iotests: remove LUKS support from test 226
[qemu/ar7.git] / target / arm / translate-sve.c
blob374051cd20aabe0ab5cdb24f585cba3f350158fc
1 /*
2 * AArch64 SVE translation
4 * Copyright (c) 2018 Linaro, Ltd
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "tcg-op.h"
24 #include "tcg-op-gvec.h"
25 #include "tcg-gvec-desc.h"
26 #include "qemu/log.h"
27 #include "arm_ldst.h"
28 #include "translate.h"
29 #include "internals.h"
30 #include "exec/helper-proto.h"
31 #include "exec/helper-gen.h"
32 #include "exec/log.h"
33 #include "trace-tcg.h"
34 #include "translate-a64.h"
35 #include "fpu/softfloat.h"
38 typedef void GVecGen2sFn(unsigned, uint32_t, uint32_t,
39 TCGv_i64, uint32_t, uint32_t);
41 typedef void gen_helper_gvec_flags_3(TCGv_i32, TCGv_ptr, TCGv_ptr,
42 TCGv_ptr, TCGv_i32);
43 typedef void gen_helper_gvec_flags_4(TCGv_i32, TCGv_ptr, TCGv_ptr,
44 TCGv_ptr, TCGv_ptr, TCGv_i32);
46 typedef void gen_helper_gvec_mem(TCGv_env, TCGv_ptr, TCGv_i64, TCGv_i32);
47 typedef void gen_helper_gvec_mem_scatter(TCGv_env, TCGv_ptr, TCGv_ptr,
48 TCGv_ptr, TCGv_i64, TCGv_i32);
51 * Helpers for extracting complex instruction fields.
54 /* See e.g. ASR (immediate, predicated).
55 * Returns -1 for unallocated encoding; diagnose later.
57 static int tszimm_esz(int x)
59 x >>= 3; /* discard imm3 */
60 return 31 - clz32(x);
63 static int tszimm_shr(int x)
65 return (16 << tszimm_esz(x)) - x;
68 /* See e.g. LSL (immediate, predicated). */
69 static int tszimm_shl(int x)
71 return x - (8 << tszimm_esz(x));
74 static inline int plus1(int x)
76 return x + 1;
79 /* The SH bit is in bit 8. Extract the low 8 and shift. */
80 static inline int expand_imm_sh8s(int x)
82 return (int8_t)x << (x & 0x100 ? 8 : 0);
85 static inline int expand_imm_sh8u(int x)
87 return (uint8_t)x << (x & 0x100 ? 8 : 0);
90 /* Convert a 2-bit memory size (msz) to a 4-bit data type (dtype)
91 * with unsigned data. C.f. SVE Memory Contiguous Load Group.
93 static inline int msz_dtype(int msz)
95 static const uint8_t dtype[4] = { 0, 5, 10, 15 };
96 return dtype[msz];
100 * Include the generated decoder.
103 #include "decode-sve.inc.c"
106 * Implement all of the translator functions referenced by the decoder.
109 /* Return the offset info CPUARMState of the predicate vector register Pn.
110 * Note for this purpose, FFR is P16.
112 static inline int pred_full_reg_offset(DisasContext *s, int regno)
114 return offsetof(CPUARMState, vfp.pregs[regno]);
117 /* Return the byte size of the whole predicate register, VL / 64. */
118 static inline int pred_full_reg_size(DisasContext *s)
120 return s->sve_len >> 3;
123 /* Round up the size of a register to a size allowed by
124 * the tcg vector infrastructure. Any operation which uses this
125 * size may assume that the bits above pred_full_reg_size are zero,
126 * and must leave them the same way.
128 * Note that this is not needed for the vector registers as they
129 * are always properly sized for tcg vectors.
131 static int size_for_gvec(int size)
133 if (size <= 8) {
134 return 8;
135 } else {
136 return QEMU_ALIGN_UP(size, 16);
140 static int pred_gvec_reg_size(DisasContext *s)
142 return size_for_gvec(pred_full_reg_size(s));
145 /* Invoke a vector expander on two Zregs. */
146 static bool do_vector2_z(DisasContext *s, GVecGen2Fn *gvec_fn,
147 int esz, int rd, int rn)
149 if (sve_access_check(s)) {
150 unsigned vsz = vec_full_reg_size(s);
151 gvec_fn(esz, vec_full_reg_offset(s, rd),
152 vec_full_reg_offset(s, rn), vsz, vsz);
154 return true;
157 /* Invoke a vector expander on three Zregs. */
158 static bool do_vector3_z(DisasContext *s, GVecGen3Fn *gvec_fn,
159 int esz, int rd, int rn, int rm)
161 if (sve_access_check(s)) {
162 unsigned vsz = vec_full_reg_size(s);
163 gvec_fn(esz, vec_full_reg_offset(s, rd),
164 vec_full_reg_offset(s, rn),
165 vec_full_reg_offset(s, rm), vsz, vsz);
167 return true;
170 /* Invoke a vector move on two Zregs. */
171 static bool do_mov_z(DisasContext *s, int rd, int rn)
173 return do_vector2_z(s, tcg_gen_gvec_mov, 0, rd, rn);
176 /* Initialize a Zreg with replications of a 64-bit immediate. */
177 static void do_dupi_z(DisasContext *s, int rd, uint64_t word)
179 unsigned vsz = vec_full_reg_size(s);
180 tcg_gen_gvec_dup64i(vec_full_reg_offset(s, rd), vsz, vsz, word);
183 /* Invoke a vector expander on two Pregs. */
184 static bool do_vector2_p(DisasContext *s, GVecGen2Fn *gvec_fn,
185 int esz, int rd, int rn)
187 if (sve_access_check(s)) {
188 unsigned psz = pred_gvec_reg_size(s);
189 gvec_fn(esz, pred_full_reg_offset(s, rd),
190 pred_full_reg_offset(s, rn), psz, psz);
192 return true;
195 /* Invoke a vector expander on three Pregs. */
196 static bool do_vector3_p(DisasContext *s, GVecGen3Fn *gvec_fn,
197 int esz, int rd, int rn, int rm)
199 if (sve_access_check(s)) {
200 unsigned psz = pred_gvec_reg_size(s);
201 gvec_fn(esz, pred_full_reg_offset(s, rd),
202 pred_full_reg_offset(s, rn),
203 pred_full_reg_offset(s, rm), psz, psz);
205 return true;
208 /* Invoke a vector operation on four Pregs. */
209 static bool do_vecop4_p(DisasContext *s, const GVecGen4 *gvec_op,
210 int rd, int rn, int rm, int rg)
212 if (sve_access_check(s)) {
213 unsigned psz = pred_gvec_reg_size(s);
214 tcg_gen_gvec_4(pred_full_reg_offset(s, rd),
215 pred_full_reg_offset(s, rn),
216 pred_full_reg_offset(s, rm),
217 pred_full_reg_offset(s, rg),
218 psz, psz, gvec_op);
220 return true;
223 /* Invoke a vector move on two Pregs. */
224 static bool do_mov_p(DisasContext *s, int rd, int rn)
226 return do_vector2_p(s, tcg_gen_gvec_mov, 0, rd, rn);
229 /* Set the cpu flags as per a return from an SVE helper. */
230 static void do_pred_flags(TCGv_i32 t)
232 tcg_gen_mov_i32(cpu_NF, t);
233 tcg_gen_andi_i32(cpu_ZF, t, 2);
234 tcg_gen_andi_i32(cpu_CF, t, 1);
235 tcg_gen_movi_i32(cpu_VF, 0);
238 /* Subroutines computing the ARM PredTest psuedofunction. */
239 static void do_predtest1(TCGv_i64 d, TCGv_i64 g)
241 TCGv_i32 t = tcg_temp_new_i32();
243 gen_helper_sve_predtest1(t, d, g);
244 do_pred_flags(t);
245 tcg_temp_free_i32(t);
248 static void do_predtest(DisasContext *s, int dofs, int gofs, int words)
250 TCGv_ptr dptr = tcg_temp_new_ptr();
251 TCGv_ptr gptr = tcg_temp_new_ptr();
252 TCGv_i32 t;
254 tcg_gen_addi_ptr(dptr, cpu_env, dofs);
255 tcg_gen_addi_ptr(gptr, cpu_env, gofs);
256 t = tcg_const_i32(words);
258 gen_helper_sve_predtest(t, dptr, gptr, t);
259 tcg_temp_free_ptr(dptr);
260 tcg_temp_free_ptr(gptr);
262 do_pred_flags(t);
263 tcg_temp_free_i32(t);
266 /* For each element size, the bits within a predicate word that are active. */
267 const uint64_t pred_esz_masks[4] = {
268 0xffffffffffffffffull, 0x5555555555555555ull,
269 0x1111111111111111ull, 0x0101010101010101ull
273 *** SVE Logical - Unpredicated Group
276 static bool trans_AND_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
278 return do_vector3_z(s, tcg_gen_gvec_and, 0, a->rd, a->rn, a->rm);
281 static bool trans_ORR_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
283 if (a->rn == a->rm) { /* MOV */
284 return do_mov_z(s, a->rd, a->rn);
285 } else {
286 return do_vector3_z(s, tcg_gen_gvec_or, 0, a->rd, a->rn, a->rm);
290 static bool trans_EOR_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
292 return do_vector3_z(s, tcg_gen_gvec_xor, 0, a->rd, a->rn, a->rm);
295 static bool trans_BIC_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
297 return do_vector3_z(s, tcg_gen_gvec_andc, 0, a->rd, a->rn, a->rm);
301 *** SVE Integer Arithmetic - Unpredicated Group
304 static bool trans_ADD_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
306 return do_vector3_z(s, tcg_gen_gvec_add, a->esz, a->rd, a->rn, a->rm);
309 static bool trans_SUB_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
311 return do_vector3_z(s, tcg_gen_gvec_sub, a->esz, a->rd, a->rn, a->rm);
314 static bool trans_SQADD_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
316 return do_vector3_z(s, tcg_gen_gvec_ssadd, a->esz, a->rd, a->rn, a->rm);
319 static bool trans_SQSUB_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
321 return do_vector3_z(s, tcg_gen_gvec_sssub, a->esz, a->rd, a->rn, a->rm);
324 static bool trans_UQADD_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
326 return do_vector3_z(s, tcg_gen_gvec_usadd, a->esz, a->rd, a->rn, a->rm);
329 static bool trans_UQSUB_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
331 return do_vector3_z(s, tcg_gen_gvec_ussub, a->esz, a->rd, a->rn, a->rm);
335 *** SVE Integer Arithmetic - Binary Predicated Group
338 static bool do_zpzz_ool(DisasContext *s, arg_rprr_esz *a, gen_helper_gvec_4 *fn)
340 unsigned vsz = vec_full_reg_size(s);
341 if (fn == NULL) {
342 return false;
344 if (sve_access_check(s)) {
345 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, a->rd),
346 vec_full_reg_offset(s, a->rn),
347 vec_full_reg_offset(s, a->rm),
348 pred_full_reg_offset(s, a->pg),
349 vsz, vsz, 0, fn);
351 return true;
354 /* Select active elememnts from Zn and inactive elements from Zm,
355 * storing the result in Zd.
357 static void do_sel_z(DisasContext *s, int rd, int rn, int rm, int pg, int esz)
359 static gen_helper_gvec_4 * const fns[4] = {
360 gen_helper_sve_sel_zpzz_b, gen_helper_sve_sel_zpzz_h,
361 gen_helper_sve_sel_zpzz_s, gen_helper_sve_sel_zpzz_d
363 unsigned vsz = vec_full_reg_size(s);
364 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
365 vec_full_reg_offset(s, rn),
366 vec_full_reg_offset(s, rm),
367 pred_full_reg_offset(s, pg),
368 vsz, vsz, 0, fns[esz]);
371 #define DO_ZPZZ(NAME, name) \
372 static bool trans_##NAME##_zpzz(DisasContext *s, arg_rprr_esz *a, \
373 uint32_t insn) \
375 static gen_helper_gvec_4 * const fns[4] = { \
376 gen_helper_sve_##name##_zpzz_b, gen_helper_sve_##name##_zpzz_h, \
377 gen_helper_sve_##name##_zpzz_s, gen_helper_sve_##name##_zpzz_d, \
378 }; \
379 return do_zpzz_ool(s, a, fns[a->esz]); \
382 DO_ZPZZ(AND, and)
383 DO_ZPZZ(EOR, eor)
384 DO_ZPZZ(ORR, orr)
385 DO_ZPZZ(BIC, bic)
387 DO_ZPZZ(ADD, add)
388 DO_ZPZZ(SUB, sub)
390 DO_ZPZZ(SMAX, smax)
391 DO_ZPZZ(UMAX, umax)
392 DO_ZPZZ(SMIN, smin)
393 DO_ZPZZ(UMIN, umin)
394 DO_ZPZZ(SABD, sabd)
395 DO_ZPZZ(UABD, uabd)
397 DO_ZPZZ(MUL, mul)
398 DO_ZPZZ(SMULH, smulh)
399 DO_ZPZZ(UMULH, umulh)
401 DO_ZPZZ(ASR, asr)
402 DO_ZPZZ(LSR, lsr)
403 DO_ZPZZ(LSL, lsl)
405 static bool trans_SDIV_zpzz(DisasContext *s, arg_rprr_esz *a, uint32_t insn)
407 static gen_helper_gvec_4 * const fns[4] = {
408 NULL, NULL, gen_helper_sve_sdiv_zpzz_s, gen_helper_sve_sdiv_zpzz_d
410 return do_zpzz_ool(s, a, fns[a->esz]);
413 static bool trans_UDIV_zpzz(DisasContext *s, arg_rprr_esz *a, uint32_t insn)
415 static gen_helper_gvec_4 * const fns[4] = {
416 NULL, NULL, gen_helper_sve_udiv_zpzz_s, gen_helper_sve_udiv_zpzz_d
418 return do_zpzz_ool(s, a, fns[a->esz]);
421 static bool trans_SEL_zpzz(DisasContext *s, arg_rprr_esz *a, uint32_t insn)
423 if (sve_access_check(s)) {
424 do_sel_z(s, a->rd, a->rn, a->rm, a->pg, a->esz);
426 return true;
429 #undef DO_ZPZZ
432 *** SVE Integer Arithmetic - Unary Predicated Group
435 static bool do_zpz_ool(DisasContext *s, arg_rpr_esz *a, gen_helper_gvec_3 *fn)
437 if (fn == NULL) {
438 return false;
440 if (sve_access_check(s)) {
441 unsigned vsz = vec_full_reg_size(s);
442 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, a->rd),
443 vec_full_reg_offset(s, a->rn),
444 pred_full_reg_offset(s, a->pg),
445 vsz, vsz, 0, fn);
447 return true;
450 #define DO_ZPZ(NAME, name) \
451 static bool trans_##NAME(DisasContext *s, arg_rpr_esz *a, uint32_t insn) \
453 static gen_helper_gvec_3 * const fns[4] = { \
454 gen_helper_sve_##name##_b, gen_helper_sve_##name##_h, \
455 gen_helper_sve_##name##_s, gen_helper_sve_##name##_d, \
456 }; \
457 return do_zpz_ool(s, a, fns[a->esz]); \
460 DO_ZPZ(CLS, cls)
461 DO_ZPZ(CLZ, clz)
462 DO_ZPZ(CNT_zpz, cnt_zpz)
463 DO_ZPZ(CNOT, cnot)
464 DO_ZPZ(NOT_zpz, not_zpz)
465 DO_ZPZ(ABS, abs)
466 DO_ZPZ(NEG, neg)
468 static bool trans_FABS(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
470 static gen_helper_gvec_3 * const fns[4] = {
471 NULL,
472 gen_helper_sve_fabs_h,
473 gen_helper_sve_fabs_s,
474 gen_helper_sve_fabs_d
476 return do_zpz_ool(s, a, fns[a->esz]);
479 static bool trans_FNEG(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
481 static gen_helper_gvec_3 * const fns[4] = {
482 NULL,
483 gen_helper_sve_fneg_h,
484 gen_helper_sve_fneg_s,
485 gen_helper_sve_fneg_d
487 return do_zpz_ool(s, a, fns[a->esz]);
490 static bool trans_SXTB(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
492 static gen_helper_gvec_3 * const fns[4] = {
493 NULL,
494 gen_helper_sve_sxtb_h,
495 gen_helper_sve_sxtb_s,
496 gen_helper_sve_sxtb_d
498 return do_zpz_ool(s, a, fns[a->esz]);
501 static bool trans_UXTB(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
503 static gen_helper_gvec_3 * const fns[4] = {
504 NULL,
505 gen_helper_sve_uxtb_h,
506 gen_helper_sve_uxtb_s,
507 gen_helper_sve_uxtb_d
509 return do_zpz_ool(s, a, fns[a->esz]);
512 static bool trans_SXTH(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
514 static gen_helper_gvec_3 * const fns[4] = {
515 NULL, NULL,
516 gen_helper_sve_sxth_s,
517 gen_helper_sve_sxth_d
519 return do_zpz_ool(s, a, fns[a->esz]);
522 static bool trans_UXTH(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
524 static gen_helper_gvec_3 * const fns[4] = {
525 NULL, NULL,
526 gen_helper_sve_uxth_s,
527 gen_helper_sve_uxth_d
529 return do_zpz_ool(s, a, fns[a->esz]);
532 static bool trans_SXTW(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
534 return do_zpz_ool(s, a, a->esz == 3 ? gen_helper_sve_sxtw_d : NULL);
537 static bool trans_UXTW(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
539 return do_zpz_ool(s, a, a->esz == 3 ? gen_helper_sve_uxtw_d : NULL);
542 #undef DO_ZPZ
545 *** SVE Integer Reduction Group
548 typedef void gen_helper_gvec_reduc(TCGv_i64, TCGv_ptr, TCGv_ptr, TCGv_i32);
549 static bool do_vpz_ool(DisasContext *s, arg_rpr_esz *a,
550 gen_helper_gvec_reduc *fn)
552 unsigned vsz = vec_full_reg_size(s);
553 TCGv_ptr t_zn, t_pg;
554 TCGv_i32 desc;
555 TCGv_i64 temp;
557 if (fn == NULL) {
558 return false;
560 if (!sve_access_check(s)) {
561 return true;
564 desc = tcg_const_i32(simd_desc(vsz, vsz, 0));
565 temp = tcg_temp_new_i64();
566 t_zn = tcg_temp_new_ptr();
567 t_pg = tcg_temp_new_ptr();
569 tcg_gen_addi_ptr(t_zn, cpu_env, vec_full_reg_offset(s, a->rn));
570 tcg_gen_addi_ptr(t_pg, cpu_env, pred_full_reg_offset(s, a->pg));
571 fn(temp, t_zn, t_pg, desc);
572 tcg_temp_free_ptr(t_zn);
573 tcg_temp_free_ptr(t_pg);
574 tcg_temp_free_i32(desc);
576 write_fp_dreg(s, a->rd, temp);
577 tcg_temp_free_i64(temp);
578 return true;
581 #define DO_VPZ(NAME, name) \
582 static bool trans_##NAME(DisasContext *s, arg_rpr_esz *a, uint32_t insn) \
584 static gen_helper_gvec_reduc * const fns[4] = { \
585 gen_helper_sve_##name##_b, gen_helper_sve_##name##_h, \
586 gen_helper_sve_##name##_s, gen_helper_sve_##name##_d, \
587 }; \
588 return do_vpz_ool(s, a, fns[a->esz]); \
591 DO_VPZ(ORV, orv)
592 DO_VPZ(ANDV, andv)
593 DO_VPZ(EORV, eorv)
595 DO_VPZ(UADDV, uaddv)
596 DO_VPZ(SMAXV, smaxv)
597 DO_VPZ(UMAXV, umaxv)
598 DO_VPZ(SMINV, sminv)
599 DO_VPZ(UMINV, uminv)
601 static bool trans_SADDV(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
603 static gen_helper_gvec_reduc * const fns[4] = {
604 gen_helper_sve_saddv_b, gen_helper_sve_saddv_h,
605 gen_helper_sve_saddv_s, NULL
607 return do_vpz_ool(s, a, fns[a->esz]);
610 #undef DO_VPZ
613 *** SVE Shift by Immediate - Predicated Group
616 /* Store zero into every active element of Zd. We will use this for two
617 * and three-operand predicated instructions for which logic dictates a
618 * zero result.
620 static bool do_clr_zp(DisasContext *s, int rd, int pg, int esz)
622 static gen_helper_gvec_2 * const fns[4] = {
623 gen_helper_sve_clr_b, gen_helper_sve_clr_h,
624 gen_helper_sve_clr_s, gen_helper_sve_clr_d,
626 if (sve_access_check(s)) {
627 unsigned vsz = vec_full_reg_size(s);
628 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
629 pred_full_reg_offset(s, pg),
630 vsz, vsz, 0, fns[esz]);
632 return true;
635 /* Copy Zn into Zd, storing zeros into inactive elements. */
636 static void do_movz_zpz(DisasContext *s, int rd, int rn, int pg, int esz)
638 static gen_helper_gvec_3 * const fns[4] = {
639 gen_helper_sve_movz_b, gen_helper_sve_movz_h,
640 gen_helper_sve_movz_s, gen_helper_sve_movz_d,
642 unsigned vsz = vec_full_reg_size(s);
643 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
644 vec_full_reg_offset(s, rn),
645 pred_full_reg_offset(s, pg),
646 vsz, vsz, 0, fns[esz]);
649 static bool do_zpzi_ool(DisasContext *s, arg_rpri_esz *a,
650 gen_helper_gvec_3 *fn)
652 if (sve_access_check(s)) {
653 unsigned vsz = vec_full_reg_size(s);
654 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, a->rd),
655 vec_full_reg_offset(s, a->rn),
656 pred_full_reg_offset(s, a->pg),
657 vsz, vsz, a->imm, fn);
659 return true;
662 static bool trans_ASR_zpzi(DisasContext *s, arg_rpri_esz *a, uint32_t insn)
664 static gen_helper_gvec_3 * const fns[4] = {
665 gen_helper_sve_asr_zpzi_b, gen_helper_sve_asr_zpzi_h,
666 gen_helper_sve_asr_zpzi_s, gen_helper_sve_asr_zpzi_d,
668 if (a->esz < 0) {
669 /* Invalid tsz encoding -- see tszimm_esz. */
670 return false;
672 /* Shift by element size is architecturally valid. For
673 arithmetic right-shift, it's the same as by one less. */
674 a->imm = MIN(a->imm, (8 << a->esz) - 1);
675 return do_zpzi_ool(s, a, fns[a->esz]);
678 static bool trans_LSR_zpzi(DisasContext *s, arg_rpri_esz *a, uint32_t insn)
680 static gen_helper_gvec_3 * const fns[4] = {
681 gen_helper_sve_lsr_zpzi_b, gen_helper_sve_lsr_zpzi_h,
682 gen_helper_sve_lsr_zpzi_s, gen_helper_sve_lsr_zpzi_d,
684 if (a->esz < 0) {
685 return false;
687 /* Shift by element size is architecturally valid.
688 For logical shifts, it is a zeroing operation. */
689 if (a->imm >= (8 << a->esz)) {
690 return do_clr_zp(s, a->rd, a->pg, a->esz);
691 } else {
692 return do_zpzi_ool(s, a, fns[a->esz]);
696 static bool trans_LSL_zpzi(DisasContext *s, arg_rpri_esz *a, uint32_t insn)
698 static gen_helper_gvec_3 * const fns[4] = {
699 gen_helper_sve_lsl_zpzi_b, gen_helper_sve_lsl_zpzi_h,
700 gen_helper_sve_lsl_zpzi_s, gen_helper_sve_lsl_zpzi_d,
702 if (a->esz < 0) {
703 return false;
705 /* Shift by element size is architecturally valid.
