Merge remote-tracking branch 'remotes/kraxel/tags/pull-sdl-20150312-2' into staging
[qemu/ar7.git] / hw / i386 / kvmvapic.c
blobc6d34b2546a84f7fd96544e0505da1be15aafc3f
1 /*
2 * TPR optimization for 32-bit Windows guests (XP and Server 2003)
4 * Copyright (C) 2007-2008 Qumranet Technologies
5 * Copyright (C) 2012 Jan Kiszka, Siemens AG
7 * This work is licensed under the terms of the GNU GPL version 2, or
8 * (at your option) any later version. See the COPYING file in the
9 * top-level directory.
11 #include "sysemu/sysemu.h"
12 #include "sysemu/cpus.h"
13 #include "sysemu/kvm.h"
14 #include "hw/i386/apic_internal.h"
15 #include "hw/sysbus.h"
17 #define VAPIC_IO_PORT 0x7e
19 #define VAPIC_CPU_SHIFT 7
21 #define ROM_BLOCK_SIZE 512
22 #define ROM_BLOCK_MASK (~(ROM_BLOCK_SIZE - 1))
24 typedef enum VAPICMode {
25 VAPIC_INACTIVE = 0,
26 VAPIC_ACTIVE = 1,
27 VAPIC_STANDBY = 2,
28 } VAPICMode;
30 typedef struct VAPICHandlers {
31 uint32_t set_tpr;
32 uint32_t set_tpr_eax;
33 uint32_t get_tpr[8];
34 uint32_t get_tpr_stack;
35 } QEMU_PACKED VAPICHandlers;
37 typedef struct GuestROMState {
38 char signature[8];
39 uint32_t vaddr;
40 uint32_t fixup_start;
41 uint32_t fixup_end;
42 uint32_t vapic_vaddr;
43 uint32_t vapic_size;
44 uint32_t vcpu_shift;
45 uint32_t real_tpr_addr;
46 VAPICHandlers up;
47 VAPICHandlers mp;
48 } QEMU_PACKED GuestROMState;
50 typedef struct VAPICROMState {
51 SysBusDevice busdev;
52 MemoryRegion io;
53 MemoryRegion rom;
54 uint32_t state;
55 uint32_t rom_state_paddr;
56 uint32_t rom_state_vaddr;
57 uint32_t vapic_paddr;
58 uint32_t real_tpr_addr;
59 GuestROMState rom_state;
60 size_t rom_size;
61 bool rom_mapped_writable;
62 VMChangeStateEntry *vmsentry;
63 } VAPICROMState;
65 #define TYPE_VAPIC "kvmvapic"
66 #define VAPIC(obj) OBJECT_CHECK(VAPICROMState, (obj), TYPE_VAPIC)
68 #define TPR_INSTR_ABS_MODRM 0x1
69 #define TPR_INSTR_MATCH_MODRM_REG 0x2
71 typedef struct TPRInstruction {
72 uint8_t opcode;
73 uint8_t modrm_reg;
74 unsigned int flags;
75 TPRAccess access;
76 size_t length;
77 off_t addr_offset;
78 } TPRInstruction;
80 /* must be sorted by length, shortest first */
81 static const TPRInstruction tpr_instr[] = {
82 { /* mov abs to eax */
83 .opcode = 0xa1,
84 .access = TPR_ACCESS_READ,
85 .length = 5,
86 .addr_offset = 1,
88 { /* mov eax to abs */
89 .opcode = 0xa3,
90 .access = TPR_ACCESS_WRITE,
91 .length = 5,
92 .addr_offset = 1,
94 { /* mov r32 to r/m32 */
95 .opcode = 0x89,
96 .flags = TPR_INSTR_ABS_MODRM,
97 .access = TPR_ACCESS_WRITE,
98 .length = 6,
99 .addr_offset = 2,
101 { /* mov r/m32 to r32 */
102 .opcode = 0x8b,
103 .flags = TPR_INSTR_ABS_MODRM,
104 .access = TPR_ACCESS_READ,
105 .length = 6,
106 .addr_offset = 2,
108 { /* push r/m32 */
109 .opcode = 0xff,
110 .modrm_reg = 6,
111 .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
112 .access = TPR_ACCESS_READ,
113 .length = 6,
114 .addr_offset = 2,
116 { /* mov imm32, r/m32 (c7/0) */
117 .opcode = 0xc7,
118 .modrm_reg = 0,
119 .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
120 .access = TPR_ACCESS_WRITE,
121 .length = 10,
122 .addr_offset = 2,
126 static void read_guest_rom_state(VAPICROMState *s)
128 cpu_physical_memory_read(s->rom_state_paddr, &s->rom_state,
