hw/arm/mps2-tz: Create and connect ARMSSE Clocks
[qemu/ar7.git] / hw / arm / mps2-tz.c
blob7acdf490f28abdb79f63497dda7d27eec28272f9
1 /*
2 * ARM V2M MPS2 board emulation, trustzone aware FPGA images
4 * Copyright (c) 2017 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
12 /* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger
13 * FPGA but is otherwise the same as the 2). Since the CPU itself
14 * and most of the devices are in the FPGA, the details of the board
15 * as seen by the guest depend significantly on the FPGA image.
16 * This source file covers the following FPGA images, for TrustZone cores:
17 * "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505
18 * "mps2-an521" -- Dual Cortex-M33 as documented in Application Note AN521
20 * Links to the TRM for the board itself and to the various Application
21 * Notes which document the FPGA images can be found here:
22 * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2
24 * Board TRM:
25 * http://infocenter.arm.com/help/topic/com.arm.doc.100112_0200_06_en/versatile_express_cortex_m_prototyping_systems_v2m_mps2_and_v2m_mps2plus_technical_reference_100112_0200_06_en.pdf
26 * Application Note AN505:
27 * http://infocenter.arm.com/help/topic/com.arm.doc.dai0505b/index.html
28 * Application Note AN521:
29 * http://infocenter.arm.com/help/topic/com.arm.doc.dai0521c/index.html
31 * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide
32 * (ARM ECM0601256) for the details of some of the device layout:
33 * http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html
34 * Similarly, the AN521 uses the SSE-200, and the SSE-200 TRM defines
35 * most of the device layout:
36 * http://infocenter.arm.com/help/topic/com.arm.doc.101104_0100_00_en/corelink_sse200_subsystem_for_embedded_technical_reference_manual_101104_0100_00_en.pdf
40 #include "qemu/osdep.h"
41 #include "qemu/units.h"
42 #include "qemu/cutils.h"
43 #include "qapi/error.h"
44 #include "qemu/error-report.h"
45 #include "hw/arm/boot.h"
46 #include "hw/arm/armv7m.h"
47 #include "hw/or-irq.h"
48 #include "hw/boards.h"
49 #include "exec/address-spaces.h"
50 #include "sysemu/sysemu.h"
51 #include "hw/misc/unimp.h"
52 #include "hw/char/cmsdk-apb-uart.h"
53 #include "hw/timer/cmsdk-apb-timer.h"
54 #include "hw/misc/mps2-scc.h"
55 #include "hw/misc/mps2-fpgaio.h"
56 #include "hw/misc/tz-mpc.h"
57 #include "hw/misc/tz-msc.h"
58 #include "hw/arm/armsse.h"
59 #include "hw/dma/pl080.h"
60 #include "hw/ssi/pl022.h"
61 #include "hw/i2c/arm_sbcon_i2c.h"
62 #include "hw/net/lan9118.h"
63 #include "net/net.h"
64 #include "hw/core/split-irq.h"
65 #include "hw/qdev-clock.h"
66 #include "qom/object.h"
68 #define MPS2TZ_NUMIRQ 92
70 typedef enum MPS2TZFPGAType {
71 FPGA_AN505,
72 FPGA_AN521,
73 } MPS2TZFPGAType;
75 struct MPS2TZMachineClass {
76 MachineClass parent;
77 MPS2TZFPGAType fpga_type;
78 uint32_t scc_id;
79 const char *armsse_type;
82 struct MPS2TZMachineState {
83 MachineState parent;
85 ARMSSE iotkit;
86 MemoryRegion ssram[3];
87 MemoryRegion ssram1_m;
88 MPS2SCC scc;
89 MPS2FPGAIO fpgaio;
90 TZPPC ppc[5];
91 TZMPC ssram_mpc[3];
92 PL022State spi[5];
93 ArmSbconI2CState i2c[4];
94 UnimplementedDeviceState i2s_audio;
95 UnimplementedDeviceState gpio[4];
96 UnimplementedDeviceState gfx;
97 PL080State dma[4];
98 TZMSC msc[4];
99 CMSDKAPBUART uart[5];
100 SplitIRQ sec_resp_splitter;
101 qemu_or_irq uart_irq_orgate;
102 DeviceState *lan9118;
103 SplitIRQ cpu_irq_splitter[MPS2TZ_NUMIRQ];
104 Clock *sysclk;
105 Clock *s32kclk;
108 #define TYPE_MPS2TZ_MACHINE "mps2tz"
109 #define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505")
110 #define TYPE_MPS2TZ_AN521_MACHINE MACHINE_TYPE_NAME("mps2-an521")
112 OBJECT_DECLARE_TYPE(MPS2TZMachineState, MPS2TZMachineClass, MPS2TZ_MACHINE)
114 /* Main SYSCLK frequency in Hz */
115 #define SYSCLK_FRQ 20000000
116 /* Slow 32Khz S32KCLK frequency in Hz */
117 #define S32KCLK_FRQ (32 * 1000)
119 /* Create an alias of an entire original MemoryRegion @orig
120 * located at @base in the memory map.
