iotests: Add regression test for commit base locking
[qemu/ar7.git] / linux-user / elfload.c
blob4563a3190bbbd660af6803a48f0fe3c1841e1f3d
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
5 #include <sys/resource.h>
7 #include "qemu.h"
8 #include "disas/disas.h"
9 #include "qemu/path.h"
11 #ifdef _ARCH_PPC64
12 #undef ARCH_DLINFO
13 #undef ELF_PLATFORM
14 #undef ELF_HWCAP
15 #undef ELF_HWCAP2
16 #undef ELF_CLASS
17 #undef ELF_DATA
18 #undef ELF_ARCH
19 #endif
21 #define ELF_OSABI ELFOSABI_SYSV
23 /* from personality.h */
26 * Flags for bug emulation.
28 * These occupy the top three bytes.
30 enum {
31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
33 descriptors (signal handling) */
34 MMAP_PAGE_ZERO = 0x0100000,
35 ADDR_COMPAT_LAYOUT = 0x0200000,
36 READ_IMPLIES_EXEC = 0x0400000,
37 ADDR_LIMIT_32BIT = 0x0800000,
38 SHORT_INODE = 0x1000000,
39 WHOLE_SECONDS = 0x2000000,
40 STICKY_TIMEOUTS = 0x4000000,
41 ADDR_LIMIT_3GB = 0x8000000,
45 * Personality types.
47 * These go in the low byte. Avoid using the top bit, it will
48 * conflict with error returns.
50 enum {
51 PER_LINUX = 0x0000,
52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
60 PER_BSD = 0x0006,
61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_LINUX32 = 0x0008,
64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68 PER_RISCOS = 0x000c,
69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71 PER_OSF4 = 0x000f, /* OSF/1 v4 */
72 PER_HPUX = 0x0010,
73 PER_MASK = 0x00ff,
77 * Return the base personality without flags.
79 #define personality(pers) (pers & PER_MASK)
81 /* this flag is uneffective under linux too, should be deleted */
82 #ifndef MAP_DENYWRITE
83 #define MAP_DENYWRITE 0
84 #endif
86 /* should probably go in elf.h */
87 #ifndef ELIBBAD
88 #define ELIBBAD 80
89 #endif
91 #ifdef TARGET_WORDS_BIGENDIAN
92 #define ELF_DATA ELFDATA2MSB
93 #else
94 #define ELF_DATA ELFDATA2LSB
95 #endif
97 #ifdef TARGET_ABI_MIPSN32
98 typedef abi_ullong target_elf_greg_t;
99 #define tswapreg(ptr) tswap64(ptr)
100 #else
101 typedef abi_ulong target_elf_greg_t;
102 #define tswapreg(ptr) tswapal(ptr)
103 #endif
105 #ifdef USE_UID16
106 typedef abi_ushort target_uid_t;
107 typedef abi_ushort target_gid_t;
108 #else
109 typedef abi_uint target_uid_t;
110 typedef abi_uint target_gid_t;
111 #endif
112 typedef abi_int target_pid_t;
114 #ifdef TARGET_I386
116 #define ELF_PLATFORM get_elf_platform()
118 static const char *get_elf_platform(void)
120 static char elf_platform[] = "i386";
121 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
122 if (family > 6)
123 family = 6;
124 if (family >= 3)
125 elf_platform[1] = '0' + family;
126 return elf_platform;
129 #define ELF_HWCAP get_elf_hwcap()
131 static uint32_t get_elf_hwcap(void)
133 X86CPU *cpu = X86_CPU(thread_cpu);
135 return cpu->env.features[FEAT_1_EDX];
138 #ifdef TARGET_X86_64
139 #define ELF_START_MMAP 0x2aaaaab000ULL
141 #define ELF_CLASS ELFCLASS64
142 #define ELF_ARCH EM_X86_64
144 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
146 regs->rax = 0;
147 regs->rsp = infop->start_stack;
148 regs->rip = infop->entry;
151 #define ELF_NREG 27
152 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
155 * Note that ELF_NREG should be 29 as there should be place for
156 * TRAPNO and ERR "registers" as well but linux doesn't dump
157 * those.
159 * See linux kernel: arch/x86/include/asm/elf.h
161 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
163 (*regs)[0] = env->regs[15];
164 (*regs)[1] = env->regs[14];
165 (*regs)[2] = env->regs[13];
166 (*regs)[3] = env->regs[12];
167 (*regs)[4] = env->regs[R_EBP];
168 (*regs)[5] = env->regs[R_EBX];
169 (*regs)[6] = env->regs[11];
170 (*regs)[7] = env->regs[10];
171 (*regs)[8] = env->regs[9];
172 (*regs)[9] = env->regs[8];
173 (*regs)[10] = env->regs[R_EAX];
174 (*regs)[11] = env->regs[R_ECX];
175 (*regs)[12] = env->regs[R_EDX];
176 (*regs)[13] = env->regs[R_ESI];
177 (*regs)[14] = env->regs[R_EDI];
178 (*regs)[15] = env->regs[R_EAX]; /* XXX */
179 (*regs)[16] = env->eip;
180 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
181 (*regs)[18] = env->eflags;
182 (*regs)[19] = env->regs[R_ESP];
183 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
184 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
185 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
186 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
187 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
188 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
189 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
192 #else
194 #define ELF_START_MMAP 0x80000000
197 * This is used to ensure we don't load something for the wrong architecture.
199 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
202 * These are used to set parameters in the core dumps.
204 #define ELF_CLASS ELFCLASS32
205 #define ELF_ARCH EM_386
207 static inline void init_thread(struct target_pt_regs *regs,
208 struct image_info *infop)
210 regs->esp = infop->start_stack;
211 regs->eip = infop->entry;
213 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
214 starts %edx contains a pointer to a function which might be
215 registered using `atexit'. This provides a mean for the
216 dynamic linker to call DT_FINI functions for shared libraries
217 that have been loaded before the code runs.
219 A value of 0 tells we have no such handler. */
220 regs->edx = 0;
223 #define ELF_NREG 17
224 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
227 * Note that ELF_NREG should be 19 as there should be place for
228 * TRAPNO and ERR "registers" as well but linux doesn't dump
229 * those.
231 * See linux kernel: arch/x86/include/asm/elf.h
233 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
235 (*regs)[0] = env->regs[R_EBX];
236 (*regs)[1] = env->regs[R_ECX];
237 (*regs)[2] = env->regs[R_EDX];
238 (*regs)[3] = env->regs[R_ESI];
239 (*regs)[4] = env->regs[R_EDI];
240 (*regs)[5] = env->regs[R_EBP];
241 (*regs)[6] = env->regs[R_EAX];
242 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
243 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
244 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
245 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
246 (*regs)[11] = env->regs[R_EAX]; /* XXX */
247 (*regs)[12] = env->eip;
248 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
249 (*regs)[14] = env->eflags;
250 (*regs)[15] = env->regs[R_ESP];
251 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
253 #endif
255 #define USE_ELF_CORE_DUMP
256 #define ELF_EXEC_PAGESIZE 4096
258 #endif
260 #ifdef TARGET_ARM
262 #ifndef TARGET_AARCH64
263 /* 32 bit ARM definitions */
265 #define ELF_START_MMAP 0x80000000
267 #define ELF_ARCH EM_ARM
268 #define ELF_CLASS ELFCLASS32
270 static inline void init_thread(struct target_pt_regs *regs,
271 struct image_info *infop)
273 abi_long stack = infop->start_stack;
274 memset(regs, 0, sizeof(*regs));
276 regs->uregs[16] = ARM_CPU_MODE_USR;
277 if (infop->entry & 1) {
278 regs->uregs[16] |= CPSR_T;
280 regs->uregs[15] = infop->entry & 0xfffffffe;
281 regs->uregs[13] = infop->start_stack;
282 /* FIXME - what to for failure of get_user()? */
283 get_user_ual(regs->uregs[2], stack + 8); /* envp */
284 get_user_ual(regs->uregs[1], stack + 4); /* envp */
285 /* XXX: it seems that r0 is zeroed after ! */
286 regs->uregs[0] = 0;
287 /* For uClinux PIC binaries. */
288 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
289 regs->uregs[10] = infop->start_data;
292 #define ELF_NREG 18
293 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
295 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
297 (*regs)[0] = tswapreg(env->regs[0]);
298 (*regs)[1] = tswapreg(env->regs[1]);
299 (*regs)[2] = tswapreg(env->regs[2]);
300 (*regs)[3] = tswapreg(env->regs[3]);
301 (*regs)[4] = tswapreg(env->regs[4]);
302 (*regs)[5] = tswapreg(env->regs[5]);
303 (*regs)[6] = tswapreg(env->regs[6]);
304 (*regs)[7] = tswapreg(env->regs[7]);
305 (*regs)[8] = tswapreg(env->regs[8]);
306 (*regs)[9] = tswapreg(env->regs[9]);
307 (*regs)[10] = tswapreg(env->regs[10]);
308 (*regs)[11] = tswapreg(env->regs[11]);
309 (*regs)[12] = tswapreg(env->regs[12]);
310 (*regs)[13] = tswapreg(env->regs[13]);
311 (*regs)[14] = tswapreg(env->regs[14]);
312 (*regs)[15] = tswapreg(env->regs[15]);
314 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
315 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
318 #define USE_ELF_CORE_DUMP
319 #define ELF_EXEC_PAGESIZE 4096
321 enum
323 ARM_HWCAP_ARM_SWP = 1 << 0,
324 ARM_HWCAP_ARM_HALF = 1 << 1,
325 ARM_HWCAP_ARM_THUMB = 1 << 2,
326 ARM_HWCAP_ARM_26BIT = 1 << 3,
327 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
328 ARM_HWCAP_ARM_FPA = 1 << 5,
329 ARM_HWCAP_ARM_VFP = 1 << 6,
330 ARM_HWCAP_ARM_EDSP = 1 << 7,
331 ARM_HWCAP_ARM_JAVA = 1 << 8,
332 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
333 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
334 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
335 ARM_HWCAP_ARM_NEON = 1 << 12,
336 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
337 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
338 ARM_HWCAP_ARM_TLS = 1 << 15,
339 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
340 ARM_HWCAP_ARM_IDIVA = 1 << 17,
341 ARM_HWCAP_ARM_IDIVT = 1 << 18,
342 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
343 ARM_HWCAP_ARM_LPAE = 1 << 20,
344 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
347 enum {
348 ARM_HWCAP2_ARM_AES = 1 << 0,
349 ARM_HWCAP2_ARM_PMULL = 1 << 1,
350 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
351 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
352 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
355 /* The commpage only exists for 32 bit kernels */
357 /* Return 1 if the proposed guest space is suitable for the guest.
358 * Return 0 if the proposed guest space isn't suitable, but another
359 * address space should be tried.
360 * Return -1 if there is no way the proposed guest space can be
361 * valid regardless of the base.
362 * The guest code may leave a page mapped and populate it if the
363 * address is suitable.
365 static int init_guest_commpage(unsigned long guest_base,
366 unsigned long guest_size)
368 unsigned long real_start, test_page_addr;
370 /* We need to check that we can force a fault on access to the
371 * commpage at 0xffff0fxx
373 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
375 /* If the commpage lies within the already allocated guest space,
376 * then there is no way we can allocate it.
378 * You may be thinking that that this check is redundant because
379 * we already validated the guest size against MAX_RESERVED_VA;
380 * but if qemu_host_page_mask is unusually large, then
381 * test_page_addr may be lower.
