target/arm: Rename ARMMMUIdx_S1E2 to ARMMMUIdx_E2
[qemu/ar7.git] / target / arm / cpu.h
bloba188398b03eee5691eb3eabc899ca795f43bb225
1 /*
2 * ARM virtual CPU header
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 #include "cpu-qom.h"
26 #include "exec/cpu-defs.h"
28 /* ARM processors have a weak memory model */
29 #define TCG_GUEST_DEFAULT_MO (0)
31 #define EXCP_UDEF 1 /* undefined instruction */
32 #define EXCP_SWI 2 /* software interrupt */
33 #define EXCP_PREFETCH_ABORT 3
34 #define EXCP_DATA_ABORT 4
35 #define EXCP_IRQ 5
36 #define EXCP_FIQ 6
37 #define EXCP_BKPT 7
38 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
39 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
40 #define EXCP_HVC 11 /* HyperVisor Call */
41 #define EXCP_HYP_TRAP 12
42 #define EXCP_SMC 13 /* Secure Monitor Call */
43 #define EXCP_VIRQ 14
44 #define EXCP_VFIQ 15
45 #define EXCP_SEMIHOST 16 /* semihosting call */
46 #define EXCP_NOCP 17 /* v7M NOCP UsageFault */
47 #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
48 #define EXCP_STKOF 19 /* v8M STKOF UsageFault */
49 #define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */
50 #define EXCP_LSERR 21 /* v8M LSERR SecureFault */
51 #define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */
52 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
54 #define ARMV7M_EXCP_RESET 1
55 #define ARMV7M_EXCP_NMI 2
56 #define ARMV7M_EXCP_HARD 3
57 #define ARMV7M_EXCP_MEM 4
58 #define ARMV7M_EXCP_BUS 5
59 #define ARMV7M_EXCP_USAGE 6
60 #define ARMV7M_EXCP_SECURE 7
61 #define ARMV7M_EXCP_SVC 11
62 #define ARMV7M_EXCP_DEBUG 12
63 #define ARMV7M_EXCP_PENDSV 14
64 #define ARMV7M_EXCP_SYSTICK 15
66 /* For M profile, some registers are banked secure vs non-secure;
67 * these are represented as a 2-element array where the first element
68 * is the non-secure copy and the second is the secure copy.
69 * When the CPU does not have implement the security extension then
70 * only the first element is used.
71 * This means that the copy for the current security state can be
72 * accessed via env->registerfield[env->v7m.secure] (whether the security
73 * extension is implemented or not).
75 enum {
76 M_REG_NS = 0,
77 M_REG_S = 1,
78 M_REG_NUM_BANKS = 2,
81 /* ARM-specific interrupt pending bits. */
82 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
83 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
84 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
86 /* The usual mapping for an AArch64 system register to its AArch32
87 * counterpart is for the 32 bit world to have access to the lower
88 * half only (with writes leaving the upper half untouched). It's
89 * therefore useful to be able to pass TCG the offset of the least
90 * significant half of a uint64_t struct member.
92 #ifdef HOST_WORDS_BIGENDIAN
93 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
94 #define offsetofhigh32(S, M) offsetof(S, M)
95 #else
96 #define offsetoflow32(S, M) offsetof(S, M)
97 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
98 #endif
100 /* Meanings of the ARMCPU object's four inbound GPIO lines */
101 #define ARM_CPU_IRQ 0
102 #define ARM_CPU_FIQ 1
103 #define ARM_CPU_VIRQ 2
104 #define ARM_CPU_VFIQ 3
106 /* ARM-specific extra insn start words:
107 * 1: Conditional execution bits
108 * 2: Partial exception syndrome for data aborts
110 #define TARGET_INSN_START_EXTRA_WORDS 2
112 /* The 2nd extra word holding syndrome info for data aborts does not use
113 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
114 * help the sleb128 encoder do a better job.
115 * When restoring the CPU state, we shift it back up.
117 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
118 #define ARM_INSN_START_WORD2_SHIFT 14
120 /* We currently assume float and double are IEEE single and double
121 precision respectively.
122 Doing runtime conversions is tricky because VFP registers may contain
123 integer values (eg. as the result of a FTOSI instruction).
124 s<2n> maps to the least significant half of d<n>
125 s<2n+1> maps to the most significant half of d<n>
129 * DynamicGDBXMLInfo:
130 * @desc: Contains the XML descriptions.
131 * @num_cpregs: Number of the Coprocessor registers seen by GDB.
132 * @cpregs_keys: Array that contains the corresponding Key of
133 * a given cpreg with the same order of the cpreg in the XML description.
135 typedef struct DynamicGDBXMLInfo {
136 char *desc;
137 int num_cpregs;
138 uint32_t *cpregs_keys;
139 } DynamicGDBXMLInfo;
141 /* CPU state for each instance of a generic timer (in cp15 c14) */
142 typedef struct ARMGenericTimer {
143 uint64_t cval; /* Timer CompareValue register */
144 uint64_t ctl; /* Timer Control register */
145 } ARMGenericTimer;
147 #define GTIMER_PHYS 0
148 #define GTIMER_VIRT 1
149 #define GTIMER_HYP 2
150 #define GTIMER_SEC 3
151 #define NUM_GTIMERS 4
153 typedef struct {
154 uint64_t raw_tcr;
155 uint32_t mask;
156 uint32_t base_mask;
157 } TCR;
159 /* Define a maximum sized vector register.
160 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
161 * For 64-bit, this is a 2048-bit SVE register.
163 * Note that the mapping between S, D, and Q views of the register bank
164 * differs between AArch64 and AArch32.
165 * In AArch32:
166 * Qn = regs[n].d[1]:regs[n].d[0]
167 * Dn = regs[n / 2].d[n & 1]
168 * Sn = regs[n / 4].d[n % 4 / 2],
169 * bits 31..0 for even n, and bits 63..32 for odd n
170 * (and regs[16] to regs[31] are inaccessible)
171 * In AArch64:
172 * Zn = regs[n].d[*]
173 * Qn = regs[n].d[1]:regs[n].d[0]
174 * Dn = regs[n].d[0]
175 * Sn = regs[n].d[0] bits 31..0
176 * Hn = regs[n].d[0] bits 15..0
178 * This corresponds to the architecturally defined mapping between
179 * the two execution states, and means we do not need to explicitly
180 * map these registers when changing states.
182 * Align the data for use with TCG host vector operations.
185 #ifdef TARGET_AARCH64
186 # define ARM_MAX_VQ 16
187 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
188 #else
189 # define ARM_MAX_VQ 1
190 static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
191 #endif
193 typedef struct ARMVectorReg {
194 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
195 } ARMVectorReg;
197 #ifdef TARGET_AARCH64
198 /* In AArch32 mode, predicate registers do not exist at all. */
199 typedef struct ARMPredicateReg {
200 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
201 } ARMPredicateReg;
203 /* In AArch32 mode, PAC keys do not exist at all. */
204 typedef struct ARMPACKey {
205 uint64_t lo, hi;
206 } ARMPACKey;
207 #endif
210 typedef struct CPUARMState {
211 /* Regs for current mode. */
212 uint32_t regs[16];
214 /* 32/64 switch only happens when taking and returning from
215 * exceptions so the overlap semantics are taken care of then
216 * instead of having a complicated union.
218 /* Regs for A64 mode. */
219 uint64_t xregs[32];
220 uint64_t pc;
221 /* PSTATE isn't an architectural register for ARMv8. However, it is
222 * convenient for us to assemble the underlying state into a 32 bit format
223 * identical to the architectural format used for the SPSR. (This is also
224 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
225 * 'pstate' register are.) Of the PSTATE bits:
226 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
227 * semantics as for AArch32, as described in the comments on each field)
228 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
229 * DAIF (exception masks) are kept in env->daif
230 * BTYPE is kept in env->btype
231 * all other bits are stored in their correct places in env->pstate
233 uint32_t pstate;
234 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
236 /* Cached TBFLAGS state. See below for which bits are included. */
237 uint32_t hflags;
239 /* Frequently accessed CPSR bits are stored separately for efficiency.
240 This contains all the other bits. Use cpsr_{read,write} to access
241 the whole CPSR. */
242 uint32_t uncached_cpsr;
243 uint32_t spsr;
245 /* Banked registers. */
246 uint64_t banked_spsr[8];
247 uint32_t banked_r13[8];
248 uint32_t banked_r14[8];
250 /* These hold r8-r12. */
251 uint32_t usr_regs[5];
252 uint32_t fiq_regs[5];
254 /* cpsr flag cache for faster execution */
255 uint32_t CF; /* 0 or 1 */
256 uint32_t VF; /* V is the bit 31. All other bits are undefined */
257 uint32_t NF; /* N is bit 31. All other bits are undefined. */
258 uint32_t ZF; /* Z set if zero. */
259 uint32_t QF; /* 0 or 1 */
260 uint32_t GE; /* cpsr[19:16] */
261 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
262 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
263 uint32_t btype; /* BTI branch type. spsr[11:10]. */
264 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
266 uint64_t elr_el[4]; /* AArch64 exception link regs */
267 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
269 /* System control coprocessor (cp15) */
270 struct {
271 uint32_t c0_cpuid;
272 union { /* Cache size selection */
273 struct {
274 uint64_t _unused_csselr0;
275 uint64_t csselr_ns;
276 uint64_t _unused_csselr1;
277 uint64_t csselr_s;
279 uint64_t csselr_el[4];
281 union { /* System control register. */
282 struct {
283 uint64_t _unused_sctlr;
284 uint64_t sctlr_ns;
285 uint64_t hsctlr;
286 uint64_t sctlr_s;
288 uint64_t sctlr_el[4];
290 uint64_t cpacr_el1; /* Architectural feature access control register */
291 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
292 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
293 uint64_t sder; /* Secure debug enable register. */
294 uint32_t nsacr; /* Non-secure access control register. */
295 union { /* MMU translation table base 0. */
296 struct {
297 uint64_t _unused_ttbr0_0;
298 uint64_t ttbr0_ns;
299 uint64_t _unused_ttbr0_1;
300 uint64_t ttbr0_s;
302 uint64_t ttbr0_el[4];
304 union { /* MMU translation table base 1. */
305 struct {
306 uint64_t _unused_ttbr1_0;
307 uint64_t ttbr1_ns;
308 uint64_t _unused_ttbr1_1;
309 uint64_t ttbr1_s;
311 uint64_t ttbr1_el[4];
313 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
314 /* MMU translation table base control. */
315 TCR tcr_el[4];
316 TCR vtcr_el2; /* Virtualization Translation Control. */
317 uint32_t c2_data; /* MPU data cacheable bits. */
318 uint32_t c2_insn; /* MPU instruction cacheable bits. */
319 union { /* MMU domain access control register
320 * MPU write buffer control.
322 struct {
323 uint64_t dacr_ns;
324 uint64_t dacr_s;
326 struct {
327 uint64_t dacr32_el2;
330 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
331 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
332 uint64_t hcr_el2; /* Hypervisor configuration register */
333 uint64_t scr_el3; /* Secure configuration register. */
334 union { /* Fault status registers. */
335 struct {
336 uint64_t ifsr_ns;
337 uint64_t ifsr_s;
339 struct {
340 uint64_t ifsr32_el2;
343 union {
344 struct {
345 uint64_t _unused_dfsr;
346 uint64_t dfsr_ns;
347 uint64_t hsr;
348 uint64_t dfsr_s;
350 uint64_t esr_el[4];
352 uint32_t c6_region[8]; /* MPU base/size registers. */
353 union { /* Fault address registers. */
354 struct {
355 uint64_t _unused_far0;
356 #ifdef HOST_WORDS_BIGENDIAN
357 uint32_t ifar_ns;
358 uint32_t dfar_ns;
359 uint32_t ifar_s;
360 uint32_t dfar_s;
361 #else
362 uint32_t dfar_ns;
363 uint32_t ifar_ns;
364 uint32_t dfar_s;
365 uint32_t ifar_s;
366 #endif
367 uint64_t _unused_far3;
369 uint64_t far_el[4];
371 uint64_t hpfar_el2;
372 uint64_t hstr_el2;
373 union { /* Translation result. */
374 struct {
375 uint64_t _unused_par_0;
376 uint64_t par_ns;
377 uint64_t _unused_par_1;
378 uint64_t par_s;
380 uint64_t par_el[4];
383 uint32_t c9_insn; /* Cache lockdown registers. */
384 uint32_t c9_data;
385 uint64_t c9_pmcr; /* performance monitor control register */
386 uint64_t c9_pmcnten; /* perf monitor counter enables */
387 uint64_t c9_pmovsr; /* perf monitor overflow status */
388 uint64_t c9_pmuserenr; /* perf monitor user enable */
389 uint64_t c9_pmselr; /* perf monitor counter selection register */
390 uint64_t c9_pminten; /* perf monitor interrupt enables */
391 union { /* Memory attribute redirection */
392 struct {
393 #ifdef HOST_WORDS_BIGENDIAN
394 uint64_t _unused_mair_0;
395 uint32_t mair1_ns;
396 uint32_t mair0_ns;
397 uint64_t _unused_mair_1;
398 uint32_t mair1_s;
399 uint32_t mair0_s;
400 #else
401 uint64_t _unused_mair_0;
402 uint32_t mair0_ns;
403 uint32_t mair1_ns;
404 uint64_t _unused_mair_1;
405 uint32_t mair0_s;
406 uint32_t mair1_s;
407 #endif
409 uint64_t mair_el[4];
411 union { /* vector base address register */
412 struct {
413 uint64_t _unused_vbar;
414 uint64_t vbar_ns;
415 uint64_t hvbar;
416 uint64_t vbar_s;
418 uint64_t vbar_el[4];
420 uint32_t mvbar; /* (monitor) vector base address register */
421 struct { /* FCSE PID. */
422 uint32_t fcseidr_ns;
423 uint32_t fcseidr_s;
425 union { /* Context ID. */
426 struct {
427 uint64_t _unused_contextidr_0;
428 uint64_t contextidr_ns;
429 uint64_t _unused_contextidr_1;
430 uint64_t contextidr_s;
432 uint64_t contextidr_el[4];
434 union { /* User RW Thread register. */
435 struct {
436 uint64_t tpidrurw_ns;
437 uint64_t tpidrprw_ns;
438 uint64_t htpidr;
439 uint64_t _tpidr_el3;
441 uint64_t tpidr_el[4];
443 /* The secure banks of these registers don't map anywhere */
444 uint64_t tpidrurw_s;
445 uint64_t tpidrprw_s;
446 uint64_t tpidruro_s;
448 union { /* User RO Thread register. */
449 uint64_t tpidruro_ns;
450 uint64_t tpidrro_el[1];
452 uint64_t c14_cntfrq; /* Counter Frequency register */
453 uint64_t c14_cntkctl; /* Timer Control register */
454 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
455 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
456 ARMGenericTimer c14_timer[NUM_GTIMERS];
457 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
458 uint32_t c15_ticonfig; /* TI925T configuration byte. */
459 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
460 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
461 uint32_t c15_threadid; /* TI debugger thread-ID. */
462 uint32_t c15_config_base_address; /* SCU base address. */
463 uint32_t c15_diagnostic; /* diagnostic register */
464 uint32_t c15_power_diagnostic;
465 uint32_t c15_power_control; /* power control */
466 uint64_t dbgbvr[16]; /* breakpoint value registers */
467 uint64_t dbgbcr[16]; /* breakpoint control registers */
468 uint64_t dbgwvr[16]; /* watchpoint value registers */
469 uint64_t dbgwcr[16]; /* watchpoint control registers */
470 uint64_t mdscr_el1;
471 uint64_t oslsr_el1; /* OS Lock Status */
472 uint64_t mdcr_el2;
473 uint64_t mdcr_el3;
474 /* Stores the architectural value of the counter *the last time it was
475 * updated* by pmccntr_op_start. Accesses should always be surrounded
476 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
477 * architecturally-correct value is being read/set.
