2 * TI OMAP general purpose memory controller emulation.
4 * Copyright (C) 2007-2009 Nokia Corporation
5 * Original code written by Andrzej Zaborowski <andrew@openedhand.com>
6 * Enhancements for OMAP3 and NAND support written by Juha Riihimäki
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 or
11 * (at your option) any later version of the License.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 #include "qemu/osdep.h"
24 #include "hw/block/flash.h"
25 #include "hw/arm/omap.h"
26 #include "exec/memory.h"
27 #include "exec/address-spaces.h"
29 /* General-Purpose Memory Controller */
43 struct omap_gpmc_cs_file_s
{
46 MemoryRegion container
;
47 MemoryRegion nandiomem
;
55 uint32_t config1
; /* GPMC_PREFETCH_CONFIG1 */
56 uint32_t transfercount
; /* GPMC_PREFETCH_CONFIG2:TRANSFERCOUNT */
57 int startengine
; /* GPMC_PREFETCH_CONTROL:STARTENGINE */
58 int fifopointer
; /* GPMC_PREFETCH_STATUS:FIFOPOINTER */
59 int count
; /* GPMC_PREFETCH_STATUS:COUNTVALUE */
65 #define OMAP_GPMC_8BIT 0
66 #define OMAP_GPMC_16BIT 1
67 #define OMAP_GPMC_NOR 0
68 #define OMAP_GPMC_NAND 2
70 static int omap_gpmc_devtype(struct omap_gpmc_cs_file_s
*f
)
72 return (f
->config
[0] >> 10) & 3;
75 static int omap_gpmc_devsize(struct omap_gpmc_cs_file_s
*f
)
77 /* devsize field is really 2 bits but we ignore the high
78 * bit to ensure consistent behaviour if the guest sets
79 * it (values 2 and 3 are reserved in the TRM)
81 return (f
->config
[0] >> 12) & 1;
84 /* Extract the chip-select value from the prefetch config1 register */
85 static int prefetch_cs(uint32_t config1
)
87 return (config1
>> 24) & 7;
90 static int prefetch_threshold(uint32_t config1
)
92 return (config1
>> 8) & 0x7f;
95 static void omap_gpmc_int_update(struct omap_gpmc_s
*s
)
97 /* The TRM is a bit unclear, but it seems to say that
98 * the TERMINALCOUNTSTATUS bit is set only on the
99 * transition when the prefetch engine goes from
100 * active to inactive, whereas the FIFOEVENTSTATUS
101 * bit is held high as long as the fifo has at
102 * least THRESHOLD bytes available.
103 * So we do the latter here, but TERMINALCOUNTSTATUS
106 if (s
->prefetch
.fifopointer
>= prefetch_threshold(s
->prefetch
.config1
)) {
109 if ((s
->irqen
& s
->irqst
) != s
->lastirq
) {
110 s
->lastirq
= s
->irqen
& s
->irqst
;
111 qemu_set_irq(s
->irq
, s
->lastirq
);
115 static void omap_gpmc_dma_update(struct omap_gpmc_s
*s
, int value
)
117 if (s
->prefetch
.config1
& 4) {
118 qemu_set_irq(s
->drq
, value
);
122 /* Access functions for when a NAND-like device is mapped into memory:
123 * all addresses in the region behave like accesses to the relevant
124 * GPMC_NAND_DATA_i register (which is actually implemented to call these)
126 static uint64_t omap_nand_read(void *opaque
, hwaddr addr
,
129 struct omap_gpmc_cs_file_s
*f
= (struct omap_gpmc_cs_file_s
*)opaque
;
131 nand_setpins(f
->dev
, 0, 0, 0, 1, 0);
132 switch (omap_gpmc_devsize(f
)) {
134 v
= nand_getio(f
->dev
);
138 v
|= (nand_getio(f
->dev
) << 8);
142 v
|= (nand_getio(f
->dev
) << 16);
143 v
|= (nand_getio(f
->dev
) << 24);
145 case OMAP_GPMC_16BIT
:
146 v
= nand_getio(f
->dev
);
148 /* 8 bit read from 16 bit device : probably a guest bug */
154 v
|= (nand_getio(f
->dev
) << 16);
161 static void omap_nand_setio(DeviceState
*dev
, uint64_t value
,
162 int nandsize
, int size
)
164 /* Write the specified value to the NAND device, respecting
165 * both size of the NAND device and size of the write access.
