s390x/mmu_helper: no need to pass access type to mmu_translate_asce()
[qemu/ar7.git] / target / hexagon / macros.h
blob094b8dabb5ae4f87eb5035e5e306029564bf79e4
1 /*
2 * Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 #ifndef HEXAGON_MACROS_H
19 #define HEXAGON_MACROS_H
21 #include "cpu.h"
22 #include "hex_regs.h"
23 #include "reg_fields.h"
25 #ifdef QEMU_GENERATE
26 #define READ_REG(dest, NUM) gen_read_reg(dest, NUM)
27 #else
28 #define READ_REG(NUM) (env->gpr[(NUM)])
29 #define READ_PREG(NUM) (env->pred[NUM])
31 #define WRITE_RREG(NUM, VAL) log_reg_write(env, NUM, VAL, slot)
32 #define WRITE_PREG(NUM, VAL) log_pred_write(env, NUM, VAL)
33 #endif
35 #define PCALIGN 4
36 #define PCALIGN_MASK (PCALIGN - 1)
38 #define GET_FIELD(FIELD, REGIN) \
39 fEXTRACTU_BITS(REGIN, reg_field_info[FIELD].width, \
40 reg_field_info[FIELD].offset)
42 #ifdef QEMU_GENERATE
43 #define GET_USR_FIELD(FIELD, DST) \
44 tcg_gen_extract_tl(DST, hex_gpr[HEX_REG_USR], \
45 reg_field_info[FIELD].offset, \
46 reg_field_info[FIELD].width)
48 #define TYPE_INT(X) __builtin_types_compatible_p(typeof(X), int)
49 #define TYPE_TCGV(X) __builtin_types_compatible_p(typeof(X), TCGv)
50 #define TYPE_TCGV_I64(X) __builtin_types_compatible_p(typeof(X), TCGv_i64)
52 #define SET_USR_FIELD_FUNC(X) \
53 __builtin_choose_expr(TYPE_INT(X), \
54 gen_set_usr_fieldi, \
55 __builtin_choose_expr(TYPE_TCGV(X), \
56 gen_set_usr_field, (void)0))
57 #define SET_USR_FIELD(FIELD, VAL) \
58 SET_USR_FIELD_FUNC(VAL)(FIELD, VAL)
59 #else
60 #define GET_USR_FIELD(FIELD) \
61 fEXTRACTU_BITS(env->gpr[HEX_REG_USR], reg_field_info[FIELD].width, \
62 reg_field_info[FIELD].offset)
64 #define SET_USR_FIELD(FIELD, VAL) \
65 fINSERT_BITS(env->gpr[HEX_REG_USR], reg_field_info[FIELD].width, \
66 reg_field_info[FIELD].offset, (VAL))
67 #endif
69 #ifdef QEMU_GENERATE
71 * Section 5.5 of the Hexagon V67 Programmer's Reference Manual
73 * Slot 1 store with slot 0 load
74 * A slot 1 store operation with a slot 0 load operation can appear in a packet.
75 * The packet attribute :mem_noshuf inhibits the instruction reordering that
76 * would otherwise be done by the assembler. For example:
77 * {
78 * memw(R5) = R2 // slot 1 store
79 * R3 = memh(R6) // slot 0 load
80 * }:mem_noshuf
81 * Unlike most packetized operations, these memory operations are not executed
82 * in parallel (Section 3.3.1). Instead, the store instruction in Slot 1
83 * effectively executes first, followed by the load instruction in Slot 0. If
84 * the addresses of the two operations are overlapping, the load will receive
85 * the newly stored data. This feature is supported in processor versions
86 * V65 or greater.
89 * For qemu, we look for a load in slot 0 when there is a store in slot 1
90 * in the same packet. When we see this, we call a helper that merges the
91 * bytes from the store buffer with the value loaded from memory.
