rfifolock: no need to get thread identifier when nesting
[qemu/ar7.git] / hw / timer / mc146818rtc.c
blob2ac0fd3e489a46d35cc2c5bc8e554a1e7e5d69c8
1 /*
2 * QEMU MC146818 RTC emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "qemu/osdep.h"
25 #include "config-target.h"
26 #include "qemu/cutils.h"
27 #include "qemu/bcd.h"
28 #include "hw/hw.h"
29 #include "qemu/timer.h"
30 #include "sysemu/sysemu.h"
31 #include "hw/timer/mc146818rtc.h"
32 #include "qapi/visitor.h"
33 #include "qapi-event.h"
34 #include "qmp-commands.h"
36 #ifdef TARGET_I386
37 #include "hw/i386/apic.h"
38 #endif
40 //#define DEBUG_CMOS
41 //#define DEBUG_COALESCED
43 #ifdef DEBUG_CMOS
44 # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
45 #else
46 # define CMOS_DPRINTF(format, ...) do { } while (0)
47 #endif
49 #ifdef DEBUG_COALESCED
50 # define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__)
51 #else
52 # define DPRINTF_C(format, ...) do { } while (0)
53 #endif
55 #define SEC_PER_MIN 60
56 #define MIN_PER_HOUR 60
57 #define SEC_PER_HOUR 3600
58 #define HOUR_PER_DAY 24
59 #define SEC_PER_DAY 86400
61 #define RTC_REINJECT_ON_ACK_COUNT 20
62 #define RTC_CLOCK_RATE 32768
63 #define UIP_HOLD_LENGTH (8 * NANOSECONDS_PER_SECOND / 32768)
65 #define MC146818_RTC(obj) OBJECT_CHECK(RTCState, (obj), TYPE_MC146818_RTC)
67 typedef struct RTCState {
68 ISADevice parent_obj;
70 MemoryRegion io;
71 uint8_t cmos_data[128];
72 uint8_t cmos_index;
73 int32_t base_year;
74 uint64_t base_rtc;
75 uint64_t last_update;
76 int64_t offset;
77 qemu_irq irq;
78 int it_shift;
79 /* periodic timer */
80 QEMUTimer *periodic_timer;
81 int64_t next_periodic_time;
82 /* update-ended timer */
83 QEMUTimer *update_timer;
84 uint64_t next_alarm_time;
85 uint16_t irq_reinject_on_ack_count;
86 uint32_t irq_coalesced;
87 uint32_t period;
88 QEMUTimer *coalesced_timer;
89 Notifier clock_reset_notifier;
90 LostTickPolicy lost_tick_policy;
91 Notifier suspend_notifier;
92 QLIST_ENTRY(RTCState) link;
93 } RTCState;
95 static void rtc_set_time(RTCState *s);
96 static void rtc_update_time(RTCState *s);
97 static void rtc_set_cmos(RTCState *s, const struct tm *tm);
98 static inline int rtc_from_bcd(RTCState *s, int a);
99 static uint64_t get_next_alarm(RTCState *s);
101 static inline bool rtc_running(RTCState *s)
103 return (!(s->cmos_data[RTC_REG_B] & REG_B_SET) &&
104 (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20);
107 static uint64_t get_guest_rtc_ns(RTCState *s)
109 uint64_t guest_rtc;
110 uint64_t guest_clock = qemu_clock_get_ns(rtc_clock);
112 guest_rtc = s->base_rtc * NANOSECONDS_PER_SECOND +
113 guest_clock - s->last_update + s->offset;
114 return guest_rtc;
117 #ifdef TARGET_I386
118 static void rtc_coalesced_timer_update(RTCState *s)
120 if (s->irq_coalesced == 0) {
121 timer_del(s->coalesced_timer);
122 } else {
123 /* divide each RTC interval to 2 - 8 smaller intervals */
124 int c = MIN(s->irq_coalesced, 7) + 1;
125 int64_t next_clock = qemu_clock_get_ns(rtc_clock) +
126 muldiv64(s->period / c, NANOSECONDS_PER_SECOND, RTC_CLOCK_RATE);
127 timer_mod(s->coalesced_timer, next_clock);
131 static void rtc_coalesced_timer(void *opaque)
133 RTCState *s = opaque;
135 if (s->irq_coalesced != 0) {
136 apic_reset_irq_delivered();
