatile;
638 /* Render the region itself into any gaps left by the current view. */
639 for (i = 0; i < view->nr && int128_nz(remain); ++i) {
640 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
641 continue;
643 if (int128_lt(base, view->ranges[i].addr.start)) {
644 now = int128_min(remain,
645 int128_sub(view->ranges[i].addr.start, base));
646 fr.offset_in_region = offset_in_region;
647 fr.addr = addrrange_make(base, now);
648 flatview_insert(view, i, &fr);
649 ++i;
650 int128_addto(&base, now);
651 offset_in_region += int128_get64(now);
652 int128_subfrom(&remain, now);
654 now = int128_sub(int128_min(int128_add(base, remain),
655 addrrange_end(view->ranges[i].addr)),
656 base);
657 int128_addto(&base, now);
658 offset_in_region += int128_get64(now);
659 int128_subfrom(&remain, now);
661 if (int128_nz(remain)) {
662 fr.offset_in_region = offset_in_region;
663 fr.addr = addrrange_make(base, remain);
664 flatview_insert(view, i, &fr);
668 void flatview_for_each_range(FlatView *fv, flatview_cb cb , void *opaque)
670 FlatRange *fr;
672 assert(fv);
673 assert(cb);
675 FOR_EACH_FLAT_RANGE(fr, fv) {
676 if (cb(fr->addr.start, fr->addr.size, fr->mr, opaque))
677 break;
681 static MemoryRegion *memory_region_get_flatview_root(MemoryRegion *mr)
683 while (mr->enabled) {
684 if (mr->alias) {
685 if (!mr->alias_offset && int128_ge(mr->size, mr->alias->size)) {
686 /* The alias is included in its entirety. Use it as
687 * the "real" root, so that we can share more FlatViews.
689 mr = mr->alias;
690 continue;
692 } else if (!mr->terminates) {
693 unsigned int found = 0;
694 MemoryRegion *child, *next = NULL;
695 QTAILQ_FOREACH(child, &mr->subregions, subregions_link) {
696 if (child->enabled) {
697 if (++found > 1) {
698 next = NULL;
699 break;
701 if (!child->addr && int128_ge(mr->size, child->size)) {
702 /* A child is included in its entirety. If it's the only
703 * enabled one, use it in the hope of finding an alias down the
704 * way. This will also let us share FlatViews.
706 next = child;
710 if (found == 0) {
711 return NULL;
713 if (next) {
714 mr = next;
715 continue;
719 return mr;
722 return NULL;
725 /* Render a memory topology into a list of disjoint absolute ranges. */
726 static FlatView *generate_memory_topology(MemoryRegion *mr)
728 int i;
729 FlatView *view;
731 view = flatview_new(mr);
733 if (mr) {
734 render_memory_region(view, mr, int128_zero(),
735 addrrange_make(int128_zero(), int128_2_64()),
736 false, false);
738 flatview_simplify(view);
740 view->dispatch = address_space_dispatch_new(view);
741 for (i = 0; i < view->nr; i++) {
742 MemoryRegionSection mrs =
743 section_from_flat_range(&view->ranges[i], view);
744 flatview_add_to_dispatch(view, &mrs);
746 address_space_dispatch_compact(view->dispatch);
747 g_hash_table_replace(flat_views, mr, view);
749 return view;
752 static void address_space_add_del_ioeventfds(AddressSpace *as,
753 MemoryRegionIoeventfd *fds_new,
754 unsigned fds_new_nb,
755 MemoryRegionIoeventfd *fds_old,
756 unsigned fds_old_nb)
758 unsigned iold, inew;
759 MemoryRegionIoeventfd *fd;
760 MemoryRegionSection section;
762 /* Generate a symmetric difference of the old and new fd sets, adding
763 * and deleting as necessary.
766 iold = inew = 0;
767 while (iold < fds_old_nb || inew < fds_new_nb) {
768 if (iold < fds_old_nb
769 && (inew == fds_new_nb
770 || memory_region_ioeventfd_before(&fds_old[iold],
771 &fds_new[inew]))) {
772 fd = &fds_old[iold];
773 section = (MemoryRegionSection) {
774 .fv = address_space_to_flatview(as),
775 .offset_within_address_space = int128_get64(fd->addr.start),
776 .size = fd->addr.size,
778 MEMORY_LISTENER_CALL(as, eventfd_del, Forward, &section,
779 fd->match_data, fd->data, fd->e);
780 ++iold;
781 } else if (inew < fds_new_nb
782 && (iold == fds_old_nb
783 || memory_region_ioeventfd_before(&fds_new[inew],
784 &fds_old[iold]))) {
785 fd = &fds_new[inew];
786 section = (MemoryRegionSection) {
787 .fv = address_space_to_flatview(as),
788 .offset_within_address_space = int128_get64(fd->addr.start),
789 .size = fd->addr.size,
791 MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, &section,
792 fd->match_data, fd->data, fd->e);
793 ++inew;
794 } else {
795 ++iold;
796 ++inew;
801 FlatView *address_space_get_flatview(AddressSpace *as)
803 FlatView *view;
805 RCU_READ_LOCK_GUARD();
806 do {
807 view = address_space_to_flatview(as);
808 /* If somebody has replaced as->current_map concurrently,
809 * flatview_ref returns false.
811 } while (!flatview_ref(view));
812 return view;
815 static void address_space_update_ioeventfds(AddressSpace *as)
817 FlatView *view;
818 FlatRange *fr;
819 unsigned ioeventfd_nb = 0;
820 unsigned ioeventfd_max;
821 MemoryRegionIoeventfd *ioeventfds;
822 AddrRange tmp;
823 unsigned i;
826 * It is likely that the number of ioeventfds hasn't changed much, so use
827 * the previous size as the starting value, with some headroom to avoid
828 * gratuitous reallocations.
830 ioeventfd_max = QEMU_ALIGN_UP(as->ioeventfd_nb, 4);
831 ioeventfds = g_new(MemoryRegionIoeventfd, ioeventfd_max);
833 view = address_space_get_flatview(as);
834 FOR_EACH_FLAT_RANGE(fr, view) {
835 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
836 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
837 int128_sub(fr->addr.start,
838 int128_make64(fr->offset_in_region)));
839 if (addrrange_intersects(fr->addr, tmp)) {
840 ++ioeventfd_nb;
841 if (ioeventfd_nb > ioeventfd_max) {
842 ioeventfd_max = MAX(ioeventfd_max * 2, 4);
843 ioeventfds = g_realloc(ioeventfds,
844 ioeventfd_max * sizeof(*ioeventfds));
846 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
847 ioeventfds[ioeventfd_nb-1].addr = tmp;
852 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
853 as->ioeventfds, as->ioeventfd_nb);
855 g_free(as->ioeventfds);
856 as->ioeventfds = ioeventfds;
857 as->ioeventfd_nb = ioeventfd_nb;
858 flatview_unref(view);
862 * Notify the memory listeners about the coalesced IO change events of
863 * range `cmr'. Only the part that has intersection of the specified
864 * FlatRange will be sent.
866 static void flat_range_coalesced_io_notify(FlatRange *fr, AddressSpace *as,
867 CoalescedMemoryRange *cmr, bool add)
869 AddrRange tmp;
871 tmp = addrrange_shift(cmr->addr,
872 int128_sub(fr->addr.start,
873 int128_make64(fr->offset_in_region)));
874 if (!addrrange_intersects(tmp, fr->addr)) {
875 return;
877 tmp = addrrange_intersection(tmp, fr->addr);
879 if (add) {
880 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, coalesced_io_add,
881 int128_get64(tmp.start),
882 int128_get64(tmp.size));
883 } else {
884 MEMORY_LISTENER_UPDATE_REGION(fr, as, Reverse, coalesced_io_del,
885 int128_get64(tmp.start),
886 int128_get64(tmp.size));
890 static void flat_range_coalesced_io_del(FlatRange *fr, AddressSpace *as)
892 CoalescedMemoryRange *cmr;
894 QTAILQ_FOREACH(cmr, &fr->mr->coalesced, link) {
895 flat_range_coalesced_io_notify(fr, as, cmr, false);
899 static void flat_range_coalesced_io_add(FlatRange *fr, AddressSpace *as)
901 MemoryRegion *mr = fr->mr;
902 CoalescedMemoryRange *cmr;
904 if (QTAILQ_EMPTY(&mr->coalesced)) {
905 return;
908 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
909 flat_range_coalesced_io_notify(fr, as, cmr, true);
913 static void address_space_update_topology_pass(AddressSpace *as,
914 const FlatView *old_view,
915 const FlatView *new_view,
916 bool adding)
918 unsigned iold, inew;
919 FlatRange *frold, *frnew;
921 /* Generate a symmetric difference of the old and new memory maps.
922 * Kill ranges in the old map, and instantiate ranges in the new map.