93 #define CHECK_NOSHUF \
94 do { \
95 if (insn->slot == 0 && pkt->pkt_has_store_s1) { \
96 process_store(ctx, pkt, 1); \
97 } \
98 } while (0)
100 #define MEM_LOAD1s(DST, VA) \
101 do { \
102 CHECK_NOSHUF; \
103 tcg_gen_qemu_ld8s(DST, VA, ctx->mem_idx); \
104 } while (0)
105 #define MEM_LOAD1u(DST, VA) \
106 do { \
107 CHECK_NOSHUF; \
108 tcg_gen_qemu_ld8u(DST, VA, ctx->mem_idx); \
109 } while (0)
110 #define MEM_LOAD2s(DST, VA) \
111 do { \
112 CHECK_NOSHUF; \
113 tcg_gen_qemu_ld16s(DST, VA, ctx->mem_idx); \
114 } while (0)
115 #define MEM_LOAD2u(DST, VA) \
116 do { \
117 CHECK_NOSHUF; \
118 tcg_gen_qemu_ld16u(DST, VA, ctx->mem_idx); \
119 } while (0)
120 #define MEM_LOAD4s(DST, VA) \
121 do { \
122 CHECK_NOSHUF; \
123 tcg_gen_qemu_ld32s(DST, VA, ctx->mem_idx); \
124 } while (0)
125 #define MEM_LOAD4u(DST, VA) \
126 do { \
127 CHECK_NOSHUF; \
128 tcg_gen_qemu_ld32s(DST, VA, ctx->mem_idx); \
129 } while (0)
130 #define MEM_LOAD8u(DST, VA) \
131 do { \
132 CHECK_NOSHUF; \
133 tcg_gen_qemu_ld64(DST, VA, ctx->mem_idx); \
134 } while (0)
136 #define MEM_STORE1_FUNC(X) \
137 __builtin_choose_expr(TYPE_INT(X), \
138 gen_store1i, \
139 __builtin_choose_expr(TYPE_TCGV(X), \
140 gen_store1, (void)0))
141 #define MEM_STORE1(VA, DATA, SLOT) \
142 MEM_STORE1_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
144 #define MEM_STORE2_FUNC(X) \
145 __builtin_choose_expr(TYPE_INT(X), \
146 gen_store2i, \
147 __builtin_choose_expr(TYPE_TCGV(X), \
148 gen_store2, (void)0))
149 #define MEM_STORE2(VA, DATA, SLOT) \
150 MEM_STORE2_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
152 #define MEM_STORE4_FUNC(X) \
153 __builtin_choose_expr(TYPE_INT(X), \
154 gen_store4i, \
155 __builtin_choose_expr(TYPE_TCGV(X), \
156 gen_store4, (void)0))
157 #define MEM_STORE4(VA, DATA, SLOT) \
158 MEM_STORE4_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
160 #define MEM_STORE8_FUNC(X) \
161 __builtin_choose_expr(TYPE_INT(X), \
162 gen_store8i, \
163 __builtin_choose_expr(TYPE_TCGV_I64(X), \
164 gen_store8, (void)0))
165 #define MEM_STORE8(VA, DATA, SLOT) \
166 MEM_STORE8_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
167 #else
168 #define MEM_LOAD1s(VA) ((int8_t)mem_load1(env, slot, VA))
169 #define MEM_LOAD1u(VA) ((uint8_t)mem_load1(env, slot, VA))
170 #define MEM_LOAD2s(VA) ((int16_t)mem_load2(env, slot, VA))
171 #define MEM_LOAD2u(VA) ((uint16_t)mem_load2(env, slot, VA))
172 #define MEM_LOAD4s(VA) ((int32_t)mem_load4(env, slot, VA))
173 #define MEM_LOAD4u(VA) ((uint32_t)mem_load4(env, slot, VA))
174 #define MEM_LOAD8s(VA) ((int64_t)mem_load8(env, slot, VA))
175 #define MEM_LOAD8u(VA) ((uint64_t)mem_load8(env, slot, VA))
177 #define MEM_STORE1(VA, DATA, SLOT) log_store32(env, VA, DATA, 1, SLOT)
178 #define MEM_STORE2(VA, DATA, SLOT) log_store32(env, VA, DATA, 2, SLOT)
179 #define MEM_STORE4(VA, DATA, SLOT) log_store32(env, VA, DATA, 4, SLOT)
180 #define MEM_STORE8(VA, DATA, SLOT) log_store64(env, VA, DATA, 8, SLOT)
181 #endif
183 #define CANCEL cancel_slot(env, slot)
185 #define LOAD_CANCEL(EA) do { CANCEL; } while (0)
