target/arm/cpu: Update coding style to make checkpatch.pl happy
[qemu/ar7.git] / target / arm / cpu.c
blob6facb66f4d20f65a155e1656b7d67a04d9b6dbc1
1 /*
2 * QEMU ARM CPU
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
28 #include "cpu.h"
29 #ifdef CONFIG_TCG
30 #include "hw/core/tcg-cpu-ops.h"
31 #endif /* CONFIG_TCG */
32 #include "internals.h"
33 #include "exec/exec-all.h"
34 #include "hw/qdev-properties.h"
35 #if !defined(CONFIG_USER_ONLY)
36 #include "hw/loader.h"
37 #include "hw/boards.h"
38 #endif
39 #include "sysemu/sysemu.h"
40 #include "sysemu/tcg.h"
41 #include "sysemu/hw_accel.h"
42 #include "kvm_arm.h"
43 #include "disas/capstone.h"
44 #include "fpu/softfloat.h"
46 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
48 ARMCPU *cpu = ARM_CPU(cs);
49 CPUARMState *env = &cpu->env;
51 if (is_a64(env)) {
52 env->pc = value;
53 env->thumb = 0;
54 } else {
55 env->regs[15] = value & ~1;
56 env->thumb = value & 1;
60 #ifdef CONFIG_TCG
61 void arm_cpu_synchronize_from_tb(CPUState *cs,
62 const TranslationBlock *tb)
64 ARMCPU *cpu = ARM_CPU(cs);
65 CPUARMState *env = &cpu->env;
68 * It's OK to look at env for the current mode here, because it's
69 * never possible for an AArch64 TB to chain to an AArch32 TB.
71 if (is_a64(env)) {
72 env->pc = tb->pc;
73 } else {
74 env->regs[15] = tb->pc;
77 #endif /* CONFIG_TCG */
79 static bool arm_cpu_has_work(CPUState *cs)
81 ARMCPU *cpu = ARM_CPU(cs);
83 return (cpu->power_state != PSCI_OFF)
84 && cs->interrupt_request &
85 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
86 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
87 | CPU_INTERRUPT_EXITTB);
90 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
91 void *opaque)
93 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
95 entry->hook = hook;
96 entry->opaque = opaque;
98 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
101 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
102 void *opaque)
104 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
106 entry->hook = hook;
107 entry->opaque = opaque;
109 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
112 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
114 /* Reset a single ARMCPRegInfo register */
115 ARMCPRegInfo *ri = value;
116 ARMCPU *cpu = opaque;
118 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
119 return;
122 if (ri->resetfn) {
123 ri->resetfn(&cpu->env, ri);
124 return;
127 /* A zero offset is never possible as it would be regs[0]
128 * so we use it to indicate that reset is being handled elsewhere.
129 * This is basically only used for fields in non-core coprocessors
130 * (like the pxa2xx ones).
132 if (!ri->fieldoffset) {
133 return;
136 if (cpreg_field_is_64bit(ri)) {
137 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
138 } else {
139 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
143 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
145 /* Purely an assertion check: we've already done reset once,
146 * so now check that running the reset for the cpreg doesn't
147 * change its value. This traps bugs where two different cpregs
148 * both try to reset the same state field but to different values.
150 ARMCPRegInfo *ri = value;
151 ARMCPU *cpu = opaque;
152 uint64_t oldvalue, newvalue;
154 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
155 return;
158 oldvalue = read_raw_cp_reg(&cpu->env, ri);
159 cp_reg_reset(key, value, opaque);
160 newvalue = read_raw_cp_reg(&cpu->env, ri);
161 assert(oldvalue == newvalue);
164 static void arm_cpu_reset(DeviceState *dev)
166 CPUState *s = CPU(dev);
167 ARMCPU *cpu = ARM_CPU(s);
168 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
169 CPUARMState *env = &cpu->env;
171 acc->parent_reset(dev);
173 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
175 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
176 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
178 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
179 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
180 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
181 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
183 cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
185 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
186 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
189 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
190 /* 64 bit CPUs always start in 64 bit mode */
191 env->aarch64 = 1;
192 #if defined(CONFIG_USER_ONLY)
193 env->pstate = PSTATE_MODE_EL0t;
194 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
195 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
196 /* Enable all PAC keys. */
197 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
198 SCTLR_EnDA | SCTLR_EnDB);
199 /* and to the FP/Neon instructions */
200 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
201 /* and to the SVE instructions */
202 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
203 /* with reasonable vector length */
204 if (cpu_isar_feature(aa64_sve, cpu)) {
205 env->vfp.zcr_el[1] = MIN(cpu->sve_max_vq - 1, 3);
208 * Enable TBI0 but not TBI1.
209 * Note that this must match useronly_clean_ptr.
211 env->cp15.tcr_el[1].raw_tcr = (1ULL << 37);
213 /* Enable MTE */
214 if (cpu_isar_feature(aa64_mte, cpu)) {
215 /* Enable tag access, but leave TCF0 as No Effect (0). */
216 env->cp15.sctlr_el[1] |= SCTLR_ATA0;
218 * Exclude all tags, so that tag 0 is always used.
219 * This corresponds to Linux current->thread.gcr_incl = 0.
221 * Set RRND, so that helper_irg() will generate a seed later.
222 * Here in cpu_reset(), the crypto subsystem has not yet been
223 * initialized.
225 env->cp15.gcr_el1 = 0x1ffff;
227 #else
228 /* Reset into the highest available EL */
229 if (arm_feature(env, ARM_FEATURE_EL3)) {
230 env->pstate = PSTATE_MODE_EL3h;
231 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
232 env->pstate = PSTATE_MODE_EL2h;
233 } else {
234 env->pstate = PSTATE_MODE_EL1h;
236 env->pc = cpu->rvbar;
237 #endif
238 } else {
239 #if defined(CONFIG_USER_ONLY)
240 /* Userspace expects access to cp10 and cp11 for FP/Neon */
241 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
242 #endif
245 #if defined(CONFIG_USER_ONLY)
246 env->uncached_cpsr = ARM_CPU_MODE_USR;
247 /* For user mode we must enable access to coprocessors */
248 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
249 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
250 env->cp15.c15_cpar = 3;
251 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
252 env->cp15.c15_cpar = 1;
254 #else
257 * If the highest available EL is EL2, AArch32 will start in Hyp
258 * mode; otherwise it starts in SVC. Note that if we start in
259 * AArch64 then these values in the uncached_cpsr will be ignored.
261 if (arm_feature(env, ARM_FEATURE_EL2) &&
262 !arm_feature(env, ARM_FEATURE_EL3)) {
263 env->uncached_cpsr = ARM_CPU_MODE_HYP;
264 } else {
265 env->uncached_cpsr = ARM_CPU_MODE_SVC;
267 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
269 if (arm_feature(env, ARM_FEATURE_M)) {
270 uint32_t initial_msp; /* Loaded from 0x0 */
271 uint32_t initial_pc; /* Loaded from 0x4 */
272 uint8_t *rom;
273 uint32_t vecbase;
275 if (cpu_isar_feature(aa32_lob, cpu)) {
277 * LTPSIZE is constant 4 if MVE not implemented, and resets
278 * to an UNKNOWN value if MVE is implemented. We choose to
279 * always reset to 4.
281 env->v7m.ltpsize = 4;
282 /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
283 env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
284 env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
287 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
288 env->v7m.secure = true;
289 } else {
290 /* This bit resets to 0 if security is supported, but 1 if
291 * it is not. The bit is not present in v7M, but we set it
292 * here so we can avoid having to make checks on it conditional
293 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
295 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
297 * Set NSACR to indicate "NS access permitted to everything";
298 * this avoids having to have all the tests of it being
299 * conditional on ARM_FEATURE_M_SECURITY. Note also that from
300 * v8.1M the guest-visible value of NSACR in a CPU without the
301 * Security Extension is 0xcff.
303 env->v7m.nsacr = 0xcff;
306 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
307 * that it resets to 1, so QEMU always does that rather than making
308 * it dependent on CPU model. In v8M it is RES1.
310 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
311 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
312 if (arm_feature(env, ARM_FEATURE_V8)) {
313 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
314 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
315 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
317 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
318 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
319 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
322 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
323 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
324 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
325 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
327 /* Unlike A/R profile, M profile defines the reset LR value */
328 env->regs[14] = 0xffffffff;
330 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
332 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
333 vecbase = env->v7m.vecbase[env->v7m.secure];
334 rom = rom_ptr(vecbase, 8);
335 if (rom) {
336 /* Address zero is covered by ROM which hasn't yet been
337 * copied into physical memory.
339 initial_msp = ldl_p(rom);
340 initial_pc = ldl_p(rom + 4);
341 } else {
342 /* Address zero not covered by a ROM blob, or the ROM blob
343 * is in non-modifiable memory and this is a second reset after
344 * it got copied into memory. In the latter case, rom_ptr
345 * will return a NULL pointer and we should use ldl_phys instead.