383 if (test_page_addr >= guest_base
384 && test_page_addr < (guest_base + guest_size)) {
385 return -1;
388 /* Note it needs to be writeable to let us initialise it */
389 real_start = (unsigned long)
390 mmap((void *)test_page_addr, qemu_host_page_size,
391 PROT_READ | PROT_WRITE,
392 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
394 /* If we can't map it then try another address */
395 if (real_start == -1ul) {
396 return 0;
399 if (real_start != test_page_addr) {
400 /* OS didn't put the page where we asked - unmap and reject */
401 munmap((void *)real_start, qemu_host_page_size);
402 return 0;
405 /* Leave the page mapped
406 * Populate it (mmap should have left it all 0'd)
409 /* Kernel helper versions */
410 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
412 /* Now it's populated make it RO */
413 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
414 perror("Protecting guest commpage");
415 exit(-1);
418 return 1; /* All good */
421 #define ELF_HWCAP get_elf_hwcap()
422 #define ELF_HWCAP2 get_elf_hwcap2()
424 static uint32_t get_elf_hwcap(void)
426 ARMCPU *cpu = ARM_CPU(thread_cpu);
427 uint32_t hwcaps = 0;
429 hwcaps |= ARM_HWCAP_ARM_SWP;
430 hwcaps |= ARM_HWCAP_ARM_HALF;
431 hwcaps |= ARM_HWCAP_ARM_THUMB;
432 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
434 /* probe for the extra features */
435 #define GET_FEATURE(feat, hwcap) \
436 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
437 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
438 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
439 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
440 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
441 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
442 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
443 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
444 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
445 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
446 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
447 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
448 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
449 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
450 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
451 * to our VFP_FP16 feature bit.
453 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
454 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
456 return hwcaps;
459 static uint32_t get_elf_hwcap2(void)
461 ARMCPU *cpu = ARM_CPU(thread_cpu);
462 uint32_t hwcaps = 0;
464 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
465 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
466 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
467 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
468 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
469 return hwcaps;
472 #undef GET_FEATURE
474 #else
475 /* 64 bit ARM definitions */
476 #define ELF_START_MMAP 0x80000000
478 #define ELF_ARCH EM_AARCH64
479 #define ELF_CLASS ELFCLASS64
480 #define ELF_PLATFORM "aarch64"
482 static inline void init_thread(struct target_pt_regs *regs,
483 struct image_info *infop)
485 abi_long stack = infop->start_stack;
486 memset(regs, 0, sizeof(*regs));
488 regs->pc = infop->entry & ~0x3ULL;
489 regs->sp = stack;
492 #define ELF_NREG 34
493 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
495 static void elf_core_copy_regs(target_elf_gregset_t *regs,
496 const CPUARMState *env)
498 int i;
500 for (i = 0; i < 32; i++) {
501 (*regs)[i] = tswapreg(env->xregs[i]);
503 (*regs)[32] = tswapreg(env->pc);
504 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
507 #define USE_ELF_CORE_DUMP
508 #define ELF_EXEC_PAGESIZE 4096
510 enum {
511 ARM_HWCAP_A64_FP = 1 << 0,
512 ARM_HWCAP_A64_ASIMD = 1 << 1,
513 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
514 ARM_HWCAP_A64_AES = 1 << 3,
515 ARM_HWCAP_A64_PMULL = 1 << 4,
516 ARM_HWCAP_A64_SHA1 = 1 << 5,
517 ARM_HWCAP_A64_SHA2 = 1 << 6,
518 ARM_HWCAP_A64_CRC32 = 1 << 7,
519 ARM_HWCAP_A64_ATOMICS = 1 << 8,
520 ARM_HWCAP_A64_FPHP = 1 << 9,
521 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
522 ARM_HWCAP_A64_CPUID = 1 << 11,
523 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
524 ARM_HWCAP_A64_JSCVT = 1 << 13,
525 ARM_HWCAP_A64_FCMA = 1 << 14,
526 ARM_HWCAP_A64_LRCPC = 1 << 15,
527 ARM_HWCAP_A64_DCPOP = 1 << 16,
528 ARM_HWCAP_A64_SHA3 = 1 << 17,
529 ARM_HWCAP_A64_SM3 = 1 << 18,
530 ARM_HWCAP_A64_SM4 = 1 << 19,
531 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
532 ARM_HWCAP_A64_SHA512 = 1 << 21,
533 ARM_HWCAP_A64_SVE = 1 << 22,
536 #define ELF_HWCAP get_elf_hwcap()
538 static uint32_t get_elf_hwcap(void)
540 ARMCPU *cpu = ARM_CPU(thread_cpu);
541 uint32_t hwcaps = 0;
543 hwcaps |= ARM_HWCAP_A64_FP;
544 hwcaps |= ARM_HWCAP_A64_ASIMD;
546 /* probe for the extra features */
547 #define GET_FEATURE(feat, hwcap) \
548 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
549 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
550 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
551 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
552 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
553 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
554 GET_FEATURE(ARM_FEATURE_V8_SHA3, ARM_HWCAP_A64_SHA3);
555 GET_FEATURE(ARM_FEATURE_V8_SM3, ARM_HWCAP_A64_SM3);
556 GET_FEATURE(ARM_FEATURE_V8_SM4, ARM_HWCAP_A64_SM4);
557 GET_FEATURE(ARM_FEATURE_V8_SHA512, ARM_HWCAP_A64_SHA512);
558 GET_FEATURE(ARM_FEATURE_V8_FP16,
559 ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
560 GET_FEATURE(ARM_FEATURE_V8_RDM, ARM_HWCAP_A64_ASIMDRDM);
561 GET_FEATURE(ARM_FEATURE_V8_FCMA, ARM_HWCAP_A64_FCMA);
562 #undef GET_FEATURE
564 return hwcaps;
567 #endif /* not TARGET_AARCH64 */
568 #endif /* TARGET_ARM */
570 #ifdef TARGET_SPARC
571 #ifdef TARGET_SPARC64
573 #define ELF_START_MMAP 0x80000000
574 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
575 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
576 #ifndef TARGET_ABI32
577 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
578 #else
579 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
580 #endif
582 #define ELF_CLASS ELFCLASS64
583 #define ELF_ARCH EM_SPARCV9
585 #define STACK_BIAS 2047
587 static inline void init_thread(struct target_pt_regs *regs,
588 struct image_info *infop)
590 #ifndef TARGET_ABI32
591 regs->tstate = 0;
592 #endif
593 regs->pc = infop->entry;
594 regs->npc = regs->pc + 4;
595 regs->y = 0;
596 #ifdef TARGET_ABI32
597 regs->u_regs[14] = infop->start_stack - 16 * 4;
598 #else
599 if (personality(infop->personality) == PER_LINUX32)
600 regs->u_regs[14] = infop->start_stack - 16 * 4;
601 else
602 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
603 #endif
606 #else
607 #define ELF_START_MMAP 0x80000000
608 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
609 | HWCAP_SPARC_MULDIV)
611 #define ELF_CLASS ELFCLASS32
612 #define ELF_ARCH EM_SPARC
614 static inline void init_thread(struct target_pt_regs *regs,
615 struct image_info *infop)
617 regs->psr = 0;
618 regs->pc = infop->entry;
619 regs->npc = regs->pc + 4;
620 regs->y = 0;
621 regs->u_regs[14] = infop->start_stack - 16 * 4;
624 #endif
625 #endif
627 #ifdef TARGET_PPC
629 #define ELF_MACHINE PPC_ELF_MACHINE
630 #define ELF_START_MMAP 0x80000000
632 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
634 #define elf_check_arch(x) ( (x) == EM_PPC64 )
636 #define ELF_CLASS ELFCLASS64
638 #else
640 #define ELF_CLASS ELFCLASS32
642 #endif
644 #define ELF_ARCH EM_PPC
646 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
647 See arch/powerpc/include/asm/cputable.h. */
648 enum {
649 QEMU_PPC_FEATURE_32 = 0x80000000,
650 QEMU_PPC_FEATURE_64 = 0x40000000,
651 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
652 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
653 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
654 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
655 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
656 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
657 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
658 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
659 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
660 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
661 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
662 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
663 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
664 QEMU_PPC_FEATURE_CELL = 0x00010000,
665 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
666 QEMU_PPC_FEATURE_SMT = 0x00004000,
667 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
668 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
669 QEMU_PPC_FEATURE_PA6T = 0x00000800,
670 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
671 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
672 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
673 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
674 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
676 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
677 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
679 /* Feature definitions in AT_HWCAP2. */
680 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
681 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
682 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
683 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
684 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
685 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
688 #define ELF_HWCAP get_elf_hwcap()
690 static uint32_t get_elf_hwcap(void)
692 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
693 uint32_t features = 0;
695 /* We don't have to be terribly complete here; the high points are
696 Altivec/FP/SPE support. Anything else is just a bonus. */
697 #define GET_FEATURE(flag, feature) \
698 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
699 #define GET_FEATURE2(flags, feature) \
700 do { \
701 if ((cpu->env.insns_flags2 & flags) == flags) { \
702 features |= feature; \
704 } while (0)
705 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
706 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
707 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
708 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
709 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
710 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
711 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
712 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
713 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
714 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
715 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
716 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
717 QEMU_PPC_FEATURE_ARCH_2_06);
718 #undef GET_FEATURE
719 #undef GET_FEATURE2
721 return features;
724 #define ELF_HWCAP2 get_elf_hwcap2()
726 static uint32_t get_elf_hwcap2(void)
728 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
729 uint32_t features = 0;
731 #define GET_FEATURE(flag, feature) \
732 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
733 #define GET_FEATURE2(flag, feature) \
734 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
736 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
737 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
738 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
739 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
741 #undef GET_FEATURE
742 #undef GET_FEATURE2
744 return features;
748 * The requirements here are:
749 * - keep the final alignment of sp (sp & 0xf)
750 * - make sure the 32-bit value at the first 16 byte aligned position of
751 * AUXV is greater than 16 for glibc compatibility.
752 * AT_IGNOREPPC is used for that.