187 #ifdef QEMU_GENERATE
188 static inline void gen_pred_cancel(TCGv pred, int slot_num)
190 TCGv slot_mask = tcg_const_tl(1 << slot_num);
191 TCGv tmp = tcg_temp_new();
192 TCGv zero = tcg_const_tl(0);
193 TCGv one = tcg_const_tl(1);
194 tcg_gen_or_tl(slot_mask, hex_slot_cancelled, slot_mask);
195 tcg_gen_andi_tl(tmp, pred, 1);
196 tcg_gen_movcond_tl(TCG_COND_EQ, hex_slot_cancelled, tmp, zero,
197 slot_mask, hex_slot_cancelled);
198 tcg_temp_free(slot_mask);
199 tcg_temp_free(tmp);
200 tcg_temp_free(zero);
201 tcg_temp_free(one);
203 #define PRED_LOAD_CANCEL(PRED, EA) \
204 gen_pred_cancel(PRED, insn->is_endloop ? 4 : insn->slot)
205 #endif
207 #define STORE_CANCEL(EA) { env->slot_cancelled |= (1 << slot); }
209 #define fMAX(A, B) (((A) > (B)) ? (A) : (B))
211 #define fMIN(A, B) (((A) < (B)) ? (A) : (B))
213 #define fABS(A) (((A) < 0) ? (-(A)) : (A))
214 #define fINSERT_BITS(REG, WIDTH, OFFSET, INVAL) \
215 REG = ((WIDTH) ? deposit64(REG, (OFFSET), (WIDTH), (INVAL)) : REG)
216 #define fEXTRACTU_BITS(INREG, WIDTH, OFFSET) \
217 ((WIDTH) ? extract64((INREG), (OFFSET), (WIDTH)) : 0LL)
218 #define fEXTRACTU_BIDIR(INREG, WIDTH, OFFSET) \
219 (fZXTN(WIDTH, 32, fBIDIR_LSHIFTR((INREG), (OFFSET), 4_8)))
220 #define fEXTRACTU_RANGE(INREG, HIBIT, LOWBIT) \
221 (((HIBIT) - (LOWBIT) + 1) ? \
222 extract64((INREG), (LOWBIT), ((HIBIT) - (LOWBIT) + 1)) : \
223 0LL)
224 #define fINSERT_RANGE(INREG, HIBIT, LOWBIT, INVAL) \
225 do { \
226 int width = ((HIBIT) - (LOWBIT) + 1); \
227 INREG = (width >= 0 ? \
228 deposit64((INREG), (LOWBIT), width, (INVAL)) : \
229 INREG); \
230 } while (0)
232 #define f8BITSOF(VAL) ((VAL) ? 0xff : 0x00)
234 #ifdef QEMU_GENERATE
235 #define fLSBOLD(VAL) tcg_gen_andi_tl(LSB, (VAL), 1)
236 #else
237 #define fLSBOLD(VAL) ((VAL) & 1)
238 #endif
240 #ifdef QEMU_GENERATE
241 #define fLSBNEW(PVAL) tcg_gen_andi_tl(LSB, (PVAL), 1)
242 #define fLSBNEW0 tcg_gen_andi_tl(LSB, hex_new_pred_value[0], 1)
243 #define fLSBNEW1 tcg_gen_andi_tl(LSB, hex_new_pred_value[1], 1)
244 #else
245 #define fLSBNEW(PVAL) ((PVAL) & 1)
246 #define fLSBNEW0 (env->new_pred_value[0] & 1)
247 #define fLSBNEW1 (env->new_pred_value[1] & 1)
248 #endif
250 #ifdef QEMU_GENERATE
251 #define fLSBOLDNOT(VAL) \
252 do { \
253 tcg_gen_andi_tl(LSB, (VAL), 1); \
254 tcg_gen_xori_tl(LSB, LSB, 1); \
255 } while (0)
256 #define fLSBNEWNOT(PNUM) \
257 do { \
258 tcg_gen_andi_tl(LSB, (PNUM), 1); \
259 tcg_gen_xori_tl(LSB, LSB, 1); \
260 } while (0)
261 #else
262 #define fLSBNEWNOT(PNUM) (!fLSBNEW(PNUM))
263 #define fLSBOLDNOT(VAL) (!fLSBOLD(VAL))
264 #define fLSBNEW0NOT (!fLSBNEW0)
265 #define fLSBNEW1NOT (!fLSBNEW1)
266 #endif
268 #define fNEWREG(VAL) ((int32_t)(VAL))
270 #define fNEWREG_ST(VAL) (VAL)
272 #define fSATUVALN(N, VAL) \
273 ({ \
274 fSET_OVERFLOW(); \
275 ((VAL) < 0) ? 0 : ((1LL << (N)) - 1); \
277 #define fSATVALN(N, VAL) \
278 ({ \
279 fSET_OVERFLOW(); \
280 ((VAL) < 0) ? (-(1LL << ((N) - 1))) : ((1LL << ((N) - 1)) - 1); \
282 #define fZXTN(N, M, VAL) (((N) != 0) ? extract64((VAL), 0, (N)) : 0LL)