171 nand_setio(dev
, value
& 0xff);
174 nand_setio(dev
, value
& 0xff);
175 nand_setio(dev
, (value
>> 8) & 0xff);
179 nand_setio(dev
, value
& 0xff);
180 nand_setio(dev
, (value
>> 8) & 0xff);
181 nand_setio(dev
, (value
>> 16) & 0xff);
182 nand_setio(dev
, (value
>> 24) & 0xff);
186 case OMAP_GPMC_16BIT
:
189 /* writing to a 16bit device with 8bit access is probably a guest
190 * bug; pass the value through anyway.
193 nand_setio(dev
, value
& 0xffff);
197 nand_setio(dev
, value
& 0xffff);
198 nand_setio(dev
, (value
>> 16) & 0xffff);
205 static void omap_nand_write(void *opaque
, hwaddr addr
,
206 uint64_t value
, unsigned size
)
208 struct omap_gpmc_cs_file_s
*f
= (struct omap_gpmc_cs_file_s
*)opaque
;
209 nand_setpins(f
->dev
, 0, 0, 0, 1, 0);
210 omap_nand_setio(f
->dev
, value
, omap_gpmc_devsize(f
), size
);
213 static const MemoryRegionOps omap_nand_ops
= {
214 .read
= omap_nand_read
,
215 .write
= omap_nand_write
,
216 .endianness
= DEVICE_NATIVE_ENDIAN
,
219 static void fill_prefetch_fifo(struct omap_gpmc_s
*s
)
221 /* Fill the prefetch FIFO by reading data from NAND.
222 * We do this synchronously, unlike the hardware which
223 * will do this asynchronously. We refill when the
224 * FIFO has THRESHOLD bytes free, and we always refill
225 * as much data as possible starting at the top end
227 * (We have to refill at THRESHOLD rather than waiting
228 * for the FIFO to empty to allow for the case where
229 * the FIFO size isn't an exact multiple of THRESHOLD
230 * and we're doing DMA transfers.)
231 * This means we never need to handle wrap-around in
232 * the fifo-reading code, and the next byte of data
233 * to read is always fifo[63 - fifopointer].
236 int cs
= prefetch_cs(s
->prefetch
.config1
);
237 int is16bit
= (((s
->cs_file
[cs
].config
[0] >> 12) & 3) != 0);
239 /* Don't believe the bit of the OMAP TRM that says that COUNTVALUE
240 * and TRANSFERCOUNT are in units of 16 bit words for 16 bit NAND.
241 * Instead believe the bit that says it is always a byte count.
243 bytes
= 64 - s
->prefetch
.fifopointer
;
244 if (bytes
> s
->prefetch
.count
) {
245 bytes
= s
->prefetch
.count
;
251 s
->prefetch
.count
-= bytes
;
252 s
->prefetch
.fifopointer
+= bytes
;
253 fptr
= 64 - s
->prefetch
.fifopointer
;
254 /* Move the existing data in the FIFO so it sits just
255 * before what we're about to read in
257 while (fptr
< (64 - bytes
)) {
258 s
->prefetch
.fifo
[fptr
] = s
->prefetch
.fifo
[fptr
+ bytes
];
263 uint32_t v
= omap_nand_read(&s
->cs_file
[cs
], 0, 2);
264 s
->prefetch
.fifo
[fptr
++] = v
& 0xff;
265 s
->prefetch
.fifo
[fptr
++] = (v
>> 8) & 0xff;
267 s
->prefetch
.fifo
[fptr
++] = omap_nand_read(&s
->cs_file
[cs
], 0, 1);
270 if (s
->prefetch
.startengine
&& (s
->prefetch
.count
== 0)) {
271 /* This was the final transfer: raise TERMINALCOUNTSTATUS */
273 s
->prefetch
.startengine
= 0;
275 /* If there are any bytes in the FIFO at this point then
276 * we must raise a DMA request (either this is a final part
277 * transfer, or we filled the FIFO in which case we certainly
278 * have THRESHOLD bytes available)
280 if (s
->prefetch
.fifopointer
!= 0) {
281 omap_gpmc_dma_update(s
, 1);
283 omap_gpmc_int_update(s
);
286 /* Access functions for a NAND-like device when the prefetch/postwrite
287 * engine is enabled -- all addresses in the region behave alike:
288 * data is read or written to the FIFO.