706 For logical shifts, it is a zeroing operation. */
707 if (a->imm >= (8 << a->esz)) {
708 return do_clr_zp(s, a->rd, a->pg, a->esz);
709 } else {
710 return do_zpzi_ool(s, a, fns[a->esz]);
714 static bool trans_ASRD(DisasContext *s, arg_rpri_esz *a, uint32_t insn)
716 static gen_helper_gvec_3 * const fns[4] = {
717 gen_helper_sve_asrd_b, gen_helper_sve_asrd_h,
718 gen_helper_sve_asrd_s, gen_helper_sve_asrd_d,
720 if (a->esz < 0) {
721 return false;
723 /* Shift by element size is architecturally valid. For arithmetic
724 right shift for division, it is a zeroing operation. */
725 if (a->imm >= (8 << a->esz)) {
726 return do_clr_zp(s, a->rd, a->pg, a->esz);
727 } else {
728 return do_zpzi_ool(s, a, fns[a->esz]);
733 *** SVE Bitwise Shift - Predicated Group
736 #define DO_ZPZW(NAME, name) \
737 static bool trans_##NAME##_zpzw(DisasContext *s, arg_rprr_esz *a, \
738 uint32_t insn) \
740 static gen_helper_gvec_4 * const fns[3] = { \
741 gen_helper_sve_##name##_zpzw_b, gen_helper_sve_##name##_zpzw_h, \
742 gen_helper_sve_##name##_zpzw_s, \
743 }; \
744 if (a->esz < 0 || a->esz >= 3) { \
745 return false; \
747 return do_zpzz_ool(s, a, fns[a->esz]); \
750 DO_ZPZW(ASR, asr)
751 DO_ZPZW(LSR, lsr)
752 DO_ZPZW(LSL, lsl)
754 #undef DO_ZPZW
757 *** SVE Bitwise Shift - Unpredicated Group
760 static bool do_shift_imm(DisasContext *s, arg_rri_esz *a, bool asr,
761 void (*gvec_fn)(unsigned, uint32_t, uint32_t,
762 int64_t, uint32_t, uint32_t))
764 if (a->esz < 0) {
765 /* Invalid tsz encoding -- see tszimm_esz. */
766 return false;
768 if (sve_access_check(s)) {
769 unsigned vsz = vec_full_reg_size(s);
770 /* Shift by element size is architecturally valid. For
771 arithmetic right-shift, it's the same as by one less.
772 Otherwise it is a zeroing operation. */
773 if (a->imm >= 8 << a->esz) {
774 if (asr) {
775 a->imm = (8 << a->esz) - 1;
776 } else {
777 do_dupi_z(s, a->rd, 0);
778 return true;
781 gvec_fn(a->esz, vec_full_reg_offset(s, a->rd),
782 vec_full_reg_offset(s, a->rn), a->imm, vsz, vsz);
784 return true;
787 static bool trans_ASR_zzi(DisasContext *s, arg_rri_esz *a, uint32_t insn)
789 return do_shift_imm(s, a, true, tcg_gen_gvec_sari);
792 static bool trans_LSR_zzi(DisasContext *s, arg_rri_esz *a, uint32_t insn)
794 return do_shift_imm(s, a, false, tcg_gen_gvec_shri);
797 static bool trans_LSL_zzi(DisasContext *s, arg_rri_esz *a, uint32_t insn)
799 return do_shift_imm(s, a, false, tcg_gen_gvec_shli);
802 static bool do_zzw_ool(DisasContext *s, arg_rrr_esz *a, gen_helper_gvec_3 *fn)
804 if (fn == NULL) {
805 return false;
807 if (sve_access_check(s)) {
808 unsigned vsz = vec_full_reg_size(s);
809 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, a->rd),
810 vec_full_reg_offset(s, a->rn),
811 vec_full_reg_offset(s, a->rm),
812 vsz, vsz, 0, fn);
814 return true;
817 #define DO_ZZW(NAME, name) \
818 static bool trans_##NAME##_zzw(DisasContext *s, arg_rrr_esz *a, \
819 uint32_t insn) \
821 static gen_helper_gvec_3 * const fns[4] = { \
822 gen_helper_sve_##name##_zzw_b, gen_helper_sve_##name##_zzw_h, \
823 gen_helper_sve_##name##_zzw_s, NULL \
824 }; \
825 return do_zzw_ool(s, a, fns[a->esz]); \
828 DO_ZZW(ASR, asr)
829 DO_ZZW(LSR, lsr)
830 DO_ZZW(LSL, lsl)
832 #undef DO_ZZW
835 *** SVE Integer Multiply-Add Group
838 static bool do_zpzzz_ool(DisasContext *s, arg_rprrr_esz *a,
839 gen_helper_gvec_5 *fn)
841 if (sve_access_check(s)) {
842 unsigned vsz = vec_full_reg_size(s);
843 tcg_gen_gvec_5_ool(vec_full_reg_offset(s, a->rd),
844 vec_full_reg_offset(s, a->ra),
845 vec_full_reg_offset(s, a->rn),
846 vec_full_reg_offset(s, a->rm),
847 pred_full_reg_offset(s, a->pg),
848 vsz, vsz, 0, fn);
850 return true;
853 #define DO_ZPZZZ(NAME, name) \
854 static bool trans_##NAME(DisasContext *s, arg_rprrr_esz *a, uint32_t insn) \
856 static gen_helper_gvec_5 * const fns[4] = { \
857 gen_helper_sve_##name##_b, gen_helper_sve_##name##_h, \
858 gen_helper_sve_##name##_s, gen_helper_sve_##name##_d, \
859 }; \
860 return do_zpzzz_ool(s, a, fns[a->esz]); \
863 DO_ZPZZZ(MLA, mla)
864 DO_ZPZZZ(MLS, mls)
866 #undef DO_ZPZZZ
869 *** SVE Index Generation Group
872 static void do_index(DisasContext *s, int esz, int rd,
873 TCGv_i64 start, TCGv_i64 incr)
875 unsigned vsz = vec_full_reg_size(s);
876 TCGv_i32 desc = tcg_const_i32(simd_desc(vsz, vsz, 0));
877 TCGv_ptr t_zd = tcg_temp_new_ptr();
879 tcg_gen_addi_ptr(t_zd, cpu_env, vec_full_reg_offset(s, rd));
880 if (esz == 3) {
881 gen_helper_sve_index_d(t_zd, start, incr, desc);
882 } else {
883 typedef void index_fn(TCGv_ptr, TCGv_i32, TCGv_i32, TCGv_i32);
884 static index_fn * const fns[3] = {
885 gen_helper_sve_index_b,
886 gen_helper_sve_index_h,
887 gen_helper_sve_index_s,
889 TCGv_i32 s32 = tcg_temp_new_i32();
890 TCGv_i32 i32 = tcg_temp_new_i32();
892 tcg_gen_extrl_i64_i32(s32, start);
893 tcg_gen_extrl_i64_i32(i32, incr);
894 fns[esz](t_zd, s32, i32, desc);
896 tcg_temp_free_i32(s32);
897 tcg_temp_free_i32(i32);
899 tcg_temp_free_ptr(t_zd);
900 tcg_temp_free_i32(desc);
903 static bool trans_INDEX_ii(DisasContext *s, arg_INDEX_ii *a, uint32_t insn)
905 if (sve_access_check(s)) {
906 TCGv_i64 start = tcg_const_i64(a->imm1);
907 TCGv_i64 incr = tcg_const_i64(a->imm2);
908 do_index(s, a->esz, a->rd, start, incr);
909 tcg_temp_free_i64(start);
910 tcg_temp_free_i64(incr);
912 return true;
915 static bool trans_INDEX_ir(DisasContext *s, arg_INDEX_ir *a, uint32_t insn)
917 if (sve_access_check(s)) {
918 TCGv_i64 start = tcg_const_i64(a->imm);
919 TCGv_i64 incr = cpu_reg(s, a->rm);
920 do_index(s, a->esz, a->rd, start, incr);
921 tcg_temp_free_i64(start);
923 return true;
926 static bool trans_INDEX_ri(DisasContext *s, arg_INDEX_ri *a, uint32_t insn)
928 if (sve_access_check(s)) {
929 TCGv_i64 start = cpu_reg(s, a->rn);
930 TCGv_i64 incr = tcg_const_i64(a->imm);
931 do_index(s, a->esz, a->rd, start, incr);
932 tcg_temp_free_i64(incr);
934 return true;
937 static bool trans_INDEX_rr(DisasContext *s, arg_INDEX_rr *a, uint32_t insn)
939 if (sve_access_check(s)) {
940 TCGv_i64 start = cpu_reg(s, a->rn);
941 TCGv_i64 incr = cpu_reg(s, a->rm);
942 do_index(s, a->esz, a->rd, start, incr);
944 return true;
948 *** SVE Stack Allocation Group
951 static bool trans_ADDVL(DisasContext *s, arg_ADDVL *a, uint32_t insn)
953 TCGv_i64 rd = cpu_reg_sp(s, a->rd);
954 TCGv_i64 rn = cpu_reg_sp(s, a->rn);
955 tcg_gen_addi_i64(rd, rn, a->imm * vec_full_reg_size(s));
956 return true;
959 static bool trans_ADDPL(DisasContext *s, arg_ADDPL *a, uint32_t insn)
961 TCGv_i64 rd = cpu_reg_sp(s, a->rd);
962 TCGv_i64 rn = cpu_reg_sp(s, a->rn);
963 tcg_gen_addi_i64(rd, rn, a->imm * pred_full_reg_size(s));
964 return true;
967 static bool trans_RDVL(DisasContext *s, arg_RDVL *a, uint32_t insn)
969 TCGv_i64 reg = cpu_reg(s, a->rd);
970 tcg_gen_movi_i64(reg, a->imm * vec_full_reg_size(s));
971 return true;
975 *** SVE Compute Vector Address Group
978 static bool do_adr(DisasContext *s, arg_rrri *a, gen_helper_gvec_3 *fn)
980 if (sve_access_check(s)) {
981 unsigned vsz = vec_full_reg_size(s);
982 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, a->rd),
983 vec_full_reg_offset(s, a->rn),
984 vec_full_reg_offset(s, a->rm),
985 vsz, vsz, a->imm, fn);
987 return true;
990 static bool trans_ADR_p32(DisasContext *s, arg_rrri *a, uint32_t insn)
992 return do_adr(s, a, gen_helper_sve_adr_p32);
995 static bool trans_ADR_p64(DisasContext *s, arg_rrri *a, uint32_t insn)
997 return do_adr(s, a, gen_helper_sve_adr_p64);
1000 static bool trans_ADR_s32(DisasContext *s, arg_rrri *a, uint32_t insn)
1002 return do_adr(s, a, gen_helper_sve_adr_s32);
1005 static bool trans_ADR_u32(DisasContext *s, arg_rrri *a, uint32_t insn)
1007 return do_adr(s, a, gen_helper_sve_adr_u32);
1011 *** SVE Integer Misc - Unpredicated Group
1014 static bool trans_FEXPA(DisasContext *s, arg_rr_esz *a, uint32_t insn)
1016 static gen_helper_gvec_2 * const fns[4] = {
1017 NULL,
1018 gen_helper_sve_fexpa_h,
1019 gen_helper_sve_fexpa_s,
1020 gen_helper_sve_fexpa_d,
1022 if (a->esz == 0) {
1023 return false;
1025 if (sve_access_check(s)) {
1026 unsigned vsz = vec_full_reg_size(s);
1027 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, a->rd),
1028 vec_full_reg_offset(s, a->rn),
1029 vsz, vsz, 0, fns[a->esz]);
1031 return true;
1034 static bool trans_FTSSEL(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
1036 static gen_helper_gvec_3 * const fns[4] = {
1037 NULL,
1038 gen_helper_sve_ftssel_h,
1039 gen_helper_sve_ftssel_s,
1040 gen_helper_sve_ftssel_d,
1042 if (a->esz == 0) {
1043 return false;
1045 if (sve_access_check(s)) {
1046 unsigned vsz = vec_full_reg_size(s);
1047 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, a->rd),
1048 vec_full_reg_offset(s, a->rn),
1049 vec_full_reg_offset(s, a->rm),
1050 vsz, vsz, 0, fns[a->esz]);
1052 return true;
1056 *** SVE Predicate Logical Operations Group
1059 static bool do_pppp_flags(DisasContext *s, arg_rprr_s *a,
1060 const GVecGen4 *gvec_op)
1062 if (!sve_access_check(s)) {
1063 return true;
1066 unsigned psz = pred_gvec_reg_size(s);
1067 int dofs = pred_full_reg_offset(s, a->rd);
1068 int nofs = pred_full_reg_offset(s, a->rn);
1069 int mofs = pred_full_reg_offset(s, a->rm);
1070 int gofs = pred_full_reg_offset(s, a->pg);
1072 if (psz == 8) {
1073 /* Do the operation and the flags generation in temps. */
1074 TCGv_i64 pd = tcg_temp_new_i64();
1075 TCGv_i64 pn = tcg_temp_new_i64();
1076 TCGv_i64 pm = tcg_temp_new_i64();
1077 TCGv_i64 pg = tcg_temp_new_i64();
1079 tcg_gen_ld_i64(pn, cpu_env, nofs);
1080 tcg_gen_ld_i64(pm, cpu_env, mofs);
1081 tcg_gen_ld_i64(pg, cpu_env, gofs);
1083 gvec_op->fni8(pd, pn, pm, pg);
1084 tcg_gen_st_i64(pd, cpu_env, dofs);
1086 do_predtest1(pd, pg);
1088 tcg_temp_free_i64(pd);
1089 tcg_temp_free_i64(pn);
1090 tcg_temp_free_i64(pm);
1091 tcg_temp_free_i64(pg);
1092 } else {
1093 /* The operation and flags generation is large. The computation
1094 * of the flags depends on the original contents of the guarding
1095 * predicate. If the destination overwrites the guarding predicate,
1096 * then the easiest way to get this right is to save a copy.
1098 int tofs = gofs;
1099 if (a->rd == a->pg) {
1100 tofs = offsetof(CPUARMState, vfp.preg_tmp);
1101 tcg_gen_gvec_mov(0, tofs, gofs, psz, psz);
1104 tcg_gen_gvec_4(dofs, nofs, mofs, gofs, psz, psz, gvec_op);
1105 do_predtest(s, dofs, tofs, psz / 8);
1107 return true;
1110 static void gen_and_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg)
1112 tcg_gen_and_i64(pd, pn, pm);
1113 tcg_gen_and_i64(pd, pd, pg);
1116 static void gen_and_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn,
1117 TCGv_vec pm, TCGv_vec pg)
1119 tcg_gen_and_vec(vece, pd, pn, pm);
1120 tcg_gen_and_vec(vece, pd, pd, pg);
1123 static bool trans_AND_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn)
1125 static const GVecGen4 op = {
1126 .fni8 = gen_and_pg_i64,
1127 .fniv = gen_and_pg_vec,
1128 .fno = gen_helper_sve_and_pppp,
1129 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1131 if (a->s) {
1132 return do_pppp_flags(s, a, &op);
1133 } else if (a->rn == a->rm) {
1134 if (a->pg == a->rn) {
1135 return do_mov_p(s, a->rd, a->rn);
1136 } else {
1137 return do_vector3_p(s, tcg_gen_gvec_and, 0, a->rd, a->rn, a->pg);
1139 } else if (a->pg == a->rn || a->pg == a->rm) {
1140 return do_vector3_p(s, tcg_gen_gvec_and, 0, a->rd, a->rn, a->rm);
1141 } else {
1142 return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg);
1146 static void gen_bic_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg)
1148 tcg_gen_andc_i64(pd, pn, pm);
1149 tcg_gen_and_i64(pd, pd, pg);
1152 static void gen_bic_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn,
1153 TCGv_vec pm, TCGv_vec pg)
1155 tcg_gen_andc_vec(vece, pd, pn, pm);
1156 tcg_gen_and_vec(vece, pd, pd, pg);
1159 static bool trans_BIC_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn)
1161 static const GVecGen4 op = {
1162 .fni8 = gen_bic_pg_i64,
1163 .fniv = gen_bic_pg_vec,
1164 .fno = gen_helper_sve_bic_pppp,
1165 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1167 if (a->s) {
1168 return do_pppp_flags(s, a, &op);
1169 } else if (a->pg == a->rn) {
1170 return do_vector3_p(s, tcg_gen_gvec_andc, 0, a->rd, a->rn, a->rm);
1171 } else {
1172 return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg);
1176 static void gen_eor_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg)
1178 tcg_gen_xor_i64(pd, pn, pm);
1179 tcg_gen_and_i64(pd, pd, pg);
1182 static void gen_eor_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn,
1183 TCGv_vec pm, TCGv_vec pg)
1185 tcg_gen_xor_vec(vece, pd, pn, pm);
1186 tcg_gen_and_vec(vece, pd, pd, pg);
1189 static bool trans_EOR_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn)
1191 static const GVecGen4 op = {
1192 .fni8 = gen_eor_pg_i64,
1193 .fniv = gen_eor_pg_vec,
1194 .fno = gen_helper_sve_eor_pppp,
1195 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1197 if (a->s) {
1198 return do_pppp_flags(s, a, &op);
1199 } else {
1200 return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg);
1204 static void gen_sel_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg)
1206 tcg_gen_and_i64(pn, pn, pg);
1207 tcg_gen_andc_i64(pm, pm, pg);
1208 tcg_gen_or_i64(pd, pn, pm);
1211 static void gen_sel_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn,
1212 TCGv_vec pm, TCGv_vec pg)
1214 tcg_gen_and_vec(vece, pn, pn, pg);
1215 tcg_gen_andc_vec(vece, pm, pm, pg);
1216 tcg_gen_or_vec(vece, pd, pn, pm);
1219 static bool trans_SEL_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn)
1221 static const GVecGen4 op = {
1222 .fni8 = gen_sel_pg_i64,
1223 .fniv = gen_sel_pg_vec,
1224 .fno = gen_helper_sve_sel_pppp,
1225 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1227 if (a->s) {
1228 return false;
1229 } else {
1230 return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg);
1234 static void gen_orr_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg)
1236 tcg_gen_or_i64(pd, pn, pm);
1237 tcg_gen_and_i64(pd, pd, pg);
1240 static void gen_orr_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn,
1241 TCGv_vec pm, TCGv_vec pg)
1243 tcg_gen_or_vec(vece, pd, pn, pm);
1244 tcg_gen_and_vec(vece, pd, pd, pg);
1247 static bool trans_ORR_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn)
1249 static const GVecGen4 op = {
1250 .fni8 = gen_orr_pg_i64,
1251 .fniv = gen_orr_pg_vec,
1252 .fno = gen_helper_sve_orr_pppp,
1253 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1255 if (a->s) {
1256 return do_pppp_flags(s, a, &op);
1257 } else if (a->pg == a->rn && a->rn == a->rm) {
1258 return do_mov_p(s, a->rd, a->rn);
1259 } else {
1260 return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg);
1264 static void gen_orn_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg)
1266 tcg_gen_orc_i64(pd, pn, pm);
1267 tcg_gen_and_i64(pd, pd, pg);
1270 static void gen_orn_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn,
1271 TCGv_vec pm, TCGv_vec pg)
1273 tcg_gen_orc_vec(vece, pd, pn, pm);
1274 tcg_gen_and_vec(vece, pd, pd, pg);
1277 static bool trans_ORN_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn)
1279 static const GVecGen4 op = {
1280 .fni8 = gen_orn_pg_i64,
1281 .fniv = gen_orn_pg_vec,
1282 .fno = gen_helper_sve_orn_pppp,
1283 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1285 if (a->s) {
1286 return do_pppp_flags(s, a, &op);
1287 } else {
1288 return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg);
1292 static void gen_nor_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg)
1294 tcg_gen_or_i64(pd, pn, pm);
1295 tcg_gen_andc_i64(pd, pg, pd);
1298 static void gen_nor_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn,
1299 TCGv_vec pm, TCGv_vec pg)
1301 tcg_gen_or_vec(vece, pd, pn, pm);
1302 tcg_gen_andc_vec(vece, pd, pg, pd);
1305 static bool trans_NOR_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn)
1307 static const GVecGen4 op = {
1308 .fni8 = gen_nor_pg_i64,
1309 .fniv = gen_nor_pg_vec,
1310 .fno = gen_helper_sve_nor_pppp,
1311 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1313 if (a->s) {
1314 return do_pppp_flags(s, a, &op);
1315 } else {
1316 return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg);
1320 static void gen_nand_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg)
1322 tcg_gen_and_i64(pd, pn, pm);
1323 tcg_gen_andc_i64(pd, pg, pd);
1326 static void gen_nand_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn,
1327 TCGv_vec pm, TCGv_vec pg)
1329 tcg_gen_and_vec(vece, pd, pn, pm);
1330 tcg_gen_andc_vec(vece, pd, pg, pd);
1333 static bool trans_NAND_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn)
1335 static const GVecGen4 op = {
1336 .fni8 = gen_nand_pg_i64,
1337 .fniv = gen_nand_pg_vec,
1338 .fno = gen_helper_sve_nand_pppp,
1339 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1341 if (a->s) {
1342 return do_pppp_flags(s, a, &op);
1343 } else {
1344 return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg);
1349 *** SVE Predicate Misc Group
1352 static bool trans_PTEST(DisasContext *s, arg_PTEST *a, uint32_t insn)
1354 if (sve_access_check(s)) {
1355 int nofs = pred_full_reg_offset(s, a->rn);
1356 int gofs = pred_full_reg_offset(s, a->pg);
1357 int words = DIV_ROUND_UP(pred_full_reg_size(s), 8);
1359 if (words == 1) {
1360 TCGv_i64 pn = tcg_temp_new_i64();
1361 TCGv_i64 pg = tcg_temp_new_i64();
1363 tcg_gen_ld_i64(pn, cpu_env, nofs);
1364 tcg_gen_ld_i64(pg, cpu_env, gofs);
1365 do_predtest1(pn, pg);
1367 tcg_temp_free_i64(pn);
1368 tcg_temp_free_i64(pg);
1369 } else {
1370 do_predtest(s, nofs, gofs, words);
1373 return true;
1376 /* See the ARM pseudocode DecodePredCount. */
1377 static unsigned decode_pred_count(unsigned fullsz, int pattern, int esz)
1379 unsigned elements = fullsz >> esz;
1380 unsigned bound;
1382 switch (pattern) {
1383 case 0x0: /* POW2 */
1384 return pow2floor(elements);
1385 case 0x1: /* VL1 */
1386 case 0x2: /* VL2 */
1387 case 0x3: /* VL3 */
1388 case 0x4: /* VL4 */
1389 case 0x5: /* VL5 */
1390 case 0x6: /* VL6 */
1391 case 0x7: /* VL7 */
1392 case 0x8: /* VL8 */
1393 bound = pattern;
1394 break;
1395 case 0x9: /* VL16 */
1396 case 0xa: /* VL32 */
1397 case 0xb: /* VL64 */
1398 case 0xc: /* VL128 */
1399 case 0xd: /* VL256 */
1400 bound = 16 << (pattern - 9);
1401 break;
1402 case 0x1d: /* MUL4 */
1403 return elements - elements % 4;
1404 case 0x1e: /* MUL3 */
1405 return elements - elements % 3;
1406 case 0x1f: /* ALL */
1407 return elements;
1408 default: /* #uimm5 */
1409 return 0;
1411 return elements >= bound ? bound : 0;
1414 /* This handles all of the predicate initialization instructions,
1415 * PTRUE, PFALSE, SETFFR. For PFALSE, we will have set PAT == 32
1416 * so that decode_pred_count returns 0. For SETFFR, we will have
1417 * set RD == 16 == FFR.
