Merge remote-tracking branch 'remotes/kevin/tags/for-upstream' into staging
[qemu/ar7.git] / hw / intc / arm_gicv3_kvm.c
blob9c7f4ab8711cd7ba780727089a1c8a78384bd794
1 /*
2 * ARM Generic Interrupt Controller using KVM in-kernel support
4 * Copyright (c) 2015 Samsung Electronics Co., Ltd.
5 * Written by Pavel Fedin
6 * Based on vGICv2 code by Peter Maydell
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 #include "qemu/osdep.h"
23 #include "qapi/error.h"
24 #include "hw/intc/arm_gicv3_common.h"
25 #include "hw/sysbus.h"
26 #include "qemu/error-report.h"
27 #include "qemu/module.h"
28 #include "sysemu/kvm.h"
29 #include "sysemu/runstate.h"
30 #include "kvm_arm.h"
31 #include "gicv3_internal.h"
32 #include "vgic_common.h"
33 #include "migration/blocker.h"
35 #ifdef DEBUG_GICV3_KVM
36 #define DPRINTF(fmt, ...) \
37 do { fprintf(stderr, "kvm_gicv3: " fmt, ## __VA_ARGS__); } while (0)
38 #else
39 #define DPRINTF(fmt, ...) \
40 do { } while (0)
41 #endif
43 #define TYPE_KVM_ARM_GICV3 "kvm-arm-gicv3"
44 #define KVM_ARM_GICV3(obj) \
45 OBJECT_CHECK(GICv3State, (obj), TYPE_KVM_ARM_GICV3)
46 #define KVM_ARM_GICV3_CLASS(klass) \
47 OBJECT_CLASS_CHECK(KVMARMGICv3Class, (klass), TYPE_KVM_ARM_GICV3)
48 #define KVM_ARM_GICV3_GET_CLASS(obj) \
49 OBJECT_GET_CLASS(KVMARMGICv3Class, (obj), TYPE_KVM_ARM_GICV3)
51 #define KVM_DEV_ARM_VGIC_SYSREG(op0, op1, crn, crm, op2) \
52 (ARM64_SYS_REG_SHIFT_MASK(op0, OP0) | \
53 ARM64_SYS_REG_SHIFT_MASK(op1, OP1) | \
54 ARM64_SYS_REG_SHIFT_MASK(crn, CRN) | \
55 ARM64_SYS_REG_SHIFT_MASK(crm, CRM) | \
56 ARM64_SYS_REG_SHIFT_MASK(op2, OP2))
58 #define ICC_PMR_EL1 \
59 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 4, 6, 0)
60 #define ICC_BPR0_EL1 \
61 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 3)
62 #define ICC_AP0R_EL1(n) \
63 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 4 | n)
64 #define ICC_AP1R_EL1(n) \
65 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 9, n)
66 #define ICC_BPR1_EL1 \
67 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 3)
68 #define ICC_CTLR_EL1 \
69 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 4)
70 #define ICC_SRE_EL1 \
71 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 5)
72 #define ICC_IGRPEN0_EL1 \
73 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 6)
74 #define ICC_IGRPEN1_EL1 \
75 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 7)
77 typedef struct KVMARMGICv3Class {
78 ARMGICv3CommonClass parent_class;
79 DeviceRealize parent_realize;
80 void (*parent_reset)(DeviceState *dev);
81 } KVMARMGICv3Class;
83 static void kvm_arm_gicv3_set_irq(void *opaque, int irq, int level)
85 GICv3State *s = (GICv3State *)opaque;
87 kvm_arm_gic_set_irq(s->num_irq, irq, level);
90 #define KVM_VGIC_ATTR(reg, typer) \
91 ((typer & KVM_DEV_ARM_VGIC_V3_MPIDR_MASK) | (reg))
93 static inline void kvm_gicd_access(GICv3State *s, int offset,
94 uint32_t *val, bool write)
96 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
97 KVM_VGIC_ATTR(offset, 0),
98 val, write, &error_abort);
101 static inline void kvm_gicr_access(GICv3State *s, int offset, int cpu,
102 uint32_t *val, bool write)
104 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_REDIST_REGS,
105 KVM_VGIC_ATTR(offset, s->cpu[cpu].gicr_typer),
106 val, write, &error_abort);
109 static inline void kvm_gicc_access(GICv3State *s, uint64_t reg, int cpu,
110 uint64_t *val, bool write)
112 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS,
113 KVM_VGIC_ATTR(reg, s->cpu[cpu].gicr_typer),
114 val, write, &error_abort);
117 static inline void kvm_gic_line_level_access(GICv3State *s, int irq, int cpu,
118 uint32_t *val, bool write)
120 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO,
121 KVM_VGIC_ATTR(irq, s->cpu[cpu].gicr_typer) |
122 (VGIC_LEVEL_INFO_LINE_LEVEL <<
123 KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT),
124 val, write, &error_abort);
127 /* Loop through each distributor IRQ related register; since bits
128 * corresponding to SPIs and PPIs are RAZ/WI when affinity routing
129 * is enabled, we skip those.