924 iold = inew = 0;
925 while (iold < old_view->nr || inew < new_view->nr) {
926 if (iold < old_view->nr) {
927 frold = &old_view->ranges[iold];
928 } else {
929 frold = NULL;
931 if (inew < new_view->nr) {
932 frnew = &new_view->ranges[inew];
933 } else {
934 frnew = NULL;
937 if (frold
938 && (!frnew
939 || int128_lt(frold->addr.start, frnew->addr.start)
940 || (int128_eq(frold->addr.start, frnew->addr.start)
941 && !flatrange_equal(frold, frnew)))) {
942 /* In old but not in new, or in both but attributes changed. */
944 if (!adding) {
945 flat_range_coalesced_io_del(frold, as);
946 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
949 ++iold;
950 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
951 /* In both and unchanged (except logging may have changed) */
953 if (adding) {
954 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
955 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
956 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
957 frold->dirty_log_mask,
958 frnew->dirty_log_mask);
960 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
961 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
962 frold->dirty_log_mask,
963 frnew->dirty_log_mask);
967 ++iold;
968 ++inew;
969 } else {
970 /* In new */
972 if (adding) {
973 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
974 flat_range_coalesced_io_add(frnew, as);
977 ++inew;
982 static void flatviews_init(void)
984 static FlatView *empty_view;
986 if (flat_views) {
987 return;
990 flat_views = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL,
991 (GDestroyNotify) flatview_unref);
992 if (!empty_view) {
993 empty_view = generate_memory_topology(NULL);
994 /* We keep it alive forever in the global variable. */
995 flatview_ref(empty_view);
996 } else {
997 g_hash_table_replace(flat_views, NULL, empty_view);
998 flatview_ref(empty_view);
1002 static void flatviews_reset(void)
1004 AddressSpace *as;
1006 if (flat_views) {
1007 g_hash_table_unref(flat_views);
1008 flat_views = NULL;
1010 flatviews_init();
1012 /* Render unique FVs */
1013 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1014 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1016 if (g_hash_table_lookup(flat_views, physmr)) {
1017 continue;
1020 generate_memory_topology(physmr);
1024 static void address_space_set_flatview(AddressSpace *as)
1026 FlatView *old_view = address_space_to_flatview(as);
1027 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1028 FlatView *new_view = g_hash_table_lookup(flat_views, physmr);
1030 assert(new_view);
1032 if (old_view == new_view) {
1033 return;
1036 if (old_view) {
1037 flatview_ref(old_view);
1040 flatview_ref(new_view);
1042 if (!QTAILQ_EMPTY(&as->listeners)) {
1043 FlatView tmpview = { .nr = 0 }, *old_view2 = old_view;
1045 if (!old_view2) {
1046 old_view2 = &tmpview;
1048 address_space_update_topology_pass(as, old_view2, new_view, false);
1049 address_space_update_topology_pass(as, old_view2, new_view, true);
1052 /* Writes are protected by the BQL. */
1053 qatomic_rcu_set(&as->current_map, new_view);
1054 if (old_view) {
1055 flatview_unref(old_view);
1058 /* Note that all the old MemoryRegions are still alive up to this
1059 * point. This relieves most MemoryListeners from the need to
1060 * ref/unref the MemoryRegions they get---unless they use them
1061 * outside the iothread mutex, in which case precise reference
1062 * counting is necessary.
1064 if (old_view) {
1065 flatview_unref(old_view);
1069 static void address_space_update_topology(AddressSpace *as)
1071 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1073 flatviews_init();
1074 if (!g_hash_table_lookup(flat_views, physmr)) {
1075 generate_memory_topology(physmr);
1077 address_space_set_flatview(as);
1080 void memory_region_transaction_begin(void)
1082 qemu_flush_coalesced_mmio_buffer();
1083 ++memory_region_transaction_depth;
1086 void memory_region_transaction_commit(void)
1088 AddressSpace *as;
1090 assert(memory_region_transaction_depth);
1091 assert(qemu_mutex_iothread_locked());
1093 --memory_region_transaction_depth;
1094 if (!memory_region_transaction_depth) {
1095 if (memory_region_update_pending) {
1096 flatviews_reset();
1098 MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
1100 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1101 address_space_set_flatview(as);
1102 address_space_update_ioeventfds(as);
1104 memory_region_update_pending = false;
1105 ioeventfd_update_pending = false;
1106 MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
1107 } else if (ioeventfd_update_pending) {
1108 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1109 address_space_update_ioeventfds(as);
1111 ioeventfd_update_pending = false;
1116 static void memory_region_destructor_none(MemoryRegion *mr)
1120 static void memory_region_destructor_ram(MemoryRegion *mr)
1122 qemu_ram_free(mr->ram_block);
1125 static bool memory_region_need_escape(char c)
1127 return c == '/' || c == '[' || c == '\\' || c == ']';
1130 static char *memory_region_escape_name(const char *name)
1132 const char *p;
1133 char *escaped, *q;
1134 uint8_t c;
1135 size_t bytes = 0;
1137 for (p = name; *p; p++) {
1138 bytes += memory_region_need_escape(*p) ? 4 : 1;
1140 if (bytes == p - name) {
1141 return g_memdup(name, bytes + 1);
1144 escaped = g_malloc(bytes + 1);
1145 for (p = name, q = escaped; *p; p++) {
1146 c = *p;
1147 if (unlikely(memory_region_need_escape(c))) {
1148 *q++ = '\\';
1149 *q++ = 'x';
1150 *q++ = "0123456789abcdef"[c >> 4];
1151 c = "0123456789abcdef"[c & 15];
1153 *q++ = c;
1155 *q = 0;
1156 return escaped;
1159 static void memory_region_do_init(MemoryRegion *mr,
1160 Object *owner,
1161 const char *name,
1162 uint64_t size)
1164 mr->size = int128_make64(size);
1165 if (size == UINT64_MAX) {
1166 mr->size = int128_2_64();
1168 mr->name = g_strdup(name);
1169 mr->owner = owner;
1170 mr->ram_block = NULL;
1172 if (name) {
1173 char *escaped_name = memory_region_escape_name(name);
1174 char *name_array = g_strdup_printf("%s[*]", escaped_name);
1176 if (!owner) {
1177 owner = container_get(qdev_get_machine(), "/unattached");
1180 object_property_add_child(owner, name_array, OBJECT(mr));
1181 object_unref(OBJECT(mr));
1182 g_free(name_array);
1183 g_free(escaped_name);
1187 void memory_region_init(MemoryRegion *mr,
1188 Object *owner,
1189 const char *name,
1190 uint64_t size)
1192 object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
1193 memory_region_do_init(mr, owner, name, size);
1196 static void memory_region_get_container(Object *obj, Visitor *v,
1197 const char *name, void *opaque,
1198 Error **errp)
1200 MemoryRegion *mr = MEMORY_REGION(obj);
1201 char *path = (char *)"";
1203 if (mr->container) {
1204 path = object_get_canonical_path(OBJECT(mr->container));
1206 visit_type_str(v, name, &path, errp);
1207 if (mr->container) {
1208 g_free(path);
1212 static Object *memory_region_resolve_container(Object *obj, void *opaque,
1213 const char *part)
1215 MemoryRegion *mr = MEMORY_REGION(obj);
1217 return OBJECT(mr->container);
1220 static void memory_region_get_priority(Object *obj, Visitor *v,
1221 const char *name, void *opaque,
1222 Error **errp)
1224 MemoryRegion *mr = MEMORY_REGION(obj);
1225 int32_t value = mr->priority;
1227 visit_type_int32(v, name, &value, errp);
1230 static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1231 void *opaque, Error **errp)
1233 MemoryRegion *mr = MEMORY_REGION(obj);
1234 uint64_t value = memory_region_size(mr);
1236 visit_type_uint64(v, name, &value, errp);
1239 static void memory_region_initfn(Object *obj)
1241 MemoryRegion *mr = MEMORY_REGION(obj);
1242 ObjectProperty *op;
1244 mr->ops = &unassigned_mem_ops;
1245 mr->enabled = true;
1246 mr->romd_mode = true;
1247 mr->destructor = memory_region_destructor_none;
1248 QTAILQ_INIT(&mr->subregions);
1249 QTAILQ_INIT(&mr->coalesced);
1251 op = object_property_add(OBJECT(mr), "container",
1252 "link<" TYPE_MEMORY_REGION ">",
1253 memory_region_get_container,
1254 NULL, /* memory_region_set_container */
1255 NULL, NULL);
1256 op->resolve = memory_region_resolve_container;
1258 object_property_add_uint64_ptr(OBJECT(mr), "addr",
1259 &mr->addr, OBJ_PROP_FLAG_READ);
1260 object_property_add(OBJECT(mr), "priority", "uint32",
1261 memory_region_get_priority,
1262 NULL, /* memory_region_set_priority */
1263 NULL, NULL);
1264 object_property_add(OBJECT(mr), "size", "uint64",
1265 memory_region_get_size,
1266 NULL, /* memory_region_set_size, */
1267 NULL, NULL);
1270 static int qemu_target_backtrace(target_ulong *array, size_t size)
1272 int n = 0;
1273 if (size >= 2) {
1274 #if defined(TARGET_ARM)
1275 CPUArchState *env = current_cpu->env_ptr;
1276 array[0] = env->regs[15];
1277 array[1] = env->regs[14];
1278 #elif defined(TARGET_MIPS)
1279 CPUArchState *env = current_cpu->env_ptr;
1280 array[0] = env->active_tc.PC;
1281 array[1] = env->active_tc.gpr[31];
1282 #else
1283 array[0] = 0;
1284 array[1] = 0;
1285 #endif
1286 n = 2;
1288 return n;
1291 #include "disas/disas.h"
1292 const char *qemu_sprint_backtrace(char *buffer, size_t length)
1294 char *p = buffer;
1295 if (current_cpu) {
1296 target_ulong caller[2];
1297 const char *symbol;