122 static void make_ram_alias(MemoryRegion *mr, const char *name,
123 MemoryRegion *orig, hwaddr base)
125 memory_region_init_alias(mr, NULL, name, orig, 0,
126 memory_region_size(orig));
127 memory_region_add_subregion(get_system_memory(), base, mr);
130 static qemu_irq get_sse_irq_in(MPS2TZMachineState *mms, int irqno)
132 /* Return a qemu_irq which will signal IRQ n to all CPUs in the SSE. */
133 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
135 assert(irqno < MPS2TZ_NUMIRQ);
137 switch (mmc->fpga_type) {
138 case FPGA_AN505:
139 return qdev_get_gpio_in_named(DEVICE(&mms->iotkit), "EXP_IRQ", irqno);
140 case FPGA_AN521:
141 return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
142 default:
143 g_assert_not_reached();
147 /* Most of the devices in the AN505 FPGA image sit behind
148 * Peripheral Protection Controllers. These data structures
149 * define the layout of which devices sit behind which PPCs.
150 * The devfn for each port is a function which creates, configures
151 * and initializes the device, returning the MemoryRegion which
152 * needs to be plugged into the downstream end of the PPC port.
154 typedef MemoryRegion *MakeDevFn(MPS2TZMachineState *mms, void *opaque,
155 const char *name, hwaddr size);
157 typedef struct PPCPortInfo {
158 const char *name;
159 MakeDevFn *devfn;
160 void *opaque;
161 hwaddr addr;
162 hwaddr size;
163 } PPCPortInfo;
165 typedef struct PPCInfo {
166 const char *name;
167 PPCPortInfo ports[TZ_NUM_PORTS];
168 } PPCInfo;
170 static MemoryRegion *make_unimp_dev(MPS2TZMachineState *mms,
171 void *opaque,
172 const char *name, hwaddr size)
174 /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
175 * and return a pointer to its MemoryRegion.
177 UnimplementedDeviceState *uds = opaque;
179 object_initialize_child(OBJECT(mms), name, uds, TYPE_UNIMPLEMENTED_DEVICE);
180 qdev_prop_set_string(DEVICE(uds), "name", name);
181 qdev_prop_set_uint64(DEVICE(uds), "size", size);
182 sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal);
183 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
186 static MemoryRegion *make_uart(MPS2TZMachineState *mms, void *opaque,
187 const char *name, hwaddr size)
189 CMSDKAPBUART *uart = opaque;
190 int i = uart - &mms->uart[0];
191 int rxirqno = i * 2;
192 int txirqno = i * 2 + 1;
193 int combirqno = i + 10;
194 SysBusDevice *s;
195 DeviceState *orgate_dev = DEVICE(&mms->uart_irq_orgate);
197 object_initialize_child(OBJECT(mms), name, uart, TYPE_CMSDK_APB_UART);
198 qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
199 qdev_prop_set_uint32(DEVICE(uart), "pclk-frq", SYSCLK_FRQ);
200 sysbus_realize(SYS_BUS_DEVICE(uart), &error_fatal);
201 s = SYS_BUS_DEVICE(uart);
202 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, txirqno));
203 sysbus_connect_irq(s, 1, get_sse_irq_in(mms, rxirqno));
204 sysbus_connect_irq(s, 2, qdev_get_gpio_in(orgate_dev, i * 2));
205 sysbus_connect_irq(s, 3, qdev_get_gpio_in(orgate_dev, i * 2 + 1));
206 sysbus_connect_irq(s, 4, get_sse_irq_in(mms, combirqno));
207 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
210 static MemoryRegion *make_scc(MPS2TZMachineState *mms, void *opaque,
211 const char *name, hwaddr size)
213 MPS2SCC *scc = opaque;
214 DeviceState *sccdev;
215 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
217 object_initialize_child(OBJECT(mms), "scc", scc, TYPE_MPS2_SCC);
218 sccdev = DEVICE(scc);
219 qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2);
220 qdev_prop_set_uint32(sccdev, "scc-aid", 0x00200008);
221 qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id);
222 sysbus_realize(SYS_BUS_DEVICE(scc), &error_fatal);
223 return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev), 0);
226 static MemoryRegion *make_fpgaio(MPS2TZMachineState *mms, void *opaque,
227 const char *name, hwaddr size)
229 MPS2FPGAIO *fpgaio = opaque;
231 object_initialize_child(OBJECT(mms), "fpgaio", fpgaio, TYPE_MPS2_FPGAIO);
232 sysbus_realize(SYS_BUS_DEVICE(fpgaio), &error_fatal);
233 return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio), 0);
236 static MemoryRegion *make_eth_dev(MPS2TZMachineState *mms, void *opaque,
237 const char *name, hwaddr size)
239 SysBusDevice *s;
240 NICInfo *nd = &nd_table[0];
242 /* In hardware this is a LAN9220; the LAN9118 is software compatible
243 * except that it doesn't support the checksum-offload feature.
