hw: i.MX: Convert i.MX6 to use TYPE_IMX_USDHC
[qemu/ar7.git] / block / nvme.c
blobe9d0e218fcd3db7ccef99216c5d3d16a79519782
1 /*
2 * NVMe block driver based on vfio
4 * Copyright 2016 - 2018 Red Hat, Inc.
6 * Authors:
7 * Fam Zheng <famz@redhat.com>
8 * Paolo Bonzini <pbonzini@redhat.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
14 #include "qemu/osdep.h"
15 #include <linux/vfio.h>
16 #include "qapi/error.h"
17 #include "qapi/qmp/qdict.h"
18 #include "qapi/qmp/qstring.h"
19 #include "qemu/error-report.h"
20 #include "qemu/cutils.h"
21 #include "qemu/vfio-helpers.h"
22 #include "block/block_int.h"
23 #include "trace.h"
25 #include "block/nvme.h"
27 #define NVME_SQ_ENTRY_BYTES 64
28 #define NVME_CQ_ENTRY_BYTES 16
29 #define NVME_QUEUE_SIZE 128
30 #define NVME_BAR_SIZE 8192
32 typedef struct {
33 int32_t head, tail;
34 uint8_t *queue;
35 uint64_t iova;
36 /* Hardware MMIO register */
37 volatile uint32_t *doorbell;
38 } NVMeQueue;
40 typedef struct {
41 BlockCompletionFunc *cb;
42 void *opaque;
43 int cid;
44 void *prp_list_page;
45 uint64_t prp_list_iova;
46 bool busy;
47 } NVMeRequest;
49 typedef struct {
50 CoQueue free_req_queue;
51 QemuMutex lock;
53 /* Fields protected by BQL */
54 int index;
55 uint8_t *prp_list_pages;
57 /* Fields protected by @lock */
58 NVMeQueue sq, cq;
59 int cq_phase;
60 NVMeRequest reqs[NVME_QUEUE_SIZE];
61 bool busy;
62 int need_kick;
63 int inflight;
64 } NVMeQueuePair;
66 /* Memory mapped registers */
67 typedef volatile struct {
68 uint64_t cap;
69 uint32_t vs;
70 uint32_t intms;
71 uint32_t intmc;
72 uint32_t cc;
73 uint32_t reserved0;
74 uint32_t csts;
75 uint32_t nssr;
76 uint32_t aqa;
77 uint64_t asq;
78 uint64_t acq;
79 uint32_t cmbloc;
80 uint32_t cmbsz;
81 uint8_t reserved1[0xec0];
82 uint8_t cmd_set_specfic[0x100];
83 uint32_t doorbells[];
84 } QEMU_PACKED NVMeRegs;
86 QEMU_BUILD_BUG_ON(offsetof(NVMeRegs, doorbells) != 0x1000);
88 typedef struct {
89 AioContext *aio_context;
90 QEMUVFIOState *vfio;
91 NVMeRegs *regs;
92 /* The submission/completion queue pairs.
93 * [0]: admin queue.
94 * [1..]: io queues.
96 NVMeQueuePair **queues;
97 int nr_queues;
98 size_t page_size;
99 /* How many uint32_t elements does each doorbell entry take. */
100 size_t doorbell_scale;
101 bool write_cache_supported;
102 EventNotifier irq_notifier;
103 uint64_t nsze; /* Namespace size reported by identify command */
104 int nsid; /* The namespace id to read/write data. */
105 uint64_t max_transfer;
106 int plugged;
108 CoMutex dma_map_lock;
109 CoQueue dma_flush_queue;
111 /* Total size of mapped qiov, accessed under dma_map_lock */
112 int dma_map_count;
113 } BDRVNVMeState;
115 #define NVME_BLOCK_OPT_DEVICE "device"
116 #define NVME_BLOCK_OPT_NAMESPACE "namespace"
118 static QemuOptsList runtime_opts = {
119 .name = "nvme",
120 .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
121 .desc = {
123 .name = NVME_BLOCK_OPT_DEVICE,
124 .type = QEMU_OPT_STRING,
125 .help = "NVMe PCI device address",
128 .name = NVME_BLOCK_OPT_NAMESPACE,
129 .type = QEMU_OPT_NUMBER,
130 .help = "NVMe namespace",
132 { /* end of list */ }
136 static void nvme_init_queue(BlockDriverState *bs, NVMeQueue *q,
137 int nentries, int entry_bytes, Error **errp)
139 BDRVNVMeState *s = bs->opaque;
140 size_t bytes;
141 int r;
143 bytes = ROUND_UP(nentries * entry_bytes, s->page_size);
144 q->head = q->tail = 0;
145 q->queue = qemu_try_blockalign0(bs, bytes);
147 if (!q->queue) {
148 error_setg(errp, "Cannot allocate queue");
149 return;
151 r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova);
152 if (r) {
153 error_setg(errp, "Cannot map queue");
157 static void nvme_free_queue_pair(BlockDriverState *bs, NVMeQueuePair *q)
159 qemu_vfree(q->prp_list_pages);
160 qemu_vfree(q->sq.queue);
161 qemu_vfree(q->cq.queue);
162 qemu_mutex_destroy(&q->lock);
163 g_free(q);
166 static void nvme_free_req_queue_cb(void *opaque)
168 NVMeQueuePair *q = opaque;
170 qemu_mutex_lock(&q->lock);