129 sizeof(GuestROMState));
132 static void write_guest_rom_state(VAPICROMState *s)
134 cpu_physical_memory_write(s->rom_state_paddr, &s->rom_state,
135 sizeof(GuestROMState));
138 static void update_guest_rom_state(VAPICROMState *s)
140 read_guest_rom_state(s);
142 s->rom_state.real_tpr_addr = cpu_to_le32(s->real_tpr_addr);
143 s->rom_state.vcpu_shift = cpu_to_le32(VAPIC_CPU_SHIFT);
145 write_guest_rom_state(s);
148 static int find_real_tpr_addr(VAPICROMState *s, CPUX86State *env)
150 CPUState *cs = CPU(x86_env_get_cpu(env));
151 hwaddr paddr;
152 target_ulong addr;
154 if (s->state == VAPIC_ACTIVE) {
155 return 0;
158 * If there is no prior TPR access instruction we could analyze (which is
159 * the case after resume from hibernation), we need to scan the possible
160 * virtual address space for the APIC mapping.
162 for (addr = 0xfffff000; addr >= 0x80000000; addr -= TARGET_PAGE_SIZE) {
163 paddr = cpu_get_phys_page_debug(cs, addr);
164 if (paddr != APIC_DEFAULT_ADDRESS) {
165 continue;
167 s->real_tpr_addr = addr + 0x80;
168 update_guest_rom_state(s);
169 return 0;
171 return -1;
174 static uint8_t modrm_reg(uint8_t modrm)
176 return (modrm >> 3) & 7;
179 static bool is_abs_modrm(uint8_t modrm)
181 return (modrm & 0xc7) == 0x05;
184 static bool opcode_matches(uint8_t *opcode, const TPRInstruction *instr)
186 return opcode[0] == instr->opcode &&
187 (!(instr->flags & TPR_INSTR_ABS_MODRM) || is_abs_modrm(opcode[1])) &&
188 (!(instr->flags & TPR_INSTR_MATCH_MODRM_REG) ||
189 modrm_reg(opcode[1]) == instr->modrm_reg);
192 static int evaluate_tpr_instruction(VAPICROMState *s, X86CPU *cpu,
193 target_ulong *pip, TPRAccess access)
195 CPUState *cs = CPU(cpu);
196 const TPRInstruction *instr;
197 target_ulong ip = *pip;
198 uint8_t opcode[2];
199 uint32_t real_tpr_addr;
200 int i;
202 if ((ip & 0xf0000000ULL) != 0x80000000ULL &&
203 (ip & 0xf0000000ULL) != 0xe0000000ULL) {
204 return -1;
208 * Early Windows 2003 SMP initialization contains a
210 * mov imm32, r/m32
212 * instruction that is patched by TPR optimization. The problem is that
213 * RSP, used by the patched instruction, is zero, so the guest gets a
214 * double fault and dies.
216 if (cpu->env.regs[R_ESP] == 0) {
217 return -1;
220 if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
222 * KVM without kernel-based TPR access reporting will pass an IP that
223 * points after the accessing instruction. So we need to look backward
224 * to find the reason.
226 for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
227 instr = &tpr_instr[i];
228 if (instr->access != access) {
229 continue;
231 if (cpu_memory_rw_debug(cs, ip - instr->length, opcode,
232 sizeof(opcode), 0) < 0) {
233 return -1;
235 if (opcode_matches(opcode, instr)) {
236 ip -= instr->length;
237 goto instruction_ok;
240 return -1;
241 } else {
242 if (cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0) < 0) {
243 return -1;
245 for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
246 instr = &tpr_instr[i];
247 if (opcode_matches(opcode, instr)) {
248 goto instruction_ok;
251 return -1;
254 instruction_ok:
256 * Grab the virtual TPR address from the instruction
257 * and update the cached values.