283 #define fSXTN(N, M, VAL) (((N) != 0) ? sextract64((VAL), 0, (N)) : 0LL)
284 #define fSATN(N, VAL) \
285 ((fSXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATVALN(N, VAL))
286 #define fADDSAT64(DST, A, B) \
287 do { \
288 uint64_t __a = fCAST8u(A); \
289 uint64_t __b = fCAST8u(B); \
290 uint64_t __sum = __a + __b; \
291 uint64_t __xor = __a ^ __b; \
292 const uint64_t __mask = 0x8000000000000000ULL; \
293 if (__xor & __mask) { \
294 DST = __sum; \
296 else if ((__a ^ __sum) & __mask) { \
297 if (__sum & __mask) { \
298 DST = 0x7FFFFFFFFFFFFFFFLL; \
299 fSET_OVERFLOW(); \
300 } else { \
301 DST = 0x8000000000000000LL; \
302 fSET_OVERFLOW(); \
304 } else { \
305 DST = __sum; \
307 } while (0)
308 #define fSATUN(N, VAL) \
309 ((fZXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATUVALN(N, VAL))
310 #define fSATH(VAL) (fSATN(16, VAL))
311 #define fSATUH(VAL) (fSATUN(16, VAL))
312 #define fSATUB(VAL) (fSATUN(8, VAL))
313 #define fSATB(VAL) (fSATN(8, VAL))
314 #define fIMMEXT(IMM) (IMM = IMM)
315 #define fMUST_IMMEXT(IMM) fIMMEXT(IMM)
317 #define fPCALIGN(IMM) IMM = (IMM & ~PCALIGN_MASK)
319 #ifdef QEMU_GENERATE
320 static inline TCGv gen_read_ireg(TCGv result, TCGv val, int shift)
323 * Section 2.2.4 of the Hexagon V67 Programmer's Reference Manual
325 * The "I" value from a modifier register is divided into two pieces
326 * LSB bits 23:17
327 * MSB bits 31:28
328 * The value is signed
330 * At the end we shift the result according to the shift argument
332 TCGv msb = tcg_temp_new();
333 TCGv lsb = tcg_temp_new();
335 tcg_gen_extract_tl(lsb, val, 17, 7);
336 tcg_gen_sari_tl(msb, val, 21);
337 tcg_gen_deposit_tl(result, msb, lsb, 0, 7);
339 tcg_gen_shli_tl(result, result, shift);
341 tcg_temp_free(msb);
342 tcg_temp_free(lsb);
344 return result;
346 #define fREAD_IREG(VAL, SHIFT) gen_read_ireg(ireg, (VAL), (SHIFT))
347 #else
348 #define fREAD_IREG(VAL) \
349 (fSXTN(11, 64, (((VAL) & 0xf0000000) >> 21) | ((VAL >> 17) & 0x7f)))
350 #endif
352 #define fREAD_LR() (READ_REG(HEX_REG_LR))
354 #define fWRITE_LR(A) WRITE_RREG(HEX_REG_LR, A)
355 #define fWRITE_FP(A) WRITE_RREG(HEX_REG_FP, A)
356 #define fWRITE_SP(A) WRITE_RREG(HEX_REG_SP, A)
358 #define fREAD_SP() (READ_REG(HEX_REG_SP))
359 #define fREAD_LC0 (READ_REG(HEX_REG_LC0))
360 #define fREAD_LC1 (READ_REG(HEX_REG_LC1))
361 #define fREAD_SA0 (READ_REG(HEX_REG_SA0))
362 #define fREAD_SA1 (READ_REG(HEX_REG_SA1))
363 #define fREAD_FP() (READ_REG(HEX_REG_FP))
364 #ifdef FIXME
365 /* Figure out how to get insn->extension_valid to helper */
366 #define fREAD_GP() \
367 (insn->extension_valid ? 0 : READ_REG(HEX_REG_GP))
368 #else
369 #define fREAD_GP() READ_REG(HEX_REG_GP)
370 #endif
371 #define fREAD_PC() (READ_REG(HEX_REG_PC))
373 #define fREAD_NPC() (env->next_PC & (0xfffffffe))
375 #define fREAD_P0() (READ_PREG(0))
376 #define fREAD_P3() (READ_PREG(3))
378 #define fCHECK_PCALIGN(A)
380 #define fWRITE_NPC(A) write_new_pc(env, A)
382 #define fBRANCH(LOC, TYPE) fWRITE_NPC(LOC)
383 #define fJUMPR(REGNO, TARGET, TYPE) fBRANCH(TARGET, COF_TYPE_JUMPR)