137 s->cmos_data[RTC_REG_C] |= 0xc0;
138 DPRINTF_C("cmos: injecting from timer\n");
139 qemu_irq_raise(s->irq);
140 if (apic_get_irq_delivered()) {
141 s->irq_coalesced--;
142 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
143 s->irq_coalesced);
147 rtc_coalesced_timer_update(s);
149 #endif
151 /* handle periodic timer */
152 static void periodic_timer_update(RTCState *s, int64_t current_time)
154 int period_code, period;
155 int64_t cur_clock, next_irq_clock;
157 period_code = s->cmos_data[RTC_REG_A] & 0x0f;
158 if (period_code != 0
159 && (s->cmos_data[RTC_REG_B] & REG_B_PIE)) {
160 if (period_code <= 2)
161 period_code += 7;
162 /* period in 32 Khz cycles */
163 period = 1 << (period_code - 1);
164 #ifdef TARGET_I386
165 if (period != s->period) {
166 s->irq_coalesced = (s->irq_coalesced * s->period) / period;
167 DPRINTF_C("cmos: coalesced irqs scaled to %d\n", s->irq_coalesced);
169 s->period = period;
170 #endif
171 /* compute 32 khz clock */
172 cur_clock =
173 muldiv64(current_time, RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND);
175 next_irq_clock = (cur_clock & ~(period - 1)) + period;
176 s->next_periodic_time = muldiv64(next_irq_clock, NANOSECONDS_PER_SECOND,
177 RTC_CLOCK_RATE) + 1;
178 timer_mod(s->periodic_timer, s->next_periodic_time);
179 } else {
180 #ifdef TARGET_I386
181 s->irq_coalesced = 0;
182 #endif
183 timer_del(s->periodic_timer);
187 static void rtc_periodic_timer(void *opaque)
189 RTCState *s = opaque;
191 periodic_timer_update(s, s->next_periodic_time);
192 s->cmos_data[RTC_REG_C] |= REG_C_PF;
193 if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
194 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
195 #ifdef TARGET_I386
196 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
197 if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT)
198 s->irq_reinject_on_ack_count = 0;
199 apic_reset_irq_delivered();
200 qemu_irq_raise(s->irq);
201 if (!apic_get_irq_delivered()) {
202 s->irq_coalesced++;
203 rtc_coalesced_timer_update(s);
204 DPRINTF_C("cmos: coalesced irqs increased to %d\n",
205 s->irq_coalesced);
207 } else
208 #endif
209 qemu_irq_raise(s->irq);
213 /* handle update-ended timer */
214 static void check_update_timer(RTCState *s)
216 uint64_t next_update_time;
217 uint64_t guest_nsec;
218 int next_alarm_sec;
220 /* From the data sheet: "Holding the dividers in reset prevents
221 * interrupts from operating, while setting the SET bit allows"
222 * them to occur. However, it will prevent an alarm interrupt
223 * from occurring, because the time of day is not updated.
225 if ((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) {
226 timer_del(s->update_timer);
227 return;
229 if ((s->cmos_data[RTC_REG_C] & REG_C_UF) &&
230 (s->cmos_data[RTC_REG_B] & REG_B_SET)) {
231 timer_del(s->update_timer);
232 return;
234 if ((s->cmos_data[RTC_REG_C] & REG_C_UF) &&
235 (s->cmos_data[RTC_REG_C] & REG_C_AF)) {
236 timer_del(s->update_timer);
237 return;
240 guest_nsec = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND;
241 /* if UF is clear, reprogram to next second */
242 next_update_time = qemu_clock_get_ns(rtc_clock)
243 + NANOSECONDS_PER_SECOND - guest_nsec;
245 /* Compute time of next alarm. One second is already accounted
246 * for in next_update_time.