479 uint64_t c15_ccnt;
480 /* Stores the delta between the architectural value and the underlying
481 * cycle count during normal operation. It is used to update c15_ccnt
482 * to be the correct architectural value before accesses. During
483 * accesses, c15_ccnt_delta contains the underlying count being used
484 * for the access, after which it reverts to the delta value in
485 * pmccntr_op_finish.
487 uint64_t c15_ccnt_delta;
488 uint64_t c14_pmevcntr[31];
489 uint64_t c14_pmevcntr_delta[31];
490 uint64_t c14_pmevtyper[31];
491 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
492 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
493 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
494 } cp15;
496 struct {
497 /* M profile has up to 4 stack pointers:
498 * a Main Stack Pointer and a Process Stack Pointer for each
499 * of the Secure and Non-Secure states. (If the CPU doesn't support
500 * the security extension then it has only two SPs.)
501 * In QEMU we always store the currently active SP in regs[13],
502 * and the non-active SP for the current security state in
503 * v7m.other_sp. The stack pointers for the inactive security state
504 * are stored in other_ss_msp and other_ss_psp.
505 * switch_v7m_security_state() is responsible for rearranging them
506 * when we change security state.
508 uint32_t other_sp;
509 uint32_t other_ss_msp;
510 uint32_t other_ss_psp;
511 uint32_t vecbase[M_REG_NUM_BANKS];
512 uint32_t basepri[M_REG_NUM_BANKS];
513 uint32_t control[M_REG_NUM_BANKS];
514 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
515 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
516 uint32_t hfsr; /* HardFault Status */
517 uint32_t dfsr; /* Debug Fault Status Register */
518 uint32_t sfsr; /* Secure Fault Status Register */
519 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
520 uint32_t bfar; /* BusFault Address */
521 uint32_t sfar; /* Secure Fault Address Register */
522 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
523 int exception;
524 uint32_t primask[M_REG_NUM_BANKS];
525 uint32_t faultmask[M_REG_NUM_BANKS];
526 uint32_t aircr; /* only holds r/w state if security extn implemented */
527 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
528 uint32_t csselr[M_REG_NUM_BANKS];
529 uint32_t scr[M_REG_NUM_BANKS];
530 uint32_t msplim[M_REG_NUM_BANKS];
531 uint32_t psplim[M_REG_NUM_BANKS];
532 uint32_t fpcar[M_REG_NUM_BANKS];
533 uint32_t fpccr[M_REG_NUM_BANKS];
534 uint32_t fpdscr[M_REG_NUM_BANKS];
535 uint32_t cpacr[M_REG_NUM_BANKS];
536 uint32_t nsacr;
537 } v7m;
539 /* Information associated with an exception about to be taken:
540 * code which raises an exception must set cs->exception_index and
541 * the relevant parts of this structure; the cpu_do_interrupt function
542 * will then set the guest-visible registers as part of the exception
543 * entry process.
545 struct {
546 uint32_t syndrome; /* AArch64 format syndrome register */
547 uint32_t fsr; /* AArch32 format fault status register info */
548 uint64_t vaddress; /* virtual addr associated with exception, if any */
549 uint32_t target_el; /* EL the exception should be targeted for */
550 /* If we implement EL2 we will also need to store information
551 * about the intermediate physical address for stage 2 faults.
553 } exception;
555 /* Information associated with an SError */
556 struct {
557 uint8_t pending;
558 uint8_t has_esr;
559 uint64_t esr;
560 } serror;
562 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
563 uint32_t irq_line_state;
565 /* Thumb-2 EE state. */
566 uint32_t teecr;
567 uint32_t teehbr;
569 /* VFP coprocessor state. */
570 struct {
571 ARMVectorReg zregs[32];
573 #ifdef TARGET_AARCH64
574 /* Store FFR as pregs[16] to make it easier to treat as any other. */
575 #define FFR_PRED_NUM 16
576 ARMPredicateReg pregs[17];
577 /* Scratch space for aa64 sve predicate temporary. */
578 ARMPredicateReg preg_tmp;
579 #endif
581 /* We store these fpcsr fields separately for convenience. */
582 uint32_t qc[4] QEMU_ALIGNED(16);
583 int vec_len;
584 int vec_stride;
586 uint32_t xregs[16];
588 /* Scratch space for aa32 neon expansion. */
589 uint32_t scratch[8];
591 /* There are a number of distinct float control structures:
593 * fp_status: is the "normal" fp status.
594 * fp_status_fp16: used for half-precision calculations
595 * standard_fp_status : the ARM "Standard FPSCR Value"
597 * Half-precision operations are governed by a separate
598 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
599 * status structure to control this.
601 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
602 * round-to-nearest and is used by any operations (generally
603 * Neon) which the architecture defines as controlled by the
604 * standard FPSCR value rather than the FPSCR.
606 * To avoid having to transfer exception bits around, we simply
607 * say that the FPSCR cumulative exception flags are the logical
608 * OR of the flags in the three fp statuses. This relies on the
609 * only thing which needs to read the exception flags being
610 * an explicit FPSCR read.
612 float_status fp_status;
613 float_status fp_status_f16;
614 float_status standard_fp_status;
616 /* ZCR_EL[1-3] */
617 uint64_t zcr_el[4];
618 } vfp;
619 uint64_t exclusive_addr;
620 uint64_t exclusive_val;
621 uint64_t exclusive_high;
623 /* iwMMXt coprocessor state. */
624 struct {
625 uint64_t regs[16];
626 uint64_t val;
628 uint32_t cregs[16];
629 } iwmmxt;
631 #ifdef TARGET_AARCH64
632 struct {
633 ARMPACKey apia;
634 ARMPACKey apib;
635 ARMPACKey apda;
636 ARMPACKey apdb;
637 ARMPACKey apga;
638 } keys;
639 #endif
641 #if defined(CONFIG_USER_ONLY)
642 /* For usermode syscall translation. */
643 int eabi;
644 #endif
646 struct CPUBreakpoint *cpu_breakpoint[16];
647 struct CPUWatchpoint *cpu_watchpoint[16];
649 /* Fields up to this point are cleared by a CPU reset */
650 struct {} end_reset_fields;
652 /* Fields after this point are preserved across CPU reset. */
654 /* Internal CPU feature flags. */
655 uint64_t features;
657 /* PMSAv7 MPU */
658 struct {
659 uint32_t *drbar;
660 uint32_t *drsr;
661 uint32_t *dracr;
662 uint32_t rnr[M_REG_NUM_BANKS];
663 } pmsav7;
665 /* PMSAv8 MPU */
666 struct {
667 /* The PMSAv8 implementation also shares some PMSAv7 config
668 * and state:
669 * pmsav7.rnr (region number register)
670 * pmsav7_dregion (number of configured regions)
672 uint32_t *rbar[M_REG_NUM_BANKS];
673 uint32_t *rlar[M_REG_NUM_BANKS];
674 uint32_t mair0[M_REG_NUM_BANKS];
675 uint32_t mair1[M_REG_NUM_BANKS];
676 } pmsav8;
678 /* v8M SAU */
679 struct {
680 uint32_t *rbar;
681 uint32_t *rlar;
682 uint32_t rnr;
683 uint32_t ctrl;
684 } sau;
686 void *nvic;
687 const struct arm_boot_info *boot_info;
688 /* Store GICv3CPUState to access from this struct */
689 void *gicv3state;
690 } CPUARMState;
693 * ARMELChangeHookFn:
694 * type of a function which can be registered via arm_register_el_change_hook()
695 * to get callbacks when the CPU changes its exception level or mode.
697 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
698 typedef struct ARMELChangeHook ARMELChangeHook;
699 struct ARMELChangeHook {
700 ARMELChangeHookFn *hook;
701 void *opaque;
702 QLIST_ENTRY(ARMELChangeHook) node;
705 /* These values map onto the return values for
706 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
707 typedef enum ARMPSCIState {
708 PSCI_ON = 0,
709 PSCI_OFF = 1,
710 PSCI_ON_PENDING = 2
711 } ARMPSCIState;
713 typedef struct ARMISARegisters ARMISARegisters;
716 * ARMCPU:
717 * @env: #CPUARMState
719 * An ARM CPU core.
721 struct ARMCPU {
722 /*< private >*/
723 CPUState parent_obj;
724 /*< public >*/
726 CPUNegativeOffsetState neg;
727 CPUARMState env;
729 /* Coprocessor information */
730 GHashTable *cp_regs;
731 /* For marshalling (mostly coprocessor) register state between the
732 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
733 * we use these arrays.
735 /* List of register indexes managed via these arrays; (full KVM style
736 * 64 bit indexes, not CPRegInfo 32 bit indexes)
738 uint64_t *cpreg_indexes;
739 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
740 uint64_t *cpreg_values;
741 /* Length of the indexes, values, reset_values arrays */
742 int32_t cpreg_array_len;
743 /* These are used only for migration: incoming data arrives in
744 * these fields and is sanity checked in post_load before copying
745 * to the working data structures above.
747 uint64_t *cpreg_vmstate_indexes;
748 uint64_t *cpreg_vmstate_values;
749 int32_t cpreg_vmstate_array_len;
751 DynamicGDBXMLInfo dyn_xml;
753 /* Timers used by the generic (architected) timer */
754 QEMUTimer *gt_timer[NUM_GTIMERS];
756 * Timer used by the PMU. Its state is restored after migration by
757 * pmu_op_finish() - it does not need other handling during migration
759 QEMUTimer *pmu_timer;
760 /* GPIO outputs for generic timer */
761 qemu_irq gt_timer_outputs[NUM_GTIMERS];
762 /* GPIO output for GICv3 maintenance interrupt signal */
763 qemu_irq gicv3_maintenance_interrupt;
764 /* GPIO output for the PMU interrupt */
765 qemu_irq pmu_interrupt;
767 /* MemoryRegion to use for secure physical accesses */
768 MemoryRegion *secure_memory;
770 /* For v8M, pointer to the IDAU interface provided by board/SoC */
771 Object *idau;
773 /* 'compatible' string for this CPU for Linux device trees */
774 const char *dtb_compatible;
776 /* PSCI version for this CPU
777 * Bits[31:16] = Major Version
778 * Bits[15:0] = Minor Version
780 uint32_t psci_version;
782 /* Should CPU start in PSCI powered-off state? */
783 bool start_powered_off;
785 /* Current power state, access guarded by BQL */
786 ARMPSCIState power_state;
788 /* CPU has virtualization extension */
789 bool has_el2;
790 /* CPU has security extension */
791 bool has_el3;
792 /* CPU has PMU (Performance Monitor Unit) */
793 bool has_pmu;
794 /* CPU has VFP */
795 bool has_vfp;
796 /* CPU has Neon */
797 bool has_neon;
798 /* CPU has M-profile DSP extension */
799 bool has_dsp;
801 /* CPU has memory protection unit */
802 bool has_mpu;
803 /* PMSAv7 MPU number of supported regions */
804 uint32_t pmsav7_dregion;
805 /* v8M SAU number of supported regions */
806 uint32_t sau_sregion;
808 /* PSCI conduit used to invoke PSCI methods
809 * 0 - disabled, 1 - smc, 2 - hvc
811 uint32_t psci_conduit;
813 /* For v8M, initial value of the Secure VTOR */
814 uint32_t init_svtor;
816 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
817 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
819 uint32_t kvm_target;
821 /* KVM init features for this CPU */
822 uint32_t kvm_init_features[7];
824 /* KVM CPU state */
826 /* KVM virtual time adjustment */
827 bool kvm_adjvtime;
828 bool kvm_vtime_dirty;
829 uint64_t kvm_vtime;
831 /* Uniprocessor system with MP extensions */
832 bool mp_is_up;
834 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
835 * and the probe failed (so we need to report the error in realize)
837 bool host_cpu_probe_failed;
839 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
840 * register.
842 int32_t core_count;
844 /* The instance init functions for implementation-specific subclasses
845 * set these fields to specify the implementation-dependent values of
846 * various constant registers and reset values of non-constant
847 * registers.
848 * Some of these might become QOM properties eventually.
849 * Field names match the official register names as defined in the
850 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
851 * is used for reset values of non-constant registers; no reset_
852 * prefix means a constant register.
853 * Some of these registers are split out into a substructure that
854 * is shared with the translators to control the ISA.