245 qemu_check_nic_model(nd, "lan9118");
246 mms->lan9118 = qdev_new(TYPE_LAN9118);
247 qdev_set_nic_properties(mms->lan9118, nd);
249 s = SYS_BUS_DEVICE(mms->lan9118);
250 sysbus_realize_and_unref(s, &error_fatal);
251 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 16));
252 return sysbus_mmio_get_region(s, 0);
255 static MemoryRegion *make_mpc(MPS2TZMachineState *mms, void *opaque,
256 const char *name, hwaddr size)
258 TZMPC *mpc = opaque;
259 int i = mpc - &mms->ssram_mpc[0];
260 MemoryRegion *ssram = &mms->ssram[i];
261 MemoryRegion *upstream;
262 char *mpcname = g_strdup_printf("%s-mpc", name);
263 static uint32_t ramsize[] = { 0x00400000, 0x00200000, 0x00200000 };
264 static uint32_t rambase[] = { 0x00000000, 0x28000000, 0x28200000 };
266 memory_region_init_ram(ssram, NULL, name, ramsize[i], &error_fatal);
268 object_initialize_child(OBJECT(mms), mpcname, mpc, TYPE_TZ_MPC);
269 object_property_set_link(OBJECT(mpc), "downstream", OBJECT(ssram),
270 &error_fatal);
271 sysbus_realize(SYS_BUS_DEVICE(mpc), &error_fatal);
272 /* Map the upstream end of the MPC into system memory */
273 upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
274 memory_region_add_subregion(get_system_memory(), rambase[i], upstream);
275 /* and connect its interrupt to the IoTKit */
276 qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
277 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
278 "mpcexp_status", i));
280 /* The first SSRAM is a special case as it has an alias; accesses to
281 * the alias region at 0x00400000 must also go to the MPC upstream.
283 if (i == 0) {
284 make_ram_alias(&mms->ssram1_m, "mps.ssram1_m", upstream, 0x00400000);
287 g_free(mpcname);
288 /* Return the register interface MR for our caller to map behind the PPC */
289 return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
292 static MemoryRegion *make_dma(MPS2TZMachineState *mms, void *opaque,
293 const char *name, hwaddr size)
295 PL080State *dma = opaque;
296 int i = dma - &mms->dma[0];
297 SysBusDevice *s;
298 char *mscname = g_strdup_printf("%s-msc", name);
299 TZMSC *msc = &mms->msc[i];
300 DeviceState *iotkitdev = DEVICE(&mms->iotkit);
301 MemoryRegion *msc_upstream;
302 MemoryRegion *msc_downstream;
305 * Each DMA device is a PL081 whose transaction master interface
306 * is guarded by a Master Security Controller. The downstream end of
307 * the MSC connects to the IoTKit AHB Slave Expansion port, so the
308 * DMA devices can see all devices and memory that the CPU does.