1298 qemu_target_backtrace(caller, 2);
1299 symbol = lookup_symbol(caller[0]);
1300 p += sprintf(p, "[%s]", symbol);
1301 symbol = lookup_symbol(caller[1]);
1302 p += sprintf(p, "[%s]", symbol);
1303 } else {
1304 p += sprintf(p, "[cpu not running]");
1306 assert((p - buffer) < length);
1307 return buffer;
1310 static void iommu_memory_region_initfn(Object *obj)
1312 MemoryRegion *mr = MEMORY_REGION(obj);
1314 mr->is_iommu = true;
1317 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1318 unsigned size)
1320 if (trace_unassigned) {
1321 char buffer[256];
1322 fprintf(stderr, "Unassigned mem read " TARGET_FMT_plx " %s\n",
1323 addr, qemu_sprint_backtrace(buffer, sizeof(buffer)));
1325 //~ vm_stop(0);
1326 return 0;
1329 static void unassigned_mem_write(void *opaque, hwaddr addr,
1330 uint64_t val, unsigned size)
1332 if (trace_unassigned) {
1333 char buffer[256];
1334 fprintf(stderr, "Unassigned mem write " TARGET_FMT_plx
1335 " = 0x%" PRIx64 " %s\n",
1336 addr, val, qemu_sprint_backtrace(buffer, sizeof(buffer)));
1340 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1341 unsigned size, bool is_write,
1342 MemTxAttrs attrs)
1344 return false;
1347 const MemoryRegionOps unassigned_mem_ops = {
1348 .valid.accepts = unassigned_mem_accepts,
1349 .endianness = DEVICE_NATIVE_ENDIAN,
1352 static uint64_t memory_region_ram_device_read(void *opaque,
1353 hwaddr addr, unsigned size)
1355 MemoryRegion *mr = opaque;
1356 uint64_t data = (uint64_t)~0;
1358 switch (size) {
1359 case 1:
1360 data = *(uint8_t *)(mr->ram_block->host + addr);
1361 break;
1362 case 2:
1363 data = *(uint16_t *)(mr->ram_block->host + addr);
1364 break;
1365 case 4:
1366 data = *(uint32_t *)(mr->ram_block->host + addr);
1367 break;
1368 case 8:
1369 data = *(uint64_t *)(mr->ram_block->host + addr);
1370 break;
1373 trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size);
1375 return data;
1378 static void memory_region_ram_device_write(void *opaque, hwaddr addr,
1379 uint64_t data, unsigned size)
1381 MemoryRegion *mr = opaque;
1383 trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size);
1385 switch (size) {
1386 case 1:
1387 *(uint8_t *)(mr->ram_block->host + addr) = (uint8_t)data;
1388 break;
1389 case 2:
1390 *(uint16_t *)(mr->ram_block->host + addr) = (uint16_t)data;
1391 break;
1392 case 4:
1393 *(uint32_t *)(mr->ram_block->host + addr) = (uint32_t)data;
1394 break;
1395 case 8:
1396 *(uint64_t *)(mr->ram_block->host + addr) = data;
1397 break;
1401 static const MemoryRegionOps ram_device_mem_ops = {
1402 .read = memory_region_ram_device_read,
1403 .write = memory_region_ram_device_write,
1404 .endianness = DEVICE_HOST_ENDIAN,
1405 .valid = {
1406 .min_access_size = 1,
1407 .max_access_size = 8,
1408 .unaligned = true,
1410 .impl = {
1411 .min_access_size = 1,
1412 .max_access_size = 8,
1413 .unaligned = true,
1417 bool memory_region_access_valid(MemoryRegion *mr,
1418 hwaddr addr,
1419 unsigned size,
1420 bool is_write,
1421 MemTxAttrs attrs)
1423 if (mr->ops->valid.accepts
1424 && !mr->ops->valid.accepts(mr->opaque, addr, size, is_write, attrs)) {
1425 qemu_log_mask(LOG_GUEST_ERROR, "Invalid access at addr "
1426 "0x%" HWADDR_PRIX ", size %u, "
1427 "region '%s', reason: rejected\n",
1428 addr, size, memory_region_name(mr));
1429 return false;
1432 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1433 qemu_log_mask(LOG_GUEST_ERROR, "Invalid access at addr "
1434 "0x%" HWADDR_PRIX ", size %u, "
1435 "region '%s', reason: unaligned\n",
1436 addr, size, memory_region_name(mr));
1437 return false;
1440 /* Treat zero as compatibility all valid */
1441 if (!mr->ops->valid.max_access_size) {
1442 return true;
1445 if (size > mr->ops->valid.max_access_size
1446 || size < mr->ops->valid.min_access_size) {
1447 qemu_log_mask(LOG_GUEST_ERROR, "Invalid access at addr "
1448 "0x%" HWADDR_PRIX ", size %u, "
1449 "region '%s', reason: invalid size "
1450 "(min:%u max:%u)\n",
1451 addr, size, memory_region_name(mr),
1452 mr->ops->valid.min_access_size,
1453 mr->ops->valid.max_access_size);
1454 return false;
1456 return true;
1459 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1460 hwaddr addr,
1461 uint64_t *pval,
1462 unsigned size,
1463 MemTxAttrs attrs)
1465 *pval = 0;
1467 if (mr->ops->read) {
1468 return access_with_adjusted_size(addr, pval, size,
1469 mr->ops->impl.min_access_size,
1470 mr->ops->impl.max_access_size,
1471 memory_region_read_accessor,
1472 mr, attrs);
1473 } else {
1474 return access_with_adjusted_size(addr, pval, size,
1475 mr->ops->impl.min_access_size,
1476 mr->ops->impl.max_access_size,
1477 memory_region_read_with_attrs_accessor,
1478 mr, attrs);
1482 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1483 hwaddr addr,
1484 uint64_t *pval,
1485 MemOp op,
1486 MemTxAttrs attrs)
1488 unsigned size = memop_size(op);
1489 MemTxResult r;
1491 fuzz_dma_read_cb(addr, size, mr, false);
1492 if (!memory_region_access_valid(mr, addr, size, false, attrs)) {
1493 *pval = unassigned_mem_read(mr, addr, size);
1494 return MEMTX_DECODE_ERROR;
1497 r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1498 adjust_endianness(mr, pval, op);
1499 return r;
1502 /* Return true if an eventfd was signalled */
1503 static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1504 hwaddr addr,
1505 uint64_t data,
1506 unsigned size,
1507 MemTxAttrs attrs)
1509 MemoryRegionIoeventfd ioeventfd = {
1510 .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1511 .data = data,
1513 unsigned i;
1515 for (i = 0; i < mr->ioeventfd_nb; i++) {
1516 ioeventfd.match_data = mr->ioeventfds[i].match_data;
1517 ioeventfd.e = mr->ioeventfds[i].e;
1519 if (memory_region_ioeventfd_equal(&ioeventfd, &mr->ioeventfds[i])) {
1520 event_notifier_set(ioeventfd.e);
1521 return true;
1525 return false;
1528 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1529 hwaddr addr,
1530 uint64_t data,
1531 MemOp op,
1532 MemTxAttrs attrs)
1534 unsigned size = memop_size(op);
1536 if (!memory_region_access_valid(mr, addr, size, true, attrs)) {
1537 unassigned_mem_write(mr, addr, data, size);
1538 return MEMTX_DECODE_ERROR;
1541 adjust_endianness(mr, &data, op);
1543 if ((!kvm_eventfds_enabled()) &&
1544 memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1545 return MEMTX_OK;
1548 if (mr->ops->write) {
1549 return access_with_adjusted_size(addr, &data, size,
1550 mr->ops->impl.min_access_size,
1551 mr->ops->impl.max_access_size,
1552 memory_region_write_accessor, mr,
1553 attrs);
1554 } else {
1555 return
1556 access_with_adjusted_size(addr, &data, size,
1557 mr->ops->impl.min_access_size,
1558 mr->ops->impl.max_access_size,
1559 memory_region_write_with_attrs_accessor,
1560 mr, attrs);
1564 void memory_region_init_io(MemoryRegion *mr,
1565 Object *owner,
1566 const MemoryRegionOps *ops,
1567 void *opaque,
1568 const char *name,
1569 uint64_t size)
1571 memory_region_init(mr, owner, name, size);
1572 mr->ops = ops ? ops : &unassigned_mem_ops;
1573 mr->opaque = opaque;
1574 mr->terminates = true;
1577 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
1578 Object *owner,
1579 const char *name,
1580 uint64_t size,
1581 Error **errp)
1583 memory_region_init_ram_shared_nomigrate(mr, owner, name, size, false, errp);
1586 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr,
1587 Object *owner,
1588 const char *name,
1589 uint64_t size,
1590 bool share,
1591 Error **errp)
1593 Error *err = NULL;
1594 memory_region_init(mr, owner, name, size);
1595 mr->ram = true;
1596 mr->terminates = true;
1597 mr->destructor = memory_region_destructor_ram;
1598 mr->ram_block = qemu_ram_alloc(size, share, mr, &err);
1599 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1600 if (err) {
1601 mr->size = int128_zero();
1602 object_unparent(OBJECT(mr));
1603 error_propagate(errp, err);
1607 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1608 Object *owner,
1609 const char *name,
1610 uint64_t size,
1611 uint64_t max_size,
1612 void (*resized)(const char*,
1613 uint64_t length,
1614 void *host),
1615 Error **errp)
1617 Error *err = NULL;
1618 memory_region_init(mr, owner, name, size);
1619 mr->ram = true;
1620 mr->terminates = true;
1621 mr->destructor = memory_region_destructor_ram;
1622 mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1623 mr, &err);
1624 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1625 if (err) {
1626 mr->size = int128_zero();
1627 object_unparent(OBJECT(mr));
1628 error_propagate(errp, err);
1632 #ifdef CONFIG_POSIX
1633 void memory_region_init_ram_from_file(MemoryRegion *mr,
1634 struct Object *owner,
1635 const char *name,
1636 uint64_t size,
1637 uint64_t align,
1638 uint32_t ram_flags,
1639 const char *path,
1640 Error **errp)
1642 Error *err = NULL;
1643 memory_region_init(mr, owner, name, size);
1644 mr->ram = true;
1645 mr->terminates = true;
1646 mr->destructor = memory_region_destructor_ram;
1647 mr->align = align;
1648 mr->ram_block = qemu_ram_alloc_from_file(size, mr, ram_flags, path, &err);
1649 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1650 if (err) {
1651 mr->size = int128_zero();
1652 object_unparent(OBJECT(mr));
1653 error_propagate(errp, err);
1657 void memory_region_init_ram_from_fd(MemoryRegion *mr,