856 struct ARMISARegisters {
857 uint32_t id_isar0;
858 uint32_t id_isar1;
859 uint32_t id_isar2;
860 uint32_t id_isar3;
861 uint32_t id_isar4;
862 uint32_t id_isar5;
863 uint32_t id_isar6;
864 uint32_t mvfr0;
865 uint32_t mvfr1;
866 uint32_t mvfr2;
867 uint64_t id_aa64isar0;
868 uint64_t id_aa64isar1;
869 uint64_t id_aa64pfr0;
870 uint64_t id_aa64pfr1;
871 uint64_t id_aa64mmfr0;
872 uint64_t id_aa64mmfr1;
873 } isar;
874 uint32_t midr;
875 uint32_t revidr;
876 uint32_t reset_fpsid;
877 uint32_t ctr;
878 uint32_t reset_sctlr;
879 uint32_t id_pfr0;
880 uint32_t id_pfr1;
881 uint32_t id_dfr0;
882 uint64_t pmceid0;
883 uint64_t pmceid1;
884 uint32_t id_afr0;
885 uint32_t id_mmfr0;
886 uint32_t id_mmfr1;
887 uint32_t id_mmfr2;
888 uint32_t id_mmfr3;
889 uint32_t id_mmfr4;
890 uint64_t id_aa64dfr0;
891 uint64_t id_aa64dfr1;
892 uint64_t id_aa64afr0;
893 uint64_t id_aa64afr1;
894 uint32_t dbgdidr;
895 uint32_t clidr;
896 uint64_t mp_affinity; /* MP ID without feature bits */
897 /* The elements of this array are the CCSIDR values for each cache,
898 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
900 uint32_t ccsidr[16];
901 uint64_t reset_cbar;
902 uint32_t reset_auxcr;
903 bool reset_hivecs;
904 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
905 uint32_t dcz_blocksize;
906 uint64_t rvbar;
908 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
909 int gic_num_lrs; /* number of list registers */
910 int gic_vpribits; /* number of virtual priority bits */
911 int gic_vprebits; /* number of virtual preemption bits */
913 /* Whether the cfgend input is high (i.e. this CPU should reset into
914 * big-endian mode). This setting isn't used directly: instead it modifies
915 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
916 * architecture version.
918 bool cfgend;
920 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
921 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
923 int32_t node_id; /* NUMA node this CPU belongs to */
925 /* Used to synchronize KVM and QEMU in-kernel device levels */
926 uint8_t device_irq_level;
928 /* Used to set the maximum vector length the cpu will support. */
929 uint32_t sve_max_vq;
932 * In sve_vq_map each set bit is a supported vector length of
933 * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
934 * length in quadwords.
936 * While processing properties during initialization, corresponding
937 * sve_vq_init bits are set for bits in sve_vq_map that have been
938 * set by properties.
940 DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ);
941 DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ);
943 /* Generic timer counter frequency, in Hz */
944 uint64_t gt_cntfrq_hz;
947 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
949 void arm_cpu_post_init(Object *obj);
951 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
953 #ifndef CONFIG_USER_ONLY
954 extern const VMStateDescription vmstate_arm_cpu;
955 #endif
957 void arm_cpu_do_interrupt(CPUState *cpu);
958 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
959 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
961 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
962 MemTxAttrs *attrs);
964 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
965 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
967 /* Dynamically generates for gdb stub an XML description of the sysregs from
968 * the cp_regs hashtable. Returns the registered sysregs number.
970 int arm_gen_dynamic_xml(CPUState *cpu);
972 /* Returns the dynamically generated XML for the gdb stub.
973 * Returns a pointer to the XML contents for the specified XML file or NULL
974 * if the XML name doesn't match the predefined one.
976 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
978 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
979 int cpuid, void *opaque);
980 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
981 int cpuid, void *opaque);
983 #ifdef TARGET_AARCH64
984 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
985 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
986 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
987 void aarch64_sve_change_el(CPUARMState *env, int old_el,
988 int new_el, bool el0_a64);
989 void aarch64_add_sve_properties(Object *obj);
992 * SVE registers are encoded in KVM's memory in an endianness-invariant format.
993 * The byte at offset i from the start of the in-memory representation contains
994 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
995 * lowest offsets are stored in the lowest memory addresses, then that nearly
996 * matches QEMU's representation, which is to use an array of host-endian
997 * uint64_t's, where the lower offsets are at the lower indices. To complete
998 * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1000 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1002 #ifdef HOST_WORDS_BIGENDIAN
1003 int i;
1005 for (i = 0; i < nr; ++i) {
1006 dst[i] = bswap64(src[i]);
1009 return dst;
1010 #else
1011 return src;
1012 #endif
1015 #else
1016 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1017 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1018 int n, bool a)
1020 static inline void aarch64_add_sve_properties(Object *obj) { }
1021 #endif
1023 #if !defined(CONFIG_TCG)
1024 static inline target_ulong do_arm_semihosting(CPUARMState *env)
1026 g_assert_not_reached();
1028 #else
1029 target_ulong do_arm_semihosting(CPUARMState *env);
1030 #endif
1031 void aarch64_sync_32_to_64(CPUARMState *env);
1032 void aarch64_sync_64_to_32(CPUARMState *env);
1034 int fp_exception_el(CPUARMState *env, int cur_el);
1035 int sve_exception_el(CPUARMState *env, int cur_el);
1036 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
1038 static inline bool is_a64(CPUARMState *env)
1040 return env->aarch64;
1043 /* you can call this signal handler from your SIGBUS and SIGSEGV
1044 signal handlers to inform the virtual CPU of exceptions. non zero
1045 is returned if the signal was handled by the virtual CPU. */
1046 int cpu_arm_signal_handler(int host_signum, void *pinfo,
1047 void *puc);
1050 * pmu_op_start/finish
1051 * @env: CPUARMState
1053 * Convert all PMU counters between their delta form (the typical mode when
1054 * they are enabled) and the guest-visible values. These two calls must
1055 * surround any action which might affect the counters.
1057 void pmu_op_start(CPUARMState *env);
1058 void pmu_op_finish(CPUARMState *env);
1061 * Called when a PMU counter is due to overflow
1063 void arm_pmu_timer_cb(void *opaque);
1066 * Functions to register as EL change hooks for PMU mode filtering
1068 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1069 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1072 * pmu_init
1073 * @cpu: ARMCPU
1075 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1076 * for the current configuration
1078 void pmu_init(ARMCPU *cpu);
1080 /* SCTLR bit meanings. Several bits have been reused in newer
1081 * versions of the architecture; in that case we define constants
1082 * for both old and new bit meanings. Code which tests against those
1083 * bits should probably check or otherwise arrange that the CPU
1084 * is the architectural version it expects.
1086 #define SCTLR_M (1U << 0)
1087 #define SCTLR_A (1U << 1)
1088 #define SCTLR_C (1U << 2)
1089 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
1090 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1091 #define SCTLR_SA (1U << 3) /* AArch64 only */
1092 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
1093 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1094 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1095 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1096 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1097 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1098 #define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */
1099 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1100 #define SCTLR_ITD (1U << 7) /* v8 onward */
1101 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1102 #define SCTLR_SED (1U << 8) /* v8 onward */
1103 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1104 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1105 #define SCTLR_F (1U << 10) /* up to v6 */
1106 #define SCTLR_SW (1U << 10) /* v7 */
1107 #define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
1108 #define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1109 #define SCTLR_EOS (1U << 11) /* v8.5-ExS */
1110 #define SCTLR_I (1U << 12)
1111 #define SCTLR_V (1U << 13) /* AArch32 only */
1112 #define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
1113 #define SCTLR_RR (1U << 14) /* up to v7 */
1114 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1115 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1116 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1117 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1118 #define SCTLR_nTWI (1U << 16) /* v8 onward */
1119 #define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
1120 #define SCTLR_BR (1U << 17) /* PMSA only */
1121 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1122 #define SCTLR_nTWE (1U << 18) /* v8 onward */
1123 #define SCTLR_WXN (1U << 19)
1124 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
1125 #define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
1126 #define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1127 #define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1128 #define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1129 #define SCTLR_EIS (1U << 22) /* v8.5-ExS */
1130 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
1131 #define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
1132 #define SCTLR_VE (1U << 24) /* up to v7 */
1133 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1134 #define SCTLR_EE (1U << 25)
1135 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1136 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
1137 #define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1138 #define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1139 #define SCTLR_TRE (1U << 28) /* AArch32 only */
1140 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1141 #define SCTLR_AFE (1U << 29) /* AArch32 only */
1142 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1143 #define SCTLR_TE (1U << 30) /* AArch32 only */
1144 #define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1145 #define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
1146 #define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1147 #define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1148 #define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1149 #define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1150 #define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1151 #define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1152 #define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
1153 #define SCTLR_DSSBS (1ULL << 44) /* v8.5 */
1155 #define CPTR_TCPAC (1U << 31)
1156 #define CPTR_TTA (1U << 20)
1157 #define CPTR_TFP (1U << 10)
1158 #define CPTR_TZ (1U << 8) /* CPTR_EL2 */
1159 #define CPTR_EZ (1U << 8) /* CPTR_EL3 */
1161 #define MDCR_EPMAD (1U << 21)
1162 #define MDCR_EDAD (1U << 20)
1163 #define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1164 #define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
1165 #define MDCR_SDD (1U << 16)
1166 #define MDCR_SPD (3U << 14)
1167 #define MDCR_TDRA (1U << 11)
1168 #define MDCR_TDOSA (1U << 10)
1169 #define MDCR_TDA (1U << 9)
1170 #define MDCR_TDE (1U << 8)
1171 #define MDCR_HPME (1U << 7)
1172 #define MDCR_TPM (1U << 6)
1173 #define MDCR_TPMCR (1U << 5)
1174 #define MDCR_HPMN (0x1fU)
1176 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1177 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1179 #define CPSR_M (0x1fU)
1180 #define CPSR_T (1U << 5)
1181 #define CPSR_F (1U << 6)
1182 #define CPSR_I (1U << 7)
1183 #define CPSR_A (1U << 8)
1184 #define CPSR_E (1U << 9)
1185 #define CPSR_IT_2_7 (0xfc00U)
1186 #define CPSR_GE (0xfU << 16)
1187 #define CPSR_IL (1U << 20)
1188 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
1189 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
1190 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
1191 * where it is live state but not accessible to the AArch32 code.
1193 #define CPSR_RESERVED (0x7U << 21)
1194 #define CPSR_J (1U << 24)
1195 #define CPSR_IT_0_1 (3U << 25)
1196 #define CPSR_Q (1U << 27)
1197 #define CPSR_V (1U << 28)
1198 #define CPSR_C (1U << 29)
1199 #define CPSR_Z (1U << 30)
1200 #define CPSR_N (1U << 31)
1201 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1202 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1204 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1205 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1206 | CPSR_NZCV)
1207 /* Bits writable in user mode. */
1208 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1209 /* Execution state bits. MRS read as zero, MSR writes ignored. */
1210 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1211 /* Mask of bits which may be set by exception return copying them from SPSR */
1212 #define CPSR_ERET_MASK (~CPSR_RESERVED)
1214 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1215 #define XPSR_EXCP 0x1ffU
1216 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1217 #define XPSR_IT_2_7 CPSR_IT_2_7
1218 #define XPSR_GE CPSR_GE
1219 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1220 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1221 #define XPSR_IT_0_1 CPSR_IT_0_1
1222 #define XPSR_Q CPSR_Q
1223 #define XPSR_V CPSR_V
1224 #define XPSR_C CPSR_C
1225 #define XPSR_Z CPSR_Z
1226 #define XPSR_N CPSR_N
1227 #define XPSR_NZCV CPSR_NZCV
1228 #define XPSR_IT CPSR_IT
1230 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1231 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1232 #define TTBCR_PD0 (1U << 4)
1233 #define TTBCR_PD1 (1U << 5)
1234 #define TTBCR_EPD0 (1U << 7)
1235 #define TTBCR_IRGN0 (3U << 8)
1236 #define TTBCR_ORGN0 (3U << 10)
1237 #define TTBCR_SH0 (3U << 12)
1238 #define TTBCR_T1SZ (3U << 16)
1239 #define TTBCR_A1 (1U << 22)
1240 #define TTBCR_EPD1 (1U << 23)
1241 #define TTBCR_IRGN1 (3U << 24)
1242 #define TTBCR_ORGN1 (3U << 26)
1243 #define TTBCR_SH1 (1U << 28)
1244 #define TTBCR_EAE (1U << 31)
1246 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1247 * Only these are valid when in AArch64 mode; in
1248 * AArch32 mode SPSRs are basically CPSR-format.
1250 #define PSTATE_SP (1U)
1251 #define PSTATE_M (0xFU)
1252 #define PSTATE_nRW (1U << 4)
1253 #define PSTATE_F (1U << 6)
1254 #define PSTATE_I (1U << 7)
1255 #define PSTATE_A (1U << 8)
1256 #define PSTATE_D (1U << 9)
1257 #define PSTATE_BTYPE (3U << 10)
1258 #define PSTATE_IL (1U << 20)
1259 #define PSTATE_SS (1U << 21)
1260 #define PSTATE_V (1U << 28)
1261 #define PSTATE_C (1U << 29)
1262 #define PSTATE_Z (1U << 30)
1263 #define PSTATE_N (1U << 31)
1264 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1265 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1266 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1267 /* Mode values for AArch64 */
1268 #define PSTATE_MODE_EL3h 13
1269 #define PSTATE_MODE_EL3t 12
1270 #define PSTATE_MODE_EL2h 9
1271 #define PSTATE_MODE_EL2t 8
1272 #define PSTATE_MODE_EL1h 5
1273 #define PSTATE_MODE_EL1t 4
1274 #define PSTATE_MODE_EL0t 0
1276 /* Write a new value to v7m.exception, thus transitioning into or out
1277 * of Handler mode; this may result in a change of active stack pointer.
1279 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1281 /* Map EL and handler into a PSTATE_MODE. */
1282 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1284 return (el << 2) | handler;
1287 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1288 * interprocessing, so we don't attempt to sync with the cpsr state used by
1289 * the 32 bit decoder.