171 while (qemu_co_enter_next(&q->free_req_queue, &q->lock)) {
172 /* Retry all pending requests */
174 qemu_mutex_unlock(&q->lock);
177 static NVMeQueuePair *nvme_create_queue_pair(BlockDriverState *bs,
178 int idx, int size,
179 Error **errp)
181 int i, r;
182 BDRVNVMeState *s = bs->opaque;
183 Error *local_err = NULL;
184 NVMeQueuePair *q = g_new0(NVMeQueuePair, 1);
185 uint64_t prp_list_iova;
187 qemu_mutex_init(&q->lock);
188 q->index = idx;
189 qemu_co_queue_init(&q->free_req_queue);
190 q->prp_list_pages = qemu_blockalign0(bs, s->page_size * NVME_QUEUE_SIZE);
191 r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages,
192 s->page_size * NVME_QUEUE_SIZE,
193 false, &prp_list_iova);
194 if (r) {
195 goto fail;
197 for (i = 0; i < NVME_QUEUE_SIZE; i++) {
198 NVMeRequest *req = &q->reqs[i];
199 req->cid = i + 1;
200 req->prp_list_page = q->prp_list_pages + i * s->page_size;
201 req->prp_list_iova = prp_list_iova + i * s->page_size;
203 nvme_init_queue(bs, &q->sq, size, NVME_SQ_ENTRY_BYTES, &local_err);
204 if (local_err) {
205 error_propagate(errp, local_err);
206 goto fail;
208 q->sq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale];
210 nvme_init_queue(bs, &q->cq, size, NVME_CQ_ENTRY_BYTES, &local_err);
211 if (local_err) {
212 error_propagate(errp, local_err);
213 goto fail;
215 q->cq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale + 1];
217 return q;
218 fail:
219 nvme_free_queue_pair(bs, q);
220 return NULL;
223 /* With q->lock */
224 static void nvme_kick(BDRVNVMeState *s, NVMeQueuePair *q)
226 if (s->plugged || !q->need_kick) {
227 return;
229 trace_nvme_kick(s, q->index);
230 assert(!(q->sq.tail & 0xFF00));
231 /* Fence the write to submission queue entry before notifying the device. */
232 smp_wmb();
233 *q->sq.doorbell = cpu_to_le32(q->sq.tail);
234 q->inflight += q->need_kick;
235 q->need_kick = 0;
238 /* Find a free request element if any, otherwise:
239 * a) if in coroutine context, try to wait for one to become available;
240 * b) if not in coroutine, return NULL;
242 static NVMeRequest *nvme_get_free_req(NVMeQueuePair *q)
244 int i;
245 NVMeRequest *req = NULL;
247 qemu_mutex_lock(&q->lock);
248 while (q->inflight + q->need_kick > NVME_QUEUE_SIZE - 2) {
249 /* We have to leave one slot empty as that is the full queue case (head
250 * == tail + 1). */
251 if (qemu_in_coroutine()) {
252 trace_nvme_free_req_queue_wait(q);
253 qemu_co_queue_wait(&q->free_req_queue, &q->lock);
254 } else {
255 qemu_mutex_unlock(&q->lock);
256 return NULL;
259 for (i = 0; i < NVME_QUEUE_SIZE; i++) {
260 if (!q->reqs[i].busy) {
261 q->reqs[i].busy = true;
262 req = &q->reqs[i];
263 break;
266 /* We have checked inflight and need_kick while holding q->lock, so one
267 * free req must be available. */
268 assert(req);
269 qemu_mutex_unlock(&q->lock);
270 return req;
273 static inline int nvme_translate_error(const NvmeCqe *c)
275 uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF;
276 if (status) {
277 trace_nvme_error(le32_to_cpu(c->result),
278 le16_to_cpu(c->sq_head),
279 le16_to_cpu(c->sq_id),
280 le16_to_cpu(c->cid),
281 le16_to_cpu(status));
283 switch (status) {
284 case 0:
285 return 0;
286 case 1:
287 return -ENOSYS;
288 case 2:
289 return -EINVAL;
290 default:
291 return -EIO;
295 /* With q->lock */
296 static bool nvme_process_completion(BDRVNVMeState *s, NVMeQueuePair *q)
298 bool progress = false;
299 NVMeRequest *preq;
300 NVMeRequest req;
301 NvmeCqe *c;
303 trace_nvme_process_completion(s, q->index, q->inflight);
304 if (q->busy || s->plugged) {
305 trace_nvme_process_completion_queue_busy(s, q->index);
306 return false;
308 q->busy = true;
309 assert(q->inflight >= 0);
310 while (q->inflight) {
311 int16_t cid;
312 c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES];
313 if (!c->cid || (le16_to_cpu(c->status) & 0x1) == q->cq_phase) {
314 break;
316 q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE;
317 if (!q->cq.head) {