248 next_alarm_sec = get_next_alarm(s);
249 s->next_alarm_time = next_update_time +
250 (next_alarm_sec - 1) * NANOSECONDS_PER_SECOND;
252 if (s->cmos_data[RTC_REG_C] & REG_C_UF) {
253 /* UF is set, but AF is clear. Program the timer to target
254 * the alarm time. */
255 next_update_time = s->next_alarm_time;
257 if (next_update_time != timer_expire_time_ns(s->update_timer)) {
258 timer_mod(s->update_timer, next_update_time);
262 static inline uint8_t convert_hour(RTCState *s, uint8_t hour)
264 if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
265 hour %= 12;
266 if (s->cmos_data[RTC_HOURS] & 0x80) {
267 hour += 12;
270 return hour;
273 static uint64_t get_next_alarm(RTCState *s)
275 int32_t alarm_sec, alarm_min, alarm_hour, cur_hour, cur_min, cur_sec;
276 int32_t hour, min, sec;
278 rtc_update_time(s);
280 alarm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]);
281 alarm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]);
282 alarm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]);
283 alarm_hour = alarm_hour == -1 ? -1 : convert_hour(s, alarm_hour);
285 cur_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
286 cur_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
287 cur_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS]);
288 cur_hour = convert_hour(s, cur_hour);
290 if (alarm_hour == -1) {
291 alarm_hour = cur_hour;
292 if (alarm_min == -1) {
293 alarm_min = cur_min;
294 if (alarm_sec == -1) {
295 alarm_sec = cur_sec + 1;
296 } else if (cur_sec > alarm_sec) {
297 alarm_min++;
299 } else if (cur_min == alarm_min) {
300 if (alarm_sec == -1) {
301 alarm_sec = cur_sec + 1;
302 } else {
303 if (cur_sec > alarm_sec) {
304 alarm_hour++;
307 if (alarm_sec == SEC_PER_MIN) {
308 /* wrap to next hour, minutes is not in don't care mode */
309 alarm_sec = 0;
310 alarm_hour++;
312 } else if (cur_min > alarm_min) {
313 alarm_hour++;
315 } else if (cur_hour == alarm_hour) {
316 if (alarm_min == -1) {
317 alarm_min = cur_min;
318 if (alarm_sec == -1) {
319 alarm_sec = cur_sec + 1;
320 } else if (cur_sec > alarm_sec) {
321 alarm_min++;
324 if (alarm_sec == SEC_PER_MIN) {
325 alarm_sec = 0;
326 alarm_min++;
328 /* wrap to next day, hour is not in don't care mode */
329 alarm_min %= MIN_PER_HOUR;
330 } else if (cur_min == alarm_min) {
331 if (alarm_sec == -1) {
332 alarm_sec = cur_sec + 1;
334 /* wrap to next day, hours+minutes not in don't care mode */
335 alarm_sec %= SEC_PER_MIN;
339 /* values that are still don't care fire at the next min/sec */
340 if (alarm_min == -1) {
341 alarm_min = 0;
343 if (alarm_sec == -1) {
344 alarm_sec = 0;
347 /* keep values in range */
348 if (alarm_sec == SEC_PER_MIN) {
349 alarm_sec = 0;
350 alarm_min++;
352 if (alarm_min == MIN_PER_HOUR) {
353 alarm_min = 0;
354 alarm_hour++;
356 alarm_hour %= HOUR_PER_DAY;
358 hour = alarm_hour - cur_hour;
359 min = hour * MIN_PER_HOUR + alarm_min - cur_min;
360 sec = min * SEC_PER_MIN + alarm_sec - cur_sec;
361 return sec <= 0 ? sec + SEC_PER_DAY : sec;
364 static void rtc_update_timer(void *opaque)
366 RTCState *s = opaque;
367 int32_t irqs = REG_C_UF;
368 int32_t new_irqs;
370 assert((s->cmos_data[RTC_REG_A] & 0x60) != 0x60);
372 /* UIP might have been latched, update time and clear it. */
373 rtc_update_time(s);
374 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