290 static uint64_t omap_gpmc_prefetch_read(void *opaque
, hwaddr addr
,
293 struct omap_gpmc_s
*s
= (struct omap_gpmc_s
*) opaque
;
295 if (s
->prefetch
.config1
& 1) {
296 /* The TRM doesn't define the behaviour if you read from the
297 * FIFO when the prefetch engine is in write mode. We choose
298 * to always return zero.
302 /* Note that trying to read an empty fifo repeats the last byte */
303 if (s
->prefetch
.fifopointer
) {
304 s
->prefetch
.fifopointer
--;
306 data
= s
->prefetch
.fifo
[63 - s
->prefetch
.fifopointer
];
307 if (s
->prefetch
.fifopointer
==
308 (64 - prefetch_threshold(s
->prefetch
.config1
))) {
309 /* We've drained THRESHOLD bytes now. So deassert the
310 * DMA request, then refill the FIFO (which will probably
313 omap_gpmc_dma_update(s
, 0);
314 fill_prefetch_fifo(s
);
316 omap_gpmc_int_update(s
);
320 static void omap_gpmc_prefetch_write(void *opaque
, hwaddr addr
,
321 uint64_t value
, unsigned size
)
323 struct omap_gpmc_s
*s
= (struct omap_gpmc_s
*) opaque
;
324 int cs
= prefetch_cs(s
->prefetch
.config1
);
325 if ((s
->prefetch
.config1
& 1) == 0) {
326 /* The TRM doesn't define the behaviour of writing to the
327 * FIFO when the prefetch engine is in read mode. We
328 * choose to ignore the write.
332 if (s
->prefetch
.count
== 0) {
333 /* The TRM doesn't define the behaviour of writing to the
334 * FIFO if the transfer is complete. We choose to ignore.
338 /* The only reason we do any data buffering in postwrite
339 * mode is if we are talking to a 16 bit NAND device, in
340 * which case we need to buffer the first byte of the
341 * 16 bit word until the other byte arrives.
343 int is16bit
= (((s
->cs_file
[cs
].config
[0] >> 12) & 3) != 0);
345 /* fifopointer alternates between 64 (waiting for first
346 * byte of word) and 63 (waiting for second byte)
348 if (s
->prefetch
.fifopointer
== 64) {
349 s
->prefetch
.fifo
[0] = value
;
350 s
->prefetch
.fifopointer
--;
352 value
= (value
<< 8) | s
->prefetch
.fifo
[0];
353 omap_nand_write(&s
->cs_file
[cs
], 0, value
, 2);
355 s
->prefetch
.fifopointer
= 64;
358 /* Just write the byte : fifopointer remains 64 at all times */
359 omap_nand_write(&s
->cs_file
[cs
], 0, value
, 1);
362 if (s
->prefetch
.count
== 0) {
363 /* Final transfer: raise TERMINALCOUNTSTATUS */
365 s
->prefetch
.startengine
= 0;
367 omap_gpmc_int_update(s
);
370 static const MemoryRegionOps omap_prefetch_ops
= {
371 .read
= omap_gpmc_prefetch_read
,
372 .write
= omap_gpmc_prefetch_write
,
373 .endianness
= DEVICE_NATIVE_ENDIAN
,
374 .impl
.min_access_size
= 1,
375 .impl
.max_access_size
= 1,
378 static MemoryRegion
*omap_gpmc_cs_memregion(struct omap_gpmc_s
*s
, int cs
)
380 /* Return the MemoryRegion* to map/unmap for this chipselect */
381 struct omap_gpmc_cs_file_s
*f
= &s
->cs_file
[cs
];
382 if (omap_gpmc_devtype(f
) == OMAP_GPMC_NOR
) {
385 if ((s
->prefetch
.config1
& 0x80) &&
386 (prefetch_cs(s
->prefetch
.config1
) == cs
)) {
387 /* The prefetch engine is enabled for this CS: map the FIFO */
388 return &s
