hw/misc/iotkit-secctl: Arm IoT Kit security controller initial skeleton
[qemu/ar7.git] / fpu / softfloat-specialize.h
blobe81ca001e1f5bb7f68541cec8f40b4ec67b51d6c
1 /*
2 * QEMU float support
4 * The code in this source file is derived from release 2a of the SoftFloat
5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
6 * some later contributions) are provided under that license, as detailed below.
7 * It has subsequently been modified by contributors to the QEMU Project,
8 * so some portions are provided under:
9 * the SoftFloat-2a license
10 * the BSD license
11 * GPL-v2-or-later
13 * Any future contributions to this file after December 1st 2014 will be
14 * taken to be licensed under the Softfloat-2a license unless specifically
15 * indicated otherwise.
19 ===============================================================================
20 This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
21 Arithmetic Package, Release 2a.
23 Written by John R. Hauser. This work was made possible in part by the
24 International Computer Science Institute, located at Suite 600, 1947 Center
25 Street, Berkeley, California 94704. Funding was partially provided by the
26 National Science Foundation under grant MIP-9311980. The original version
27 of this code was written as part of a project to build a fixed-point vector
28 processor in collaboration with the University of California at Berkeley,
29 overseen by Profs. Nelson Morgan and John Wawrzynek. More information
30 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
31 arithmetic/SoftFloat.html'.
33 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
34 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
35 TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
36 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
37 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
39 Derivative works are acceptable, even for commercial purposes, so long as
40 (1) they include prominent notice that the work is derivative, and (2) they
41 include prominent notice akin to these four paragraphs for those parts of
42 this code that are retained.
44 ===============================================================================
47 /* BSD licensing:
48 * Copyright (c) 2006, Fabrice Bellard
49 * All rights reserved.
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions are met:
54 * 1. Redistributions of source code must retain the above copyright notice,
55 * this list of conditions and the following disclaimer.
57 * 2. Redistributions in binary form must reproduce the above copyright notice,
58 * this list of conditions and the following disclaimer in the documentation
59 * and/or other materials provided with the distribution.
61 * 3. Neither the name of the copyright holder nor the names of its contributors
62 * may be used to endorse or promote products derived from this software without
63 * specific prior written permission.
65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
75 * THE POSSIBILITY OF SUCH DAMAGE.
78 /* Portions of this work are licensed under the terms of the GNU GPL,
79 * version 2 or later. See the COPYING file in the top-level directory.
82 #if defined(TARGET_XTENSA)
83 /* Define for architectures which deviate from IEEE in not supporting
84 * signaling NaNs (so all NaNs are treated as quiet).
86 #define NO_SIGNALING_NANS 1
87 #endif
89 /*----------------------------------------------------------------------------
90 | The pattern for a default generated half-precision NaN.
91 *----------------------------------------------------------------------------*/
92 float16 float16_default_nan(float_status *status)
94 #if defined(TARGET_ARM)
95 return const_float16(0x7E00);
96 #else
97 if (status->snan_bit_is_one) {
98 return const_float16(0x7DFF);
99 } else {
100 #if defined(TARGET_MIPS)
101 return const_float16(0x7E00);
102 #else
103 return const_float16(0xFE00);
104 #endif
106 #endif
109 /*----------------------------------------------------------------------------
110 | The pattern for a default generated single-precision NaN.
111 *----------------------------------------------------------------------------*/
112 float32 float32_default_nan(float_status *status)
114 #if defined(TARGET_SPARC) || defined(TARGET_M68K)
115 return const_float32(0x7FFFFFFF);
116 #elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA) || \
117 defined(TARGET_XTENSA) || defined(TARGET_S390X) || defined(TARGET_TRICORE)
118 return const_float32(0x7FC00000);
119 #elif defined(TARGET_HPPA)
120 return const_float32(0x7FA00000);
121 #else
122 if (status->snan_bit_is_one) {
123 return const_float32(0x7FBFFFFF);
124 } else {
125 #if defined(TARGET_MIPS)
126 return const_float32(0x7FC00000);
127 #else
128 return const_float32(0xFFC00000);
129 #endif
131 #endif
134 /*----------------------------------------------------------------------------
135 | The pattern for a default generated double-precision NaN.
136 *----------------------------------------------------------------------------*/
137 float64 float64_default_nan(float_status *status)
139 #if defined(TARGET_SPARC) || defined(TARGET_M68K)
140 return const_float64(LIT64(0x7FFFFFFFFFFFFFFF));
141 #elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA) || \
142 defined(TARGET_S390X)
143 return const_float64(LIT64(0x7FF8000000000000));
144 #elif defined(TARGET_HPPA)
145 return const_float64(LIT64(0x7FF4000000000000));
146 #else
147 if (status->snan_bit_is_one) {
148 return const_float64(LIT64(0x7FF7FFFFFFFFFFFF));
149 } else {
150 #if defined(TARGET_MIPS)
151 return const_float64(LIT64(0x7FF8000000000000));
152 #else
153 return const_float64(LIT64(0xFFF8000000000000));
154 #endif
156 #endif
159 /*----------------------------------------------------------------------------
160 | The pattern for a default generated extended double-precision NaN.