347 initial_msp = ldl_phys(s->as, vecbase);
348 initial_pc = ldl_phys(s->as, vecbase + 4);
351 env->regs[13] = initial_msp & 0xFFFFFFFC;
352 env->regs[15] = initial_pc & ~1;
353 env->thumb = initial_pc & 1;
356 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
357 * executing as AArch32 then check if highvecs are enabled and
358 * adjust the PC accordingly.
360 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
361 env->regs[15] = 0xFFFF0000;
364 /* M profile requires that reset clears the exclusive monitor;
365 * A profile does not, but clearing it makes more sense than having it
366 * set with an exclusive access on address zero.
368 arm_clear_exclusive(env);
370 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
371 #endif
373 if (arm_feature(env, ARM_FEATURE_PMSA)) {
374 if (cpu->pmsav7_dregion > 0) {
375 if (arm_feature(env, ARM_FEATURE_V8)) {
376 memset(env->pmsav8.rbar[M_REG_NS], 0,
377 sizeof(*env->pmsav8.rbar[M_REG_NS])
378 * cpu->pmsav7_dregion);
379 memset(env->pmsav8.rlar[M_REG_NS], 0,
380 sizeof(*env->pmsav8.rlar[M_REG_NS])
381 * cpu->pmsav7_dregion);
382 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
383 memset(env->pmsav8.rbar[M_REG_S], 0,
384 sizeof(*env->pmsav8.rbar[M_REG_S])
385 * cpu->pmsav7_dregion);
386 memset(env->pmsav8.rlar[M_REG_S], 0,
387 sizeof(*env->pmsav8.rlar[M_REG_S])
388 * cpu->pmsav7_dregion);
390 } else if (arm_feature(env, ARM_FEATURE_V7)) {
391 memset(env->pmsav7.drbar, 0,
392 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
393 memset(env->pmsav7.drsr, 0,
394 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
395 memset(env->pmsav7.dracr, 0,
396 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
399 env->pmsav7.rnr[M_REG_NS] = 0;
400 env->pmsav7.rnr[M_REG_S] = 0;
401 env->pmsav8.mair0[M_REG_NS] = 0;
402 env->pmsav8.mair0[M_REG_S] = 0;
403 env->pmsav8.mair1[M_REG_NS] = 0;
404 env->pmsav8.mair1[M_REG_S] = 0;
407 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
408 if (cpu->sau_sregion > 0) {
409 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
410 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
412 env->sau.rnr = 0;
413 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
414 * the Cortex-M33 does.
416 env->sau.ctrl = 0;
419 set_flush_to_zero(1, &env->vfp.standard_fp_status);
420 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
421 set_default_nan_mode(1, &env->vfp.standard_fp_status);
422 set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
423 set_float_detect_tininess(float_tininess_before_rounding,
424 &env->vfp.fp_status);
425 set_float_detect_tininess(float_tininess_before_rounding,
426 &env->vfp.standard_fp_status);
427 set_float_detect_tininess(float_tininess_before_rounding,
428 &env->vfp.fp_status_f16);
429 set_float_detect_tininess(float_tininess_before_rounding,
430 &env->vfp.standard_fp_status_f16);
431 #ifndef CONFIG_USER_ONLY
432 if (kvm_enabled()) {
433 kvm_arm_reset_vcpu(cpu);
435 #endif
437 hw_breakpoint_update_all(cpu);
438 hw_watchpoint_update_all(cpu);
439 arm_rebuild_hflags(env);
442 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
443 unsigned int target_el,
444 unsigned int cur_el, bool secure,
445 uint64_t hcr_el2)
447 CPUARMState *env = cs->env_ptr;
448 bool pstate_unmasked;
449 bool unmasked = false;
452 * Don't take exceptions if they target a lower EL.
453 * This check should catch any exceptions that would not be taken
454 * but left pending.
456 if (cur_el > target_el) {
457 return false;
460 switch (excp_idx) {
461 case EXCP_FIQ:
462 pstate_unmasked = !(env->daif & PSTATE_F);
463 break;
465 case EXCP_IRQ:
466 pstate_unmasked = !(env->daif & PSTATE_I);
467 break;
469 case EXCP_VFIQ:
470 if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
471 /* VFIQs are only taken when hypervized. */
472 return false;
474 return !(env->daif & PSTATE_F);
475 case EXCP_VIRQ:
476 if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
477 /* VIRQs are only taken when hypervized. */
478 return false;
480 return !(env->daif & PSTATE_I);
481 default:
482 g_assert_not_reached();
486 * Use the target EL, current execution state and SCR/HCR settings to
487 * determine whether the corresponding CPSR bit is used to mask the
488 * interrupt.
490 if ((target_el > cur_el) && (target_el != 1)) {
491 /* Exceptions targeting a higher EL may not be maskable */
492 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
494 * 64-bit masking rules are simple: exceptions to EL3
495 * can't be masked, and exceptions to EL2 can only be
496 * masked from Secure state. The HCR and SCR settings
497 * don't affect the masking logic, only the interrupt routing.
499 if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) {
500 unmasked = true;
502 } else {
504 * The old 32-bit-only environment has a more complicated
505 * masking setup. HCR and SCR bits not only affect interrupt
506 * routing but also change the behaviour of masking.
508 bool hcr, scr;
510 switch (excp_idx) {
511 case EXCP_FIQ:
513 * If FIQs are routed to EL3 or EL2 then there are cases where
514 * we override the CPSR.F in determining if the exception is
515 * masked or not. If neither of these are set then we fall back
516 * to the CPSR.F setting otherwise we further assess the state
517 * below.
519 hcr = hcr_el2 & HCR_FMO;
520 scr = (env->cp15.scr_el3 & SCR_FIQ);
523 * When EL3 is 32-bit, the SCR.FW bit controls whether the
524 * CPSR.F bit masks FIQ interrupts when taken in non-secure
525 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
526 * when non-secure but only when FIQs are only routed to EL3.
528 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
529 break;
530 case EXCP_IRQ:
532 * When EL3 execution state is 32-bit, if HCR.IMO is set then
533 * we may override the CPSR.I masking when in non-secure state.
534 * The SCR.IRQ setting has already been taken into consideration
535 * when setting the target EL, so it does not have a further
536 * affect here.
538 hcr = hcr_el2 & HCR_IMO;
539 scr = false;
540 break;
541 default:
542 g_assert_not_reached();
545 if ((scr || hcr) && !secure) {
546 unmasked = true;
552 * The PSTATE bits only mask the interrupt if we have not overriden the
553 * ability above.
555 return unmasked || pstate_unmasked;
558 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
560 CPUClass *cc = CPU_GET_CLASS(cs);
561 CPUARMState *env = cs->env_ptr;
562 uint32_t cur_el = arm_current_el(env);
563 bool secure = arm_is_secure(env);
564 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
565 uint32_t target_el;
566 uint32_t excp_idx;
568 /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
570 if (interrupt_request & CPU_INTERRUPT_FIQ) {
571 excp_idx = EXCP_FIQ;
572 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
573 if (arm_excp_unmasked(cs, excp_idx, target_el,
574 cur_el, secure, hcr_el2)) {
575 goto found;
578 if (interrupt_request & CPU_INTERRUPT_HARD) {
579 excp_idx = EXCP_IRQ;
580 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
581 if (arm_excp_unmasked(cs, excp_idx, target_el,
582 cur_el, secure, hcr_el2)) {
583 goto found;
586 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
587 excp_idx = EXCP_VIRQ;
588 target_el = 1;
589 if (arm_excp_unmasked(cs, excp_idx, target_el,
590 cur_el, secure, hcr_el2)) {
591 goto found;
594 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
595 excp_idx = EXCP_VFIQ;
596 target_el = 1;
597 if (arm_excp_unmasked(cs, excp_idx, target_el,
598 cur_el, secure, hcr_el2)) {
599 goto found;
602 return false;
604 found:
605 cs->exception_index = excp_idx;
606 env->exception.target_el = target_el;
607 cc->tcg_ops->do_interrupt(cs);
608 return true;
611 void arm_cpu_update_virq(ARMCPU *cpu)
614 * Update the interrupt level for VIRQ, which is the logical OR of
615 * the HCR_EL2.VI bit and the input line level from the GIC.
617 CPUARMState *env = &cpu->env;
618 CPUState *cs = CPU(cpu);
620 bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
621 (env->irq_line_state & CPU_INTERRUPT_VIRQ);
623 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
624 if (new_state) {
625 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
626 } else {
627 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
632 void arm_cpu_update_vfiq(ARMCPU *cpu)
635 * Update the interrupt level for VFIQ, which is the logical OR of
636 * the HCR_EL2.VF bit and the input line level from the GIC.