259 if (cpu_memory_rw_debug(cs, ip + instr->addr_offset,
260 (void *)&real_tpr_addr,
261 sizeof(real_tpr_addr), 0) < 0) {
262 return -1;
264 real_tpr_addr = le32_to_cpu(real_tpr_addr);
265 if ((real_tpr_addr & 0xfff) != 0x80) {
266 return -1;
268 s->real_tpr_addr = real_tpr_addr;
269 update_guest_rom_state(s);
271 *pip = ip;
272 return 0;
275 static int update_rom_mapping(VAPICROMState *s, CPUX86State *env, target_ulong ip)
277 CPUState *cs = CPU(x86_env_get_cpu(env));
278 hwaddr paddr;
279 uint32_t rom_state_vaddr;
280 uint32_t pos, patch, offset;
282 /* nothing to do if already activated */
283 if (s->state == VAPIC_ACTIVE) {
284 return 0;
287 /* bail out if ROM init code was not executed (missing ROM?) */
288 if (s->state == VAPIC_INACTIVE) {
289 return -1;
292 /* find out virtual address of the ROM */
293 rom_state_vaddr = s->rom_state_paddr + (ip & 0xf0000000);
294 paddr = cpu_get_phys_page_debug(cs, rom_state_vaddr);
295 if (paddr == -1) {
296 return -1;
298 paddr += rom_state_vaddr & ~TARGET_PAGE_MASK;
299 if (paddr != s->rom_state_paddr) {
300 return -1;
302 read_guest_rom_state(s);
303 if (memcmp(s->rom_state.signature, "kvm aPiC", 8) != 0) {
304 return -1;
306 s->rom_state_vaddr = rom_state_vaddr;
308 /* fixup addresses in ROM if needed */
309 if (rom_state_vaddr == le32_to_cpu(s->rom_state.vaddr)) {
310 return 0;
312 for (pos = le32_to_cpu(s->rom_state.fixup_start);
313 pos < le32_to_cpu(s->rom_state.fixup_end);
314 pos += 4) {
315 cpu_physical_memory_read(paddr + pos - s->rom_state.vaddr,
316 &offset, sizeof(offset));
317 offset = le32_to_cpu(offset);
318 cpu_physical_memory_read(paddr + offset, &patch, sizeof(patch));
319 patch = le32_to_cpu(patch);
320 patch += rom_state_vaddr - le32_to_cpu(s->rom_state.vaddr);
321 patch = cpu_to_le32(patch);
322 cpu_physical_memory_write(paddr + offset, &patch, sizeof(patch));
324 read_guest_rom_state(s);
325 s->vapic_paddr = paddr + le32_to_cpu(s->rom_state.vapic_vaddr) -
326 le32_to_cpu(s->rom_state.vaddr);
328 return 0;
332 * Tries to read the unique processor number from the Kernel Processor Control
333 * Region (KPCR) of 32-bit Windows XP and Server 2003. Returns -1 if the KPCR
334 * cannot be accessed or is considered invalid. This also ensures that we are
335 * not patching the wrong guest.