318 q->cq_phase = !q->cq_phase;
320 cid = le16_to_cpu(c->cid);
321 if (cid == 0 || cid > NVME_QUEUE_SIZE) {
322 fprintf(stderr, "Unexpected CID in completion queue: %" PRIu32 "\n",
323 cid);
324 continue;
326 assert(cid <= NVME_QUEUE_SIZE);
327 trace_nvme_complete_command(s, q->index, cid);
328 preq = &q->reqs[cid - 1];
329 req = *preq;
330 assert(req.cid == cid);
331 assert(req.cb);
332 preq->busy = false;
333 preq->cb = preq->opaque = NULL;
334 qemu_mutex_unlock(&q->lock);
335 req.cb(req.opaque, nvme_translate_error(c));
336 qemu_mutex_lock(&q->lock);
337 c->cid = cpu_to_le16(0);
338 q->inflight--;
339 /* Flip Phase Tag bit. */
340 c->status = cpu_to_le16(le16_to_cpu(c->status) ^ 0x1);
341 progress = true;
343 if (progress) {
344 /* Notify the device so it can post more completions. */
345 smp_mb_release();
346 *q->cq.doorbell = cpu_to_le32(q->cq.head);
347 if (!qemu_co_queue_empty(&q->free_req_queue)) {
348 aio_bh_schedule_oneshot(s->aio_context, nvme_free_req_queue_cb, q);
351 q->busy = false;
352 return progress;
355 static void nvme_trace_command(const NvmeCmd *cmd)
357 int i;
359 for (i = 0; i < 8; ++i) {
360 uint8_t *cmdp = (uint8_t *)cmd + i * 8;
361 trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3],
362 cmdp[4], cmdp[5], cmdp[6], cmdp[7]);
366 static void nvme_submit_command(BDRVNVMeState *s, NVMeQueuePair *q,
367 NVMeRequest *req,
368 NvmeCmd *cmd, BlockCompletionFunc cb,
369 void *opaque)
371 assert(!req->cb);
372 req->cb = cb;
373 req->opaque = opaque;
374 cmd->cid = cpu_to_le32(req->cid);
376 trace_nvme_submit_command(s, q->index, req->cid);
377 nvme_trace_command(cmd);
378 qemu_mutex_lock(&q->lock);
379 memcpy((uint8_t *)q->sq.queue +
380 q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd));
381 q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE;
382 q->need_kick++;
383 nvme_kick(s, q);
384 nvme_process_completion(s, q);
385 qemu_mutex_unlock(&q->lock);
388 static void nvme_cmd_sync_cb(void *opaque, int ret)
390 int *pret = opaque;
391 *pret = ret;
394 static int nvme_cmd_sync(BlockDriverState *bs, NVMeQueuePair *q,
395 NvmeCmd *cmd)
397 NVMeRequest *req;
398 BDRVNVMeState *s = bs->opaque;
399 int ret = -EINPROGRESS;
400 req = nvme_get_free_req(q);
401 if (!req) {
402 return -EBUSY;
404 nvme_submit_command(s, q, req, cmd, nvme_cmd_sync_cb, &ret);
406 BDRV_POLL_WHILE(bs, ret == -EINPROGRESS);
407 return ret;
410 static void nvme_identify(BlockDriverState *bs, int namespace, Error **errp)
412 BDRVNVMeState *s = bs->opaque;
413 NvmeIdCtrl *idctrl;
414 NvmeIdNs *idns;
415 uint8_t *resp;
416 int r;
417 uint64_t iova;
418 NvmeCmd cmd = {
419 .opcode = NVME_ADM_CMD_IDENTIFY,
420 .cdw10 = cpu_to_le32(0x1),
423 resp = qemu_try_blockalign0(bs, sizeof(NvmeIdCtrl));
424 if (!resp) {
425 error_setg(errp, "Cannot allocate buffer for identify response");
426 goto out;
428 idctrl = (NvmeIdCtrl *)resp;
429 idns = (NvmeIdNs *)resp;
430 r = qemu_vfio_dma_map(s->vfio, resp, sizeof(NvmeIdCtrl), true, &iova);
431 if (r) {
432 error_setg(errp, "Cannot map buffer for DMA");
433 goto out;
435 cmd.prp1 = cpu_to_le64(iova);
437 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
438 error_setg(errp, "Failed to identify controller");
439 goto out;
442 if (le32_to_cpu(idctrl->nn) < namespace) {
443 error_setg(errp, "Invalid namespace");
444 goto out;
446 s->write_cache_supported = le32_to_cpu(idctrl->vwc) & 0x1;
447 s->max_transfer = (idctrl->mdts ? 1 << idctrl->mdts : 0) * s->page_size;
448 /* For now the page list buffer per command is one page, to hold at most
449 * s->page_size / sizeof(uint64_t) entries. */
450 s->max_transfer = MIN_NON_ZERO(s->max_transfer,
451 s->page_size / sizeof(uint64_t) * s->page_size);
453 memset(resp, 0, 4096);
455 cmd.cdw10 = 0;
456 cmd.nsid = cpu_to_le32(namespace);
457 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
458 error_setg(errp, "Failed to identify namespace");
459 goto out;
462 s->nsze = le64_to_cpu(idns->nsze);
464 out:
465 qemu_vfio_dma_unmap(s->vfio, resp);
466 qemu_vfree(resp);
469 static bool nvme_poll_queues(BDRVNVMeState *s)
471 bool progress = false;
472 int i;
474 for (i = 0; i < s->nr_queues; i++) {
475 NVMeQueuePair *q = s->queues[i];
476 qemu_mutex_lock(&q->lock);
477 while (nvme_process_completion(s, q)) {
478 /* Keep polling */
479 progress = true;
481 qemu_mutex_unlock(&q->lock);
483 return progress;
486 static void nvme_handle_event(EventNotifier *n)
488 BDRVNVMeState *s = container_of(n, BDRVNVMeState, irq_notifier);
490 trace_nvme_handle_event(s);
491 aio_context_acquire(s->aio_context);
492 event_notifier_test_and_clear(n);
493 nvme_poll_queues(s);
494 aio_context_release(s->aio_context);
497 static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp)
499 BDRVNVMeState *s = bs->opaque;
500 int n = s->nr_queues;
501 NVMeQueuePair *q;
502 NvmeCmd cmd;
503 int queue_size = NVME_QUEUE_SIZE;
505 q = nvme_create_queue_pair(bs, n, queue_size, errp);
506 if (!q) {
507 return false;
509 cmd = (NvmeCmd) {
510 .opcode = NVME_ADM_CMD_CREATE_CQ,
511 .prp1 = cpu_to_le64(q->cq.iova),
512 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)),
513 .cdw11 = cpu_to_le32(0x3),
515 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
516 error_setg(errp, "Failed to create io queue [%d]", n);
517 nvme_free_queue_pair(bs, q);
518 return false;
520 cmd = (NvmeCmd) {
521 .opcode = NVME_ADM_CMD_CREATE_SQ,
522 .prp1 = cpu_to_le64(q->sq.iova),
523 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)),
524 .cdw11 = cpu_to_le32(0x1 | (n << 16)),
526 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
527 error_setg(errp, "Failed to create io queue [%d]", n);
528 nvme_free_queue_pair(bs, q);
529 return false;
531 s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1);
532 s->queues[n] = q;
533 s->nr_queues++;
534 return true;
537 static bool nvme_poll_cb(void *opaque)
539 EventNotifier *e = opaque;
540 BDRVNVMeState *s = container_of(e, BDRVNVMeState, irq_notifier);
541 bool progress = false;
543 trace_nvme_poll_cb(s);
544 progress = nvme_poll_queues(s);
545 return progress;
548 static int nvme_init(BlockDriverState *bs, const char *device, int namespace,
549 Error **errp)
551 BDRVNVMeState *s = bs->opaque;
552 int ret;
553 uint64_t cap;
554 uint64_t timeout_ms;
555 uint64_t deadline, now;
556 Error *local_err = NULL;
558 qemu_co_mutex_init(&s->dma_map_lock);
559 qemu_co_queue_init(&s->dma_flush_queue);
560 s->nsid = namespace;
561 s->aio_context = bdrv_get_aio_context(bs);
562 ret = event_notifier_init(&s->irq_notifier, 0);
563 if (ret) {
564 error_setg(errp, "Failed to init event notifier");
565 return ret;
568 s->vfio = qemu_vfio_open_pci(device, errp);
569 if (!s->vfio) {
570 ret = -EINVAL;
571 goto fail;
574 s->regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, NVME_BAR_SIZE, errp);
575 if (!s->regs) {
576 ret = -EINVAL;
577 goto fail;
580 /* Perform initialize sequence as described in NVMe spec "7.6.1
581 * Initialization". */
583 cap = le64_to_cpu(s->regs->cap);
584 if (!(cap & (1ULL << 37))) {
585 error_setg(errp, "Device doesn't support NVMe command set");
586 ret = -EINVAL;
587 goto fail;
590 s->page_size = MAX(4096, 1 << (12 + ((cap >> 48) & 0xF)));
591 s->doorbell_scale = (4 << (((cap >> 32) & 0xF))) / sizeof(uint32_t);
592 bs->bl.opt_mem_alignment = s->page_size;
593 timeout_ms = MIN(500 * ((cap >> 24) & 0xFF), 30000);
595 /* Reset device to get a clean state. */
596 s->regs->cc = cpu_to_le32(le32_to_cpu(s->regs->cc) & 0xFE);
597 /* Wait for CSTS.RDY = 0. */
598 deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * 1000000ULL;
599 while (le32_to_cpu(s->regs->csts) & 0x1) {
600 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
601 error_setg(errp, "Timeout while waiting for device to reset (%"
602 PRId64 " ms)",
603 timeout_ms);
604 ret = -ETIMEDOUT;
605 goto fail;
609 /* Set up admin queue. */
610 s->queues = g_new(NVMeQueuePair *, 1);
611 s->nr_queues = 1;