638 CPUARMState *env = &cpu->env;
639 CPUState *cs = CPU(cpu);
641 bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
642 (env->irq_line_state & CPU_INTERRUPT_VFIQ);
644 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
645 if (new_state) {
646 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
647 } else {
648 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
653 #ifndef CONFIG_USER_ONLY
654 static void arm_cpu_set_irq(void *opaque, int irq, int level)
656 ARMCPU *cpu = opaque;
657 CPUARMState *env = &cpu->env;
658 CPUState *cs = CPU(cpu);
659 static const int mask[] = {
660 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
661 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
662 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
663 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
666 if (level) {
667 env->irq_line_state |= mask[irq];
668 } else {
669 env->irq_line_state &= ~mask[irq];
672 switch (irq) {
673 case ARM_CPU_VIRQ:
674 assert(arm_feature(env, ARM_FEATURE_EL2));
675 arm_cpu_update_virq(cpu);
676 break;
677 case ARM_CPU_VFIQ:
678 assert(arm_feature(env, ARM_FEATURE_EL2));
679 arm_cpu_update_vfiq(cpu);
680 break;
681 case ARM_CPU_IRQ:
682 case ARM_CPU_FIQ:
683 if (level) {
684 cpu_interrupt(cs, mask[irq]);
685 } else {
686 cpu_reset_interrupt(cs, mask[irq]);
688 break;
689 default:
690 g_assert_not_reached();
694 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
696 #ifdef CONFIG_KVM
697 ARMCPU *cpu = opaque;
698 CPUARMState *env = &cpu->env;
699 CPUState *cs = CPU(cpu);
700 uint32_t linestate_bit;
701 int irq_id;
703 switch (irq) {
704 case ARM_CPU_IRQ:
705 irq_id = KVM_ARM_IRQ_CPU_IRQ;
706 linestate_bit = CPU_INTERRUPT_HARD;
707 break;
708 case ARM_CPU_FIQ:
709 irq_id = KVM_ARM_IRQ_CPU_FIQ;
710 linestate_bit = CPU_INTERRUPT_FIQ;
711 break;
712 default:
713 g_assert_not_reached();
716 if (level) {
717 env->irq_line_state |= linestate_bit;
718 } else {
719 env->irq_line_state &= ~linestate_bit;
721 kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
722 #endif
725 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
727 ARMCPU *cpu = ARM_CPU(cs);
728 CPUARMState *env = &cpu->env;
730 cpu_synchronize_state(cs);
731 return arm_cpu_data_is_big_endian(env);
734 #endif
736 static int
737 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
739 return print_insn_arm(pc | 1, info);
742 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
744 ARMCPU *ac = ARM_CPU(cpu);
745 CPUARMState *env = &ac->env;
746 bool sctlr_b;
748 if (is_a64(env)) {
749 /* We might not be compiled with the A64 disassembler
750 * because it needs a C++ compiler. Leave print_insn
751 * unset in this case to use the caller default behaviour.
753 #if defined(CONFIG_ARM_A64_DIS)
754 info->print_insn = print_insn_arm_a64;
755 #endif
756 info->cap_arch = CS_ARCH_ARM64;
757 info->cap_insn_unit = 4;
758 info->cap_insn_split = 4;
759 } else {
760 int cap_mode;
761 if (env->thumb) {
762 info->print_insn = print_insn_thumb1;
763 info->cap_insn_unit = 2;
764 info->cap_insn_split = 4;
765 cap_mode = CS_MODE_THUMB;
766 } else {
767 info->print_insn = print_insn_arm;
768 info->cap_insn_unit = 4;
769 info->cap_insn_split = 4;
770 cap_mode = CS_MODE_ARM;
772 if (arm_feature(env, ARM_FEATURE_V8)) {
773 cap_mode |= CS_MODE_V8;
775 if (arm_feature(env, ARM_FEATURE_M)) {
776 cap_mode |= CS_MODE_MCLASS;
778 info->cap_arch = CS_ARCH_ARM;
779 info->cap_mode = cap_mode;
782 sctlr_b = arm_sctlr_b(env);
783 if (bswap_code(sctlr_b)) {
784 #ifdef TARGET_WORDS_BIGENDIAN
785 info->endian = BFD_ENDIAN_LITTLE;
786 #else
787 info->endian = BFD_ENDIAN_BIG;
788 #endif
790 info->flags &= ~INSN_ARM_BE32;
791 #ifndef CONFIG_USER_ONLY
792 if (sctlr_b) {
793 info->flags |= INSN_ARM_BE32;
795 #endif
798 #ifdef TARGET_AARCH64
800 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
802 ARMCPU *cpu = ARM_CPU(cs);
803 CPUARMState *env = &cpu->env;
804 uint32_t psr = pstate_read(env);
805 int i;
806 int el = arm_current_el(env);
807 const char *ns_status;
809 qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
810 for (i = 0; i < 32; i++) {
811 if (i == 31) {
812 qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
813 } else {
814 qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
815 (i + 2) % 3 ? " " : "\n");
819 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
820 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
821 } else {
822 ns_status = "";
824 qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
825 psr,
826 psr & PSTATE_N ? 'N' : '-',
827 psr & PSTATE_Z ? 'Z' : '-',
828 psr & PSTATE_C ? 'C' : '-',
829 psr & PSTATE_V ? 'V' : '-',
830 ns_status,
832 psr & PSTATE_SP ? 'h' : 't');
834 if (cpu_isar_feature(aa64_bti, cpu)) {
835 qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
837 if (!(flags & CPU_DUMP_FPU)) {
838 qemu_fprintf(f, "\n");
839 return;
841 if (fp_exception_el(env, el) != 0) {
842 qemu_fprintf(f, " FPU disabled\n");
843 return;
845 qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n",
846 vfp_get_fpcr(env), vfp_get_fpsr(env));
848 if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
849 int j, zcr_len = sve_zcr_len_for_el(env, el);
851 for (i = 0; i <= FFR_PRED_NUM; i++) {
852 bool eol;
853 if (i == FFR_PRED_NUM) {
854 qemu_fprintf(f, "FFR=");
855 /* It's last, so end the line. */
856 eol = true;
857 } else {
858 qemu_fprintf(f, "P%02d=", i);
859 switch (zcr_len) {
860 case 0:
861 eol = i % 8 == 7;
862 break;
863 case 1:
864 eol = i % 6 == 5;
865 break;
866 case 2:
867 case 3:
868 eol = i % 3 == 2;
869 break;
870 default:
871 /* More than one quadword per predicate. */
872 eol = true;
873 break;
876 for (j = zcr_len / 4; j >= 0; j--) {
877 int digits;
878 if (j * 4 + 4 <= zcr_len + 1) {
879 digits = 16;
880 } else {
881 digits = (zcr_len % 4 + 1) * 4;
883 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
884 env->vfp.pregs[i].p[j],
885 j ? ":" : eol ? "\n" : " ");
889 for (i = 0; i < 32; i++) {
890 if (zcr_len == 0) {
891 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
892 i, env->vfp.zregs[i].d[1],
893 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
894 } else if (zcr_len == 1) {
895 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
896 ":%016" PRIx64 ":%016" PRIx64 "\n",
897 i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
898 env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
899 } else {
900 for (j = zcr_len; j >= 0; j--) {
901 bool odd = (zcr_len - j) % 2 != 0;
902 if (j == zcr_len) {
903 qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
904 } else if (!odd) {
905 if (j > 0) {
906 qemu_fprintf(f, " [%x-%x]=", j, j - 1);
907 } else {
908 qemu_fprintf(f, " [%x]=", j);
911 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
912 env->vfp.zregs[i].d[j * 2 + 1],
913 env->vfp.zregs[i].d[j * 2],
914 odd || j == 0 ? "\n" : ":");
918 } else {
919 for (i = 0; i < 32; i++) {
920 uint64_t *q = aa64_vfp_qreg(env, i);
921 qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
922 i, q[1], q[0], (i & 1 ? "\n" : " "));
927 #else
929 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
931 g_assert_not_reached();
934 #endif
936 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
938 ARMCPU *cpu = ARM_CPU(cs);
939 CPUARMState *env = &cpu->env;
940 int i;
942 if (is_a64(env)) {
943 aarch64_cpu_dump_state(cs, f, flags);
944 return;
947 for (i = 0; i < 16; i++) {
948 qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
949 if ((i % 4) == 3) {
950 qemu_fprintf(f, "\n");
951 } else {
952 qemu_fprintf(f, " ");
956 if (arm_feature(env, ARM_FEATURE_M)) {
957 uint32_t xpsr = xpsr_read(env);
958 const char *mode;
959 const char *ns_status = "";
961 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
962 ns_status = env->v7m.secure ? "S " : "NS ";
965 if (xpsr & XPSR_EXCP) {
966 mode = "handler";
967 } else {
968 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
969 mode = "unpriv-thread";
970 } else {
971 mode = "priv-thread";
975 qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
976 xpsr,
977 xpsr & XPSR_N ? 'N' : '-',
978 xpsr & XPSR_Z ? 'Z' : '-',
979 xpsr & XPSR_C ? 'C' : '-',
980 xpsr & XPSR_V ? 'V' : '-',
981 xpsr & XPSR_T ? 'T' : 'A',
982 ns_status,
983 mode);
984 } else {
985 uint32_t psr = cpsr_read(env);
986 const char *ns_status = "";
988 if (arm_feature(env, ARM_FEATURE_EL3) &&
989 (psr & CPSR_M) != ARM_CPU_MODE_MON) {
990 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
993 qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
994 psr,
995 psr & CPSR_N ? 'N' : '-',
996 psr & CPSR_Z ? 'Z' : '-',
997 psr & CPSR_C ? 'C' : '-',
998 psr & CPSR_V ? 'V' : '-',
999 psr & CPSR_T ? 'T' : 'A',
1000 ns_status,
1001 aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1004 if (flags & CPU_DUMP_FPU) {
1005 int numvfpregs = 0;
1006 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1007 numvfpregs = 32;
1008 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1009 numvfpregs = 16;
1011 for (i = 0; i < numvfpregs; i++) {
1012 uint64_t v = *aa32_vfp_dreg(env, i);
1013 qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1014 i * 2, (uint32_t)v,
1015 i * 2 + 1, (uint32_t)(v >> 32),
1016 i, v);
1018 qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1022 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1024 uint32_t Aff1 = idx / clustersz;
1025 uint32_t Aff0 = idx % clustersz;
1026 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1029 static void cpreg_hashtable_data_destroy(gpointer data)
1032 * Destroy function for cpu->cp_regs hashtable data entries.