337 static int get_kpcr_number(X86CPU *cpu)
339 CPUX86State *env = &cpu->env;
340 struct kpcr {
341 uint8_t fill1[0x1c];
342 uint32_t self;
343 uint8_t fill2[0x31];
344 uint8_t number;
345 } QEMU_PACKED kpcr;
347 if (cpu_memory_rw_debug(CPU(cpu), env->segs[R_FS].base,
348 (void *)&kpcr, sizeof(kpcr), 0) < 0 ||
349 kpcr.self != env->segs[R_FS].base) {
350 return -1;
352 return kpcr.number;
355 static int vapic_enable(VAPICROMState *s, X86CPU *cpu)
357 int cpu_number = get_kpcr_number(cpu);
358 hwaddr vapic_paddr;
359 static const uint8_t enabled = 1;
361 if (cpu_number < 0) {
362 return -1;
364 vapic_paddr = s->vapic_paddr +
365 (((hwaddr)cpu_number) << VAPIC_CPU_SHIFT);
366 cpu_physical_memory_write(vapic_paddr + offsetof(VAPICState, enabled),
367 &enabled, sizeof(enabled));
368 apic_enable_vapic(cpu->apic_state, vapic_paddr);
370 s->state = VAPIC_ACTIVE;
372 return 0;
375 static void patch_byte(X86CPU *cpu, target_ulong addr, uint8_t byte)
377 cpu_memory_rw_debug(CPU(cpu), addr, &byte, 1, 1);
380 static void patch_call(VAPICROMState *s, X86CPU *cpu, target_ulong ip,
381 uint32_t target)
383 uint32_t offset;
385 offset = cpu_to_le32(target - ip - 5);
386 patch_byte(cpu, ip, 0xe8); /* call near */
387 cpu_memory_rw_debug(CPU(cpu), ip + 1, (void *)&offset, sizeof(offset), 1);
390 static void patch_instruction(VAPICROMState *s, X86CPU *cpu, target_ulong ip)
392 CPUState *cs = CPU(cpu);
393 CPUX86State *env = &cpu->env;
394 VAPICHandlers *handlers;
395 uint8_t opcode[2];
396 uint32_t imm32;
397 target_ulong current_pc = 0;
398 target_ulong current_cs_base = 0;
399 int current_flags = 0;
401 if (smp_cpus == 1) {
402 handlers = &s->rom_state.up;
403 } else {
404 handlers = &s->rom_state.mp;
407 if (!kvm_enabled()) {
408 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
409 &current_flags);
412 pause_all_vcpus();
414 cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0);
416 switch (opcode[0]) {
417 case 0x89: /* mov r32 to r/m32 */
418 patch_byte(cpu, ip, 0x50 + modrm_reg(opcode[1])); /* push reg */
419 patch_call(s, cpu, ip + 1, handlers->set_tpr);
420 break;
421 case 0x8b: /* mov r/m32 to r32 */
422 patch_byte(cpu, ip, 0x90);
423 patch_call(s, cpu, ip + 1, handlers->get_tpr[modrm_reg(opcode[1])]);
424 break;
425 case 0xa1: /* mov abs to eax */
426 patch_call(s, cpu, ip, handlers->get_tpr[0]);
427 break;
428 case 0xa3: /* mov eax to abs */
429 patch_call(s, cpu, ip, handlers->set_tpr_eax);
430 break;
431 case 0xc7: /* mov imm32, r/m32 (c7/0) */
432 patch_byte(cpu, ip, 0x68); /* push imm32 */
433 cpu_memory_rw_debug(cs, ip + 6, (void *)&imm32, sizeof(imm32), 0);
434 cpu_memory_rw_debug(cs, ip + 1, (void *)&imm32, sizeof(imm32), 1);
435 patch_call(s, cpu, ip + 5, handlers->set_tpr);
436 break;
437 case 0xff: /* push r/m32 */
438 patch_byte(cpu, ip, 0x50); /* push eax */
439 patch_call(s, cpu, ip + 1, handlers->get_tpr_stack);
440 break;
441 default:
442 abort();
445 resume_all_vcpus();
447 if (!kvm_enabled()) {
448 cs->current_tb = NULL;
449 tb_gen_code(cs, current_pc, current_cs_base, current_flags, 1);
450 cpu_resume_from_signal(cs, NULL);
454 void vapic_report_tpr_access(DeviceState *dev, CPUState *cs, target_ulong ip,
455 TPRAccess access)
457 VAPICROMState *s = VAPIC(dev);
458 X86CPU *cpu = X86_CPU(cs);
459 CPUX86State *env = &cpu->env;
461 cpu_synchronize_state(cs);
463 if (evaluate_tpr_instruction(s, cpu, &ip, access) < 0) {
464 if (s->state == VAPIC_ACTIVE) {
465 vapic_enable(s, cpu);
467 return;
469 if (update_rom_mapping(s, env, ip) < 0) {
470 return;
472 if (vapic_enable(s, cpu) < 0) {
473 return;
475 patch_instruction(s, cpu, ip);
478 typedef struct VAPICEnableTPRReporting {
479 DeviceState *apic;
480 bool enable;
481 } VAPICEnableTPRReporting;
483 static void vapic_do_enable_tpr_reporting(void *data)
485 VAPICEnableTPRReporting *info = data;
487 apic_enable_tpr_access_reporting(info->apic, info->enable);
490 static void vapic_enable_tpr_reporting(bool enable)