131 #define for_each_dist_irq_reg(_irq, _max, _field_width) \
132 for (_irq = GIC_INTERNAL; _irq < _max; _irq += (32 / _field_width))
134 static void kvm_dist_get_priority(GICv3State *s, uint32_t offset, uint8_t *bmp)
136 uint32_t reg, *field;
137 int irq;
139 /* For the KVM GICv3, affinity routing is always enabled, and the first 8
140 * GICD_IPRIORITYR<n> registers are always RAZ/WI. The corresponding
141 * functionality is replaced by GICR_IPRIORITYR<n>. It doesn't need to
142 * sync them. So it needs to skip the field of GIC_INTERNAL irqs in bmp and
143 * offset.
145 field = (uint32_t *)(bmp + GIC_INTERNAL);
146 offset += (GIC_INTERNAL * 8) / 8;
147 for_each_dist_irq_reg(irq, s->num_irq, 8) {
148 kvm_gicd_access(s, offset, &reg, false);
149 *field = reg;
150 offset += 4;
151 field++;
155 static void kvm_dist_put_priority(GICv3State *s, uint32_t offset, uint8_t *bmp)
157 uint32_t reg, *field;
158 int irq;
160 /* For the KVM GICv3, affinity routing is always enabled, and the first 8
161 * GICD_IPRIORITYR<n> registers are always RAZ/WI. The corresponding
162 * functionality is replaced by GICR_IPRIORITYR<n>. It doesn't need to
163 * sync them. So it needs to skip the field of GIC_INTERNAL irqs in bmp and
164 * offset.
166 field = (uint32_t *)(bmp + GIC_INTERNAL);
167 offset += (GIC_INTERNAL * 8) / 8;
168 for_each_dist_irq_reg(irq, s->num_irq, 8) {
169 reg = *field;
170 kvm_gicd_access(s, offset, &reg, true);
171 offset += 4;
172 field++;
176 static void kvm_dist_get_edge_trigger(GICv3State *s, uint32_t offset,
177 uint32_t *bmp)
179 uint32_t reg;
180 int irq;
182 /* For the KVM GICv3, affinity routing is always enabled, and the first 2
183 * GICD_ICFGR<n> registers are always RAZ/WI. The corresponding
184 * functionality is replaced by GICR_ICFGR<n>. It doesn't need to sync
185 * them. So it should increase the offset to skip GIC_INTERNAL irqs.
186 * This matches the for_each_dist_irq_reg() macro which also skips the
187 * first GIC_INTERNAL irqs.
189 offset += (GIC_INTERNAL * 2) / 8;
190 for_each_dist_irq_reg(irq, s->num_irq, 2) {
191 kvm_gicd_access(s, offset, &reg, false);
192 reg = half_unshuffle32(reg >> 1);
193 if (irq % 32 != 0) {
194 reg = (reg << 16);
196 *gic_bmp_ptr32(bmp, irq) |= reg;
197 offset += 4;
201 static void kvm_dist_put_edge_trigger(GICv3State *s, uint32_t offset,
202 uint32_t *bmp)
204 uint32_t reg;
205 int irq;
207 /* For the KVM GICv3, affinity routing is always enabled, and the first 2
208 * GICD_ICFGR<n> registers are always RAZ/WI. The corresponding
209 * functionality is replaced by GICR_ICFGR<n>. It doesn't need to sync
210 * them. So it should increase the offset to skip GIC_INTERNAL irqs.
211 * This matches the for_each_dist_irq_reg() macro which also skips the
212 * first GIC_INTERNAL irqs.