1658 struct Object *owner,
1659 const char *name,
1660 uint64_t size,
1661 bool share,
1662 int fd,
1663 Error **errp)
1665 Error *err = NULL;
1666 memory_region_init(mr, owner, name, size);
1667 mr->ram = true;
1668 mr->terminates = true;
1669 mr->destructor = memory_region_destructor_ram;
1670 mr->ram_block = qemu_ram_alloc_from_fd(size, mr,
1671 share ? RAM_SHARED : 0,
1672 fd, &err);
1673 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1674 if (err) {
1675 mr->size = int128_zero();
1676 object_unparent(OBJECT(mr));
1677 error_propagate(errp, err);
1680 #endif
1682 void memory_region_init_ram_ptr(MemoryRegion *mr,
1683 Object *owner,
1684 const char *name,
1685 uint64_t size,
1686 void *ptr)
1688 memory_region_init(mr, owner, name, size);
1689 mr->ram = true;
1690 mr->terminates = true;
1691 mr->destructor = memory_region_destructor_ram;
1692 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1694 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1695 assert(ptr != NULL);
1696 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1699 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1700 Object *owner,
1701 const char *name,
1702 uint64_t size,
1703 void *ptr)
1705 memory_region_init(mr, owner, name, size);
1706 mr->ram = true;
1707 mr->terminates = true;
1708 mr->ram_device = true;
1709 mr->ops = &ram_device_mem_ops;
1710 mr->opaque = mr;
1711 mr->destructor = memory_region_destructor_ram;
1712 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1713 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1714 assert(ptr != NULL);
1715 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1718 void memory_region_init_alias(MemoryRegion *mr,
1719 Object *owner,
1720 const char *name,
1721 MemoryRegion *orig,
1722 hwaddr offset,
1723 uint64_t size)
1725 memory_region_init(mr, owner, name, size);
1726 mr->alias = orig;
1727 mr->alias_offset = offset;
1730 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1731 struct Object *owner,
1732 const char *name,
1733 uint64_t size,
1734 Error **errp)
1736 memory_region_init_ram_shared_nomigrate(mr, owner, name, size, false, errp);
1737 mr->readonly = true;
1740 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1741 Object *owner,
1742 const MemoryRegionOps *ops,
1743 void *opaque,
1744 const char *name,
1745 uint64_t size,
1746 Error **errp)
1748 Error *err = NULL;
1749 assert(ops);
1750 memory_region_init(mr, owner, name, size);
1751 mr->ops = ops;
1752 mr->opaque = opaque;
1753 mr->terminates = true;
1754 mr->rom_device = true;
1755 mr->destructor = memory_region_destructor_ram;
1756 mr->ram_block = qemu_ram_alloc(size, false, mr, &err);
1757 if (err) {
1758 mr->size = int128_zero();
1759 object_unparent(OBJECT(mr));
1760 error_propagate(errp, err);
1764 void memory_region_init_iommu(void *_iommu_mr,
1765 size_t instance_size,
1766 const char *mrtypename,
1767 Object *owner,
1768 const char *name,
1769 uint64_t size)
1771 struct IOMMUMemoryRegion *iommu_mr;
1772 struct MemoryRegion *mr;
1774 object_initialize(_iommu_mr, instance_size, mrtypename);
1775 mr = MEMORY_REGION(_iommu_mr);
1776 memory_region_do_init(mr, owner, name, size);
1777 iommu_mr = IOMMU_MEMORY_REGION(mr);
1778 mr->terminates = true; /* then re-forwards */
1779 QLIST_INIT(&iommu_mr->iommu_notify);
1780 iommu_mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE;
1783 static void memory_region_finalize(Object *obj)
1785 MemoryRegion *mr = MEMORY_REGION(obj);
1787 assert(!mr->container);
1789 /* We know the region is not visible in any address space (it
1790 * does not have a container and cannot be a root either because
1791 * it has no references, so we can blindly clear mr->enabled.
1792 * memory_region_set_enabled instead could trigger a transaction
1793 * and cause an infinite loop.
1795 mr->enabled = false;
1796 memory_region_transaction_begin();
1797 while (!QTAILQ_EMPTY(&mr->subregions)) {
1798 MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1799 memory_region_del_subregion(mr, subregion);
1801 memory_region_transaction_commit();
1803 mr->destructor(mr);
1804 memory_region_clear_coalescing(mr);
1805 g_free((char *)mr->name);
1806 g_free(mr->ioeventfds);
1809 Object *memory_region_owner(MemoryRegion *mr)
1811 Object *obj = OBJECT(mr);
1812 return obj->parent;
1815 void memory_region_ref(MemoryRegion *mr)
1817 /* MMIO callbacks most likely will access data that belongs
1818 * to the owner, hence the need to ref/unref the owner whenever
1819 * the memory region is in use.
1821 * The memory region is a child of its owner. As long as the
1822 * owner doesn't call unparent itself on the memory region,
1823 * ref-ing the owner will also keep the memory region alive.
1824 * Memory regions without an owner are supposed to never go away;
1825 * we do not ref/unref them because it slows down DMA sensibly.
1827 if (mr && mr->owner) {
1828 object_ref(mr->owner);
1832 void memory_region_unref(MemoryRegion *mr)
1834 if (mr && mr->owner) {
1835 object_unref(mr->owner);
1839 uint64_t memory_region_size(MemoryRegion *mr)
1841 if (int128_eq(mr->size, int128_2_64())) {
1842 return UINT64_MAX;
1844 return int128_get64(mr->size);
1847 const char *memory_region_name(const MemoryRegion *mr)
1849 if (!mr->name) {
1850 ((MemoryRegion *)mr)->name =
1851 g_strdup(object_get_canonical_path_component(OBJECT(mr)));
1853 return mr->name;
1856 bool memory_region_is_ram_device(MemoryRegion *mr)
1858 return mr->ram_device;
1861 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1863 uint8_t mask = mr->dirty_log_mask;
1864 RAMBlock *rb = mr->ram_block;
1866 if (global_dirty_log && ((rb && qemu_ram_is_migratable(rb)) ||
1867 memory_region_is_iommu(mr))) {
1868 mask |= (1 << DIRTY_MEMORY_MIGRATION);
1870 return mask;
1873 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1875 return memory_region_get_dirty_log_mask(mr) & (1 << client);
1878 static int memory_region_update_iommu_notify_flags(IOMMUMemoryRegion *iommu_mr,
1879 Error **errp)
1881 IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE;
1882 IOMMUNotifier *iommu_notifier;
1883 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1884 int ret = 0;
1886 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1887 flags |= iommu_notifier->notifier_flags;
1890 if (flags != iommu_mr->iommu_notify_flags && imrc->notify_flag_changed) {
1891 ret = imrc->notify_flag_changed(iommu_mr,
1892 iommu_mr->iommu_notify_flags,
1893 flags, errp);
1896 if (!ret) {
1897 iommu_mr->iommu_notify_flags = flags;
1899 return ret;
1902 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
1903 uint64_t page_size_mask,
1904 Error **errp)
1906 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1907 int ret = 0;
1909 if (imrc->iommu_set_page_size_mask) {
1910 ret = imrc->iommu_set_page_size_mask(iommu_mr, page_size_mask, errp);
1912 return ret;
1915 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1916 IOMMUNotifier *n, Error **errp)
1918 IOMMUMemoryRegion *iommu_mr;
1919 int ret;
1921 if (mr->alias) {
1922 return memory_region_register_iommu_notifier(mr->alias, n, errp);
1925 /* We need to register for at least one bitfield */
1926 iommu_mr = IOMMU_MEMORY_REGION(mr);
1927 assert(n->notifier_flags != IOMMU_NOTIFIER_NONE);
1928 assert(n->start <= n->end);
1929 assert(n->iommu_idx >= 0 &&
1930 n->iommu_idx < memory_region_iommu_num_indexes(iommu_mr));
1932 QLIST_INSERT_HEAD(&iommu_mr->iommu_notify, n, node);
1933 ret = memory_region_update_iommu_notify_flags(iommu_mr, errp);
1934 if (ret) {
1935 QLIST_REMOVE(n, node);
1937 return ret;
1940 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr)
1942 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1944 if (imrc->get_min_page_size) {
1945 return imrc->get_min_page_size(iommu_mr);
1947 return TARGET_PAGE_SIZE;
1950 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
1952 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
1953 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1954 hwaddr addr, granularity;
1955 IOMMUTLBEntry iotlb;
1957 /* If the IOMMU has its own replay callback, override */
1958 if (imrc->replay) {
1959 imrc->replay(iommu_mr, n);
1960 return;
1963 granularity = memory_region_iommu_get_min_page_size(iommu_mr);
1965 for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1966 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, n->iommu_idx);
1967 if (iotlb.perm != IOMMU_NONE) {
1968 n->notify(n, &iotlb);
1971 /* if (2^64 - MR size) < granularity, it's possible to get an
1972 * infinite loop here. This should catch such a wraparound */
1973 if ((addr + granularity) < addr) {
1974 break;
1979 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1980 IOMMUNotifier *n)
1982 IOMMUMemoryRegion *iommu_mr;
1984 if (mr->alias) {
1985 memory_region_unregister_iommu_notifier(mr->alias, n);
1986 return;
1988 QLIST_REMOVE(n, node);
1989 iommu_mr = IOMMU_MEMORY_REGION(mr);
1990 memory_region_update_iommu_notify_flags(iommu_mr, NULL);
1993 void memory_region_notify_one(IOMMUNotifier *notifier,
1994 IOMMUTLBEntry *entry)
1996 IOMMUNotifierFlag request_flags;
1997 hwaddr entry_end = entry->iova + entry->addr_mask;
2000 * Skip the notification if the notification does not overlap
2001 * with registered range.