753 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
754 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
756 #define DLINFO_ARCH_ITEMS 5
757 #define ARCH_DLINFO \
758 do { \
759 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
760 /* \
761 * Handle glibc compatibility: these magic entries must \
762 * be at the lowest addresses in the final auxv. \
763 */ \
764 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
765 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
766 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
767 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
768 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
769 } while (0)
771 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
773 _regs->gpr[1] = infop->start_stack;
774 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
775 if (get_ppc64_abi(infop) < 2) {
776 uint64_t val;
777 get_user_u64(val, infop->entry + 8);
778 _regs->gpr[2] = val + infop->load_bias;
779 get_user_u64(val, infop->entry);
780 infop->entry = val + infop->load_bias;
781 } else {
782 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
784 #endif
785 _regs->nip = infop->entry;
788 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
789 #define ELF_NREG 48
790 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
792 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
794 int i;
795 target_ulong ccr = 0;
797 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
798 (*regs)[i] = tswapreg(env->gpr[i]);
801 (*regs)[32] = tswapreg(env->nip);
802 (*regs)[33] = tswapreg(env->msr);
803 (*regs)[35] = tswapreg(env->ctr);
804 (*regs)[36] = tswapreg(env->lr);
805 (*regs)[37] = tswapreg(env->xer);
807 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
808 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
810 (*regs)[38] = tswapreg(ccr);
813 #define USE_ELF_CORE_DUMP
814 #define ELF_EXEC_PAGESIZE 4096
816 #endif
818 #ifdef TARGET_MIPS
820 #define ELF_START_MMAP 0x80000000
822 #ifdef TARGET_MIPS64
823 #define ELF_CLASS ELFCLASS64
824 #else
825 #define ELF_CLASS ELFCLASS32
826 #endif
827 #define ELF_ARCH EM_MIPS
829 static inline void init_thread(struct target_pt_regs *regs,
830 struct image_info *infop)
832 regs->cp0_status = 2 << CP0St_KSU;
833 regs->cp0_epc = infop->entry;
834 regs->regs[29] = infop->start_stack;
837 /* See linux kernel: arch/mips/include/asm/elf.h. */
838 #define ELF_NREG 45
839 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
841 /* See linux kernel: arch/mips/include/asm/reg.h. */
842 enum {
843 #ifdef TARGET_MIPS64
844 TARGET_EF_R0 = 0,
845 #else
846 TARGET_EF_R0 = 6,
847 #endif
848 TARGET_EF_R26 = TARGET_EF_R0 + 26,
849 TARGET_EF_R27 = TARGET_EF_R0 + 27,
850 TARGET_EF_LO = TARGET_EF_R0 + 32,
851 TARGET_EF_HI = TARGET_EF_R0 + 33,
852 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
853 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
854 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
855 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
858 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
859 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
861 int i;
863 for (i = 0; i < TARGET_EF_R0; i++) {
864 (*regs)[i] = 0;
866 (*regs)[TARGET_EF_R0] = 0;
868 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
869 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
872 (*regs)[TARGET_EF_R26] = 0;
873 (*regs)[TARGET_EF_R27] = 0;
874 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
875 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
876 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
877 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
878 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
879 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
882 #define USE_ELF_CORE_DUMP
883 #define ELF_EXEC_PAGESIZE 4096
885 #endif /* TARGET_MIPS */
887 #ifdef TARGET_MICROBLAZE
889 #define ELF_START_MMAP 0x80000000
891 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
893 #define ELF_CLASS ELFCLASS32
894 #define ELF_ARCH EM_MICROBLAZE
896 static inline void init_thread(struct target_pt_regs *regs,
897 struct image_info *infop)
899 regs->pc = infop->entry;
900 regs->r1 = infop->start_stack;
904 #define ELF_EXEC_PAGESIZE 4096
906 #define USE_ELF_CORE_DUMP
907 #define ELF_NREG 38
908 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
910 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
911 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
913 int i, pos = 0;
915 for (i = 0; i < 32; i++) {
916 (*regs)[pos++] = tswapreg(env->regs[i]);
919 for (i = 0; i < 6; i++) {
920 (*regs)[pos++] = tswapreg(env->sregs[i]);
924 #endif /* TARGET_MICROBLAZE */
926 #ifdef TARGET_NIOS2
928 #define ELF_START_MMAP 0x80000000
930 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
932 #define ELF_CLASS ELFCLASS32
933 #define ELF_ARCH EM_ALTERA_NIOS2
935 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
937 regs->ea = infop->entry;
938 regs->sp = infop->start_stack;
939 regs->estatus = 0x3;
942 #define ELF_EXEC_PAGESIZE 4096
944 #define USE_ELF_CORE_DUMP
945 #define ELF_NREG 49
946 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
948 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
949 static void elf_core_copy_regs(target_elf_gregset_t *regs,
950 const CPUNios2State *env)
952 int i;
954 (*regs)[0] = -1;
955 for (i = 1; i < 8; i++) /* r0-r7 */
956 (*regs)[i] = tswapreg(env->regs[i + 7]);
958 for (i = 8; i < 16; i++) /* r8-r15 */
959 (*regs)[i] = tswapreg(env->regs[i - 8]);
961 for (i = 16; i < 24; i++) /* r16-r23 */
962 (*regs)[i] = tswapreg(env->regs[i + 7]);
963 (*regs)[24] = -1; /* R_ET */
964 (*regs)[25] = -1; /* R_BT */
965 (*regs)[26] = tswapreg(env->regs[R_GP]);
966 (*regs)[27] = tswapreg(env->regs[R_SP]);
967 (*regs)[28] = tswapreg(env->regs[R_FP]);
968 (*regs)[29] = tswapreg(env->regs[R_EA]);
969 (*regs)[30] = -1; /* R_SSTATUS */
970 (*regs)[31] = tswapreg(env->regs[R_RA]);
972 (*regs)[32] = tswapreg(env->regs[R_PC]);
974 (*regs)[33] = -1; /* R_STATUS */
975 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
977 for (i = 35; i < 49; i++) /* ... */
978 (*regs)[i] = -1;
981 #endif /* TARGET_NIOS2 */
983 #ifdef TARGET_OPENRISC
985 #define ELF_START_MMAP 0x08000000
987 #define ELF_ARCH EM_OPENRISC
988 #define ELF_CLASS ELFCLASS32
989 #define ELF_DATA ELFDATA2MSB
991 static inline void init_thread(struct target_pt_regs *regs,
992 struct image_info *infop)
994 regs->pc = infop->entry;
995 regs->gpr[1] = infop->start_stack;
998 #define USE_ELF_CORE_DUMP
999 #define ELF_EXEC_PAGESIZE 8192
1001 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1002 #define ELF_NREG 34 /* gprs and pc, sr */
1003 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1005 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1006 const CPUOpenRISCState *env)
1008 int i;
1010 for (i = 0; i < 32; i++) {
1011 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1013 (*regs)[32] = tswapreg(env->pc);
1014 (*regs)[33] = tswapreg(cpu_get_sr(env));
1016 #define ELF_HWCAP 0
1017 #define ELF_PLATFORM NULL
1019 #endif /* TARGET_OPENRISC */
1021 #ifdef TARGET_SH4
1023 #define ELF_START_MMAP 0x80000000
1025 #define ELF_CLASS ELFCLASS32
1026 #define ELF_ARCH EM_SH
1028 static inline void init_thread(struct target_pt_regs *regs,
1029 struct image_info *infop)
1031 /* Check other registers XXXXX */
1032 regs->pc = infop->entry;
1033 regs->regs[15] = infop->start_stack;
1036 /* See linux kernel: arch/sh/include/asm/elf.h. */
1037 #define ELF_NREG 23
1038 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1040 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1041 enum {
1042 TARGET_REG_PC = 16,
1043 TARGET_REG_PR = 17,
1044 TARGET_REG_SR = 18,
1045 TARGET_REG_GBR = 19,
1046 TARGET_REG_MACH = 20,
1047 TARGET_REG_MACL = 21,
1048 TARGET_REG_SYSCALL = 22
1051 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1052 const CPUSH4State *env)
1054 int i;
1056 for (i = 0; i < 16; i++) {
1057 (*regs)[i] = tswapreg(env->gregs[i]);
1060 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1061 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1062 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1063 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1064 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1065 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1066 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1069 #define USE_ELF_CORE_DUMP
1070 #define ELF_EXEC_PAGESIZE 4096
1072 enum {
1073 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1074 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1075 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1076 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1077 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1078 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1079 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1080 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1081 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1082 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1085 #define ELF_HWCAP get_elf_hwcap()
1087 static uint32_t get_elf_hwcap(void)
1089 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1090 uint32_t hwcap = 0;
1092 hwcap |= SH_CPU_HAS_FPU;
1094 if (cpu->env.features & SH_FEATURE_SH4A) {
1095 hwcap |= SH_CPU_HAS_LLSC;
1098 return hwcap;
1101 #endif
1103 #ifdef TARGET_CRIS
1105 #define ELF_START_MMAP 0x80000000
1107 #define ELF_CLASS ELFCLASS32
1108 #define ELF_ARCH EM_CRIS
1110 static inline void init_thread(struct target_pt_regs *regs,
1111 struct image_info *infop)
1113 regs->erp = infop->entry;
1116 #define ELF_EXEC_PAGESIZE 8192
1118 #endif
1120 #ifdef TARGET_M68K
1122 #define ELF_START_MMAP 0x80000000
1124 #define ELF_CLASS ELFCLASS32
1125 #define ELF_ARCH EM_68K
1127 /* ??? Does this need to do anything?
1128 #define ELF_PLAT_INIT(_r) */
1130 static inline void init_thread(struct target_pt_regs *regs,
1131 struct image_info *infop)
1133 regs->usp = infop->start_stack;
1134 regs->sr = 0;
1135 regs->pc = infop->entry;
1138 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1139 #define ELF_NREG 20
1140 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1142 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1144 (*regs)[0] = tswapreg(env->dregs[1]);
1145 (*regs)[1] = tswapreg(env->dregs[2]);
1146 (*regs)[2] = tswapreg(env->dregs[3]);
1147 (*regs)[3] = tswapreg(env->dregs[4]);
1148 (*regs)[4] = tswapreg(env->dregs[5]);
1149 (*regs)[5] = tswapreg(env->dregs[6]);
1150 (*regs)[6] = tswapreg(env->dregs[7]);
1151 (*regs)[7] = tswapreg(env->aregs[0]);
1152 (*regs)[8] = tswapreg(env->aregs[1]);
1153 (*regs)[9] = tswapreg(env->aregs[2]);
1154 (*regs)[10] = tswapreg(env->aregs[3]);
1155 (*regs)[11] = tswapreg(env->aregs[4]);
1156 (*regs)[12] = tswapreg(env->aregs[5]);
1157 (*regs)[13] = tswapreg(env->aregs[6]);
1158 (*regs)[14] = tswapreg(env->dregs[0]);
1159 (*regs)[15] = tswapreg(env->aregs[7]);
1160 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1161 (*regs)[17] = tswapreg(env->sr);
1162 (*regs)[18] = tswapreg(env->pc);
1163 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1166 #define USE_ELF_CORE_DUMP
1167 #define ELF_EXEC_PAGESIZE 8192
1169 #endif
1171 #ifdef TARGET_ALPHA
1173 #define ELF_START_MMAP (0x30000000000ULL)
1175 #define ELF_CLASS ELFCLASS64
1176 #define ELF_ARCH EM_ALPHA
1178 static inline void init_thread(struct target_pt_regs *regs,
1179 struct image_info *infop)
1181 regs->pc = infop->entry;
1182 regs->ps = 8;
1183 regs->usp = infop->start_stack;
1186 #define ELF_EXEC_PAGESIZE 8192
1188 #endif /* TARGET_ALPHA */
1190 #ifdef TARGET_S390X
1192 #define ELF_START_MMAP (0x20000000000ULL)
1194 #define ELF_CLASS ELFCLASS64
1195 #define ELF_DATA ELFDATA2MSB
1196 #define ELF_ARCH EM_S390
1198 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1200 regs->psw.addr = infop->entry;
1201 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1202 regs->gprs[15] = infop->start_stack;
1205 #endif /* TARGET_S390X */
1207 #ifdef TARGET_TILEGX
1209 /* 42 bits real used address, a half for user mode */
1210 #define ELF_START_MMAP (0x00000020000000000ULL)
1212 #define elf_check_arch(x) ((x) == EM_TILEGX)
1214 #define ELF_CLASS ELFCLASS64
1215 #define ELF_DATA ELFDATA2LSB
1216 #define ELF_ARCH EM_TILEGX
1218 static inline void init_thread(struct target_pt_regs *regs,
1219 struct image_info *infop)
1221 regs->pc = infop->entry;
1222 regs->sp = infop->start_stack;
1226 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1228 #endif /* TARGET_TILEGX */
1230 #ifdef TARGET_RISCV
1232 #define ELF_START_MMAP 0x80000000
1233 #define ELF_ARCH EM_RISCV
1235 #ifdef TARGET_RISCV32
1236 #define ELF_CLASS ELFCLASS32
1237 #else
1238 #define ELF_CLASS ELFCLASS64
1239 #endif
1241 static inline void init_thread(struct target_pt_regs *regs,
1242 struct image_info *infop)
1244 regs->sepc = infop->entry;
1245 regs->sp = infop->start_stack;
1248 #define ELF_EXEC_PAGESIZE 4096
1250 #endif /* TARGET_RISCV */
1252 #ifdef TARGET_HPPA
1254 #define ELF_START_MMAP 0x80000000
1255 #define ELF_CLASS ELFCLASS32
1256 #define ELF_ARCH EM_PARISC
1257 #define ELF_PLATFORM "PARISC"
1258 #define STACK_GROWS_DOWN 0
1259 #define STACK_ALIGNMENT 64
1261 static inline void init_thread(struct target_pt_regs *regs,
1262 struct image_info *infop)
1264 regs->iaoq[0] = infop->entry;
1265 regs->iaoq[1] = infop->entry + 4;
1266 regs->gr[23] = 0;
1267 regs->gr[24] = infop->arg_start;