161 *----------------------------------------------------------------------------*/
162 floatx80 floatx80_default_nan(float_status *status)
164 floatx80 r;
165 #if defined(TARGET_M68K)
166 r.low = LIT64(0xFFFFFFFFFFFFFFFF);
167 r.high = 0x7FFF;
168 #else
169 if (status->snan_bit_is_one) {
170 r.low = LIT64(0xBFFFFFFFFFFFFFFF);
171 r.high = 0x7FFF;
172 } else {
173 r.low = LIT64(0xC000000000000000);
174 r.high = 0xFFFF;
176 #endif
177 return r;
180 /*----------------------------------------------------------------------------
181 | The pattern for a default generated quadruple-precision NaN.
182 *----------------------------------------------------------------------------*/
183 float128 float128_default_nan(float_status *status)
185 float128 r;
187 if (status->snan_bit_is_one) {
188 r.low = LIT64(0xFFFFFFFFFFFFFFFF);
189 r.high = LIT64(0x7FFF7FFFFFFFFFFF);
190 } else {
191 r.low = LIT64(0x0000000000000000);
192 #if defined(TARGET_S390X) || defined(TARGET_PPC)
193 r.high = LIT64(0x7FFF800000000000);
194 #else
195 r.high = LIT64(0xFFFF800000000000);
196 #endif
198 return r;
201 /*----------------------------------------------------------------------------
202 | Raises the exceptions specified by `flags'. Floating-point traps can be
203 | defined here if desired. It is currently not possible for such a trap
204 | to substitute a result value. If traps are not implemented, this routine
205 | should be simply `float_exception_flags |= flags;'.
206 *----------------------------------------------------------------------------*/
208 void float_raise(uint8_t flags, float_status *status)
210 status->float_exception_flags |= flags;
213 /*----------------------------------------------------------------------------
214 | Internal canonical NaN format.
215 *----------------------------------------------------------------------------*/
216 typedef struct {
217 flag sign;
218 uint64_t high, low;
219 } commonNaNT;
221 #ifdef NO_SIGNALING_NANS
222 int float16_is_quiet_nan(float16 a_, float_status *status)
224 return float16_is_any_nan(a_);
227 int float16_is_signaling_nan(float16 a_, float_status *status)
229 return 0;
231 #else
232 /*----------------------------------------------------------------------------
233 | Returns 1 if the half-precision floating-point value `a' is a quiet
234 | NaN; otherwise returns 0.
235 *----------------------------------------------------------------------------*/
237 int float16_is_quiet_nan(float16 a_, float_status *status)
239 uint16_t a = float16_val(a_);
240 if (status->snan_bit_is_one) {
241 return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
242 } else {
243 return ((a & ~0x8000) >= 0x7C80);
247 /*----------------------------------------------------------------------------
248 | Returns 1 if the half-precision floating-point value `a' is a signaling
249 | NaN; otherwise returns 0.
250 *----------------------------------------------------------------------------*/
252 int float16_is_signaling_nan(float16 a_, float_status *status)
254 uint16_t a = float16_val(a_);
255 if (status->snan_bit_is_one) {
256 return ((a & ~0x8000) >= 0x7C80);
257 } else {
258 return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
261 #endif
263 /*----------------------------------------------------------------------------
264 | Returns a quiet NaN if the half-precision floating point value `a' is a
265 | signaling NaN; otherwise returns `a'.
266 *----------------------------------------------------------------------------*/
267 float16 float16_maybe_silence_nan(float16 a_, float_status *status)
269 if (float16_is_signaling_nan(a_, status)) {
270 if (status->snan_bit_is_one) {
271 return float16_default_nan(status);
272 } else {
273 uint16_t a = float16_val(a_);
274 a |= (1 << 9);
275 return make_float16(a);
278 return a_;
281 /*----------------------------------------------------------------------------
282 | Returns the result of converting the half-precision floating-point NaN
283 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
284 | exception is raised.
285 *----------------------------------------------------------------------------*/
287 static commonNaNT float16ToCommonNaN(float16 a, float_status *status)
289 commonNaNT z;
291 if (float16_is_signaling_nan(a, status)) {
292 float_raise(float_flag_invalid, status);
294 z.sign = float16_val(a) >> 15;
295 z.low = 0;
296 z.high = ((uint64_t) float16_val(a)) << 54;
297 return z;
300 /*----------------------------------------------------------------------------
301 | Returns the result of converting the canonical NaN `a' to the half-
302 | precision floating-point format.