2003 if (notifier->start > entry_end || notifier->end < entry->iova) {
2004 return;
2007 assert(entry->iova >= notifier->start && entry_end <= notifier->end);
2009 if (entry->perm & IOMMU_RW) {
2010 request_flags = IOMMU_NOTIFIER_MAP;
2011 } else {
2012 request_flags = IOMMU_NOTIFIER_UNMAP;
2015 if (notifier->notifier_flags & request_flags) {
2016 notifier->notify(notifier, entry);
2020 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
2021 int iommu_idx,
2022 IOMMUTLBEntry entry)
2024 IOMMUNotifier *iommu_notifier;
2026 assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr)));
2028 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
2029 if (iommu_notifier->iommu_idx == iommu_idx) {
2030 memory_region_notify_one(iommu_notifier, &entry);
2035 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
2036 enum IOMMUMemoryRegionAttr attr,
2037 void *data)
2039 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2041 if (!imrc->get_attr) {
2042 return -EINVAL;
2045 return imrc->get_attr(iommu_mr, attr, data);
2048 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
2049 MemTxAttrs attrs)
2051 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2053 if (!imrc->attrs_to_index) {
2054 return 0;
2057 return imrc->attrs_to_index(iommu_mr, attrs);
2060 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr)
2062 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2064 if (!imrc->num_indexes) {
2065 return 1;
2068 return imrc->num_indexes(iommu_mr);
2071 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
2073 uint8_t mask = 1 << client;
2074 uint8_t old_logging;
2076 assert(client == DIRTY_MEMORY_VGA);
2077 old_logging = mr->vga_logging_count;
2078 mr->vga_logging_count += log ? 1 : -1;
2079 if (!!old_logging == !!mr->vga_logging_count) {
2080 return;
2083 memory_region_transaction_begin();
2084 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
2085 memory_region_update_pending |= mr->enabled;
2086 memory_region_transaction_commit();
2089 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
2090 hwaddr size)
2092 assert(mr->ram_block);
2093 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
2094 size,
2095 memory_region_get_dirty_log_mask(mr));
2098 static void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
2100 MemoryListener *listener;
2101 AddressSpace *as;
2102 FlatView *view;
2103 FlatRange *fr;
2105 /* If the same address space has multiple log_sync listeners, we
2106 * visit that address space's FlatView multiple times. But because
2107 * log_sync listeners are rare, it's still cheaper than walking each
2108 * address space once.
2110 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2111 if (!listener->log_sync) {
2112 continue;
2114 as = listener->address_space;
2115 view = address_space_get_flatview(as);
2116 FOR_EACH_FLAT_RANGE(fr, view) {
2117 if (fr->dirty_log_mask && (!mr || fr->mr == mr)) {
2118 MemoryRegionSection mrs = section_from_flat_range(fr, view);
2119 listener->log_sync(listener, &mrs);
2122 flatview_unref(view);
2126 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2127 hwaddr len)
2129 MemoryRegionSection mrs;
2130 MemoryListener *listener;
2131 AddressSpace *as;
2132 FlatView *view;
2133 FlatRange *fr;
2134 hwaddr sec_start, sec_end, sec_size;
2136 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2137 if (!listener->log_clear) {
2138 continue;
2140 as = listener->address_space;
2141 view = address_space_get_flatview(as);
2142 FOR_EACH_FLAT_RANGE(fr, view) {
2143 if (!fr->dirty_log_mask || fr->mr != mr) {
2145 * Clear dirty bitmap operation only applies to those
2146 * regions whose dirty logging is at least enabled
2148 continue;
2151 mrs = section_from_flat_range(fr, view);
2153 sec_start = MAX(mrs.offset_within_region, start);
2154 sec_end = mrs.offset_within_region + int128_get64(mrs.size);
2155 sec_end = MIN(sec_end, start + len);
2157 if (sec_start >= sec_end) {
2159 * If this memory region section has no intersection
2160 * with the requested range, skip.
2162 continue;
2165 /* Valid case; shrink the section if needed */
2166 mrs.offset_within_address_space +=
2167 sec_start - mrs.offset_within_region;
2168 mrs.offset_within_region = sec_start;
2169 sec_size = sec_end - sec_start;
2170 mrs.size = int128_make64(sec_size);
2171 listener->log_clear(listener, &mrs);
2173 flatview_unref(view);
2177 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2178 hwaddr addr,
2179 hwaddr size,
2180 unsigned client)
2182 DirtyBitmapSnapshot *snapshot;
2183 assert(mr->ram_block);
2184 memory_region_sync_dirty_bitmap(mr);
2185 snapshot = cpu_physical_memory_snapshot_and_clear_dirty(mr, addr, size, client);
2186 memory_global_after_dirty_log_sync();
2187 return snapshot;
2190 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, DirtyBitmapSnapshot *snap,
2191 hwaddr addr, hwaddr size)
2193 assert(mr->ram_block);
2194 return cpu_physical_memory_snapshot_get_dirty(snap,
2195 memory_region_get_ram_addr(mr) + addr, size);
2198 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
2200 if (mr->readonly != readonly) {
2201 memory_region_transaction_begin();
2202 mr->readonly = readonly;
2203 memory_region_update_pending |= mr->enabled;
2204 memory_region_transaction_commit();
2208 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile)
2210 if (mr->nonvolatile != nonvolatile) {
2211 memory_region_transaction_begin();
2212 mr->nonvolatile = nonvolatile;
2213 memory_region_update_pending |= mr->enabled;
2214 memory_region_transaction_commit();
2218 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
2220 if (mr->romd_mode != romd_mode) {
2221 memory_region_transaction_begin();
2222 mr->romd_mode = romd_mode;
2223 memory_region_update_pending |= mr->enabled;
2224 memory_region_transaction_commit();
2228 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2229 hwaddr size, unsigned client)
2231 assert(mr->ram_block);
2232 cpu_physical_memory_test_and_clear_dirty(
2233 memory_region_get_ram_addr(mr) + addr, size, client);
2236 int memory_region_get_fd(MemoryRegion *mr)
2238 int fd;
2240 RCU_READ_LOCK_GUARD();
2241 while (mr->alias) {
2242 mr = mr->alias;
2244 fd = mr->ram_block->fd;
2246 return fd;
2249 void *memory_region_get_ram_ptr(MemoryRegion *mr)
2251 void *ptr;
2252 uint64_t offset = 0;
2254 RCU_READ_LOCK_GUARD();
2255 while (mr->alias) {
2256 offset += mr->alias_offset;
2257 mr = mr->alias;
2259 assert(mr->ram_block);
2260 ptr = qemu_map_ram_ptr(mr->ram_block, offset);
2262 return ptr;
2265 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
2267 RAMBlock *block;
2269 block = qemu_ram_block_from_host(ptr, false, offset);
2270 if (!block) {
2271 return NULL;
2274 return block->mr;
2277 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
2279 return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
2282 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
2284 assert(mr->ram_block);
2286 qemu_ram_resize(mr->ram_block, newsize, errp);
2289 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size)
2291 if (mr->ram_block) {
2292 qemu_ram_msync(mr->ram_block, addr, size);
2296 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size)
2299 * Might be extended case needed to cover
2300 * different types of memory regions
2302 if (mr->dirty_log_mask) {
2303 memory_region_msync(mr, addr, size);
2308 * Call proper memory listeners about the change on the newly
2309 * added/removed CoalescedMemoryRange.