376 if (qemu_clock_get_ns(rtc_clock) >= s->next_alarm_time) {
377 irqs |= REG_C_AF;
378 if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
379 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC);
383 new_irqs = irqs & ~s->cmos_data[RTC_REG_C];
384 s->cmos_data[RTC_REG_C] |= irqs;
385 if ((new_irqs & s->cmos_data[RTC_REG_B]) != 0) {
386 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
387 qemu_irq_raise(s->irq);
389 check_update_timer(s);
392 static void cmos_ioport_write(void *opaque, hwaddr addr,
393 uint64_t data, unsigned size)
395 RTCState *s = opaque;
397 if ((addr & 1) == 0) {
398 s->cmos_index = data & 0x7f;
399 } else {
400 CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02" PRIx64 "\n",
401 s->cmos_index, data);
402 switch(s->cmos_index) {
403 case RTC_SECONDS_ALARM:
404 case RTC_MINUTES_ALARM:
405 case RTC_HOURS_ALARM:
406 s->cmos_data[s->cmos_index] = data;
407 check_update_timer(s);
408 break;
409 case RTC_IBM_PS2_CENTURY_BYTE:
410 s->cmos_index = RTC_CENTURY;
411 /* fall through */
412 case RTC_CENTURY:
413 case RTC_SECONDS:
414 case RTC_MINUTES:
415 case RTC_HOURS:
416 case RTC_DAY_OF_WEEK:
417 case RTC_DAY_OF_MONTH:
418 case RTC_MONTH:
419 case RTC_YEAR:
420 s->cmos_data[s->cmos_index] = data;
421 /* if in set mode, do not update the time */
422 if (rtc_running(s)) {
423 rtc_set_time(s);
424 check_update_timer(s);
426 break;
427 case RTC_REG_A:
428 if ((data & 0x60) == 0x60) {
429 if (rtc_running(s)) {
430 rtc_update_time(s);
432 /* What happens to UIP when divider reset is enabled is
433 * unclear from the datasheet. Shouldn't matter much
434 * though.
436 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
437 } else if (((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) &&
438 (data & 0x70) <= 0x20) {
439 /* when the divider reset is removed, the first update cycle
440 * begins one-half second later*/
441 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
442 s->offset = 500000000;
443 rtc_set_time(s);
445 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
447 /* UIP bit is read only */
448 s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
449 (s->cmos_data[RTC_REG_A] & REG_A_UIP);
450 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock));
451 check_update_timer(s);
452 break;
453 case RTC_REG_B:
454 if (data & REG_B_SET) {
455 /* update cmos to when the rtc was stopping */
456 if (rtc_running(s)) {
457 rtc_update_time(s);
459 /* set mode: reset UIP mode */
460 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
461 data &= ~REG_B_UIE;
462 } else {
463 /* if disabling set mode, update the time */
464 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) &&
465 (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20) {
466 s->offset = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND;
467 rtc_set_time(s);
470 /* if an interrupt flag is already set when the interrupt
471 * becomes enabled, raise an interrupt immediately. */
472 if (data & s->cmos_data[RTC_REG_C] & REG_C_MASK) {
473 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
474 qemu_irq_raise(s->irq);
475 } else {
476 s->cmos_data[RTC_REG_C] &= ~REG_C_IRQF;
477 qemu_irq_lower(s->irq);
479 s->cmos_data[RTC_REG_B] = data;
480 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock));
481 check_update_timer(s);