214 offset += (GIC_INTERNAL * 2) / 8;
215 for_each_dist_irq_reg(irq, s->num_irq, 2) {
216 reg = *gic_bmp_ptr32(bmp, irq);
217 if (irq % 32 != 0) {
218 reg = (reg & 0xffff0000) >> 16;
219 } else {
220 reg = reg & 0xffff;
222 reg = half_shuffle32(reg) << 1;
223 kvm_gicd_access(s, offset, &reg, true);
224 offset += 4;
228 static void kvm_gic_get_line_level_bmp(GICv3State *s, uint32_t *bmp)
230 uint32_t reg;
231 int irq;
233 for_each_dist_irq_reg(irq, s->num_irq, 1) {
234 kvm_gic_line_level_access(s, irq, 0, &reg, false);
235 *gic_bmp_ptr32(bmp, irq) = reg;
239 static void kvm_gic_put_line_level_bmp(GICv3State *s, uint32_t *bmp)
241 uint32_t reg;
242 int irq;
244 for_each_dist_irq_reg(irq, s->num_irq, 1) {
245 reg = *gic_bmp_ptr32(bmp, irq);
246 kvm_gic_line_level_access(s, irq, 0, &reg, true);
250 /* Read a bitmap register group from the kernel VGIC. */
251 static void kvm_dist_getbmp(GICv3State *s, uint32_t offset, uint32_t *bmp)
253 uint32_t reg;
254 int irq;
256 /* For the KVM GICv3, affinity routing is always enabled, and the
257 * GICD_IGROUPR0/GICD_IGRPMODR0/GICD_ISENABLER0/GICD_ISPENDR0/
258 * GICD_ISACTIVER0 registers are always RAZ/WI. The corresponding
259 * functionality is replaced by the GICR registers. It doesn't need to sync
260 * them. So it should increase the offset to skip GIC_INTERNAL irqs.
261 * This matches the for_each_dist_irq_reg() macro which also skips the
262 * first GIC_INTERNAL irqs.
264 offset += (GIC_INTERNAL * 1) / 8;
265 for_each_dist_irq_reg(irq, s->num_irq, 1) {
266 kvm_gicd_access(s, offset, &reg, false);
267 *gic_bmp_ptr32(bmp, irq) = reg;
268 offset += 4;
272 static void kvm_dist_putbmp(GICv3State *s, uint32_t offset,
273 uint32_t clroffset, uint32_t *bmp)
275 uint32_t reg;
276 int irq;
278 /* For the KVM GICv3, affinity routing is always enabled, and the
279 * GICD_IGROUPR0/GICD_IGRPMODR0/GICD_ISENABLER0/GICD_ISPENDR0/
280 * GICD_ISACTIVER0 registers are always RAZ/WI. The corresponding
281 * functionality is replaced by the GICR registers. It doesn't need to sync
282 * them. So it should increase the offset and clroffset to skip GIC_INTERNAL
283 * irqs. This matches the for_each_dist_irq_reg() macro which also skips the
284 * first GIC_INTERNAL irqs.
286 offset += (GIC_INTERNAL * 1) / 8;
287 if (clroffset != 0) {
288 clroffset += (GIC_INTERNAL * 1) / 8;
291 for_each_dist_irq_reg(irq, s->num_irq, 1) {
292 /* If this bitmap is a set/clear register pair, first write to the
293 * clear-reg to clear all bits before using the set-reg to write
294 * the 1 bits.