1268 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1269 /* The top-of-stack contains a linkage buffer. */
1270 regs->gr[30] = infop->start_stack + 64;
1271 regs->gr[31] = infop->entry;
1274 #endif /* TARGET_HPPA */
1276 #ifdef TARGET_XTENSA
1278 #define ELF_START_MMAP 0x20000000
1280 #define ELF_CLASS ELFCLASS32
1281 #define ELF_ARCH EM_XTENSA
1283 static inline void init_thread(struct target_pt_regs *regs,
1284 struct image_info *infop)
1286 regs->windowbase = 0;
1287 regs->windowstart = 1;
1288 regs->areg[1] = infop->start_stack;
1289 regs->pc = infop->entry;
1292 /* See linux kernel: arch/xtensa/include/asm/elf.h. */
1293 #define ELF_NREG 128
1294 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1296 enum {
1297 TARGET_REG_PC,
1298 TARGET_REG_PS,
1299 TARGET_REG_LBEG,
1300 TARGET_REG_LEND,
1301 TARGET_REG_LCOUNT,
1302 TARGET_REG_SAR,
1303 TARGET_REG_WINDOWSTART,
1304 TARGET_REG_WINDOWBASE,
1305 TARGET_REG_THREADPTR,
1306 TARGET_REG_AR0 = 64,
1309 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1310 const CPUXtensaState *env)
1312 unsigned i;
1314 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1315 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1316 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1317 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1318 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1319 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1320 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1321 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1322 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1323 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1324 for (i = 0; i < env->config->nareg; ++i) {
1325 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1329 #define USE_ELF_CORE_DUMP
1330 #define ELF_EXEC_PAGESIZE 4096
1332 #endif /* TARGET_XTENSA */
1334 #ifndef ELF_PLATFORM
1335 #define ELF_PLATFORM (NULL)
1336 #endif
1338 #ifndef ELF_MACHINE
1339 #define ELF_MACHINE ELF_ARCH
1340 #endif
1342 #ifndef elf_check_arch
1343 #define elf_check_arch(x) ((x) == ELF_ARCH)
1344 #endif
1346 #ifndef ELF_HWCAP
1347 #define ELF_HWCAP 0
1348 #endif
1350 #ifndef STACK_GROWS_DOWN
1351 #define STACK_GROWS_DOWN 1
1352 #endif
1354 #ifndef STACK_ALIGNMENT
1355 #define STACK_ALIGNMENT 16
1356 #endif
1358 #ifdef TARGET_ABI32
1359 #undef ELF_CLASS
1360 #define ELF_CLASS ELFCLASS32
1361 #undef bswaptls
1362 #define bswaptls(ptr) bswap32s(ptr)
1363 #endif
1365 #include "elf.h"
1367 struct exec
1369 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1370 unsigned int a_text; /* length of text, in bytes */
1371 unsigned int a_data; /* length of data, in bytes */
1372 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1373 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1374 unsigned int a_entry; /* start address */
1375 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1376 unsigned int a_drsize; /* length of relocation info for data, in bytes */
1380 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1381 #define OMAGIC 0407
1382 #define NMAGIC 0410
1383 #define ZMAGIC 0413
1384 #define QMAGIC 0314
1386 /* Necessary parameters */
1387 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1388 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1389 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1390 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1392 #define DLINFO_ITEMS 15
1394 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1396 memcpy(to, from, n);
1399 #ifdef BSWAP_NEEDED
1400 static void bswap_ehdr(struct elfhdr *ehdr)
1402 bswap16s(&ehdr->e_type); /* Object file type */
1403 bswap16s(&ehdr->e_machine); /* Architecture */
1404 bswap32s(&ehdr->e_version); /* Object file version */
1405 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1406 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1407 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1408 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1409 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1410 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1411 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1412 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1413 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1414 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
1417 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1419 int i;
1420 for (i = 0; i < phnum; ++i, ++phdr) {
1421 bswap32s(&phdr->p_type); /* Segment type */
1422 bswap32s(&phdr->p_flags); /* Segment flags */
1423 bswaptls(&phdr->p_offset); /* Segment file offset */
1424 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1425 bswaptls(&phdr->p_paddr); /* Segment physical address */
1426 bswaptls(&phdr->p_filesz); /* Segment size in file */
1427 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1428 bswaptls(&phdr->p_align); /* Segment alignment */
1432 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1434 int i;
1435 for (i = 0; i < shnum; ++i, ++shdr) {
1436 bswap32s(&shdr->sh_name);
1437 bswap32s(&shdr->sh_type);
1438 bswaptls(&shdr->sh_flags);
1439 bswaptls(&shdr->sh_addr);
1440 bswaptls(&shdr->sh_offset);
1441 bswaptls(&shdr->sh_size);
1442 bswap32s(&shdr->sh_link);
1443 bswap32s(&shdr->sh_info);
1444 bswaptls(&shdr->sh_addralign);
1445 bswaptls(&shdr->sh_entsize);
1449 static void bswap_sym(struct elf_sym *sym)
1451 bswap32s(&sym->st_name);
1452 bswaptls(&sym->st_value);
1453 bswaptls(&sym->st_size);
1454 bswap16s(&sym->st_shndx);
1456 #else
1457 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1458 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1459 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1460 static inline void bswap_sym(struct elf_sym *sym) { }
1461 #endif
1463 #ifdef USE_ELF_CORE_DUMP
1464 static int elf_core_dump(int, const CPUArchState *);
1465 #endif /* USE_ELF_CORE_DUMP */
1466 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1468 /* Verify the portions of EHDR within E_IDENT for the target.
1469 This can be performed before bswapping the entire header. */
1470 static bool elf_check_ident(struct elfhdr *ehdr)
1472 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1473 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1474 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1475 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1476 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1477 && ehdr->e_ident[EI_DATA] == ELF_DATA
1478 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1481 /* Verify the portions of EHDR outside of E_IDENT for the target.
1482 This has to wait until after bswapping the header. */
1483 static bool elf_check_ehdr(struct elfhdr *ehdr)
1485 return (elf_check_arch(ehdr->e_machine)
1486 && ehdr->e_ehsize == sizeof(struct elfhdr)
1487 && ehdr->e_phentsize == sizeof(struct elf_phdr)
1488 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1492 * 'copy_elf_strings()' copies argument/envelope strings from user
1493 * memory to free pages in kernel mem. These are in a format ready
1494 * to be put directly into the top of new user memory.
1497 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1498 abi_ulong p, abi_ulong stack_limit)
1500 char *tmp;
1501 int len, i;
1502 abi_ulong top = p;
1504 if (!p) {
1505 return 0; /* bullet-proofing */
1508 if (STACK_GROWS_DOWN) {
1509 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1510 for (i = argc - 1; i >= 0; --i) {
1511 tmp = argv[i];
1512 if (!tmp) {
1513 fprintf(stderr, "VFS: argc is wrong");
1514 exit(-1);
1516 len = strlen(tmp) + 1;
1517 tmp += len;
1519 if (len > (p - stack_limit)) {
1520 return 0;
1522 while (len) {
1523 int bytes_to_copy = (len > offset) ? offset : len;
1524 tmp -= bytes_to_copy;
1525 p -= bytes_to_copy;
1526 offset -= bytes_to_copy;
1527 len -= bytes_to_copy;
1529 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1531 if (offset == 0) {
1532 memcpy_to_target(p, scratch, top - p);
1533 top = p;
1534 offset = TARGET_PAGE_SIZE;
1538 if (p != top) {
1539 memcpy_to_target(p, scratch + offset, top - p);
1541 } else {
1542 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1543 for (i = 0; i < argc; ++i) {
1544 tmp = argv[i];
1545 if (!tmp) {
1546 fprintf(stderr, "VFS: argc is wrong");
1547 exit(-1);
1549 len = strlen(tmp) + 1;
1550 if (len > (stack_limit - p)) {
1551 return 0;
1553 while (len) {
1554 int bytes_to_copy = (len > remaining) ? remaining : len;
1556 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1558 tmp += bytes_to_copy;
1559 remaining -= bytes_to_copy;
1560 p += bytes_to_copy;
1561 len -= bytes_to_copy;
1563 if (remaining == 0) {
1564 memcpy_to_target(top, scratch, p - top);
1565 top = p;
1566 remaining = TARGET_PAGE_SIZE;
1570 if (p != top) {
1571 memcpy_to_target(top, scratch, p - top);
1575 return p;
1578 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1579 * argument/environment space. Newer kernels (>2.6.33) allow more,
1580 * dependent on stack size, but guarantee at least 32 pages for
1581 * backwards compatibility.
1583 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1585 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1586 struct image_info *info)
1588 abi_ulong size, error, guard;
1590 size = guest_stack_size;
1591 if (size < STACK_LOWER_LIMIT) {
1592 size = STACK_LOWER_LIMIT;
1594 guard = TARGET_PAGE_SIZE;
1595 if (guard < qemu_real_host_page_size) {
1596 guard = qemu_real_host_page_size;
1599 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1600 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1601 if (error == -1) {
1602 perror("mmap stack");
1603 exit(-1);
1606 /* We reserve one extra page at the top of the stack as guard. */
1607 if (STACK_GROWS_DOWN) {
1608 target_mprotect(error, guard, PROT_NONE);
1609 info->stack_limit = error + guard;
1610 return info->stack_limit + size - sizeof(void *);
1611 } else {
1612 target_mprotect(error + size, guard, PROT_NONE);
1613 info->stack_limit = error + size;
1614 return error;
1618 /* Map and zero the bss. We need to explicitly zero any fractional pages
1619 after the data section (i.e. bss). */
1620 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1622 uintptr_t host_start, host_map_start, host_end;
1624 last_bss = TARGET_PAGE_ALIGN(last_bss);
1626 /* ??? There is confusion between qemu_real_host_page_size and
1627 qemu_host_page_size here and elsewhere in target_mmap, which
1628 may lead to the end of the data section mapping from the file
1629 not being mapped. At least there was an explicit test and
1630 comment for that here, suggesting that "the file size must
1631 be known". The comment probably pre-dates the introduction
1632 of the fstat system call in target_mmap which does in fact
1633 find out the size. What isn't clear is if the workaround
1634 here is still actually needed. For now, continue with it,
1635 but merge it with the "normal" mmap that would allocate the bss. */
1637 host_start = (uintptr_t) g2h(elf_bss);
1638 host_end = (uintptr_t) g2h(last_bss);
1639 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1641 if (host_map_start < host_end) {
1642 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1643 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1644 if (p == MAP_FAILED) {
1645 perror("cannot mmap brk");
1646 exit(-1);
1650 /* Ensure that the bss page(s) are valid */
1651 if ((page_get_flags(last_bss-1) & prot) != prot) {
1652 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1655 if (host_start < host_map_start) {
1656 memset((void *)host_start, 0, host_map_start - host_start);
1660 #ifdef CONFIG_USE_FDPIC
1661 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1663 uint16_t n;
1664 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1666 /* elf32_fdpic_loadseg */
1667 n = info->nsegs;
1668 while (n--) {
1669 sp -= 12;
1670 put_user_u32(loadsegs[n].addr, sp+0);
1671 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1672 put_user_u32(loadsegs[n].p_memsz, sp+8);
1675 /* elf32_fdpic_loadmap */
1676 sp -= 4;
1677 put_user_u16(0, sp+0); /* version */
1678 put_user_u16(info->nsegs, sp+2); /* nsegs */
1680 info->personality = PER_LINUX_FDPIC;
1681 info->loadmap_addr = sp;
1683 return sp;
1685 #endif
1687 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1688 struct elfhdr *exec,
1689 struct image_info *info,
1690 struct image_info *interp_info)
1692 abi_ulong sp;
1693 abi_ulong u_argc, u_argv, u_envp, u_auxv;
1694 int size;
1695 int i;
1696 abi_ulong u_rand_bytes;
1697 uint8_t k_rand_bytes[16];
1698 abi_ulong u_platform;
1699 const char *k_platform;
1700 const int n = sizeof(elf_addr_t);
1702 sp = p;
1704 #ifdef CONFIG_USE_FDPIC
1705 /* Needs to be before we load the env/argc/... */
1706 if (elf_is_fdpic(exec)) {
1707 /* Need 4 byte alignment for these structs */
1708 sp &= ~3;
1709 sp = loader_build_fdpic_loadmap(info, sp);
1710 info->other_info = interp_info;
1711 if (interp_info) {
1712 interp_info->other_info = info;
1713 sp = loader_build_fdpic_loadmap(interp_info, sp);
1716 #endif
1718 u_platform = 0;
1719 k_platform = ELF_PLATFORM;
1720 if (k_platform) {
1721 size_t len = strlen(k_platform) + 1;
1722 if (STACK_GROWS_DOWN) {
1723 sp -= (len + n - 1) & ~(n - 1);
1724 u_platform = sp;
1725 /* FIXME - check return value of memcpy_to_target() for failure */
1726 memcpy_to_target(sp, k_platform, len);
1727 } else {
1728 memcpy_to_target(sp, k_platform, len);
1729 u_platform = sp;
1730 sp += len + 1;
1734 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1735 * the argv and envp pointers.