482 break;
483 case RTC_REG_C:
484 case RTC_REG_D:
485 /* cannot write to them */
486 break;
487 default:
488 s->cmos_data[s->cmos_index] = data;
489 break;
494 static inline int rtc_to_bcd(RTCState *s, int a)
496 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
497 return a;
498 } else {
499 return ((a / 10) << 4) | (a % 10);
503 static inline int rtc_from_bcd(RTCState *s, int a)
505 if ((a & 0xc0) == 0xc0) {
506 return -1;
508 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
509 return a;
510 } else {
511 return ((a >> 4) * 10) + (a & 0x0f);
515 static void rtc_get_time(RTCState *s, struct tm *tm)
517 tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
518 tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
519 tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
520 if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
521 tm->tm_hour %= 12;
522 if (s->cmos_data[RTC_HOURS] & 0x80) {
523 tm->tm_hour += 12;
526 tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
527 tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
528 tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
529 tm->tm_year =
530 rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year +
531 rtc_from_bcd(s, s->cmos_data[RTC_CENTURY]) * 100 - 1900;
534 static QLIST_HEAD(, RTCState) rtc_devices =
535 QLIST_HEAD_INITIALIZER(rtc_devices);
537 #ifdef TARGET_I386
538 void qmp_rtc_reset_reinjection(Error **errp)
540 RTCState *s;
542 QLIST_FOREACH(s, &rtc_devices, link) {
543 s->irq_coalesced = 0;
546 #endif
548 static void rtc_set_time(RTCState *s)
550 struct tm tm;
552 rtc_get_time(s, &tm);
553 s->base_rtc = mktimegm(&tm);
554 s->last_update = qemu_clock_get_ns(rtc_clock);
556 qapi_event_send_rtc_change(qemu_timedate_diff(&tm), &error_abort);
559 static void rtc_set_cmos(RTCState *s, const struct tm *tm)
561 int year;
563 s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec);
564 s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min);
565 if (s->cmos_data[RTC_REG_B] & REG_B_24H) {
566 /* 24 hour format */
567 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour);
568 } else {
569 /* 12 hour format */
570 int h = (tm->tm_hour % 12) ? tm->tm_hour % 12 : 12;
571 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, h);
572 if (tm->tm_hour >= 12)
573 s->cmos_data[RTC_HOURS] |= 0x80;
575 s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1);
576 s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday);
577 s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1);
578 year = tm->tm_year + 1900 - s->base_year;
579 s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year % 100);
580 s->cmos_data[RTC_CENTURY] = rtc_to_bcd(s, year / 100);
583 static void rtc_update_time(RTCState *s)
585 struct tm ret;
586 time_t guest_sec;
587 int64_t guest_nsec;
589 guest_nsec = get_guest_rtc_ns(s);
590 guest_sec = guest_nsec / NANOSECONDS_PER_SECOND;
591 gmtime_r(&guest_sec, &ret);
593 /* Is SET flag of Register B disabled? */
594 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) == 0) {
595 rtc_set_cmos(s, &ret);
599 static int update_in_progress(RTCState *s)
601 int64_t guest_nsec;
603 if (!rtc_running(s)) {
604 return 0;
606 if (timer_pending(s->update_timer)) {
607 int64_t next_update_time = timer_expire_time_ns(s->update_timer);
608 /* Latch UIP until the timer expires. */