310 object_initialize_child(OBJECT(mms), mscname, msc, TYPE_TZ_MSC);
311 msc_downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms->iotkit), 0);
312 object_property_set_link(OBJECT(msc), "downstream",
313 OBJECT(msc_downstream), &error_fatal);
314 object_property_set_link(OBJECT(msc), "idau", OBJECT(mms), &error_fatal);
315 sysbus_realize(SYS_BUS_DEVICE(msc), &error_fatal);
317 qdev_connect_gpio_out_named(DEVICE(msc), "irq", 0,
318 qdev_get_gpio_in_named(iotkitdev,
319 "mscexp_status", i));
320 qdev_connect_gpio_out_named(iotkitdev, "mscexp_clear", i,
321 qdev_get_gpio_in_named(DEVICE(msc),
322 "irq_clear", 0));
323 qdev_connect_gpio_out_named(iotkitdev, "mscexp_ns", i,
324 qdev_get_gpio_in_named(DEVICE(msc),
325 "cfg_nonsec", 0));
326 qdev_connect_gpio_out(DEVICE(&mms->sec_resp_splitter),
327 ARRAY_SIZE(mms->ppc) + i,
328 qdev_get_gpio_in_named(DEVICE(msc),
329 "cfg_sec_resp", 0));
330 msc_upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(msc), 0);
332 object_initialize_child(OBJECT(mms), name, dma, TYPE_PL081);
333 object_property_set_link(OBJECT(dma), "downstream", OBJECT(msc_upstream),
334 &error_fatal);
335 sysbus_realize(SYS_BUS_DEVICE(dma), &error_fatal);
337 s = SYS_BUS_DEVICE(dma);
338 /* Wire up DMACINTR, DMACINTERR, DMACINTTC */
339 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 58 + i * 3));
340 sysbus_connect_irq(s, 1, get_sse_irq_in(mms, 56 + i * 3));
341 sysbus_connect_irq(s, 2, get_sse_irq_in(mms, 57 + i * 3));
343 g_free(mscname);
344 return sysbus_mmio_get_region(s, 0);
347 static MemoryRegion *make_spi(MPS2TZMachineState *mms, void *opaque,
348 const char *name, hwaddr size)
351 * The AN505 has five PL022 SPI controllers.
352 * One of these should have the LCD controller behind it; the others
353 * are connected only to the FPGA's "general purpose SPI connector"
354 * or "shield" expansion connectors.
355 * Note that if we do implement devices behind SPI, the chip select
356 * lines are set via the "MISC" register in the MPS2 FPGAIO device.
358 PL022State *spi = opaque;
359 int i = spi - &mms->spi[0];
360 SysBusDevice *s;
362 object_initialize_child(OBJECT(mms), name, spi, TYPE_PL022);
363 sysbus_realize(SYS_BUS_DEVICE(spi), &error_fatal);
364 s = SYS_BUS_DEVICE(spi);
365 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 51 + i));
366 return sysbus_mmio_get_region(s, 0);
369 static MemoryRegion *make_i2c(MPS2TZMachineState *mms, void *opaque,
370 const char *name, hwaddr size)
372 ArmSbconI2CState *i2c = opaque;
373 SysBusDevice *s;
375 object_initialize_child(OBJECT(mms), name, i2c, TYPE_ARM_SBCON_I2C);
376 s = SYS_BUS_DEVICE(i2c);
377 sysbus_realize(s, &error_fatal);
378 return sysbus_mmio_get_region(s, 0);
381 static void mps2tz_common_init(MachineState *machine)
383 MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
384 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
385 MachineClass *mc = MACHINE_GET_CLASS(machine);
386 MemoryRegion *system_memory = get_system_memory();
387 DeviceState *iotkitdev;
388 DeviceState *dev_splitter;
389 int i;
391 if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
392 error_report("This board can only be used with CPU %s",
393 mc->default_cpu_type);
394 exit(1);
397 if (machine->ram_size != mc->default_ram_size) {
398 char *sz = size_to_str(mc->default_ram_size);
399 error_report("Invalid RAM size, should be %s", sz);
400 g_free(sz);
401 exit(EXIT_FAILURE);
404 /* These clocks don't need migration because they are fixed-frequency */
405 mms->sysclk = clock_new(OBJECT(machine), "SYSCLK");
406 clock_set_hz(mms->sysclk, SYSCLK_FRQ);
407 mms->s32kclk = clock_new(OBJECT(machine), "S32KCLK");
408 clock_set_hz(mms->s32kclk, S32KCLK_FRQ);
410 object_initialize_child(OBJECT(machine), TYPE_IOTKIT, &mms->iotkit,
411 mmc->armsse_type);
412 iotkitdev = DEVICE(&mms->iotkit);
413 object_property_set_link(OBJECT(&mms->iotkit), "memory",
414 OBJECT(system_memory), &error_abort);
415 qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", MPS2TZ_NUMIRQ);
416 qdev_prop_set_uint32(iotkitdev, "MAINCLK_FRQ", SYSCLK_FRQ);
417 qdev_connect_clock_in(iotkitdev, "MAINCLK", mms->sysclk);
418 qdev_connect_clock_in(iotkitdev, "S32KCLK", mms->s32kclk);
419 sysbus_realize(SYS_BUS_DEVICE(&mms->iotkit), &error_fatal);
422 * The AN521 needs us to create splitters to feed the IRQ inputs
423 * for each CPU in the SSE-200 from each device in the board.