492 VAPICEnableTPRReporting info = {
493 .enable = enable,
495 CPUState *cs;
496 X86CPU *cpu;
498 CPU_FOREACH(cs) {
499 cpu = X86_CPU(cs);
500 info.apic = cpu->apic_state;
501 run_on_cpu(cs, vapic_do_enable_tpr_reporting, &info);
505 static void vapic_reset(DeviceState *dev)
507 VAPICROMState *s = VAPIC(dev);
509 s->state = VAPIC_INACTIVE;
510 s->rom_state_paddr = 0;
511 vapic_enable_tpr_reporting(false);
515 * Set the IRQ polling hypercalls to the supported variant:
516 * - vmcall if using KVM in-kernel irqchip
517 * - 32-bit VAPIC port write otherwise
519 static int patch_hypercalls(VAPICROMState *s)
521 hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
522 static const uint8_t vmcall_pattern[] = { /* vmcall */
523 0xb8, 0x1, 0, 0, 0, 0xf, 0x1, 0xc1
525 static const uint8_t outl_pattern[] = { /* nop; outl %eax,0x7e */
526 0xb8, 0x1, 0, 0, 0, 0x90, 0xe7, 0x7e
528 uint8_t alternates[2];
529 const uint8_t *pattern;
530 const uint8_t *patch;
531 int patches = 0;
532 off_t pos;
533 uint8_t *rom;
535 rom = g_malloc(s->rom_size);
536 cpu_physical_memory_read(rom_paddr, rom, s->rom_size);
538 for (pos = 0; pos < s->rom_size - sizeof(vmcall_pattern); pos++) {
539 if (kvm_irqchip_in_kernel()) {
540 pattern = outl_pattern;
541 alternates[0] = outl_pattern[7];
542 alternates[1] = outl_pattern[7];
543 patch = &vmcall_pattern[5];
544 } else {
545 pattern = vmcall_pattern;
546 alternates[0] = vmcall_pattern[7];
547 alternates[1] = 0xd9; /* AMD's VMMCALL */
548 patch = &outl_pattern[5];
550 if (memcmp(rom + pos, pattern, 7) == 0 &&
551 (rom[pos + 7] == alternates[0] || rom[pos + 7] == alternates[1])) {
552 cpu_physical_memory_write(rom_paddr + pos + 5, patch, 3);
554 * Don't flush the tb here. Under ordinary conditions, the patched
555 * calls are miles away from the current IP. Under malicious
556 * conditions, the guest could trick us to crash.
561 g_free(rom);
563 if (patches != 0 && patches != 2) {
564 return -1;
567 return 0;
571 * For TCG mode or the time KVM honors read-only memory regions, we need to
572 * enable write access to the option ROM so that variables can be updated by
573 * the guest.
575 static int vapic_map_rom_writable(VAPICROMState *s)
577 hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
578 MemoryRegionSection section;
579 MemoryRegion *as;
580 size_t rom_size;
581 uint8_t *ram;
583 as = sysbus_address_space(&s->busdev);
585 if (s->rom_mapped_writable) {
586 memory_region_del_subregion(as, &s->rom);
587 object_unparent(OBJECT(&s->rom));
590 /* grab RAM memory region (region @rom_paddr may still be pc.rom) */
591 section = memory_region_find(as, 0, 1);
593 /* read ROM size from RAM region */
594 if (rom_paddr + 2 >= memory_region_size(section.mr)) {
595 return -1;
597 ram = memory_region_get_ram_ptr(section.mr);
598 rom_size = ram[rom_paddr + 2] * ROM_BLOCK_SIZE;
599 if (rom_size == 0) {
600 return -1;
602 s->rom_size = rom_size;
604 /* We need to round to avoid creating subpages
605 * from which we cannot run code. */
606 rom_size += rom_paddr & ~TARGET_PAGE_MASK;
607 rom_paddr &= TARGET_PAGE_MASK;
608 rom_size = TARGET_PAGE_ALIGN(rom_size);
610 memory_region_init_alias(&s->rom, OBJECT(s), "kvmvapic-rom", section.mr,
611 rom_paddr, rom_size);
612 memory_region_add_subregion_overlap(as, rom_paddr, &s->rom, 1000);
613 s->rom_mapped_writable = true;
614 memory_region_unref(section.mr);
616 return 0;
619 static int vapic_prepare(VAPICROMState *s)
621 if (vapic_map_rom_writable(s) < 0) {
622 return -1;
625 if (patch_hypercalls(s) < 0) {
626 return -1;
629 vapic_enable_tpr_reporting(true);
631 return 0;
634 static void vapic_write(void *opaque, hwaddr addr, uint64_t data,
635 unsigned int size)
637 CPUState *cs = current_cpu;
638 X86CPU *cpu = X86_CPU(cs);
639 CPUX86State *env = &cpu->env;
640 hwaddr rom_paddr;
641 VAPICROMState *s = opaque;
643 cpu_synchronize_state(cs);
646 * The VAPIC supports two PIO-based hypercalls, both via port 0x7E.