609 if (qemu_clock_get_ns(rtc_clock) >=
610 (next_update_time - UIP_HOLD_LENGTH)) {
611 s->cmos_data[RTC_REG_A] |= REG_A_UIP;
612 return 1;
616 guest_nsec = get_guest_rtc_ns(s);
617 /* UIP bit will be set at last 244us of every second. */
618 if ((guest_nsec % NANOSECONDS_PER_SECOND) >=
619 (NANOSECONDS_PER_SECOND - UIP_HOLD_LENGTH)) {
620 return 1;
622 return 0;
625 static uint64_t cmos_ioport_read(void *opaque, hwaddr addr,
626 unsigned size)
628 RTCState *s = opaque;
629 int ret;
630 if ((addr & 1) == 0) {
631 return 0xff;
632 } else {
633 switch(s->cmos_index) {
634 case RTC_IBM_PS2_CENTURY_BYTE:
635 s->cmos_index = RTC_CENTURY;
636 /* fall through */
637 case RTC_CENTURY:
638 case RTC_SECONDS:
639 case RTC_MINUTES:
640 case RTC_HOURS:
641 case RTC_DAY_OF_WEEK:
642 case RTC_DAY_OF_MONTH:
643 case RTC_MONTH:
644 case RTC_YEAR:
645 /* if not in set mode, calibrate cmos before
646 * reading*/
647 if (rtc_running(s)) {
648 rtc_update_time(s);
650 ret = s->cmos_data[s->cmos_index];
651 break;
652 case RTC_REG_A:
653 if (update_in_progress(s)) {
654 s->cmos_data[s->cmos_index] |= REG_A_UIP;
655 } else {
656 s->cmos_data[s->cmos_index] &= ~REG_A_UIP;
658 ret = s->cmos_data[s->cmos_index];
659 break;
660 case RTC_REG_C:
661 ret = s->cmos_data[s->cmos_index];
662 qemu_irq_lower(s->irq);
663 s->cmos_data[RTC_REG_C] = 0x00;
664 if (ret & (REG_C_UF | REG_C_AF)) {
665 check_update_timer(s);
667 #ifdef TARGET_I386
668 if(s->irq_coalesced &&
669 (s->cmos_data[RTC_REG_B] & REG_B_PIE) &&
670 s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) {
671 s->irq_reinject_on_ack_count++;
672 s->cmos_data[RTC_REG_C] |= REG_C_IRQF | REG_C_PF;
673 apic_reset_irq_delivered();
674 DPRINTF_C("cmos: injecting on ack\n");
675 qemu_irq_raise(s->irq);
676 if (apic_get_irq_delivered()) {
677 s->irq_coalesced--;
678 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
679 s->irq_coalesced);
682 #endif
683 break;
684 default:
685 ret = s->cmos_data[s->cmos_index];
686 break;
688 CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
689 s->cmos_index, ret);
690 return ret;
694 void rtc_set_memory(ISADevice *dev, int addr, int val)
696 RTCState *s = MC146818_RTC(dev);
697 if (addr >= 0 && addr <= 127)
698 s->cmos_data[addr] = val;
701 int rtc_get_memory(ISADevice *dev, int addr)
703 RTCState *s = MC146818_RTC(dev);
704 assert(addr >= 0 && addr <= 127);
705 return s->cmos_data[addr];
708 static void rtc_set_date_from_host(ISADevice *dev)
710 RTCState *s = MC146818_RTC(dev);
711 struct tm tm;
713 qemu_get_timedate(&tm, 0);
715 s->base_rtc = mktimegm(&tm);
716 s->last_update = qemu_clock_get_ns(rtc_clock);
717 s->offset = 0;
719 /* set the CMOS date */
720 rtc_set_cmos(s, &tm);
723 static int rtc_post_load(void *opaque, int version_id)
725 RTCState *s = opaque;
727 if (version_id <= 2) {
728 rtc_set_time(s);
729 s->offset = 0;
730 check_update_timer(s);
733 uint64_t now = qemu_clock_get_ns(rtc_clock);
734 if (now < s->next_periodic_time ||
735 now > (s->next_periodic_time + get_max_clock_jump())) {
736 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock));
739 #ifdef TARGET_I386
740 if (version_id >= 2) {
741 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
742 rtc_coalesced_timer_update(s);
745 #endif
746 return 0;
749 static bool rtc_irq_reinject_on_ack_count_needed(void *opaque)