384 #define fHINTJR(TARGET) { /* Not modelled in qemu */}
385 #define fCALL(A) \
386 do { \
387 fWRITE_LR(fREAD_NPC()); \
388 fBRANCH(A, COF_TYPE_CALL); \
389 } while (0)
390 #define fCALLR(A) \
391 do { \
392 fWRITE_LR(fREAD_NPC()); \
393 fBRANCH(A, COF_TYPE_CALLR); \
394 } while (0)
395 #define fWRITE_LOOP_REGS0(START, COUNT) \
396 do { \
397 WRITE_RREG(HEX_REG_LC0, COUNT); \
398 WRITE_RREG(HEX_REG_SA0, START); \
399 } while (0)
400 #define fWRITE_LOOP_REGS1(START, COUNT) \
401 do { \
402 WRITE_RREG(HEX_REG_LC1, COUNT); \
403 WRITE_RREG(HEX_REG_SA1, START);\
404 } while (0)
405 #define fWRITE_LC0(VAL) WRITE_RREG(HEX_REG_LC0, VAL)
406 #define fWRITE_LC1(VAL) WRITE_RREG(HEX_REG_LC1, VAL)
408 #define fSET_OVERFLOW() SET_USR_FIELD(USR_OVF, 1)
409 #define fSET_LPCFG(VAL) SET_USR_FIELD(USR_LPCFG, (VAL))
410 #define fGET_LPCFG (GET_USR_FIELD(USR_LPCFG))
411 #define fWRITE_P0(VAL) WRITE_PREG(0, VAL)
412 #define fWRITE_P1(VAL) WRITE_PREG(1, VAL)
413 #define fWRITE_P2(VAL) WRITE_PREG(2, VAL)
414 #define fWRITE_P3(VAL) WRITE_PREG(3, VAL)
415 #define fPART1(WORK) if (part1) { WORK; return; }
416 #define fCAST4u(A) ((uint32_t)(A))
417 #define fCAST4s(A) ((int32_t)(A))
418 #define fCAST8u(A) ((uint64_t)(A))
419 #define fCAST8s(A) ((int64_t)(A))
420 #define fCAST4_4s(A) ((int32_t)(A))
421 #define fCAST4_4u(A) ((uint32_t)(A))
422 #define fCAST4_8s(A) ((int64_t)((int32_t)(A)))
423 #define fCAST4_8u(A) ((uint64_t)((uint32_t)(A)))
424 #define fCAST8_8s(A) ((int64_t)(A))
425 #define fCAST8_8u(A) ((uint64_t)(A))
426 #define fCAST2_8s(A) ((int64_t)((int16_t)(A)))
427 #define fCAST2_8u(A) ((uint64_t)((uint16_t)(A)))
428 #define fZE8_16(A) ((int16_t)((uint8_t)(A)))
429 #define fSE8_16(A) ((int16_t)((int8_t)(A)))
430 #define fSE16_32(A) ((int32_t)((int16_t)(A)))
431 #define fZE16_32(A) ((uint32_t)((uint16_t)(A)))
432 #define fSE32_64(A) ((int64_t)((int32_t)(A)))
433 #define fZE32_64(A) ((uint64_t)((uint32_t)(A)))
434 #define fSE8_32(A) ((int32_t)((int8_t)(A)))
435 #define fZE8_32(A) ((int32_t)((uint8_t)(A)))
436 #define fMPY8UU(A, B) (int)(fZE8_16(A) * fZE8_16(B))
437 #define fMPY8US(A, B) (int)(fZE8_16(A) * fSE8_16(B))
438 #define fMPY8SU(A, B) (int)(fSE8_16(A) * fZE8_16(B))
439 #define fMPY8SS(A, B) (int)((short)(A) * (short)(B))
440 #define fMPY16SS(A, B) fSE32_64(fSE16_32(A) * fSE16_32(B))
441 #define fMPY16UU(A, B) fZE32_64(fZE16_32(A) * fZE16_32(B))
442 #define fMPY16SU(A, B) fSE32_64(fSE16_32(A) * fZE16_32(B))
443 #define fMPY16US(A, B) fMPY16SU(B, A)
444 #define fMPY32SS(A, B) (fSE32_64(A) * fSE32_64(B))
445 #define fMPY32UU(A, B) (fZE32_64(A) * fZE32_64(B))
446 #define fMPY32SU(A, B) (fSE32_64(A) * fZE32_64(B))
447 #define fMPY3216SS(A, B) (fSE32_64(A) * fSXTN(16, 64, B))
448 #define fMPY3216SU(A, B) (fSE32_64(A) * fZXTN(16, 64, B))
449 #define fROUND(A) (A + 0x8000)
450 #define fCLIP(DST, SRC, U) \
451 do { \
452 int32_t maxv = (1 << U) - 1; \
453 int32_t minv = -(1 << U); \
454 DST = fMIN(maxv, fMAX(SRC, minv)); \
455 } while (0)
456 #define fCRND(A) ((((A) & 0x3) == 0x3) ? ((A) + 1) : ((A)))