1033 * We must free the name string because it was g_strdup()ed in
1034 * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1035 * from r->name because we know we definitely allocated it.
1037 ARMCPRegInfo *r = data;
1039 g_free((void *)r->name);
1040 g_free(r);
1043 static void arm_cpu_initfn(Object *obj)
1045 ARMCPU *cpu = ARM_CPU(obj);
1047 cpu_set_cpustate_pointers(cpu);
1048 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
1049 g_free, cpreg_hashtable_data_destroy);
1051 QLIST_INIT(&cpu->pre_el_change_hooks);
1052 QLIST_INIT(&cpu->el_change_hooks);
1054 #ifndef CONFIG_USER_ONLY
1055 /* Our inbound IRQ and FIQ lines */
1056 if (kvm_enabled()) {
1057 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1058 * the same interface as non-KVM CPUs.
1060 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1061 } else {
1062 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1065 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1066 ARRAY_SIZE(cpu->gt_timer_outputs));
1068 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1069 "gicv3-maintenance-interrupt", 1);
1070 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1071 "pmu-interrupt", 1);
1072 #endif
1074 /* DTB consumers generally don't in fact care what the 'compatible'
1075 * string is, so always provide some string and trust that a hypothetical
1076 * picky DTB consumer will also provide a helpful error message.
1078 cpu->dtb_compatible = "qemu,unknown";
1079 cpu->psci_version = 1; /* By default assume PSCI v0.1 */
1080 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1082 if (tcg_enabled()) {
1083 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
1087 static Property arm_cpu_gt_cntfrq_property =
1088 DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1089 NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1091 static Property arm_cpu_reset_cbar_property =
1092 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1094 static Property arm_cpu_reset_hivecs_property =
1095 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1097 static Property arm_cpu_rvbar_property =
1098 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
1100 #ifndef CONFIG_USER_ONLY
1101 static Property arm_cpu_has_el2_property =
1102 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1104 static Property arm_cpu_has_el3_property =
1105 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1106 #endif
1108 static Property arm_cpu_cfgend_property =
1109 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1111 static Property arm_cpu_has_vfp_property =
1112 DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1114 static Property arm_cpu_has_neon_property =
1115 DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1117 static Property arm_cpu_has_dsp_property =
1118 DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1120 static Property arm_cpu_has_mpu_property =
1121 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1123 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1124 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1125 * the right value for that particular CPU type, and we don't want
1126 * to override that with an incorrect constant value.
1128 static Property arm_cpu_pmsav7_dregion_property =
1129 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1130 pmsav7_dregion,
1131 qdev_prop_uint32, uint32_t);
1133 static bool arm_get_pmu(Object *obj, Error **errp)
1135 ARMCPU *cpu = ARM_CPU(obj);
1137 return cpu->has_pmu;
1140 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1142 ARMCPU *cpu = ARM_CPU(obj);
1144 if (value) {
1145 if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1146 error_setg(errp, "'pmu' feature not supported by KVM on this host");
1147 return;
1149 set_feature(&cpu->env, ARM_FEATURE_PMU);
1150 } else {
1151 unset_feature(&cpu->env, ARM_FEATURE_PMU);
1153 cpu->has_pmu = value;
1156 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1159 * The exact approach to calculating guest ticks is:
1161 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1162 * NANOSECONDS_PER_SECOND);
1164 * We don't do that. Rather we intentionally use integer division
1165 * truncation below and in the caller for the conversion of host monotonic
1166 * time to guest ticks to provide the exact inverse for the semantics of
1167 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1168 * it loses precision when representing frequencies where
1169 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1170 * provide an exact inverse leads to scheduling timers with negative
1171 * periods, which in turn leads to sticky behaviour in the guest.
1173 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1174 * cannot become zero.
1176 return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1177 NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1180 void arm_cpu_post_init(Object *obj)
1182 ARMCPU *cpu = ARM_CPU(obj);
1184 /* M profile implies PMSA. We have to do this here rather than
1185 * in realize with the other feature-implication checks because
1186 * we look at the PMSA bit to see if we should add some properties.
1188 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1189 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1192 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1193 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1194 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1197 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1198 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1201 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1202 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
1205 #ifndef CONFIG_USER_ONLY
1206 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1207 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
1208 * prevent "has_el3" from existing on CPUs which cannot support EL3.
1210 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1212 object_property_add_link(obj, "secure-memory",
1213 TYPE_MEMORY_REGION,
1214 (Object **)&cpu->secure_memory,
1215 qdev_prop_allow_set_link_before_realize,
1216 OBJ_PROP_LINK_STRONG);
1219 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1220 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1222 #endif
1224 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1225 cpu->has_pmu = true;
1226 object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1230 * Allow user to turn off VFP and Neon support, but only for TCG --
1231 * KVM does not currently allow us to lie to the guest about its
1232 * ID/feature registers, so the guest always sees what the host has.
1234 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1235 ? cpu_isar_feature(aa64_fp_simd, cpu)
1236 : cpu_isar_feature(aa32_vfp, cpu)) {
1237 cpu->has_vfp = true;
1238 if (!kvm_enabled()) {
1239 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1243 if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1244 cpu->has_neon = true;
1245 if (!kvm_enabled()) {
1246 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1250 if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1251 arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1252 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1255 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1256 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1257 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1258 qdev_property_add_static(DEVICE(obj),
1259 &arm_cpu_pmsav7_dregion_property);
1263 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1264 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1265 qdev_prop_allow_set_link_before_realize,
1266 OBJ_PROP_LINK_STRONG);
1268 * M profile: initial value of the Secure VTOR. We can't just use
1269 * a simple DEFINE_PROP_UINT32 for this because we want to permit
1270 * the property to be set after realize.
1272 object_property_add_uint32_ptr(obj, "init-svtor",
1273 &cpu->init_svtor,
1274 OBJ_PROP_FLAG_READWRITE);
1277 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1279 if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1280 qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1283 if (kvm_enabled()) {
1284 kvm_arm_add_vcpu_properties(obj);
1287 #ifndef CONFIG_USER_ONLY
1288 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1289 cpu_isar_feature(aa64_mte, cpu)) {
1290 object_property_add_link(obj, "tag-memory",
1291 TYPE_MEMORY_REGION,
1292 (Object **)&cpu->tag_memory,
1293 qdev_prop_allow_set_link_before_realize,
1294 OBJ_PROP_LINK_STRONG);
1296 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1297 object_property_add_link(obj, "secure-tag-memory",
1298 TYPE_MEMORY_REGION,
1299 (Object **)&cpu->secure_tag_memory,
1300 qdev_prop_allow_set_link_before_realize,
1301 OBJ_PROP_LINK_STRONG);
1304 #endif
1307 static void arm_cpu_finalizefn(Object *obj)
1309 ARMCPU *cpu = ARM_CPU(obj);
1310 ARMELChangeHook *hook, *next;
1312 g_hash_table_destroy(cpu->cp_regs);
1314 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1315 QLIST_REMOVE(hook, node);
1316 g_free(hook);
1318 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1319 QLIST_REMOVE(hook, node);
1320 g_free(hook);
1322 #ifndef CONFIG_USER_ONLY
1323 if (cpu->pmu_timer) {
1324 timer_free(cpu->pmu_timer);
1326 #endif
1329 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1331 Error *local_err = NULL;
1333 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1334 arm_cpu_sve_finalize(cpu, &local_err);
1335 if (local_err != NULL) {
1336 error_propagate(errp, local_err);
1337 return;
1341 * KVM does not support modifications to this feature.