1419 static bool do_predset(DisasContext *s, int esz, int rd, int pat, bool setflag)
1421 if (!sve_access_check(s)) {
1422 return true;
1425 unsigned fullsz = vec_full_reg_size(s);
1426 unsigned ofs = pred_full_reg_offset(s, rd);
1427 unsigned numelem, setsz, i;
1428 uint64_t word, lastword;
1429 TCGv_i64 t;
1431 numelem = decode_pred_count(fullsz, pat, esz);
1433 /* Determine what we must store into each bit, and how many. */
1434 if (numelem == 0) {
1435 lastword = word = 0;
1436 setsz = fullsz;
1437 } else {
1438 setsz = numelem << esz;
1439 lastword = word = pred_esz_masks[esz];
1440 if (setsz % 64) {
1441 lastword &= MAKE_64BIT_MASK(0, setsz % 64);
1445 t = tcg_temp_new_i64();
1446 if (fullsz <= 64) {
1447 tcg_gen_movi_i64(t, lastword);
1448 tcg_gen_st_i64(t, cpu_env, ofs);
1449 goto done;
1452 if (word == lastword) {
1453 unsigned maxsz = size_for_gvec(fullsz / 8);
1454 unsigned oprsz = size_for_gvec(setsz / 8);
1456 if (oprsz * 8 == setsz) {
1457 tcg_gen_gvec_dup64i(ofs, oprsz, maxsz, word);
1458 goto done;
1462 setsz /= 8;
1463 fullsz /= 8;
1465 tcg_gen_movi_i64(t, word);
1466 for (i = 0; i < QEMU_ALIGN_DOWN(setsz, 8); i += 8) {
1467 tcg_gen_st_i64(t, cpu_env, ofs + i);
1469 if (lastword != word) {
1470 tcg_gen_movi_i64(t, lastword);
1471 tcg_gen_st_i64(t, cpu_env, ofs + i);
1472 i += 8;
1474 if (i < fullsz) {
1475 tcg_gen_movi_i64(t, 0);
1476 for (; i < fullsz; i += 8) {
1477 tcg_gen_st_i64(t, cpu_env, ofs + i);
1481 done:
1482 tcg_temp_free_i64(t);
1484 /* PTRUES */
1485 if (setflag) {
1486 tcg_gen_movi_i32(cpu_NF, -(word != 0));
1487 tcg_gen_movi_i32(cpu_CF, word == 0);
1488 tcg_gen_movi_i32(cpu_VF, 0);
1489 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
1491 return true;
1494 static bool trans_PTRUE(DisasContext *s, arg_PTRUE *a, uint32_t insn)
1496 return do_predset(s, a->esz, a->rd, a->pat, a->s);
1499 static bool trans_SETFFR(DisasContext *s, arg_SETFFR *a, uint32_t insn)
1501 /* Note pat == 31 is #all, to set all elements. */
1502 return do_predset(s, 0, FFR_PRED_NUM, 31, false);
1505 static bool trans_PFALSE(DisasContext *s, arg_PFALSE *a, uint32_t insn)
1507 /* Note pat == 32 is #unimp, to set no elements. */
1508 return do_predset(s, 0, a->rd, 32, false);
1511 static bool trans_RDFFR_p(DisasContext *s, arg_RDFFR_p *a, uint32_t insn)
1513 /* The path through do_pppp_flags is complicated enough to want to avoid
1514 * duplication. Frob the arguments into the form of a predicated AND.
1516 arg_rprr_s alt_a = {
1517 .rd = a->rd, .pg = a->pg, .s = a->s,
1518 .rn = FFR_PRED_NUM, .rm = FFR_PRED_NUM,
1520 return trans_AND_pppp(s, &alt_a, insn);
1523 static bool trans_RDFFR(DisasContext *s, arg_RDFFR *a, uint32_t insn)
1525 return do_mov_p(s, a->rd, FFR_PRED_NUM);
1528 static bool trans_WRFFR(DisasContext *s, arg_WRFFR *a, uint32_t insn)
1530 return do_mov_p(s, FFR_PRED_NUM, a->rn);
1533 static bool do_pfirst_pnext(DisasContext *s, arg_rr_esz *a,
1534 void (*gen_fn)(TCGv_i32, TCGv_ptr,
1535 TCGv_ptr, TCGv_i32))
1537 if (!sve_access_check(s)) {
1538 return true;
1541 TCGv_ptr t_pd = tcg_temp_new_ptr();
1542 TCGv_ptr t_pg = tcg_temp_new_ptr();
1543 TCGv_i32 t;
1544 unsigned desc;
1546 desc = DIV_ROUND_UP(pred_full_reg_size(s), 8);
1547 desc = deposit32(desc, SIMD_DATA_SHIFT, 2, a->esz);
1549 tcg_gen_addi_ptr(t_pd, cpu_env, pred_full_reg_offset(s, a->rd));
1550 tcg_gen_addi_ptr(t_pg, cpu_env, pred_full_reg_offset(s, a->rn));
1551 t = tcg_const_i32(desc);
1553 gen_fn(t, t_pd, t_pg, t);
1554 tcg_temp_free_ptr(t_pd);
1555 tcg_temp_free_ptr(t_pg);
1557 do_pred_flags(t);
1558 tcg_temp_free_i32(t);
1559 return true;
1562 static bool trans_PFIRST(DisasContext *s, arg_rr_esz *a, uint32_t insn)
1564 return do_pfirst_pnext(s, a, gen_helper_sve_pfirst);
1567 static bool trans_PNEXT(DisasContext *s, arg_rr_esz *a, uint32_t insn)
1569 return do_pfirst_pnext(s, a, gen_helper_sve_pnext);
1573 *** SVE Element Count Group
1576 /* Perform an inline saturating addition of a 32-bit value within
1577 * a 64-bit register. The second operand is known to be positive,
1578 * which halves the comparisions we must perform to bound the result.
1580 static void do_sat_addsub_32(TCGv_i64 reg, TCGv_i64 val, bool u, bool d)
1582 int64_t ibound;
1583 TCGv_i64 bound;
1584 TCGCond cond;
1586 /* Use normal 64-bit arithmetic to detect 32-bit overflow. */
1587 if (u) {
1588 tcg_gen_ext32u_i64(reg, reg);
1589 } else {
1590 tcg_gen_ext32s_i64(reg, reg);
1592 if (d) {
1593 tcg_gen_sub_i64(reg, reg, val);
1594 ibound = (u ? 0 : INT32_MIN);
1595 cond = TCG_COND_LT;
1596 } else {
1597 tcg_gen_add_i64(reg, reg, val);
1598 ibound = (u ? UINT32_MAX : INT32_MAX);
1599 cond = TCG_COND_GT;
1601 bound = tcg_const_i64(ibound);
1602 tcg_gen_movcond_i64(cond, reg, reg, bound, bound, reg);
1603 tcg_temp_free_i64(bound);
1606 /* Similarly with 64-bit values. */
1607 static void do_sat_addsub_64(TCGv_i64 reg, TCGv_i64 val, bool u, bool d)
1609 TCGv_i64 t0 = tcg_temp_new_i64();
1610 TCGv_i64 t1 = tcg_temp_new_i64();
1611 TCGv_i64 t2;
1613 if (u) {
1614 if (d) {
1615 tcg_gen_sub_i64(t0, reg, val);
1616 tcg_gen_movi_i64(t1, 0);
1617 tcg_gen_movcond_i64(TCG_COND_LTU, reg, reg, val, t1, t0);
1618 } else {
1619 tcg_gen_add_i64(t0, reg, val);
1620 tcg_gen_movi_i64(t1, -1);
1621 tcg_gen_movcond_i64(TCG_COND_LTU, reg, t0, reg, t1, t0);
1623 } else {
1624 if (d) {
1625 /* Detect signed overflow for subtraction. */
1626 tcg_gen_xor_i64(t0, reg, val);
1627 tcg_gen_sub_i64(t1, reg, val);
1628 tcg_gen_xor_i64(reg, reg, t0);
1629 tcg_gen_and_i64(t0, t0, reg);
1631 /* Bound the result. */
1632 tcg_gen_movi_i64(reg, INT64_MIN);
1633 t2 = tcg_const_i64(0);
1634 tcg_gen_movcond_i64(TCG_COND_LT, reg, t0, t2, reg, t1);
1635 } else {
1636 /* Detect signed overflow for addition. */
1637 tcg_gen_xor_i64(t0, reg, val);
1638 tcg_gen_add_i64(reg, reg, val);
1639 tcg_gen_xor_i64(t1, reg, val);
1640 tcg_gen_andc_i64(t0, t1, t0);
1642 /* Bound the result. */
1643 tcg_gen_movi_i64(t1, INT64_MAX);
1644 t2 = tcg_const_i64(0);
1645 tcg_gen_movcond_i64(TCG_COND_LT, reg, t0, t2, t1, reg);
1647 tcg_temp_free_i64(t2);
1649 tcg_temp_free_i64(t0);
1650 tcg_temp_free_i64(t1);
1653 /* Similarly with a vector and a scalar operand. */
1654 static void do_sat_addsub_vec(DisasContext *s, int esz, int rd, int rn,
1655 TCGv_i64 val, bool u, bool d)
1657 unsigned vsz = vec_full_reg_size(s);
1658 TCGv_ptr dptr, nptr;
1659 TCGv_i32 t32, desc;
1660 TCGv_i64 t64;
1662 dptr = tcg_temp_new_ptr();
1663 nptr = tcg_temp_new_ptr();
1664 tcg_gen_addi_ptr(dptr, cpu_env, vec_full_reg_offset(s, rd));
1665 tcg_gen_addi_ptr(nptr, cpu_env, vec_full_reg_offset(s, rn));
1666 desc = tcg_const_i32(simd_desc(vsz, vsz, 0));
1668 switch (esz) {
1669 case MO_8:
1670 t32 = tcg_temp_new_i32();
1671 tcg_gen_extrl_i64_i32(t32, val);
1672 if (d) {
1673 tcg_gen_neg_i32(t32, t32);
1675 if (u) {
1676 gen_helper_sve_uqaddi_b(dptr, nptr, t32, desc);
1677 } else {
1678 gen_helper_sve_sqaddi_b(dptr, nptr, t32, desc);
1680 tcg_temp_free_i32(t32);
1681 break;
1683 case MO_16:
1684 t32 = tcg_temp_new_i32();
1685 tcg_gen_extrl_i64_i32(t32, val);
1686 if (d) {
1687 tcg_gen_neg_i32(t32, t32);
1689 if (u) {
1690 gen_helper_sve_uqaddi_h(dptr, nptr, t32, desc);
1691 } else {
1692 gen_helper_sve_sqaddi_h(dptr, nptr, t32, desc);
1694 tcg_temp_free_i32(t32);
1695 break;
1697 case MO_32:
1698 t64 = tcg_temp_new_i64();
1699 if (d) {
1700 tcg_gen_neg_i64(t64, val);
1701 } else {
1702 tcg_gen_mov_i64(t64, val);
1704 if (u) {
1705 gen_helper_sve_uqaddi_s(dptr, nptr, t64, desc);
1706 } else {
1707 gen_helper_sve_sqaddi_s(dptr, nptr, t64, desc);
1709 tcg_temp_free_i64(t64);
1710 break;
1712 case MO_64:
1713 if (u) {
1714 if (d) {
1715 gen_helper_sve_uqsubi_d(dptr, nptr, val, desc);
1716 } else {
1717 gen_helper_sve_uqaddi_d(dptr, nptr, val, desc);
1719 } else if (d) {
1720 t64 = tcg_temp_new_i64();
1721 tcg_gen_neg_i64(t64, val);
1722 gen_helper_sve_sqaddi_d(dptr, nptr, t64, desc);
1723 tcg_temp_free_i64(t64);
1724 } else {
1725 gen_helper_sve_sqaddi_d(dptr, nptr, val, desc);
1727 break;
1729 default:
1730 g_assert_not_reached();
1733 tcg_temp_free_ptr(dptr);
1734 tcg_temp_free_ptr(nptr);
1735 tcg_temp_free_i32(desc);
1738 static bool trans_CNT_r(DisasContext *s, arg_CNT_r *a, uint32_t insn)
1740 if (sve_access_check(s)) {
1741 unsigned fullsz = vec_full_reg_size(s);
1742 unsigned numelem = decode_pred_count(fullsz, a->pat, a->esz);
1743 tcg_gen_movi_i64(cpu_reg(s, a->rd), numelem * a->imm);
1745 return true;
1748 static bool trans_INCDEC_r(DisasContext *s, arg_incdec_cnt *a, uint32_t insn)
1750 if (sve_access_check(s)) {
1751 unsigned fullsz = vec_full_reg_size(s);
1752 unsigned numelem = decode_pred_count(fullsz, a->pat, a->esz);
1753 int inc = numelem * a->imm * (a->d ? -1 : 1);
1754 TCGv_i64 reg = cpu_reg(s, a->rd);
1756 tcg_gen_addi_i64(reg, reg, inc);
1758 return true;
1761 static bool trans_SINCDEC_r_32(DisasContext *s, arg_incdec_cnt *a,
1762 uint32_t insn)
1764 if (!sve_access_check(s)) {
1765 return true;
1768 unsigned fullsz = vec_full_reg_size(s);
1769 unsigned numelem = decode_pred_count(fullsz, a->pat, a->esz);
1770 int inc = numelem * a->imm;
1771 TCGv_i64 reg = cpu_reg(s, a->rd);
1773 /* Use normal 64-bit arithmetic to detect 32-bit overflow. */
1774 if (inc == 0) {
1775 if (a->u) {
1776 tcg_gen_ext32u_i64(reg, reg);
1777 } else {
1778 tcg_gen_ext32s_i64(reg, reg);
1780 } else {
1781 TCGv_i64 t = tcg_const_i64(inc);
1782 do_sat_addsub_32(reg, t, a->u, a->d);
1783 tcg_temp_free_i64(t);
1785 return true;
1788 static bool trans_SINCDEC_r_64(DisasContext *s, arg_incdec_cnt *a,
1789 uint32_t insn)
1791 if (!sve_access_check(s)) {
1792 return true;
1795 unsigned fullsz = vec_full_reg_size(s);
1796 unsigned numelem = decode_pred_count(fullsz, a->pat, a->esz);
1797 int inc = numelem * a->imm;
1798 TCGv_i64 reg = cpu_reg(s, a->rd);
1800 if (inc != 0) {
1801 TCGv_i64 t = tcg_const_i64(inc);
1802 do_sat_addsub_64(reg, t, a->u, a->d);
1803 tcg_temp_free_i64(t);
1805 return true;
1808 static bool trans_INCDEC_v(DisasContext *s, arg_incdec2_cnt *a, uint32_t insn)
1810 if (a->esz == 0) {
1811 return false;
1814 unsigned fullsz = vec_full_reg_size(s);
1815 unsigned numelem = decode_pred_count(fullsz, a->pat, a->esz);
1816 int inc = numelem * a->imm;
1818 if (inc != 0) {
1819 if (sve_access_check(s)) {
1820 TCGv_i64 t = tcg_const_i64(a->d ? -inc : inc);
1821 tcg_gen_gvec_adds(a->esz, vec_full_reg_offset(s, a->rd),
1822 vec_full_reg_offset(s, a->rn),
1823 t, fullsz, fullsz);
1824 tcg_temp_free_i64(t);
1826 } else {
1827 do_mov_z(s, a->rd, a->rn);
1829 return true;
1832 static bool trans_SINCDEC_v(DisasContext *s, arg_incdec2_cnt *a,
1833 uint32_t insn)
1835 if (a->esz == 0) {
1836 return false;
1839 unsigned fullsz = vec_full_reg_size(s);
1840 unsigned numelem = decode_pred_count(fullsz, a->pat, a->esz);
1841 int inc = numelem * a->imm;
1843 if (inc != 0) {
1844 if (sve_access_check(s)) {
1845 TCGv_i64 t = tcg_const_i64(inc);
1846 do_sat_addsub_vec(s, a->esz, a->rd, a->rn, t, a->u, a->d);
1847 tcg_temp_free_i64(t);
1849 } else {
1850 do_mov_z(s, a->rd, a->rn);
1852 return true;
1856 *** SVE Bitwise Immediate Group
1859 static bool do_zz_dbm(DisasContext *s, arg_rr_dbm *a, GVecGen2iFn *gvec_fn)
1861 uint64_t imm;
1862 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
1863 extract32(a->dbm, 0, 6),
1864 extract32(a->dbm, 6, 6))) {
1865 return false;
1867 if (sve_access_check(s)) {
1868 unsigned vsz = vec_full_reg_size(s);
1869 gvec_fn(MO_64, vec_full_reg_offset(s, a->rd),
1870 vec_full_reg_offset(s, a->rn), imm, vsz, vsz);
1872 return true;
1875 static bool trans_AND_zzi(DisasContext *s, arg_rr_dbm *a, uint32_t insn)
1877 return do_zz_dbm(s, a, tcg_gen_gvec_andi);
1880 static bool trans_ORR_zzi(DisasContext *s, arg_rr_dbm *a, uint32_t insn)
1882 return do_zz_dbm(s, a, tcg_gen_gvec_ori);
1885 static bool trans_EOR_zzi(DisasContext *s, arg_rr_dbm *a, uint32_t insn)
1887 return do_zz_dbm(s, a, tcg_gen_gvec_xori);
1890 static bool trans_DUPM(DisasContext *s, arg_DUPM *a, uint32_t insn)
1892 uint64_t imm;
1893 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
1894 extract32(a->dbm, 0, 6),
1895 extract32(a->dbm, 6, 6))) {
1896 return false;
1898 if (sve_access_check(s)) {
1899 do_dupi_z(s, a->rd, imm);
1901 return true;
1905 *** SVE Integer Wide Immediate - Predicated Group
1908 /* Implement all merging copies. This is used for CPY (immediate),
1909 * FCPY, CPY (scalar), CPY (SIMD&FP scalar).
1911 static void do_cpy_m(DisasContext *s, int esz, int rd, int rn, int pg,
1912 TCGv_i64 val)
1914 typedef void gen_cpy(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i64, TCGv_i32);
1915 static gen_cpy * const fns[4] = {
1916 gen_helper_sve_cpy_m_b, gen_helper_sve_cpy_m_h,
1917 gen_helper_sve_cpy_m_s, gen_helper_sve_cpy_m_d,
1919 unsigned vsz = vec_full_reg_size(s);
1920 TCGv_i32 desc = tcg_const_i32(simd_desc(vsz, vsz, 0));
1921 TCGv_ptr t_zd = tcg_temp_new_ptr();
1922 TCGv_ptr t_zn = tcg_temp_new_ptr();
1923 TCGv_ptr t_pg = tcg_temp_new_ptr();
1925 tcg_gen_addi_ptr(t_zd, cpu_env, vec_full_reg_offset(s, rd));
1926 tcg_gen_addi_ptr(t_zn, cpu_env, vec_full_reg_offset(s, rn));
1927 tcg_gen_addi_ptr(t_pg, cpu_env, pred_full_reg_offset(s, pg));
1929 fns[esz](t_zd, t_zn, t_pg, val, desc);
1931 tcg_temp_free_ptr(t_zd);
1932 tcg_temp_free_ptr(t_zn);
1933 tcg_temp_free_ptr(t_pg);
1934 tcg_temp_free_i32(desc);
1937 static bool trans_FCPY(DisasContext *s, arg_FCPY *a, uint32_t insn)
1939 if (a->esz == 0) {
1940 return false;
1942 if (sve_access_check(s)) {
1943 /* Decode the VFP immediate. */
1944 uint64_t imm = vfp_expand_imm(a->esz, a->imm);
1945 TCGv_i64 t_imm = tcg_const_i64(imm);
1946 do_cpy_m(s, a->esz, a->rd, a->rn, a->pg, t_imm);
1947 tcg_temp_free_i64(t_imm);
1949 return true;
1952 static bool trans_CPY_m_i(DisasContext *s, arg_rpri_esz *a, uint32_t insn)
1954 if (a->esz == 0 && extract32(insn, 13, 1)) {
1955 return false;
1957 if (sve_access_check(s)) {
1958 TCGv_i64 t_imm = tcg_const_i64(a->imm);
1959 do_cpy_m(s, a->esz, a->rd, a->rn, a->pg, t_imm);
1960 tcg_temp_free_i64(t_imm);
1962 return true;
1965 static bool trans_CPY_z_i(DisasContext *s, arg_CPY_z_i *a, uint32_t insn)
1967 static gen_helper_gvec_2i * const fns[4] = {
1968 gen_helper_sve_cpy_z_b, gen_helper_sve_cpy_z_h,
1969 gen_helper_sve_cpy_z_s, gen_helper_sve_cpy_z_d,
1972 if (a->esz == 0 && extract32(insn, 13, 1)) {
1973 return false;
1975 if (sve_access_check(s)) {
1976 unsigned vsz = vec_full_reg_size(s);
1977 TCGv_i64 t_imm = tcg_const_i64(a->imm);
1978 tcg_gen_gvec_2i_ool(vec_full_reg_offset(s, a->rd),
1979 pred_full_reg_offset(s, a->pg),
1980 t_imm, vsz, vsz, 0, fns[a->esz]);
1981 tcg_temp_free_i64(t_imm);
1983 return true;
1987 *** SVE Permute Extract Group
1990 static bool trans_EXT(DisasContext *s, arg_EXT *a, uint32_t insn)
1992 if (!sve_access_check(s)) {
1993 return true;
1996 unsigned vsz = vec_full_reg_size(s);
1997 unsigned n_ofs = a->imm >= vsz ? 0 : a->imm;
1998 unsigned n_siz = vsz - n_ofs;
1999 unsigned d = vec_full_reg_offset(s, a->rd);
2000 unsigned n = vec_full_reg_offset(s, a->rn);
2001 unsigned m = vec_full_reg_offset(s, a->rm);
2003 /* Use host vector move insns if we have appropriate sizes
2004 * and no unfortunate overlap.