425 if (mmc->fpga_type == FPGA_AN521) {
426 for (i = 0; i < MPS2TZ_NUMIRQ; i++) {
427 char *name = g_strdup_printf("mps2-irq-splitter%d", i);
428 SplitIRQ *splitter = &mms->cpu_irq_splitter[i];
430 object_initialize_child_with_props(OBJECT(machine), name,
431 splitter, sizeof(*splitter),
432 TYPE_SPLIT_IRQ, &error_fatal,
433 NULL);
434 g_free(name);
436 object_property_set_int(OBJECT(splitter), "num-lines", 2,
437 &error_fatal);
438 qdev_realize(DEVICE(splitter), NULL, &error_fatal);
439 qdev_connect_gpio_out(DEVICE(splitter), 0,
440 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
441 "EXP_IRQ", i));
442 qdev_connect_gpio_out(DEVICE(splitter), 1,
443 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
444 "EXP_CPU1_IRQ", i));
448 /* The sec_resp_cfg output from the IoTKit must be split into multiple
449 * lines, one for each of the PPCs we create here, plus one per MSC.
451 object_initialize_child(OBJECT(machine), "sec-resp-splitter",
452 &mms->sec_resp_splitter, TYPE_SPLIT_IRQ);
453 object_property_set_int(OBJECT(&mms->sec_resp_splitter), "num-lines",
454 ARRAY_SIZE(mms->ppc) + ARRAY_SIZE(mms->msc),
455 &error_fatal);
456 qdev_realize(DEVICE(&mms->sec_resp_splitter), NULL, &error_fatal);
457 dev_splitter = DEVICE(&mms->sec_resp_splitter);
458 qdev_connect_gpio_out_named(iotkitdev, "sec_resp_cfg", 0,
459 qdev_get_gpio_in(dev_splitter, 0));
461 /* The IoTKit sets up much of the memory layout, including
462 * the aliases between secure and non-secure regions in the
463 * address space. The FPGA itself contains:
465 * 0x00000000..0x003fffff SSRAM1
466 * 0x00400000..0x007fffff alias of SSRAM1
467 * 0x28000000..0x283fffff 4MB SSRAM2 + SSRAM3
468 * 0x40100000..0x4fffffff AHB Master Expansion 1 interface devices
469 * 0x80000000..0x80ffffff 16MB PSRAM
472 /* The FPGA images have an odd combination of different RAMs,
473 * because in hardware they are different implementations and
474 * connected to different buses, giving varying performance/size
475 * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
476 * call the 16MB our "system memory", as it's the largest lump.
478 memory_region_add_subregion(system_memory, 0x80000000, machine->ram);
480 /* The overflow IRQs for all UARTs are ORed together.
481 * Tx, Rx and "combined" IRQs are sent to the NVIC separately.
482 * Create the OR gate for this.