1737 if (STACK_GROWS_DOWN) {
1738 sp = QEMU_ALIGN_DOWN(sp, 16);
1739 } else {
1740 sp = QEMU_ALIGN_UP(sp, 16);
1744 * Generate 16 random bytes for userspace PRNG seeding (not
1745 * cryptically secure but it's not the aim of QEMU).
1747 for (i = 0; i < 16; i++) {
1748 k_rand_bytes[i] = rand();
1750 if (STACK_GROWS_DOWN) {
1751 sp -= 16;
1752 u_rand_bytes = sp;
1753 /* FIXME - check return value of memcpy_to_target() for failure */
1754 memcpy_to_target(sp, k_rand_bytes, 16);
1755 } else {
1756 memcpy_to_target(sp, k_rand_bytes, 16);
1757 u_rand_bytes = sp;
1758 sp += 16;
1761 size = (DLINFO_ITEMS + 1) * 2;
1762 if (k_platform)
1763 size += 2;
1764 #ifdef DLINFO_ARCH_ITEMS
1765 size += DLINFO_ARCH_ITEMS * 2;
1766 #endif
1767 #ifdef ELF_HWCAP2
1768 size += 2;
1769 #endif
1770 info->auxv_len = size * n;
1772 size += envc + argc + 2;
1773 size += 1; /* argc itself */
1774 size *= n;
1776 /* Allocate space and finalize stack alignment for entry now. */
1777 if (STACK_GROWS_DOWN) {
1778 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1779 sp = u_argc;
1780 } else {
1781 u_argc = sp;
1782 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1785 u_argv = u_argc + n;
1786 u_envp = u_argv + (argc + 1) * n;
1787 u_auxv = u_envp + (envc + 1) * n;
1788 info->saved_auxv = u_auxv;
1789 info->arg_start = u_argv;
1790 info->arg_end = u_argv + argc * n;
1792 /* This is correct because Linux defines
1793 * elf_addr_t as Elf32_Off / Elf64_Off
1795 #define NEW_AUX_ENT(id, val) do { \
1796 put_user_ual(id, u_auxv); u_auxv += n; \
1797 put_user_ual(val, u_auxv); u_auxv += n; \
1798 } while(0)
1800 #ifdef ARCH_DLINFO
1802 * ARCH_DLINFO must come first so platform specific code can enforce
1803 * special alignment requirements on the AUXV if necessary (eg. PPC).
1805 ARCH_DLINFO;
1806 #endif
1807 /* There must be exactly DLINFO_ITEMS entries here, or the assert
1808 * on info->auxv_len will trigger.
1810 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1811 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1812 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1813 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize())));
1814 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1815 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1816 NEW_AUX_ENT(AT_ENTRY, info->entry);
1817 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1818 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1819 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1820 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1821 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1822 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1823 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1824 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
1826 #ifdef ELF_HWCAP2
1827 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1828 #endif
1830 if (u_platform) {
1831 NEW_AUX_ENT(AT_PLATFORM, u_platform);
1833 NEW_AUX_ENT (AT_NULL, 0);
1834 #undef NEW_AUX_ENT
1836 /* Check that our initial calculation of the auxv length matches how much
1837 * we actually put into it.
1839 assert(info->auxv_len == u_auxv - info->saved_auxv);
1841 put_user_ual(argc, u_argc);
1843 p = info->arg_strings;
1844 for (i = 0; i < argc; ++i) {
1845 put_user_ual(p, u_argv);
1846 u_argv += n;
1847 p += target_strlen(p) + 1;
1849 put_user_ual(0, u_argv);
1851 p = info->env_strings;
1852 for (i = 0; i < envc; ++i) {
1853 put_user_ual(p, u_envp);
1854 u_envp += n;
1855 p += target_strlen(p) + 1;
1857 put_user_ual(0, u_envp);
1859 return sp;
1862 unsigned long init_guest_space(unsigned long host_start,
1863 unsigned long host_size,
1864 unsigned long guest_start,
1865 bool fixed)
1867 unsigned long current_start, aligned_start;
1868 int flags;
1870 assert(host_start || host_size);
1872 /* If just a starting address is given, then just verify that
1873 * address. */
1874 if (host_start && !host_size) {
1875 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1876 if (init_guest_commpage(host_start, host_size) != 1) {
1877 return (unsigned long)-1;
1879 #endif
1880 return host_start;
1883 /* Setup the initial flags and start address. */
1884 current_start = host_start & qemu_host_page_mask;
1885 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1886 if (fixed) {
1887 flags |= MAP_FIXED;
1890 /* Otherwise, a non-zero size region of memory needs to be mapped
1891 * and validated. */
1892 while (1) {
1893 unsigned long real_start, real_size, aligned_size;
1894 aligned_size = real_size = host_size;
1896 /* Do not use mmap_find_vma here because that is limited to the
1897 * guest address space. We are going to make the
1898 * guest address space fit whatever we're given.
1900 real_start = (unsigned long)
1901 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
1902 if (real_start == (unsigned long)-1) {
1903 return (unsigned long)-1;
1906 /* Check to see if the address is valid. */
1907 if (host_start && real_start != current_start) {
1908 goto try_again;
1911 /* Ensure the address is properly aligned. */
1912 if (real_start & ~qemu_host_page_mask) {
1913 /* Ideally, we adjust like
1915 * pages: [ ][ ][ ][ ][ ]
1916 * old: [ real ]
1917 * [ aligned ]
1918 * new: [ real ]
1919 * [ aligned ]
1921 * But if there is something else mapped right after it,
1922 * then obviously it won't have room to grow, and the
1923 * kernel will put the new larger real someplace else with
1924 * unknown alignment (if we made it to here, then
1925 * fixed=false). Which is why we grow real by a full page
1926 * size, instead of by part of one; so that even if we get
1927 * moved, we can still guarantee alignment. But this does
1928 * mean that there is a padding of < 1 page both before
1929 * and after the aligned range; the "after" could could
1930 * cause problems for ARM emulation where it could butt in
1931 * to where we need to put the commpage.
1933 munmap((void *)real_start, host_size);
1934 real_size = aligned_size + qemu_host_page_size;
1935 real_start = (unsigned long)
1936 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
1937 if (real_start == (unsigned long)-1) {
1938 return (unsigned long)-1;
1940 aligned_start = HOST_PAGE_ALIGN(real_start);
1941 } else {
1942 aligned_start = real_start;
1945 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1946 /* On 32-bit ARM, we need to also be able to map the commpage. */
1947 int valid = init_guest_commpage(aligned_start - guest_start,
1948 aligned_size + guest_start);
1949 if (valid == -1) {
1950 munmap((void *)real_start, real_size);
1951 return (unsigned long)-1;
1952 } else if (valid == 0) {
1953 goto try_again;
1955 #endif
1957 /* If nothing has said `return -1` or `goto try_again` yet,
1958 * then the address we have is good.
1960 break;
1962 try_again:
1963 /* That address didn't work. Unmap and try a different one.
1964 * The address the host picked because is typically right at
1965 * the top of the host address space and leaves the guest with
1966 * no usable address space. Resort to a linear search. We
1967 * already compensated for mmap_min_addr, so this should not
1968 * happen often. Probably means we got unlucky and host
1969 * address space randomization put a shared library somewhere
1970 * inconvenient.
1972 * This is probably a good strategy if host_start, but is
1973 * probably a bad strategy if not, which means we got here
1974 * because of trouble with ARM commpage setup.
1976 munmap((void *)real_start, real_size);
1977 current_start += qemu_host_page_size;
1978 if (host_start == current_start) {
1979 /* Theoretically possible if host doesn't have any suitably
1980 * aligned areas. Normally the first mmap will fail.
1982 return (unsigned long)-1;
1986 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
1988 return aligned_start;
1991 static void probe_guest_base(const char *image_name,
1992 abi_ulong loaddr, abi_ulong hiaddr)
1994 /* Probe for a suitable guest base address, if the user has not set
1995 * it explicitly, and set guest_base appropriately.
1996 * In case of error we will print a suitable message and exit.
1998 const char *errmsg;
1999 if (!have_guest_base && !reserved_va) {
2000 unsigned long host_start, real_start, host_size;
2002 /* Round addresses to page boundaries. */
2003 loaddr &= qemu_host_page_mask;
2004 hiaddr = HOST_PAGE_ALIGN(hiaddr);
2006 if (loaddr < mmap_min_addr) {
2007 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
2008 } else {
2009 host_start = loaddr;
2010 if (host_start != loaddr) {
2011 errmsg = "Address overflow loading ELF binary";
2012 goto exit_errmsg;
2015 host_size = hiaddr - loaddr;
2017 /* Setup the initial guest memory space with ranges gleaned from
2018 * the ELF image that is being loaded.
2020 real_start = init_guest_space(host_start, host_size, loaddr, false);
2021 if (real_start == (unsigned long)-1) {
2022 errmsg = "Unable to find space for application";
2023 goto exit_errmsg;
2025 guest_base = real_start - loaddr;
2027 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
2028 TARGET_ABI_FMT_lx " to 0x%lx\n",
2029 loaddr, real_start);
2031 return;
2033 exit_errmsg:
2034 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2035 exit(-1);
2039 /* Load an ELF image into the address space.
2041 IMAGE_NAME is the filename of the image, to use in error messages.
2042 IMAGE_FD is the open file descriptor for the image.
2044 BPRM_BUF is a copy of the beginning of the file; this of course
2045 contains the elf file header at offset 0. It is assumed that this
2046 buffer is sufficiently aligned to present no problems to the host
2047 in accessing data at aligned offsets within the buffer.