647 * o 16-bit write access:
648 * Reports the option ROM initialization to the hypervisor. Written
649 * value is the offset of the state structure in the ROM.
650 * o 8-bit write access:
651 * Reactivates the VAPIC after a guest hibernation, i.e. after the
652 * option ROM content has been re-initialized by a guest power cycle.
653 * o 32-bit write access:
654 * Poll for pending IRQs, considering the current VAPIC state.
656 switch (size) {
657 case 2:
658 if (s->state == VAPIC_INACTIVE) {
659 rom_paddr = (env->segs[R_CS].base + env->eip) & ROM_BLOCK_MASK;
660 s->rom_state_paddr = rom_paddr + data;
662 s->state = VAPIC_STANDBY;
664 if (vapic_prepare(s) < 0) {
665 s->state = VAPIC_INACTIVE;
666 s->rom_state_paddr = 0;
667 break;
669 break;
670 case 1:
671 if (kvm_enabled()) {
673 * Disable triggering instruction in ROM by writing a NOP.
675 * We cannot do this in TCG mode as the reported IP is not
676 * accurate.
678 pause_all_vcpus();
679 patch_byte(cpu, env->eip - 2, 0x66);
680 patch_byte(cpu, env->eip - 1, 0x90);
681 resume_all_vcpus();
684 if (s->state == VAPIC_ACTIVE) {
685 break;
687 if (update_rom_mapping(s, env, env->eip) < 0) {
688 break;
690 if (find_real_tpr_addr(s, env) < 0) {
691 break;
693 vapic_enable(s, cpu);
694 break;
695 default:
696 case 4:
697 if (!kvm_irqchip_in_kernel()) {
698 apic_poll_irq(cpu->apic_state);
700 break;
704 static uint64_t vapic_read(void *opaque, hwaddr addr, unsigned size)
706 return 0xffffffff;
709 static const MemoryRegionOps vapic_ops = {
710 .write = vapic_write,
711 .read = vapic_read,
712 .endianness = DEVICE_NATIVE_ENDIAN,
715 static void vapic_realize(DeviceState *dev, Error **errp)
717 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
718 VAPICROMState *s = VAPIC(dev);
720 memory_region_init_io(&s->io, OBJECT(s), &vapic_ops, s, "kvmvapic", 2);
721 sysbus_add_io(sbd, VAPIC_IO_PORT, &s->io);
722 sysbus_init_ioports(sbd, VAPIC_IO_PORT, 2);
724 option_rom[nb_option_roms].name = "kvmvapic.bin";
725 option_rom[nb_option_roms].bootindex = -1;
726 nb_option_roms++;
729 static void do_vapic_enable(void *data)
731 VAPICROMState *s = data;
732 X86CPU *cpu = X86_CPU(first_cpu);
734 static const uint8_t enabled = 1;
735 cpu_physical_memory_write(s->vapic_paddr + offsetof(VAPICState, enabled),
736 &enabled, sizeof(enabled));
737 apic_enable_vapic(cpu->apic_state, s->vapic_paddr);
738 s->state = VAPIC_ACTIVE;
741 static void kvmvapic_vm_state_change(void *opaque, int running,
742 RunState state)
744 VAPICROMState *s = opaque;
745 uint8_t *zero;
747 if (!running) {
748 return;
751 if (s->state == VAPIC_ACTIVE) {
752 if (smp_cpus == 1) {
753 run_on_cpu(first_cpu, do_vapic_enable, s);
754 } else {
755 zero = g_malloc0(s->rom_state.vapic_size);
756 cpu_physical_memory_write(s->vapic_paddr, zero,
757 s->rom_state.vapic_size);
758 g_free(zero);
762 qemu_del_vm_change_state_handler(s->vmsentry);
765 static int vapic_post_load(void *opaque, int version_id)
767 VAPICROMState *s = opaque;
770 * The old implementation of qemu-kvm did not provide the state
771 * VAPIC_STANDBY. Reconstruct it.