->prefetch
.iomem
;
390 return &f
->nandiomem
;
393 static void omap_gpmc_cs_map(struct omap_gpmc_s
*s
, int cs
)
395 struct omap_gpmc_cs_file_s
*f
= &s
->cs_file
[cs
];
396 uint32_t mask
= (f
->config
[6] >> 8) & 0xf;
397 uint32_t base
= f
->config
[6] & 0x3f;
400 if (!f
->iomem
&& !f
->dev
) {
404 if (!(f
->config
[6] & (1 << 6))) {
405 /* Do nothing unless CSVALID */
409 /* TODO: check for overlapping regions and report access errors */
410 if (mask
!= 0x8 && mask
!= 0xc && mask
!= 0xe && mask
!= 0xf
411 && !(s
->accept_256
&& !mask
)) {
412 fprintf(stderr
, "%s: invalid chip-select mask address (0x%x)\n",
417 size
= (0x0fffffff & ~(mask
<< 24)) + 1;
418 /* TODO: rather than setting the size of the mapping (which should be
419 * constant), the mask should cause wrapping of the address space, so
420 * that the same memory becomes accessible at every <i>size</i> bytes
421 * starting from <i>base</i>. */
422 memory_region_init(&f
->container
, NULL
, "omap-gpmc-file", size
);
423 memory_region_add_subregion(&f
->container
, 0,
424 omap_gpmc_cs_memregion(s
, cs
));
425 memory_region_add_subregion(get_system_memory(), base
,
429 static void omap_gpmc_cs_unmap(struct omap_gpmc_s
*s
, int cs
)
431 struct omap_gpmc_cs_file_s
*f
= &s
->cs_file
[cs
];
432 if (!(f
->config
[6] & (1 << 6))) {
433 /* Do nothing unless CSVALID */
436 if (!f
->iomem
&& !f
->dev
) {
439 memory_region_del_subregion(get_system_memory(), &f
->container
);
440 memory_region_del_subregion(&f
->container
, omap_gpmc_cs_memregion(s
, cs
));
441 object_unparent(OBJECT(&f
->container
));
444 void omap_gpmc_reset(struct omap_gpmc_s
*s
)
451 omap_gpmc_int_update(s
);
452 for (i
= 0; i
< 8; i
++) {
453 /* This has to happen before we change any of the config
454 * used to determine which memory regions are mapped or unmapped.
456 omap_gpmc_cs_unmap(s
, i
);
460 s
->prefetch
.config1
= 0x00004000;
461 s
->prefetch
.transfercount
= 0x00000000;
462 s
->prefetch
.startengine
= 0;
463 s
->prefetch
.fifopointer
= 0;
464 s
->prefetch
.count
= 0;
465 for (i
= 0; i
< 8; i
++) {
466 s
->cs_file
[i
].config
[1] = 0x101001;
467 s
->cs_file
[i
].config
[2] = 0x020201;
468 s
->cs_file
[i
].config
[3] = 0x10031003;
469 s
->cs_file
[i
].config
[4] = 0x10f1111;
470 s
->cs_file
[i
].config
[5] = 0;
471 s
->cs_file
[i
].config
[6] = 0xf00;
472 /* In theory we could probe attached devices for some CFG1
473 * bits here, but we just retain them across resets as they
474 * were set initially by omap_gpmc_attach().
477 s
->cs_file
[i
].config
[0] &= 0x00433e00;
478 s
->cs_file
[i
].config
[6] |= 1 << 6; /* CSVALID */
479 omap_gpmc_cs_map(s
, i
);
481 s
->cs_file
[i
].config
[0] &= 0x00403c00;
486 s
->ecc_cfg
= 0x3fcff000;
487 for (i
= 0; i
< 9; i
++)
488 ecc_reset(&s
->ecc
[i
]);
491 static int gpmc_wordaccess_only(hwaddr addr
)
493 /* Return true if the register offset is to a register that
494 * only permits word width accesses.
495 * Non-word accesses are only OK for GPMC_NAND_DATA/ADDRESS/COMMAND
496 * for any chipselect.