751 RTCState *s = (RTCState *)opaque;
752 return s->irq_reinject_on_ack_count != 0;
755 static const VMStateDescription vmstate_rtc_irq_reinject_on_ack_count = {
756 .name = "mc146818rtc/irq_reinject_on_ack_count",
757 .version_id = 1,
758 .minimum_version_id = 1,
759 .needed = rtc_irq_reinject_on_ack_count_needed,
760 .fields = (VMStateField[]) {
761 VMSTATE_UINT16(irq_reinject_on_ack_count, RTCState),
762 VMSTATE_END_OF_LIST()
766 static const VMStateDescription vmstate_rtc = {
767 .name = "mc146818rtc",
768 .version_id = 3,
769 .minimum_version_id = 1,
770 .post_load = rtc_post_load,
771 .fields = (VMStateField[]) {
772 VMSTATE_BUFFER(cmos_data, RTCState),
773 VMSTATE_UINT8(cmos_index, RTCState),
774 VMSTATE_UNUSED(7*4),
775 VMSTATE_TIMER_PTR(periodic_timer, RTCState),
776 VMSTATE_INT64(next_periodic_time, RTCState),
777 VMSTATE_UNUSED(3*8),
778 VMSTATE_UINT32_V(irq_coalesced, RTCState, 2),
779 VMSTATE_UINT32_V(period, RTCState, 2),
780 VMSTATE_UINT64_V(base_rtc, RTCState, 3),
781 VMSTATE_UINT64_V(last_update, RTCState, 3),
782 VMSTATE_INT64_V(offset, RTCState, 3),
783 VMSTATE_TIMER_PTR_V(update_timer, RTCState, 3),
784 VMSTATE_UINT64_V(next_alarm_time, RTCState, 3),
785 VMSTATE_END_OF_LIST()
787 .subsections = (const VMStateDescription*[]) {
788 &vmstate_rtc_irq_reinject_on_ack_count,
789 NULL
793 static void rtc_notify_clock_reset(Notifier *notifier, void *data)
795 RTCState *s = container_of(notifier, RTCState, clock_reset_notifier);
796 int64_t now = *(int64_t *)data;
798 rtc_set_date_from_host(ISA_DEVICE(s));
799 periodic_timer_update(s, now);
800 check_update_timer(s);
801 #ifdef TARGET_I386
802 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
803 rtc_coalesced_timer_update(s);
805 #endif
808 /* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
809 BIOS will read it and start S3 resume at POST Entry */
810 static void rtc_notify_suspend(Notifier *notifier, void *data)
812 RTCState *s = container_of(notifier, RTCState, suspend_notifier);
813 rtc_set_memory(ISA_DEVICE(s), 0xF, 0xFE);
816 static void rtc_reset(void *opaque)
818 RTCState *s = opaque;
820 s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
821 s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
822 check_update_timer(s);
824 qemu_irq_lower(s->irq);
826 #ifdef TARGET_I386
827 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
828 s->irq_coalesced = 0;
829 s->irq_reinject_on_ack_count = 0;
831 #endif
834 static const MemoryRegionOps cmos_ops = {
835 .read = cmos_ioport_read,
836 .write = cmos_ioport_write,
837 .impl = {
838 .min_access_size = 1,
839 .max_access_size = 1,
841 .endianness = DEVICE_LITTLE_ENDIAN,
844 static void rtc_get_date(Object *obj, struct tm *current_tm, Error **errp)
846 RTCState *s = MC146818_RTC(obj);
848 rtc_update_time(s);
849 rtc_get_time(s, current_tm);
852 static void rtc_realizefn(DeviceState *dev, Error **errp)
854 ISADevice *isadev = ISA_DEVICE(dev);
855 RTCState *s = MC146818_RTC(dev);
856 int base = 0x70;
858 s->cmos_data[RTC_REG_A] = 0x26;
859 s->cmos_data[RTC_REG_B] = 0x02;
860 s->cmos_data[RTC_REG_C] = 0x00;
861 s->cmos_data[RTC_REG_D] = 0x80;
863 /* This is for historical reasons. The default base year qdev property
864 * was set to 2000 for most machine types before the century byte was
865 * implemented.