2049 On return: INFO values will be filled in, as necessary or available. */
2051 static void load_elf_image(const char *image_name, int image_fd,
2052 struct image_info *info, char **pinterp_name,
2053 char bprm_buf[BPRM_BUF_SIZE])
2055 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2056 struct elf_phdr *phdr;
2057 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2058 int i, retval;
2059 const char *errmsg;
2061 /* First of all, some simple consistency checks */
2062 errmsg = "Invalid ELF image for this architecture";
2063 if (!elf_check_ident(ehdr)) {
2064 goto exit_errmsg;
2066 bswap_ehdr(ehdr);
2067 if (!elf_check_ehdr(ehdr)) {
2068 goto exit_errmsg;
2071 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2072 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2073 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2074 } else {
2075 phdr = (struct elf_phdr *) alloca(i);
2076 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2077 if (retval != i) {
2078 goto exit_read;
2081 bswap_phdr(phdr, ehdr->e_phnum);
2083 #ifdef CONFIG_USE_FDPIC
2084 info->nsegs = 0;
2085 info->pt_dynamic_addr = 0;
2086 #endif
2088 mmap_lock();
2090 /* Find the maximum size of the image and allocate an appropriate
2091 amount of memory to handle that. */
2092 loaddr = -1, hiaddr = 0;
2093 for (i = 0; i < ehdr->e_phnum; ++i) {
2094 if (phdr[i].p_type == PT_LOAD) {
2095 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2096 if (a < loaddr) {
2097 loaddr = a;
2099 a = phdr[i].p_vaddr + phdr[i].p_memsz;
2100 if (a > hiaddr) {
2101 hiaddr = a;
2103 #ifdef CONFIG_USE_FDPIC
2104 ++info->nsegs;
2105 #endif
2109 load_addr = loaddr;
2110 if (ehdr->e_type == ET_DYN) {
2111 /* The image indicates that it can be loaded anywhere. Find a
2112 location that can hold the memory space required. If the
2113 image is pre-linked, LOADDR will be non-zero. Since we do
2114 not supply MAP_FIXED here we'll use that address if and
2115 only if it remains available. */
2116 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2117 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2118 -1, 0);
2119 if (load_addr == -1) {
2120 goto exit_perror;
2122 } else if (pinterp_name != NULL) {
2123 /* This is the main executable. Make sure that the low
2124 address does not conflict with MMAP_MIN_ADDR or the
2125 QEMU application itself. */
2126 probe_guest_base(image_name, loaddr, hiaddr);
2128 load_bias = load_addr - loaddr;
2130 #ifdef CONFIG_USE_FDPIC
2132 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2133 g_malloc(sizeof(*loadsegs) * info->nsegs);
2135 for (i = 0; i < ehdr->e_phnum; ++i) {
2136 switch (phdr[i].p_type) {
2137 case PT_DYNAMIC:
2138 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2139 break;
2140 case PT_LOAD:
2141 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2142 loadsegs->p_vaddr = phdr[i].p_vaddr;
2143 loadsegs->p_memsz = phdr[i].p_memsz;
2144 ++loadsegs;
2145 break;
2149 #endif
2151 info->load_bias = load_bias;
2152 info->load_addr = load_addr;
2153 info->entry = ehdr->e_entry + load_bias;
2154 info->start_code = -1;
2155 info->end_code = 0;
2156 info->start_data = -1;
2157 info->end_data = 0;
2158 info->brk = 0;
2159 info->elf_flags = ehdr->e_flags;
2161 for (i = 0; i < ehdr->e_phnum; i++) {
2162 struct elf_phdr *eppnt = phdr + i;
2163 if (eppnt->p_type == PT_LOAD) {
2164 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
2165 int elf_prot = 0;
2167 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
2168 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2169 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2171 vaddr = load_bias + eppnt->p_vaddr;
2172 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2173 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2175 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
2176 elf_prot, MAP_PRIVATE | MAP_FIXED,
2177 image_fd, eppnt->p_offset - vaddr_po);
2178 if (error == -1) {
2179 goto exit_perror;
2182 vaddr_ef = vaddr + eppnt->p_filesz;
2183 vaddr_em = vaddr + eppnt->p_memsz;
2185 /* If the load segment requests extra zeros (e.g. bss), map it. */
2186 if (vaddr_ef < vaddr_em) {
2187 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2190 /* Find the full program boundaries. */
2191 if (elf_prot & PROT_EXEC) {
2192 if (vaddr < info->start_code) {
2193 info->start_code = vaddr;
2195 if (vaddr_ef > info->end_code) {
2196 info->end_code = vaddr_ef;
2199 if (elf_prot & PROT_WRITE) {
2200 if (vaddr < info->start_data) {
2201 info->start_data = vaddr;
2203 if (vaddr_ef > info->end_data) {
2204 info->end_data = vaddr_ef;
2206 if (vaddr_em > info->brk) {
2207 info->brk = vaddr_em;
2210 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2211 char *interp_name;
2213 if (*pinterp_name) {
2214 errmsg = "Multiple PT_INTERP entries";
2215 goto exit_errmsg;
2217 interp_name = malloc(eppnt->p_filesz);
2218 if (!interp_name) {
2219 goto exit_perror;
2222 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2223 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2224 eppnt->p_filesz);
2225 } else {
2226 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2227 eppnt->p_offset);
2228 if (retval != eppnt->p_filesz) {
2229 goto exit_perror;
2232 if (interp_name[eppnt->p_filesz - 1] != 0) {
2233 errmsg = "Invalid PT_INTERP entry";
2234 goto exit_errmsg;
2236 *pinterp_name = interp_name;
2240 if (info->end_data == 0) {
2241 info->start_data = info->end_code;
2242 info->end_data = info->end_code;
2243 info->brk = info->end_code;
2246 if (qemu_log_enabled()) {
2247 load_symbols(ehdr, image_fd, load_bias);
2250 mmap_unlock();
2252 close(image_fd);
2253 return;
2255 exit_read:
2256 if (retval >= 0) {
2257 errmsg = "Incomplete read of file header";
2258 goto exit_errmsg;
2260 exit_perror:
2261 errmsg = strerror(errno);
2262 exit_errmsg:
2263 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2264 exit(-1);
2267 static void load_elf_interp(const char *filename, struct image_info *info,
2268 char bprm_buf[BPRM_BUF_SIZE])
2270 int fd, retval;
2272 fd = open(path(filename), O_RDONLY);
2273 if (fd < 0) {
2274 goto exit_perror;
2277 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2278 if (retval < 0) {
2279 goto exit_perror;
2281 if (retval < BPRM_BUF_SIZE) {
2282 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2285 load_elf_image(filename, fd, info, NULL, bprm_buf);
2286 return;
2288 exit_perror:
2289 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2290 exit(-1);
2293 static int symfind(const void *s0, const void *s1)
2295 target_ulong addr = *(target_ulong *)s0;
2296 struct elf_sym *sym = (struct elf_sym *)s1;
2297 int result = 0;
2298 if (addr < sym->st_value) {
2299 result = -1;
2300 } else if (addr >= sym->st_value + sym->st_size) {
2301 result = 1;
2303 return result;
2306 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2308 #if ELF_CLASS == ELFCLASS32
2309 struct elf_sym *syms = s->disas_symtab.elf32;
2310 #else
2311 struct elf_sym *syms = s->disas_symtab.elf64;
2312 #endif
2314 // binary search
2315 struct elf_sym *sym;
2317 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2318 if (sym != NULL) {
2319 return s->disas_strtab + sym->st_name;
2322 return "";
2325 /* FIXME: This should use elf_ops.h */
2326 static int symcmp(const void *s0, const void *s1)
2328 struct elf_sym *sym0 = (struct elf_sym *)s0;
2329 struct elf_sym *sym1 = (struct elf_sym *)s1;
2330 return (sym0->st_value < sym1->st_value)
2331 ? -1
2332 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2335 /* Best attempt to load symbols from this ELF object. */
2336 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2338 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2339 uint64_t segsz;
2340 struct elf_shdr *shdr;
2341 char *strings = NULL;
2342 struct syminfo *s = NULL;
2343 struct elf_sym *new_syms, *syms = NULL;
2345 shnum = hdr->e_shnum;
2346 i = shnum * sizeof(struct elf_shdr);
2347 shdr = (struct elf_shdr *)alloca(i);
2348 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2349 return;
2352 bswap_shdr(shdr, shnum);
2353 for (i = 0; i < shnum; ++i) {
2354 if (shdr[i].sh_type == SHT_SYMTAB) {
2355 sym_idx = i;
2356 str_idx = shdr[i].sh_link;
2357 goto found;
2361 /* There will be no symbol table if the file was stripped. */
2362 return;
2364 found:
2365 /* Now know where the strtab and symtab are. Snarf them. */
2366 s = g_try_new(struct syminfo, 1);
2367 if (!s) {
2368 goto give_up;
2371 segsz = shdr[str_idx].sh_size;
2372 s->disas_strtab = strings = g_try_malloc(segsz);
2373 if (!strings ||
2374 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2375 goto give_up;
2378 segsz = shdr[sym_idx].sh_size;
2379 syms = g_try_malloc(segsz);
2380 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2381 goto give_up;
2384 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2385 /* Implausibly large symbol table: give up rather than ploughing
2386 * on with the number of symbols calculation overflowing
2388 goto give_up;
2390 nsyms = segsz / sizeof(struct elf_sym);
2391 for (i = 0; i < nsyms; ) {
2392 bswap_sym(syms + i);
2393 /* Throw away entries which we do not need. */
2394 if (syms[i].st_shndx == SHN_UNDEF
2395 || syms[i].st_shndx >= SHN_LORESERVE
2396 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2397 if (i < --nsyms) {
2398 syms[i] = syms[nsyms];
2400 } else {
2401 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2402 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2403 syms[i].st_value &= ~(target_ulong)1;
2404 #endif
2405 syms[i].st_value += load_bias;
2406 i++;
2410 /* No "useful" symbol. */
2411 if (nsyms == 0) {
2412 goto give_up;
2415 /* Attempt to free the storage associated with the local symbols
2416 that we threw away. Whether or not this has any effect on the
2417 memory allocation depends on the malloc implementation and how
2418 many symbols we managed to discard. */
2419 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2420 if (new_syms == NULL) {
2421 goto give_up;
2423 syms = new_syms;
2425 qsort(syms, nsyms, sizeof(*syms), symcmp);
2427 s->disas_num_syms = nsyms;
2428 #if ELF_CLASS == ELFCLASS32
2429 s->disas_symtab.elf32 = syms;
2430 #else
2431 s->disas_symtab.elf64 = syms;
2432 #endif
2433 s->lookup_symbol = lookup_symbolxx;
2434 s->next = syminfos;
2435 syminfos = s;
2437 return;
2439 give_up:
2440 g_free(s);
2441 g_free(strings);
2442 g_free(syms);
2445 uint32_t get_elf_eflags(int fd)
2447 struct elfhdr ehdr;
2448 off_t offset;
2449 int ret;
2451 /* Read ELF header */
2452 offset = lseek(fd, 0, SEEK_SET);
2453 if (offset == (off_t) -1) {
2454 return 0;
2456 ret = read(fd, &ehdr, sizeof(ehdr));
2457 if (ret < sizeof(ehdr)) {
2458 return 0;
2460 offset = lseek(fd, offset, SEEK_SET);
2461 if (offset == (off_t) -1) {
2462 return 0;
2465 /* Check ELF signature */
2466 if (!elf_check_ident(&ehdr)) {
2467 return 0;
2470 /* check header */
2471 bswap_ehdr(&ehdr);
2472 if (!elf_check_ehdr(&ehdr)) {
2473 return 0;
2476 /* return architecture id */
2477 return ehdr.e_flags;
2480 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2482 struct image_info interp_info;
2483 struct elfhdr elf_ex;
2484 char *elf_interpreter = NULL;
2485 char *scratch;
2487 info->start_mmap = (abi_ulong)ELF_START_MMAP;
2489 load_elf_image(bprm->filename, bprm->fd, info,
2490 &elf_interpreter, bprm->buf);
2492 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2493 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2494 when we load the interpreter. */
2495 elf_ex = *(struct elfhdr *)bprm->buf;
2497 /* Do this so that we can load the interpreter, if need be. We will
2498 change some of these later */
2499 bprm->p = setup_arg_pages(bprm, info);
2501 scratch = g_new0(char, TARGET_PAGE_SIZE);
2502 if (STACK_GROWS_DOWN) {
2503 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2504 bprm->p, info->stack_limit);
2505 info->file_string = bprm->p;
2506 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2507 bprm->p, info->stack_limit);
2508 info->env_strings = bprm->p;
2509 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2510 bprm->p, info->stack_limit);
2511 info->arg_strings = bprm->p;
2512 } else {
2513 info->arg_strings = bprm->p;
2514 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2515 bprm->p, info->stack_limit);
2516 info->env_strings = bprm->p;
2517 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2518 bprm->p, info->stack_limit);
2519 info->file_string = bprm->p;
2520 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2521 bprm->p, info->stack_limit);
2524 g_free(scratch);
2526 if (!bprm->p) {
2527 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2528 exit(-1);
2531 if (elf_interpreter) {
2532 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2534 /* If the program interpreter is one of these two, then assume
2535 an iBCS2 image. Otherwise assume a native linux image. */
2537 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2538 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2539 info->personality = PER_SVR4;
2541 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2542 and some applications "depend" upon this behavior. Since
2543 we do not have the power to recompile these, we emulate
2544 the SVr4 behavior. Sigh. */
2545 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2546 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2550 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2551 info, (elf_interpreter ? &interp_info : NULL));
2552 info->start_stack = bprm->p;
2554 /* If we have an interpreter, set that as the program's entry point.