773 if (s->state == VAPIC_INACTIVE && s->rom_state_paddr != 0) {
774 s->state = VAPIC_STANDBY;
777 if (s->state != VAPIC_INACTIVE) {
778 if (vapic_prepare(s) < 0) {
779 return -1;
783 if (!s->vmsentry) {
784 s->vmsentry =
785 qemu_add_vm_change_state_handler(kvmvapic_vm_state_change, s);
787 return 0;
790 static const VMStateDescription vmstate_handlers = {
791 .name = "kvmvapic-handlers",
792 .version_id = 1,
793 .minimum_version_id = 1,
794 .fields = (VMStateField[]) {
795 VMSTATE_UINT32(set_tpr, VAPICHandlers),
796 VMSTATE_UINT32(set_tpr_eax, VAPICHandlers),
797 VMSTATE_UINT32_ARRAY(get_tpr, VAPICHandlers, 8),
798 VMSTATE_UINT32(get_tpr_stack, VAPICHandlers),
799 VMSTATE_END_OF_LIST()
803 static const VMStateDescription vmstate_guest_rom = {
804 .name = "kvmvapic-guest-rom",
805 .version_id = 1,
806 .minimum_version_id = 1,
807 .fields = (VMStateField[]) {
808 VMSTATE_UNUSED(8), /* signature */
809 VMSTATE_UINT32(vaddr, GuestROMState),
810 VMSTATE_UINT32(fixup_start, GuestROMState),
811 VMSTATE_UINT32(fixup_end, GuestROMState),
812 VMSTATE_UINT32(vapic_vaddr, GuestROMState),
813 VMSTATE_UINT32(vapic_size, GuestROMState),
814 VMSTATE_UINT32(vcpu_shift, GuestROMState),
815 VMSTATE_UINT32(real_tpr_addr, GuestROMState),
816 VMSTATE_STRUCT(up, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
817 VMSTATE_STRUCT(mp, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
818 VMSTATE_END_OF_LIST()
822 static const VMStateDescription vmstate_vapic = {
823 .name = "kvm-tpr-opt", /* compatible with qemu-kvm VAPIC */
824 .version_id = 1,
825 .minimum_version_id = 1,
826 .post_load = vapic_post_load,
827 .fields = (VMStateField[]) {
828 VMSTATE_STRUCT(rom_state, VAPICROMState, 0, vmstate_guest_rom,
829 GuestROMState),
830 VMSTATE_UINT32(state, VAPICROMState),
831 VMSTATE_UINT32(real_tpr_addr, VAPICROMState),
832 VMSTATE_UINT32(rom_state_vaddr, VAPICROMState),
833 VMSTATE_UINT32(vapic_paddr, VAPICROMState),
834 VMSTATE_UINT32(rom_state_paddr, VAPICROMState),
835 VMSTATE_END_OF_LIST()
839 static void vapic_class_init(ObjectClass *klass, void *data)
841 DeviceClass *dc = DEVICE_CLASS(klass);
843 dc->reset = vapic_reset;
844 dc->vmsd = &vmstate_vapic;
845 dc->realize = vapic_realize;
848 static const TypeInfo vapic_type = {
849 .name = TYPE_VAPIC,
850 .parent = TYPE_SYS_BUS_DEVICE,
851 .instance_size = sizeof(VAPICROMState),
852 .class_init = vapic_class_init,
855 static void vapic_register(void)
857 type_register_static(&vapic_type);
860 type_init(vapic_register);