2006 if (m != d
2007 && n_ofs == size_for_gvec(n_ofs)
2008 && n_siz == size_for_gvec(n_siz)
2009 && (d != n || n_siz <= n_ofs)) {
2010 tcg_gen_gvec_mov(0, d, n + n_ofs, n_siz, n_siz);
2011 if (n_ofs != 0) {
2012 tcg_gen_gvec_mov(0, d + n_siz, m, n_ofs, n_ofs);
2014 } else {
2015 tcg_gen_gvec_3_ool(d, n, m, vsz, vsz, n_ofs, gen_helper_sve_ext);
2017 return true;
2021 *** SVE Permute - Unpredicated Group
2024 static bool trans_DUP_s(DisasContext *s, arg_DUP_s *a, uint32_t insn)
2026 if (sve_access_check(s)) {
2027 unsigned vsz = vec_full_reg_size(s);
2028 tcg_gen_gvec_dup_i64(a->esz, vec_full_reg_offset(s, a->rd),
2029 vsz, vsz, cpu_reg_sp(s, a->rn));
2031 return true;
2034 static bool trans_DUP_x(DisasContext *s, arg_DUP_x *a, uint32_t insn)
2036 if ((a->imm & 0x1f) == 0) {
2037 return false;
2039 if (sve_access_check(s)) {
2040 unsigned vsz = vec_full_reg_size(s);
2041 unsigned dofs = vec_full_reg_offset(s, a->rd);
2042 unsigned esz, index;
2044 esz = ctz32(a->imm);
2045 index = a->imm >> (esz + 1);
2047 if ((index << esz) < vsz) {
2048 unsigned nofs = vec_reg_offset(s, a->rn, index, esz);
2049 tcg_gen_gvec_dup_mem(esz, dofs, nofs, vsz, vsz);
2050 } else {
2051 tcg_gen_gvec_dup64i(dofs, vsz, vsz, 0);
2054 return true;
2057 static void do_insr_i64(DisasContext *s, arg_rrr_esz *a, TCGv_i64 val)
2059 typedef void gen_insr(TCGv_ptr, TCGv_ptr, TCGv_i64, TCGv_i32);
2060 static gen_insr * const fns[4] = {
2061 gen_helper_sve_insr_b, gen_helper_sve_insr_h,
2062 gen_helper_sve_insr_s, gen_helper_sve_insr_d,
2064 unsigned vsz = vec_full_reg_size(s);
2065 TCGv_i32 desc = tcg_const_i32(simd_desc(vsz, vsz, 0));
2066 TCGv_ptr t_zd = tcg_temp_new_ptr();
2067 TCGv_ptr t_zn = tcg_temp_new_ptr();
2069 tcg_gen_addi_ptr(t_zd, cpu_env, vec_full_reg_offset(s, a->rd));
2070 tcg_gen_addi_ptr(t_zn, cpu_env, vec_full_reg_offset(s, a->rn));
2072 fns[a->esz](t_zd, t_zn, val, desc);
2074 tcg_temp_free_ptr(t_zd);
2075 tcg_temp_free_ptr(t_zn);
2076 tcg_temp_free_i32(desc);
2079 static bool trans_INSR_f(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
2081 if (sve_access_check(s)) {
2082 TCGv_i64 t = tcg_temp_new_i64();
2083 tcg_gen_ld_i64(t, cpu_env, vec_reg_offset(s, a->rm, 0, MO_64));
2084 do_insr_i64(s, a, t);
2085 tcg_temp_free_i64(t);
2087 return true;
2090 static bool trans_INSR_r(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
2092 if (sve_access_check(s)) {
2093 do_insr_i64(s, a, cpu_reg(s, a->rm));
2095 return true;
2098 static bool trans_REV_v(DisasContext *s, arg_rr_esz *a, uint32_t insn)
2100 static gen_helper_gvec_2 * const fns[4] = {
2101 gen_helper_sve_rev_b, gen_helper_sve_rev_h,
2102 gen_helper_sve_rev_s, gen_helper_sve_rev_d
2105 if (sve_access_check(s)) {
2106 unsigned vsz = vec_full_reg_size(s);
2107 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, a->rd),
2108 vec_full_reg_offset(s, a->rn),
2109 vsz, vsz, 0, fns[a->esz]);
2111 return true;
2114 static bool trans_TBL(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
2116 static gen_helper_gvec_3 * const fns[4] = {
2117 gen_helper_sve_tbl_b, gen_helper_sve_tbl_h,
2118 gen_helper_sve_tbl_s, gen_helper_sve_tbl_d
2121 if (sve_access_check(s)) {
2122 unsigned vsz = vec_full_reg_size(s);
2123 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, a->rd),
2124 vec_full_reg_offset(s, a->rn),
2125 vec_full_reg_offset(s, a->rm),
2126 vsz, vsz, 0, fns[a->esz]);
2128 return true;
2131 static bool trans_UNPK(DisasContext *s, arg_UNPK *a, uint32_t insn)
2133 static gen_helper_gvec_2 * const fns[4][2] = {
2134 { NULL, NULL },
2135 { gen_helper_sve_sunpk_h, gen_helper_sve_uunpk_h },
2136 { gen_helper_sve_sunpk_s, gen_helper_sve_uunpk_s },
2137 { gen_helper_sve_sunpk_d, gen_helper_sve_uunpk_d },
2140 if (a->esz == 0) {
2141 return false;
2143 if (sve_access_check(s)) {
2144 unsigned vsz = vec_full_reg_size(s);
2145 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, a->rd),
2146 vec_full_reg_offset(s, a->rn)
2147 + (a->h ? vsz / 2 : 0),
2148 vsz, vsz, 0, fns[a->esz][a->u]);
2150 return true;
2154 *** SVE Permute - Predicates Group
2157 static bool do_perm_pred3(DisasContext *s, arg_rrr_esz *a, bool high_odd,
2158 gen_helper_gvec_3 *fn)
2160 if (!sve_access_check(s)) {
2161 return true;
2164 unsigned vsz = pred_full_reg_size(s);
2166 /* Predicate sizes may be smaller and cannot use simd_desc.
2167 We cannot round up, as we do elsewhere, because we need
2168 the exact size for ZIP2 and REV. We retain the style for
2169 the other helpers for consistency. */
2170 TCGv_ptr t_d = tcg_temp_new_ptr();
2171 TCGv_ptr t_n = tcg_temp_new_ptr();
2172 TCGv_ptr t_m = tcg_temp_new_ptr();
2173 TCGv_i32 t_desc;
2174 int desc;
2176 desc = vsz - 2;
2177 desc = deposit32(desc, SIMD_DATA_SHIFT, 2, a->esz);
2178 desc = deposit32(desc, SIMD_DATA_SHIFT + 2, 2, high_odd);
2180 tcg_gen_addi_ptr(t_d, cpu_env, pred_full_reg_offset(s, a->rd));
2181 tcg_gen_addi_ptr(t_n, cpu_env, pred_full_reg_offset(s, a->rn));
2182 tcg_gen_addi_ptr(t_m, cpu_env, pred_full_reg_offset(s, a->rm));
2183 t_desc = tcg_const_i32(desc);
2185 fn(t_d, t_n, t_m, t_desc);
2187 tcg_temp_free_ptr(t_d);
2188 tcg_temp_free_ptr(t_n);
2189 tcg_temp_free_ptr(t_m);
2190 tcg_temp_free_i32(t_desc);
2191 return true;
2194 static bool do_perm_pred2(DisasContext *s, arg_rr_esz *a, bool high_odd,
2195 gen_helper_gvec_2 *fn)
2197 if (!sve_access_check(s)) {
2198 return true;
2201 unsigned vsz = pred_full_reg_size(s);
2202 TCGv_ptr t_d = tcg_temp_new_ptr();
2203 TCGv_ptr t_n = tcg_temp_new_ptr();
2204 TCGv_i32 t_desc;
2205 int desc;
2207 tcg_gen_addi_ptr(t_d, cpu_env, pred_full_reg_offset(s, a->rd));
2208 tcg_gen_addi_ptr(t_n, cpu_env, pred_full_reg_offset(s, a->rn));
2210 /* Predicate sizes may be smaller and cannot use simd_desc.
2211 We cannot round up, as we do elsewhere, because we need
2212 the exact size for ZIP2 and REV. We retain the style for
2213 the other helpers for consistency. */
2215 desc = vsz - 2;
2216 desc = deposit32(desc, SIMD_DATA_SHIFT, 2, a->esz);
2217 desc = deposit32(desc, SIMD_DATA_SHIFT + 2, 2, high_odd);
2218 t_desc = tcg_const_i32(desc);
2220 fn(t_d, t_n, t_desc);
2222 tcg_temp_free_i32(t_desc);
2223 tcg_temp_free_ptr(t_d);
2224 tcg_temp_free_ptr(t_n);
2225 return true;
2228 static bool trans_ZIP1_p(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
2230 return do_perm_pred3(s, a, 0, gen_helper_sve_zip_p);
2233 static bool trans_ZIP2_p(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
2235 return do_perm_pred3(s, a, 1, gen_helper_sve_zip_p);
2238 static bool trans_UZP1_p(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
2240 return do_perm_pred3(s, a, 0, gen_helper_sve_uzp_p);
2243 static bool trans_UZP2_p(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
2245 return do_perm_pred3(s, a, 1, gen_helper_sve_uzp_p);
2248 static bool trans_TRN1_p(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
2250 return do_perm_pred3(s, a, 0, gen_helper_sve_trn_p);
2253 static bool trans_TRN2_p(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
2255 return do_perm_pred3(s, a, 1, gen_helper_sve_trn_p);
2258 static bool trans_REV_p(DisasContext *s, arg_rr_esz *a, uint32_t insn)
2260 return do_perm_pred2(s, a, 0, gen_helper_sve_rev_p);
2263 static bool trans_PUNPKLO(DisasContext *s, arg_PUNPKLO *a, uint32_t insn)
2265 return do_perm_pred2(s, a, 0, gen_helper_sve_punpk_p);
2268 static bool trans_PUNPKHI(DisasContext *s, arg_PUNPKHI *a, uint32_t insn)
2270 return do_perm_pred2(s, a, 1, gen_helper_sve_punpk_p);
2274 *** SVE Permute - Interleaving Group
2277 static bool do_zip(DisasContext *s, arg_rrr_esz *a, bool high)
2279 static gen_helper_gvec_3 * const fns[4] = {
2280 gen_helper_sve_zip_b, gen_helper_sve_zip_h,
2281 gen_helper_sve_zip_s, gen_helper_sve_zip_d,
2284 if (sve_access_check(s)) {
2285 unsigned vsz = vec_full_reg_size(s);
2286 unsigned high_ofs = high ? vsz / 2 : 0;
2287 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, a->rd),
2288 vec_full_reg_offset(s, a->rn) + high_ofs,
2289 vec_full_reg_offset(s, a->rm) + high_ofs,
2290 vsz, vsz, 0, fns[a->esz]);
2292 return true;
2295 static bool do_zzz_data_ool(DisasContext *s, arg_rrr_esz *a, int data,
2296 gen_helper_gvec_3 *fn)
2298 if (sve_access_check(s)) {
2299 unsigned vsz = vec_full_reg_size(s);
2300 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, a->rd),
2301 vec_full_reg_offset(s, a->rn),
2302 vec_full_reg_offset(s, a->rm),
2303 vsz, vsz, data, fn);
2305 return true;
2308 static bool trans_ZIP1_z(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
2310 return do_zip(s, a, false);
2313 static bool trans_ZIP2_z(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
2315 return do_zip(s, a, true);
2318 static gen_helper_gvec_3 * const uzp_fns[4] = {
2319 gen_helper_sve_uzp_b, gen_helper_sve_uzp_h,
2320 gen_helper_sve_uzp_s, gen_helper_sve_uzp_d,
2323 static bool trans_UZP1_z(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
2325 return do_zzz_data_ool(s, a, 0, uzp_fns[a->esz]);
2328 static bool trans_UZP2_z(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
2330 return do_zzz_data_ool(s, a, 1 << a->esz, uzp_fns[a->esz]);
2333 static gen_helper_gvec_3 * const trn_fns[4] = {
2334 gen_helper_sve_trn_b, gen_helper_sve_trn_h,
2335 gen_helper_sve_trn_s, gen_helper_sve_trn_d,
2338 static bool trans_TRN1_z(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
2340 return do_zzz_data_ool(s, a, 0, trn_fns[a->esz]);
2343 static bool trans_TRN2_z(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
2345 return do_zzz_data_ool(s, a, 1 << a->esz, trn_fns[a->esz]);
2349 *** SVE Permute Vector - Predicated Group
2352 static bool trans_COMPACT(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
2354 static gen_helper_gvec_3 * const fns[4] = {
2355 NULL, NULL, gen_helper_sve_compact_s, gen_helper_sve_compact_d
2357 return do_zpz_ool(s, a, fns[a->esz]);
2360 /* Call the helper that computes the ARM LastActiveElement pseudocode
2361 * function, scaled by the element size. This includes the not found
2362 * indication; e.g. not found for esz=3 is -8.
2364 static void find_last_active(DisasContext *s, TCGv_i32 ret, int esz, int pg)
2366 /* Predicate sizes may be smaller and cannot use simd_desc. We cannot
2367 * round up, as we do elsewhere, because we need the exact size.
2369 TCGv_ptr t_p = tcg_temp_new_ptr();
2370 TCGv_i32 t_desc;
2371 unsigned vsz = pred_full_reg_size(s);
2372 unsigned desc;
2374 desc = vsz - 2;
2375 desc = deposit32(desc, SIMD_DATA_SHIFT, 2, esz);
2377 tcg_gen_addi_ptr(t_p, cpu_env, pred_full_reg_offset(s, pg));
2378 t_desc = tcg_const_i32(desc);
2380 gen_helper_sve_last_active_element(ret, t_p, t_desc);
2382 tcg_temp_free_i32(t_desc);
2383 tcg_temp_free_ptr(t_p);
2386 /* Increment LAST to the offset of the next element in the vector,
2387 * wrapping around to 0.
2389 static void incr_last_active(DisasContext *s, TCGv_i32 last, int esz)
2391 unsigned vsz = vec_full_reg_size(s);
2393 tcg_gen_addi_i32(last, last, 1 << esz);
2394 if (is_power_of_2(vsz)) {
2395 tcg_gen_andi_i32(last, last, vsz - 1);
2396 } else {
2397 TCGv_i32 max = tcg_const_i32(vsz);
2398 TCGv_i32 zero = tcg_const_i32(0);
2399 tcg_gen_movcond_i32(TCG_COND_GEU, last, last, max, zero, last);
2400 tcg_temp_free_i32(max);
2401 tcg_temp_free_i32(zero);
2405 /* If LAST < 0, set LAST to the offset of the last element in the vector. */
2406 static void wrap_last_active(DisasContext *s, TCGv_i32 last, int esz)
2408 unsigned vsz = vec_full_reg_size(s);
2410 if (is_power_of_2(vsz)) {
2411 tcg_gen_andi_i32(last, last, vsz - 1);
2412 } else {
2413 TCGv_i32 max = tcg_const_i32(vsz - (1 << esz));
2414 TCGv_i32 zero = tcg_const_i32(0);
2415 tcg_gen_movcond_i32(TCG_COND_LT, last, last, zero, max, last);
2416 tcg_temp_free_i32(max);
2417 tcg_temp_free_i32(zero);
2421 /* Load an unsigned element of ESZ from BASE+OFS. */
2422 static TCGv_i64 load_esz(TCGv_ptr base, int ofs, int esz)
2424 TCGv_i64 r = tcg_temp_new_i64();
2426 switch (esz) {
2427 case 0:
2428 tcg_gen_ld8u_i64(r, base, ofs);
2429 break;
2430 case 1:
2431 tcg_gen_ld16u_i64(r, base, ofs);
2432 break;
2433 case 2:
2434 tcg_gen_ld32u_i64(r, base, ofs);
2435 break;
2436 case 3:
2437 tcg_gen_ld_i64(r, base, ofs);
2438 break;
2439 default:
2440 g_assert_not_reached();
2442 return r;
2445 /* Load an unsigned element of ESZ from RM[LAST]. */
2446 static TCGv_i64 load_last_active(DisasContext *s, TCGv_i32 last,
2447 int rm, int esz)
2449 TCGv_ptr p = tcg_temp_new_ptr();
2450 TCGv_i64 r;
2452 /* Convert offset into vector into offset into ENV.
2453 * The final adjustment for the vector register base
2454 * is added via constant offset to the load.
2456 #ifdef HOST_WORDS_BIGENDIAN
2457 /* Adjust for element ordering. See vec_reg_offset. */
2458 if (esz < 3) {
2459 tcg_gen_xori_i32(last, last, 8 - (1 << esz));
2461 #endif
2462 tcg_gen_ext_i32_ptr(p, last);
2463 tcg_gen_add_ptr(p, p, cpu_env);
2465 r = load_esz(p, vec_full_reg_offset(s, rm), esz);
2466 tcg_temp_free_ptr(p);
2468 return r;
2471 /* Compute CLAST for a Zreg. */
2472 static bool do_clast_vector(DisasContext *s, arg_rprr_esz *a, bool before)
2474 TCGv_i32 last;
2475 TCGLabel *over;
2476 TCGv_i64 ele;
2477 unsigned vsz, esz = a->esz;
2479 if (!sve_access_check(s)) {
2480 return true;
2483 last = tcg_temp_local_new_i32();
2484 over = gen_new_label();
2486 find_last_active(s, last, esz, a->pg);
2488 /* There is of course no movcond for a 2048-bit vector,
2489 * so we must branch over the actual store.
2491 tcg_gen_brcondi_i32(TCG_COND_LT, last, 0, over);
2493 if (!before) {
2494 incr_last_active(s, last, esz);
2497 ele = load_last_active(s, last, a->rm, esz);
2498 tcg_temp_free_i32(last);
2500 vsz = vec_full_reg_size(s);
2501 tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd), vsz, vsz, ele);
2502 tcg_temp_free_i64(ele);
2504 /* If this insn used MOVPRFX, we may need a second move. */
2505 if (a->rd != a->rn) {
2506 TCGLabel *done = gen_new_label();
2507 tcg_gen_br(done);
2509 gen_set_label(over);
2510 do_mov_z(s, a->rd, a->rn);
2512 gen_set_label(done);
2513 } else {
2514 gen_set_label(over);
2516 return true;
2519 static bool trans_CLASTA_z(DisasContext *s, arg_rprr_esz *a, uint32_t insn)
2521 return do_clast_vector(s, a, false);
2524 static bool trans_CLASTB_z(DisasContext *s, arg_rprr_esz *a, uint32_t insn)
2526 return do_clast_vector(s, a, true);
2529 /* Compute CLAST for a scalar. */
2530 static void do_clast_scalar(DisasContext *s, int esz, int pg, int rm,
2531 bool before, TCGv_i64 reg_val)
2533 TCGv_i32 last = tcg_temp_new_i32();
2534 TCGv_i64 ele, cmp, zero;
2536 find_last_active(s, last, esz, pg);
2538 /* Extend the original value of last prior to incrementing. */
2539 cmp = tcg_temp_new_i64();
2540 tcg_gen_ext_i32_i64(cmp, last);
2542 if (!before) {
2543 incr_last_active(s, last, esz);
2546 /* The conceit here is that while last < 0 indicates not found, after
2547 * adjusting for cpu_env->vfp.zregs[rm], it is still a valid address
2548 * from which we can load garbage. We then discard the garbage with
2549 * a conditional move.