498 if (addr
>= 0x60 && addr
<= 0x1d4) {
499 int cs
= (addr
- 0x60) / 0x30;
501 if (addr
>= 0x7c && addr
< 0x88) {
502 /* GPMC_NAND_COMMAND, GPMC_NAND_ADDRESS, GPMC_NAND_DATA */
509 static uint64_t omap_gpmc_read(void *opaque
, hwaddr addr
,
512 struct omap_gpmc_s
*s
= (struct omap_gpmc_s
*) opaque
;
514 struct omap_gpmc_cs_file_s
*f
;
516 if (size
!= 4 && gpmc_wordaccess_only(addr
)) {
517 return omap_badwidth_read32(opaque
, addr
);
521 case 0x000: /* GPMC_REVISION */
524 case 0x010: /* GPMC_SYSCONFIG */
527 case 0x014: /* GPMC_SYSSTATUS */
528 return 1; /* RESETDONE */
530 case 0x018: /* GPMC_IRQSTATUS */
533 case 0x01c: /* GPMC_IRQENABLE */
536 case 0x040: /* GPMC_TIMEOUT_CONTROL */
539 case 0x044: /* GPMC_ERR_ADDRESS */
540 case 0x048: /* GPMC_ERR_TYPE */
543 case 0x050: /* GPMC_CONFIG */
546 case 0x054: /* GPMC_STATUS */
549 case 0x060 ... 0x1d4:
550 cs
= (addr
- 0x060) / 0x30;
554 case 0x60: /* GPMC_CONFIG1 */
556 case 0x64: /* GPMC_CONFIG2 */
558 case 0x68: /* GPMC_CONFIG3 */
560 case 0x6c: /* GPMC_CONFIG4 */
562 case 0x70: /* GPMC_CONFIG5 */
564 case 0x74: /* GPMC_CONFIG6 */
566 case 0x78: /* GPMC_CONFIG7 */
568 case 0x84 ... 0x87: /* GPMC_NAND_DATA */
569 if (omap_gpmc_devtype(f
) == OMAP_GPMC_NAND
) {
570 return omap_nand_read(f
, 0, size
);
576 case 0x1e0: /* GPMC_PREFETCH_CONFIG1 */
577 return s
->prefetch
.config1
;
578 case 0x1e4: /* GPMC_PREFETCH_CONFIG2 */
579 return s
->prefetch
.transfercount
;
580 case 0x1ec: /* GPMC_PREFETCH_CONTROL */
581 return s
->prefetch
.startengine
;
582 case 0x1f0: /* GPMC_PREFETCH_STATUS */
583 /* NB: The OMAP3 TRM is inconsistent about whether the GPMC
584 * FIFOTHRESHOLDSTATUS bit should be set when
585 * FIFOPOINTER > FIFOTHRESHOLD or when it is >= FIFOTHRESHOLD.
586 * Apparently the underlying functional spec from which the TRM was
587 * created states that the behaviour is ">=", and this also
588 * makes more conceptual sense.
590 return (s
->prefetch
.fifopointer
<< 24) |
591 ((s
->prefetch
.fifopointer
>=
592 ((s
->prefetch
.config1
>> 8) & 0x7f) ? 1 : 0) << 16) |
595 case 0x1f4: /* GPMC_ECC_CONFIG */
597 case 0x1f8: /* GPMC_ECC_CONTROL */
599 case 0x1fc: /* GPMC_ECC_SIZE_CONFIG */
601 case 0x200 ... 0x220: /* GPMC_ECC_RESULT */
602 cs
= (addr
& 0x1f) >> 2;
603 /* TODO: check correctness */
605 ((s
->ecc
[cs
].cp
& 0x07) << 0) |
606 ((s
->ecc
[cs
].cp
& 0x38) << 13) |
607 ((s
->ecc
[cs
].lp
[0] & 0x1ff) << 3) |
608 ((s
->ecc
[cs
].lp
[1] & 0x1ff) << 19);
610 case 0x230: /* GPMC_TESTMODE_CTRL */
612 case 0x234: /* GPMC_PSA_LSB */
613 case 0x238: /* GPMC_PSA_MSB */
621 static void omap_gpmc_write(void *opaque
, hwaddr addr
,
622 uint64_t value
, unsigned size
)
624 struct omap_gpmc_s
*s
= (struct omap_gpmc_s
*) opaque
;
626 struct omap_gpmc_cs_file_s
*f
;
628 if (size
!= 4 && gpmc_wordaccess_only(addr
)) {
629 omap_badwidth_write32(opaque
, addr
, value
);
634 case 0x000: /* GPMC_REVISION */
635 case 0x014: /* GPMC_SYSSTATUS */
636 case 0x054: /* GPMC_STATUS */
637 case 0x1f0: /* GPMC_PREFETCH_STATUS */
638 case 0x200 ... 0x220: /* GPMC_ECC_RESULT */
639 case 0x234: /* GPMC_PSA_LSB */
640 case 0x238: /* GPMC_PSA_MSB */
644 case 0x010: /* GPMC_SYSCONFIG */
645 if ((value
>> 3) == 0x3)
646 fprintf(stderr
, "%s: bad SDRAM idle mode %"PRIi64
"\n",
647 __func__
, value
>> 3);
650 s