1342 * We have not registered the cpu properties when KVM
1343 * is in use, so the user will not be able to set them.
1345 if (!kvm_enabled()) {
1346 arm_cpu_pauth_finalize(cpu, &local_err);
1347 if (local_err != NULL) {
1348 error_propagate(errp, local_err);
1349 return;
1354 if (kvm_enabled()) {
1355 kvm_arm_steal_time_finalize(cpu, &local_err);
1356 if (local_err != NULL) {
1357 error_propagate(errp, local_err);
1358 return;
1363 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1365 CPUState *cs = CPU(dev);
1366 ARMCPU *cpu = ARM_CPU(dev);
1367 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1368 CPUARMState *env = &cpu->env;
1369 int pagebits;
1370 Error *local_err = NULL;
1371 bool no_aa32 = false;
1373 /* If we needed to query the host kernel for the CPU features
1374 * then it's possible that might have failed in the initfn, but
1375 * this is the first point where we can report it.
1377 if (cpu->host_cpu_probe_failed) {
1378 if (!kvm_enabled()) {
1379 error_setg(errp, "The 'host' CPU type can only be used with KVM");
1380 } else {
1381 error_setg(errp, "Failed to retrieve host CPU features");
1383 return;
1386 #ifndef CONFIG_USER_ONLY
1387 /* The NVIC and M-profile CPU are two halves of a single piece of
1388 * hardware; trying to use one without the other is a command line
1389 * error and will result in segfaults if not caught here.
1391 if (arm_feature(env, ARM_FEATURE_M)) {
1392 if (!env->nvic) {
1393 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1394 return;
1396 } else {
1397 if (env->nvic) {
1398 error_setg(errp, "This board can only be used with Cortex-M CPUs");
1399 return;
1404 uint64_t scale;
1406 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1407 if (!cpu->gt_cntfrq_hz) {
1408 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1409 cpu->gt_cntfrq_hz);
1410 return;
1412 scale = gt_cntfrq_period_ns(cpu);
1413 } else {
1414 scale = GTIMER_SCALE;
1417 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1418 arm_gt_ptimer_cb, cpu);
1419 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1420 arm_gt_vtimer_cb, cpu);
1421 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1422 arm_gt_htimer_cb, cpu);
1423 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1424 arm_gt_stimer_cb, cpu);
1425 cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1426 arm_gt_hvtimer_cb, cpu);
1428 #endif
1430 cpu_exec_realizefn(cs, &local_err);
1431 if (local_err != NULL) {
1432 error_propagate(errp, local_err);
1433 return;
1436 arm_cpu_finalize_features(cpu, &local_err);
1437 if (local_err != NULL) {
1438 error_propagate(errp, local_err);
1439 return;
1442 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1443 cpu->has_vfp != cpu->has_neon) {
1445 * This is an architectural requirement for AArch64; AArch32 is
1446 * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1448 error_setg(errp,
1449 "AArch64 CPUs must have both VFP and Neon or neither");
1450 return;
1453 if (!cpu->has_vfp) {
1454 uint64_t t;
1455 uint32_t u;
1457 t = cpu->isar.id_aa64isar1;
1458 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1459 cpu->isar.id_aa64isar1 = t;
1461 t = cpu->isar.id_aa64pfr0;
1462 t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1463 cpu->isar.id_aa64pfr0 = t;
1465 u = cpu->isar.id_isar6;
1466 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1467 cpu->isar.id_isar6 = u;
1469 u = cpu->isar.mvfr0;
1470 u = FIELD_DP32(u, MVFR0, FPSP, 0);
1471 u = FIELD_DP32(u, MVFR0, FPDP, 0);
1472 u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1473 u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1474 u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1475 if (!arm_feature(env, ARM_FEATURE_M)) {
1476 u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1477 u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1479 cpu->isar.mvfr0 = u;
1481 u = cpu->isar.mvfr1;
1482 u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1483 u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1484 u = FIELD_DP32(u, MVFR1, FPHP, 0);
1485 if (arm_feature(env, ARM_FEATURE_M)) {
1486 u = FIELD_DP32(u, MVFR1, FP16, 0);
1488 cpu->isar.mvfr1 = u;
1490 u = cpu->isar.mvfr2;
1491 u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1492 cpu->isar.mvfr2 = u;
1495 if (!cpu->has_neon) {
1496 uint64_t t;
1497 uint32_t u;
1499 unset_feature(env, ARM_FEATURE_NEON);
1501 t = cpu->isar.id_aa64isar0;
1502 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1503 cpu->isar.id_aa64isar0 = t;
1505 t = cpu->isar.id_aa64isar1;
1506 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1507 cpu->isar.id_aa64isar1 = t;
1509 t = cpu->isar.id_aa64pfr0;
1510 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1511 cpu->isar.id_aa64pfr0 = t;
1513 u = cpu->isar.id_isar5;
1514 u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1515 u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1516 cpu->isar.id_isar5 = u;
1518 u = cpu->isar.id_isar6;
1519 u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1520 u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1521 cpu->isar.id_isar6 = u;
1523 if (!arm_feature(env, ARM_FEATURE_M)) {
1524 u = cpu->isar.mvfr1;
1525 u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1526 u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1527 u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1528 u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1529 cpu->isar.mvfr1 = u;
1531 u = cpu->isar.mvfr2;
1532 u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1533 cpu->isar.mvfr2 = u;
1537 if (!cpu->has_neon && !cpu->has_vfp) {
1538 uint64_t t;
1539 uint32_t u;
1541 t = cpu->isar.id_aa64isar0;
1542 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1543 cpu->isar.id_aa64isar0 = t;
1545 t = cpu->isar.id_aa64isar1;
1546 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1547 cpu->isar.id_aa64isar1 = t;
1549 u = cpu->isar.mvfr0;
1550 u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1551 cpu->isar.mvfr0 = u;
1553 /* Despite the name, this field covers both VFP and Neon */
1554 u = cpu->isar.mvfr1;
1555 u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1556 cpu->isar.mvfr1 = u;
1559 if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1560 uint32_t u;
1562 unset_feature(env, ARM_FEATURE_THUMB_DSP);
1564 u = cpu->isar.id_isar1;
1565 u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1566 cpu->isar.id_isar1 = u;
1568 u = cpu->isar.id_isar2;
1569 u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1570 u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1571 cpu->isar.id_isar2 = u;
1573 u = cpu->isar.id_isar3;
1574 u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1575 u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1576 cpu->isar.id_isar3 = u;
1579 /* Some features automatically imply others: */
1580 if (arm_feature(env, ARM_FEATURE_V8)) {
1581 if (arm_feature(env, ARM_FEATURE_M)) {
1582 set_feature(env, ARM_FEATURE_V7);
1583 } else {
1584 set_feature(env, ARM_FEATURE_V7VE);
1589 * There exist AArch64 cpus without AArch32 support. When KVM
1590 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1591 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1592 * As a general principle, we also do not make ID register
1593 * consistency checks anywhere unless using TCG, because only
1594 * for TCG would a consistency-check failure be a QEMU bug.
1596 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1597 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1600 if (arm_feature(env, ARM_FEATURE_V7VE)) {
1601 /* v7 Virtualization Extensions. In real hardware this implies
1602 * EL2 and also the presence of the Security Extensions.
1603 * For QEMU, for backwards-compatibility we implement some
1604 * CPUs or CPU configs which have no actual EL2 or EL3 but do
1605 * include the various other features that V7VE implies.
1606 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1607 * Security Extensions is ARM_FEATURE_EL3.
1609 assert(!tcg_enabled() || no_aa32 ||
1610 cpu_isar_feature(aa32_arm_div, cpu));
1611 set_feature(env, ARM_FEATURE_LPAE);
1612 set_feature(env, ARM_FEATURE_V7);
1614 if (arm_feature(env, ARM_FEATURE_V7)) {
1615 set_feature(env, ARM_FEATURE_VAPA);
1616 set_feature(env, ARM_FEATURE_THUMB2);
1617 set_feature(env, ARM_FEATURE_MPIDR);
1618 if (!arm_feature(env, ARM_FEATURE_M)) {
1619 set_feature(env, ARM_FEATURE_V6K);
1620 } else {
1621 set_feature(env, ARM_FEATURE_V6);
1624 /* Always define VBAR for V7 CPUs even if it doesn't exist in
1625 * non-EL3 configs. This is needed by some legacy boards.