296 if (clroffset != 0) {
297 reg = 0;
298 kvm_gicd_access(s, clroffset, &reg, true);
299 clroffset += 4;
301 reg = *gic_bmp_ptr32(bmp, irq);
302 kvm_gicd_access(s, offset, &reg, true);
303 offset += 4;
307 static void kvm_arm_gicv3_check(GICv3State *s)
309 uint32_t reg;
310 uint32_t num_irq;
312 /* Sanity checking s->num_irq */
313 kvm_gicd_access(s, GICD_TYPER, &reg, false);
314 num_irq = ((reg & 0x1f) + 1) * 32;
316 if (num_irq < s->num_irq) {
317 error_report("Model requests %u IRQs, but kernel supports max %u",
318 s->num_irq, num_irq);
319 abort();
323 static void kvm_arm_gicv3_put(GICv3State *s)
325 uint32_t regl, regh, reg;
326 uint64_t reg64, redist_typer;
327 int ncpu, i;
329 kvm_arm_gicv3_check(s);
331 kvm_gicr_access(s, GICR_TYPER, 0, &regl, false);
332 kvm_gicr_access(s, GICR_TYPER + 4, 0, &regh, false);
333 redist_typer = ((uint64_t)regh << 32) | regl;
335 reg = s->gicd_ctlr;
336 kvm_gicd_access(s, GICD_CTLR, &reg, true);
338 if (redist_typer & GICR_TYPER_PLPIS) {
339 /* Set base addresses before LPIs are enabled by GICR_CTLR write */
340 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
341 GICv3CPUState *c = &s->cpu[ncpu];
343 reg64 = c->gicr_propbaser;
344 regl = (uint32_t)reg64;
345 kvm_gicr_access(s, GICR_PROPBASER, ncpu, &regl, true);
346 regh = (uint32_t)(reg64 >> 32);
347 kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, &regh, true);
349 reg64 = c->gicr_pendbaser;
350 if (!(c->gicr_ctlr & GICR_CTLR_ENABLE_LPIS)) {
351 /* Setting PTZ is advised if LPIs are disabled, to reduce
352 * GIC initialization time.
354 reg64 |= GICR_PENDBASER_PTZ;
356 regl = (uint32_t)reg64;
357 kvm_gicr_access(s, GICR_PENDBASER, ncpu, &regl, true);
358 regh = (uint32_t)(reg64 >> 32);
359 kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, &regh, true);
363 /* Redistributor state (one per CPU) */
365 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
366 GICv3CPUState *c = &s->cpu[ncpu];
368 reg = c->gicr_ctlr;
369 kvm_gicr_access(s, GICR_CTLR, ncpu, &reg, true);
371 reg = c->gicr_statusr[GICV3_NS];
372 kvm_gicr_access(s, GICR_STATUSR, ncpu, &reg, true);
374 reg = c->gicr_waker;
375 kvm_gicr_access(s, GICR_WAKER, ncpu, &reg, true);
377 reg = c->gicr_igroupr0;
378 kvm_gicr_access(s, GICR_IGROUPR0, ncpu, &reg, true);
380 reg = ~0;
381 kvm_gicr_access(s, GICR_ICENABLER0, ncpu, &reg, true);
382 reg = c->gicr_ienabler0;
383 kvm_gicr_access(s, GICR_ISENABLER0, ncpu, &reg, true);
385 /* Restore config before pending so we treat level/edge correctly */
386 reg = half_shuffle32(c->edge_trigger >> 16) << 1;
387 kvm_gicr_access(s, GICR_ICFGR1, ncpu, &reg, true);
389 reg = c->level;
390 kvm_gic_line_level_access(s, 0, ncpu, &reg, true);
392 reg = ~0;
393 kvm_gicr_access(s, GICR_ICPENDR0, ncpu, &reg, true);
394 reg = c->gicr_ipendr0;
395 kvm_gicr_access(s, GICR_ISPENDR0, ncpu, &reg, true);
397 reg = ~0;
398 kvm_gicr_access(s, GICR_ICACTIVER0, ncpu, &reg, true);
399 reg = c->gicr_iactiver0;
400 kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, &reg, true);
402 for (i = 0; i < GIC_INTERNAL; i += 4) {
403 reg = c->gicr_ipriorityr[i] |
404 (c->gicr_ipriorityr[i + 1] << 8) |
405 (c->gicr_ipriorityr[i + 2] << 16) |
406 (c->gicr_ipriorityr[i + 3] << 24);
407 kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, &reg, true);
411 /* Distributor state (shared between all CPUs */
412 reg = s->gicd_statusr[GICV3_NS];
413 kvm_gicd_access(s, GICD_STATUSR, &reg, true);
415 /* s->enable bitmap -> GICD_ISENABLERn */
416 kvm_dist_putbmp(s, GICD_ISENABLER, GICD_ICENABLER, s->enabled);
418 /* s->group bitmap -> GICD_IGROUPRn */