303 *----------------------------------------------------------------------------*/
305 static float16 commonNaNToFloat16(commonNaNT a, float_status *status)
307 uint16_t mantissa = a.high >> 54;
309 if (status->default_nan_mode) {
310 return float16_default_nan(status);
313 if (mantissa) {
314 return make_float16(((((uint16_t) a.sign) << 15)
315 | (0x1F << 10) | mantissa));
316 } else {
317 return float16_default_nan(status);
321 #ifdef NO_SIGNALING_NANS
322 int float32_is_quiet_nan(float32 a_, float_status *status)
324 return float32_is_any_nan(a_);
327 int float32_is_signaling_nan(float32 a_, float_status *status)
329 return 0;
331 #else
332 /*----------------------------------------------------------------------------
333 | Returns 1 if the single-precision floating-point value `a' is a quiet
334 | NaN; otherwise returns 0.
335 *----------------------------------------------------------------------------*/
337 int float32_is_quiet_nan(float32 a_, float_status *status)
339 uint32_t a = float32_val(a_);
340 if (status->snan_bit_is_one) {
341 return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
342 } else {
343 return ((uint32_t)(a << 1) >= 0xFF800000);
347 /*----------------------------------------------------------------------------
348 | Returns 1 if the single-precision floating-point value `a' is a signaling
349 | NaN; otherwise returns 0.
350 *----------------------------------------------------------------------------*/
352 int float32_is_signaling_nan(float32 a_, float_status *status)
354 uint32_t a = float32_val(a_);
355 if (status->snan_bit_is_one) {
356 return ((uint32_t)(a << 1) >= 0xFF800000);
357 } else {
358 return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
361 #endif
363 /*----------------------------------------------------------------------------
364 | Returns a quiet NaN if the single-precision floating point value `a' is a
365 | signaling NaN; otherwise returns `a'.
366 *----------------------------------------------------------------------------*/
368 float32 float32_maybe_silence_nan(float32 a_, float_status *status)
370 if (float32_is_signaling_nan(a_, status)) {
371 if (status->snan_bit_is_one) {
372 #ifdef TARGET_HPPA
373 uint32_t a = float32_val(a_);
374 a &= ~0x00400000;
375 a |= 0x00200000;
376 return make_float32(a);
377 #else
378 return float32_default_nan(status);
379 #endif
380 } else {
381 uint32_t a = float32_val(a_);
382 a |= (1 << 22);
383 return make_float32(a);
386 return a_;
389 /*----------------------------------------------------------------------------
390 | Returns the result of converting the single-precision floating-point NaN
391 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
392 | exception is raised.
393 *----------------------------------------------------------------------------*/
395 static commonNaNT float32ToCommonNaN(float32 a, float_status *status)
397 commonNaNT z;
399 if (float32_is_signaling_nan(a, status)) {
400 float_raise(float_flag_invalid, status);
402 z.sign = float32_val(a) >> 31;
403 z.low = 0;
404 z.high = ((uint64_t)float32_val(a)) << 41;
405 return z;
408 /*----------------------------------------------------------------------------
409 | Returns the result of converting the canonical NaN `a' to the single-
410 | precision floating-point format.
411 *----------------------------------------------------------------------------*/
413 static float32 commonNaNToFloat32(commonNaNT a, float_status *status)
415 uint32_t mantissa = a.high >> 41;
417 if (status->default_nan_mode) {
418 return float32_default_nan(status);
421 if (mantissa) {
422 return make_float32(
423 (((uint32_t)a.sign) << 31) | 0x7F800000 | (a.high >> 41));
424 } else {
425 return float32_default_nan(status);
429 /*----------------------------------------------------------------------------
430 | Select which NaN to propagate for a two-input operation.
431 | IEEE754 doesn't specify all the details of this, so the
432 | algorithm is target-specific.
433 | The routine is passed various bits of information about the
434 | two NaNs and should return 0 to select NaN a and 1 for NaN b.
435 | Note that signalling NaNs are always squashed to quiet NaNs
436 | by the caller, by calling floatXX_maybe_silence_nan() before
437 | returning them.
439 | aIsLargerSignificand is only valid if both a and b are NaNs
440 | of some kind, and is true if a has the larger significand,
441 | or if both a and b have the same significand but a is
442 | positive but b is negative. It is only needed for the x87
443 | tie-break rule.