1627 set_feature(env, ARM_FEATURE_VBAR);
1629 if (arm_feature(env, ARM_FEATURE_V6K)) {
1630 set_feature(env, ARM_FEATURE_V6);
1631 set_feature(env, ARM_FEATURE_MVFR);
1633 if (arm_feature(env, ARM_FEATURE_V6)) {
1634 set_feature(env, ARM_FEATURE_V5);
1635 if (!arm_feature(env, ARM_FEATURE_M)) {
1636 assert(!tcg_enabled() || no_aa32 ||
1637 cpu_isar_feature(aa32_jazelle, cpu));
1638 set_feature(env, ARM_FEATURE_AUXCR);
1641 if (arm_feature(env, ARM_FEATURE_V5)) {
1642 set_feature(env, ARM_FEATURE_V4T);
1644 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1645 set_feature(env, ARM_FEATURE_V7MP);
1647 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1648 set_feature(env, ARM_FEATURE_CBAR);
1650 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1651 !arm_feature(env, ARM_FEATURE_M)) {
1652 set_feature(env, ARM_FEATURE_THUMB_DSP);
1656 * We rely on no XScale CPU having VFP so we can use the same bits in the
1657 * TB flags field for VECSTRIDE and XSCALE_CPAR.
1659 assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1660 !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1661 !arm_feature(env, ARM_FEATURE_XSCALE));
1663 if (arm_feature(env, ARM_FEATURE_V7) &&
1664 !arm_feature(env, ARM_FEATURE_M) &&
1665 !arm_feature(env, ARM_FEATURE_PMSA)) {
1666 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1667 * can use 4K pages.
1669 pagebits = 12;
1670 } else {
1671 /* For CPUs which might have tiny 1K pages, or which have an
1672 * MPU and might have small region sizes, stick with 1K pages.
1674 pagebits = 10;
1676 if (!set_preferred_target_page_bits(pagebits)) {
1677 /* This can only ever happen for hotplugging a CPU, or if
1678 * the board code incorrectly creates a CPU which it has
1679 * promised via minimum_page_size that it will not.
1681 error_setg(errp, "This CPU requires a smaller page size than the "
1682 "system is using");
1683 return;
1686 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1687 * We don't support setting cluster ID ([16..23]) (known as Aff2
1688 * in later ARM ARM versions), or any of the higher affinity level fields,
1689 * so these bits always RAZ.
1691 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1692 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1693 ARM_DEFAULT_CPUS_PER_CLUSTER);
1696 if (cpu->reset_hivecs) {
1697 cpu->reset_sctlr |= (1 << 13);
1700 if (cpu->cfgend) {
1701 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1702 cpu->reset_sctlr |= SCTLR_EE;
1703 } else {
1704 cpu->reset_sctlr |= SCTLR_B;
1708 if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1709 /* If the has_el3 CPU property is disabled then we need to disable the
1710 * feature.
1712 unset_feature(env, ARM_FEATURE_EL3);
1714 /* Disable the security extension feature bits in the processor feature
1715 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1717 cpu->isar.id_pfr1 &= ~0xf0;
1718 cpu->isar.id_aa64pfr0 &= ~0xf000;
1721 if (!cpu->has_el2) {
1722 unset_feature(env, ARM_FEATURE_EL2);
1725 if (!cpu->has_pmu) {
1726 unset_feature(env, ARM_FEATURE_PMU);
1728 if (arm_feature(env, ARM_FEATURE_PMU)) {
1729 pmu_init(cpu);
1731 if (!kvm_enabled()) {
1732 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1733 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1736 #ifndef CONFIG_USER_ONLY
1737 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1738 cpu);
1739 #endif
1740 } else {
1741 cpu->isar.id_aa64dfr0 =
1742 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1743 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1744 cpu->pmceid0 = 0;
1745 cpu->pmceid1 = 0;
1748 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1749 /* Disable the hypervisor feature bits in the processor feature
1750 * registers if we don't have EL2. These are id_pfr1[15:12] and
1751 * id_aa64pfr0_el1[11:8].
1753 cpu->isar.id_aa64pfr0 &= ~0xf00;
1754 cpu->isar.id_pfr1 &= ~0xf000;
1757 #ifndef CONFIG_USER_ONLY
1758 if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1760 * Disable the MTE feature bits if we do not have tag-memory
1761 * provided by the machine.
1763 cpu->isar.id_aa64pfr1 =
1764 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1766 #endif
1768 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1769 * to false or by setting pmsav7-dregion to 0.
1771 if (!cpu->has_mpu) {
1772 cpu->pmsav7_dregion = 0;
1774 if (cpu->pmsav7_dregion == 0) {
1775 cpu->has_mpu = false;
1778 if (arm_feature(env, ARM_FEATURE_PMSA) &&
1779 arm_feature(env, ARM_FEATURE_V7)) {
1780 uint32_t nr = cpu->pmsav7_dregion;
1782 if (nr > 0xff) {
1783 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1784 return;
1787 if (nr) {
1788 if (arm_feature(env, ARM_FEATURE_V8)) {
1789 /* PMSAv8 */
1790 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1791 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1792 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1793 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1794 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1796 } else {
1797 env->pmsav7.drbar = g_new0(uint32_t, nr);
1798 env->pmsav7.drsr = g_new0(uint32_t, nr);
1799 env->pmsav7.dracr = g_new0(uint32_t, nr);
1804 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1805 uint32_t nr = cpu->sau_sregion;
1807 if (nr > 0xff) {
1808 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1809 return;
1812 if (nr) {
1813 env->sau.rbar = g_new0(uint32_t, nr);
1814 env->sau.rlar = g_new0(uint32_t, nr);
1818 if (arm_feature(env, ARM_FEATURE_EL3)) {
1819 set_feature(env, ARM_FEATURE_VBAR);
1822 register_cp_regs_for_features(cpu);
1823 arm_cpu_register_gdb_regs_for_features(cpu);
1825 init_cpreg_list(cpu);
1827 #ifndef CONFIG_USER_ONLY
1828 MachineState *ms = MACHINE(qdev_get_machine());
1829 unsigned int smp_cpus = ms->smp.cpus;
1830 bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
1833 * We must set cs->num_ases to the final value before
1834 * the first call to cpu_address_space_init.
1836 if (cpu->tag_memory != NULL) {
1837 cs->num_ases = 3 + has_secure;
1838 } else {
1839 cs->num_ases = 1 + has_secure;
1842 if (has_secure) {
1843 if (!cpu->secure_memory) {
1844 cpu->secure_memory = cs->memory;
1846 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1847 cpu->secure_memory);
1850 if (cpu->tag_memory != NULL) {
1851 cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
1852 cpu->tag_memory);
1853 if (has_secure) {
1854 cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
1855 cpu->secure_tag_memory);
1859 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1861 /* No core_count specified, default to smp_cpus. */
1862 if (cpu->core_count == -1) {
1863 cpu->core_count = smp_cpus;
1865 #endif
1867 if (tcg_enabled()) {
1868 int dcz_blocklen = 4 << cpu->dcz_blocksize;
1871 * We only support DCZ blocklen that fits on one page.
1873 * Architectually this is always true. However TARGET_PAGE_SIZE
1874 * is variable and, for compatibility with -machine virt-2.7,
1875 * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
1876 * But even then, while the largest architectural DCZ blocklen
1877 * is 2KiB, no cpu actually uses such a large blocklen.
1879 assert(dcz_blocklen <= TARGET_PAGE_SIZE);
1882 * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
1883 * both nibbles of each byte storing tag data may be written at once.
1884 * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
1886 if (cpu_isar_feature(aa64_mte, cpu)) {
1887 assert(dcz_blocklen >= 2 * TAG_GRANULE);
1891 qemu_init_vcpu(cs);
1892 cpu_reset(cs);
1894 acc->parent_realize(dev, errp);
1897 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1899 ObjectClass *oc;
1900 char *typename;
1901 char **cpuname;
1902 const char *cpunamestr;
1904 cpuname = g_strsplit(cpu_model, ",", 1);
1905 cpunamestr = cpuname[0];
1906 #ifdef CONFIG_USER_ONLY
1907 /* For backwards compatibility usermode emulation allows "-cpu any",
1908 * which has the same semantics as "-cpu max".