419 kvm_dist_putbmp(s, GICD_IGROUPR, 0, s->group);
421 /* Restore targets before pending to ensure the pending state is set on
422 * the appropriate CPU interfaces in the kernel
425 /* s->gicd_irouter[irq] -> GICD_IROUTERn
426 * We can't use kvm_dist_put() here because the registers are 64-bit
428 for (i = GIC_INTERNAL; i < s->num_irq; i++) {
429 uint32_t offset;
431 offset = GICD_IROUTER + (sizeof(uint32_t) * i);
432 reg = (uint32_t)s->gicd_irouter[i];
433 kvm_gicd_access(s, offset, &reg, true);
435 offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4;
436 reg = (uint32_t)(s->gicd_irouter[i] >> 32);
437 kvm_gicd_access(s, offset, &reg, true);
440 /* s->trigger bitmap -> GICD_ICFGRn
441 * (restore configuration registers before pending IRQs so we treat
442 * level/edge correctly)
444 kvm_dist_put_edge_trigger(s, GICD_ICFGR, s->edge_trigger);
446 /* s->level bitmap -> line_level */
447 kvm_gic_put_line_level_bmp(s, s->level);
449 /* s->pending bitmap -> GICD_ISPENDRn */
450 kvm_dist_putbmp(s, GICD_ISPENDR, GICD_ICPENDR, s->pending);
452 /* s->active bitmap -> GICD_ISACTIVERn */
453 kvm_dist_putbmp(s, GICD_ISACTIVER, GICD_ICACTIVER, s->active);
455 /* s->gicd_ipriority[] -> GICD_IPRIORITYRn */
456 kvm_dist_put_priority(s, GICD_IPRIORITYR, s->gicd_ipriority);
458 /* CPU Interface state (one per CPU) */
460 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
461 GICv3CPUState *c = &s->cpu[ncpu];
462 int num_pri_bits;
464 kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, true);
465 kvm_gicc_access(s, ICC_CTLR_EL1, ncpu,
466 &c->icc_ctlr_el1[GICV3_NS], true);
467 kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu,
468 &c->icc_igrpen[GICV3_G0], true);
469 kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu,
470 &c->icc_igrpen[GICV3_G1NS], true);
471 kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, true);
472 kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], true);
473 kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], true);
475 num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] &
476 ICC_CTLR_EL1_PRIBITS_MASK) >>
477 ICC_CTLR_EL1_PRIBITS_SHIFT) + 1;
479 switch (num_pri_bits) {
480 case 7:
481 reg64 = c->icc_apr[GICV3_G0][3];
482 kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, &reg64, true);
483 reg64 = c->icc_apr[GICV3_G0][2];
484 kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, &reg64, true);
485 case 6:
486 reg64 = c->icc_apr[GICV3_G0][1];
487 kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, &reg64, true);
488 default:
489 reg64 = c->icc_apr[GICV3_G0][0];
490 kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, &reg64, true);
493 switch (num_pri_bits) {
494 case 7:
495 reg64 = c->icc_apr[GICV3_G1NS][3];
496 kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, &reg64, true);
497 reg64 = c->icc_apr[GICV3_G1NS][2];
498 kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, &reg64, true);
499 case 6:
500 reg64 = c->icc_apr[GICV3_G1NS][1];
501 kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, &reg64, true);
502 default:
503 reg64 = c->icc_apr[GICV3_G1NS][0];
504 kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, &reg64, true);
509 static void kvm_arm_gicv3_get(GICv3State *s)
511 uint32_t regl, regh, reg;
512 uint64_t reg64, redist_typer;
513 int ncpu, i;
515 kvm_arm_gicv3_check(s);
517 kvm_gicr_access(s, GICR_TYPER, 0, &regl, false);
518 kvm_gicr_access(s, GICR_TYPER + 4, 0, &regh, false);
519 redist_typer = ((uint64_t)regh << 32) | regl;
521 kvm_gicd_access(s, GICD_CTLR, &reg, false);
522 s->gicd_ctlr = reg;
524 /* Redistributor state (one per CPU) */