1291 static inline uint32_t pstate_read(CPUARMState *env)
1293 int ZF;
1295 ZF = (env->ZF == 0);
1296 return (env->NF & 0x80000000) | (ZF << 30)
1297 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1298 | env->pstate | env->daif | (env->btype << 10);
1301 static inline void pstate_write(CPUARMState *env, uint32_t val)
1303 env->ZF = (~val) & PSTATE_Z;
1304 env->NF = val;
1305 env->CF = (val >> 29) & 1;
1306 env->VF = (val << 3) & 0x80000000;
1307 env->daif = val & PSTATE_DAIF;
1308 env->btype = (val >> 10) & 3;
1309 env->pstate = val & ~CACHED_PSTATE_BITS;
1312 /* Return the current CPSR value. */
1313 uint32_t cpsr_read(CPUARMState *env);
1315 typedef enum CPSRWriteType {
1316 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1317 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1318 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
1319 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1320 } CPSRWriteType;
1322 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
1323 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1324 CPSRWriteType write_type);
1326 /* Return the current xPSR value. */
1327 static inline uint32_t xpsr_read(CPUARMState *env)
1329 int ZF;
1330 ZF = (env->ZF == 0);
1331 return (env->NF & 0x80000000) | (ZF << 30)
1332 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1333 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1334 | ((env->condexec_bits & 0xfc) << 8)
1335 | (env->GE << 16)
1336 | env->v7m.exception;
1339 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1340 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1342 if (mask & XPSR_NZCV) {
1343 env->ZF = (~val) & XPSR_Z;
1344 env->NF = val;
1345 env->CF = (val >> 29) & 1;
1346 env->VF = (val << 3) & 0x80000000;
1348 if (mask & XPSR_Q) {
1349 env->QF = ((val & XPSR_Q) != 0);
1351 if (mask & XPSR_GE) {
1352 env->GE = (val & XPSR_GE) >> 16;
1354 #ifndef CONFIG_USER_ONLY
1355 if (mask & XPSR_T) {
1356 env->thumb = ((val & XPSR_T) != 0);
1358 if (mask & XPSR_IT_0_1) {
1359 env->condexec_bits &= ~3;
1360 env->condexec_bits |= (val >> 25) & 3;
1362 if (mask & XPSR_IT_2_7) {
1363 env->condexec_bits &= 3;
1364 env->condexec_bits |= (val >> 8) & 0xfc;
1366 if (mask & XPSR_EXCP) {
1367 /* Note that this only happens on exception exit */
1368 write_v7m_exception(env, val & XPSR_EXCP);
1370 #endif
1373 #define HCR_VM (1ULL << 0)
1374 #define HCR_SWIO (1ULL << 1)
1375 #define HCR_PTW (1ULL << 2)
1376 #define HCR_FMO (1ULL << 3)
1377 #define HCR_IMO (1ULL << 4)
1378 #define HCR_AMO (1ULL << 5)
1379 #define HCR_VF (1ULL << 6)
1380 #define HCR_VI (1ULL << 7)
1381 #define HCR_VSE (1ULL << 8)
1382 #define HCR_FB (1ULL << 9)
1383 #define HCR_BSU_MASK (3ULL << 10)
1384 #define HCR_DC (1ULL << 12)
1385 #define HCR_TWI (1ULL << 13)
1386 #define HCR_TWE (1ULL << 14)
1387 #define HCR_TID0 (1ULL << 15)
1388 #define HCR_TID1 (1ULL << 16)
1389 #define HCR_TID2 (1ULL << 17)
1390 #define HCR_TID3 (1ULL << 18)
1391 #define HCR_TSC (1ULL << 19)
1392 #define HCR_TIDCP (1ULL << 20)
1393 #define HCR_TACR (1ULL << 21)
1394 #define HCR_TSW (1ULL << 22)
1395 #define HCR_TPCP (1ULL << 23)
1396 #define HCR_TPU (1ULL << 24)
1397 #define HCR_TTLB (1ULL << 25)
1398 #define HCR_TVM (1ULL << 26)
1399 #define HCR_TGE (1ULL << 27)
1400 #define HCR_TDZ (1ULL << 28)
1401 #define HCR_HCD (1ULL << 29)
1402 #define HCR_TRVM (1ULL << 30)
1403 #define HCR_RW (1ULL << 31)
1404 #define HCR_CD (1ULL << 32)
1405 #define HCR_ID (1ULL << 33)
1406 #define HCR_E2H (1ULL << 34)
1407 #define HCR_TLOR (1ULL << 35)
1408 #define HCR_TERR (1ULL << 36)
1409 #define HCR_TEA (1ULL << 37)
1410 #define HCR_MIOCNCE (1ULL << 38)
1411 #define HCR_APK (1ULL << 40)
1412 #define HCR_API (1ULL << 41)
1413 #define HCR_NV (1ULL << 42)
1414 #define HCR_NV1 (1ULL << 43)
1415 #define HCR_AT (1ULL << 44)
1416 #define HCR_NV2 (1ULL << 45)
1417 #define HCR_FWB (1ULL << 46)
1418 #define HCR_FIEN (1ULL << 47)
1419 #define HCR_TID4 (1ULL << 49)
1420 #define HCR_TICAB (1ULL << 50)
1421 #define HCR_TOCU (1ULL << 52)
1422 #define HCR_TTLBIS (1ULL << 54)
1423 #define HCR_TTLBOS (1ULL << 55)
1424 #define HCR_ATA (1ULL << 56)
1425 #define HCR_DCT (1ULL << 57)
1427 #define SCR_NS (1U << 0)
1428 #define SCR_IRQ (1U << 1)
1429 #define SCR_FIQ (1U << 2)
1430 #define SCR_EA (1U << 3)
1431 #define SCR_FW (1U << 4)
1432 #define SCR_AW (1U << 5)
1433 #define SCR_NET (1U << 6)
1434 #define SCR_SMD (1U << 7)
1435 #define SCR_HCE (1U << 8)
1436 #define SCR_SIF (1U << 9)
1437 #define SCR_RW (1U << 10)
1438 #define SCR_ST (1U << 11)
1439 #define SCR_TWI (1U << 12)
1440 #define SCR_TWE (1U << 13)
1441 #define SCR_TLOR (1U << 14)
1442 #define SCR_TERR (1U << 15)
1443 #define SCR_APK (1U << 16)
1444 #define SCR_API (1U << 17)
1445 #define SCR_EEL2 (1U << 18)
1446 #define SCR_EASE (1U << 19)
1447 #define SCR_NMEA (1U << 20)
1448 #define SCR_FIEN (1U << 21)
1449 #define SCR_ENSCXT (1U << 25)
1450 #define SCR_ATA (1U << 26)
1452 /* Return the current FPSCR value. */
1453 uint32_t vfp_get_fpscr(CPUARMState *env);
1454 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1456 /* FPCR, Floating Point Control Register
1457 * FPSR, Floating Poiht Status Register
1459 * For A64 the FPSCR is split into two logically distinct registers,
1460 * FPCR and FPSR. However since they still use non-overlapping bits
1461 * we store the underlying state in fpscr and just mask on read/write.
1463 #define FPSR_MASK 0xf800009f
1464 #define FPCR_MASK 0x07ff9f00
1466 #define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1467 #define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1468 #define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1469 #define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1470 #define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1471 #define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
1472 #define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
1473 #define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1474 #define FPCR_DN (1 << 25) /* Default NaN enable bit */
1475 #define FPCR_QC (1 << 27) /* Cumulative saturation bit */
1477 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1479 return vfp_get_fpscr(env) & FPSR_MASK;
1482 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1484 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1485 vfp_set_fpscr(env, new_fpscr);
1488 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1490 return vfp_get_fpscr(env) & FPCR_MASK;
1493 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1495 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1496 vfp_set_fpscr(env, new_fpscr);
1499 enum arm_cpu_mode {
1500 ARM_CPU_MODE_USR = 0x10,
1501 ARM_CPU_MODE_FIQ = 0x11,
1502 ARM_CPU_MODE_IRQ = 0x12,
1503 ARM_CPU_MODE_SVC = 0x13,
1504 ARM_CPU_MODE_MON = 0x16,
1505 ARM_CPU_MODE_ABT = 0x17,
1506 ARM_CPU_MODE_HYP = 0x1a,
1507 ARM_CPU_MODE_UND = 0x1b,
1508 ARM_CPU_MODE_SYS = 0x1f
1511 /* VFP system registers. */
1512 #define ARM_VFP_FPSID 0
1513 #define ARM_VFP_FPSCR 1
1514 #define ARM_VFP_MVFR2 5
1515 #define ARM_VFP_MVFR1 6
1516 #define ARM_VFP_MVFR0 7
1517 #define ARM_VFP_FPEXC 8
1518 #define ARM_VFP_FPINST 9
1519 #define ARM_VFP_FPINST2 10
1521 /* iwMMXt coprocessor control registers. */
1522 #define ARM_IWMMXT_wCID 0
1523 #define ARM_IWMMXT_wCon 1
1524 #define ARM_IWMMXT_wCSSF 2
1525 #define ARM_IWMMXT_wCASF 3
1526 #define ARM_IWMMXT_wCGR0 8
1527 #define ARM_IWMMXT_wCGR1 9
1528 #define ARM_IWMMXT_wCGR2 10
1529 #define ARM_IWMMXT_wCGR3 11
1531 /* V7M CCR bits */
1532 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1533 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1534 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1535 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1536 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1537 FIELD(V7M_CCR, STKALIGN, 9, 1)
1538 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1539 FIELD(V7M_CCR, DC, 16, 1)
1540 FIELD(V7M_CCR, IC, 17, 1)
1541 FIELD(V7M_CCR, BP, 18, 1)
1543 /* V7M SCR bits */
1544 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1545 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1546 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1547 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1549 /* V7M AIRCR bits */
1550 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1551 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1552 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1553 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1554 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1555 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1556 FIELD(V7M_AIRCR, PRIS, 14, 1)
1557 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1558 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1560 /* V7M CFSR bits for MMFSR */
1561 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1562 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1563 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1564 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1565 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1566 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1568 /* V7M CFSR bits for BFSR */
1569 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1570 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1571 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1572 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1573 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1574 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1575 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1577 /* V7M CFSR bits for UFSR */
1578 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1579 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1580 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1581 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1582 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1583 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1584 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1586 /* V7M CFSR bit masks covering all of the subregister bits */
1587 FIELD(V7M_CFSR, MMFSR, 0, 8)
1588 FIELD(V7M_CFSR, BFSR, 8, 8)
1589 FIELD(V7M_CFSR, UFSR, 16, 16)
1591 /* V7M HFSR bits */
1592 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1593 FIELD(V7M_HFSR, FORCED, 30, 1)
1594 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1596 /* V7M DFSR bits */
1597 FIELD(V7M_DFSR, HALTED, 0, 1)
1598 FIELD(V7M_DFSR, BKPT, 1, 1)
1599 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1600 FIELD(V7M_DFSR, VCATCH, 3, 1)
1601 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1603 /* V7M SFSR bits */
1604 FIELD(V7M_SFSR, INVEP, 0, 1)
1605 FIELD(V7M_SFSR, INVIS, 1, 1)
1606 FIELD(V7M_SFSR, INVER, 2, 1)
1607 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1608 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1609 FIELD(V7M_SFSR, LSPERR, 5, 1)
1610 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1611 FIELD(V7M_SFSR, LSERR, 7, 1)
1613 /* v7M MPU_CTRL bits */
1614 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1615 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1616 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1618 /* v7M CLIDR bits */
1619 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1620 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1621 FIELD(V7M_CLIDR, LOC, 24, 3)
1622 FIELD(V7M_CLIDR, LOUU, 27, 3)
1623 FIELD(V7M_CLIDR, ICB, 30, 2)
1625 FIELD(V7M_CSSELR, IND, 0, 1)
1626 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1627 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1628 * define a mask for this and check that it doesn't permit running off
1629 * the end of the array.
1631 FIELD(V7M_CSSELR, INDEX, 0, 4)
1633 /* v7M FPCCR bits */
1634 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1635 FIELD(V7M_FPCCR, USER, 1, 1)
1636 FIELD(V7M_FPCCR, S, 2, 1)
1637 FIELD(V7M_FPCCR, THREAD, 3, 1)
1638 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1639 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1640 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1641 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1642 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1643 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1644 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1645 FIELD(V7M_FPCCR, RES0, 11, 15)
1646 FIELD(V7M_FPCCR, TS, 26, 1)
1647 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1648 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1649 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1650 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1651 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1652 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1653 #define R_V7M_FPCCR_BANKED_MASK \
1654 (R_V7M_FPCCR_LSPACT_MASK | \
1655 R_V7M_FPCCR_USER_MASK | \
1656 R_V7M_FPCCR_THREAD_MASK | \
1657 R_V7M_FPCCR_MMRDY_MASK | \
1658 R_V7M_FPCCR_SPLIMVIOL_MASK | \
1659 R_V7M_FPCCR_UFRDY_MASK | \
1660 R_V7M_FPCCR_ASPEN_MASK)
1663 * System register ID fields.