1910 if (!strcmp(cpunamestr, "any")) {
1911 cpunamestr = "max";
1913 #endif
1914 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1915 oc = object_class_by_name(typename);
1916 g_strfreev(cpuname);
1917 g_free(typename);
1918 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1919 object_class_is_abstract(oc)) {
1920 return NULL;
1922 return oc;
1925 /* CPU models. These are not needed for the AArch64 linux-user build. */
1926 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1928 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1929 { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1930 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1931 { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1932 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1933 REGINFO_SENTINEL
1936 static void cortex_a8_initfn(Object *obj)
1938 ARMCPU *cpu = ARM_CPU(obj);
1940 cpu->dtb_compatible = "arm,cortex-a8";
1941 set_feature(&cpu->env, ARM_FEATURE_V7);
1942 set_feature(&cpu->env, ARM_FEATURE_NEON);
1943 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1944 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1945 set_feature(&cpu->env, ARM_FEATURE_EL3);
1946 cpu->midr = 0x410fc080;
1947 cpu->reset_fpsid = 0x410330c0;
1948 cpu->isar.mvfr0 = 0x11110222;
1949 cpu->isar.mvfr1 = 0x00011111;
1950 cpu->ctr = 0x82048004;
1951 cpu->reset_sctlr = 0x00c50078;
1952 cpu->isar.id_pfr0 = 0x1031;
1953 cpu->isar.id_pfr1 = 0x11;
1954 cpu->isar.id_dfr0 = 0x400;
1955 cpu->id_afr0 = 0;
1956 cpu->isar.id_mmfr0 = 0x31100003;
1957 cpu->isar.id_mmfr1 = 0x20000000;
1958 cpu->isar.id_mmfr2 = 0x01202000;
1959 cpu->isar.id_mmfr3 = 0x11;
1960 cpu->isar.id_isar0 = 0x00101111;
1961 cpu->isar.id_isar1 = 0x12112111;
1962 cpu->isar.id_isar2 = 0x21232031;
1963 cpu->isar.id_isar3 = 0x11112131;
1964 cpu->isar.id_isar4 = 0x00111142;
1965 cpu->isar.dbgdidr = 0x15141000;
1966 cpu->clidr = (1 << 27) | (2 << 24) | 3;
1967 cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1968 cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1969 cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1970 cpu->reset_auxcr = 2;
1971 define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1974 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1976 * power_control should be set to maximum latency. Again,
1977 * default to 0 and set by private hook
1979 { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1980 .access = PL1_RW, .resetvalue = 0,
1981 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1982 { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1983 .access = PL1_RW, .resetvalue = 0,
1984 .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1985 { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1986 .access = PL1_RW, .resetvalue = 0,
1987 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1988 { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1989 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1990 /* TLB lockdown control */
1991 { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1992 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1993 { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1994 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1995 { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1996 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1997 { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1998 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1999 { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
2000 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2001 REGINFO_SENTINEL
2004 static void cortex_a9_initfn(Object *obj)
2006 ARMCPU *cpu = ARM_CPU(obj);
2008 cpu->dtb_compatible = "arm,cortex-a9";
2009 set_feature(&cpu->env, ARM_FEATURE_V7);
2010 set_feature(&cpu->env, ARM_FEATURE_NEON);
2011 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2012 set_feature(&cpu->env, ARM_FEATURE_EL3);
2014 * Note that A9 supports the MP extensions even for
2015 * A9UP and single-core A9MP (which are both different
2016 * and valid configurations; we don't model A9UP).
2018 set_feature(&cpu->env, ARM_FEATURE_V7MP);
2019 set_feature(&cpu->env, ARM_FEATURE_CBAR);
2020 cpu->midr = 0x410fc090;
2021 cpu->reset_fpsid = 0x41033090;
2022 cpu->isar.mvfr0 = 0x11110222;
2023 cpu->isar.mvfr1 = 0x01111111;
2024 cpu->ctr = 0x80038003;
2025 cpu->reset_sctlr = 0x00c50078;
2026 cpu->isar.id_pfr0 = 0x1031;
2027 cpu->isar.id_pfr1 = 0x11;
2028 cpu->isar.id_dfr0 = 0x000;
2029 cpu->id_afr0 = 0;
2030 cpu->isar.id_mmfr0 = 0x00100103;
2031 cpu->isar.id_mmfr1 = 0x20000000;
2032 cpu->isar.id_mmfr2 = 0x01230000;
2033 cpu->isar.id_mmfr3 = 0x00002111;
2034 cpu->isar.id_isar0 = 0x00101111;
2035 cpu->isar.id_isar1 = 0x13112111;
2036 cpu->isar.id_isar2 = 0x21232041;
2037 cpu->isar.id_isar3 = 0x11112131;
2038 cpu->isar.id_isar4 = 0x00111142;
2039 cpu->isar.dbgdidr = 0x35141000;
2040 cpu->clidr = (1 << 27) | (1 << 24) | 3;
2041 cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
2042 cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
2043 define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
2046 #ifndef CONFIG_USER_ONLY
2047 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2049 MachineState *ms = MACHINE(qdev_get_machine());
2052 * Linux wants the number of processors from here.
2053 * Might as well set the interrupt-controller bit too.
2055 return ((ms->smp.cpus - 1) << 24) | (1 << 23);
2057 #endif
2059 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
2060 #ifndef CONFIG_USER_ONLY
2061 { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2062 .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
2063 .writefn = arm_cp_write_ignore, },
2064 #endif
2065 { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
2066 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2067 REGINFO_SENTINEL
2070 static void cortex_a7_initfn(Object *obj)
2072 ARMCPU *cpu = ARM_CPU(obj);
2074 cpu->dtb_compatible = "arm,cortex-a7";
2075 set_feature(&cpu->env, ARM_FEATURE_V7VE);
2076 set_feature(&cpu->env, ARM_FEATURE_NEON);
2077 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2078 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2079 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2080 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2081 set_feature(&cpu->env, ARM_FEATURE_EL2);
2082 set_feature(&cpu->env, ARM_FEATURE_EL3);
2083 set_feature(&cpu->env, ARM_FEATURE_PMU);
2084 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
2085 cpu->midr = 0x410fc075;
2086 cpu->reset_fpsid = 0x41023075;
2087 cpu->isar.mvfr0 = 0x10110222;
2088 cpu->isar.mvfr1 = 0x11111111;
2089 cpu->ctr = 0x84448003;
2090 cpu->reset_sctlr = 0x00c50078;
2091 cpu->isar.id_pfr0 = 0x00001131;
2092 cpu->isar.id_pfr1 = 0x00011011;
2093 cpu->isar.id_dfr0 = 0x02010555;
2094 cpu->id_afr0 = 0x00000000;
2095 cpu->isar.id_mmfr0 = 0x10101105;
2096 cpu->isar.id_mmfr1 = 0x40000000;
2097 cpu->isar.id_mmfr2 = 0x01240000;
2098 cpu->isar.id_mmfr3 = 0x02102211;
2100 * a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
2101 * table 4-41 gives 0x02101110, which includes the arm div insns.
2103 cpu->isar.id_isar0 = 0x02101110;
2104 cpu->isar.id_isar1 = 0x13112111;
2105 cpu->isar.id_isar2 = 0x21232041;
2106 cpu->isar.id_isar3 = 0x11112131;
2107 cpu->isar.id_isar4 = 0x10011142;
2108 cpu->isar.dbgdidr = 0x3515f005;
2109 cpu->clidr = 0x0a200023;
2110 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2111 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2112 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2113 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
2116 static void cortex_a15_initfn(Object *obj)
2118 ARMCPU *cpu = ARM_CPU(obj);
2120 cpu->dtb_compatible = "arm,cortex-a15";
2121 set_feature(&cpu->env, ARM_FEATURE_V7VE);
2122 set_feature(&cpu->env, ARM_FEATURE_NEON);
2123 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2124 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2125 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2126 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2127 set_feature(&cpu->env, ARM_FEATURE_EL2);
2128 set_feature(&cpu->env, ARM_FEATURE_EL3);
2129 set_feature(&cpu->env, ARM_FEATURE_PMU);
2130 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
2131 cpu->midr = 0x412fc0f1;
2132 cpu->reset_fpsid = 0x410430f0;
2133 cpu->isar.mvfr0 = 0x10110222;
2134 cpu->isar.mvfr1 = 0x11111111;
2135 cpu->ctr = 0x8444c004;
2136 cpu->reset_sctlr = 0x00c50078;
2137 cpu->isar.id_pfr0 = 0x00001131;
2138 cpu->isar.id_pfr1 = 0x00011011;
2139 cpu->isar.id_dfr0 = 0x02010555;
2140 cpu->id_afr0 = 0x00000000;
2141 cpu->isar.id_mmfr0 = 0x10201105;
2142 cpu->isar.id_mmfr1 = 0x20000000;
2143 cpu->isar.id_mmfr2 = 0x01240000;
2144 cpu->isar.id_mmfr3 = 0x02102211;
2145 cpu->isar.id_isar0 = 0x02101110;
2146 cpu->isar.id_isar1 = 0x13112111;
2147 cpu->isar.id_isar2 = 0x21232041;
2148 cpu->isar.id_isar3 = 0x11112131;
2149 cpu->isar.id_isar4 = 0x10011142;
2150 cpu->isar.dbgdidr = 0x3515f021;
2151 cpu->clidr = 0x0a200023;
2152 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2153 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2154 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2155 define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
2158 #ifndef TARGET_AARCH64
2160 * -cpu max: a CPU with as many features enabled as our emulation supports.