526 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
527 GICv3CPUState *c = &s->cpu[ncpu];
529 kvm_gicr_access(s, GICR_CTLR, ncpu, &reg, false);
530 c->gicr_ctlr = reg;
532 kvm_gicr_access(s, GICR_STATUSR, ncpu, &reg, false);
533 c->gicr_statusr[GICV3_NS] = reg;
535 kvm_gicr_access(s, GICR_WAKER, ncpu, &reg, false);
536 c->gicr_waker = reg;
538 kvm_gicr_access(s, GICR_IGROUPR0, ncpu, &reg, false);
539 c->gicr_igroupr0 = reg;
540 kvm_gicr_access(s, GICR_ISENABLER0, ncpu, &reg, false);
541 c->gicr_ienabler0 = reg;
542 kvm_gicr_access(s, GICR_ICFGR1, ncpu, &reg, false);
543 c->edge_trigger = half_unshuffle32(reg >> 1) << 16;
544 kvm_gic_line_level_access(s, 0, ncpu, &reg, false);
545 c->level = reg;
546 kvm_gicr_access(s, GICR_ISPENDR0, ncpu, &reg, false);
547 c->gicr_ipendr0 = reg;
548 kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, &reg, false);
549 c->gicr_iactiver0 = reg;
551 for (i = 0; i < GIC_INTERNAL; i += 4) {
552 kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, &reg, false);
553 c->gicr_ipriorityr[i] = extract32(reg, 0, 8);
554 c->gicr_ipriorityr[i + 1] = extract32(reg, 8, 8);
555 c->gicr_ipriorityr[i + 2] = extract32(reg, 16, 8);
556 c->gicr_ipriorityr[i + 3] = extract32(reg, 24, 8);
560 if (redist_typer & GICR_TYPER_PLPIS) {
561 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
562 GICv3CPUState *c = &s->cpu[ncpu];
564 kvm_gicr_access(s, GICR_PROPBASER, ncpu, &regl, false);
565 kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, &regh, false);
566 c->gicr_propbaser = ((uint64_t)regh << 32) | regl;
568 kvm_gicr_access(s, GICR_PENDBASER, ncpu, &regl, false);
569 kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, &regh, false);
570 c->gicr_pendbaser = ((uint64_t)regh << 32) | regl;
574 /* Distributor state (shared between all CPUs */
576 kvm_gicd_access(s, GICD_STATUSR, &reg, false);
577 s->gicd_statusr[GICV3_NS] = reg;
579 /* GICD_IGROUPRn -> s->group bitmap */
580 kvm_dist_getbmp(s, GICD_IGROUPR, s->group);
582 /* GICD_ISENABLERn -> s->enabled bitmap */
583 kvm_dist_getbmp(s, GICD_ISENABLER, s->enabled);
585 /* Line level of irq */
586 kvm_gic_get_line_level_bmp(s, s->level);
587 /* GICD_ISPENDRn -> s->pending bitmap */
588 kvm_dist_getbmp(s, GICD_ISPENDR, s->pending);
590 /* GICD_ISACTIVERn -> s->active bitmap */
591 kvm_dist_getbmp(s, GICD_ISACTIVER, s->active);
593 /* GICD_ICFGRn -> s->trigger bitmap */
594 kvm_dist_get_edge_trigger(s, GICD_ICFGR, s->edge_trigger);
596 /* GICD_IPRIORITYRn -> s->gicd_ipriority[] */
597 kvm_dist_get_priority(s, GICD_IPRIORITYR, s->gicd_ipriority);
599 /* GICD_IROUTERn -> s->gicd_irouter[irq] */
600 for (i = GIC_INTERNAL; i < s->num_irq; i++) {
601 uint32_t offset;
603 offset = GICD_IROUTER + (sizeof(uint32_t) * i);
604 kvm_gicd_access(s, offset, &regl, false);
605 offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4;
606 kvm_gicd_access(s, offset, &regh, false);
607 s->gicd_irouter[i] = ((uint64_t)regh << 32) | regl;
610 /*****************************************************************
611 * CPU Interface(s) State
614 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
615 GICv3CPUState *c = &s->cpu[ncpu];
616 int num_pri_bits;
618 kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, false);
619 kvm_gicc_access(s, ICC_CTLR_EL1, ncpu,
620 &c->icc_ctlr_el1[GICV3_NS], false);
621 kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu,
622 &c->icc_igrpen[GICV3_G0], false);
623 kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu,
624 &c->icc_igrpen[GICV3_G1NS], false);
625 kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, false);