2311 static void memory_region_update_coalesced_range(MemoryRegion *mr,
2312 CoalescedMemoryRange *cmr,
2313 bool add)
2315 AddressSpace *as;
2316 FlatView *view;
2317 FlatRange *fr;
2319 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2320 view = address_space_get_flatview(as);
2321 FOR_EACH_FLAT_RANGE(fr, view) {
2322 if (fr->mr == mr) {
2323 flat_range_coalesced_io_notify(fr, as, cmr, add);
2326 flatview_unref(view);
2330 void memory_region_set_coalescing(MemoryRegion *mr)
2332 memory_region_clear_coalescing(mr);
2333 memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
2336 void memory_region_add_coalescing(MemoryRegion *mr,
2337 hwaddr offset,
2338 uint64_t size)
2340 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
2342 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
2343 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
2344 memory_region_update_coalesced_range(mr, cmr, true);
2345 memory_region_set_flush_coalesced(mr);
2348 void memory_region_clear_coalescing(MemoryRegion *mr)
2350 CoalescedMemoryRange *cmr;
2352 if (QTAILQ_EMPTY(&mr->coalesced)) {
2353 return;
2356 qemu_flush_coalesced_mmio_buffer();
2357 mr->flush_coalesced_mmio = false;
2359 while (!QTAILQ_EMPTY(&mr->coalesced)) {
2360 cmr = QTAILQ_FIRST(&mr->coalesced);
2361 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
2362 memory_region_update_coalesced_range(mr, cmr, false);
2363 g_free(cmr);
2367 void memory_region_set_flush_coalesced(MemoryRegion *mr)
2369 mr->flush_coalesced_mmio = true;
2372 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
2374 qemu_flush_coalesced_mmio_buffer();
2375 if (QTAILQ_EMPTY(&mr->coalesced)) {
2376 mr->flush_coalesced_mmio = false;
2380 static bool userspace_eventfd_warning;
2382 void memory_region_add_eventfd(MemoryRegion *mr,
2383 hwaddr addr,
2384 unsigned size,
2385 bool match_data,
2386 uint64_t data,
2387 EventNotifier *e)
2389 MemoryRegionIoeventfd mrfd = {
2390 .addr.start = int128_make64(addr),
2391 .addr.size = int128_make64(size),
2392 .match_data = match_data,
2393 .data = data,
2394 .e = e,
2396 unsigned i;
2398 if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
2399 userspace_eventfd_warning))) {
2400 userspace_eventfd_warning = true;
2401 error_report("Using eventfd without MMIO binding in KVM. "
2402 "Suboptimal performance expected");
2405 if (size) {
2406 adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
2408 memory_region_transaction_begin();
2409 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2410 if (memory_region_ioeventfd_before(&mrfd, &mr->ioeventfds[i])) {
2411 break;
2414 ++mr->ioeventfd_nb;
2415 mr->ioeventfds = g_realloc(mr->ioeventfds,
2416 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
2417 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
2418 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
2419 mr->ioeventfds[i] = mrfd;
2420 ioeventfd_update_pending |= mr->enabled;
2421 memory_region_transaction_commit();
2424 void memory_region_del_eventfd(MemoryRegion *mr,
2425 hwaddr addr,
2426 unsigned size,
2427 bool match_data,
2428 uint64_t data,
2429 EventNotifier *e)
2431 MemoryRegionIoeventfd mrfd = {
2432 .addr.start = int128_make64(addr),
2433 .addr.size = int128_make64(size),
2434 .match_data = match_data,
2435 .data = data,
2436 .e = e,
2438 unsigned i;
2440 if (size) {
2441 adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
2443 memory_region_transaction_begin();
2444 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2445 if (memory_region_ioeventfd_equal(&mrfd, &mr->ioeventfds[i])) {
2446 break;
2449 assert(i != mr->ioeventfd_nb);
2450 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
2451 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
2452 --mr->ioeventfd_nb;
2453 mr->ioeventfds = g_realloc(mr->ioeventfds,
2454 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
2455 ioeventfd_update_pending |= mr->enabled;
2456 memory_region_transaction_commit();
2459 static void memory_region_update_container_subregions(MemoryRegion *subregion)
2461 MemoryRegion *mr = subregion->container;
2462 MemoryRegion *other;
2464 memory_region_transaction_begin();
2466 memory_region_ref(subregion);
2467 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
2468 if (subregion->priority >= other->priority) {
2469 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
2470 goto done;
2473 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
2474 done:
2475 memory_region_update_pending |= mr->enabled && subregion->enabled;
2476 memory_region_transaction_commit();
2479 static void memory_region_add_subregion_common(MemoryRegion *mr,
2480 hwaddr offset,
2481 MemoryRegion *subregion)
2483 assert(!subregion->container);
2484 subregion->container = mr;
2485 subregion->addr = offset;
2486 memory_region_update_container_subregions(subregion);
2489 void memory_region_add_subregion(MemoryRegion *mr,
2490 hwaddr offset,
2491 MemoryRegion *subregion)
2493 subregion->priority = 0;
2494 memory_region_add_subregion_common(mr, offset, subregion);
2497 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2498 hwaddr offset,
2499 MemoryRegion *subregion,
2500 int priority)
2502 subregion->priority = priority;
2503 memory_region_add_subregion_common(mr, offset, subregion);
2506 void memory_region_del_subregion(MemoryRegion *mr,
2507 MemoryRegion *subregion)
2509 memory_region_transaction_begin();
2510 assert(subregion->container == mr);
2511 subregion->container = NULL;
2512 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
2513 memory_region_unref(subregion);
2514 memory_region_update_pending |= mr->enabled && subregion->enabled;
2515 memory_region_transaction_commit();
2518 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
2520 if (enabled == mr->enabled) {
2521 return;
2523 memory_region_transaction_begin();
2524 mr->enabled = enabled;
2525 memory_region_update_pending = true;
2526 memory_region_transaction_commit();
2529 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
2531 Int128 s = int128_make64(size);
2533 if (size == UINT64_MAX) {
2534 s = int128_2_64();
2536 if (int128_eq(s, mr->size)) {
2537 return;
2539 memory_region_transaction_begin();
2540 mr->size = s;
2541 memory_region_update_pending = true;
2542 memory_region_transaction_commit();
2545 static void memory_region_readd_subregion(MemoryRegion *mr)
2547 MemoryRegion *container = mr->container;
2549 if (container) {
2550 memory_region_transaction_begin();
2551 memory_region_ref(mr);
2552 memory_region_del_subregion(container, mr);
2553 mr->container = container;
2554 memory_region_update_container_subregions(mr);
2555 memory_region_unref(mr);
2556 memory_region_transaction_commit();
2560 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
2562 if (addr != mr->addr) {
2563 mr->addr = addr;
2564 memory_region_readd_subregion(mr);
2568 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
2570 assert(mr->alias);
2572 if (offset == mr->alias_offset) {
2573 return;
2576 memory_region_transaction_begin();
2577 mr->alias_offset = offset;
2578 memory_region_update_pending |= mr->enabled;
2579 memory_region_transaction_commit();
2582 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2584 return mr->align;
2587 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2589 const AddrRange *addr = addr_;
2590 const FlatRange *fr = fr_;
2592 if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2593 return -1;
2594 } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2595 return 1;
2597 return 0;
2600 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2602 return bsearch(&addr, view->ranges, view->nr,
2603 sizeof(FlatRange), cmp_flatrange_addr);
2606 bool memory_region_is_mapped(MemoryRegion *mr)
2608 return mr->container ? true : false;
2611 /* Same as memory_region_find, but it does not add a reference to the
2612 * returned region. It must be called from an RCU critical section.
2614 static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2615 hwaddr addr, uint64_t size)
2617 MemoryRegionSection ret = { .mr = NULL };
2618 MemoryRegion *root;
2619 AddressSpace *as;
2620 AddrRange range;
2621 FlatView *view;
2622 FlatRange *fr;
2624 addr += mr->addr;
2625 for (root = mr; root->container; ) {
2626 root = root->container;
2627 addr += root->addr;
2630 as = memory_region_to_address_space(root);
2631 if (!as) {
2632 return ret;
2634 range = addrrange_make(int128_make64(addr), int128_make64(size));
2636 view = address_space_to_flatview(as);
2637 fr = flatview_lookup(view, range);
2638 if (!fr) {
2639 return ret;
2642 while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2643 --fr;
2646 ret.mr = fr->mr;
2647 ret.fv = view;
2648 range = addrrange_intersection(range, fr->addr);