457 #define fRNDN(A, N) ((((N) == 0) ? (A) : (((fSE32_64(A)) + (1 << ((N) - 1))))))
458 #define fCRNDN(A, N) (conv_round(A, N))
459 #define fADD128(A, B) (int128_add(A, B))
460 #define fSUB128(A, B) (int128_sub(A, B))
461 #define fSHIFTR128(A, B) (int128_rshift(A, B))
462 #define fSHIFTL128(A, B) (int128_lshift(A, B))
463 #define fAND128(A, B) (int128_and(A, B))
464 #define fCAST8S_16S(A) (int128_exts64(A))
465 #define fCAST16S_8S(A) (int128_getlo(A))
467 #ifdef QEMU_GENERATE
468 #define fEA_RI(REG, IMM) tcg_gen_addi_tl(EA, REG, IMM)
469 #define fEA_RRs(REG, REG2, SCALE) \
470 do { \
471 TCGv tmp = tcg_temp_new(); \
472 tcg_gen_shli_tl(tmp, REG2, SCALE); \
473 tcg_gen_add_tl(EA, REG, tmp); \
474 tcg_temp_free(tmp); \
475 } while (0)
476 #define fEA_IRs(IMM, REG, SCALE) \
477 do { \
478 tcg_gen_shli_tl(EA, REG, SCALE); \
479 tcg_gen_addi_tl(EA, EA, IMM); \
480 } while (0)
481 #else
482 #define fEA_RI(REG, IMM) \
483 do { \
484 EA = REG + IMM; \
485 } while (0)
486 #define fEA_RRs(REG, REG2, SCALE) \
487 do { \
488 EA = REG + (REG2 << SCALE); \
489 } while (0)
490 #define fEA_IRs(IMM, REG, SCALE) \
491 do { \
492 EA = IMM + (REG << SCALE); \
493 } while (0)
494 #endif
496 #ifdef QEMU_GENERATE
497 #define fEA_IMM(IMM) tcg_gen_movi_tl(EA, IMM)
498 #define fEA_REG(REG) tcg_gen_mov_tl(EA, REG)
499 #define fEA_BREVR(REG) gen_helper_fbrev(EA, REG)
500 #define fPM_I(REG, IMM) tcg_gen_addi_tl(REG, REG, IMM)
501 #define fPM_M(REG, MVAL) tcg_gen_add_tl(REG, REG, MVAL)
502 #define fPM_CIRI(REG, IMM, MVAL) \
503 do { \
504 TCGv tcgv_siV = tcg_const_tl(siV); \
505 gen_helper_fcircadd(REG, REG, tcgv_siV, MuV, \
506 hex_gpr[HEX_REG_CS0 + MuN]); \
507 tcg_temp_free(tcgv_siV); \
508 } while (0)
509 #else
510 #define fEA_IMM(IMM) do { EA = (IMM); } while (0)
511 #define fEA_REG(REG) do { EA = (REG); } while (0)
512 #define fEA_GPI(IMM) do { EA = (fREAD_GP() + (IMM)); } while (0)
513 #define fPM_I(REG, IMM) do { REG = REG + (IMM); } while (0)
514 #define fPM_M(REG, MVAL) do { REG = REG + (MVAL); } while (0)
515 #endif
516 #define fSCALE(N, A) (((int64_t)(A)) << N)
517 #define fSATW(A) fSATN(32, ((long long)A))
518 #define fSAT(A) fSATN(32, (A))
519 #define fSAT_ORIG_SHL(A, ORIG_REG) \
520 ((((int32_t)((fSAT(A)) ^ ((int32_t)(ORIG_REG)))) < 0) \
521 ? fSATVALN(32, ((int32_t)(ORIG_REG))) \
522 : ((((ORIG_REG) > 0) && ((A) == 0)) ? fSATVALN(32, (ORIG_REG)) \
523 : fSAT(A)))
524 #define fPASS(A) A
525 #define fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE) \
526 (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) >> ((-(SHAMT)) - 1)) >> 1) \
527 : (fCAST##REGSTYPE(SRC) << (SHAMT)))
528 #define fBIDIR_ASHIFTL(SRC, SHAMT, REGSTYPE) \
529 fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##s)
530 #define fBIDIR_LSHIFTL(SRC, SHAMT, REGSTYPE) \
531 fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##u)
532 #define fBIDIR_ASHIFTL_SAT(SRC, SHAMT, REGSTYPE) \
533 (((SHAMT) < 0) ? ((fCAST##REGSTYPE##s(SRC) >> ((-(SHAMT)) - 1)) >> 1) \
534 : fSAT_ORIG_SHL(fCAST##REGSTYPE##s(SRC) << (SHAMT), (SRC)))