612 s->queues[0] = nvme_create_queue_pair(bs, 0, NVME_QUEUE_SIZE, errp);
613 if (!s->queues[0]) {
614 ret = -EINVAL;
615 goto fail;
617 QEMU_BUILD_BUG_ON(NVME_QUEUE_SIZE & 0xF000);
618 s->regs->aqa = cpu_to_le32((NVME_QUEUE_SIZE << 16) | NVME_QUEUE_SIZE);
619 s->regs->asq = cpu_to_le64(s->queues[0]->sq.iova);
620 s->regs->acq = cpu_to_le64(s->queues[0]->cq.iova);
622 /* After setting up all control registers we can enable device now. */
623 s->regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << 20) |
624 (ctz32(NVME_SQ_ENTRY_BYTES) << 16) |
625 0x1);
626 /* Wait for CSTS.RDY = 1. */
627 now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
628 deadline = now + timeout_ms * 1000000;
629 while (!(le32_to_cpu(s->regs->csts) & 0x1)) {
630 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
631 error_setg(errp, "Timeout while waiting for device to start (%"
632 PRId64 " ms)",
633 timeout_ms);
634 ret = -ETIMEDOUT;
635 goto fail_queue;
639 ret = qemu_vfio_pci_init_irq(s->vfio, &s->irq_notifier,
640 VFIO_PCI_MSIX_IRQ_INDEX, errp);
641 if (ret) {
642 goto fail_queue;
644 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
645 false, nvme_handle_event, nvme_poll_cb);
647 nvme_identify(bs, namespace, errp);
648 if (local_err) {
649 error_propagate(errp, local_err);
650 ret = -EIO;
651 goto fail_handler;
654 /* Set up command queues. */
655 if (!nvme_add_io_queue(bs, errp)) {
656 ret = -EIO;
657 goto fail_handler;
659 return 0;
661 fail_handler:
662 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
663 false, NULL, NULL);
664 fail_queue:
665 nvme_free_queue_pair(bs, s->queues[0]);
666 fail:
667 g_free(s->queues);
668 qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)s->regs, 0, NVME_BAR_SIZE);
669 qemu_vfio_close(s->vfio);
670 event_notifier_cleanup(&s->irq_notifier);
671 return ret;
674 /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
676 * nvme://0000:44:00.0/1
678 * where the "nvme://" is a fixed form of the protocol prefix, the middle part
679 * is the PCI address, and the last part is the namespace number starting from
680 * 1 according to the NVMe spec. */
681 static void nvme_parse_filename(const char *filename, QDict *options,
682 Error **errp)
684 int pref = strlen("nvme://");
686 if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) {
687 const char *tmp = filename + pref;
688 char *device;
689 const char *namespace;
690 unsigned long ns;
691 const char *slash = strchr(tmp, '/');
692 if (!slash) {
693 qdict_put(options, NVME_BLOCK_OPT_DEVICE,
694 qstring_from_str(tmp));
695 return;
697 device = g_strndup(tmp, slash - tmp);
698 qdict_put(options, NVME_BLOCK_OPT_DEVICE, qstring_from_str(device));
699 g_free(device);
700 namespace = slash + 1;
701 if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) {
702 error_setg(errp, "Invalid namespace '%s', positive number expected",
703 namespace);
704 return;
706 qdict_put(options, NVME_BLOCK_OPT_NAMESPACE,
707 qstring_from_str(*namespace ? namespace : "1"));
711 static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable,
712 Error **errp)
714 int ret;
715 BDRVNVMeState *s = bs->opaque;
716 NvmeCmd cmd = {
717 .opcode = NVME_ADM_CMD_SET_FEATURES,
718 .nsid = cpu_to_le32(s->nsid),
719 .cdw10 = cpu_to_le32(0x06),
720 .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00),
723 ret = nvme_cmd_sync(bs, s->queues[0], &cmd);
724 if (ret) {
725 error_setg(errp, "Failed to configure NVMe write cache");
727 return ret;
730 static void nvme_close(BlockDriverState *bs)
732 int i;
733 BDRVNVMeState *s = bs->opaque;
735 for (i = 0; i < s->nr_queues; ++i) {
736 nvme_free_queue_pair(bs, s->queues[i]);
738 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
739 false, NULL, NULL);
740 qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)s->regs, 0, NVME_BAR_SIZE);
741 qemu_vfio_close(s->vfio);
744 static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags,
745 Error **errp)
747 const char *device;