2551 ele = load_last_active(s, last, rm, esz);
2552 tcg_temp_free_i32(last);
2554 zero = tcg_const_i64(0);
2555 tcg_gen_movcond_i64(TCG_COND_GE, reg_val, cmp, zero, ele, reg_val);
2557 tcg_temp_free_i64(zero);
2558 tcg_temp_free_i64(cmp);
2559 tcg_temp_free_i64(ele);
2562 /* Compute CLAST for a Vreg. */
2563 static bool do_clast_fp(DisasContext *s, arg_rpr_esz *a, bool before)
2565 if (sve_access_check(s)) {
2566 int esz = a->esz;
2567 int ofs = vec_reg_offset(s, a->rd, 0, esz);
2568 TCGv_i64 reg = load_esz(cpu_env, ofs, esz);
2570 do_clast_scalar(s, esz, a->pg, a->rn, before, reg);
2571 write_fp_dreg(s, a->rd, reg);
2572 tcg_temp_free_i64(reg);
2574 return true;
2577 static bool trans_CLASTA_v(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
2579 return do_clast_fp(s, a, false);
2582 static bool trans_CLASTB_v(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
2584 return do_clast_fp(s, a, true);
2587 /* Compute CLAST for a Xreg. */
2588 static bool do_clast_general(DisasContext *s, arg_rpr_esz *a, bool before)
2590 TCGv_i64 reg;
2592 if (!sve_access_check(s)) {
2593 return true;
2596 reg = cpu_reg(s, a->rd);
2597 switch (a->esz) {
2598 case 0:
2599 tcg_gen_ext8u_i64(reg, reg);
2600 break;
2601 case 1:
2602 tcg_gen_ext16u_i64(reg, reg);
2603 break;
2604 case 2:
2605 tcg_gen_ext32u_i64(reg, reg);
2606 break;
2607 case 3:
2608 break;
2609 default:
2610 g_assert_not_reached();
2613 do_clast_scalar(s, a->esz, a->pg, a->rn, before, reg);
2614 return true;
2617 static bool trans_CLASTA_r(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
2619 return do_clast_general(s, a, false);
2622 static bool trans_CLASTB_r(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
2624 return do_clast_general(s, a, true);
2627 /* Compute LAST for a scalar. */
2628 static TCGv_i64 do_last_scalar(DisasContext *s, int esz,
2629 int pg, int rm, bool before)
2631 TCGv_i32 last = tcg_temp_new_i32();
2632 TCGv_i64 ret;
2634 find_last_active(s, last, esz, pg);
2635 if (before) {
2636 wrap_last_active(s, last, esz);
2637 } else {
2638 incr_last_active(s, last, esz);
2641 ret = load_last_active(s, last, rm, esz);
2642 tcg_temp_free_i32(last);
2643 return ret;
2646 /* Compute LAST for a Vreg. */
2647 static bool do_last_fp(DisasContext *s, arg_rpr_esz *a, bool before)
2649 if (sve_access_check(s)) {
2650 TCGv_i64 val = do_last_scalar(s, a->esz, a->pg, a->rn, before);
2651 write_fp_dreg(s, a->rd, val);
2652 tcg_temp_free_i64(val);
2654 return true;
2657 static bool trans_LASTA_v(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
2659 return do_last_fp(s, a, false);
2662 static bool trans_LASTB_v(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
2664 return do_last_fp(s, a, true);
2667 /* Compute LAST for a Xreg. */
2668 static bool do_last_general(DisasContext *s, arg_rpr_esz *a, bool before)
2670 if (sve_access_check(s)) {
2671 TCGv_i64 val = do_last_scalar(s, a->esz, a->pg, a->rn, before);
2672 tcg_gen_mov_i64(cpu_reg(s, a->rd), val);
2673 tcg_temp_free_i64(val);
2675 return true;
2678 static bool trans_LASTA_r(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
2680 return do_last_general(s, a, false);
2683 static bool trans_LASTB_r(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
2685 return do_last_general(s, a, true);
2688 static bool trans_CPY_m_r(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
2690 if (sve_access_check(s)) {
2691 do_cpy_m(s, a->esz, a->rd, a->rd, a->pg, cpu_reg_sp(s, a->rn));
2693 return true;
2696 static bool trans_CPY_m_v(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
2698 if (sve_access_check(s)) {
2699 int ofs = vec_reg_offset(s, a->rn, 0, a->esz);
2700 TCGv_i64 t = load_esz(cpu_env, ofs, a->esz);
2701 do_cpy_m(s, a->esz, a->rd, a->rd, a->pg, t);
2702 tcg_temp_free_i64(t);
2704 return true;
2707 static bool trans_REVB(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
2709 static gen_helper_gvec_3 * const fns[4] = {
2710 NULL,
2711 gen_helper_sve_revb_h,
2712 gen_helper_sve_revb_s,
2713 gen_helper_sve_revb_d,
2715 return do_zpz_ool(s, a, fns[a->esz]);
2718 static bool trans_REVH(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
2720 static gen_helper_gvec_3 * const fns[4] = {
2721 NULL,
2722 NULL,
2723 gen_helper_sve_revh_s,
2724 gen_helper_sve_revh_d,
2726 return do_zpz_ool(s, a, fns[a->esz]);
2729 static bool trans_REVW(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
2731 return do_zpz_ool(s, a, a->esz == 3 ? gen_helper_sve_revw_d : NULL);
2734 static bool trans_RBIT(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
2736 static gen_helper_gvec_3 * const fns[4] = {
2737 gen_helper_sve_rbit_b,
2738 gen_helper_sve_rbit_h,
2739 gen_helper_sve_rbit_s,
2740 gen_helper_sve_rbit_d,
2742 return do_zpz_ool(s, a, fns[a->esz]);
2745 static bool trans_SPLICE(DisasContext *s, arg_rprr_esz *a, uint32_t insn)
2747 if (sve_access_check(s)) {
2748 unsigned vsz = vec_full_reg_size(s);
2749 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, a->rd),
2750 vec_full_reg_offset(s, a->rn),
2751 vec_full_reg_offset(s, a->rm),
2752 pred_full_reg_offset(s, a->pg),
2753 vsz, vsz, a->esz, gen_helper_sve_splice);
2755 return true;
2759 *** SVE Integer Compare - Vectors Group
2762 static bool do_ppzz_flags(DisasContext *s, arg_rprr_esz *a,
2763 gen_helper_gvec_flags_4 *gen_fn)
2765 TCGv_ptr pd, zn, zm, pg;
2766 unsigned vsz;
2767 TCGv_i32 t;
2769 if (gen_fn == NULL) {
2770 return false;
2772 if (!sve_access_check(s)) {
2773 return true;
2776 vsz = vec_full_reg_size(s);
2777 t = tcg_const_i32(simd_desc(vsz, vsz, 0));
2778 pd = tcg_temp_new_ptr();
2779 zn = tcg_temp_new_ptr();
2780 zm = tcg_temp_new_ptr();
2781 pg = tcg_temp_new_ptr();
2783 tcg_gen_addi_ptr(pd, cpu_env, pred_full_reg_offset(s, a->rd));
2784 tcg_gen_addi_ptr(zn, cpu_env, vec_full_reg_offset(s, a->rn));
2785 tcg_gen_addi_ptr(zm, cpu_env, vec_full_reg_offset(s, a->rm));
2786 tcg_gen_addi_ptr(pg, cpu_env, pred_full_reg_offset(s, a->pg));
2788 gen_fn(t, pd, zn, zm, pg, t);
2790 tcg_temp_free_ptr(pd);
2791 tcg_temp_free_ptr(zn);
2792 tcg_temp_free_ptr(zm);
2793 tcg_temp_free_ptr(pg);
2795 do_pred_flags(t);
2797 tcg_temp_free_i32(t);
2798 return true;
2801 #define DO_PPZZ(NAME, name) \
2802 static bool trans_##NAME##_ppzz(DisasContext *s, arg_rprr_esz *a, \
2803 uint32_t insn) \
2805 static gen_helper_gvec_flags_4 * const fns[4] = { \
2806 gen_helper_sve_##name##_ppzz_b, gen_helper_sve_##name##_ppzz_h, \
2807 gen_helper_sve_##name##_ppzz_s, gen_helper_sve_##name##_ppzz_d, \
2808 }; \
2809 return do_ppzz_flags(s, a, fns[a->esz]); \
2812 DO_PPZZ(CMPEQ, cmpeq)
2813 DO_PPZZ(CMPNE, cmpne)
2814 DO_PPZZ(CMPGT, cmpgt)
2815 DO_PPZZ(CMPGE, cmpge)
2816 DO_PPZZ(CMPHI, cmphi)
2817 DO_PPZZ(CMPHS, cmphs)
2819 #undef DO_PPZZ
2821 #define DO_PPZW(NAME, name) \
2822 static bool trans_##NAME##_ppzw(DisasContext *s, arg_rprr_esz *a, \
2823 uint32_t insn) \
2825 static gen_helper_gvec_flags_4 * const fns[4] = { \
2826 gen_helper_sve_##name##_ppzw_b, gen_helper_sve_##name##_ppzw_h, \
2827 gen_helper_sve_##name##_ppzw_s, NULL \
2828 }; \
2829 return do_ppzz_flags(s, a, fns[a->esz]); \
2832 DO_PPZW(CMPEQ, cmpeq)
2833 DO_PPZW(CMPNE, cmpne)
2834 DO_PPZW(CMPGT, cmpgt)
2835 DO_PPZW(CMPGE, cmpge)
2836 DO_PPZW(CMPHI, cmphi)
2837 DO_PPZW(CMPHS, cmphs)
2838 DO_PPZW(CMPLT, cmplt)
2839 DO_PPZW(CMPLE, cmple)
2840 DO_PPZW(CMPLO, cmplo)
2841 DO_PPZW(CMPLS, cmpls)
2843 #undef DO_PPZW
2846 *** SVE Integer Compare - Immediate Groups
2849 static bool do_ppzi_flags(DisasContext *s, arg_rpri_esz *a,
2850 gen_helper_gvec_flags_3 *gen_fn)
2852 TCGv_ptr pd, zn, pg;
2853 unsigned vsz;
2854 TCGv_i32 t;
2856 if (gen_fn == NULL) {
2857 return false;
2859 if (!sve_access_check(s)) {
2860 return true;
2863 vsz = vec_full_reg_size(s);
2864 t = tcg_const_i32(simd_desc(vsz, vsz, a->imm));
2865 pd = tcg_temp_new_ptr();
2866 zn = tcg_temp_new_ptr();
2867 pg = tcg_temp_new_ptr();
2869 tcg_gen_addi_ptr(pd, cpu_env, pred_full_reg_offset(s, a->rd));
2870 tcg_gen_addi_ptr(zn, cpu_env, vec_full_reg_offset(s, a->rn));
2871 tcg_gen_addi_ptr(pg, cpu_env, pred_full_reg_offset(s, a->pg));
2873 gen_fn(t, pd, zn, pg, t);
2875 tcg_temp_free_ptr(pd);
2876 tcg_temp_free_ptr(zn);
2877 tcg_temp_free_ptr(pg);
2879 do_pred_flags(t);
2881 tcg_temp_free_i32(t);
2882 return true;
2885 #define DO_PPZI(NAME, name) \
2886 static bool trans_##NAME##_ppzi(DisasContext *s, arg_rpri_esz *a, \
2887 uint32_t insn) \
2889 static gen_helper_gvec_flags_3 * const fns[4] = { \
2890 gen_helper_sve_##name##_ppzi_b, gen_helper_sve_##name##_ppzi_h, \
2891 gen_helper_sve_##name##_ppzi_s, gen_helper_sve_##name##_ppzi_d, \
2892 }; \
2893 return do_ppzi_flags(s, a, fns[a->esz]); \
2896 DO_PPZI(CMPEQ, cmpeq)
2897 DO_PPZI(CMPNE, cmpne)
2898 DO_PPZI(CMPGT, cmpgt)
2899 DO_PPZI(CMPGE, cmpge)
2900 DO_PPZI(CMPHI, cmphi)
2901 DO_PPZI(CMPHS, cmphs)
2902 DO_PPZI(CMPLT, cmplt)
2903 DO_PPZI(CMPLE, cmple)
2904 DO_PPZI(CMPLO, cmplo)
2905 DO_PPZI(CMPLS, cmpls)
2907 #undef DO_PPZI
2910 *** SVE Partition Break Group
2913 static bool do_brk3(DisasContext *s, arg_rprr_s *a,
2914 gen_helper_gvec_4 *fn, gen_helper_gvec_flags_4 *fn_s)
2916 if (!sve_access_check(s)) {
2917 return true;
2920 unsigned vsz = pred_full_reg_size(s);
2922 /* Predicate sizes may be smaller and cannot use simd_desc. */
2923 TCGv_ptr d = tcg_temp_new_ptr();
2924 TCGv_ptr n = tcg_temp_new_ptr();
2925 TCGv_ptr m = tcg_temp_new_ptr();
2926 TCGv_ptr g = tcg_temp_new_ptr();
2927 TCGv_i32 t = tcg_const_i32(vsz - 2);
2929 tcg_gen_addi_ptr(d, cpu_env, pred_full_reg_offset(s, a->rd));
2930 tcg_gen_addi_ptr(n, cpu_env, pred_full_reg_offset(s, a->rn));
2931 tcg_gen_addi_ptr(m, cpu_env, pred_full_reg_offset(s, a->rm));
2932 tcg_gen_addi_ptr(g, cpu_env, pred_full_reg_offset(s, a->pg));
2934 if (a->s) {
2935 fn_s(t, d, n, m, g, t);
2936 do_pred_flags(t);
2937 } else {
2938 fn(d, n, m, g, t);
2940 tcg_temp_free_ptr(d);
2941 tcg_temp_free_ptr(n);
2942 tcg_temp_free_ptr(m);
2943 tcg_temp_free_ptr(g);
2944 tcg_temp_free_i32(t);
2945 return true;
2948 static bool do_brk2(DisasContext *s, arg_rpr_s *a,
2949 gen_helper_gvec_3 *fn, gen_helper_gvec_flags_3 *fn_s)
2951 if (!sve_access_check(s)) {
2952 return true;
2955 unsigned vsz = pred_full_reg_size(s);
2957 /* Predicate sizes may be smaller and cannot use simd_desc. */
2958 TCGv_ptr d = tcg_temp_new_ptr();
2959 TCGv_ptr n = tcg_temp_new_ptr();
2960 TCGv_ptr g = tcg_temp_new_ptr();
2961 TCGv_i32 t = tcg_const_i32(vsz - 2);
2963 tcg_gen_addi_ptr(d, cpu_env, pred_full_reg_offset(s, a->rd));
2964 tcg_gen_addi_ptr(n, cpu_env, pred_full_reg_offset(s, a->rn));
2965 tcg_gen_addi_ptr(g, cpu_env, pred_full_reg_offset(s, a->pg));
2967 if (a->s) {
2968 fn_s(t, d, n, g, t);
2969 do_pred_flags(t);
2970 } else {
2971 fn(d, n, g, t);
2973 tcg_temp_free_ptr(d);
2974 tcg_temp_free_ptr(n);
2975 tcg_temp_free_ptr(g);
2976 tcg_temp_free_i32(t);
2977 return true;
2980 static bool trans_BRKPA(DisasContext *s, arg_rprr_s *a, uint32_t insn)
2982 return do_brk3(s, a, gen_helper_sve_brkpa, gen_helper_sve_brkpas);
2985 static bool trans_BRKPB(DisasContext *s, arg_rprr_s *a, uint32_t insn)
2987 return do_brk3(s, a, gen_helper_sve_brkpb, gen_helper_sve_brkpbs);
2990 static bool trans_BRKA_m(DisasContext *s, arg_rpr_s *a, uint32_t insn)
2992 return do_brk2(s, a, gen_helper_sve_brka_m, gen_helper_sve_brkas_m);
2995 static bool trans_BRKB_m(DisasContext *s, arg_rpr_s *a, uint32_t insn)
2997 return do_brk2(s, a, gen_helper_sve_brkb_m, gen_helper_sve_brkbs_m);
3000 static bool trans_BRKA_z(DisasContext *s, arg_rpr_s *a, uint32_t insn)
3002 return do_brk2(s, a, gen_helper_sve_brka_z, gen_helper_sve_brkas_z);
3005 static bool trans_BRKB_z(DisasContext *s, arg_rpr_s *a, uint32_t insn)
3007 return do_brk2(s, a, gen_helper_sve_brkb_z, gen_helper_sve_brkbs_z);
3010 static bool trans_BRKN(DisasContext *s, arg_rpr_s *a, uint32_t insn)
3012 return do_brk2(s, a, gen_helper_sve_brkn, gen_helper_sve_brkns);
3016 *** SVE Predicate Count Group
3019 static void do_cntp(DisasContext *s, TCGv_i64 val, int esz, int pn, int pg)
3021 unsigned psz = pred_full_reg_size(s);
3023 if (psz <= 8) {
3024 uint64_t psz_mask;
3026 tcg_gen_ld_i64(val, cpu_env, pred_full_reg_offset(s, pn));
3027 if (pn != pg) {
3028 TCGv_i64 g = tcg_temp_new_i64();
3029 tcg_gen_ld_i64(g, cpu_env, pred_full_reg_offset(s, pg));
3030 tcg_gen_and_i64(val, val, g);
3031 tcg_temp_free_i64(g);
3034 /* Reduce the pred_esz_masks value simply to reduce the
3035 * size of the code generated here.
3037 psz_mask = MAKE_64BIT_MASK(0, psz * 8);
3038 tcg_gen_andi_i64(val, val, pred_esz_masks[esz] & psz_mask);
3040 tcg_gen_ctpop_i64(val, val);
3041 } else {
3042 TCGv_ptr t_pn = tcg_temp_new_ptr();
3043 TCGv_ptr t_pg = tcg_temp_new_ptr();
3044 unsigned desc;
3045 TCGv_i32 t_desc;
3047 desc = psz - 2;
3048 desc = deposit32(desc, SIMD_DATA_SHIFT, 2, esz);
3050 tcg_gen_addi_ptr(t_pn, cpu_env, pred_full_reg_offset(s, pn));
3051 tcg_gen_addi_ptr(t_pg, cpu_env, pred_full_reg_offset(s, pg));
3052 t_desc = tcg_const_i32(desc);
3054 gen_helper_sve_cntp(val, t_pn, t_pg, t_desc);
3055 tcg_temp_free_ptr(t_pn);
3056 tcg_temp_free_ptr(t_pg);
3057 tcg_temp_free_i32(t_desc);
3061 static bool trans_CNTP(DisasContext *s, arg_CNTP *a, uint32_t insn)
3063 if (sve_access_check(s)) {
3064 do_cntp(s, cpu_reg(s, a->rd), a->esz, a->rn, a->pg);
3066 return true;
3069 static bool trans_INCDECP_r(DisasContext *s, arg_incdec_pred *a,
3070 uint32_t insn)
3072 if (sve_access_check(s)) {
3073 TCGv_i64 reg = cpu_reg(s, a->rd);
3074 TCGv_i64 val = tcg_temp_new_i64();
3076 do_cntp(s, val, a->esz, a->pg, a->pg);
3077 if (a->d) {
3078 tcg_gen_sub_i64(reg, reg, val);
3079 } else {
3080 tcg_gen_add_i64(reg, reg, val);
3082 tcg_temp_free_i64(val);
3084 return true;
3087 static bool trans_INCDECP_z(DisasContext *s, arg_incdec2_pred *a,
3088 uint32_t insn)
3090 if (a->esz == 0) {
3091 return false;
3093 if (sve_access_check(s)) {
3094 unsigned vsz = vec_full_reg_size(s);
3095 TCGv_i64 val = tcg_temp_new_i64();
3096 GVecGen2sFn *gvec_fn = a->d ? tcg_gen_gvec_subs : tcg_gen_gvec_adds;
3098 do_cntp(s, val, a->esz, a->pg, a->pg);
3099 gvec_fn(a->esz, vec_full_reg_offset(s, a->rd),
3100 vec_full_reg_offset(s, a->rn), val, vsz, vsz);
3102 return true;
3105 static bool trans_SINCDECP_r_32(DisasContext *s, arg_incdec_pred *a,
3106 uint32_t insn)
3108 if (sve_access_check(s)) {
3109 TCGv_i64 reg = cpu_reg(s, a->rd);
3110 TCGv_i64 val = tcg_temp_new_i64();
3112 do_cntp(s, val, a->esz, a->pg, a->pg);
3113 do_sat_addsub_32(reg, val, a->u, a->d);
3115 return true;
3118 static bool trans_SINCDECP_r_64(DisasContext *s, arg_incdec_pred *a,
3119 uint32_t insn)
3121 if (sve_access_check(s)) {
3122 TCGv_i64 reg = cpu_reg(s, a->rd);
3123 TCGv_i64 val = tcg_temp_new_i64();
3125 do_cntp(s, val, a->esz, a->pg, a->pg);
3126 do_sat_addsub_64(reg, val, a->u, a->d);
3128 return true;
3131 static bool trans_SINCDECP_z(DisasContext *s, arg_incdec2_pred *a,
3132 uint32_t insn)
3134 if (a->esz == 0) {
3135 return false;
3137 if (sve_access_check(s)) {
3138 TCGv_i64 val = tcg_temp_new_i64();
3139 do_cntp(s, val, a->esz, a->pg, a->pg);
3140 do_sat_addsub_vec(s, a->esz, a->rd, a->rn, val, a->u, a->d);
3142 return true;
3146 *** SVE Integer Compare Scalars Group
3149 static bool trans_CTERM(DisasContext *s, arg_CTERM *a, uint32_t insn)
3151 if (!sve_access_check(s)) {
3152 return true;
3155 TCGCond cond = (a->ne ? TCG_COND_NE : TCG_COND_EQ);
3156 TCGv_i64 rn = read_cpu_reg(s, a->rn, a->sf);
3157 TCGv_i64 rm = read_cpu_reg(s, a->rm, a->sf);
3158 TCGv_i64 cmp = tcg_temp_new_i64();
3160 tcg_gen_setcond_i64(cond, cmp, rn, rm);
3161 tcg_gen_extrl_i64_i32(cpu_NF, cmp);
3162 tcg_temp_free_i64(cmp);
3164 /* VF = !NF & !CF. */
3165 tcg_gen_xori_i32(cpu_VF, cpu_NF, 1);
3166 tcg_gen_andc_i32(cpu_VF, cpu_VF, cpu_CF);
3168 /* Both NF and VF actually look at bit 31. */
3169 tcg_gen_neg_i32(cpu_NF, cpu_NF);
3170 tcg_gen_neg_i32(cpu_VF, cpu_VF);
3171 return true;
3174 static bool trans_WHILE(DisasContext *s, arg_WHILE *a, uint32_t insn)
3176 if (!sve_access_check(s)) {
3177 return true;
3180 TCGv_i64 op0 = read_cpu_reg(s, a->rn, 1);
3181 TCGv_i64 op1 = read_cpu_reg(s, a->rm, 1);
3182 TCGv_i64 t0 = tcg_temp_new_i64();
3183 TCGv_i64 t1 = tcg_temp_new_i64();
3184 TCGv_i32 t2, t3;
3185 TCGv_ptr ptr;
3186 unsigned desc, vsz = vec_full_reg_size(s);
3187 TCGCond cond;
3189 if (!a->sf) {
3190 if (a->u) {
3191 tcg_gen_ext32u_i64(op0, op0);
3192 tcg_gen_ext32u_i64(op1, op1);
3193 } else {
3194 tcg_gen_ext32s_i64(op0, op0);
3195 tcg_gen_ext32s_i64(op1, op1);
3199 /* For the helper, compress the different conditions into a computation
3200 * of how many iterations for which the condition is true.
3202 * This is slightly complicated by 0 <= UINT64_MAX, which is nominally
3203 * 2**64 iterations, overflowing to 0. Of course, predicate registers
3204 * aren't that large, so any value >= predicate size is sufficient.