535 #define fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE) \
536 (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) << ((-(SHAMT)) - 1)) << 1) \
537 : (fCAST##REGSTYPE(SRC) >> (SHAMT)))
538 #define fBIDIR_ASHIFTR(SRC, SHAMT, REGSTYPE) \
539 fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##s)
540 #define fBIDIR_LSHIFTR(SRC, SHAMT, REGSTYPE) \
541 fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##u)
542 #define fBIDIR_ASHIFTR_SAT(SRC, SHAMT, REGSTYPE) \
543 (((SHAMT) < 0) ? fSAT_ORIG_SHL((fCAST##REGSTYPE##s(SRC) \
544 << ((-(SHAMT)) - 1)) << 1, (SRC)) \
545 : (fCAST##REGSTYPE##s(SRC) >> (SHAMT)))
546 #define fASHIFTR(SRC, SHAMT, REGSTYPE) (fCAST##REGSTYPE##s(SRC) >> (SHAMT))
547 #define fLSHIFTR(SRC, SHAMT, REGSTYPE) \
548 (((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##u(SRC) >> (SHAMT)))
549 #define fROTL(SRC, SHAMT, REGSTYPE) \
550 (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) << (SHAMT)) | \
551 ((fCAST##REGSTYPE##u(SRC) >> \
552 ((sizeof(SRC) * 8) - (SHAMT))))))
553 #define fROTR(SRC, SHAMT, REGSTYPE) \
554 (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) >> (SHAMT)) | \
555 ((fCAST##REGSTYPE##u(SRC) << \
556 ((sizeof(SRC) * 8) - (SHAMT))))))
557 #define fASHIFTL(SRC, SHAMT, REGSTYPE) \
558 (((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##s(SRC) << (SHAMT)))
560 #ifdef QEMU_GENERATE
561 #define fLOAD(NUM, SIZE, SIGN, EA, DST) MEM_LOAD##SIZE##SIGN(DST, EA)
562 #else
563 #define fLOAD(NUM, SIZE, SIGN, EA, DST) \
564 DST = (size##SIZE##SIGN##_t)MEM_LOAD##SIZE##SIGN(EA)
565 #endif
567 #define fMEMOP(NUM, SIZE, SIGN, EA, FNTYPE, VALUE)
569 #define fGET_FRAMEKEY() READ_REG(HEX_REG_FRAMEKEY)
570 #define fFRAME_SCRAMBLE(VAL) ((VAL) ^ (fCAST8u(fGET_FRAMEKEY()) << 32))
571 #define fFRAME_UNSCRAMBLE(VAL) fFRAME_SCRAMBLE(VAL)
573 #ifdef CONFIG_USER_ONLY
574 #define fFRAMECHECK(ADDR, EA) do { } while (0) /* Not modelled in linux-user */
575 #else
576 /* System mode not implemented yet */
577 #define fFRAMECHECK(ADDR, EA) g_assert_not_reached();
578 #endif
580 #ifdef QEMU_GENERATE
581 #define fLOAD_LOCKED(NUM, SIZE, SIGN, EA, DST) \
582 gen_load_locked##SIZE##SIGN(DST, EA, ctx->mem_idx);
583 #endif
585 #ifdef QEMU_GENERATE
586 #define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, insn->slot)
587 #else
588 #define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, slot)
589 #endif
591 #ifdef QEMU_GENERATE
592 #define fSTORE_LOCKED(NUM, SIZE, EA, SRC, PRED) \
593 gen_store_conditional##SIZE(ctx, PRED, EA, SRC);
594 #endif
596 #ifdef QEMU_GENERATE
597 #define GETBYTE_FUNC(X) \
598 __builtin_choose_expr(TYPE_TCGV(X), \
599 gen_get_byte, \
600 __builtin_choose_expr(TYPE_TCGV_I64(X), \
601 gen_get_byte_i64, (void)0))
602 #define fGETBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, true)
603 #define fGETUBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, false)
604 #else
605 #define fGETBYTE(N, SRC) ((int8_t)((SRC >> ((N) * 8)) & 0xff))
606 #define fGETUBYTE(N, SRC) ((uint8_t)((SRC >> ((N) * 8)) & 0xff))
607 #endif