444 *----------------------------------------------------------------------------*/
446 #if defined(TARGET_ARM)
447 static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
448 flag aIsLargerSignificand)
450 /* ARM mandated NaN propagation rules (see FPProcessNaNs()), take
451 * the first of:
452 * 1. A if it is signaling
453 * 2. B if it is signaling
454 * 3. A (quiet)
455 * 4. B (quiet)
456 * A signaling NaN is always quietened before returning it.
458 if (aIsSNaN) {
459 return 0;
460 } else if (bIsSNaN) {
461 return 1;
462 } else if (aIsQNaN) {
463 return 0;
464 } else {
465 return 1;
468 #elif defined(TARGET_MIPS) || defined(TARGET_HPPA)
469 static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
470 flag aIsLargerSignificand)
472 /* According to MIPS specifications, if one of the two operands is
473 * a sNaN, a new qNaN has to be generated. This is done in
474 * floatXX_maybe_silence_nan(). For qNaN inputs the specifications
475 * says: "When possible, this QNaN result is one of the operand QNaN
476 * values." In practice it seems that most implementations choose
477 * the first operand if both operands are qNaN. In short this gives
478 * the following rules:
479 * 1. A if it is signaling
480 * 2. B if it is signaling
481 * 3. A (quiet)
482 * 4. B (quiet)
483 * A signaling NaN is always silenced before returning it.
485 if (aIsSNaN) {
486 return 0;
487 } else if (bIsSNaN) {
488 return 1;
489 } else if (aIsQNaN) {
490 return 0;
491 } else {
492 return 1;
495 #elif defined(TARGET_PPC) || defined(TARGET_XTENSA)
496 static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
497 flag aIsLargerSignificand)
499 /* PowerPC propagation rules:
500 * 1. A if it sNaN or qNaN
501 * 2. B if it sNaN or qNaN
502 * A signaling NaN is always silenced before returning it.
504 if (aIsSNaN || aIsQNaN) {
505 return 0;
506 } else {
507 return 1;
510 #elif defined(TARGET_M68K)
511 static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
512 flag aIsLargerSignificand)
514 /* M68000 FAMILY PROGRAMMER'S REFERENCE MANUAL
515 * 3.4 FLOATING-POINT INSTRUCTION DETAILS
516 * If either operand, but not both operands, of an operation is a
517 * nonsignaling NaN, then that NaN is returned as the result. If both
518 * operands are nonsignaling NaNs, then the destination operand
519 * nonsignaling NaN is returned as the result.
520 * If either operand to an operation is a signaling NaN (SNaN), then the
521 * SNaN bit is set in the FPSR EXC byte. If the SNaN exception enable bit
522 * is set in the FPCR ENABLE byte, then the exception is taken and the
523 * destination is not modified. If the SNaN exception enable bit is not
524 * set, setting the SNaN bit in the operand to a one converts the SNaN to
525 * a nonsignaling NaN. The operation then continues as described in the
526 * preceding paragraph for nonsignaling NaNs.
528 if (aIsQNaN || aIsSNaN) { /* a is the destination operand */
529 return 0; /* return the destination operand */
530 } else {
531 return 1; /* return b */
534 #else
535 static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
536 flag aIsLargerSignificand)
538 /* This implements x87 NaN propagation rules:
539 * SNaN + QNaN => return the QNaN
540 * two SNaNs => return the one with the larger significand, silenced
541 * two QNaNs => return the one with the larger significand
542 * SNaN and a non-NaN => return the SNaN, silenced
543 * QNaN and a non-NaN => return the QNaN
545 * If we get down to comparing significands and they are the same,
546 * return the NaN with the positive sign bit (if any).
548 if (aIsSNaN) {
549 if (bIsSNaN) {
550 return aIsLargerSignificand ? 0 : 1;
552 return bIsQNaN ? 1 : 0;
553 } else if (aIsQNaN) {
554 if (bIsSNaN || !bIsQNaN) {
555 return 0;
556 } else {
557 return aIsLargerSignificand ? 0 : 1;
559 } else {
560 return 1;
563 #endif
565 /*----------------------------------------------------------------------------
566 | Select which NaN to propagate for a three-input operation.
567 | For the moment we assume that no CPU needs the 'larger significand'
568 | information.
569 | Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN
570 *----------------------------------------------------------------------------*/
571 #if defined(TARGET_ARM)
572 static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
573 flag cIsQNaN, flag cIsSNaN, flag infzero,
574 float_status *status)
576 /* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns
577 * the default NaN
579 if (infzero && cIsQNaN) {
580 float_raise(float_flag_invalid, status);
581 return 3;
584 /* This looks different from the ARM ARM pseudocode, because the ARM ARM
585 * puts the operands to a fused mac operation (a*b)+c in the order c,a,b.