2555 Copy the load_bias as well, to help PPC64 interpret the entry
2556 point as a function descriptor. Do this after creating elf tables
2557 so that we copy the original program entry point into the AUXV. */
2558 if (elf_interpreter) {
2559 info->load_bias = interp_info.load_bias;
2560 info->entry = interp_info.entry;
2561 free(elf_interpreter);
2564 #ifdef USE_ELF_CORE_DUMP
2565 bprm->core_dump = &elf_core_dump;
2566 #endif
2568 return 0;
2571 #ifdef USE_ELF_CORE_DUMP
2573 * Definitions to generate Intel SVR4-like core files.
2574 * These mostly have the same names as the SVR4 types with "target_elf_"
2575 * tacked on the front to prevent clashes with linux definitions,
2576 * and the typedef forms have been avoided. This is mostly like
2577 * the SVR4 structure, but more Linuxy, with things that Linux does
2578 * not support and which gdb doesn't really use excluded.
2580 * Fields we don't dump (their contents is zero) in linux-user qemu
2581 * are marked with XXX.
2583 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2585 * Porting ELF coredump for target is (quite) simple process. First you
2586 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2587 * the target resides):
2589 * #define USE_ELF_CORE_DUMP
2591 * Next you define type of register set used for dumping. ELF specification
2592 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2594 * typedef <target_regtype> target_elf_greg_t;
2595 * #define ELF_NREG <number of registers>
2596 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2598 * Last step is to implement target specific function that copies registers
2599 * from given cpu into just specified register set. Prototype is:
2601 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2602 * const CPUArchState *env);
2604 * Parameters:
2605 * regs - copy register values into here (allocated and zeroed by caller)
2606 * env - copy registers from here
2608 * Example for ARM target is provided in this file.
2611 /* An ELF note in memory */
2612 struct memelfnote {
2613 const char *name;
2614 size_t namesz;
2615 size_t namesz_rounded;
2616 int type;
2617 size_t datasz;
2618 size_t datasz_rounded;
2619 void *data;
2620 size_t notesz;
2623 struct target_elf_siginfo {
2624 abi_int si_signo; /* signal number */
2625 abi_int si_code; /* extra code */
2626 abi_int si_errno; /* errno */
2629 struct target_elf_prstatus {
2630 struct target_elf_siginfo pr_info; /* Info associated with signal */
2631 abi_short pr_cursig; /* Current signal */
2632 abi_ulong pr_sigpend; /* XXX */
2633 abi_ulong pr_sighold; /* XXX */
2634 target_pid_t pr_pid;
2635 target_pid_t pr_ppid;
2636 target_pid_t pr_pgrp;
2637 target_pid_t pr_sid;
2638 struct target_timeval pr_utime; /* XXX User time */
2639 struct target_timeval pr_stime; /* XXX System time */
2640 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2641 struct target_timeval pr_cstime; /* XXX Cumulative system time */
2642 target_elf_gregset_t pr_reg; /* GP registers */
2643 abi_int pr_fpvalid; /* XXX */
2646 #define ELF_PRARGSZ (80) /* Number of chars for args */
2648 struct target_elf_prpsinfo {
2649 char pr_state; /* numeric process state */
2650 char pr_sname; /* char for pr_state */
2651 char pr_zomb; /* zombie */
2652 char pr_nice; /* nice val */
2653 abi_ulong pr_flag; /* flags */
2654 target_uid_t pr_uid;
2655 target_gid_t pr_gid;
2656 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2657 /* Lots missing */
2658 char pr_fname[16]; /* filename of executable */
2659 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2662 /* Here is the structure in which status of each thread is captured. */
2663 struct elf_thread_status {
2664 QTAILQ_ENTRY(elf_thread_status) ets_link;
2665 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
2666 #if 0
2667 elf_fpregset_t fpu; /* NT_PRFPREG */
2668 struct task_struct *thread;
2669 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2670 #endif
2671 struct memelfnote notes[1];
2672 int num_notes;
2675 struct elf_note_info {
2676 struct memelfnote *notes;
2677 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2678 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
2680 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
2681 #if 0
2683 * Current version of ELF coredump doesn't support
2684 * dumping fp regs etc.
2686 elf_fpregset_t *fpu;
2687 elf_fpxregset_t *xfpu;
2688 int thread_status_size;
2689 #endif
2690 int notes_size;
2691 int numnote;
2694 struct vm_area_struct {
2695 target_ulong vma_start; /* start vaddr of memory region */
2696 target_ulong vma_end; /* end vaddr of memory region */
2697 abi_ulong vma_flags; /* protection etc. flags for the region */
2698 QTAILQ_ENTRY(vm_area_struct) vma_link;
2701 struct mm_struct {
2702 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2703 int mm_count; /* number of mappings */
2706 static struct mm_struct *vma_init(void);
2707 static void vma_delete(struct mm_struct *);
2708 static int vma_add_mapping(struct mm_struct *, target_ulong,
2709 target_ulong, abi_ulong);
2710 static int vma_get_mapping_count(const struct mm_struct *);
2711 static struct vm_area_struct *vma_first(const struct mm_struct *);
2712 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2713 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2714 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2715 unsigned long flags);
2717 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2718 static void fill_note(struct memelfnote *, const char *, int,
2719 unsigned int, void *);
2720 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2721 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2722 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2723 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2724 static size_t note_size(const struct memelfnote *);
2725 static void free_note_info(struct elf_note_info *);
2726 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2727 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2728 static int core_dump_filename(const TaskState *, char *, size_t);
2730 static int dump_write(int, const void *, size_t);
2731 static int write_note(struct memelfnote *, int);
2732 static int write_note_info(struct elf_note_info *, int);
2734 #ifdef BSWAP_NEEDED
2735 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2737 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2738 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2739 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2740 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2741 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2742 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2743 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2744 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2745 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2746 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2747 /* cpu times are not filled, so we skip them */
2748 /* regs should be in correct format already */
2749 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2752 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2754 psinfo->pr_flag = tswapal(psinfo->pr_flag);
2755 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2756 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2757 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2758 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2759 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2760 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2763 static void bswap_note(struct elf_note *en)
2765 bswap32s(&en->n_namesz);
2766 bswap32s(&en->n_descsz);
2767 bswap32s(&en->n_type);
2769 #else
2770 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2771 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2772 static inline void bswap_note(struct elf_note *en) { }
2773 #endif /* BSWAP_NEEDED */
2776 * Minimal support for linux memory regions. These are needed
2777 * when we are finding out what memory exactly belongs to
2778 * emulated process. No locks needed here, as long as
2779 * thread that received the signal is stopped.
2782 static struct mm_struct *vma_init(void)
2784 struct mm_struct *mm;
2786 if ((mm = g_malloc(sizeof (*mm))) == NULL)
2787 return (NULL);
2789 mm->mm_count = 0;
2790 QTAILQ_INIT(&mm->mm_mmap);
2792 return (mm);
2795 static void vma_delete(struct mm_struct *mm)
2797 struct vm_area_struct *vma;
2799 while ((vma = vma_first(mm)) != NULL) {
2800 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2801 g_free(vma);
2803 g_free(mm);
2806 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2807 target_ulong end, abi_ulong flags)
2809 struct vm_area_struct *vma;
2811 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2812 return (-1);
2814 vma->vma_start = start;
2815 vma->vma_end = end;
2816 vma->vma_flags = flags;
2818 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2819 mm->mm_count++;
2821 return (0);
2824 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2826 return (QTAILQ_FIRST(&mm->mm_mmap));
2829 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2831 return (QTAILQ_NEXT(vma, vma_link));
2834 static int vma_get_mapping_count(const struct mm_struct *mm)
2836 return (mm->mm_count);
2840 * Calculate file (dump) size of given memory region.
2842 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2844 /* if we cannot even read the first page, skip it */
2845 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2846 return (0);
2849 * Usually we don't dump executable pages as they contain
2850 * non-writable code that debugger can read directly from
2851 * target library etc. However, thread stacks are marked
2852 * also executable so we read in first page of given region
2853 * and check whether it contains elf header. If there is
2854 * no elf header, we dump it.
2856 if (vma->vma_flags & PROT_EXEC) {
2857 char page[TARGET_PAGE_SIZE];
2859 copy_from_user(page, vma->vma_start, sizeof (page));
2860 if ((page[EI_MAG0] == ELFMAG0) &&
2861 (page[EI_MAG1] == ELFMAG1) &&
2862 (page[EI_MAG2] == ELFMAG2) &&
2863 (page[EI_MAG3] == ELFMAG3)) {
2865 * Mappings are possibly from ELF binary. Don't dump
2866 * them.
2868 return (0);
2872 return (vma->vma_end - vma->vma_start);
2875 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2876 unsigned long flags)
2878 struct mm_struct *mm = (struct mm_struct *)priv;
2880 vma_add_mapping(mm, start, end, flags);
2881 return (0);
2884 static void fill_note(struct memelfnote *note, const char *name, int type,
2885 unsigned int sz, void *data)
2887 unsigned int namesz;
2889 namesz = strlen(name) + 1;
2890 note->name = name;
2891 note->namesz = namesz;
2892 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2893 note->type = type;
2894 note->datasz = sz;
2895 note->datasz_rounded = roundup(sz, sizeof (int32_t));
2897 note->data = data;
2900 * We calculate rounded up note size here as specified by
2901 * ELF document.
2903 note->notesz = sizeof (struct elf_note) +
2904 note->namesz_rounded + note->datasz_rounded;
2907 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
2908 uint32_t flags)
2910 (void) memset(elf, 0, sizeof(*elf));
2912 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2913 elf->e_ident[EI_CLASS] = ELF_CLASS;
2914 elf->e_ident[EI_DATA] = ELF_DATA;
2915 elf->e_ident[EI_VERSION] = EV_CURRENT;
2916 elf->e_ident[EI_OSABI] = ELF_OSABI;
2918 elf->e_type = ET_CORE;
2919 elf->e_machine = machine;
2920 elf->e_version = EV_CURRENT;
2921 elf->e_phoff = sizeof(struct elfhdr);
2922 elf->e_flags = flags;
2923 elf->e_ehsize = sizeof(struct elfhdr);
2924 elf->e_phentsize = sizeof(struct elf_phdr);
2925 elf->e_phnum = segs;
2927 bswap_ehdr(elf);
2930 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2932 phdr->p_type = PT_NOTE;
2933 phdr->p_offset = offset;
2934 phdr->p_vaddr = 0;
2935 phdr->p_paddr = 0;
2936 phdr->p_filesz = sz;
2937 phdr->p_memsz = 0;
2938 phdr->p_flags = 0;
2939 phdr->p_align = 0;
2941 bswap_phdr(phdr, 1);
2944 static size_t note_size(const struct memelfnote *note)
2946 return (note->notesz);
2949 static void fill_prstatus(struct target_elf_prstatus *prstatus,
2950 const TaskState *ts, int signr)
2952 (void) memset(prstatus, 0, sizeof (*prstatus));
2953 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2954 prstatus->pr_pid = ts->ts_tid;
2955 prstatus->pr_ppid = getppid();
2956 prstatus->pr_pgrp = getpgrp();
2957 prstatus->pr_sid = getsid(0);
2959 bswap_prstatus(prstatus);
2962 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
2964 char *base_filename;
2965 unsigned int i, len;
2967 (void) memset(psinfo, 0, sizeof (*psinfo));
2969 len = ts->info->arg_end - ts->info->arg_start;
2970 if (len >= ELF_PRARGSZ)
2971 len = ELF_PRARGSZ - 1;
2972 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2973 return -EFAULT;
2974 for (i = 0; i < len; i++)
2975 if (psinfo->pr_psargs[i] == 0)
2976 psinfo->pr_psargs[i] = ' ';
2977 psinfo->pr_psargs[len] = 0;
2979 psinfo->pr_pid = getpid();
2980 psinfo->pr_ppid = getppid();
2981 psinfo->pr_pgrp = getpgrp();
2982 psinfo->pr_sid = getsid(0);
2983 psinfo->pr_uid = getuid();
2984 psinfo->pr_gid = getgid();
2986 base_filename = g_path_get_basename(ts->bprm->filename);
2988 * Using strncpy here is fine: at max-length,
2989 * this field is not NUL-terminated.