1665 FIELD(MIDR_EL1, REVISION, 0, 4)
1666 FIELD(MIDR_EL1, PARTNUM, 4, 12)
1667 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1668 FIELD(MIDR_EL1, VARIANT, 20, 4)
1669 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1671 FIELD(ID_ISAR0, SWAP, 0, 4)
1672 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1673 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1674 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1675 FIELD(ID_ISAR0, COPROC, 16, 4)
1676 FIELD(ID_ISAR0, DEBUG, 20, 4)
1677 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1679 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1680 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1681 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1682 FIELD(ID_ISAR1, EXTEND, 12, 4)
1683 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1684 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1685 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1686 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1688 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1689 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1690 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1691 FIELD(ID_ISAR2, MULT, 12, 4)
1692 FIELD(ID_ISAR2, MULTS, 16, 4)
1693 FIELD(ID_ISAR2, MULTU, 20, 4)
1694 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1695 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1697 FIELD(ID_ISAR3, SATURATE, 0, 4)
1698 FIELD(ID_ISAR3, SIMD, 4, 4)
1699 FIELD(ID_ISAR3, SVC, 8, 4)
1700 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1701 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1702 FIELD(ID_ISAR3, T32COPY, 20, 4)
1703 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1704 FIELD(ID_ISAR3, T32EE, 28, 4)
1706 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1707 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1708 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1709 FIELD(ID_ISAR4, SMC, 12, 4)
1710 FIELD(ID_ISAR4, BARRIER, 16, 4)
1711 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1712 FIELD(ID_ISAR4, PSR_M, 24, 4)
1713 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1715 FIELD(ID_ISAR5, SEVL, 0, 4)
1716 FIELD(ID_ISAR5, AES, 4, 4)
1717 FIELD(ID_ISAR5, SHA1, 8, 4)
1718 FIELD(ID_ISAR5, SHA2, 12, 4)
1719 FIELD(ID_ISAR5, CRC32, 16, 4)
1720 FIELD(ID_ISAR5, RDM, 24, 4)
1721 FIELD(ID_ISAR5, VCMA, 28, 4)
1723 FIELD(ID_ISAR6, JSCVT, 0, 4)
1724 FIELD(ID_ISAR6, DP, 4, 4)
1725 FIELD(ID_ISAR6, FHM, 8, 4)
1726 FIELD(ID_ISAR6, SB, 12, 4)
1727 FIELD(ID_ISAR6, SPECRES, 16, 4)
1729 FIELD(ID_MMFR4, SPECSEI, 0, 4)
1730 FIELD(ID_MMFR4, AC2, 4, 4)
1731 FIELD(ID_MMFR4, XNX, 8, 4)
1732 FIELD(ID_MMFR4, CNP, 12, 4)
1733 FIELD(ID_MMFR4, HPDS, 16, 4)
1734 FIELD(ID_MMFR4, LSM, 20, 4)
1735 FIELD(ID_MMFR4, CCIDX, 24, 4)
1736 FIELD(ID_MMFR4, EVT, 28, 4)
1738 FIELD(ID_AA64ISAR0, AES, 4, 4)
1739 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1740 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1741 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1742 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1743 FIELD(ID_AA64ISAR0, RDM, 28, 4)
1744 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1745 FIELD(ID_AA64ISAR0, SM3, 36, 4)
1746 FIELD(ID_AA64ISAR0, SM4, 40, 4)
1747 FIELD(ID_AA64ISAR0, DP, 44, 4)
1748 FIELD(ID_AA64ISAR0, FHM, 48, 4)
1749 FIELD(ID_AA64ISAR0, TS, 52, 4)
1750 FIELD(ID_AA64ISAR0, TLB, 56, 4)
1751 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1753 FIELD(ID_AA64ISAR1, DPB, 0, 4)
1754 FIELD(ID_AA64ISAR1, APA, 4, 4)
1755 FIELD(ID_AA64ISAR1, API, 8, 4)
1756 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1757 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1758 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1759 FIELD(ID_AA64ISAR1, GPA, 24, 4)
1760 FIELD(ID_AA64ISAR1, GPI, 28, 4)
1761 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1762 FIELD(ID_AA64ISAR1, SB, 36, 4)
1763 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1765 FIELD(ID_AA64PFR0, EL0, 0, 4)
1766 FIELD(ID_AA64PFR0, EL1, 4, 4)
1767 FIELD(ID_AA64PFR0, EL2, 8, 4)
1768 FIELD(ID_AA64PFR0, EL3, 12, 4)
1769 FIELD(ID_AA64PFR0, FP, 16, 4)
1770 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1771 FIELD(ID_AA64PFR0, GIC, 24, 4)
1772 FIELD(ID_AA64PFR0, RAS, 28, 4)
1773 FIELD(ID_AA64PFR0, SVE, 32, 4)
1775 FIELD(ID_AA64PFR1, BT, 0, 4)
1776 FIELD(ID_AA64PFR1, SBSS, 4, 4)
1777 FIELD(ID_AA64PFR1, MTE, 8, 4)
1778 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1780 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1781 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1782 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1783 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1784 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1785 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1786 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1787 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1788 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1789 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1790 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1791 FIELD(ID_AA64MMFR0, EXS, 44, 4)
1793 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1794 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1795 FIELD(ID_AA64MMFR1, VH, 8, 4)
1796 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1797 FIELD(ID_AA64MMFR1, LO, 16, 4)
1798 FIELD(ID_AA64MMFR1, PAN, 20, 4)
1799 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1800 FIELD(ID_AA64MMFR1, XNX, 28, 4)
1802 FIELD(ID_DFR0, COPDBG, 0, 4)
1803 FIELD(ID_DFR0, COPSDBG, 4, 4)
1804 FIELD(ID_DFR0, MMAPDBG, 8, 4)
1805 FIELD(ID_DFR0, COPTRC, 12, 4)
1806 FIELD(ID_DFR0, MMAPTRC, 16, 4)
1807 FIELD(ID_DFR0, MPROFDBG, 20, 4)
1808 FIELD(ID_DFR0, PERFMON, 24, 4)
1809 FIELD(ID_DFR0, TRACEFILT, 28, 4)
1811 FIELD(MVFR0, SIMDREG, 0, 4)
1812 FIELD(MVFR0, FPSP, 4, 4)
1813 FIELD(MVFR0, FPDP, 8, 4)
1814 FIELD(MVFR0, FPTRAP, 12, 4)
1815 FIELD(MVFR0, FPDIVIDE, 16, 4)
1816 FIELD(MVFR0, FPSQRT, 20, 4)
1817 FIELD(MVFR0, FPSHVEC, 24, 4)
1818 FIELD(MVFR0, FPROUND, 28, 4)
1820 FIELD(MVFR1, FPFTZ, 0, 4)
1821 FIELD(MVFR1, FPDNAN, 4, 4)
1822 FIELD(MVFR1, SIMDLS, 8, 4)
1823 FIELD(MVFR1, SIMDINT, 12, 4)
1824 FIELD(MVFR1, SIMDSP, 16, 4)
1825 FIELD(MVFR1, SIMDHP, 20, 4)
1826 FIELD(MVFR1, FPHP, 24, 4)
1827 FIELD(MVFR1, SIMDFMAC, 28, 4)
1829 FIELD(MVFR2, SIMDMISC, 0, 4)
1830 FIELD(MVFR2, FPMISC, 4, 4)
1832 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1834 /* If adding a feature bit which corresponds to a Linux ELF
1835 * HWCAP bit, remember to update the feature-bit-to-hwcap
1836 * mapping in linux-user/elfload.c:get_elf_hwcap().
1838 enum arm_features {
1839 ARM_FEATURE_VFP,
1840 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
1841 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
1842 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
1843 ARM_FEATURE_V6,
1844 ARM_FEATURE_V6K,
1845 ARM_FEATURE_V7,
1846 ARM_FEATURE_THUMB2,
1847 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
1848 ARM_FEATURE_VFP3,
1849 ARM_FEATURE_NEON,
1850 ARM_FEATURE_M, /* Microcontroller profile. */
1851 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
1852 ARM_FEATURE_THUMB2EE,
1853 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
1854 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
1855 ARM_FEATURE_V4T,
1856 ARM_FEATURE_V5,
1857 ARM_FEATURE_STRONGARM,
1858 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1859 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1860 ARM_FEATURE_GENERIC_TIMER,
1861 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1862 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1863 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1864 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1865 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1866 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1867 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1868 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1869 ARM_FEATURE_V8,
1870 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1871 ARM_FEATURE_CBAR, /* has cp15 CBAR */
1872 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1873 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1874 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1875 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1876 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1877 ARM_FEATURE_PMU, /* has PMU support */
1878 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1879 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1880 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
1883 static inline int arm_feature(CPUARMState *env, int feature)
1885 return (env->features & (1ULL << feature)) != 0;
1888 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
1890 #if !defined(CONFIG_USER_ONLY)
1891 /* Return true if exception levels below EL3 are in secure state,
1892 * or would be following an exception return to that level.
1893 * Unlike arm_is_secure() (which is always a question about the
1894 * _current_ state of the CPU) this doesn't care about the current
1895 * EL or mode.
1897 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1899 if (arm_feature(env, ARM_FEATURE_EL3)) {
1900 return !(env->cp15.scr_el3 & SCR_NS);
1901 } else {
1902 /* If EL3 is not supported then the secure state is implementation
1903 * defined, in which case QEMU defaults to non-secure.
1905 return false;
1909 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1910 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1912 if (arm_feature(env, ARM_FEATURE_EL3)) {
1913 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1914 /* CPU currently in AArch64 state and EL3 */
1915 return true;
1916 } else if (!is_a64(env) &&
1917 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1918 /* CPU currently in AArch32 state and monitor mode */
1919 return true;
1922 return false;
1925 /* Return true if the processor is in secure state */
1926 static inline bool arm_is_secure(CPUARMState *env)
1928 if (arm_is_el3_or_mon(env)) {
1929 return true;
1931 return arm_is_secure_below_el3(env);
1934 #else
1935 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1937 return false;
1940 static inline bool arm_is_secure(CPUARMState *env)
1942 return false;
1944 #endif
1947 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
1948 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
1949 * "for all purposes other than a direct read or write access of HCR_EL2."
1950 * Not included here is HCR_RW.
1952 uint64_t arm_hcr_el2_eff(CPUARMState *env);
1954 /* Return true if the specified exception level is running in AArch64 state. */
1955 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1957 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1958 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1960 assert(el >= 1 && el <= 3);
1961 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1963 /* The highest exception level is always at the maximum supported
1964 * register width, and then lower levels have a register width controlled
1965 * by bits in the SCR or HCR registers.
1967 if (el == 3) {
1968 return aa64;
1971 if (arm_feature(env, ARM_FEATURE_EL3)) {
1972 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1975 if (el == 2) {
1976 return aa64;
1979 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1980 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1983 return aa64;
1986 /* Function for determing whether guest cp register reads and writes should
1987 * access the secure or non-secure bank of a cp register. When EL3 is
1988 * operating in AArch32 state, the NS-bit determines whether the secure
1989 * instance of a cp register should be used. When EL3 is AArch64 (or if
1990 * it doesn't exist at all) then there is no register banking, and all
1991 * accesses are to the non-secure version.
1993 static inline bool access_secure_reg(CPUARMState *env)
1995 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1996 !arm_el_is_aa64(env, 3) &&
1997 !(env->cp15.scr_el3 & SCR_NS));
1999 return ret;
2002 /* Macros for accessing a specified CP register bank */
2003 #define A32_BANKED_REG_GET(_env, _regname, _secure) \
2004 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2006 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
2007 do { \
2008 if (_secure) { \
2009 (_env)->cp15._regname##_s = (_val); \
2010 } else { \
2011 (_env)->cp15._regname##_ns = (_val); \
2013 } while (0)
2015 /* Macros for automatically accessing a specific CP register bank depending on
2016 * the current secure state of the system. These macros are not intended for
2017 * supporting instruction translation reads/writes as these are dependent
2018 * solely on the SCR.NS bit and not the mode.
2020 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
2021 A32_BANKED_REG_GET((_env), _regname, \
2022 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2024 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
2025 A32_BANKED_REG_SET((_env), _regname, \
2026 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2027 (_val))
2029 void arm_cpu_list(void);
2030 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2031 uint32_t cur_el, bool secure);
2033 /* Interface between CPU and Interrupt controller. */
2034 #ifndef CONFIG_USER_ONLY
2035 bool armv7m_nvic_can_take_pending_exception(void *opaque);
2036 #else
2037 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2039 return true;
2041 #endif
2043 * armv7m_nvic_set_pending: mark the specified exception as pending
2044 * @opaque: the NVIC
2045 * @irq: the exception number to mark pending
2046 * @secure: false for non-banked exceptions or for the nonsecure
2047 * version of a banked exception, true for the secure version of a banked
2048 * exception.
2050 * Marks the specified exception as pending. Note that we will assert()
2051 * if @secure is true and @irq does not specify one of the fixed set
2052 * of architecturally banked exceptions.
2054 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
2056 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2057 * @opaque: the NVIC
2058 * @irq: the exception number to mark pending
2059 * @secure: false for non-banked exceptions or for the nonsecure
2060 * version of a banked exception, true for the secure version of a banked
2061 * exception.
2063 * Similar to armv7m_nvic_set_pending(), but specifically for derived
2064 * exceptions (exceptions generated in the course of trying to take
2065 * a different exception).
2067 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2069 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2070 * @opaque: the NVIC
2071 * @irq: the exception number to mark pending
2072 * @secure: false for non-banked exceptions or for the nonsecure
2073 * version of a banked exception, true for the secure version of a banked
2074 * exception.
2076 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2077 * generated in the course of lazy stacking of FP registers.
2079 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2081 * armv7m_nvic_get_pending_irq_info: return highest priority pending
2082 * exception, and whether it targets Secure state
2083 * @opaque: the NVIC
2084 * @pirq: set to pending exception number
2085 * @ptargets_secure: set to whether pending exception targets Secure
2087 * This function writes the number of the highest priority pending
2088 * exception (the one which would be made active by
2089 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2090 * to true if the current highest priority pending exception should
2091 * be taken to Secure state, false for NS.
2093 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2094 bool *ptargets_secure);
2096 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2097 * @opaque: the NVIC
2099 * Move the current highest priority pending exception from the pending
2100 * state to the active state, and update v7m.exception to indicate that
2101 * it is the exception currently being handled.
2103 void armv7m_nvic_acknowledge_irq(void *opaque);
2105 * armv7m_nvic_complete_irq: complete specified interrupt or exception
2106 * @opaque: the NVIC
2107 * @irq: the exception number to complete
2108 * @secure: true if this exception was secure
2110 * Returns: -1 if the irq was not active
2111 * 1 if completing this irq brought us back to base (no active irqs)
2112 * 0 if there is still an irq active after this one was completed
2113 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2115 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2117 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2118 * @opaque: the NVIC
2119 * @irq: the exception number to mark pending
2120 * @secure: false for non-banked exceptions or for the nonsecure
2121 * version of a banked exception, true for the secure version of a banked
2122 * exception.
2124 * Return whether an exception is "ready", i.e. whether the exception is
2125 * enabled and is configured at a priority which would allow it to
2126 * interrupt the current execution priority. This controls whether the
2127 * RDY bit for it in the FPCCR is set.
2129 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2131 * armv7m_nvic_raw_execution_priority: return the raw execution priority
2132 * @opaque: the NVIC
2134 * Returns: the raw execution priority as defined by the v8M architecture.
2135 * This is the execution priority minus the effects of AIRCR.PRIS,
2136 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2137 * (v8M ARM ARM I_PKLD.)
2139 int armv7m_nvic_raw_execution_priority(void *opaque);
2141 * armv7m_nvic_neg_prio_requested: return true if the requested execution
2142 * priority is negative for the specified security state.
2143 * @opaque: the NVIC
2144 * @secure: the security state to test
2145 * This corresponds to the pseudocode IsReqExecPriNeg().
2147 #ifndef CONFIG_USER_ONLY
2148 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2149 #else
2150 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2152 return false;
2154 #endif
2156 /* Interface for defining coprocessor registers.
2157 * Registers are defined in tables of arm_cp_reginfo structs
2158 * which are passed to define_arm_cp_regs().