748 QemuOpts *opts;
749 int namespace;
750 int ret;
751 BDRVNVMeState *s = bs->opaque;
753 opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
754 qemu_opts_absorb_qdict(opts, options, &error_abort);
755 device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE);
756 if (!device) {
757 error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required");
758 qemu_opts_del(opts);
759 return -EINVAL;
762 namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1);
763 ret = nvme_init(bs, device, namespace, errp);
764 qemu_opts_del(opts);
765 if (ret) {
766 goto fail;
768 if (flags & BDRV_O_NOCACHE) {
769 if (!s->write_cache_supported) {
770 error_setg(errp,
771 "NVMe controller doesn't support write cache configuration");
772 ret = -EINVAL;
773 } else {
774 ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE),
775 errp);
777 if (ret) {
778 goto fail;
781 bs->supported_write_flags = BDRV_REQ_FUA;
782 return 0;
783 fail:
784 nvme_close(bs);
785 return ret;
788 static int64_t nvme_getlength(BlockDriverState *bs)
790 BDRVNVMeState *s = bs->opaque;
792 return s->nsze << BDRV_SECTOR_BITS;
795 /* Called with s->dma_map_lock */
796 static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs,
797 QEMUIOVector *qiov)
799 int r = 0;
800 BDRVNVMeState *s = bs->opaque;
802 s->dma_map_count -= qiov->size;
803 if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) {
804 r = qemu_vfio_dma_reset_temporary(s->vfio);
805 if (!r) {
806 qemu_co_queue_restart_all(&s->dma_flush_queue);
809 return r;
812 /* Called with s->dma_map_lock */
813 static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd,
814 NVMeRequest *req, QEMUIOVector *qiov)
816 BDRVNVMeState *s = bs->opaque;
817 uint64_t *pagelist = req->prp_list_page;
818 int i, j, r;
819 int entries = 0;
821 assert(qiov->size);
822 assert(QEMU_IS_ALIGNED(qiov->size, s->page_size));
823 assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t));
824 for (i = 0; i < qiov->niov; ++i) {
825 bool retry = true;
826 uint64_t iova;
827 try_map:
828 r = qemu_vfio_dma_map(s->vfio,
829 qiov->iov[i].iov_base,
830 qiov->iov[i].iov_len,
831 true, &iova);
832 if (r == -ENOMEM && retry) {
833 retry = false;
834 trace_nvme_dma_flush_queue_wait(s);
835 if (s->dma_map_count) {
836 trace_nvme_dma_map_flush(s);
837 qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock);
838 } else {
839 r = qemu_vfio_dma_reset_temporary(s->vfio);
840 if (r) {
841 goto fail;
844 goto try_map;
846 if (r) {
847 goto fail;
850 for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) {
851 pagelist[entries++] = iova + j * s->page_size;
853 trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base,
854 qiov->iov[i].iov_len / s->page_size);
857 s->dma_map_count += qiov->size;
859 assert(entries <= s->page_size / sizeof(uint64_t));
860 switch (entries) {
861 case 0:
862 abort();
863 case 1:
864 cmd->prp1 = cpu_to_le64(pagelist[0]);
865 cmd->prp2 = 0;
866 break;
867 case 2:
868 cmd->prp1 = cpu_to_le64(pagelist[0]);
869 cmd->prp2 = cpu_to_le64(pagelist[1]);;
870 break;
871 default:
872 cmd->prp1 = cpu_to_le64(pagelist[0]);
873 cmd->prp2 = cpu_to_le64(req->prp_list_iova);
874 for (i = 0; i < entries - 1; ++i) {
875 pagelist[i] = cpu_to_le64(pagelist[i + 1]);
877 pagelist[entries - 1] = 0;
878 break;
880 trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries);
881 for (i = 0; i < entries; ++i) {
882 trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]);
884 return 0;
885 fail:
886 /* No need to unmap [0 - i) iovs even if we've failed, since we don't
887 * increment s->dma_map_count. This is okay for fixed mapping memory areas
888 * because they are already mapped before calling this function; for
889 * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
890 * calling qemu_vfio_dma_reset_temporary when necessary. */
891 return r;
894 typedef struct {
895 Coroutine *co;
896 int ret;
897 AioContext *ctx;
898 } NVMeCoData;
900 static void nvme_rw_cb_bh(void *opaque)