626 kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], false);
627 kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], false);
628 num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] &
629 ICC_CTLR_EL1_PRIBITS_MASK) >>
630 ICC_CTLR_EL1_PRIBITS_SHIFT) + 1;
632 switch (num_pri_bits) {
633 case 7:
634 kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, &reg64, false);
635 c->icc_apr[GICV3_G0][3] = reg64;
636 kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, &reg64, false);
637 c->icc_apr[GICV3_G0][2] = reg64;
638 case 6:
639 kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, &reg64, false);
640 c->icc_apr[GICV3_G0][1] = reg64;
641 default:
642 kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, &reg64, false);
643 c->icc_apr[GICV3_G0][0] = reg64;
646 switch (num_pri_bits) {
647 case 7:
648 kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, &reg64, false);
649 c->icc_apr[GICV3_G1NS][3] = reg64;
650 kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, &reg64, false);
651 c->icc_apr[GICV3_G1NS][2] = reg64;
652 case 6:
653 kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, &reg64, false);
654 c->icc_apr[GICV3_G1NS][1] = reg64;
655 default:
656 kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, &reg64, false);
657 c->icc_apr[GICV3_G1NS][0] = reg64;
662 static void arm_gicv3_icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
664 ARMCPU *cpu;
665 GICv3State *s;
666 GICv3CPUState *c;
668 c = (GICv3CPUState *)env->gicv3state;
669 s = c->gic;
670 cpu = ARM_CPU(c->cpu);
672 c->icc_pmr_el1 = 0;
673 c->icc_bpr[GICV3_G0] = GIC_MIN_BPR;
674 c->icc_bpr[GICV3_G1] = GIC_MIN_BPR;
675 c->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR;
677 c->icc_sre_el1 = 0x7;
678 memset(c->icc_apr, 0, sizeof(c->icc_apr));
679 memset(c->icc_igrpen, 0, sizeof(c->icc_igrpen));
681 if (s->migration_blocker) {
682 return;
685 /* Initialize to actual HW supported configuration */
686 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS,
687 KVM_VGIC_ATTR(ICC_CTLR_EL1, cpu->mp_affinity),
688 &c->icc_ctlr_el1[GICV3_NS], false, &error_abort);
690 c->icc_ctlr_el1[GICV3_S] = c->icc_ctlr_el1[GICV3_NS];
693 static void kvm_arm_gicv3_reset(DeviceState *dev)
695 GICv3State *s = ARM_GICV3_COMMON(dev);
696 KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s);
698 DPRINTF("Reset\n");
700 kgc->parent_reset(dev);
702 if (s->migration_blocker) {
703 DPRINTF("Cannot put kernel gic state, no kernel interface\n");
704 return;
707 kvm_arm_gicv3_put(s);
711 * CPU interface registers of GIC needs to be reset on CPU reset.
712 * For the calling arm_gicv3_icc_reset() on CPU reset, we register
713 * below ARMCPRegInfo. As we reset the whole cpu interface under single
714 * register reset, we define only one register of CPU interface instead
715 * of defining all the registers.
717 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
718 { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
719 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
721 * If ARM_CP_NOP is used, resetfn is not called,
722 * So ARM_CP_NO_RAW is appropriate type.
724 .type = ARM_CP_NO_RAW,
725 .access = PL1_RW,
726 .readfn = arm_cp_read_zero,
727 .writefn = arm_cp_write_ignore,
729 * We hang the whole cpu interface reset routine off here
730 * rather than parcelling it out into one little function
731 * per register
733 .resetfn = arm_gicv3_icc_reset,
735 REGINFO_SENTINEL
739 * vm_change_state_handler - VM change state callback aiming at flushing
740 * RDIST pending tables into guest RAM
742 * The tables get flushed to guest RAM whenever the VM gets stopped.