2161 /* When looking up a coprocessor register we look for it
2162 * via an integer which encodes all of:
2163 * coprocessor number
2164 * Crn, Crm, opc1, opc2 fields
2165 * 32 or 64 bit register (ie is it accessed via MRC/MCR
2166 * or via MRRC/MCRR?)
2167 * non-secure/secure bank (AArch32 only)
2168 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2169 * (In this case crn and opc2 should be zero.)
2170 * For AArch64, there is no 32/64 bit size distinction;
2171 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2172 * and 4 bit CRn and CRm. The encoding patterns are chosen
2173 * to be easy to convert to and from the KVM encodings, and also
2174 * so that the hashtable can contain both AArch32 and AArch64
2175 * registers (to allow for interprocessing where we might run
2176 * 32 bit code on a 64 bit core).
2178 /* This bit is private to our hashtable cpreg; in KVM register
2179 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2180 * in the upper bits of the 64 bit ID.
2182 #define CP_REG_AA64_SHIFT 28
2183 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2185 /* To enable banking of coprocessor registers depending on ns-bit we
2186 * add a bit to distinguish between secure and non-secure cpregs in the
2187 * hashtable.
2189 #define CP_REG_NS_SHIFT 29
2190 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2192 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
2193 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
2194 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2196 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2197 (CP_REG_AA64_MASK | \
2198 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
2199 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
2200 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
2201 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
2202 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
2203 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2205 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2206 * version used as a key for the coprocessor register hashtable
2208 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2210 uint32_t cpregid = kvmid;
2211 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2212 cpregid |= CP_REG_AA64_MASK;
2213 } else {
2214 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2215 cpregid |= (1 << 15);
2218 /* KVM is always non-secure so add the NS flag on AArch32 register
2219 * entries.
2221 cpregid |= 1 << CP_REG_NS_SHIFT;
2223 return cpregid;
2226 /* Convert a truncated 32 bit hashtable key into the full
2227 * 64 bit KVM register ID.
2229 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2231 uint64_t kvmid;
2233 if (cpregid & CP_REG_AA64_MASK) {
2234 kvmid = cpregid & ~CP_REG_AA64_MASK;
2235 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2236 } else {
2237 kvmid = cpregid & ~(1 << 15);
2238 if (cpregid & (1 << 15)) {
2239 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2240 } else {
2241 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2244 return kvmid;
2247 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
2248 * special-behaviour cp reg and bits [11..8] indicate what behaviour
2249 * it has. Otherwise it is a simple cp reg, where CONST indicates that
2250 * TCG can assume the value to be constant (ie load at translate time)
2251 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2252 * indicates that the TB should not be ended after a write to this register
2253 * (the default is that the TB ends after cp writes). OVERRIDE permits
2254 * a register definition to override a previous definition for the
2255 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2256 * old must have the OVERRIDE bit set.
2257 * ALIAS indicates that this register is an alias view of some underlying
2258 * state which is also visible via another register, and that the other
2259 * register is handling migration and reset; registers marked ALIAS will not be
2260 * migrated but may have their state set by syncing of register state from KVM.
2261 * NO_RAW indicates that this register has no underlying state and does not
2262 * support raw access for state saving/loading; it will not be used for either
2263 * migration or KVM state synchronization. (Typically this is for "registers"
2264 * which are actually used as instructions for cache maintenance and so on.)
2265 * IO indicates that this register does I/O and therefore its accesses
2266 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
2267 * registers which implement clocks or timers require this.
2268 * RAISES_EXC is for when the read or write hook might raise an exception;
2269 * the generated code will synchronize the CPU state before calling the hook
2270 * so that it is safe for the hook to call raise_exception().
2271 * NEWEL is for writes to registers that might change the exception
2272 * level - typically on older ARM chips. For those cases we need to
2273 * re-read the new el when recomputing the translation flags.
2275 #define ARM_CP_SPECIAL 0x0001
2276 #define ARM_CP_CONST 0x0002
2277 #define ARM_CP_64BIT 0x0004
2278 #define ARM_CP_SUPPRESS_TB_END 0x0008
2279 #define ARM_CP_OVERRIDE 0x0010
2280 #define ARM_CP_ALIAS 0x0020
2281 #define ARM_CP_IO 0x0040
2282 #define ARM_CP_NO_RAW 0x0080
2283 #define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100)
2284 #define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200)
2285 #define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300)
2286 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400)
2287 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500)
2288 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
2289 #define ARM_CP_FPU 0x1000
2290 #define ARM_CP_SVE 0x2000
2291 #define ARM_CP_NO_GDB 0x4000
2292 #define ARM_CP_RAISES_EXC 0x8000
2293 #define ARM_CP_NEWEL 0x10000
2294 /* Used only as a terminator for ARMCPRegInfo lists */
2295 #define ARM_CP_SENTINEL 0xfffff
2296 /* Mask of only the flag bits in a type field */
2297 #define ARM_CP_FLAG_MASK 0x1f0ff
2299 /* Valid values for ARMCPRegInfo state field, indicating which of
2300 * the AArch32 and AArch64 execution states this register is visible in.
2301 * If the reginfo doesn't explicitly specify then it is AArch32 only.
2302 * If the reginfo is declared to be visible in both states then a second
2303 * reginfo is synthesised for the AArch32 view of the AArch64 register,
2304 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2305 * Note that we rely on the values of these enums as we iterate through
2306 * the various states in some places.
2308 enum {
2309 ARM_CP_STATE_AA32 = 0,
2310 ARM_CP_STATE_AA64 = 1,
2311 ARM_CP_STATE_BOTH = 2,
2314 /* ARM CP register secure state flags. These flags identify security state
2315 * attributes for a given CP register entry.
2316 * The existence of both or neither secure and non-secure flags indicates that
2317 * the register has both a secure and non-secure hash entry. A single one of
2318 * these flags causes the register to only be hashed for the specified
2319 * security state.
2320 * Although definitions may have any combination of the S/NS bits, each
2321 * registered entry will only have one to identify whether the entry is secure
2322 * or non-secure.
2324 enum {
2325 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
2326 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
2329 /* Return true if cptype is a valid type field. This is used to try to
2330 * catch errors where the sentinel has been accidentally left off the end
2331 * of a list of registers.
2333 static inline bool cptype_valid(int cptype)
2335 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2336 || ((cptype & ARM_CP_SPECIAL) &&
2337 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2340 /* Access rights:
2341 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2342 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2343 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2344 * (ie any of the privileged modes in Secure state, or Monitor mode).
2345 * If a register is accessible in one privilege level it's always accessible
2346 * in higher privilege levels too. Since "Secure PL1" also follows this rule
2347 * (ie anything visible in PL2 is visible in S-PL1, some things are only
2348 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2349 * terminology a little and call this PL3.
2350 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2351 * with the ELx exception levels.
2353 * If access permissions for a register are more complex than can be
2354 * described with these bits, then use a laxer set of restrictions, and
2355 * do the more restrictive/complex check inside a helper function.
2357 #define PL3_R 0x80
2358 #define PL3_W 0x40
2359 #define PL2_R (0x20 | PL3_R)
2360 #define PL2_W (0x10 | PL3_W)
2361 #define PL1_R (0x08 | PL2_R)
2362 #define PL1_W (0x04 | PL2_W)
2363 #define PL0_R (0x02 | PL1_R)
2364 #define PL0_W (0x01 | PL1_W)
2367 * For user-mode some registers are accessible to EL0 via a kernel
2368 * trap-and-emulate ABI. In this case we define the read permissions
2369 * as actually being PL0_R. However some bits of any given register
2370 * may still be masked.
2372 #ifdef CONFIG_USER_ONLY
2373 #define PL0U_R PL0_R
2374 #else
2375 #define PL0U_R PL1_R
2376 #endif
2378 #define PL3_RW (PL3_R | PL3_W)
2379 #define PL2_RW (PL2_R | PL2_W)
2380 #define PL1_RW (PL1_R | PL1_W)
2381 #define PL0_RW (PL0_R | PL0_W)
2383 /* Return the highest implemented Exception Level */
2384 static inline int arm_highest_el(CPUARMState *env)
2386 if (arm_feature(env, ARM_FEATURE_EL3)) {
2387 return 3;
2389 if (arm_feature(env, ARM_FEATURE_EL2)) {
2390 return 2;
2392 return 1;
2395 /* Return true if a v7M CPU is in Handler mode */
2396 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2398 return env->v7m.exception != 0;
2401 /* Return the current Exception Level (as per ARMv8; note that this differs
2402 * from the ARMv7 Privilege Level).
2404 static inline int arm_current_el(CPUARMState *env)
2406 if (arm_feature(env, ARM_FEATURE_M)) {
2407 return arm_v7m_is_handler_mode(env) ||
2408 !(env->v7m.control[env->v7m.secure] & 1);
2411 if (is_a64(env)) {
2412 return extract32(env->pstate, 2, 2);
2415 switch (env->uncached_cpsr & 0x1f) {
2416 case ARM_CPU_MODE_USR:
2417 return 0;
2418 case ARM_CPU_MODE_HYP:
2419 return 2;
2420 case ARM_CPU_MODE_MON:
2421 return 3;
2422 default:
2423 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2424 /* If EL3 is 32-bit then all secure privileged modes run in
2425 * EL3
2427 return 3;
2430 return 1;
2434 typedef struct ARMCPRegInfo ARMCPRegInfo;
2436 typedef enum CPAccessResult {
2437 /* Access is permitted */
2438 CP_ACCESS_OK = 0,
2439 /* Access fails due to a configurable trap or enable which would
2440 * result in a categorized exception syndrome giving information about
2441 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2442 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2443 * PL1 if in EL0, otherwise to the current EL).
2445 CP_ACCESS_TRAP = 1,
2446 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2447 * Note that this is not a catch-all case -- the set of cases which may
2448 * result in this failure is specifically defined by the architecture.
2450 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2451 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2452 CP_ACCESS_TRAP_EL2 = 3,
2453 CP_ACCESS_TRAP_EL3 = 4,
2454 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2455 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2456 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2457 /* Access fails and results in an exception syndrome for an FP access,
2458 * trapped directly to EL2 or EL3
2460 CP_ACCESS_TRAP_FP_EL2 = 7,
2461 CP_ACCESS_TRAP_FP_EL3 = 8,
2462 } CPAccessResult;
2464 /* Access functions for coprocessor registers. These cannot fail and
2465 * may not raise exceptions.
2467 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2468 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2469 uint64_t value);
2470 /* Access permission check functions for coprocessor registers. */
2471 typedef CPAccessResult CPAccessFn(CPUARMState *env,
2472 const ARMCPRegInfo *opaque,
2473 bool isread);
2474 /* Hook function for register reset */
2475 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2477 #define CP_ANY 0xff
2479 /* Definition of an ARM coprocessor register */
2480 struct ARMCPRegInfo {
2481 /* Name of register (useful mainly for debugging, need not be unique) */
2482 const char *name;
2483 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2484 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2485 * 'wildcard' field -- any value of that field in the MRC/MCR insn
2486 * will be decoded to this register. The register read and write
2487 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2488 * used by the program, so it is possible to register a wildcard and
2489 * then behave differently on read/write if necessary.
2490 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2491 * must both be zero.
2492 * For AArch64-visible registers, opc0 is also used.
2493 * Since there are no "coprocessors" in AArch64, cp is purely used as a
2494 * way to distinguish (for KVM's benefit) guest-visible system registers
2495 * from demuxed ones provided to preserve the "no side effects on
2496 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2497 * visible (to match KVM's encoding); cp==0 will be converted to
2498 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2500 uint8_t cp;
2501 uint8_t crn;
2502 uint8_t crm;
2503 uint8_t opc0;
2504 uint8_t opc1;
2505 uint8_t opc2;
2506 /* Execution state in which this register is visible: ARM_CP_STATE_* */
2507 int state;
2508 /* Register type: ARM_CP_* bits/values */
2509 int type;
2510 /* Access rights: PL*_[RW] */
2511 int access;
2512 /* Security state: ARM_CP_SECSTATE_* bits/values */
2513 int secure;
2514 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2515 * this register was defined: can be used to hand data through to the
2516 * register read/write functions, since they are passed the ARMCPRegInfo*.
2518 void *opaque;
2519 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2520 * fieldoffset is non-zero, the reset value of the register.
2522 uint64_t resetvalue;
2523 /* Offset of the field in CPUARMState for this register.
2525 * This is not needed if either:
2526 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2527 * 2. both readfn and writefn are specified
2529 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2531 /* Offsets of the secure and non-secure fields in CPUARMState for the
2532 * register if it is banked. These fields are only used during the static
2533 * registration of a register. During hashing the bank associated
2534 * with a given security state is copied to fieldoffset which is used from
2535 * there on out.
2537 * It is expected that register definitions use either fieldoffset or
2538 * bank_fieldoffsets in the definition but not both. It is also expected
2539 * that both bank offsets are set when defining a banked register. This
2540 * use indicates that a register is banked.
2542 ptrdiff_t bank_fieldoffsets[2];
2544 /* Function for making any access checks for this register in addition to
2545 * those specified by the 'access' permissions bits. If NULL, no extra
2546 * checks required. The access check is performed at runtime, not at
2547 * translate time.
2549 CPAccessFn *accessfn;
2550 /* Function for handling reads of this register. If NULL, then reads
2551 * will be done by loading from the offset into CPUARMState specified
2552 * by fieldoffset.
2554 CPReadFn *readfn;
2555 /* Function for handling writes of this register. If NULL, then writes
2556 * will be done by writing to the offset into CPUARMState specified
2557 * by fieldoffset.
2559 CPWriteFn *writefn;
2560 /* Function for doing a "raw" read; used when we need to copy
2561 * coprocessor state to the kernel for KVM or out for
2562 * migration. This only needs to be provided if there is also a
2563 * readfn and it has side effects (for instance clear-on-read bits).
2565 CPReadFn *raw_readfn;
2566 /* Function for doing a "raw" write; used when we need to copy KVM
2567 * kernel coprocessor state into userspace, or for inbound
2568 * migration. This only needs to be provided if there is also a
2569 * writefn and it masks out "unwritable" bits or has write-one-to-clear
2570 * or similar behaviour.
2572 CPWriteFn *raw_writefn;
2573 /* Function for resetting the register. If NULL, then reset will be done
2574 * by writing resetvalue to the field specified in fieldoffset. If
2575 * fieldoffset is 0 then no reset will be done.