484 object_initialize_child(OBJECT(mms), "uart-irq-orgate",
485 &mms->uart_irq_orgate, TYPE_OR_IRQ);
486 object_property_set_int(OBJECT(&mms->uart_irq_orgate), "num-lines", 10,
487 &error_fatal);
488 qdev_realize(DEVICE(&mms->uart_irq_orgate), NULL, &error_fatal);
489 qdev_connect_gpio_out(DEVICE(&mms->uart_irq_orgate), 0,
490 get_sse_irq_in(mms, 15));
492 /* Most of the devices in the FPGA are behind Peripheral Protection
493 * Controllers. The required order for initializing things is:
494 * + initialize the PPC
495 * + initialize, configure and realize downstream devices
496 * + connect downstream device MemoryRegions to the PPC
497 * + realize the PPC
498 * + map the PPC's MemoryRegions to the places in the address map
499 * where the downstream devices should appear
500 * + wire up the PPC's control lines to the IoTKit object
503 const PPCInfo ppcs[] = { {
504 .name = "apb_ppcexp0",
505 .ports = {
506 { "ssram-0", make_mpc, &mms->ssram_mpc[0], 0x58007000, 0x1000 },
507 { "ssram-1", make_mpc, &mms->ssram_mpc[1], 0x58008000, 0x1000 },
508 { "ssram-2", make_mpc, &mms->ssram_mpc[2], 0x58009000, 0x1000 },
510 }, {
511 .name = "apb_ppcexp1",
512 .ports = {
513 { "spi0", make_spi, &mms->spi[0], 0x40205000, 0x1000 },
514 { "spi1", make_spi, &mms->spi[1], 0x40206000, 0x1000 },
515 { "spi2", make_spi, &mms->spi[2], 0x40209000, 0x1000 },
516 { "spi3", make_spi, &mms->spi[3], 0x4020a000, 0x1000 },
517 { "spi4", make_spi, &mms->spi[4], 0x4020b000, 0x1000 },
518 { "uart0", make_uart, &mms->uart[0], 0x40200000, 0x1000 },
519 { "uart1", make_uart, &mms->uart[1], 0x40201000, 0x1000 },
520 { "uart2", make_uart, &mms->uart[2], 0x40202000, 0x1000 },
521 { "uart3", make_uart, &mms->uart[3], 0x40203000, 0x1000 },
522 { "uart4", make_uart, &mms->uart[4], 0x40204000, 0x1000 },
523 { "i2c0", make_i2c, &mms->i2c[0], 0x40207000, 0x1000 },
524 { "i2c1", make_i2c, &mms->i2c[1], 0x40208000, 0x1000 },
525 { "i2c2", make_i2c, &mms->i2c[2], 0x4020c000, 0x1000 },
526 { "i2c3", make_i2c, &mms->i2c[3], 0x4020d000, 0x1000 },
528 }, {
529 .name = "apb_ppcexp2",
530 .ports = {
531 { "scc", make_scc, &mms->scc, 0x40300000, 0x1000 },
532 { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
533 0x40301000, 0x1000 },
534 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x40302000, 0x1000 },
536 }, {
537 .name = "ahb_ppcexp0",
538 .ports = {
539 { "gfx", make_unimp_dev, &mms->gfx, 0x41000000, 0x140000 },
540 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x40100000, 0x1000 },
541 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x40101000, 0x1000 },
542 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x40102000, 0x1000 },
543 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x40103000, 0x1000 },
544 { "eth", make_eth_dev, NULL, 0x42000000, 0x100000 },
546 }, {
547 .name = "ahb_ppcexp1",
548 .ports = {
549 { "dma0", make_dma, &mms->dma[0], 0x40110000, 0x1000 },
550 { "dma1", make_dma, &mms->dma[1], 0x40111000, 0x1000 },
551 { "dma2", make_dma, &mms->dma[2], 0x40112000, 0x1000 },
552 { "dma3", make_dma, &mms->dma[3], 0x40113000, 0x1000 },
557 for (i = 0; i < ARRAY_SIZE(ppcs); i++) {
558 const PPCInfo *ppcinfo = &ppcs[i];
559 TZPPC *ppc = &mms->ppc[i];
560 DeviceState *ppcdev;
561 int port;
562 char *gpioname;
564 object_initialize_child(OBJECT(machine), ppcinfo->name, ppc,
565 TYPE_TZ_PPC);
566 ppcdev = DEVICE(ppc);
568 for (port = 0; port < TZ_NUM_PORTS; port++) {
569 const PPCPortInfo *pinfo = &ppcinfo->ports[port];
570 MemoryRegion *mr;
571 char *portname;
573 if (!pinfo->devfn) {
574 continue;
577 mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
578 portname = g_strdup_printf("port[%d]", port);
579 object_property_set_link(OBJECT(ppc), portname, OBJECT(mr),
580 &error_fatal);
581 g_free(portname);
584 sysbus_realize(SYS_BUS_DEVICE(ppc), &error_fatal);
586 for (port = 0; port < TZ_NUM_PORTS; port++) {
587 const PPCPortInfo *pinfo = &ppcinfo->ports[port];
589 if (!pinfo->devfn) {
590 continue;
592 sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