902 NVMeCoData *data = opaque;
903 qemu_coroutine_enter(data->co);
906 static void nvme_rw_cb(void *opaque, int ret)
908 NVMeCoData *data = opaque;
909 data->ret = ret;
910 if (!data->co) {
911 /* The rw coroutine hasn't yielded, don't try to enter. */
912 return;
914 aio_bh_schedule_oneshot(data->ctx, nvme_rw_cb_bh, data);
917 static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs,
918 uint64_t offset, uint64_t bytes,
919 QEMUIOVector *qiov,
920 bool is_write,
921 int flags)
923 int r;
924 BDRVNVMeState *s = bs->opaque;
925 NVMeQueuePair *ioq = s->queues[1];
926 NVMeRequest *req;
927 uint32_t cdw12 = (((bytes >> BDRV_SECTOR_BITS) - 1) & 0xFFFF) |
928 (flags & BDRV_REQ_FUA ? 1 << 30 : 0);
929 NvmeCmd cmd = {
930 .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ,
931 .nsid = cpu_to_le32(s->nsid),
932 .cdw10 = cpu_to_le32((offset >> BDRV_SECTOR_BITS) & 0xFFFFFFFF),
933 .cdw11 = cpu_to_le32(((offset >> BDRV_SECTOR_BITS) >> 32) & 0xFFFFFFFF),
934 .cdw12 = cpu_to_le32(cdw12),
936 NVMeCoData data = {
937 .ctx = bdrv_get_aio_context(bs),
938 .ret = -EINPROGRESS,
941 trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov);
942 assert(s->nr_queues > 1);
943 req = nvme_get_free_req(ioq);
944 assert(req);
946 qemu_co_mutex_lock(&s->dma_map_lock);
947 r = nvme_cmd_map_qiov(bs, &cmd, req, qiov);
948 qemu_co_mutex_unlock(&s->dma_map_lock);
949 if (r) {
950 req->busy = false;
951 return r;
953 nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data);
955 data.co = qemu_coroutine_self();
956 while (data.ret == -EINPROGRESS) {
957 qemu_coroutine_yield();
960 qemu_co_mutex_lock(&s->dma_map_lock);
961 r = nvme_cmd_unmap_qiov(bs, qiov);
962 qemu_co_mutex_unlock(&s->dma_map_lock);
963 if (r) {
964 return r;
967 trace_nvme_rw_done(s, is_write, offset, bytes, data.ret);
968 return data.ret;
971 static inline bool nvme_qiov_aligned(BlockDriverState *bs,
972 const QEMUIOVector *qiov)
974 int i;
975 BDRVNVMeState *s = bs->opaque;
977 for (i = 0; i < qiov->niov; ++i) {
978 if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base, s->page_size) ||
979 !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, s->page_size)) {
980 trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base,
981 qiov->iov[i].iov_len, s->page_size);
982 return false;
985 return true;
988 static int nvme_co_prw(BlockDriverState *bs, uint64_t offset, uint64_t bytes,
989 QEMUIOVector *qiov, bool is_write, int flags)
991 BDRVNVMeState *s = bs->opaque;
992 int r;
993 uint8_t *buf = NULL;
994 QEMUIOVector local_qiov;
996 assert(QEMU_IS_ALIGNED(offset, s->page_size));
997 assert(QEMU_IS_ALIGNED(bytes, s->page_size));
998 assert(bytes <= s->max_transfer);
999 if (nvme_qiov_aligned(bs, qiov)) {
1000 return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags);
1002 trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write);
1003 buf = qemu_try_blockalign(bs, bytes);
1005 if (!buf) {
1006 return -ENOMEM;
1008 qemu_iovec_init(&local_qiov, 1);
1009 if (is_write) {
1010 qemu_iovec_to_buf(qiov, 0, buf, bytes);
1012 qemu_iovec_add(&local_qiov, buf, bytes);
1013 r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags);
1014 qemu_iovec_destroy(&local_qiov);
1015 if (!r && !is_write) {
1016 qemu_iovec_from_buf(qiov, 0, buf, bytes);
1018 qemu_vfree(buf);
1019 return r;
1022 static coroutine_fn int nvme_co_preadv(BlockDriverState *bs,
1023 uint64_t offset, uint64_t bytes,
1024 QEMUIOVector *qiov, int flags)
1026 return nvme_co_prw(bs, offset, bytes, qiov, false, flags);
1029 static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs,
1030 uint64_t offset, uint64_t bytes,
1031 QEMUIOVector *qiov, int flags)
1033 return nvme_co_prw(bs, offset, bytes, qiov, true, flags);
1036 static coroutine_fn int nvme_co_flush(BlockDriverState *bs)
1038 BDRVNVMeState *s = bs->opaque;
1039 NVMeQueuePair *ioq = s->queues[1];
1040 NVMeRequest *req;
1041 NvmeCmd cmd = {
1042 .opcode = NVME_CMD_FLUSH,
1043 .nsid = cpu_to_le32(s->nsid),