587 if (cIsSNaN) {
588 return 2;
589 } else if (aIsSNaN) {
590 return 0;
591 } else if (bIsSNaN) {
592 return 1;
593 } else if (cIsQNaN) {
594 return 2;
595 } else if (aIsQNaN) {
596 return 0;
597 } else {
598 return 1;
601 #elif defined(TARGET_MIPS)
602 static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
603 flag cIsQNaN, flag cIsSNaN, flag infzero,
604 float_status *status)
606 /* For MIPS, the (inf,zero,qnan) case sets InvalidOp and returns
607 * the default NaN
609 if (infzero) {
610 float_raise(float_flag_invalid, status);
611 return 3;
614 if (status->snan_bit_is_one) {
615 /* Prefer sNaN over qNaN, in the a, b, c order. */
616 if (aIsSNaN) {
617 return 0;
618 } else if (bIsSNaN) {
619 return 1;
620 } else if (cIsSNaN) {
621 return 2;
622 } else if (aIsQNaN) {
623 return 0;
624 } else if (bIsQNaN) {
625 return 1;
626 } else {
627 return 2;
629 } else {
630 /* Prefer sNaN over qNaN, in the c, a, b order. */
631 if (cIsSNaN) {
632 return 2;
633 } else if (aIsSNaN) {
634 return 0;
635 } else if (bIsSNaN) {
636 return 1;
637 } else if (cIsQNaN) {
638 return 2;
639 } else if (aIsQNaN) {
640 return 0;
641 } else {
642 return 1;
646 #elif defined(TARGET_PPC)
647 static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
648 flag cIsQNaN, flag cIsSNaN, flag infzero,
649 float_status *status)
651 /* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer
652 * to return an input NaN if we have one (ie c) rather than generating
653 * a default NaN
655 if (infzero) {
656 float_raise(float_flag_invalid, status);
657 return 2;
660 /* If fRA is a NaN return it; otherwise if fRB is a NaN return it;
661 * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB
663 if (aIsSNaN || aIsQNaN) {
664 return 0;
665 } else if (cIsSNaN || cIsQNaN) {
666 return 2;
667 } else {
668 return 1;
671 #else
672 /* A default implementation: prefer a to b to c.
673 * This is unlikely to actually match any real implementation.
675 static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
676 flag cIsQNaN, flag cIsSNaN, flag infzero,
677 float_status *status)
679 if (aIsSNaN || aIsQNaN) {
680 return 0;
681 } else if (bIsSNaN || bIsQNaN) {
682 return 1;
683 } else {
684 return 2;
687 #endif
689 /*----------------------------------------------------------------------------
690 | Takes two single-precision floating-point values `a' and `b', one of which
691 | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
692 | signaling NaN, the invalid exception is raised.
693 *----------------------------------------------------------------------------*/
695 static float32 propagateFloat32NaN(float32 a, float32 b, float_status *status)
697 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
698 flag aIsLargerSignificand;
699 uint32_t av, bv;
701 aIsQuietNaN = float32_is_quiet_nan(a, status);
702 aIsSignalingNaN = float32_is_signaling_nan(a, status);
703 bIsQuietNaN = float32_is_quiet_nan(b, status);
704 bIsSignalingNaN = float32_is_signaling_nan(b, status);
705 av = float32_val(a);
706 bv = float32_val(b);
708 if (aIsSignalingNaN | bIsSignalingNaN) {
709 float_raise(float_flag_invalid, status);
712 if (status->default_nan_mode) {
713 return float32_default_nan(status);
716 if ((uint32_t)(av << 1) < (uint32_t)(bv << 1)) {
717 aIsLargerSignificand = 0;
718 } else if ((uint32_t)(bv << 1) < (uint32_t)(av << 1)) {
719 aIsLargerSignificand = 1;
720 } else {
721 aIsLargerSignificand = (av < bv) ? 1 : 0;
724 if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
725 aIsLargerSignificand)) {
726 return float32_maybe_silence_nan(b, status);
727 } else {
728 return float32_maybe_silence_nan(a, status);
732 #ifdef NO_SIGNALING_NANS
733 int float64_is_quiet_nan(float64 a_, float_status *status)
735 return float64_is_any_nan(a_);
738 int float64_is_signaling_nan(float64 a_, float_status *status)
740 return 0;
742 #else
743 /*----------------------------------------------------------------------------
744 | Returns 1 if the double-precision floating-point value `a' is a quiet
745 | NaN; otherwise returns 0.
746 *----------------------------------------------------------------------------*/
748 int float64_is_quiet_nan(float64 a_, float_status *status)
750 uint64_t a = float64_val(a_);
751 if (status->snan_bit_is_one) {
752 return (((a >> 51) & 0xFFF) == 0xFFE)
753 && (a & 0x0007FFFFFFFFFFFFULL);
754 } else {
755 return ((a << 1) >= 0xFFF0000000000000ULL);
759 /*----------------------------------------------------------------------------
760 | Returns 1 if the double-precision floating-point value `a' is a signaling
761 | NaN; otherwise returns 0.