2649 ret.offset_within_region = fr->offset_in_region;
2650 ret.offset_within_region += int128_get64(int128_sub(range.start,
2651 fr->addr.start));
2652 ret.size = range.size;
2653 ret.offset_within_address_space = int128_get64(range.start);
2654 ret.readonly = fr->readonly;
2655 ret.nonvolatile = fr->nonvolatile;
2656 return ret;
2659 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2660 hwaddr addr, uint64_t size)
2662 MemoryRegionSection ret;
2663 RCU_READ_LOCK_GUARD();
2664 ret = memory_region_find_rcu(mr, addr, size);
2665 if (ret.mr) {
2666 memory_region_ref(ret.mr);
2668 return ret;
2671 bool memory_region_present(MemoryRegion *container, hwaddr addr)
2673 MemoryRegion *mr;
2675 RCU_READ_LOCK_GUARD();
2676 mr = memory_region_find_rcu(container, addr, 1).mr;
2677 return mr && mr != container;
2680 void memory_global_dirty_log_sync(void)
2682 memory_region_sync_dirty_bitmap(NULL);
2685 void memory_global_after_dirty_log_sync(void)
2687 MEMORY_LISTENER_CALL_GLOBAL(log_global_after_sync, Forward);
2690 static VMChangeStateEntry *vmstate_change;
2692 void memory_global_dirty_log_start(void)
2694 if (vmstate_change) {
2695 qemu_del_vm_change_state_handler(vmstate_change);
2696 vmstate_change = NULL;
2699 global_dirty_log = true;
2701 MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
2703 /* Refresh DIRTY_MEMORY_MIGRATION bit. */
2704 memory_region_transaction_begin();
2705 memory_region_update_pending = true;
2706 memory_region_transaction_commit();
2709 static void memory_global_dirty_log_do_stop(void)
2711 global_dirty_log = false;
2713 /* Refresh DIRTY_MEMORY_MIGRATION bit. */
2714 memory_region_transaction_begin();
2715 memory_region_update_pending = true;
2716 memory_region_transaction_commit();
2718 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2721 static void memory_vm_change_state_handler(void *opaque, int running,
2722 RunState state)
2724 if (running) {
2725 memory_global_dirty_log_do_stop();
2727 if (vmstate_change) {
2728 qemu_del_vm_change_state_handler(vmstate_change);
2729 vmstate_change = NULL;
2734 void memory_global_dirty_log_stop(void)
2736 if (!runstate_is_running()) {
2737 if (vmstate_change) {
2738 return;
2740 vmstate_change = qemu_add_vm_change_state_handler(
2741 memory_vm_change_state_handler, NULL);
2742 return;
2745 memory_global_dirty_log_do_stop();
2748 static void listener_add_address_space(MemoryListener *listener,
2749 AddressSpace *as)
2751 FlatView *view;
2752 FlatRange *fr;
2754 if (listener->begin) {
2755 listener->begin(listener);
2757 if (global_dirty_log) {
2758 if (listener->log_global_start) {
2759 listener->log_global_start(listener);
2763 view = address_space_get_flatview(as);
2764 FOR_EACH_FLAT_RANGE(fr, view) {
2765 MemoryRegionSection section = section_from_flat_range(fr, view);
2767 if (listener->region_add) {
2768 listener->region_add(listener, &section);
2770 if (fr->dirty_log_mask && listener->log_start) {
2771 listener->log_start(listener, &section, 0, fr->dirty_log_mask);
2774 if (listener->commit) {
2775 listener->commit(listener);
2777 flatview_unref(view);
2780 static void listener_del_address_space(MemoryListener *listener,
2781 AddressSpace *as)
2783 FlatView *view;
2784 FlatRange *fr;
2786 if (listener->begin) {
2787 listener->begin(listener);
2789 view = address_space_get_flatview(as);
2790 FOR_EACH_FLAT_RANGE(fr, view) {
2791 MemoryRegionSection section = section_from_flat_range(fr, view);
2793 if (fr->dirty_log_mask && listener->log_stop) {
2794 listener->log_stop(listener, &section, fr->dirty_log_mask, 0);
2796 if (listener->region_del) {
2797 listener->region_del(listener, &section);
2800 if (listener->commit) {
2801 listener->commit(listener);
2803 flatview_unref(view);
2806 void memory_listener_register(MemoryListener *listener, AddressSpace *as)
2808 MemoryListener *other = NULL;
2810 listener->address_space = as;
2811 if (QTAILQ_EMPTY(&memory_listeners)
2812 || listener->priority >= QTAILQ_LAST(&memory_listeners)->priority) {
2813 QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
2814 } else {
2815 QTAILQ_FOREACH(other, &memory_listeners, link) {
2816 if (listener->priority < other->priority) {
2817 break;
2820 QTAILQ_INSERT_BEFORE(other, listener, link);
2823 if (QTAILQ_EMPTY(&as->listeners)
2824 || listener->priority >= QTAILQ_LAST(&as->listeners)->priority) {
2825 QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as);
2826 } else {
2827 QTAILQ_FOREACH(other, &as->listeners, link_as) {
2828 if (listener->priority < other->priority) {
2829 break;
2832 QTAILQ_INSERT_BEFORE(other, listener, link_as);
2835 listener_add_address_space(listener, as);
2838 void memory_listener_unregister(MemoryListener *listener)
2840 if (!listener->address_space) {
2841 return;
2844 listener_del_address_space(listener, listener->address_space);
2845 QTAILQ_REMOVE(&memory_listeners, listener, link);
2846 QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as);
2847 listener->address_space = NULL;
2850 void address_space_remove_listeners(AddressSpace *as)
2852 while (!QTAILQ_EMPTY(&as->listeners)) {
2853 memory_listener_unregister(QTAILQ_FIRST(&as->listeners));
2857 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
2859 memory_region_ref(root);
2860 as->root = root;
2861 as->current_map = NULL;
2862 as->ioeventfd_nb = 0;
2863 as->ioeventfds = NULL;
2864 QTAILQ_INIT(&as->listeners);
2865 QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
2866 as->name = g_strdup(name ? name : "anonymous");
2867 address_space_update_topology(as);
2868 address_space_update_ioeventfds(as);
2871 static void do_address_space_destroy(AddressSpace *as)
2873 assert(QTAILQ_EMPTY(&as->listeners));
2875 flatview_unref(as->current_map);
2876 g_free(as->name);
2877 g_free(as->ioeventfds);
2878 memory_region_unref(as->root);
2881 void address_space_destroy(AddressSpace *as)
2883 MemoryRegion *root = as->root;
2885 /* Flush out anything from MemoryListeners listening in on this */
2886 memory_region_transaction_begin();
2887 as->root = NULL;
2888 memory_region_transaction_commit();
2889 QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
2891 /* At this point, as->dispatch and as->current_map are dummy
2892 * entries that the guest should never use. Wait for the old
2893 * values to expire before freeing the data.
2895 as->root = root;
2896 call_rcu(as, do_address_space_destroy, rcu);
2899 static const char *memory_region_type(MemoryRegion *mr)
2901 if (mr->alias) {
2902 return memory_region_type(mr->alias);
2904 if (memory_region_is_ram_device(mr)) {
2905 return "ramd";
2906 } else if (memory_region_is_romd(mr)) {
2907 return "romd";
2908 } else if (memory_region_is_rom(mr)) {
2909 return "rom";
2910 } else if (memory_region_is_ram(mr)) {
2911 return "ram";
2912 } else {
2913 return "i/o";
2917 typedef struct MemoryRegionList MemoryRegionList;
2919 struct MemoryRegionList {
2920 const MemoryRegion *mr;
2921 QTAILQ_ENTRY(MemoryRegionList) mrqueue;
2924 typedef QTAILQ_HEAD(, MemoryRegionList) MemoryRegionListHead;
2926 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
2927 int128_sub((size), int128_one())) : 0)
2928 #define MTREE_INDENT " "
2930 static void mtree_expand_owner(const char *label, Object *obj)
2932 DeviceState *dev = (DeviceState *) object_dynamic_cast(obj, TYPE_DEVICE);
2934 qemu_printf(" %s:{%s", label, dev ? "dev" : "obj");
2935 if (dev && dev->id) {
2936 qemu_printf(" id=%s", dev->id);
2937 } else {
2938 char *canonical_path = object_get_canonical_path(obj);
2939 if (canonical_path) {
2940 qemu_printf(" path=%s", canonical_path);
2941 g_free(canonical_path);
2942 } else {
2943 qemu_printf(" type=%s", object_get_typename(obj));
2946 qemu_printf("}");
2949 static void mtree_print_mr_owner(const MemoryRegion *mr)
2951 Object *owner = mr->owner;
2952 Object *parent = memory_region_owner((MemoryRegion *)mr);
2954 if (!owner && !parent) {
2955 qemu_printf(" orphan");
2956 return;
2958 if (owner) {
2959 mtree_expand_owner("owner", owner);
2961 if (parent && parent != owner) {
2962 mtree_expand_owner("parent", parent);
2966 static void mtree_print_mr(const MemoryRegion *mr, unsigned int level,
2967 hwaddr base,
2968 MemoryRegionListHead *alias_print_queue,
2969 bool owner, bool display_disabled)
2971 MemoryRegionList *new_ml, *ml, *next_ml;
2972 MemoryRegionListHead submr_print_queue;
2973 const MemoryRegion *submr;
2974 unsigned int i;
2975 hwaddr cur_start, cur_end;
2977 if (!mr) {
2978 return;
2981 cur_start = base + mr->addr;
2982 cur_end = cur_start + MR_SIZE(mr->size);
2985 * Try to detect overflow of memory region. This should never
2986 * happen normally. When it happens, we dump something to warn the
2987 * user who is observing this.