->sysconfig
= value
& 0x19;
653 case 0x018: /* GPMC_IRQSTATUS */
655 omap_gpmc_int_update(s
);
658 case 0x01c: /* GPMC_IRQENABLE */
659 s
->irqen
= value
& 0xf03;
660 omap_gpmc_int_update(s
);
663 case 0x040: /* GPMC_TIMEOUT_CONTROL */
664 s
->timeout
= value
& 0x1ff1;
667 case 0x044: /* GPMC_ERR_ADDRESS */
668 case 0x048: /* GPMC_ERR_TYPE */
671 case 0x050: /* GPMC_CONFIG */
672 s
->config
= value
& 0xf13;
675 case 0x060 ... 0x1d4:
676 cs
= (addr
- 0x060) / 0x30;
680 case 0x60: /* GPMC_CONFIG1 */
681 f
->config
[0] = value
& 0xffef3e13;
683 case 0x64: /* GPMC_CONFIG2 */
684 f
->config
[1] = value
& 0x001f1f8f;
686 case 0x68: /* GPMC_CONFIG3 */
687 f
->config
[2] = value
& 0x001f1f8f;
689 case 0x6c: /* GPMC_CONFIG4 */
690 f
->config
[3] = value
& 0x1f8f1f8f;
692 case 0x70: /* GPMC_CONFIG5 */
693 f
->config
[4] = value
& 0x0f1f1f1f;
695 case 0x74: /* GPMC_CONFIG6 */
696 f
->config
[5] = value
& 0x00000fcf;
698 case 0x78: /* GPMC_CONFIG7 */
699 if ((f
->config
[6] ^ value
) & 0xf7f) {
700 omap_gpmc_cs_unmap(s
, cs
);
701 f
->config
[6] = value
& 0x00000f7f;
702 omap_gpmc_cs_map(s
, cs
);
705 case 0x7c ... 0x7f: /* GPMC_NAND_COMMAND */
706 if (omap_gpmc_devtype(f
) == OMAP_GPMC_NAND
) {
707 nand_setpins(f
->dev
, 1, 0, 0, 1, 0); /* CLE */
708 omap_nand_setio(f
->dev
, value
, omap_gpmc_devsize(f
), size
);
711 case 0x80 ... 0x83: /* GPMC_NAND_ADDRESS */
712 if (omap_gpmc_devtype(f
) == OMAP_GPMC_NAND
) {
713 nand_setpins(f
->dev
, 0, 1, 0, 1, 0); /* ALE */
714 omap_nand_setio(f
->dev
, value
, omap_gpmc_devsize(f
), size
);
717 case 0x84 ... 0x87: /* GPMC_NAND_DATA */
718 if (omap_gpmc_devtype(f
) == OMAP_GPMC_NAND
) {
719 omap_nand_write(f
, 0, value
, size
);
727 case 0x1e0: /* GPMC_PREFETCH_CONFIG1 */
728 if (!s
->prefetch
.startengine
) {
729 uint32_t newconfig1
= value
& 0x7f8f7fbf;
731 changed
= newconfig1
^ s
->prefetch
.config1
;
732 if (changed
& (0x80 | 0x7000000)) {
733 /* Turning the engine on or off, or mapping it somewhere else.
734 * cs_map() and cs_unmap() check the prefetch config and
735 * overall CSVALID bits, so it is sufficient to unmap-and-map
736 * both the old cs and the new one. Note that we adhere to
737 * the "unmap/change config/map" order (and not unmap twice
738 * if newcs == oldcs), otherwise we'll try to delete the wrong
741 int oldcs
= prefetch_cs(s
->prefetch
.config1
);
742 int newcs
= prefetch_cs(newconfig1
);
743 omap_gpmc_cs_unmap(s
, oldcs
);
744 if (oldcs
!= newcs
) {
745 omap_gpmc_cs_unmap(s
, newcs
);
747 s
->prefetch
.config1
= newconfig1
;
748 omap_gpmc_cs_map(s
, oldcs
);
749 if (oldcs
!= newcs
) {
750 omap_gpmc_cs_map(s
, newcs
);
753 s
->prefetch
.config1
= newconfig1
;
758 case 0x1e4: /* GPMC_PREFETCH_CONFIG2 */
759 if (!s
->prefetch
.startengine
) {
760 s
->prefetch
.transfercount
= value
& 0x3fff;
764 case 0x1ec: /* GPMC_PREFETCH_CONTROL */
765 if (s
->prefetch
.startengine
!= (value
& 1)) {
766 s
->prefetch
.startengine
= value
& 1;
767 if (s
->prefetch
.startengine
) {
768 /* Prefetch engine start */
769 s
->prefetch
.count
= s
->prefetch
.transfercount
;
770 if (s
->prefetch
.config1
& 1) {
772 s
->prefetch
.fifopointer
= 64;
775 s
->prefetch
.fifopointer
= 0;
776 fill_prefetch_fifo(s
);
779 /* Prefetch engine forcibly stopped. The TRM
780 * doesn't define the behaviour if you do this.