594 gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
595 qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
596 qdev_get_gpio_in_named(ppcdev,
597 "cfg_nonsec",
598 port));
599 g_free(gpioname);
600 gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
601 qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
602 qdev_get_gpio_in_named(ppcdev,
603 "cfg_ap", port));
604 g_free(gpioname);
607 gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
608 qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
609 qdev_get_gpio_in_named(ppcdev,
610 "irq_enable", 0));
611 g_free(gpioname);
612 gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
613 qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
614 qdev_get_gpio_in_named(ppcdev,
615 "irq_clear", 0));
616 g_free(gpioname);
617 gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
618 qdev_connect_gpio_out_named(ppcdev, "irq", 0,
619 qdev_get_gpio_in_named(iotkitdev,
620 gpioname, 0));
621 g_free(gpioname);
623 qdev_connect_gpio_out(dev_splitter, i,
624 qdev_get_gpio_in_named(ppcdev,
625 "cfg_sec_resp", 0));
628 create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000);
630 armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename, 0x400000);
633 static void mps2_tz_idau_check(IDAUInterface *ii, uint32_t address,
634 int *iregion, bool *exempt, bool *ns, bool *nsc)
637 * The MPS2 TZ FPGA images have IDAUs in them which are connected to
638 * the Master Security Controllers. Thes have the same logic as
639 * is used by the IoTKit for the IDAU connected to the CPU, except
640 * that MSCs don't care about the NSC attribute.
642 int region = extract32(address, 28, 4);
644 *ns = !(region & 1);
645 *nsc = false;
646 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
647 *exempt = (address & 0xeff00000) == 0xe0000000;
648 *iregion = region;
651 static void mps2tz_class_init(ObjectClass *oc, void *data)
653 MachineClass *mc = MACHINE_CLASS(oc);
654 IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(oc);
656 mc->init = mps2tz_common_init;
657 iic->check = mps2_tz_idau_check;
658 mc->default_ram_size = 16 * MiB;
659 mc->default_ram_id = "mps.ram";
662 static void mps2tz_an505_class_init(ObjectClass *oc, void *data)
664 MachineClass *mc = MACHINE_CLASS(oc);
665 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
667 mc->desc = "ARM MPS2 with AN505 FPGA image for Cortex-M33";
668 mc->default_cpus = 1;
669 mc->min_cpus = mc->default_cpus;
670 mc->max_cpus = mc->default_cpus;
671 mmc->fpga_type = FPGA_AN505;
672 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
673 mmc->scc_id = 0x41045050;
674 mmc->armsse_type = TYPE_IOTKIT;
677 static void mps2tz_an521_class_init(ObjectClass *oc, void *data)
679 MachineClass *mc = MACHINE_CLASS(oc);
680 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
682 mc->desc = "ARM MPS2 with AN521 FPGA image for dual Cortex-M33";
683 mc->default_cpus = 2;
684 mc->min_cpus = mc->default_cpus;
685 mc->max_cpus = mc->default_cpus;
686 mmc->fpga_type = FPGA_AN521;
687 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
688 mmc->scc_id = 0x41045210;
689 mmc->armsse_type = TYPE_SSE200;
692 static const TypeInfo mps2tz_info = {
693 .name = TYPE_MPS2TZ_MACHINE,
694 .parent = TYPE_MACHINE,
695 .abstract = true,
696 .instance_size = sizeof(MPS2TZMachineState),
697 .class_size = sizeof(MPS2TZMachineClass),
698 .class_init = mps2tz_class_init,
699 .interfaces = (InterfaceInfo[]) {
700 { TYPE_IDAU_INTERFACE },
705 static const TypeInfo mps2tz_an505_info = {
706 .name = TYPE_MPS2TZ_AN505_MACHINE,
707 .parent = TYPE_MPS2TZ_MACHINE,
708 .class_init = mps2tz_an505_class_init,
711 static const TypeInfo mps2tz_an521_info = {
712 .name = TYPE_MPS2TZ_AN521_MACHINE,
713 .parent = TYPE_MPS2TZ_MACHINE,
714 .class_init = mps2tz_an521_class_init,
717 static void mps2tz_machine_init(void)
719 type_register_static(&mps2tz_info);
720 type_register_static(&mps2tz_an505_info);
721 type_register_static(&mps2tz_an521_info);
724 type_init(mps2tz_machine_init);