2989 if (cur_start < base || cur_end < cur_start) {
2990 qemu_printf("[DETECTED OVERFLOW!] ");
2993 if (mr->alias) {
2994 MemoryRegionList *ml;
2995 bool found = false;
2997 /* check if the alias is already in the queue */
2998 QTAILQ_FOREACH(ml, alias_print_queue, mrqueue) {
2999 if (ml->mr == mr->alias) {
3000 found = true;
3004 if (!found) {
3005 ml = g_new(MemoryRegionList, 1);
3006 ml->mr = mr->alias;
3007 QTAILQ_INSERT_TAIL(alias_print_queue, ml, mrqueue);
3009 if (mr->enabled || display_disabled) {
3010 for (i = 0; i < level; i++) {
3011 qemu_printf(MTREE_INDENT);
3013 qemu_printf(TARGET_FMT_plx "-" TARGET_FMT_plx
3014 " (prio %d, %s%s): alias %s @%s " TARGET_FMT_plx
3015 "-" TARGET_FMT_plx "%s",
3016 cur_start, cur_end,
3017 mr->priority,
3018 mr->nonvolatile ? "nv-" : "",
3019 memory_region_type((MemoryRegion *)mr),
3020 memory_region_name(mr),
3021 memory_region_name(mr->alias),
3022 mr->alias_offset,
3023 mr->alias_offset + MR_SIZE(mr->size),
3024 mr->enabled ? "" : " [disabled]");
3025 if (owner) {
3026 mtree_print_mr_owner(mr);
3028 qemu_printf("\n");
3030 } else {
3031 if (mr->enabled || display_disabled) {
3032 for (i = 0; i < level; i++) {
3033 qemu_printf(MTREE_INDENT);
3035 qemu_printf(TARGET_FMT_plx "-" TARGET_FMT_plx
3036 " (prio %d, %s%s): %s%s",
3037 cur_start, cur_end,
3038 mr->priority,
3039 mr->nonvolatile ? "nv-" : "",
3040 memory_region_type((MemoryRegion *)mr),
3041 memory_region_name(mr),
3042 mr->enabled ? "" : " [disabled]");
3043 if (owner) {
3044 mtree_print_mr_owner(mr);
3046 qemu_printf("\n");
3050 QTAILQ_INIT(&submr_print_queue);
3052 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
3053 new_ml = g_new(MemoryRegionList, 1);
3054 new_ml->mr = submr;
3055 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
3056 if (new_ml->mr->addr < ml->mr->addr ||
3057 (new_ml->mr->addr == ml->mr->addr &&
3058 new_ml->mr->priority > ml->mr->priority)) {
3059 QTAILQ_INSERT_BEFORE(ml, new_ml, mrqueue);
3060 new_ml = NULL;
3061 break;
3064 if (new_ml) {
3065 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, mrqueue);
3069 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
3070 mtree_print_mr(ml->mr, level + 1, cur_start,
3071 alias_print_queue, owner, display_disabled);
3074 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, mrqueue, next_ml) {
3075 g_free(ml);
3079 struct FlatViewInfo {
3080 int counter;
3081 bool dispatch_tree;
3082 bool owner;
3083 AccelClass *ac;
3086 static void mtree_print_flatview(gpointer key, gpointer value,
3087 gpointer user_data)
3089 FlatView *view = key;
3090 GArray *fv_address_spaces = value;
3091 struct FlatViewInfo *fvi = user_data;
3092 FlatRange *range = &view->ranges[0];
3093 MemoryRegion *mr;
3094 int n = view->nr;
3095 int i;
3096 AddressSpace *as;
3098 qemu_printf("FlatView #%d\n", fvi->counter);
3099 ++fvi->counter;
3101 for (i = 0; i < fv_address_spaces->len; ++i) {
3102 as = g_array_index(fv_address_spaces, AddressSpace*, i);
3103 qemu_printf(" AS \"%s\", root: %s",
3104 as->name, memory_region_name(as->root));
3105 if (as->root->alias) {
3106 qemu_printf(", alias %s", memory_region_name(as->root->alias));
3108 qemu_printf("\n");
3111 qemu_printf(" Root memory region: %s\n",
3112 view->root ? memory_region_name(view->root) : "(none)");
3114 if (n <= 0) {
3115 qemu_printf(MTREE_INDENT "No rendered FlatView\n\n");
3116 return;
3119 while (n--) {
3120 mr = range->mr;
3121 if (range->offset_in_region) {
3122 qemu_printf(MTREE_INDENT TARGET_FMT_plx "-" TARGET_FMT_plx
3123 " (prio %d, %s%s): %s @" TARGET_FMT_plx,
3124 int128_get64(range->addr.start),
3125 int128_get64(range->addr.start)
3126 + MR_SIZE(range->addr.size),
3127 mr->priority,
3128 range->nonvolatile ? "nv-" : "",
3129 range->readonly ? "rom" : memory_region_type(mr),
3130 memory_region_name(mr),
3131 range->offset_in_region);
3132 } else {
3133 qemu_printf(MTREE_INDENT TARGET_FMT_plx "-" TARGET_FMT_plx
3134 " (prio %d, %s%s): %s",
3135 int128_get64(range->addr.start),
3136 int128_get64(range->addr.start)
3137 + MR_SIZE(range->addr.size),
3138 mr->priority,
3139 range->nonvolatile ? "nv-" : "",
3140 range->readonly ? "rom" : memory_region_type(mr),
3141 memory_region_name(mr));
3143 if (fvi->owner) {
3144 mtree_print_mr_owner(mr);
3147 if (fvi->ac) {
3148 for (i = 0; i < fv_address_spaces->len; ++i) {
3149 as = g_array_index(fv_address_spaces, AddressSpace*, i);
3150 if (fvi->ac->has_memory(current_machine, as,
3151 int128_get64(range->addr.start),
3152 MR_SIZE(range->addr.size) + 1)) {
3153 qemu_printf(" %s", fvi->ac->name);
3157 qemu_printf("\n");
3158 range++;
3161 #if !defined(CONFIG_USER_ONLY)
3162 if (fvi->dispatch_tree && view->root) {
3163 mtree_print_dispatch(view->dispatch, view->root);
3165 #endif
3167 qemu_printf("\n");
3170 static gboolean mtree_info_flatview_free(gpointer key, gpointer value,
3171 gpointer user_data)
3173 FlatView *view = key;
3174 GArray *fv_address_spaces = value;
3176 g_array_unref(fv_address_spaces);
3177 flatview_unref(view);
3179 return true;
3182 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled)
3184 MemoryRegionListHead ml_head;
3185 MemoryRegionList *ml, *ml2;
3186 AddressSpace *as;
3188 if (flatview) {
3189 FlatView *view;
3190 struct FlatViewInfo fvi = {
3191 .counter = 0,
3192 .dispatch_tree = dispatch_tree,
3193 .owner = owner,
3195 GArray *fv_address_spaces;
3196 GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3197 AccelClass *ac = ACCEL_GET_CLASS(current_accel());
3199 if (ac->has_memory) {
3200 fvi.ac = ac;
3203 /* Gather all FVs in one table */
3204 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3205 view = address_space_get_flatview(as);
3207 fv_address_spaces = g_hash_table_lookup(views, view);
3208 if (!fv_address_spaces) {
3209 fv_address_spaces = g_array_new(false, false, sizeof(as));
3210 g_hash_table_insert(views, view, fv_address_spaces);
3213 g_array_append_val(fv_address_spaces, as);
3216 /* Print */
3217 g_hash_table_foreach(views, mtree_print_flatview, &fvi);
3219 /* Free */
3220 g_hash_table_foreach_remove(views, mtree_info_flatview_free, 0);
3221 g_hash_table_unref(views);
3223 return;
3226 QTAILQ_INIT(&ml_head);
3228 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3229 qemu_printf("address-space: %s\n", as->name);
3230 mtree_print_mr(as->root, 1, 0, &ml_head, owner, disabled);
3231 qemu_printf("\n");
3234 /* print aliased regions */
3235 QTAILQ_FOREACH(ml, &ml_head, mrqueue) {
3236 qemu_printf("memory-region: %s\n", memory_region_name(ml->mr));
3237 mtree_print_mr(ml->mr, 1, 0, &ml_head, owner, disabled);
3238 qemu_printf("\n");
3241 QTAILQ_FOREACH_SAFE(ml, &ml_head, mrqueue, ml2) {
3242 g_free(ml);
3246 void memory_region_init_ram(MemoryRegion *mr,
3247 struct Object *owner,
3248 const char *name,
3249 uint64_t size,
3250 Error **errp)
3252 DeviceState *owner_dev;
3253 Error *err = NULL;
3255 memory_region_init_ram_nomigrate(mr, owner, name, size, &err);
3256 if (err) {
3257 error_propagate(errp, err);
3258 return;
3260 /* This will assert if owner is neither NULL nor a DeviceState.
3261 * We only want the owner here for the purposes of defining a
3262 * unique name for migration. TODO: Ideally we should implement
3263 * a naming scheme for Objects which are not DeviceStates, in
3264 * which case we can relax this restriction.
3266 owner_dev = DEVICE(owner);
3267 vmstate_register_ram(mr, owner_dev);
3270 void memory_region_init_rom(MemoryRegion *mr,
3271 struct Object *owner,
3272 const char *name,
3273 uint64_t size,
3274 Error **errp)
3276 DeviceState *owner_dev;
3277 Error *err = NULL;
3279 memory_region_init_rom_nomigrate(mr, owner, name, size, &err);
3280 if (err) {
3281 error_propagate(errp, err);
3282 return;
3284 /* This will assert if owner is neither NULL nor a DeviceState.
3285 * We only want the owner here for the purposes of defining a
3286 * unique name for migration. TODO: Ideally we should implement
3287 * a naming scheme for Objects which are not DeviceStates, in
3288 * which case we can relax this restriction.
3290 owner_dev = DEVICE(owner);
3291 vmstate_register_ram(mr, owner_dev);
3294 void memory_region_init_rom_device(MemoryRegion *mr,
3295 struct Object *owner,
3296 const MemoryRegionOps *ops,
3297 void *opaque,
3298 const char *name,
3299 uint64_t size,
3300 Error **errp)
3302 DeviceState *owner_dev;
3303 Error *err = NULL;
3305 memory_region_init_rom_device_nomigrate(mr, owner, ops, opaque,
3306 name, size, &err);
3307 if (err) {
3308 error_propagate(errp, err);
3309 return;
3311 /* This will assert if owner is neither NULL nor a DeviceState.
3312 * We only want the owner here for the purposes of defining a
3313 * unique name for migration. TODO: Ideally we should implement
3314 * a naming scheme for Objects which are not DeviceStates, in
3315 * which case we can relax this restriction.
3317 owner_dev = DEVICE(owner);
3318 vmstate_register_ram(mr, owner_dev);
3322 * Support softmmu builds with CONFIG_FUZZ using a weak symbol and a stub for
3323 * the fuzz_dma_read_cb callback
3325 #ifdef CONFIG_FUZZ
3326 void __attribute__((weak)) fuzz_dma_read_cb(size_t addr,
3327 size_t len,
3328 MemoryRegion *mr,
3329 bool is_write)
3332 #endif
3334 static const TypeInfo memory_region_info = {
3335 .parent = TYPE_OBJECT,
3336 .name = TYPE_MEMORY_REGION,
3337 .class_size = sizeof(MemoryRegionClass),
3338 .instance_size = sizeof(MemoryRegion),
3339 .instance_init = memory_region_initfn,
3340 .instance_finalize = memory_region_finalize,
3343 static const TypeInfo iommu_memory_region_info = {
3344 .parent = TYPE_MEMORY_REGION,
3345 .name = TYPE_IOMMU_MEMORY_REGION,
3346 .class_size = sizeof(IOMMUMemoryRegionClass),
3347 .instance_size = sizeof(IOMMUMemoryRegion),
3348 .instance_init = iommu_memory_region_initfn,
3349 .abstract = true,
3352 static void memory_register_types(void)
3354 type_register_static(&memory_region_info);
3355 type_register_static(&iommu_memory_region_info);
3358 type_init(memory_register_types)