2577 CPResetFn *resetfn;
2580 /* Macros which are lvalues for the field in CPUARMState for the
2581 * ARMCPRegInfo *ri.
2583 #define CPREG_FIELD32(env, ri) \
2584 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2585 #define CPREG_FIELD64(env, ri) \
2586 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2588 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2590 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2591 const ARMCPRegInfo *regs, void *opaque);
2592 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2593 const ARMCPRegInfo *regs, void *opaque);
2594 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2596 define_arm_cp_regs_with_opaque(cpu, regs, 0);
2598 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2600 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2602 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2605 * Definition of an ARM co-processor register as viewed from
2606 * userspace. This is used for presenting sanitised versions of
2607 * registers to userspace when emulating the Linux AArch64 CPU
2608 * ID/feature ABI (advertised as HWCAP_CPUID).
2610 typedef struct ARMCPRegUserSpaceInfo {
2611 /* Name of register */
2612 const char *name;
2614 /* Is the name actually a glob pattern */
2615 bool is_glob;
2617 /* Only some bits are exported to user space */
2618 uint64_t exported_bits;
2620 /* Fixed bits are applied after the mask */
2621 uint64_t fixed_bits;
2622 } ARMCPRegUserSpaceInfo;
2624 #define REGUSERINFO_SENTINEL { .name = NULL }
2626 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2628 /* CPWriteFn that can be used to implement writes-ignored behaviour */
2629 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2630 uint64_t value);
2631 /* CPReadFn that can be used for read-as-zero behaviour */
2632 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2634 /* CPResetFn that does nothing, for use if no reset is required even
2635 * if fieldoffset is non zero.
2637 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2639 /* Return true if this reginfo struct's field in the cpu state struct
2640 * is 64 bits wide.
2642 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2644 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2647 static inline bool cp_access_ok(int current_el,
2648 const ARMCPRegInfo *ri, int isread)
2650 return (ri->access >> ((current_el * 2) + isread)) & 1;
2653 /* Raw read of a coprocessor register (as needed for migration, etc) */
2654 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2657 * write_list_to_cpustate
2658 * @cpu: ARMCPU
2660 * For each register listed in the ARMCPU cpreg_indexes list, write
2661 * its value from the cpreg_values list into the ARMCPUState structure.
2662 * This updates TCG's working data structures from KVM data or
2663 * from incoming migration state.
2665 * Returns: true if all register values were updated correctly,
2666 * false if some register was unknown or could not be written.
2667 * Note that we do not stop early on failure -- we will attempt
2668 * writing all registers in the list.
2670 bool write_list_to_cpustate(ARMCPU *cpu);
2673 * write_cpustate_to_list:
2674 * @cpu: ARMCPU
2675 * @kvm_sync: true if this is for syncing back to KVM
2677 * For each register listed in the ARMCPU cpreg_indexes list, write
2678 * its value from the ARMCPUState structure into the cpreg_values list.
2679 * This is used to copy info from TCG's working data structures into
2680 * KVM or for outbound migration.
2682 * @kvm_sync is true if we are doing this in order to sync the
2683 * register state back to KVM. In this case we will only update
2684 * values in the list if the previous list->cpustate sync actually
2685 * successfully wrote the CPU state. Otherwise we will keep the value
2686 * that is in the list.
2688 * Returns: true if all register values were read correctly,
2689 * false if some register was unknown or could not be read.
2690 * Note that we do not stop early on failure -- we will attempt
2691 * reading all registers in the list.
2693 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2695 #define ARM_CPUID_TI915T 0x54029152
2696 #define ARM_CPUID_TI925T 0x54029252
2698 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2699 unsigned int target_el)
2701 CPUARMState *env = cs->env_ptr;
2702 unsigned int cur_el = arm_current_el(env);
2703 bool secure = arm_is_secure(env);
2704 bool pstate_unmasked;
2705 int8_t unmasked = 0;
2706 uint64_t hcr_el2;
2708 /* Don't take exceptions if they target a lower EL.
2709 * This check should catch any exceptions that would not be taken but left
2710 * pending.
2712 if (cur_el > target_el) {
2713 return false;
2716 hcr_el2 = arm_hcr_el2_eff(env);
2718 switch (excp_idx) {
2719 case EXCP_FIQ:
2720 pstate_unmasked = !(env->daif & PSTATE_F);
2721 break;
2723 case EXCP_IRQ:
2724 pstate_unmasked = !(env->daif & PSTATE_I);
2725 break;
2727 case EXCP_VFIQ:
2728 if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
2729 /* VFIQs are only taken when hypervized and non-secure. */
2730 return false;
2732 return !(env->daif & PSTATE_F);
2733 case EXCP_VIRQ:
2734 if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
2735 /* VIRQs are only taken when hypervized and non-secure. */
2736 return false;
2738 return !(env->daif & PSTATE_I);
2739 default:
2740 g_assert_not_reached();
2743 /* Use the target EL, current execution state and SCR/HCR settings to
2744 * determine whether the corresponding CPSR bit is used to mask the
2745 * interrupt.
2747 if ((target_el > cur_el) && (target_el != 1)) {
2748 /* Exceptions targeting a higher EL may not be maskable */
2749 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2750 /* 64-bit masking rules are simple: exceptions to EL3
2751 * can't be masked, and exceptions to EL2 can only be
2752 * masked from Secure state. The HCR and SCR settings
2753 * don't affect the masking logic, only the interrupt routing.
2755 if (target_el == 3 || !secure) {
2756 unmasked = 1;
2758 } else {
2759 /* The old 32-bit-only environment has a more complicated
2760 * masking setup. HCR and SCR bits not only affect interrupt
2761 * routing but also change the behaviour of masking.
2763 bool hcr, scr;
2765 switch (excp_idx) {
2766 case EXCP_FIQ:
2767 /* If FIQs are routed to EL3 or EL2 then there are cases where
2768 * we override the CPSR.F in determining if the exception is
2769 * masked or not. If neither of these are set then we fall back
2770 * to the CPSR.F setting otherwise we further assess the state
2771 * below.
2773 hcr = hcr_el2 & HCR_FMO;
2774 scr = (env->cp15.scr_el3 & SCR_FIQ);
2776 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2777 * CPSR.F bit masks FIQ interrupts when taken in non-secure
2778 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2779 * when non-secure but only when FIQs are only routed to EL3.
2781 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2782 break;
2783 case EXCP_IRQ:
2784 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2785 * we may override the CPSR.I masking when in non-secure state.
2786 * The SCR.IRQ setting has already been taken into consideration
2787 * when setting the target EL, so it does not have a further
2788 * affect here.
2790 hcr = hcr_el2 & HCR_IMO;
2791 scr = false;
2792 break;
2793 default:
2794 g_assert_not_reached();
2797 if ((scr || hcr) && !secure) {
2798 unmasked = 1;
2803 /* The PSTATE bits only mask the interrupt if we have not overriden the
2804 * ability above.
2806 return unmasked || pstate_unmasked;
2809 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2810 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2811 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2813 #define cpu_signal_handler cpu_arm_signal_handler
2814 #define cpu_list arm_cpu_list
2816 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2818 * If EL3 is 64-bit:
2819 * + NonSecure EL1 & 0 stage 1
2820 * + NonSecure EL1 & 0 stage 2
2821 * + NonSecure EL2
2822 * + Secure EL1 & EL0
2823 * + Secure EL3
2824 * If EL3 is 32-bit:
2825 * + NonSecure PL1 & 0 stage 1
2826 * + NonSecure PL1 & 0 stage 2
2827 * + NonSecure PL2
2828 * + Secure PL0 & PL1
2829 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2831 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2832 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2833 * may differ in access permissions even if the VA->PA map is the same
2834 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2835 * translation, which means that we have one mmu_idx that deals with two
2836 * concatenated translation regimes [this sort of combined s1+2 TLB is
2837 * architecturally permitted]
2838 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2839 * handling via the TLB. The only way to do a stage 1 translation without
2840 * the immediate stage 2 translation is via the ATS or AT system insns,
2841 * which can be slow-pathed and always do a page table walk.
2842 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2843 * translation regimes, because they map reasonably well to each other
2844 * and they can't both be active at the same time.
2845 * This gives us the following list of mmu_idx values:
2847 * NS EL0 (aka NS PL0) stage 1+2
2848 * NS EL1 (aka NS PL1) stage 1+2
2849 * NS EL2 (aka NS PL2)
2850 * S EL3 (aka S PL1)
2851 * S EL0 (aka S PL0)
2852 * S EL1 (not used if EL3 is 32 bit)
2853 * NS EL0+1 stage 2
2855 * (The last of these is an mmu_idx because we want to be able to use the TLB
2856 * for the accesses done as part of a stage 1 page table walk, rather than
2857 * having to walk the stage 2 page table over and over.)
2859 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2860 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2861 * NS EL2 if we ever model a Cortex-R52).
2863 * M profile CPUs are rather different as they do not have a true MMU.
2864 * They have the following different MMU indexes:
2865 * User
2866 * Privileged
2867 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2868 * Privileged, execution priority negative (ditto)
2869 * If the CPU supports the v8M Security Extension then there are also:
2870 * Secure User
2871 * Secure Privileged
2872 * Secure User, execution priority negative
2873 * Secure Privileged, execution priority negative
2875 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2876 * are not quite the same -- different CPU types (most notably M profile
2877 * vs A/R profile) would like to use MMU indexes with different semantics,
2878 * but since we don't ever need to use all of those in a single CPU we
2879 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2880 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2881 * the same for any particular CPU.
2882 * Variables of type ARMMUIdx are always full values, and the core
2883 * index values are in variables of type 'int'.
2885 * Our enumeration includes at the end some entries which are not "true"
2886 * mmu_idx values in that they don't have corresponding TLBs and are only
2887 * valid for doing slow path page table walks.
2889 * The constant names here are patterned after the general style of the names
2890 * of the AT/ATS operations.
2891 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2892 * For M profile we arrange them to have a bit for priv, a bit for negpri
2893 * and a bit for secure.
2895 #define ARM_MMU_IDX_A 0x10 /* A profile */
2896 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2897 #define ARM_MMU_IDX_M 0x40 /* M profile */
2899 /* meanings of the bits for M profile mmu idx values */
2900 #define ARM_MMU_IDX_M_PRIV 0x1
2901 #define ARM_MMU_IDX_M_NEGPRI 0x2
2902 #define ARM_MMU_IDX_M_S 0x4
2904 #define ARM_MMU_IDX_TYPE_MASK (~0x7)
2905 #define ARM_MMU_IDX_COREIDX_MASK 0x7
2907 typedef enum ARMMMUIdx {
2908 ARMMMUIdx_E10_0 = 0 | ARM_MMU_IDX_A,
2909 ARMMMUIdx_E10_1 = 1 | ARM_MMU_IDX_A,
2910 ARMMMUIdx_E2 = 2 | ARM_MMU_IDX_A,
2911 ARMMMUIdx_SE3 = 3 | ARM_MMU_IDX_A,
2912 ARMMMUIdx_SE10_0 = 4 | ARM_MMU_IDX_A,
2913 ARMMMUIdx_SE10_1 = 5 | ARM_MMU_IDX_A,
2914 ARMMMUIdx_Stage2 = 6 | ARM_MMU_IDX_A,
2915 ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2916 ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
2917 ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2918 ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2919 ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2920 ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2921 ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2922 ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
2923 /* Indexes below here don't have TLBs and are used only for AT system
2924 * instructions or for the first stage of an S12 page table walk.
2926 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2927 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
2928 } ARMMMUIdx;
2930 /* Bit macros for the core-mmu-index values for each index,
2931 * for use when calling tlb_flush_by_mmuidx() and friends.
2933 typedef enum ARMMMUIdxBit {
2934 ARMMMUIdxBit_E10_0 = 1 << 0,
2935 ARMMMUIdxBit_E10_1 = 1 << 1,
2936 ARMMMUIdxBit_E2 = 1 << 2,
2937 ARMMMUIdxBit_SE3 = 1 << 3,
2938 ARMMMUIdxBit_SE10_0 = 1 << 4,
2939 ARMMMUIdxBit_SE10_1 = 1 << 5,
2940 ARMMMUIdxBit_Stage2 = 1 << 6,
2941 ARMMMUIdxBit_MUser = 1 << 0,
2942 ARMMMUIdxBit_MPriv = 1 << 1,
2943 ARMMMUIdxBit_MUserNegPri = 1 << 2,
2944 ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2945 ARMMMUIdxBit_MSUser = 1 << 4,
2946 ARMMMUIdxBit_MSPriv = 1 << 5,
2947 ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2948 ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
2949 } ARMMMUIdxBit;
2951 #define MMU_USER_IDX 0
2953 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2955 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2958 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2960 if (arm_feature(env, ARM_FEATURE_M)) {
2961 return mmu_idx | ARM_MMU_IDX_M;
2962 } else {
2963 return mmu_idx | ARM_MMU_IDX_A;
2967 /* Return the exception level we're running at if this is our mmu_idx */
2968 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2970 switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2971 case ARM_MMU_IDX_A:
2972 return mmu_idx & 3;
2973 case ARM_MMU_IDX_M:
2974 return mmu_idx & ARM_MMU_IDX_M_PRIV;
2975 default:
2976 g_assert_not_reached();
2981 * Return the MMU index for a v7M CPU with all relevant information
2982 * manually specified.
2984 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
2985 bool secstate, bool priv, bool negpri);
2987 /* Return the MMU index for a v7M CPU in the specified security and
2988 * privilege state.
2990 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2991 bool secstate, bool priv);
2993 /* Return the MMU index for a v7M CPU in the specified security state */
2994 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
2997 * cpu_mmu_index:
2998 * @env: The cpu environment
2999 * @ifetch: True for code access, false for data access.
3001 * Return the core mmu index for the current translation regime.
3002 * This function is used by generic TCG code paths.
3004 int cpu_mmu_index(CPUARMState *env, bool ifetch);
3006 /* Indexes used when registering address spaces with cpu_address_space_init */
3007 typedef enum ARMASIdx {
3008 ARMASIdx_NS = 0,
3009 ARMASIdx_S = 1,
3010 } ARMASIdx;
3012 /* Return the Exception Level targeted by debug exceptions. */
3013 static inline int arm_debug_target_el(CPUARMState *env)
3015 bool secure = arm_is_secure(env);
3016 bool route_to_el2 = false;
3018 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
3019 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
3020 env->cp15.mdcr_el2 & MDCR_TDE;
3023 if (route_to_el2) {
3024 return 2;
3025 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
3026 !arm_el_is_aa64(env, 3) && secure) {
3027 return 3;
3028 } else {
3029 return 1;
3033 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3035 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3036 * CSSELR is RAZ/WI.