2991 (void) strncpy(psinfo->pr_fname, base_filename,
2992 sizeof(psinfo->pr_fname));
2994 g_free(base_filename);
2995 bswap_psinfo(psinfo);
2996 return (0);
2999 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3001 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3002 elf_addr_t orig_auxv = auxv;
3003 void *ptr;
3004 int len = ts->info->auxv_len;
3007 * Auxiliary vector is stored in target process stack. It contains
3008 * {type, value} pairs that we need to dump into note. This is not
3009 * strictly necessary but we do it here for sake of completeness.
3012 /* read in whole auxv vector and copy it to memelfnote */
3013 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3014 if (ptr != NULL) {
3015 fill_note(note, "CORE", NT_AUXV, len, ptr);
3016 unlock_user(ptr, auxv, len);
3021 * Constructs name of coredump file. We have following convention
3022 * for the name:
3023 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3025 * Returns 0 in case of success, -1 otherwise (errno is set).
3027 static int core_dump_filename(const TaskState *ts, char *buf,
3028 size_t bufsize)
3030 char timestamp[64];
3031 char *base_filename = NULL;
3032 struct timeval tv;
3033 struct tm tm;
3035 assert(bufsize >= PATH_MAX);
3037 if (gettimeofday(&tv, NULL) < 0) {
3038 (void) fprintf(stderr, "unable to get current timestamp: %s",
3039 strerror(errno));
3040 return (-1);
3043 base_filename = g_path_get_basename(ts->bprm->filename);
3044 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
3045 localtime_r(&tv.tv_sec, &tm));
3046 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3047 base_filename, timestamp, (int)getpid());
3048 g_free(base_filename);
3050 return (0);
3053 static int dump_write(int fd, const void *ptr, size_t size)
3055 const char *bufp = (const char *)ptr;
3056 ssize_t bytes_written, bytes_left;
3057 struct rlimit dumpsize;
3058 off_t pos;
3060 bytes_written = 0;
3061 getrlimit(RLIMIT_CORE, &dumpsize);
3062 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3063 if (errno == ESPIPE) { /* not a seekable stream */
3064 bytes_left = size;
3065 } else {
3066 return pos;
3068 } else {
3069 if (dumpsize.rlim_cur <= pos) {
3070 return -1;
3071 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3072 bytes_left = size;
3073 } else {
3074 size_t limit_left=dumpsize.rlim_cur - pos;
3075 bytes_left = limit_left >= size ? size : limit_left ;
3080 * In normal conditions, single write(2) should do but
3081 * in case of socket etc. this mechanism is more portable.
3083 do {
3084 bytes_written = write(fd, bufp, bytes_left);
3085 if (bytes_written < 0) {
3086 if (errno == EINTR)
3087 continue;
3088 return (-1);
3089 } else if (bytes_written == 0) { /* eof */
3090 return (-1);
3092 bufp += bytes_written;
3093 bytes_left -= bytes_written;
3094 } while (bytes_left > 0);
3096 return (0);
3099 static int write_note(struct memelfnote *men, int fd)
3101 struct elf_note en;
3103 en.n_namesz = men->namesz;
3104 en.n_type = men->type;
3105 en.n_descsz = men->datasz;
3107 bswap_note(&en);
3109 if (dump_write(fd, &en, sizeof(en)) != 0)
3110 return (-1);
3111 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3112 return (-1);
3113 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3114 return (-1);
3116 return (0);
3119 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3121 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3122 TaskState *ts = (TaskState *)cpu->opaque;
3123 struct elf_thread_status *ets;
3125 ets = g_malloc0(sizeof (*ets));
3126 ets->num_notes = 1; /* only prstatus is dumped */
3127 fill_prstatus(&ets->prstatus, ts, 0);
3128 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3129 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3130 &ets->prstatus);
3132 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3134 info->notes_size += note_size(&ets->notes[0]);
3137 static void init_note_info(struct elf_note_info *info)
3139 /* Initialize the elf_note_info structure so that it is at
3140 * least safe to call free_note_info() on it. Must be
3141 * called before calling fill_note_info().
3143 memset(info, 0, sizeof (*info));
3144 QTAILQ_INIT(&info->thread_list);
3147 static int fill_note_info(struct elf_note_info *info,
3148 long signr, const CPUArchState *env)
3150 #define NUMNOTES 3
3151 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3152 TaskState *ts = (TaskState *)cpu->opaque;
3153 int i;
3155 info->notes = g_new0(struct memelfnote, NUMNOTES);
3156 if (info->notes == NULL)
3157 return (-ENOMEM);
3158 info->prstatus = g_malloc0(sizeof (*info->prstatus));
3159 if (info->prstatus == NULL)
3160 return (-ENOMEM);
3161 info->psinfo = g_malloc0(sizeof (*info->psinfo));
3162 if (info->prstatus == NULL)
3163 return (-ENOMEM);
3166 * First fill in status (and registers) of current thread
3167 * including process info & aux vector.
3169 fill_prstatus(info->prstatus, ts, signr);
3170 elf_core_copy_regs(&info->prstatus->pr_reg, env);
3171 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3172 sizeof (*info->prstatus), info->prstatus);
3173 fill_psinfo(info->psinfo, ts);
3174 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3175 sizeof (*info->psinfo), info->psinfo);
3176 fill_auxv_note(&info->notes[2], ts);
3177 info->numnote = 3;
3179 info->notes_size = 0;
3180 for (i = 0; i < info->numnote; i++)
3181 info->notes_size += note_size(&info->notes[i]);
3183 /* read and fill status of all threads */
3184 cpu_list_lock();
3185 CPU_FOREACH(cpu) {
3186 if (cpu == thread_cpu) {
3187 continue;
3189 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3191 cpu_list_unlock();
3193 return (0);
3196 static void free_note_info(struct elf_note_info *info)
3198 struct elf_thread_status *ets;
3200 while (!QTAILQ_EMPTY(&info->thread_list)) {
3201 ets = QTAILQ_FIRST(&info->thread_list);
3202 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3203 g_free(ets);
3206 g_free(info->prstatus);
3207 g_free(info->psinfo);
3208 g_free(info->notes);
3211 static int write_note_info(struct elf_note_info *info, int fd)
3213 struct elf_thread_status *ets;
3214 int i, error = 0;
3216 /* write prstatus, psinfo and auxv for current thread */
3217 for (i = 0; i < info->numnote; i++)
3218 if ((error = write_note(&info->notes[i], fd)) != 0)
3219 return (error);
3221 /* write prstatus for each thread */
3222 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3223 if ((error = write_note(&ets->notes[0], fd)) != 0)
3224 return (error);
3227 return (0);
3231 * Write out ELF coredump.
3233 * See documentation of ELF object file format in:
3234 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3236 * Coredump format in linux is following:
3238 * 0 +----------------------+ \
3239 * | ELF header | ET_CORE |
3240 * +----------------------+ |
3241 * | ELF program headers | |--- headers
3242 * | - NOTE section | |
3243 * | - PT_LOAD sections | |
3244 * +----------------------+ /
3245 * | NOTEs: |
3246 * | - NT_PRSTATUS |
3247 * | - NT_PRSINFO |
3248 * | - NT_AUXV |
3249 * +----------------------+ <-- aligned to target page
3250 * | Process memory dump |
3251 * : :
3252 * . .
3253 * : :
3254 * | |
3255 * +----------------------+
3257 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3258 * NT_PRSINFO -> struct elf_prpsinfo
3259 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3261 * Format follows System V format as close as possible. Current
3262 * version limitations are as follows:
3263 * - no floating point registers are dumped
3265 * Function returns 0 in case of success, negative errno otherwise.
3267 * TODO: make this work also during runtime: it should be
3268 * possible to force coredump from running process and then
3269 * continue processing. For example qemu could set up SIGUSR2
3270 * handler (provided that target process haven't registered
3271 * handler for that) that does the dump when signal is received.
3273 static int elf_core_dump(int signr, const CPUArchState *env)
3275 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3276 const TaskState *ts = (const TaskState *)cpu->opaque;
3277 struct vm_area_struct *vma = NULL;
3278 char corefile[PATH_MAX];
3279 struct elf_note_info info;
3280 struct elfhdr elf;
3281 struct elf_phdr phdr;
3282 struct rlimit dumpsize;
3283 struct mm_struct *mm = NULL;
3284 off_t offset = 0, data_offset = 0;
3285 int segs = 0;
3286 int fd = -1;
3288 init_note_info(&info);
3290 errno = 0;
3291 getrlimit(RLIMIT_CORE, &dumpsize);
3292 if (dumpsize.rlim_cur == 0)
3293 return 0;
3295 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3296 return (-errno);
3298 if ((fd = open(corefile, O_WRONLY | O_CREAT,
3299 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3300 return (-errno);
3303 * Walk through target process memory mappings and
3304 * set up structure containing this information. After
3305 * this point vma_xxx functions can be used.
3307 if ((mm = vma_init()) == NULL)
3308 goto out;
3310 walk_memory_regions(mm, vma_walker);
3311 segs = vma_get_mapping_count(mm);
3314 * Construct valid coredump ELF header. We also
3315 * add one more segment for notes.
3317 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3318 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3319 goto out;
3321 /* fill in the in-memory version of notes */
3322 if (fill_note_info(&info, signr, env) < 0)
3323 goto out;
3325 offset += sizeof (elf); /* elf header */
3326 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3328 /* write out notes program header */
3329 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3331 offset += info.notes_size;
3332 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3333 goto out;
3336 * ELF specification wants data to start at page boundary so
3337 * we align it here.
3339 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3342 * Write program headers for memory regions mapped in
3343 * the target process.
3345 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3346 (void) memset(&phdr, 0, sizeof (phdr));
3348 phdr.p_type = PT_LOAD;
3349 phdr.p_offset = offset;
3350 phdr.p_vaddr = vma->vma_start;
3351 phdr.p_paddr = 0;
3352 phdr.p_filesz = vma_dump_size(vma);
3353 offset += phdr.p_filesz;
3354 phdr.p_memsz = vma->vma_end - vma->vma_start;
3355 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3356 if (vma->vma_flags & PROT_WRITE)
3357 phdr.p_flags |= PF_W;
3358 if (vma->vma_flags & PROT_EXEC)
3359 phdr.p_flags |= PF_X;
3360 phdr.p_align = ELF_EXEC_PAGESIZE;
3362 bswap_phdr(&phdr, 1);
3363 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3364 goto out;
3369 * Next we write notes just after program headers. No
3370 * alignment needed here.
3372 if (write_note_info(&info, fd) < 0)
3373 goto out;
3375 /* align data to page boundary */
3376 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3377 goto out;
3380 * Finally we can dump process memory into corefile as well.
3382 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3383 abi_ulong addr;
3384 abi_ulong end;
3386 end = vma->vma_start + vma_dump_size(vma);
3388 for (addr = vma->vma_start; addr < end;
3389 addr += TARGET_PAGE_SIZE) {
3390 char page[TARGET_PAGE_SIZE];
3391 int error;
3394 * Read in page from target process memory and
3395 * write it to coredump file.
3397 error = copy_from_user(page, addr, sizeof (page));
3398 if (error != 0) {
3399 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3400 addr);
3401 errno = -error;
3402 goto out;
3404 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3405 goto out;
3409 out:
3410 free_note_info(&info);
3411 if (mm != NULL)
3412 vma_delete(mm);
3413 (void) close(fd);
3415 if (errno != 0)
3416 return (-errno);
3417 return (0);
3419 #endif /* USE_ELF_CORE_DUMP */
3421 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3423 init_thread(regs, infop);