3206 tcg_gen_sub_i64(t0, op1, op0);
3208 /* t0 = MIN(op1 - op0, vsz). */
3209 tcg_gen_movi_i64(t1, vsz);
3210 tcg_gen_umin_i64(t0, t0, t1);
3211 if (a->eq) {
3212 /* Equality means one more iteration. */
3213 tcg_gen_addi_i64(t0, t0, 1);
3216 /* t0 = (condition true ? t0 : 0). */
3217 cond = (a->u
3218 ? (a->eq ? TCG_COND_LEU : TCG_COND_LTU)
3219 : (a->eq ? TCG_COND_LE : TCG_COND_LT));
3220 tcg_gen_movi_i64(t1, 0);
3221 tcg_gen_movcond_i64(cond, t0, op0, op1, t0, t1);
3223 t2 = tcg_temp_new_i32();
3224 tcg_gen_extrl_i64_i32(t2, t0);
3225 tcg_temp_free_i64(t0);
3226 tcg_temp_free_i64(t1);
3228 desc = (vsz / 8) - 2;
3229 desc = deposit32(desc, SIMD_DATA_SHIFT, 2, a->esz);
3230 t3 = tcg_const_i32(desc);
3232 ptr = tcg_temp_new_ptr();
3233 tcg_gen_addi_ptr(ptr, cpu_env, pred_full_reg_offset(s, a->rd));
3235 gen_helper_sve_while(t2, ptr, t2, t3);
3236 do_pred_flags(t2);
3238 tcg_temp_free_ptr(ptr);
3239 tcg_temp_free_i32(t2);
3240 tcg_temp_free_i32(t3);
3241 return true;
3245 *** SVE Integer Wide Immediate - Unpredicated Group
3248 static bool trans_FDUP(DisasContext *s, arg_FDUP *a, uint32_t insn)
3250 if (a->esz == 0) {
3251 return false;
3253 if (sve_access_check(s)) {
3254 unsigned vsz = vec_full_reg_size(s);
3255 int dofs = vec_full_reg_offset(s, a->rd);
3256 uint64_t imm;
3258 /* Decode the VFP immediate. */
3259 imm = vfp_expand_imm(a->esz, a->imm);
3260 imm = dup_const(a->esz, imm);
3262 tcg_gen_gvec_dup64i(dofs, vsz, vsz, imm);
3264 return true;
3267 static bool trans_DUP_i(DisasContext *s, arg_DUP_i *a, uint32_t insn)
3269 if (a->esz == 0 && extract32(insn, 13, 1)) {
3270 return false;
3272 if (sve_access_check(s)) {
3273 unsigned vsz = vec_full_reg_size(s);
3274 int dofs = vec_full_reg_offset(s, a->rd);
3276 tcg_gen_gvec_dup64i(dofs, vsz, vsz, dup_const(a->esz, a->imm));
3278 return true;
3281 static bool trans_ADD_zzi(DisasContext *s, arg_rri_esz *a, uint32_t insn)
3283 if (a->esz == 0 && extract32(insn, 13, 1)) {
3284 return false;
3286 if (sve_access_check(s)) {
3287 unsigned vsz = vec_full_reg_size(s);
3288 tcg_gen_gvec_addi(a->esz, vec_full_reg_offset(s, a->rd),
3289 vec_full_reg_offset(s, a->rn), a->imm, vsz, vsz);
3291 return true;
3294 static bool trans_SUB_zzi(DisasContext *s, arg_rri_esz *a, uint32_t insn)
3296 a->imm = -a->imm;
3297 return trans_ADD_zzi(s, a, insn);
3300 static bool trans_SUBR_zzi(DisasContext *s, arg_rri_esz *a, uint32_t insn)
3302 static const GVecGen2s op[4] = {
3303 { .fni8 = tcg_gen_vec_sub8_i64,
3304 .fniv = tcg_gen_sub_vec,
3305 .fno = gen_helper_sve_subri_b,
3306 .opc = INDEX_op_sub_vec,
3307 .vece = MO_8,
3308 .scalar_first = true },
3309 { .fni8 = tcg_gen_vec_sub16_i64,
3310 .fniv = tcg_gen_sub_vec,
3311 .fno = gen_helper_sve_subri_h,
3312 .opc = INDEX_op_sub_vec,
3313 .vece = MO_16,
3314 .scalar_first = true },
3315 { .fni4 = tcg_gen_sub_i32,
3316 .fniv = tcg_gen_sub_vec,
3317 .fno = gen_helper_sve_subri_s,
3318 .opc = INDEX_op_sub_vec,
3319 .vece = MO_32,
3320 .scalar_first = true },
3321 { .fni8 = tcg_gen_sub_i64,
3322 .fniv = tcg_gen_sub_vec,
3323 .fno = gen_helper_sve_subri_d,
3324 .opc = INDEX_op_sub_vec,
3325 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3326 .vece = MO_64,
3327 .scalar_first = true }
3330 if (a->esz == 0 && extract32(insn, 13, 1)) {
3331 return false;
3333 if (sve_access_check(s)) {
3334 unsigned vsz = vec_full_reg_size(s);
3335 TCGv_i64 c = tcg_const_i64(a->imm);
3336 tcg_gen_gvec_2s(vec_full_reg_offset(s, a->rd),
3337 vec_full_reg_offset(s, a->rn),
3338 vsz, vsz, c, &op[a->esz]);
3339 tcg_temp_free_i64(c);
3341 return true;
3344 static bool trans_MUL_zzi(DisasContext *s, arg_rri_esz *a, uint32_t insn)
3346 if (sve_access_check(s)) {
3347 unsigned vsz = vec_full_reg_size(s);
3348 tcg_gen_gvec_muli(a->esz, vec_full_reg_offset(s, a->rd),
3349 vec_full_reg_offset(s, a->rn), a->imm, vsz, vsz);
3351 return true;
3354 static bool do_zzi_sat(DisasContext *s, arg_rri_esz *a, uint32_t insn,
3355 bool u, bool d)
3357 if (a->esz == 0 && extract32(insn, 13, 1)) {
3358 return false;
3360 if (sve_access_check(s)) {
3361 TCGv_i64 val = tcg_const_i64(a->imm);
3362 do_sat_addsub_vec(s, a->esz, a->rd, a->rn, val, u, d);
3363 tcg_temp_free_i64(val);
3365 return true;
3368 static bool trans_SQADD_zzi(DisasContext *s, arg_rri_esz *a, uint32_t insn)
3370 return do_zzi_sat(s, a, insn, false, false);
3373 static bool trans_UQADD_zzi(DisasContext *s, arg_rri_esz *a, uint32_t insn)
3375 return do_zzi_sat(s, a, insn, true, false);
3378 static bool trans_SQSUB_zzi(DisasContext *s, arg_rri_esz *a, uint32_t insn)
3380 return do_zzi_sat(s, a, insn, false, true);
3383 static bool trans_UQSUB_zzi(DisasContext *s, arg_rri_esz *a, uint32_t insn)
3385 return do_zzi_sat(s, a, insn, true, true);
3388 static bool do_zzi_ool(DisasContext *s, arg_rri_esz *a, gen_helper_gvec_2i *fn)
3390 if (sve_access_check(s)) {
3391 unsigned vsz = vec_full_reg_size(s);
3392 TCGv_i64 c = tcg_const_i64(a->imm);
3394 tcg_gen_gvec_2i_ool(vec_full_reg_offset(s, a->rd),
3395 vec_full_reg_offset(s, a->rn),
3396 c, vsz, vsz, 0, fn);
3397 tcg_temp_free_i64(c);
3399 return true;
3402 #define DO_ZZI(NAME, name) \
3403 static bool trans_##NAME##_zzi(DisasContext *s, arg_rri_esz *a, \
3404 uint32_t insn) \
3406 static gen_helper_gvec_2i * const fns[4] = { \
3407 gen_helper_sve_##name##i_b, gen_helper_sve_##name##i_h, \
3408 gen_helper_sve_##name##i_s, gen_helper_sve_##name##i_d, \
3409 }; \
3410 return do_zzi_ool(s, a, fns[a->esz]); \
3413 DO_ZZI(SMAX, smax)
3414 DO_ZZI(UMAX, umax)
3415 DO_ZZI(SMIN, smin)
3416 DO_ZZI(UMIN, umin)
3418 #undef DO_ZZI
3420 static bool trans_DOT_zzz(DisasContext *s, arg_DOT_zzz *a, uint32_t insn)
3422 static gen_helper_gvec_3 * const fns[2][2] = {
3423 { gen_helper_gvec_sdot_b, gen_helper_gvec_sdot_h },
3424 { gen_helper_gvec_udot_b, gen_helper_gvec_udot_h }
3427 if (sve_access_check(s)) {
3428 unsigned vsz = vec_full_reg_size(s);
3429 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, a->rd),
3430 vec_full_reg_offset(s, a->rn),
3431 vec_full_reg_offset(s, a->rm),
3432 vsz, vsz, 0, fns[a->u][a->sz]);
3434 return true;
3437 static bool trans_DOT_zzx(DisasContext *s, arg_DOT_zzx *a, uint32_t insn)
3439 static gen_helper_gvec_3 * const fns[2][2] = {
3440 { gen_helper_gvec_sdot_idx_b, gen_helper_gvec_sdot_idx_h },
3441 { gen_helper_gvec_udot_idx_b, gen_helper_gvec_udot_idx_h }
3444 if (sve_access_check(s)) {
3445 unsigned vsz = vec_full_reg_size(s);
3446 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, a->rd),
3447 vec_full_reg_offset(s, a->rn),
3448 vec_full_reg_offset(s, a->rm),
3449 vsz, vsz, a->index, fns[a->u][a->sz]);
3451 return true;
3456 *** SVE Floating Point Multiply-Add Indexed Group
3459 static bool trans_FMLA_zzxz(DisasContext *s, arg_FMLA_zzxz *a, uint32_t insn)
3461 static gen_helper_gvec_4_ptr * const fns[3] = {
3462 gen_helper_gvec_fmla_idx_h,
3463 gen_helper_gvec_fmla_idx_s,
3464 gen_helper_gvec_fmla_idx_d,
3467 if (sve_access_check(s)) {
3468 unsigned vsz = vec_full_reg_size(s);
3469 TCGv_ptr status = get_fpstatus_ptr(a->esz == MO_16);
3470 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, a->rd),
3471 vec_full_reg_offset(s, a->rn),
3472 vec_full_reg_offset(s, a->rm),
3473 vec_full_reg_offset(s, a->ra),
3474 status, vsz, vsz, (a->index << 1) | a->sub,
3475 fns[a->esz - 1]);
3476 tcg_temp_free_ptr(status);
3478 return true;
3482 *** SVE Floating Point Multiply Indexed Group
3485 static bool trans_FMUL_zzx(DisasContext *s, arg_FMUL_zzx *a, uint32_t insn)
3487 static gen_helper_gvec_3_ptr * const fns[3] = {
3488 gen_helper_gvec_fmul_idx_h,
3489 gen_helper_gvec_fmul_idx_s,
3490 gen_helper_gvec_fmul_idx_d,
3493 if (sve_access_check(s)) {
3494 unsigned vsz = vec_full_reg_size(s);
3495 TCGv_ptr status = get_fpstatus_ptr(a->esz == MO_16);
3496 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
3497 vec_full_reg_offset(s, a->rn),
3498 vec_full_reg_offset(s, a->rm),
3499 status, vsz, vsz, a->index, fns[a->esz - 1]);
3500 tcg_temp_free_ptr(status);
3502 return true;
3506 *** SVE Floating Point Fast Reduction Group
3509 typedef void gen_helper_fp_reduce(TCGv_i64, TCGv_ptr, TCGv_ptr,
3510 TCGv_ptr, TCGv_i32);
3512 static void do_reduce(DisasContext *s, arg_rpr_esz *a,
3513 gen_helper_fp_reduce *fn)
3515 unsigned vsz = vec_full_reg_size(s);
3516 unsigned p2vsz = pow2ceil(vsz);
3517 TCGv_i32 t_desc = tcg_const_i32(simd_desc(vsz, p2vsz, 0));
3518 TCGv_ptr t_zn, t_pg, status;
3519 TCGv_i64 temp;
3521 temp = tcg_temp_new_i64();
3522 t_zn = tcg_temp_new_ptr();
3523 t_pg = tcg_temp_new_ptr();
3525 tcg_gen_addi_ptr(t_zn, cpu_env, vec_full_reg_offset(s, a->rn));
3526 tcg_gen_addi_ptr(t_pg, cpu_env, pred_full_reg_offset(s, a->pg));
3527 status = get_fpstatus_ptr(a->esz == MO_16);
3529 fn(temp, t_zn, t_pg, status, t_desc);
3530 tcg_temp_free_ptr(t_zn);
3531 tcg_temp_free_ptr(t_pg);
3532 tcg_temp_free_ptr(status);
3533 tcg_temp_free_i32(t_desc);
3535 write_fp_dreg(s, a->rd, temp);
3536 tcg_temp_free_i64(temp);
3539 #define DO_VPZ(NAME, name) \
3540 static bool trans_##NAME(DisasContext *s, arg_rpr_esz *a, uint32_t insn) \
3542 static gen_helper_fp_reduce * const fns[3] = { \
3543 gen_helper_sve_##name##_h, \
3544 gen_helper_sve_##name##_s, \
3545 gen_helper_sve_##name##_d, \
3546 }; \
3547 if (a->esz == 0) { \
3548 return false; \
3550 if (sve_access_check(s)) { \
3551 do_reduce(s, a, fns[a->esz - 1]); \
3553 return true; \
3556 DO_VPZ(FADDV, faddv)
3557 DO_VPZ(FMINNMV, fminnmv)
3558 DO_VPZ(FMAXNMV, fmaxnmv)
3559 DO_VPZ(FMINV, fminv)
3560 DO_VPZ(FMAXV, fmaxv)
3563 *** SVE Floating Point Unary Operations - Unpredicated Group
3566 static void do_zz_fp(DisasContext *s, arg_rr_esz *a, gen_helper_gvec_2_ptr *fn)
3568 unsigned vsz = vec_full_reg_size(s);
3569 TCGv_ptr status = get_fpstatus_ptr(a->esz == MO_16);
3571 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, a->rd),
3572 vec_full_reg_offset(s, a->rn),
3573 status, vsz, vsz, 0, fn);
3574 tcg_temp_free_ptr(status);
3577 static bool trans_FRECPE(DisasContext *s, arg_rr_esz *a, uint32_t insn)
3579 static gen_helper_gvec_2_ptr * const fns[3] = {
3580 gen_helper_gvec_frecpe_h,
3581 gen_helper_gvec_frecpe_s,
3582 gen_helper_gvec_frecpe_d,
3584 if (a->esz == 0) {
3585 return false;
3587 if (sve_access_check(s)) {
3588 do_zz_fp(s, a, fns[a->esz - 1]);
3590 return true;
3593 static bool trans_FRSQRTE(DisasContext *s, arg_rr_esz *a, uint32_t insn)
3595 static gen_helper_gvec_2_ptr * const fns[3] = {
3596 gen_helper_gvec_frsqrte_h,
3597 gen_helper_gvec_frsqrte_s,
3598 gen_helper_gvec_frsqrte_d,
3600 if (a->esz == 0) {
3601 return false;
3603 if (sve_access_check(s)) {
3604 do_zz_fp(s, a, fns[a->esz - 1]);
3606 return true;
3610 *** SVE Floating Point Compare with Zero Group
3613 static void do_ppz_fp(DisasContext *s, arg_rpr_esz *a,
3614 gen_helper_gvec_3_ptr *fn)
3616 unsigned vsz = vec_full_reg_size(s);
3617 TCGv_ptr status = get_fpstatus_ptr(a->esz == MO_16);
3619 tcg_gen_gvec_3_ptr(pred_full_reg_offset(s, a->rd),
3620 vec_full_reg_offset(s, a->rn),
3621 pred_full_reg_offset(s, a->pg),
3622 status, vsz, vsz, 0, fn);
3623 tcg_temp_free_ptr(status);
3626 #define DO_PPZ(NAME, name) \
3627 static bool trans_##NAME(DisasContext *s, arg_rpr_esz *a, uint32_t insn) \
3629 static gen_helper_gvec_3_ptr * const fns[3] = { \
3630 gen_helper_sve_##name##_h, \
3631 gen_helper_sve_##name##_s, \
3632 gen_helper_sve_##name##_d, \
3633 }; \
3634 if (a->esz == 0) { \
3635 return false; \
3637 if (sve_access_check(s)) { \
3638 do_ppz_fp(s, a, fns[a->esz - 1]); \
3640 return true; \
3643 DO_PPZ(FCMGE_ppz0, fcmge0)
3644 DO_PPZ(FCMGT_ppz0, fcmgt0)
3645 DO_PPZ(FCMLE_ppz0, fcmle0)
3646 DO_PPZ(FCMLT_ppz0, fcmlt0)
3647 DO_PPZ(FCMEQ_ppz0, fcmeq0)
3648 DO_PPZ(FCMNE_ppz0, fcmne0)
3650 #undef DO_PPZ
3653 *** SVE floating-point trig multiply-add coefficient
3656 static bool trans_FTMAD(DisasContext *s, arg_FTMAD *a, uint32_t insn)
3658 static gen_helper_gvec_3_ptr * const fns[3] = {
3659 gen_helper_sve_ftmad_h,
3660 gen_helper_sve_ftmad_s,
3661 gen_helper_sve_ftmad_d,
3664 if (a->esz == 0) {
3665 return false;
3667 if (sve_access_check(s)) {
3668 unsigned vsz = vec_full_reg_size(s);
3669 TCGv_ptr status = get_fpstatus_ptr(a->esz == MO_16);
3670 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
3671 vec_full_reg_offset(s, a->rn),
3672 vec_full_reg_offset(s, a->rm),
3673 status, vsz, vsz, a->imm, fns[a->esz - 1]);
3674 tcg_temp_free_ptr(status);
3676 return true;
3680 *** SVE Floating Point Accumulating Reduction Group
3683 static bool trans_FADDA(DisasContext *s, arg_rprr_esz *a, uint32_t insn)
3685 typedef void fadda_fn(TCGv_i64, TCGv_i64, TCGv_ptr,
3686 TCGv_ptr, TCGv_ptr, TCGv_i32);
3687 static fadda_fn * const fns[3] = {
3688 gen_helper_sve_fadda_h,
3689 gen_helper_sve_fadda_s,
3690 gen_helper_sve_fadda_d,
3692 unsigned vsz = vec_full_reg_size(s);
3693 TCGv_ptr t_rm, t_pg, t_fpst;
3694 TCGv_i64 t_val;
3695 TCGv_i32 t_desc;
3697 if (a->esz == 0) {
3698 return false;
3700 if (!sve_access_check(s)) {
3701 return true;
3704 t_val = load_esz(cpu_env, vec_reg_offset(s, a->rn, 0, a->esz), a->esz);
3705 t_rm = tcg_temp_new_ptr();
3706 t_pg = tcg_temp_new_ptr();
3707 tcg_gen_addi_ptr(t_rm, cpu_env, vec_full_reg_offset(s, a->rm));
3708 tcg_gen_addi_ptr(t_pg, cpu_env, pred_full_reg_offset(s, a->pg));
3709 t_fpst = get_fpstatus_ptr(a->esz == MO_16);
3710 t_desc = tcg_const_i32(simd_desc(vsz, vsz, 0));
3712 fns[a->esz - 1](t_val, t_val, t_rm, t_pg, t_fpst, t_desc);
3714 tcg_temp_free_i32(t_desc);
3715 tcg_temp_free_ptr(t_fpst);
3716 tcg_temp_free_ptr(t_pg);
3717 tcg_temp_free_ptr(t_rm);
3719 write_fp_dreg(s, a->rd, t_val);
3720 tcg_temp_free_i64(t_val);
3721 return true;
3725 *** SVE Floating Point Arithmetic - Unpredicated Group
3728 static bool do_zzz_fp(DisasContext *s, arg_rrr_esz *a,
3729 gen_helper_gvec_3_ptr *fn)
3731 if (fn == NULL) {
3732 return false;
3734 if (sve_access_check(s)) {
3735 unsigned vsz = vec_full_reg_size(s);
3736 TCGv_ptr status = get_fpstatus_ptr(a->esz == MO_16);
3737 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
3738 vec_full_reg_offset(s, a->rn),
3739 vec_full_reg_offset(s, a->rm),
3740 status, vsz, vsz, 0, fn);
3741 tcg_temp_free_ptr(status);
3743 return true;
3747 #define DO_FP3(NAME, name) \
3748 static bool trans_##NAME(DisasContext *s, arg_rrr_esz *a, uint32_t insn) \
3750 static gen_helper_gvec_3_ptr * const fns[4] = { \
3751 NULL, gen_helper_gvec_##name##_h, \
3752 gen_helper_gvec_##name##_s, gen_helper_gvec_##name##_d \
3753 }; \
3754 return do_zzz_fp(s, a, fns[a->esz]); \
3757 DO_FP3(FADD_zzz, fadd)
3758 DO_FP3(FSUB_zzz, fsub)
3759 DO_FP3(FMUL_zzz, fmul)
3760 DO_FP3(FTSMUL, ftsmul)
3761 DO_FP3(FRECPS, recps)
3762 DO_FP3(FRSQRTS, rsqrts)
3764 #undef DO_FP3
3767 *** SVE Floating Point Arithmetic - Predicated Group
3770 static bool do_zpzz_fp(DisasContext *s, arg_rprr_esz *a,
3771 gen_helper_gvec_4_ptr *fn)
3773 if (fn == NULL) {
3774 return false;
3776 if (sve_access_check(s)) {
3777 unsigned vsz = vec_full_reg_size(s);
3778 TCGv_ptr status = get_fpstatus_ptr(a->esz == MO_16);
3779 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, a->rd),
3780 vec_full_reg_offset(s, a->rn),
3781 vec_full_reg_offset(s, a->rm),
3782 pred_full_reg_offset(s, a->pg),
3783 status, vsz, vsz, 0, fn);
3784 tcg_temp_free_ptr(status);
3786 return true;
3789 #define DO_FP3(NAME, name) \
3790 static bool trans_##NAME(DisasContext *s, arg_rprr_esz *a, uint32_t insn) \
3792 static gen_helper_gvec_4_ptr * const fns[4] = { \
3793 NULL, gen_helper_sve_##name##_h, \
3794 gen_helper_sve_##name##_s, gen_helper_sve_##name##_d \
3795 }; \
3796 return do_zpzz_fp(s, a, fns[a->esz]); \
3799 DO_FP3(FADD_zpzz, fadd)
3800 DO_FP3(FSUB_zpzz, fsub)
3801 DO_FP3(FMUL_zpzz, fmul)
3802 DO_FP3(FMIN_zpzz, fmin)
3803 DO_FP3(FMAX_zpzz, fmax)
3804 DO_FP3(FMINNM_zpzz, fminnum)
3805 DO_FP3(FMAXNM_zpzz, fmaxnum)
3806 DO_FP3(FABD, fabd)
3807 DO_FP3(FSCALE, fscalbn)
3808 DO_FP3(FDIV, fdiv)
3809 DO_FP3(FMULX, fmulx)
3811 #undef DO_FP3
3813 typedef void gen_helper_sve_fp2scalar(TCGv_ptr, TCGv_ptr, TCGv_ptr,
3814 TCGv_i64, TCGv_ptr, TCGv_i32);
3816 static void do_fp_scalar(DisasContext *s, int zd, int zn, int pg, bool is_fp16,
3817 TCGv_i64 scalar, gen_helper_sve_fp2scalar *fn)
3819 unsigned vsz = vec_full_reg_size(s);
3820 TCGv_ptr t_zd, t_zn, t_pg, status;
3821 TCGv_i32 desc;
3823 t_zd = tcg_temp_new_ptr();
3824 t_zn = tcg_temp_new_ptr();
3825 t_pg = tcg_temp_new_ptr();
3826 tcg_gen_addi_ptr(t_zd, cpu_env, vec_full_reg_offset(s, zd));
3827 tcg_gen_addi_ptr(t_zn, cpu_env, vec_full_reg_offset(s, zn));
3828 tcg_gen_addi_ptr(t_pg, cpu_env, pred_full_reg_offset(s, pg));
3830 status = get_fpstatus_ptr(is_fp16);
3831 desc = tcg_const_i32(simd_desc(vsz, vsz, 0));
3832 fn(t_zd, t_zn, t_pg, scalar, status, desc);
3834 tcg_temp_free_i32(desc);
3835 tcg_temp_free_ptr(status);
3836 tcg_temp_free_ptr(t_pg);
3837 tcg_temp_free_ptr(t_zn);
3838 tcg_temp_free_ptr(t_zd);
3841 static void do_fp_imm(DisasContext *s, arg_rpri_esz *a, uint64_t imm,
3842 gen_helper_sve_fp2scalar *fn)
3844 TCGv_i64 temp = tcg_const_i64(imm);
3845 do_fp_scalar(s, a->rd, a->rn, a->pg, a->esz == MO_16, temp, fn);
3846 tcg_temp_free_i64(temp);
3849 #define DO_FP_IMM(NAME, name, const0, const1) \
3850 static bool trans_##NAME##_zpzi(DisasContext *s, arg_rpri_esz *a, \
3851 uint32_t insn) \
3853 static gen_helper_sve_fp2scalar * const fns[3] = { \
3854 gen_helper_sve_##name##_h, \
3855 gen_helper_sve_##name##_s, \
3856 gen_helper_sve_##name##_d \
3857 }; \
3858 static uint64_t const val[3][2] = { \
3859 { float16_##const0, float16_##const1 }, \
3860 { float32_##const0, float32_##const1 }, \
3861 { float64_##const0, float64_##const1 }, \
3862 }; \
3863 if (a->esz == 0) { \
3864 return false; \
3866 if (sve_access_check(s)) { \
3867 do_fp_imm(s, a, val[a->esz - 1][a->imm], fns[a->esz - 1]); \
3869 return true; \
3872 #define float16_two make_float16(0x4000)
3873 #define float32_two make_float32(0x40000000)
3874 #define float64_two make_float64(0x4000000000000000ULL)
3876 DO_FP_IMM(FADD, fadds, half, one)
3877 DO_FP_IMM(FSUB, fsubs, half, one)
3878 DO_FP_IMM(FMUL, fmuls, half, two)
3879 DO_FP_IMM(FSUBR, fsubrs, half, one)
3880 DO_FP_IMM(FMAXNM, fmaxnms, zero, one)
3881 DO_FP_IMM(FMINNM, fminnms, zero, one)
3882 DO_FP_IMM(FMAX, fmaxs, zero, one)
3883 DO_FP_IMM(FMIN, fmins, zero, one)
3885 #undef DO_FP_IMM
3887 static bool do_fp_cmp(DisasContext *s, arg_rprr_esz *a,
3888 gen_helper_gvec_4_ptr *fn)
3890 if (fn == NULL) {
3891 return false;
3893 if (sve_access_check(s)) {
3894 unsigned vsz = vec_full_reg_size(s);
3895 TCGv_ptr status = get_fpstatus_ptr(a->esz == MO_16);
3896 tcg_gen_gvec_4_ptr(pred_full_reg_offset(s, a->rd),
3897 vec_full_reg_offset(s, a->rn),
3898 vec_full_reg_offset(s, a->rm),
3899 pred_full_reg_offset(s, a->pg),
3900 status, vsz, vsz, 0, fn);
3901 tcg_temp_free_ptr(status);
3903 return true;
3906 #define DO_FPCMP(NAME, name) \
3907 static bool trans_##NAME##_ppzz(DisasContext *s, arg_rprr_esz *a, \
3908 uint32_t insn) \
3910 static gen_helper_gvec_4_ptr * const fns[4] = { \
3911 NULL, gen_helper_sve_##name##_h, \
3912 gen_helper_sve_##name##_s, gen_helper_sve_##name##_d \
3913 }; \
3914 return do_fp_cmp(s, a, fns[a->esz]); \
3917 DO_FPCMP(FCMGE, fcmge)
3918 DO_FPCMP(FCMGT, fcmgt)
3919 DO_FPCMP(FCMEQ, fcmeq)
3920 DO_FPCMP(FCMNE, fcmne)
3921 DO_FPCMP(FCMUO, fcmuo)
3922 DO_FPCMP(FACGE, facge)
3923 DO_FPCMP(FACGT, facgt)
3925 #undef DO_FPCMP
3927 static bool trans_FCADD(DisasContext *s, arg_FCADD *a, uint32_t insn)
3929 static gen_helper_gvec_4_ptr * const fns[3] = {
3930 gen_helper_sve_fcadd_h,
3931 gen_helper_sve_fcadd_s,
3932 gen_helper_sve_fcadd_d
3935 if (a->esz == 0) {
3936 return false;
3938 if (sve_access_check(s)) {
3939 unsigned vsz = vec_full_reg_size(s);
3940 TCGv_ptr status = get_fpstatus_ptr(a->esz == MO_16);
3941 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, a->rd),
3942 vec_full_reg_offset(s, a->rn),
3943 vec_full_reg_offset(s, a->rm),
3944 pred_full_reg_offset(s, a->pg),
3945 status, vsz, vsz, a->rot, fns[a->esz - 1]);
3946 tcg_temp_free_ptr(status);
3948 return true;
3951 typedef void gen_helper_sve_fmla(TCGv_env, TCGv_ptr, TCGv_i32);
3953 static bool do_fmla(DisasContext *s, arg_rprrr_esz *a, gen_helper_sve_fmla *fn)
3955 if (fn == NULL) {
3956 return false;
3958 if (!sve_access_check(s)) {
3959 return true;
3962 unsigned vsz = vec_full_reg_size(s);
3963 unsigned desc;
3964 TCGv_i32 t_desc;
3965 TCGv_ptr pg = tcg_temp_new_ptr();
3967 /* We would need 7 operands to pass these arguments "properly".
3968 * So we encode all the register numbers into the descriptor.