609 #define fSETBYTE(N, DST, VAL) \
610 do { \
611 DST = (DST & ~(0x0ffLL << ((N) * 8))) | \
612 (((uint64_t)((VAL) & 0x0ffLL)) << ((N) * 8)); \
613 } while (0)
615 #ifdef QEMU_GENERATE
616 #define fGETHALF(N, SRC) gen_get_half(HALF, N, SRC, true)
617 #define fGETUHALF(N, SRC) gen_get_half(HALF, N, SRC, false)
618 #else
619 #define fGETHALF(N, SRC) ((int16_t)((SRC >> ((N) * 16)) & 0xffff))
620 #define fGETUHALF(N, SRC) ((uint16_t)((SRC >> ((N) * 16)) & 0xffff))
621 #endif
622 #define fSETHALF(N, DST, VAL) \
623 do { \
624 DST = (DST & ~(0x0ffffLL << ((N) * 16))) | \
625 (((uint64_t)((VAL) & 0x0ffff)) << ((N) * 16)); \
626 } while (0)
627 #define fSETHALFw fSETHALF
628 #define fSETHALFd fSETHALF
630 #define fGETWORD(N, SRC) \
631 ((int64_t)((int32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL)))
632 #define fGETUWORD(N, SRC) \
633 ((uint64_t)((uint32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL)))
635 #define fSETWORD(N, DST, VAL) \
636 do { \
637 DST = (DST & ~(0x0ffffffffLL << ((N) * 32))) | \
638 (((VAL) & 0x0ffffffffLL) << ((N) * 32)); \
639 } while (0)
641 #define fSETBIT(N, DST, VAL) \
642 do { \
643 DST = (DST & ~(1ULL << (N))) | (((uint64_t)(VAL)) << (N)); \
644 } while (0)
646 #define fGETBIT(N, SRC) (((SRC) >> N) & 1)
647 #define fSETBITS(HI, LO, DST, VAL) \
648 do { \
649 int j; \
650 for (j = LO; j <= HI; j++) { \
651 fSETBIT(j, DST, VAL); \
653 } while (0)
654 #define fCOUNTONES_4(VAL) ctpop32(VAL)
655 #define fCOUNTONES_8(VAL) ctpop64(VAL)
656 #define fBREV_8(VAL) revbit64(VAL)
657 #define fBREV_4(VAL) revbit32(VAL)
658 #define fCL1_8(VAL) clo64(VAL)
659 #define fCL1_4(VAL) clo32(VAL)
660 #define fINTERLEAVE(ODD, EVEN) interleave(ODD, EVEN)
661 #define fDEINTERLEAVE(MIXED) deinterleave(MIXED)
662 #define fHIDE(A) A
663 #define fCONSTLL(A) A##LL
664 #define fECHO(A) (A)
666 #define fTRAP(TRAPTYPE, IMM) helper_raise_exception(env, HEX_EXCP_TRAP0)
667 #define fPAUSE(IMM)
669 #define fALIGN_REG_FIELD_VALUE(FIELD, VAL) \
670 ((VAL) << reg_field_info[FIELD].offset)
671 #define fGET_REG_FIELD_MASK(FIELD) \
672 (((1 << reg_field_info[FIELD].width) - 1) << reg_field_info[FIELD].offset)
673 #define fREAD_REG_FIELD(REG, FIELD) \
674 fEXTRACTU_BITS(env->gpr[HEX_REG_##REG], \
675 reg_field_info[FIELD].width, \
676 reg_field_info[FIELD].offset)
677 #define fGET_FIELD(VAL, FIELD)
678 #define fSET_FIELD(VAL, FIELD, NEWVAL)
679 #define fBARRIER()
680 #define fSYNCH()
681 #define fISYNC()
682 #define fDCFETCH(REG) \
683 do { (void)REG; } while (0) /* Nothing to do in qemu */
684 #define fICINVA(REG) \
685 do { (void)REG; } while (0) /* Nothing to do in qemu */
686 #define fL2FETCH(ADDR, HEIGHT, WIDTH, STRIDE, FLAGS)
687 #define fDCCLEANA(REG) \
688 do { (void)REG; } while (0) /* Nothing to do in qemu */
689 #define fDCCLEANINVA(REG) \
690 do { (void)REG; } while (0) /* Nothing to do in qemu */
692 #define fDCZEROA(REG) do { env->dczero_addr = (REG); } while (0)
694 #define fBRANCH_SPECULATE_STALL(DOTNEWVAL, JUMP_COND, SPEC_DIR, HINTBITNUM, \
695 STRBITNUM) /* Nothing */
698 #endif