2161 * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2162 * this only needs to handle 32 bits, and need not care about KVM.
2164 static void arm_max_initfn(Object *obj)
2166 ARMCPU *cpu = ARM_CPU(obj);
2168 cortex_a15_initfn(obj);
2170 /* old-style VFP short-vector support */
2171 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
2173 #ifdef CONFIG_USER_ONLY
2175 * We don't set these in system emulation mode for the moment,
2176 * since we don't correctly set (all of) the ID registers to
2177 * advertise them.
2179 set_feature(&cpu->env, ARM_FEATURE_V8);
2181 uint32_t t;
2183 t = cpu->isar.id_isar5;
2184 t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2185 t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2186 t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2187 t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2188 t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2189 t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2190 cpu->isar.id_isar5 = t;
2192 t = cpu->isar.id_isar6;
2193 t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2194 t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2195 t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2196 t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2197 t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2198 cpu->isar.id_isar6 = t;
2200 t = cpu->isar.mvfr1;
2201 t = FIELD_DP32(t, MVFR1, FPHP, 3); /* v8.2-FP16 */
2202 t = FIELD_DP32(t, MVFR1, SIMDHP, 2); /* v8.2-FP16 */
2203 cpu->isar.mvfr1 = t;
2205 t = cpu->isar.mvfr2;
2206 t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2207 t = FIELD_DP32(t, MVFR2, FPMISC, 4); /* FP MaxNum */
2208 cpu->isar.mvfr2 = t;
2210 t = cpu->isar.id_mmfr3;
2211 t = FIELD_DP32(t, ID_MMFR3, PAN, 2); /* ATS1E1 */
2212 cpu->isar.id_mmfr3 = t;
2214 t = cpu->isar.id_mmfr4;
2215 t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2216 t = FIELD_DP32(t, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */
2217 t = FIELD_DP32(t, ID_MMFR4, CNP, 1); /* TTCNP */
2218 t = FIELD_DP32(t, ID_MMFR4, XNX, 1); /* TTS2UXN */
2219 cpu->isar.id_mmfr4 = t;
2221 t = cpu->isar.id_pfr0;
2222 t = FIELD_DP32(t, ID_PFR0, DIT, 1);
2223 cpu->isar.id_pfr0 = t;
2225 t = cpu->isar.id_pfr2;
2226 t = FIELD_DP32(t, ID_PFR2, SSBS, 1);
2227 cpu->isar.id_pfr2 = t;
2229 #endif
2231 #endif
2233 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2235 static const ARMCPUInfo arm_cpus[] = {
2236 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2237 { .name = "cortex-a7", .initfn = cortex_a7_initfn },
2238 { .name = "cortex-a8", .initfn = cortex_a8_initfn },
2239 { .name = "cortex-a9", .initfn = cortex_a9_initfn },
2240 { .name = "cortex-a15", .initfn = cortex_a15_initfn },
2241 #ifndef TARGET_AARCH64
2242 { .name = "max", .initfn = arm_max_initfn },
2243 #endif
2244 #ifdef CONFIG_USER_ONLY
2245 { .name = "any", .initfn = arm_max_initfn },
2246 #endif
2247 #endif
2250 static Property arm_cpu_properties[] = {
2251 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2252 DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2253 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2254 mp_affinity, ARM64_AFFINITY_INVALID),
2255 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2256 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2257 DEFINE_PROP_END_OF_LIST()
2260 static gchar *arm_gdb_arch_name(CPUState *cs)
2262 ARMCPU *cpu = ARM_CPU(cs);
2263 CPUARMState *env = &cpu->env;
2265 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2266 return g_strdup("iwmmxt");
2268 return g_strdup("arm");
2271 #ifdef CONFIG_TCG
2272 static struct TCGCPUOps arm_tcg_ops = {
2273 .initialize = arm_translate_init,
2274 .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2275 .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2276 .tlb_fill = arm_cpu_tlb_fill,
2277 .debug_excp_handler = arm_debug_excp_handler,
2279 #if !defined(CONFIG_USER_ONLY)
2280 .do_interrupt = arm_cpu_do_interrupt,
2281 .do_transaction_failed = arm_cpu_do_transaction_failed,
2282 .do_unaligned_access = arm_cpu_do_unaligned_access,
2283 .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2284 .debug_check_watchpoint = arm_debug_check_watchpoint,
2285 #endif /* !CONFIG_USER_ONLY */
2287 #endif /* CONFIG_TCG */
2289 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2291 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2292 CPUClass *cc = CPU_CLASS(acc);
2293 DeviceClass *dc = DEVICE_CLASS(oc);
2295 device_class_set_parent_realize(dc, arm_cpu_realizefn,
2296 &acc->parent_realize);
2298 device_class_set_props(dc, arm_cpu_properties);
2299 device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2301 cc->class_by_name = arm_cpu_class_by_name;
2302 cc->has_work = arm_cpu_has_work;
2303 cc->dump_state = arm_cpu_dump_state;
2304 cc->set_pc = arm_cpu_set_pc;
2305 cc->gdb_read_register = arm_cpu_gdb_read_register;
2306 cc->gdb_write_register = arm_cpu_gdb_write_register;
2307 #ifndef CONFIG_USER_ONLY
2308 cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2309 cc->asidx_from_attrs = arm_asidx_from_attrs;
2310 cc->vmsd = &vmstate_arm_cpu;
2311 cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2312 cc->write_elf64_note = arm_cpu_write_elf64_note;
2313 cc->write_elf32_note = arm_cpu_write_elf32_note;
2314 #endif
2315 cc->gdb_num_core_regs = 26;
2316 cc->gdb_core_xml_file = "arm-core.xml";
2317 cc->gdb_arch_name = arm_gdb_arch_name;
2318 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2319 cc->gdb_stop_before_watchpoint = true;
2320 cc->disas_set_info = arm_disas_set_info;
2322 #ifdef CONFIG_TCG
2323 cc->tcg_ops = &arm_tcg_ops;
2324 #endif /* CONFIG_TCG */
2327 #ifdef CONFIG_KVM
2328 static void arm_host_initfn(Object *obj)
2330 ARMCPU *cpu = ARM_CPU(obj);
2332 kvm_arm_set_cpu_features_from_host(cpu);
2333 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2334 aarch64_add_sve_properties(obj);
2336 arm_cpu_post_init(obj);
2339 static const TypeInfo host_arm_cpu_type_info = {
2340 .name = TYPE_ARM_HOST_CPU,
2341 .parent = TYPE_AARCH64_CPU,
2342 .instance_init = arm_host_initfn,
2345 #endif
2347 static void arm_cpu_instance_init(Object *obj)
2349 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2351 acc->info->initfn(obj);
2352 arm_cpu_post_init(obj);
2355 static void cpu_register_class_init(ObjectClass *oc, void *data)
2357 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2359 acc->info = data;
2362 void arm_cpu_register(const ARMCPUInfo *info)
2364 TypeInfo type_info = {
2365 .parent = TYPE_ARM_CPU,
2366 .instance_size = sizeof(ARMCPU),
2367 .instance_align = __alignof__(ARMCPU),
2368 .instance_init = arm_cpu_instance_init,
2369 .class_size = sizeof(ARMCPUClass),
2370 .class_init = info->class_init ?: cpu_register_class_init,
2371 .class_data = (void *)info,
2374 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2375 type_register(&type_info);
2376 g_free((void *)type_info.name);
2379 static const TypeInfo arm_cpu_type_info = {
2380 .name = TYPE_ARM_CPU,
2381 .parent = TYPE_CPU,
2382 .instance_size = sizeof(ARMCPU),
2383 .instance_align = __alignof__(ARMCPU),
2384 .instance_init = arm_cpu_initfn,
2385 .instance_finalize = arm_cpu_finalizefn,
2386 .abstract = true,
2387 .class_size = sizeof(ARMCPUClass),
2388 .class_init = arm_cpu_class_init,
2391 static void arm_cpu_register_types(void)
2393 const size_t cpu_count = ARRAY_SIZE(arm_cpus);
2395 type_register_static(&arm_cpu_type_info);
2397 #ifdef CONFIG_KVM
2398 type_register_static(&host_arm_cpu_type_info);
2399 #endif
2401 if (cpu_count) {
2402 size_t i;
2404 for (i = 0; i < cpu_count; ++i) {
2405 arm_cpu_register(&arm_cpus[i]);
2410 type_init(arm_cpu_register_types)