3038 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3041 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3042 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
3044 int cur_el = arm_current_el(env);
3045 int debug_el;
3047 if (cur_el == 3) {
3048 return false;
3051 /* MDCR_EL3.SDD disables debug events from Secure state */
3052 if (arm_is_secure_below_el3(env)
3053 && extract32(env->cp15.mdcr_el3, 16, 1)) {
3054 return false;
3058 * Same EL to same EL debug exceptions need MDSCR_KDE enabled
3059 * while not masking the (D)ebug bit in DAIF.
3061 debug_el = arm_debug_target_el(env);
3063 if (cur_el == debug_el) {
3064 return extract32(env->cp15.mdscr_el1, 13, 1)
3065 && !(env->daif & PSTATE_D);
3068 /* Otherwise the debug target needs to be a higher EL */
3069 return debug_el > cur_el;
3072 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3074 int el = arm_current_el(env);
3076 if (el == 0 && arm_el_is_aa64(env, 1)) {
3077 return aa64_generate_debug_exceptions(env);
3080 if (arm_is_secure(env)) {
3081 int spd;
3083 if (el == 0 && (env->cp15.sder & 1)) {
3084 /* SDER.SUIDEN means debug exceptions from Secure EL0
3085 * are always enabled. Otherwise they are controlled by
3086 * SDCR.SPD like those from other Secure ELs.
3088 return true;
3091 spd = extract32(env->cp15.mdcr_el3, 14, 2);
3092 switch (spd) {
3093 case 1:
3094 /* SPD == 0b01 is reserved, but behaves as 0b00. */
3095 case 0:
3096 /* For 0b00 we return true if external secure invasive debug
3097 * is enabled. On real hardware this is controlled by external
3098 * signals to the core. QEMU always permits debug, and behaves
3099 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3101 return true;
3102 case 2:
3103 return false;
3104 case 3:
3105 return true;
3109 return el != 2;
3112 /* Return true if debugging exceptions are currently enabled.
3113 * This corresponds to what in ARM ARM pseudocode would be
3114 * if UsingAArch32() then
3115 * return AArch32.GenerateDebugExceptions()
3116 * else
3117 * return AArch64.GenerateDebugExceptions()
3118 * We choose to push the if() down into this function for clarity,
3119 * since the pseudocode has it at all callsites except for the one in
3120 * CheckSoftwareStep(), where it is elided because both branches would
3121 * always return the same value.
3123 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3125 if (env->aarch64) {
3126 return aa64_generate_debug_exceptions(env);
3127 } else {
3128 return aa32_generate_debug_exceptions(env);
3132 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3133 * implicitly means this always returns false in pre-v8 CPUs.)
3135 static inline bool arm_singlestep_active(CPUARMState *env)
3137 return extract32(env->cp15.mdscr_el1, 0, 1)
3138 && arm_el_is_aa64(env, arm_debug_target_el(env))
3139 && arm_generate_debug_exceptions(env);
3142 static inline bool arm_sctlr_b(CPUARMState *env)
3144 return
3145 /* We need not implement SCTLR.ITD in user-mode emulation, so
3146 * let linux-user ignore the fact that it conflicts with SCTLR_B.
3147 * This lets people run BE32 binaries with "-cpu any".
3149 #ifndef CONFIG_USER_ONLY
3150 !arm_feature(env, ARM_FEATURE_V7) &&
3151 #endif
3152 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3155 static inline uint64_t arm_sctlr(CPUARMState *env, int el)
3157 if (el == 0) {
3158 /* FIXME: ARMv8.1-VHE S2 translation regime. */
3159 return env->cp15.sctlr_el[1];
3160 } else {
3161 return env->cp15.sctlr_el[el];
3165 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3166 bool sctlr_b)
3168 #ifdef CONFIG_USER_ONLY
3170 * In system mode, BE32 is modelled in line with the
3171 * architecture (as word-invariant big-endianness), where loads
3172 * and stores are done little endian but from addresses which
3173 * are adjusted by XORing with the appropriate constant. So the
3174 * endianness to use for the raw data access is not affected by
3175 * SCTLR.B.
3176 * In user mode, however, we model BE32 as byte-invariant
3177 * big-endianness (because user-only code cannot tell the
3178 * difference), and so we need to use a data access endianness
3179 * that depends on SCTLR.B.
3181 if (sctlr_b) {
3182 return true;
3184 #endif
3185 /* In 32bit endianness is determined by looking at CPSR's E bit */
3186 return env->uncached_cpsr & CPSR_E;
3189 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3191 return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3194 /* Return true if the processor is in big-endian mode. */
3195 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3197 if (!is_a64(env)) {
3198 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3199 } else {
3200 int cur_el = arm_current_el(env);
3201 uint64_t sctlr = arm_sctlr(env, cur_el);
3202 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3206 typedef CPUARMState CPUArchState;
3207 typedef ARMCPU ArchCPU;
3209 #include "exec/cpu-all.h"
3212 * Bit usage in the TB flags field: bit 31 indicates whether we are
3213 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
3214 * We put flags which are shared between 32 and 64 bit mode at the top
3215 * of the word, and flags which apply to only one mode at the bottom.
3217 * Unless otherwise noted, these bits are cached in env->hflags.
3219 FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
3220 FIELD(TBFLAG_ANY, MMUIDX, 28, 3)
3221 FIELD(TBFLAG_ANY, SS_ACTIVE, 27, 1)
3222 FIELD(TBFLAG_ANY, PSTATE_SS, 26, 1) /* Not cached. */
3223 /* Target EL if we take a floating-point-disabled exception */
3224 FIELD(TBFLAG_ANY, FPEXC_EL, 24, 2)
3225 FIELD(TBFLAG_ANY, BE_DATA, 23, 1)
3227 * For A-profile only, target EL for debug exceptions.
3228 * Note that this overlaps with the M-profile-only HANDLER and STACKCHECK bits.
3230 FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 21, 2)
3232 /* Bit usage when in AArch32 state: */
3233 FIELD(TBFLAG_A32, THUMB, 0, 1) /* Not cached. */
3234 FIELD(TBFLAG_A32, VECLEN, 1, 3) /* Not cached. */
3235 FIELD(TBFLAG_A32, VECSTRIDE, 4, 2) /* Not cached. */
3237 * We store the bottom two bits of the CPAR as TB flags and handle
3238 * checks on the other bits at runtime. This shares the same bits as
3239 * VECSTRIDE, which is OK as no XScale CPU has VFP.
3240 * Not cached, because VECLEN+VECSTRIDE are not cached.
3242 FIELD(TBFLAG_A32, XSCALE_CPAR, 4, 2)
3244 * Indicates whether cp register reads and writes by guest code should access
3245 * the secure or nonsecure bank of banked registers; note that this is not
3246 * the same thing as the current security state of the processor!
3248 FIELD(TBFLAG_A32, NS, 6, 1)
3249 FIELD(TBFLAG_A32, VFPEN, 7, 1) /* Partially cached, minus FPEXC. */
3250 FIELD(TBFLAG_A32, CONDEXEC, 8, 8) /* Not cached. */
3251 FIELD(TBFLAG_A32, SCTLR_B, 16, 1)
3252 FIELD(TBFLAG_A32, HSTR_ACTIVE, 17, 1)
3254 /* For M profile only, set if FPCCR.LSPACT is set */
3255 FIELD(TBFLAG_A32, LSPACT, 18, 1) /* Not cached. */
3256 /* For M profile only, set if we must create a new FP context */
3257 FIELD(TBFLAG_A32, NEW_FP_CTXT_NEEDED, 19, 1) /* Not cached. */
3258 /* For M profile only, set if FPCCR.S does not match current security state */
3259 FIELD(TBFLAG_A32, FPCCR_S_WRONG, 20, 1) /* Not cached. */
3260 /* For M profile only, Handler (ie not Thread) mode */
3261 FIELD(TBFLAG_A32, HANDLER, 21, 1)
3262 /* For M profile only, whether we should generate stack-limit checks */
3263 FIELD(TBFLAG_A32, STACKCHECK, 22, 1)
3265 /* Bit usage when in AArch64 state */
3266 FIELD(TBFLAG_A64, TBII, 0, 2)
3267 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3268 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3269 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3270 FIELD(TBFLAG_A64, BT, 9, 1)
3271 FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */
3272 FIELD(TBFLAG_A64, TBID, 12, 2)
3274 static inline bool bswap_code(bool sctlr_b)
3276 #ifdef CONFIG_USER_ONLY
3277 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3278 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3279 * would also end up as a mixed-endian mode with BE code, LE data.
3281 return
3282 #ifdef TARGET_WORDS_BIGENDIAN
3284 #endif
3285 sctlr_b;
3286 #else
3287 /* All code access in ARM is little endian, and there are no loaders
3288 * doing swaps that need to be reversed
3290 return 0;
3291 #endif
3294 #ifdef CONFIG_USER_ONLY
3295 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3297 return
3298 #ifdef TARGET_WORDS_BIGENDIAN
3300 #endif
3301 arm_cpu_data_is_big_endian(env);
3303 #endif
3305 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3306 target_ulong *cs_base, uint32_t *flags);
3308 enum {
3309 QEMU_PSCI_CONDUIT_DISABLED = 0,
3310 QEMU_PSCI_CONDUIT_SMC = 1,
3311 QEMU_PSCI_CONDUIT_HVC = 2,
3314 #ifndef CONFIG_USER_ONLY
3315 /* Return the address space index to use for a memory access */
3316 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3318 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3321 /* Return the AddressSpace to use for a memory access
3322 * (which depends on whether the access is S or NS, and whether
3323 * the board gave us a separate AddressSpace for S accesses).
3325 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3327 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3329 #endif
3332 * arm_register_pre_el_change_hook:
3333 * Register a hook function which will be called immediately before this
3334 * CPU changes exception level or mode. The hook function will be
3335 * passed a pointer to the ARMCPU and the opaque data pointer passed
3336 * to this function when the hook was registered.
3338 * Note that if a pre-change hook is called, any registered post-change hooks
3339 * are guaranteed to subsequently be called.
3341 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3342 void *opaque);
3344 * arm_register_el_change_hook:
3345 * Register a hook function which will be called immediately after this
3346 * CPU changes exception level or mode. The hook function will be
3347 * passed a pointer to the ARMCPU and the opaque data pointer passed
3348 * to this function when the hook was registered.
3350 * Note that any registered hooks registered here are guaranteed to be called
3351 * if pre-change hooks have been.
3353 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3354 *opaque);
3357 * arm_rebuild_hflags:
3358 * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3360 void arm_rebuild_hflags(CPUARMState *env);
3363 * aa32_vfp_dreg:
3364 * Return a pointer to the Dn register within env in 32-bit mode.
3366 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3368 return &env->vfp.zregs[regno >> 1].d[regno & 1];
3372 * aa32_vfp_qreg:
3373 * Return a pointer to the Qn register within env in 32-bit mode.
3375 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3377 return &env->vfp.zregs[regno].d[0];
3381 * aa64_vfp_qreg:
3382 * Return a pointer to the Qn register within env in 64-bit mode.
3384 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3386 return &env->vfp.zregs[regno].d[0];
3389 /* Shared between translate-sve.c and sve_helper.c. */
3390 extern const uint64_t pred_esz_masks[4];
3393 * 32-bit feature tests via id registers.
3395 static inline bool isar_feature_thumb_div(const ARMISARegisters *id)
3397 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3400 static inline bool isar_feature_arm_div(const ARMISARegisters *id)
3402 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3405 static inline bool isar_feature_jazelle(const ARMISARegisters *id)
3407 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3410 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3412 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3415 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3417 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3420 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3422 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3425 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3427 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3430 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3432 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3435 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3437 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3440 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3442 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3445 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3447 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3450 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3452 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3455 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3457 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3460 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3462 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3465 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3467 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3470 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3473 * This is a placeholder for use by VCMA until the rest of
3474 * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3475 * At which point we can properly set and check MVFR1.FPHP.
3477 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3480 static inline bool isar_feature_aa32_fp_d32(const ARMISARegisters *id)
3482 /* Return true if D16-D31 are implemented */
3483 return FIELD_EX64(id->mvfr0, MVFR0, SIMDREG) >= 2;
3486 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3488 return FIELD_EX64(id->mvfr0, MVFR0, FPSHVEC) > 0;
3491 static inline bool isar_feature_aa32_fpdp(const ARMISARegisters *id)
3493 /* Return true if CPU supports double precision floating point */
3494 return FIELD_EX64(id->mvfr0, MVFR0, FPDP) > 0;
3498 * We always set the FP and SIMD FP16 fields to indicate identical
3499 * levels of support (assuming SIMD is implemented at all), so
3500 * we only need one set of accessors.
3502 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3504 return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 0;
3507 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3509 return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 1;
3512 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3514 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 1;
3517 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3519 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 2;
3522 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3524 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 3;
3527 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3529 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 4;
3533 * 64-bit feature tests via id registers.
3535 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3537 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3540 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3542 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3545 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3547 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3550 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3552 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3555 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3557 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3560 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3562 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3565 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3567 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3570 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3572 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3575 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3577 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3580 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3582 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3585 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3587 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3590 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3592 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3595 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3597 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3600 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3602 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3605 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3607 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3610 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3612 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3615 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3617 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3620 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3622 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3625 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3628 * Note that while QEMU will only implement the architected algorithm
3629 * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3630 * defined algorithms, and thus API+GPI, and this predicate controls
3631 * migration of the 128-bit keys.
3633 return (id->id_aa64isar1 &
3634 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3635 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3636 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3637 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3640 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3642 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3645 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3647 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3650 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3652 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3655 static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3657 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3660 static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3662 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3665 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3667 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
3668 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3671 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3673 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3676 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3678 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3681 static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
3683 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
3686 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3688 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3691 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3693 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3697 * Forward to the above feature tests given an ARMCPU pointer.
3699 #define cpu_isar_feature(name, cpu) \
3700 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3702 #endif