3970 desc = deposit32(a->rd, 5, 5, a->rn);
3971 desc = deposit32(desc, 10, 5, a->rm);
3972 desc = deposit32(desc, 15, 5, a->ra);
3973 desc = simd_desc(vsz, vsz, desc);
3975 t_desc = tcg_const_i32(desc);
3976 tcg_gen_addi_ptr(pg, cpu_env, pred_full_reg_offset(s, a->pg));
3977 fn(cpu_env, pg, t_desc);
3978 tcg_temp_free_i32(t_desc);
3979 tcg_temp_free_ptr(pg);
3980 return true;
3983 #define DO_FMLA(NAME, name) \
3984 static bool trans_##NAME(DisasContext *s, arg_rprrr_esz *a, uint32_t insn) \
3986 static gen_helper_sve_fmla * const fns[4] = { \
3987 NULL, gen_helper_sve_##name##_h, \
3988 gen_helper_sve_##name##_s, gen_helper_sve_##name##_d \
3989 }; \
3990 return do_fmla(s, a, fns[a->esz]); \
3993 DO_FMLA(FMLA_zpzzz, fmla_zpzzz)
3994 DO_FMLA(FMLS_zpzzz, fmls_zpzzz)
3995 DO_FMLA(FNMLA_zpzzz, fnmla_zpzzz)
3996 DO_FMLA(FNMLS_zpzzz, fnmls_zpzzz)
3998 #undef DO_FMLA
4000 static bool trans_FCMLA_zpzzz(DisasContext *s,
4001 arg_FCMLA_zpzzz *a, uint32_t insn)
4003 static gen_helper_sve_fmla * const fns[3] = {
4004 gen_helper_sve_fcmla_zpzzz_h,
4005 gen_helper_sve_fcmla_zpzzz_s,
4006 gen_helper_sve_fcmla_zpzzz_d,
4009 if (a->esz == 0) {
4010 return false;
4012 if (sve_access_check(s)) {
4013 unsigned vsz = vec_full_reg_size(s);
4014 unsigned desc;
4015 TCGv_i32 t_desc;
4016 TCGv_ptr pg = tcg_temp_new_ptr();
4018 /* We would need 7 operands to pass these arguments "properly".
4019 * So we encode all the register numbers into the descriptor.
4021 desc = deposit32(a->rd, 5, 5, a->rn);
4022 desc = deposit32(desc, 10, 5, a->rm);
4023 desc = deposit32(desc, 15, 5, a->ra);
4024 desc = deposit32(desc, 20, 2, a->rot);
4025 desc = sextract32(desc, 0, 22);
4026 desc = simd_desc(vsz, vsz, desc);
4028 t_desc = tcg_const_i32(desc);
4029 tcg_gen_addi_ptr(pg, cpu_env, pred_full_reg_offset(s, a->pg));
4030 fns[a->esz - 1](cpu_env, pg, t_desc);
4031 tcg_temp_free_i32(t_desc);
4032 tcg_temp_free_ptr(pg);
4034 return true;
4037 static bool trans_FCMLA_zzxz(DisasContext *s, arg_FCMLA_zzxz *a, uint32_t insn)
4039 static gen_helper_gvec_3_ptr * const fns[2] = {
4040 gen_helper_gvec_fcmlah_idx,
4041 gen_helper_gvec_fcmlas_idx,
4044 tcg_debug_assert(a->esz == 1 || a->esz == 2);
4045 tcg_debug_assert(a->rd == a->ra);
4046 if (sve_access_check(s)) {
4047 unsigned vsz = vec_full_reg_size(s);
4048 TCGv_ptr status = get_fpstatus_ptr(a->esz == MO_16);
4049 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
4050 vec_full_reg_offset(s, a->rn),
4051 vec_full_reg_offset(s, a->rm),
4052 status, vsz, vsz,
4053 a->index * 4 + a->rot,
4054 fns[a->esz - 1]);
4055 tcg_temp_free_ptr(status);
4057 return true;
4061 *** SVE Floating Point Unary Operations Predicated Group
4064 static bool do_zpz_ptr(DisasContext *s, int rd, int rn, int pg,
4065 bool is_fp16, gen_helper_gvec_3_ptr *fn)
4067 if (sve_access_check(s)) {
4068 unsigned vsz = vec_full_reg_size(s);
4069 TCGv_ptr status = get_fpstatus_ptr(is_fp16);
4070 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
4071 vec_full_reg_offset(s, rn),
4072 pred_full_reg_offset(s, pg),
4073 status, vsz, vsz, 0, fn);
4074 tcg_temp_free_ptr(status);
4076 return true;
4079 static bool trans_FCVT_sh(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4081 return do_zpz_ptr(s, a->rd, a->rn, a->pg, true, gen_helper_sve_fcvt_sh);
4084 static bool trans_FCVT_hs(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4086 return do_zpz_ptr(s, a->rd, a->rn, a->pg, false, gen_helper_sve_fcvt_hs);
4089 static bool trans_FCVT_dh(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4091 return do_zpz_ptr(s, a->rd, a->rn, a->pg, true, gen_helper_sve_fcvt_dh);
4094 static bool trans_FCVT_hd(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4096 return do_zpz_ptr(s, a->rd, a->rn, a->pg, false, gen_helper_sve_fcvt_hd);
4099 static bool trans_FCVT_ds(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4101 return do_zpz_ptr(s, a->rd, a->rn, a->pg, false, gen_helper_sve_fcvt_ds);
4104 static bool trans_FCVT_sd(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4106 return do_zpz_ptr(s, a->rd, a->rn, a->pg, false, gen_helper_sve_fcvt_sd);
4109 static bool trans_FCVTZS_hh(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4111 return do_zpz_ptr(s, a->rd, a->rn, a->pg, true, gen_helper_sve_fcvtzs_hh);
4114 static bool trans_FCVTZU_hh(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4116 return do_zpz_ptr(s, a->rd, a->rn, a->pg, true, gen_helper_sve_fcvtzu_hh);
4119 static bool trans_FCVTZS_hs(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4121 return do_zpz_ptr(s, a->rd, a->rn, a->pg, true, gen_helper_sve_fcvtzs_hs);
4124 static bool trans_FCVTZU_hs(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4126 return do_zpz_ptr(s, a->rd, a->rn, a->pg, true, gen_helper_sve_fcvtzu_hs);
4129 static bool trans_FCVTZS_hd(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4131 return do_zpz_ptr(s, a->rd, a->rn, a->pg, true, gen_helper_sve_fcvtzs_hd);
4134 static bool trans_FCVTZU_hd(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4136 return do_zpz_ptr(s, a->rd, a->rn, a->pg, true, gen_helper_sve_fcvtzu_hd);
4139 static bool trans_FCVTZS_ss(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4141 return do_zpz_ptr(s, a->rd, a->rn, a->pg, false, gen_helper_sve_fcvtzs_ss);
4144 static bool trans_FCVTZU_ss(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4146 return do_zpz_ptr(s, a->rd, a->rn, a->pg, false, gen_helper_sve_fcvtzu_ss);
4149 static bool trans_FCVTZS_sd(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4151 return do_zpz_ptr(s, a->rd, a->rn, a->pg, false, gen_helper_sve_fcvtzs_sd);
4154 static bool trans_FCVTZU_sd(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4156 return do_zpz_ptr(s, a->rd, a->rn, a->pg, false, gen_helper_sve_fcvtzu_sd);
4159 static bool trans_FCVTZS_ds(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4161 return do_zpz_ptr(s, a->rd, a->rn, a->pg, false, gen_helper_sve_fcvtzs_ds);
4164 static bool trans_FCVTZU_ds(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4166 return do_zpz_ptr(s, a->rd, a->rn, a->pg, false, gen_helper_sve_fcvtzu_ds);
4169 static bool trans_FCVTZS_dd(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4171 return do_zpz_ptr(s, a->rd, a->rn, a->pg, false, gen_helper_sve_fcvtzs_dd);
4174 static bool trans_FCVTZU_dd(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4176 return do_zpz_ptr(s, a->rd, a->rn, a->pg, false, gen_helper_sve_fcvtzu_dd);
4179 static gen_helper_gvec_3_ptr * const frint_fns[3] = {
4180 gen_helper_sve_frint_h,
4181 gen_helper_sve_frint_s,
4182 gen_helper_sve_frint_d
4185 static bool trans_FRINTI(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4187 if (a->esz == 0) {
4188 return false;
4190 return do_zpz_ptr(s, a->rd, a->rn, a->pg, a->esz == MO_16,
4191 frint_fns[a->esz - 1]);
4194 static bool trans_FRINTX(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4196 static gen_helper_gvec_3_ptr * const fns[3] = {
4197 gen_helper_sve_frintx_h,
4198 gen_helper_sve_frintx_s,
4199 gen_helper_sve_frintx_d
4201 if (a->esz == 0) {
4202 return false;
4204 return do_zpz_ptr(s, a->rd, a->rn, a->pg, a->esz == MO_16, fns[a->esz - 1]);
4207 static bool do_frint_mode(DisasContext *s, arg_rpr_esz *a, int mode)
4209 if (a->esz == 0) {
4210 return false;
4212 if (sve_access_check(s)) {
4213 unsigned vsz = vec_full_reg_size(s);
4214 TCGv_i32 tmode = tcg_const_i32(mode);
4215 TCGv_ptr status = get_fpstatus_ptr(a->esz == MO_16);
4217 gen_helper_set_rmode(tmode, tmode, status);
4219 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
4220 vec_full_reg_offset(s, a->rn),
4221 pred_full_reg_offset(s, a->pg),
4222 status, vsz, vsz, 0, frint_fns[a->esz - 1]);
4224 gen_helper_set_rmode(tmode, tmode, status);
4225 tcg_temp_free_i32(tmode);
4226 tcg_temp_free_ptr(status);
4228 return true;
4231 static bool trans_FRINTN(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4233 return do_frint_mode(s, a, float_round_nearest_even);
4236 static bool trans_FRINTP(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4238 return do_frint_mode(s, a, float_round_up);
4241 static bool trans_FRINTM(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4243 return do_frint_mode(s, a, float_round_down);
4246 static bool trans_FRINTZ(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4248 return do_frint_mode(s, a, float_round_to_zero);
4251 static bool trans_FRINTA(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4253 return do_frint_mode(s, a, float_round_ties_away);
4256 static bool trans_FRECPX(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4258 static gen_helper_gvec_3_ptr * const fns[3] = {
4259 gen_helper_sve_frecpx_h,
4260 gen_helper_sve_frecpx_s,
4261 gen_helper_sve_frecpx_d
4263 if (a->esz == 0) {
4264 return false;
4266 return do_zpz_ptr(s, a->rd, a->rn, a->pg, a->esz == MO_16, fns[a->esz - 1]);
4269 static bool trans_FSQRT(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4271 static gen_helper_gvec_3_ptr * const fns[3] = {
4272 gen_helper_sve_fsqrt_h,
4273 gen_helper_sve_fsqrt_s,
4274 gen_helper_sve_fsqrt_d
4276 if (a->esz == 0) {
4277 return false;
4279 return do_zpz_ptr(s, a->rd, a->rn, a->pg, a->esz == MO_16, fns[a->esz - 1]);
4282 static bool trans_SCVTF_hh(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4284 return do_zpz_ptr(s, a->rd, a->rn, a->pg, true, gen_helper_sve_scvt_hh);
4287 static bool trans_SCVTF_sh(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4289 return do_zpz_ptr(s, a->rd, a->rn, a->pg, true, gen_helper_sve_scvt_sh);
4292 static bool trans_SCVTF_dh(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4294 return do_zpz_ptr(s, a->rd, a->rn, a->pg, true, gen_helper_sve_scvt_dh);
4297 static bool trans_SCVTF_ss(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4299 return do_zpz_ptr(s, a->rd, a->rn, a->pg, false, gen_helper_sve_scvt_ss);
4302 static bool trans_SCVTF_ds(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4304 return do_zpz_ptr(s, a->rd, a->rn, a->pg, false, gen_helper_sve_scvt_ds);
4307 static bool trans_SCVTF_sd(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4309 return do_zpz_ptr(s, a->rd, a->rn, a->pg, false, gen_helper_sve_scvt_sd);
4312 static bool trans_SCVTF_dd(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4314 return do_zpz_ptr(s, a->rd, a->rn, a->pg, false, gen_helper_sve_scvt_dd);
4317 static bool trans_UCVTF_hh(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4319 return do_zpz_ptr(s, a->rd, a->rn, a->pg, true, gen_helper_sve_ucvt_hh);
4322 static bool trans_UCVTF_sh(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4324 return do_zpz_ptr(s, a->rd, a->rn, a->pg, true, gen_helper_sve_ucvt_sh);
4327 static bool trans_UCVTF_dh(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4329 return do_zpz_ptr(s, a->rd, a->rn, a->pg, true, gen_helper_sve_ucvt_dh);
4332 static bool trans_UCVTF_ss(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4334 return do_zpz_ptr(s, a->rd, a->rn, a->pg, false, gen_helper_sve_ucvt_ss);
4337 static bool trans_UCVTF_ds(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4339 return do_zpz_ptr(s, a->rd, a->rn, a->pg, false, gen_helper_sve_ucvt_ds);
4342 static bool trans_UCVTF_sd(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4344 return do_zpz_ptr(s, a->rd, a->rn, a->pg, false, gen_helper_sve_ucvt_sd);
4347 static bool trans_UCVTF_dd(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4349 return do_zpz_ptr(s, a->rd, a->rn, a->pg, false, gen_helper_sve_ucvt_dd);
4353 *** SVE Memory - 32-bit Gather and Unsized Contiguous Group
4356 /* Subroutine loading a vector register at VOFS of LEN bytes.
4357 * The load should begin at the address Rn + IMM.
4360 static void do_ldr(DisasContext *s, uint32_t vofs, uint32_t len,
4361 int rn, int imm)
4363 uint32_t len_align = QEMU_ALIGN_DOWN(len, 8);
4364 uint32_t len_remain = len % 8;
4365 uint32_t nparts = len / 8 + ctpop8(len_remain);
4366 int midx = get_mem_index(s);
4367 TCGv_i64 addr, t0, t1;
4369 addr = tcg_temp_new_i64();
4370 t0 = tcg_temp_new_i64();
4372 /* Note that unpredicated load/store of vector/predicate registers
4373 * are defined as a stream of bytes, which equates to little-endian
4374 * operations on larger quantities. There is no nice way to force
4375 * a little-endian load for aarch64_be-linux-user out of line.
4377 * Attempt to keep code expansion to a minimum by limiting the
4378 * amount of unrolling done.
4380 if (nparts <= 4) {
4381 int i;
4383 for (i = 0; i < len_align; i += 8) {
4384 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm + i);
4385 tcg_gen_qemu_ld_i64(t0, addr, midx, MO_LEQ);
4386 tcg_gen_st_i64(t0, cpu_env, vofs + i);
4388 } else {
4389 TCGLabel *loop = gen_new_label();
4390 TCGv_ptr tp, i = tcg_const_local_ptr(0);
4392 gen_set_label(loop);
4394 /* Minimize the number of local temps that must be re-read from
4395 * the stack each iteration. Instead, re-compute values other
4396 * than the loop counter.
4398 tp = tcg_temp_new_ptr();
4399 tcg_gen_addi_ptr(tp, i, imm);
4400 tcg_gen_extu_ptr_i64(addr, tp);
4401 tcg_gen_add_i64(addr, addr, cpu_reg_sp(s, rn));
4403 tcg_gen_qemu_ld_i64(t0, addr, midx, MO_LEQ);
4405 tcg_gen_add_ptr(tp, cpu_env, i);
4406 tcg_gen_addi_ptr(i, i, 8);
4407 tcg_gen_st_i64(t0, tp, vofs);
4408 tcg_temp_free_ptr(tp);
4410 tcg_gen_brcondi_ptr(TCG_COND_LTU, i, len_align, loop);
4411 tcg_temp_free_ptr(i);
4414 /* Predicate register loads can be any multiple of 2.
4415 * Note that we still store the entire 64-bit unit into cpu_env.
4417 if (len_remain) {
4418 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm + len_align);
4420 switch (len_remain) {
4421 case 2:
4422 case 4:
4423 case 8:
4424 tcg_gen_qemu_ld_i64(t0, addr, midx, MO_LE | ctz32(len_remain));
4425 break;
4427 case 6:
4428 t1 = tcg_temp_new_i64();
4429 tcg_gen_qemu_ld_i64(t0, addr, midx, MO_LEUL);
4430 tcg_gen_addi_i64(addr, addr, 4);
4431 tcg_gen_qemu_ld_i64(t1, addr, midx, MO_LEUW);
4432 tcg_gen_deposit_i64(t0, t0, t1, 32, 32);
4433 tcg_temp_free_i64(t1);
4434 break;
4436 default:
4437 g_assert_not_reached();
4439 tcg_gen_st_i64(t0, cpu_env, vofs + len_align);
4441 tcg_temp_free_i64(addr);
4442 tcg_temp_free_i64(t0);
4445 /* Similarly for stores. */
4446 static void do_str(DisasContext *s, uint32_t vofs, uint32_t len,
4447 int rn, int imm)
4449 uint32_t len_align = QEMU_ALIGN_DOWN(len, 8);
4450 uint32_t len_remain = len % 8;
4451 uint32_t nparts = len / 8 + ctpop8(len_remain);
4452 int midx = get_mem_index(s);
4453 TCGv_i64 addr, t0;
4455 addr = tcg_temp_new_i64();
4456 t0 = tcg_temp_new_i64();
4458 /* Note that unpredicated load/store of vector/predicate registers
4459 * are defined as a stream of bytes, which equates to little-endian
4460 * operations on larger quantities. There is no nice way to force
4461 * a little-endian store for aarch64_be-linux-user out of line.
4463 * Attempt to keep code expansion to a minimum by limiting the
4464 * amount of unrolling done.
4466 if (nparts <= 4) {
4467 int i;
4469 for (i = 0; i < len_align; i += 8) {
4470 tcg_gen_ld_i64(t0, cpu_env, vofs + i);
4471 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm + i);
4472 tcg_gen_qemu_st_i64(t0, addr, midx, MO_LEQ);
4474 } else {
4475 TCGLabel *loop = gen_new_label();
4476 TCGv_ptr t2, i = tcg_const_local_ptr(0);
4478 gen_set_label(loop);
4480 t2 = tcg_temp_new_ptr();
4481 tcg_gen_add_ptr(t2, cpu_env, i);
4482 tcg_gen_ld_i64(t0, t2, vofs);
4484 /* Minimize the number of local temps that must be re-read from
4485 * the stack each iteration. Instead, re-compute values other
4486 * than the loop counter.
4488 tcg_gen_addi_ptr(t2, i, imm);
4489 tcg_gen_extu_ptr_i64(addr, t2);
4490 tcg_gen_add_i64(addr, addr, cpu_reg_sp(s, rn));
4491 tcg_temp_free_ptr(t2);
4493 tcg_gen_qemu_st_i64(t0, addr, midx, MO_LEQ);
4495 tcg_gen_addi_ptr(i, i, 8);
4497 tcg_gen_brcondi_ptr(TCG_COND_LTU, i, len_align, loop);
4498 tcg_temp_free_ptr(i);
4501 /* Predicate register stores can be any multiple of 2. */
4502 if (len_remain) {
4503 tcg_gen_ld_i64(t0, cpu_env, vofs + len_align);
4504 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm + len_align);
4506 switch (len_remain) {
4507 case 2:
4508 case 4:
4509 case 8:
4510 tcg_gen_qemu_st_i64(t0, addr, midx, MO_LE | ctz32(len_remain));
4511 break;
4513 case 6:
4514 tcg_gen_qemu_st_i64(t0, addr, midx, MO_LEUL);
4515 tcg_gen_addi_i64(addr, addr, 4);
4516 tcg_gen_shri_i64(t0, t0, 32);
4517 tcg_gen_qemu_st_i64(t0, addr, midx, MO_LEUW);
4518 break;
4520 default:
4521 g_assert_not_reached();
4524 tcg_temp_free_i64(addr);
4525 tcg_temp_free_i64(t0);
4528 static bool trans_LDR_zri(DisasContext *s, arg_rri *a, uint32_t insn)
4530 if (sve_access_check(s)) {
4531 int size = vec_full_reg_size(s);
4532 int off = vec_full_reg_offset(s, a->rd);
4533 do_ldr(s, off, size, a->rn, a->imm * size);
4535 return true;
4538 static bool trans_LDR_pri(DisasContext *s, arg_rri *a, uint32_t insn)
4540 if (sve_access_check(s)) {
4541 int size = pred_full_reg_size(s);
4542 int off = pred_full_reg_offset(s, a->rd);
4543 do_ldr(s, off, size, a->rn, a->imm * size);
4545 return true;
4548 static bool trans_STR_zri(DisasContext *s, arg_rri *a, uint32_t insn)
4550 if (sve_access_check(s)) {
4551 int size = vec_full_reg_size(s);
4552 int off = vec_full_reg_offset(s, a->rd);
4553 do_str(s, off, size, a->rn, a->imm * size);
4555 return true;
4558 static bool trans_STR_pri(DisasContext *s, arg_rri *a, uint32_t insn)
4560 if (sve_access_check(s)) {
4561 int size = pred_full_reg_size(s);
4562 int off = pred_full_reg_offset(s, a->rd);
4563 do_str(s, off, size, a->rn, a->imm * size);
4565 return true;
4569 *** SVE Memory - Contiguous Load Group
4572 /* The memory mode of the dtype. */
4573 static const TCGMemOp dtype_mop[16] = {
4574 MO_UB, MO_UB, MO_UB, MO_UB,
4575 MO_SL, MO_UW, MO_UW, MO_UW,
4576 MO_SW, MO_SW, MO_UL, MO_UL,
4577 MO_SB, MO_SB, MO_SB, MO_Q
4580 #define dtype_msz(x) (dtype_mop[x] & MO_SIZE)
4582 /* The vector element size of dtype. */
4583 static const uint8_t dtype_esz[16] = {
4584 0, 1, 2, 3,
4585 3, 1, 2, 3,
4586 3, 2, 2, 3,
4587 3, 2, 1, 3
4590 static void do_mem_zpa(DisasContext *s, int zt, int pg, TCGv_i64 addr,
4591 gen_helper_gvec_mem *fn)
4593 unsigned vsz = vec_full_reg_size(s);
4594 TCGv_ptr t_pg;
4595 TCGv_i32 desc;
4597 /* For e.g. LD4, there are not enough arguments to pass all 4
4598 * registers as pointers, so encode the regno into the data field.
4599 * For consistency, do this even for LD1.
4601 desc = tcg_const_i32(simd_desc(vsz, vsz, zt));
4602 t_pg = tcg_temp_new_ptr();
4604 tcg_gen_addi_ptr(t_pg, cpu_env, pred_full_reg_offset(s, pg));
4605 fn(cpu_env, t_pg, addr, desc);
4607 tcg_temp_free_ptr(t_pg);
4608 tcg_temp_free_i32(desc);
4611 static void do_ld_zpa(DisasContext *s, int zt, int pg,
4612 TCGv_i64 addr, int dtype, int nreg)
4614 static gen_helper_gvec_mem * const fns[16][4] = {
4615 { gen_helper_sve_ld1bb_r, gen_helper_sve_ld2bb_r,
4616 gen_helper_sve_ld3bb_r, gen_helper_sve_ld4bb_r },
4617 { gen_helper_sve_ld1bhu_r, NULL, NULL, NULL },
4618 { gen_helper_sve_ld1bsu_r, NULL, NULL, NULL },
4619 { gen_helper_sve_ld1bdu_r, NULL, NULL, NULL },
4621 { gen_helper_sve_ld1sds_r, NULL, NULL, NULL },
4622 { gen_helper_sve_ld1hh_r, gen_helper_sve_ld2hh_r,
4623 gen_helper_sve_ld3hh_r, gen_helper_sve_ld4hh_r },
4624 { gen_helper_sve_ld1hsu_r, NULL, NULL, NULL },
4625 { gen_helper_sve_ld1hdu_r, NULL, NULL, NULL },
4627 { gen_helper_sve_ld1hds_r, NULL, NULL, NULL },
4628 { gen_helper_sve_ld1hss_r, NULL, NULL, NULL },
4629 { gen_helper_sve_ld1ss_r, gen_helper_sve_ld2ss_r,
4630 gen_helper_sve_ld3ss_r, gen_helper_sve_ld4ss_r },
4631 { gen_helper_sve_ld1sdu_r, NULL, NULL, NULL },
4633 { gen_helper_sve_ld1bds_r, NULL, NULL, NULL },
4634 { gen_helper_sve_ld1bss_r, NULL, NULL, NULL },
4635 { gen_helper_sve_ld1bhs_r, NULL, NULL, NULL },
4636 { gen_helper_sve_ld1dd_r, gen_helper_sve_ld2dd_r,
4637 gen_helper_sve_ld3dd_r, gen_helper_sve_ld4dd_r },
4639 gen_helper_gvec_mem *fn = fns[dtype][nreg];
4641 /* While there are holes in the table, they are not
4642 * accessible via the instruction encoding.