781 * We clear the prefetch count, which means that
782 * we permit no more writes, and don't read any
783 * more data from NAND. The CPU can still drain
784 * the FIFO of unread data.
786 s
->prefetch
.count
= 0;
788 omap_gpmc_int_update(s
);
792 case 0x1f4: /* GPMC_ECC_CONFIG */
795 case 0x1f8: /* GPMC_ECC_CONTROL */
796 if (value
& (1 << 8))
797 for (cs
= 0; cs
< 9; cs
++)
798 ecc_reset(&s
->ecc
[cs
]);
799 s
->ecc_ptr
= value
& 0xf;
800 if (s
->ecc_ptr
== 0 || s
->ecc_ptr
> 9) {
805 case 0x1fc: /* GPMC_ECC_SIZE_CONFIG */
806 s
->ecc_cfg
= value
& 0x3fcff1ff;
808 case 0x230: /* GPMC_TESTMODE_CTRL */
810 fprintf(stderr
, "%s: test mode enable attempt\n", __func__
);
820 static const MemoryRegionOps omap_gpmc_ops
= {
821 .read
= omap_gpmc_read
,
822 .write
= omap_gpmc_write
,
823 .endianness
= DEVICE_NATIVE_ENDIAN
,
826 struct omap_gpmc_s
*omap_gpmc_init(struct omap_mpu_state_s
*mpu
,
828 qemu_irq irq
, qemu_irq drq
)
831 struct omap_gpmc_s
*s
= g_new0(struct omap_gpmc_s
, 1);
833 memory_region_init_io(&s
->iomem
, NULL
, &omap_gpmc_ops
, s
, "omap-gpmc", 0x1000);
834 memory_region_add_subregion(get_system_memory(), base
, &s
->iomem
);
838 s
->accept_256
= cpu_is_omap3630(mpu
);
839 s
->revision
= cpu_class_omap3(mpu
) ? 0x50 : 0x20;
843 /* We have to register a different IO memory handler for each
844 * chip select region in case a NAND device is mapped there. We
845 * make the region the worst-case size of 256MB and rely on the
846 * container memory region in cs_map to chop it down to the actual
847 * guest-requested size.
849 for (cs
= 0; cs
< 8; cs
++) {
850 memory_region_init_io(&s
->cs_file
[cs
].nandiomem
, NULL
,
857 memory_region_init_io(&s
->prefetch
.iomem
, NULL
, &omap_prefetch_ops
, s
,
858 "omap-gpmc-prefetch", 256 * 1024 * 1024);
862 void omap_gpmc_attach(struct omap_gpmc_s
*s
, int cs
, MemoryRegion
*iomem
)
864 struct omap_gpmc_cs_file_s
*f
;
867 if (cs
< 0 || cs
>= 8) {
868 fprintf(stderr
, "%s: bad chip-select %i\n", __func__
, cs
);
873 omap_gpmc_cs_unmap(s
, cs
);
874 f
->config
[0] &= ~(0xf << 10);
876 omap_gpmc_cs_map(s
, cs
);
879 void omap_gpmc_attach_nand(struct omap_gpmc_s
*s
, int cs
, DeviceState
*nand
)
881 struct omap_gpmc_cs_file_s
*f
;
884 if (cs
< 0 || cs
>= 8) {
885 fprintf(stderr
, "%s: bad chip-select %i\n", __func__
, cs
);
890 omap_gpmc_cs_unmap(s
, cs
);
891 f
->config
[0] &= ~(0xf << 10);
892 f
->config
[0] |= (OMAP_GPMC_NAND
<< 10);
894 if (nand_getbuswidth(f
->dev
) == 16) {
895 f
->config
[0] |= OMAP_GPMC_16BIT
<< 12;
897 omap_gpmc_cs_map(s
, cs
);