1045 NVMeCoData data = {
1046 .ctx = bdrv_get_aio_context(bs),
1047 .ret = -EINPROGRESS,
1050 assert(s->nr_queues > 1);
1051 req = nvme_get_free_req(ioq);
1052 assert(req);
1053 nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data);
1055 data.co = qemu_coroutine_self();
1056 if (data.ret == -EINPROGRESS) {
1057 qemu_coroutine_yield();
1060 return data.ret;
1064 static int nvme_reopen_prepare(BDRVReopenState *reopen_state,
1065 BlockReopenQueue *queue, Error **errp)
1067 return 0;
1070 static int64_t coroutine_fn nvme_co_get_block_status(BlockDriverState *bs,
1071 int64_t sector_num,
1072 int nb_sectors, int *pnum,
1073 BlockDriverState **file)
1075 *pnum = nb_sectors;
1076 *file = bs;
1078 return BDRV_BLOCK_ALLOCATED | BDRV_BLOCK_OFFSET_VALID |
1079 (sector_num << BDRV_SECTOR_BITS);
1082 static void nvme_refresh_filename(BlockDriverState *bs, QDict *opts)
1084 QINCREF(opts);
1085 qdict_del(opts, "filename");
1087 if (!qdict_size(opts)) {
1088 snprintf(bs->exact_filename, sizeof(bs->exact_filename), "%s://",
1089 bs->drv->format_name);
1092 qdict_put(opts, "driver", qstring_from_str(bs->drv->format_name));
1093 bs->full_open_options = opts;
1096 static void nvme_refresh_limits(BlockDriverState *bs, Error **errp)
1098 BDRVNVMeState *s = bs->opaque;
1100 bs->bl.opt_mem_alignment = s->page_size;
1101 bs->bl.request_alignment = s->page_size;
1102 bs->bl.max_transfer = s->max_transfer;
1105 static void nvme_detach_aio_context(BlockDriverState *bs)
1107 BDRVNVMeState *s = bs->opaque;
1109 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
1110 false, NULL, NULL);
1113 static void nvme_attach_aio_context(BlockDriverState *bs,
1114 AioContext *new_context)
1116 BDRVNVMeState *s = bs->opaque;
1118 s->aio_context = new_context;
1119 aio_set_event_notifier(new_context, &s->irq_notifier,
1120 false, nvme_handle_event, nvme_poll_cb);
1123 static void nvme_aio_plug(BlockDriverState *bs)
1125 BDRVNVMeState *s = bs->opaque;
1126 s->plugged++;
1129 static void nvme_aio_unplug(BlockDriverState *bs)
1131 int i;
1132 BDRVNVMeState *s = bs->opaque;
1133 assert(s->plugged);
1134 if (!--s->plugged) {
1135 for (i = 1; i < s->nr_queues; i++) {
1136 NVMeQueuePair *q = s->queues[i];
1137 qemu_mutex_lock(&q->lock);
1138 nvme_kick(s, q);
1139 nvme_process_completion(s, q);
1140 qemu_mutex_unlock(&q->lock);
1145 static void nvme_register_buf(BlockDriverState *bs, void *host, size_t size)
1147 int ret;
1148 BDRVNVMeState *s = bs->opaque;
1150 ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL);
1151 if (ret) {
1152 /* FIXME: we may run out of IOVA addresses after repeated
1153 * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
1154 * doesn't reclaim addresses for fixed mappings. */
1155 error_report("nvme_register_buf failed: %s", strerror(-ret));
1159 static void nvme_unregister_buf(BlockDriverState *bs, void *host)
1161 BDRVNVMeState *s = bs->opaque;
1163 qemu_vfio_dma_unmap(s->vfio, host);
1166 static BlockDriver bdrv_nvme = {
1167 .format_name = "nvme",
1168 .protocol_name = "nvme",
1169 .instance_size = sizeof(BDRVNVMeState),
1171 .bdrv_parse_filename = nvme_parse_filename,
1172 .bdrv_file_open = nvme_file_open,
1173 .bdrv_close = nvme_close,
1174 .bdrv_getlength = nvme_getlength,
1176 .bdrv_co_preadv = nvme_co_preadv,
1177 .bdrv_co_pwritev = nvme_co_pwritev,
1178 .bdrv_co_flush_to_disk = nvme_co_flush,
1179 .bdrv_reopen_prepare = nvme_reopen_prepare,
1181 .bdrv_co_get_block_status = nvme_co_get_block_status,
1183 .bdrv_refresh_filename = nvme_refresh_filename,
1184 .bdrv_refresh_limits = nvme_refresh_limits,
1186 .bdrv_detach_aio_context = nvme_detach_aio_context,
1187 .bdrv_attach_aio_context = nvme_attach_aio_context,
1189 .bdrv_io_plug = nvme_aio_plug,
1190 .bdrv_io_unplug = nvme_aio_unplug,
1192 .bdrv_register_buf = nvme_register_buf,
1193 .bdrv_unregister_buf = nvme_unregister_buf,
1196 static void bdrv_nvme_init(void)
1198 bdrv_register(&bdrv_nvme);
1201 block_init(bdrv_nvme_init);