744 static void vm_change_state_handler(void *opaque, int running,
745 RunState state)
747 GICv3State *s = (GICv3State *)opaque;
748 Error *err = NULL;
749 int ret;
751 if (running) {
752 return;
755 ret = kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
756 KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES,
757 NULL, true, &err);
758 if (err) {
759 error_report_err(err);
761 if (ret < 0 && ret != -EFAULT) {
762 abort();
767 static void kvm_arm_gicv3_realize(DeviceState *dev, Error **errp)
769 GICv3State *s = KVM_ARM_GICV3(dev);
770 KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s);
771 bool multiple_redist_region_allowed;
772 Error *local_err = NULL;
773 int i;
775 DPRINTF("kvm_arm_gicv3_realize\n");
777 kgc->parent_realize(dev, &local_err);
778 if (local_err) {
779 error_propagate(errp, local_err);
780 return;
783 if (s->security_extn) {
784 error_setg(errp, "the in-kernel VGICv3 does not implement the "
785 "security extensions");
786 return;
789 gicv3_init_irqs_and_mmio(s, kvm_arm_gicv3_set_irq, NULL, &local_err);
790 if (local_err) {
791 error_propagate(errp, local_err);
792 return;
795 for (i = 0; i < s->num_cpu; i++) {
796 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
798 define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
801 /* Try to create the device via the device control API */
802 s->dev_fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_ARM_VGIC_V3, false);
803 if (s->dev_fd < 0) {
804 error_setg_errno(errp, -s->dev_fd, "error creating in-kernel VGIC");
805 return;
808 multiple_redist_region_allowed =
809 kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
810 KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION);
812 if (!multiple_redist_region_allowed && s->nb_redist_regions > 1) {
813 error_setg(errp, "Multiple VGICv3 redistributor regions are not "
814 "supported by this host kernel");
815 error_append_hint(errp, "A maximum of %d VCPUs can be used",
816 s->redist_region_count[0]);
817 return;
820 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS,
821 0, &s->num_irq, true, &error_abort);
823 /* Tell the kernel to complete VGIC initialization now */
824 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
825 KVM_DEV_ARM_VGIC_CTRL_INIT, NULL, true, &error_abort);
827 kvm_arm_register_device(&s->iomem_dist, -1, KVM_DEV_ARM_VGIC_GRP_ADDR,
828 KVM_VGIC_V3_ADDR_TYPE_DIST, s->dev_fd, 0);
830 if (!multiple_redist_region_allowed) {
831 kvm_arm_register_device(&s->iomem_redist[0], -1,
832 KVM_DEV_ARM_VGIC_GRP_ADDR,
833 KVM_VGIC_V3_ADDR_TYPE_REDIST, s->dev_fd, 0);
834 } else {
835 /* we register regions in reverse order as "devices" are inserted at
836 * the head of a QSLIST and the list is then popped from the head
837 * onwards by kvm_arm_machine_init_done()
839 for (i = s->nb_redist_regions - 1; i >= 0; i--) {
840 /* Address mask made of the rdist region index and count */
841 uint64_t addr_ormask =
842 i | ((uint64_t)s->redist_region_count[i] << 52);
844 kvm_arm_register_device(&s->iomem_redist[i], -1,
845 KVM_DEV_ARM_VGIC_GRP_ADDR,
846 KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION,
847 s->dev_fd, addr_ormask);
851 if (kvm_has_gsi_routing()) {
852 /* set up irq routing */
853 for (i = 0; i < s->num_irq - GIC_INTERNAL; ++i) {
854 kvm_irqchip_add_irq_route(kvm_state, i, 0, i);
857 kvm_gsi_routing_allowed = true;
859 kvm_irqchip_commit_routes(kvm_state);
862 if (!kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
863 GICD_CTLR)) {
864 error_setg(&s->migration_blocker, "This operating system kernel does "
865 "not support vGICv3 migration");
866 migrate_add_blocker(s->migration_blocker, &local_err);
867 if (local_err) {
868 error_propagate(errp, local_err);
869 error_free(s->migration_blocker);
870 return;
873 if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
874 KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES)) {
875 qemu_add_vm_change_state_handler(vm_change_state_handler, s);
879 static void kvm_arm_gicv3_class_init(ObjectClass *klass, void *data)
881 DeviceClass *dc = DEVICE_CLASS(klass);
882 ARMGICv3CommonClass *agcc = ARM_GICV3_COMMON_CLASS(klass);
883 KVMARMGICv3Class *kgc = KVM_ARM_GICV3_CLASS(klass);
885 agcc->pre_save = kvm_arm_gicv3_get;
886 agcc->post_load = kvm_arm_gicv3_put;
887 device_class_set_parent_realize(dc, kvm_arm_gicv3_realize,
888 &kgc->parent_realize);
889 device_class_set_parent_reset(dc, kvm_arm_gicv3_reset, &kgc->parent_reset);
892 static const TypeInfo kvm_arm_gicv3_info = {
893 .name = TYPE_KVM_ARM_GICV3,
894 .parent = TYPE_ARM_GICV3_COMMON,
895 .instance_size = sizeof(GICv3State),
896 .class_init = kvm_arm_gicv3_class_init,
897 .class_size = sizeof(KVMARMGICv3Class),
900 static void kvm_arm_gicv3_register_types(void)
902 type_register_static(&kvm_arm_gicv3_info);
905 type_init(kvm_arm_gicv3_register_types)