762 *----------------------------------------------------------------------------*/
764 int float64_is_signaling_nan(float64 a_, float_status *status)
766 uint64_t a = float64_val(a_);
767 if (status->snan_bit_is_one) {
768 return ((a << 1) >= 0xFFF0000000000000ULL);
769 } else {
770 return (((a >> 51) & 0xFFF) == 0xFFE)
771 && (a & LIT64(0x0007FFFFFFFFFFFF));
774 #endif
776 /*----------------------------------------------------------------------------
777 | Returns a quiet NaN if the double-precision floating point value `a' is a
778 | signaling NaN; otherwise returns `a'.
779 *----------------------------------------------------------------------------*/
781 float64 float64_maybe_silence_nan(float64 a_, float_status *status)
783 if (float64_is_signaling_nan(a_, status)) {
784 if (status->snan_bit_is_one) {
785 #ifdef TARGET_HPPA
786 uint64_t a = float64_val(a_);
787 a &= ~0x0008000000000000ULL;
788 a |= 0x0004000000000000ULL;
789 return make_float64(a);
790 #else
791 return float64_default_nan(status);
792 #endif
793 } else {
794 uint64_t a = float64_val(a_);
795 a |= LIT64(0x0008000000000000);
796 return make_float64(a);
799 return a_;
802 /*----------------------------------------------------------------------------
803 | Returns the result of converting the double-precision floating-point NaN
804 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
805 | exception is raised.
806 *----------------------------------------------------------------------------*/
808 static commonNaNT float64ToCommonNaN(float64 a, float_status *status)
810 commonNaNT z;
812 if (float64_is_signaling_nan(a, status)) {
813 float_raise(float_flag_invalid, status);
815 z.sign = float64_val(a) >> 63;
816 z.low = 0;
817 z.high = float64_val(a) << 12;
818 return z;
821 /*----------------------------------------------------------------------------
822 | Returns the result of converting the canonical NaN `a' to the double-
823 | precision floating-point format.
824 *----------------------------------------------------------------------------*/
826 static float64 commonNaNToFloat64(commonNaNT a, float_status *status)
828 uint64_t mantissa = a.high >> 12;
830 if (status->default_nan_mode) {
831 return float64_default_nan(status);
834 if (mantissa) {
835 return make_float64(
836 (((uint64_t) a.sign) << 63)
837 | LIT64(0x7FF0000000000000)
838 | (a.high >> 12));
839 } else {
840 return float64_default_nan(status);
844 /*----------------------------------------------------------------------------
845 | Takes two double-precision floating-point values `a' and `b', one of which
846 | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
847 | signaling NaN, the invalid exception is raised.
848 *----------------------------------------------------------------------------*/
850 static float64 propagateFloat64NaN(float64 a, float64 b, float_status *status)
852 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
853 flag aIsLargerSignificand;
854 uint64_t av, bv;
856 aIsQuietNaN = float64_is_quiet_nan(a, status);
857 aIsSignalingNaN = float64_is_signaling_nan(a, status);
858 bIsQuietNaN = float64_is_quiet_nan(b, status);
859 bIsSignalingNaN = float64_is_signaling_nan(b, status);
860 av = float64_val(a);
861 bv = float64_val(b);
863 if (aIsSignalingNaN | bIsSignalingNaN) {
864 float_raise(float_flag_invalid, status);
867 if (status->default_nan_mode) {
868 return float64_default_nan(status);
871 if ((uint64_t)(av << 1) < (uint64_t)(bv << 1)) {
872 aIsLargerSignificand = 0;
873 } else if ((uint64_t)(bv << 1) < (uint64_t)(av << 1)) {
874 aIsLargerSignificand = 1;
875 } else {
876 aIsLargerSignificand = (av < bv) ? 1 : 0;
879 if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
880 aIsLargerSignificand)) {
881 return float64_maybe_silence_nan(b, status);
882 } else {
883 return float64_maybe_silence_nan(a, status);
887 #ifdef NO_SIGNALING_NANS
888 int floatx80_is_quiet_nan(floatx80 a_, float_status *status)
890 return floatx80_is_any_nan(a_);
893 int floatx80_is_signaling_nan(floatx80 a_, float_status *status)
895 return 0;
897 #else
898 /*----------------------------------------------------------------------------
899 | Returns 1 if the extended double-precision floating-point value `a' is a
900 | quiet NaN; otherwise returns 0. This slightly differs from the same
901 | function for other types as floatx80 has an explicit bit.