867 * This if statement means that the century byte will be always 0
868 * (at least until 2079...) for base_year = 1980, but will be set
869 * correctly for base_year = 2000.
871 if (s->base_year == 2000) {
872 s->base_year = 0;
875 rtc_set_date_from_host(isadev);
877 #ifdef TARGET_I386
878 switch (s->lost_tick_policy) {
879 case LOST_TICK_POLICY_SLEW:
880 s->coalesced_timer =
881 timer_new_ns(rtc_clock, rtc_coalesced_timer, s);
882 break;
883 case LOST_TICK_POLICY_DISCARD:
884 break;
885 default:
886 error_setg(errp, "Invalid lost tick policy.");
887 return;
889 #endif
891 s->periodic_timer = timer_new_ns(rtc_clock, rtc_periodic_timer, s);
892 s->update_timer = timer_new_ns(rtc_clock, rtc_update_timer, s);
893 check_update_timer(s);
895 s->clock_reset_notifier.notify = rtc_notify_clock_reset;
896 qemu_clock_register_reset_notifier(rtc_clock,
897 &s->clock_reset_notifier);
899 s->suspend_notifier.notify = rtc_notify_suspend;
900 qemu_register_suspend_notifier(&s->suspend_notifier);
902 memory_region_init_io(&s->io, OBJECT(s), &cmos_ops, s, "rtc", 2);
903 isa_register_ioport(isadev, &s->io, base);
905 qdev_set_legacy_instance_id(dev, base, 3);
906 qemu_register_reset(rtc_reset, s);
908 object_property_add_tm(OBJECT(s), "date", rtc_get_date, NULL);
910 object_property_add_alias(qdev_get_machine(), "rtc-time",
911 OBJECT(s), "date", NULL);
914 ISADevice *rtc_init(ISABus *bus, int base_year, qemu_irq intercept_irq)
916 DeviceState *dev;
917 ISADevice *isadev;
918 RTCState *s;
920 isadev = isa_create(bus, TYPE_MC146818_RTC);
921 dev = DEVICE(isadev);
922 s = MC146818_RTC(isadev);
923 qdev_prop_set_int32(dev, "base_year", base_year);
924 qdev_init_nofail(dev);
925 if (intercept_irq) {
926 s->irq = intercept_irq;
927 } else {
928 isa_init_irq(isadev, &s->irq, RTC_ISA_IRQ);
930 QLIST_INSERT_HEAD(&rtc_devices, s, link);
932 return isadev;
935 static Property mc146818rtc_properties[] = {
936 DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980),
937 DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState,
938 lost_tick_policy, LOST_TICK_POLICY_DISCARD),
939 DEFINE_PROP_END_OF_LIST(),
942 static void rtc_class_initfn(ObjectClass *klass, void *data)
944 DeviceClass *dc = DEVICE_CLASS(klass);
946 dc->realize = rtc_realizefn;
947 dc->vmsd = &vmstate_rtc;
948 dc->props = mc146818rtc_properties;
949 /* Reason: needs to be wired up by rtc_init() */
950 dc->cannot_instantiate_with_device_add_yet = true;
953 static void rtc_finalize(Object *obj)
955 object_property_del(qdev_get_machine(), "rtc", NULL);
958 static const TypeInfo mc146818rtc_info = {
959 .name = TYPE_MC146818_RTC,
960 .parent = TYPE_ISA_DEVICE,
961 .instance_size = sizeof(RTCState),
962 .class_init = rtc_class_initfn,
963 .instance_finalize = rtc_finalize,
966 static void mc146818rtc_register_types(void)
968 type_register_static(&mc146818rtc_info);
971 type_init(mc146818rtc_register_types)