4644 assert(fn != NULL);
4645 do_mem_zpa(s, zt, pg, addr, fn);
4648 static bool trans_LD_zprr(DisasContext *s, arg_rprr_load *a, uint32_t insn)
4650 if (a->rm == 31) {
4651 return false;
4653 if (sve_access_check(s)) {
4654 TCGv_i64 addr = new_tmp_a64(s);
4655 tcg_gen_muli_i64(addr, cpu_reg(s, a->rm),
4656 (a->nreg + 1) << dtype_msz(a->dtype));
4657 tcg_gen_add_i64(addr, addr, cpu_reg_sp(s, a->rn));
4658 do_ld_zpa(s, a->rd, a->pg, addr, a->dtype, a->nreg);
4660 return true;
4663 static bool trans_LD_zpri(DisasContext *s, arg_rpri_load *a, uint32_t insn)
4665 if (sve_access_check(s)) {
4666 int vsz = vec_full_reg_size(s);
4667 int elements = vsz >> dtype_esz[a->dtype];
4668 TCGv_i64 addr = new_tmp_a64(s);
4670 tcg_gen_addi_i64(addr, cpu_reg_sp(s, a->rn),
4671 (a->imm * elements * (a->nreg + 1))
4672 << dtype_msz(a->dtype));
4673 do_ld_zpa(s, a->rd, a->pg, addr, a->dtype, a->nreg);
4675 return true;
4678 static bool trans_LDFF1_zprr(DisasContext *s, arg_rprr_load *a, uint32_t insn)
4680 static gen_helper_gvec_mem * const fns[16] = {
4681 gen_helper_sve_ldff1bb_r,
4682 gen_helper_sve_ldff1bhu_r,
4683 gen_helper_sve_ldff1bsu_r,
4684 gen_helper_sve_ldff1bdu_r,
4686 gen_helper_sve_ldff1sds_r,
4687 gen_helper_sve_ldff1hh_r,
4688 gen_helper_sve_ldff1hsu_r,
4689 gen_helper_sve_ldff1hdu_r,
4691 gen_helper_sve_ldff1hds_r,
4692 gen_helper_sve_ldff1hss_r,
4693 gen_helper_sve_ldff1ss_r,
4694 gen_helper_sve_ldff1sdu_r,
4696 gen_helper_sve_ldff1bds_r,
4697 gen_helper_sve_ldff1bss_r,
4698 gen_helper_sve_ldff1bhs_r,
4699 gen_helper_sve_ldff1dd_r,
4702 if (sve_access_check(s)) {
4703 TCGv_i64 addr = new_tmp_a64(s);
4704 tcg_gen_shli_i64(addr, cpu_reg(s, a->rm), dtype_msz(a->dtype));
4705 tcg_gen_add_i64(addr, addr, cpu_reg_sp(s, a->rn));
4706 do_mem_zpa(s, a->rd, a->pg, addr, fns[a->dtype]);
4708 return true;
4711 static bool trans_LDNF1_zpri(DisasContext *s, arg_rpri_load *a, uint32_t insn)
4713 static gen_helper_gvec_mem * const fns[16] = {
4714 gen_helper_sve_ldnf1bb_r,
4715 gen_helper_sve_ldnf1bhu_r,
4716 gen_helper_sve_ldnf1bsu_r,
4717 gen_helper_sve_ldnf1bdu_r,
4719 gen_helper_sve_ldnf1sds_r,
4720 gen_helper_sve_ldnf1hh_r,
4721 gen_helper_sve_ldnf1hsu_r,
4722 gen_helper_sve_ldnf1hdu_r,
4724 gen_helper_sve_ldnf1hds_r,
4725 gen_helper_sve_ldnf1hss_r,
4726 gen_helper_sve_ldnf1ss_r,
4727 gen_helper_sve_ldnf1sdu_r,
4729 gen_helper_sve_ldnf1bds_r,
4730 gen_helper_sve_ldnf1bss_r,
4731 gen_helper_sve_ldnf1bhs_r,
4732 gen_helper_sve_ldnf1dd_r,
4735 if (sve_access_check(s)) {
4736 int vsz = vec_full_reg_size(s);
4737 int elements = vsz >> dtype_esz[a->dtype];
4738 int off = (a->imm * elements) << dtype_msz(a->dtype);
4739 TCGv_i64 addr = new_tmp_a64(s);
4741 tcg_gen_addi_i64(addr, cpu_reg_sp(s, a->rn), off);
4742 do_mem_zpa(s, a->rd, a->pg, addr, fns[a->dtype]);
4744 return true;
4747 static void do_ldrq(DisasContext *s, int zt, int pg, TCGv_i64 addr, int msz)
4749 static gen_helper_gvec_mem * const fns[4] = {
4750 gen_helper_sve_ld1bb_r, gen_helper_sve_ld1hh_r,
4751 gen_helper_sve_ld1ss_r, gen_helper_sve_ld1dd_r,
4753 unsigned vsz = vec_full_reg_size(s);
4754 TCGv_ptr t_pg;
4755 TCGv_i32 desc;
4757 /* Load the first quadword using the normal predicated load helpers. */
4758 desc = tcg_const_i32(simd_desc(16, 16, zt));
4759 t_pg = tcg_temp_new_ptr();
4761 tcg_gen_addi_ptr(t_pg, cpu_env, pred_full_reg_offset(s, pg));
4762 fns[msz](cpu_env, t_pg, addr, desc);
4764 tcg_temp_free_ptr(t_pg);
4765 tcg_temp_free_i32(desc);
4767 /* Replicate that first quadword. */
4768 if (vsz > 16) {
4769 unsigned dofs = vec_full_reg_offset(s, zt);
4770 tcg_gen_gvec_dup_mem(4, dofs + 16, dofs, vsz - 16, vsz - 16);
4774 static bool trans_LD1RQ_zprr(DisasContext *s, arg_rprr_load *a, uint32_t insn)
4776 if (a->rm == 31) {
4777 return false;
4779 if (sve_access_check(s)) {
4780 int msz = dtype_msz(a->dtype);
4781 TCGv_i64 addr = new_tmp_a64(s);
4782 tcg_gen_shli_i64(addr, cpu_reg(s, a->rm), msz);
4783 tcg_gen_add_i64(addr, addr, cpu_reg_sp(s, a->rn));
4784 do_ldrq(s, a->rd, a->pg, addr, msz);
4786 return true;
4789 static bool trans_LD1RQ_zpri(DisasContext *s, arg_rpri_load *a, uint32_t insn)
4791 if (sve_access_check(s)) {
4792 TCGv_i64 addr = new_tmp_a64(s);
4793 tcg_gen_addi_i64(addr, cpu_reg_sp(s, a->rn), a->imm * 16);
4794 do_ldrq(s, a->rd, a->pg, addr, dtype_msz(a->dtype));
4796 return true;
4799 /* Load and broadcast element. */
4800 static bool trans_LD1R_zpri(DisasContext *s, arg_rpri_load *a, uint32_t insn)
4802 if (!sve_access_check(s)) {
4803 return true;
4806 unsigned vsz = vec_full_reg_size(s);
4807 unsigned psz = pred_full_reg_size(s);
4808 unsigned esz = dtype_esz[a->dtype];
4809 TCGLabel *over = gen_new_label();
4810 TCGv_i64 temp;
4812 /* If the guarding predicate has no bits set, no load occurs. */
4813 if (psz <= 8) {
4814 /* Reduce the pred_esz_masks value simply to reduce the
4815 * size of the code generated here.
4817 uint64_t psz_mask = MAKE_64BIT_MASK(0, psz * 8);
4818 temp = tcg_temp_new_i64();
4819 tcg_gen_ld_i64(temp, cpu_env, pred_full_reg_offset(s, a->pg));
4820 tcg_gen_andi_i64(temp, temp, pred_esz_masks[esz] & psz_mask);
4821 tcg_gen_brcondi_i64(TCG_COND_EQ, temp, 0, over);
4822 tcg_temp_free_i64(temp);
4823 } else {
4824 TCGv_i32 t32 = tcg_temp_new_i32();
4825 find_last_active(s, t32, esz, a->pg);
4826 tcg_gen_brcondi_i32(TCG_COND_LT, t32, 0, over);
4827 tcg_temp_free_i32(t32);
4830 /* Load the data. */
4831 temp = tcg_temp_new_i64();
4832 tcg_gen_addi_i64(temp, cpu_reg_sp(s, a->rn), a->imm << esz);
4833 tcg_gen_qemu_ld_i64(temp, temp, get_mem_index(s),
4834 s->be_data | dtype_mop[a->dtype]);
4836 /* Broadcast to *all* elements. */
4837 tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd),
4838 vsz, vsz, temp);
4839 tcg_temp_free_i64(temp);
4841 /* Zero the inactive elements. */
4842 gen_set_label(over);
4843 do_movz_zpz(s, a->rd, a->rd, a->pg, esz);
4844 return true;
4847 static void do_st_zpa(DisasContext *s, int zt, int pg, TCGv_i64 addr,
4848 int msz, int esz, int nreg)
4850 static gen_helper_gvec_mem * const fn_single[4][4] = {
4851 { gen_helper_sve_st1bb_r, gen_helper_sve_st1bh_r,
4852 gen_helper_sve_st1bs_r, gen_helper_sve_st1bd_r },
4853 { NULL, gen_helper_sve_st1hh_r,
4854 gen_helper_sve_st1hs_r, gen_helper_sve_st1hd_r },
4855 { NULL, NULL,
4856 gen_helper_sve_st1ss_r, gen_helper_sve_st1sd_r },
4857 { NULL, NULL, NULL, gen_helper_sve_st1dd_r },
4859 static gen_helper_gvec_mem * const fn_multiple[3][4] = {
4860 { gen_helper_sve_st2bb_r, gen_helper_sve_st2hh_r,
4861 gen_helper_sve_st2ss_r, gen_helper_sve_st2dd_r },
4862 { gen_helper_sve_st3bb_r, gen_helper_sve_st3hh_r,
4863 gen_helper_sve_st3ss_r, gen_helper_sve_st3dd_r },
4864 { gen_helper_sve_st4bb_r, gen_helper_sve_st4hh_r,
4865 gen_helper_sve_st4ss_r, gen_helper_sve_st4dd_r },
4867 gen_helper_gvec_mem *fn;
4869 if (nreg == 0) {
4870 /* ST1 */
4871 fn = fn_single[msz][esz];
4872 } else {
4873 /* ST2, ST3, ST4 -- msz == esz, enforced by encoding */
4874 assert(msz == esz);
4875 fn = fn_multiple[nreg - 1][msz];
4877 assert(fn != NULL);
4878 do_mem_zpa(s, zt, pg, addr, fn);
4881 static bool trans_ST_zprr(DisasContext *s, arg_rprr_store *a, uint32_t insn)
4883 if (a->rm == 31 || a->msz > a->esz) {
4884 return false;
4886 if (sve_access_check(s)) {
4887 TCGv_i64 addr = new_tmp_a64(s);
4888 tcg_gen_muli_i64(addr, cpu_reg(s, a->rm), (a->nreg + 1) << a->msz);
4889 tcg_gen_add_i64(addr, addr, cpu_reg_sp(s, a->rn));
4890 do_st_zpa(s, a->rd, a->pg, addr, a->msz, a->esz, a->nreg);
4892 return true;
4895 static bool trans_ST_zpri(DisasContext *s, arg_rpri_store *a, uint32_t insn)
4897 if (a->msz > a->esz) {
4898 return false;
4900 if (sve_access_check(s)) {
4901 int vsz = vec_full_reg_size(s);
4902 int elements = vsz >> a->esz;
4903 TCGv_i64 addr = new_tmp_a64(s);
4905 tcg_gen_addi_i64(addr, cpu_reg_sp(s, a->rn),
4906 (a->imm * elements * (a->nreg + 1)) << a->msz);
4907 do_st_zpa(s, a->rd, a->pg, addr, a->msz, a->esz, a->nreg);
4909 return true;
4913 *** SVE gather loads / scatter stores
4916 static void do_mem_zpz(DisasContext *s, int zt, int pg, int zm, int scale,
4917 TCGv_i64 scalar, gen_helper_gvec_mem_scatter *fn)
4919 unsigned vsz = vec_full_reg_size(s);
4920 TCGv_i32 desc = tcg_const_i32(simd_desc(vsz, vsz, scale));
4921 TCGv_ptr t_zm = tcg_temp_new_ptr();
4922 TCGv_ptr t_pg = tcg_temp_new_ptr();
4923 TCGv_ptr t_zt = tcg_temp_new_ptr();
4925 tcg_gen_addi_ptr(t_pg, cpu_env, pred_full_reg_offset(s, pg));
4926 tcg_gen_addi_ptr(t_zm, cpu_env, vec_full_reg_offset(s, zm));
4927 tcg_gen_addi_ptr(t_zt, cpu_env, vec_full_reg_offset(s, zt));
4928 fn(cpu_env, t_zt, t_pg, t_zm, scalar, desc);
4930 tcg_temp_free_ptr(t_zt);
4931 tcg_temp_free_ptr(t_zm);
4932 tcg_temp_free_ptr(t_pg);
4933 tcg_temp_free_i32(desc);
4936 /* Indexed by [ff][xs][u][msz]. */
4937 static gen_helper_gvec_mem_scatter * const gather_load_fn32[2][2][2][3] = {
4938 { { { gen_helper_sve_ldbss_zsu,
4939 gen_helper_sve_ldhss_zsu,
4940 NULL, },
4941 { gen_helper_sve_ldbsu_zsu,
4942 gen_helper_sve_ldhsu_zsu,
4943 gen_helper_sve_ldssu_zsu, } },
4944 { { gen_helper_sve_ldbss_zss,
4945 gen_helper_sve_ldhss_zss,
4946 NULL, },
4947 { gen_helper_sve_ldbsu_zss,
4948 gen_helper_sve_ldhsu_zss,
4949 gen_helper_sve_ldssu_zss, } } },
4951 { { { gen_helper_sve_ldffbss_zsu,
4952 gen_helper_sve_ldffhss_zsu,
4953 NULL, },
4954 { gen_helper_sve_ldffbsu_zsu,
4955 gen_helper_sve_ldffhsu_zsu,
4956 gen_helper_sve_ldffssu_zsu, } },
4957 { { gen_helper_sve_ldffbss_zss,
4958 gen_helper_sve_ldffhss_zss,
4959 NULL, },
4960 { gen_helper_sve_ldffbsu_zss,
4961 gen_helper_sve_ldffhsu_zss,
4962 gen_helper_sve_ldffssu_zss, } } }
4965 /* Note that we overload xs=2 to indicate 64-bit offset. */
4966 static gen_helper_gvec_mem_scatter * const gather_load_fn64[2][3][2][4] = {
4967 { { { gen_helper_sve_ldbds_zsu,
4968 gen_helper_sve_ldhds_zsu,
4969 gen_helper_sve_ldsds_zsu,
4970 NULL, },
4971 { gen_helper_sve_ldbdu_zsu,
4972 gen_helper_sve_ldhdu_zsu,
4973 gen_helper_sve_ldsdu_zsu,
4974 gen_helper_sve_ldddu_zsu, } },
4975 { { gen_helper_sve_ldbds_zss,
4976 gen_helper_sve_ldhds_zss,
4977 gen_helper_sve_ldsds_zss,
4978 NULL, },
4979 { gen_helper_sve_ldbdu_zss,
4980 gen_helper_sve_ldhdu_zss,
4981 gen_helper_sve_ldsdu_zss,
4982 gen_helper_sve_ldddu_zss, } },
4983 { { gen_helper_sve_ldbds_zd,
4984 gen_helper_sve_ldhds_zd,
4985 gen_helper_sve_ldsds_zd,
4986 NULL, },
4987 { gen_helper_sve_ldbdu_zd,
4988 gen_helper_sve_ldhdu_zd,
4989 gen_helper_sve_ldsdu_zd,
4990 gen_helper_sve_ldddu_zd, } } },
4992 { { { gen_helper_sve_ldffbds_zsu,
4993 gen_helper_sve_ldffhds_zsu,
4994 gen_helper_sve_ldffsds_zsu,
4995 NULL, },
4996 { gen_helper_sve_ldffbdu_zsu,
4997 gen_helper_sve_ldffhdu_zsu,
4998 gen_helper_sve_ldffsdu_zsu,
4999 gen_helper_sve_ldffddu_zsu, } },
5000 { { gen_helper_sve_ldffbds_zss,
5001 gen_helper_sve_ldffhds_zss,
5002 gen_helper_sve_ldffsds_zss,
5003 NULL, },
5004 { gen_helper_sve_ldffbdu_zss,
5005 gen_helper_sve_ldffhdu_zss,
5006 gen_helper_sve_ldffsdu_zss,
5007 gen_helper_sve_ldffddu_zss, } },
5008 { { gen_helper_sve_ldffbds_zd,
5009 gen_helper_sve_ldffhds_zd,
5010 gen_helper_sve_ldffsds_zd,
5011 NULL, },
5012 { gen_helper_sve_ldffbdu_zd,
5013 gen_helper_sve_ldffhdu_zd,
5014 gen_helper_sve_ldffsdu_zd,
5015 gen_helper_sve_ldffddu_zd, } } }
5018 static bool trans_LD1_zprz(DisasContext *s, arg_LD1_zprz *a, uint32_t insn)
5020 gen_helper_gvec_mem_scatter *fn = NULL;
5022 if (!sve_access_check(s)) {
5023 return true;
5026 switch (a->esz) {
5027 case MO_32:
5028 fn = gather_load_fn32[a->ff][a->xs][a->u][a->msz];
5029 break;
5030 case MO_64:
5031 fn = gather_load_fn64[a->ff][a->xs][a->u][a->msz];
5032 break;
5034 assert(fn != NULL);
5036 do_mem_zpz(s, a->rd, a->pg, a->rm, a->scale * a->msz,
5037 cpu_reg_sp(s, a->rn), fn);
5038 return true;
5041 static bool trans_LD1_zpiz(DisasContext *s, arg_LD1_zpiz *a, uint32_t insn)
5043 gen_helper_gvec_mem_scatter *fn = NULL;
5044 TCGv_i64 imm;
5046 if (a->esz < a->msz || (a->esz == a->msz && !a->u)) {
5047 return false;
5049 if (!sve_access_check(s)) {
5050 return true;
5053 switch (a->esz) {
5054 case MO_32:
5055 fn = gather_load_fn32[a->ff][0][a->u][a->msz];
5056 break;
5057 case MO_64:
5058 fn = gather_load_fn64[a->ff][2][a->u][a->msz];
5059 break;
5061 assert(fn != NULL);
5063 /* Treat LD1_zpiz (zn[x] + imm) the same way as LD1_zprz (rn + zm[x])
5064 * by loading the immediate into the scalar parameter.
5066 imm = tcg_const_i64(a->imm << a->msz);
5067 do_mem_zpz(s, a->rd, a->pg, a->rn, 0, imm, fn);
5068 tcg_temp_free_i64(imm);
5069 return true;
5072 /* Indexed by [xs][msz]. */
5073 static gen_helper_gvec_mem_scatter * const scatter_store_fn32[2][3] = {
5074 { gen_helper_sve_stbs_zsu,
5075 gen_helper_sve_sths_zsu,
5076 gen_helper_sve_stss_zsu, },
5077 { gen_helper_sve_stbs_zss,
5078 gen_helper_sve_sths_zss,
5079 gen_helper_sve_stss_zss, },
5082 /* Note that we overload xs=2 to indicate 64-bit offset. */
5083 static gen_helper_gvec_mem_scatter * const scatter_store_fn64[3][4] = {
5084 { gen_helper_sve_stbd_zsu,
5085 gen_helper_sve_sthd_zsu,
5086 gen_helper_sve_stsd_zsu,
5087 gen_helper_sve_stdd_zsu, },
5088 { gen_helper_sve_stbd_zss,
5089 gen_helper_sve_sthd_zss,
5090 gen_helper_sve_stsd_zss,
5091 gen_helper_sve_stdd_zss, },
5092 { gen_helper_sve_stbd_zd,
5093 gen_helper_sve_sthd_zd,
5094 gen_helper_sve_stsd_zd,
5095 gen_helper_sve_stdd_zd, },
5098 static bool trans_ST1_zprz(DisasContext *s, arg_ST1_zprz *a, uint32_t insn)
5100 gen_helper_gvec_mem_scatter *fn;
5102 if (a->esz < a->msz || (a->msz == 0 && a->scale)) {
5103 return false;
5105 if (!sve_access_check(s)) {
5106 return true;
5108 switch (a->esz) {
5109 case MO_32:
5110 fn = scatter_store_fn32[a->xs][a->msz];
5111 break;
5112 case MO_64:
5113 fn = scatter_store_fn64[a->xs][a->msz];
5114 break;
5115 default:
5116 g_assert_not_reached();
5118 do_mem_zpz(s, a->rd, a->pg, a->rm, a->scale * a->msz,
5119 cpu_reg_sp(s, a->rn), fn);
5120 return true;
5123 static bool trans_ST1_zpiz(DisasContext *s, arg_ST1_zpiz *a, uint32_t insn)
5125 gen_helper_gvec_mem_scatter *fn = NULL;
5126 TCGv_i64 imm;
5128 if (a->esz < a->msz) {
5129 return false;
5131 if (!sve_access_check(s)) {
5132 return true;
5135 switch (a->esz) {
5136 case MO_32:
5137 fn = scatter_store_fn32[0][a->msz];
5138 break;
5139 case MO_64:
5140 fn = scatter_store_fn64[2][a->msz];
5141 break;
5143 assert(fn != NULL);
5145 /* Treat ST1_zpiz (zn[x] + imm) the same way as ST1_zprz (rn + zm[x])
5146 * by loading the immediate into the scalar parameter.
5148 imm = tcg_const_i64(a->imm << a->msz);
5149 do_mem_zpz(s, a->rd, a->pg, a->rn, 0, imm, fn);
5150 tcg_temp_free_i64(imm);
5151 return true;
5155 * Prefetches
5158 static bool trans_PRF(DisasContext *s, arg_PRF *a, uint32_t insn)
5160 /* Prefetch is a nop within QEMU. */
5161 (void)sve_access_check(s);
5162 return true;
5165 static bool trans_PRF_rr(DisasContext *s, arg_PRF_rr *a, uint32_t insn)
5167 if (a->rm == 31) {
5168 return false;
5170 /* Prefetch is a nop within QEMU. */
5171 (void)sve_access_check(s);
5172 return true;
5176 * Move Prefix
5178 * TODO: The implementation so far could handle predicated merging movprfx.
5179 * The helper functions as written take an extra source register to
5180 * use in the operation, but the result is only written when predication
5181 * succeeds. For unpredicated movprfx, we need to rearrange the helpers
5182 * to allow the final write back to the destination to be unconditional.
5183 * For predicated zeroing movprfx, we need to rearrange the helpers to
5184 * allow the final write back to zero inactives.
5186 * In the meantime, just emit the moves.
5189 static bool trans_MOVPRFX(DisasContext *s, arg_MOVPRFX *a, uint32_t insn)
5191 return do_mov_z(s, a->rd, a->rn);
5194 static bool trans_MOVPRFX_m(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
5196 if (sve_access_check(s)) {
5197 do_sel_z(s, a->rd, a->rn, a->rd, a->pg, a->esz);
5199 return true;
5202 static bool trans_MOVPRFX_z(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
5204 if (sve_access_check(s)) {
5205 do_movz_zpz(s, a->rd, a->rn, a->pg, a->esz);
5207 return true;