902 *----------------------------------------------------------------------------*/
904 int floatx80_is_quiet_nan(floatx80 a, float_status *status)
906 if (status->snan_bit_is_one) {
907 uint64_t aLow;
909 aLow = a.low & ~0x4000000000000000ULL;
910 return ((a.high & 0x7FFF) == 0x7FFF)
911 && (aLow << 1)
912 && (a.low == aLow);
913 } else {
914 return ((a.high & 0x7FFF) == 0x7FFF)
915 && (LIT64(0x8000000000000000) <= ((uint64_t)(a.low << 1)));
919 /*----------------------------------------------------------------------------
920 | Returns 1 if the extended double-precision floating-point value `a' is a
921 | signaling NaN; otherwise returns 0. This slightly differs from the same
922 | function for other types as floatx80 has an explicit bit.
923 *----------------------------------------------------------------------------*/
925 int floatx80_is_signaling_nan(floatx80 a, float_status *status)
927 if (status->snan_bit_is_one) {
928 return ((a.high & 0x7FFF) == 0x7FFF)
929 && ((a.low << 1) >= 0x8000000000000000ULL);
930 } else {
931 uint64_t aLow;
933 aLow = a.low & ~LIT64(0x4000000000000000);
934 return ((a.high & 0x7FFF) == 0x7FFF)
935 && (uint64_t)(aLow << 1)
936 && (a.low == aLow);
939 #endif
941 /*----------------------------------------------------------------------------
942 | Returns a quiet NaN if the extended double-precision floating point value
943 | `a' is a signaling NaN; otherwise returns `a'.
944 *----------------------------------------------------------------------------*/
946 floatx80 floatx80_maybe_silence_nan(floatx80 a, float_status *status)
948 if (floatx80_is_signaling_nan(a, status)) {
949 if (status->snan_bit_is_one) {
950 a = floatx80_default_nan(status);
951 } else {
952 a.low |= LIT64(0xC000000000000000);
953 return a;
956 return a;
959 /*----------------------------------------------------------------------------
960 | Returns the result of converting the extended double-precision floating-
961 | point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
962 | invalid exception is raised.
963 *----------------------------------------------------------------------------*/
965 static commonNaNT floatx80ToCommonNaN(floatx80 a, float_status *status)
967 floatx80 dflt;
968 commonNaNT z;
970 if (floatx80_is_signaling_nan(a, status)) {
971 float_raise(float_flag_invalid, status);
973 if (a.low >> 63) {
974 z.sign = a.high >> 15;
975 z.low = 0;
976 z.high = a.low << 1;
977 } else {
978 dflt = floatx80_default_nan(status);
979 z.sign = dflt.high >> 15;
980 z.low = 0;
981 z.high = dflt.low << 1;
983 return z;
986 /*----------------------------------------------------------------------------
987 | Returns the result of converting the canonical NaN `a' to the extended
988 | double-precision floating-point format.
989 *----------------------------------------------------------------------------*/
991 static floatx80 commonNaNToFloatx80(commonNaNT a, float_status *status)
993 floatx80 z;
995 if (status->default_nan_mode) {
996 return floatx80_default_nan(status);
999 if (a.high >> 1) {
1000 z.low = LIT64(0x8000000000000000) | a.high >> 1;
1001 z.high = (((uint16_t)a.sign) << 15) | 0x7FFF;
1002 } else {
1003 z = floatx80_default_nan(status);
1005 return z;
1008 /*----------------------------------------------------------------------------
1009 | Takes two extended double-precision floating-point values `a' and `b', one
1010 | of which is a NaN, and returns the appropriate NaN result. If either `a' or
1011 | `b' is a signaling NaN, the invalid exception is raised.
1012 *----------------------------------------------------------------------------*/
1014 static floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b,
1015 float_status *status)
1017 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
1018 flag aIsLargerSignificand;
1020 aIsQuietNaN = floatx80_is_quiet_nan(a, status);
1021 aIsSignalingNaN = floatx80_is_signaling_nan(a, status);
1022 bIsQuietNaN = floatx80_is_quiet_nan(b, status);
1023 bIsSignalingNaN = floatx80_is_signaling_nan(b, status);
1025 if (aIsSignalingNaN | bIsSignalingNaN) {
1026 float_raise(float_flag_invalid, status);
1029 if (status->default_nan_mode) {
1030 return floatx80_default_nan(status);
1033 if (a.low < b.low) {
1034 aIsLargerSignificand = 0;
1035 } else if (b.low < a.low) {
1036 aIsLargerSignificand = 1;
1037 } else {
1038 aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
1041 if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
1042 aIsLargerSignificand)) {
1043 return floatx80_maybe_silence_nan(b, status);
1044 } else {
1045 return floatx80_maybe_silence_nan(a, status);
1049 #ifdef NO_SIGNALING_NANS
1050 int float128_is_quiet_nan(float128 a_, float_status *status)
1052 return float128_is_any_nan(a_);
1055 int float128_is_signaling_nan(float128 a_, float_status *status)
1057 return 0;
1059 #else
1060 /*----------------------------------------------------------------------------
1061 | Returns 1 if the quadruple-precision floating-point value `a' is a quiet
1062 | NaN; otherwise returns 0.
1063 *----------------------------------------------------------------------------*/
1065 int float128_is_quiet_nan(float128 a, float_status *status)
1067 if (status->snan_bit_is_one) {
1068 return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
1069 && (a.low || (a.high & 0x00007FFFFFFFFFFFULL));
1070 } else {
1071 return ((a.high << 1) >= 0xFFFF000000000000ULL)
1072 && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
1076 /*----------------------------------------------------------------------------
1077 | Returns 1 if the quadruple-precision floating-point value `a' is a
1078 | signaling NaN; otherwise returns 0.
1079 *----------------------------------------------------------------------------*/
1081 int float128_is_signaling_nan(float128 a, float_status *status)
1083 if (status->snan_bit_is_one) {
1084 return ((a.high << 1) >= 0xFFFF000000000000ULL)
1085 && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
1086 } else {
1087 return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
1088 && (a.low || (a.high & LIT64(0x00007FFFFFFFFFFF)));
1091 #endif
1093 /*----------------------------------------------------------------------------
1094 | Returns a quiet NaN if the quadruple-precision floating point value `a' is
1095 | a signaling NaN; otherwise returns `a'.
1096 *----------------------------------------------------------------------------*/
1098 float128 float128_maybe_silence_nan(float128 a, float_status *status)
1100 if (float128_is_signaling_nan(a, status)) {
1101 if (status->snan_bit_is_one) {
1102 a = float128_default_nan(status);
1103 } else {
1104 a.high |= LIT64(0x0000800000000000);
1105 return a;
1108 return a;
1111 /*----------------------------------------------------------------------------
1112 | Returns the result of converting the quadruple-precision floating-point NaN
1113 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
1114 | exception is raised.
1115 *----------------------------------------------------------------------------*/
1117 static commonNaNT float128ToCommonNaN(float128 a, float_status *status)
1119 commonNaNT z;
1121 if (float128_is_signaling_nan(a, status)) {
1122 float_raise(float_flag_invalid, status);
1124 z.sign = a.high >> 63;
1125 shortShift128Left(a.high, a.low, 16, &z.high, &z.low);
1126 return z;
1129 /*----------------------------------------------------------------------------
1130 | Returns the result of converting the canonical NaN `a' to the quadruple-
1131 | precision floating-point format.
1132 *----------------------------------------------------------------------------*/
1134 static float128 commonNaNToFloat128(commonNaNT a, float_status *status)
1136 float128 z;
1138 if (status->default_nan_mode) {
1139 return float128_default_nan(status);
1142 shift128Right(a.high, a.low, 16, &z.high, &z.low);
1143 z.high |= (((uint64_t)a.sign) << 63) | LIT64(0x7FFF000000000000);
1144 return z;
1147 /*----------------------------------------------------------------------------
1148 | Takes two quadruple-precision floating-point values `a' and `b', one of
1149 | which is a NaN, and returns the appropriate NaN result. If either `a' or
1150 | `b' is a signaling NaN, the invalid exception is raised.
1151 *----------------------------------------------------------------------------*/
1153 static float128 propagateFloat128NaN(float128 a, float128 b,
1154 float_status *status)
1156 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
1157 flag aIsLargerSignificand;
1159 aIsQuietNaN = float128_is_quiet_nan(a, status);
1160 aIsSignalingNaN = float128_is_signaling_nan(a, status);
1161 bIsQuietNaN = float128_is_quiet_nan(b, status);
1162 bIsSignalingNaN = float128_is_signaling_nan(b, status);
1164 if (aIsSignalingNaN | bIsSignalingNaN) {
1165 float_raise(float_flag_invalid, status);
1168 if (status->default_nan_mode) {
1169 return float128_default_nan(status);
1172 if (lt128(a.high << 1, a.low, b.high << 1, b.low)) {
1173 aIsLargerSignificand = 0;
1174 } else if (lt128(b.high << 1, b.low, a.high << 1, a.low)) {
1175 aIsLargerSignificand = 1;
1176 } else {
1177 aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
1180 if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
1181 aIsLargerSignificand)) {
1182 return float128_maybe_silence_nan(b, status);
1183 } else {
1184 return float128_maybe_silence_nan(a, status);