iotests: Enhance 223, 233 to cover 'qemu-nbd --list'
[qemu/ar7.git] / target / arm / translate-a64.c
blob4d28a27c3bdbaa5820382412dab65621cbee280d
1 /*
2 * AArch64 translation
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "tcg-op.h"
24 #include "tcg-op-gvec.h"
25 #include "qemu/log.h"
26 #include "arm_ldst.h"
27 #include "translate.h"
28 #include "internals.h"
29 #include "qemu/host-utils.h"
31 #include "exec/semihost.h"
32 #include "exec/gen-icount.h"
34 #include "exec/helper-proto.h"
35 #include "exec/helper-gen.h"
36 #include "exec/log.h"
38 #include "trace-tcg.h"
39 #include "translate-a64.h"
40 #include "qemu/atomic128.h"
42 static TCGv_i64 cpu_X[32];
43 static TCGv_i64 cpu_pc;
45 /* Load/store exclusive handling */
46 static TCGv_i64 cpu_exclusive_high;
48 static const char *regnames[] = {
49 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
50 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
51 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
52 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
55 enum a64_shift_type {
56 A64_SHIFT_TYPE_LSL = 0,
57 A64_SHIFT_TYPE_LSR = 1,
58 A64_SHIFT_TYPE_ASR = 2,
59 A64_SHIFT_TYPE_ROR = 3
62 /* Table based decoder typedefs - used when the relevant bits for decode
63 * are too awkwardly scattered across the instruction (eg SIMD).
65 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
67 typedef struct AArch64DecodeTable {
68 uint32_t pattern;
69 uint32_t mask;
70 AArch64DecodeFn *disas_fn;
71 } AArch64DecodeTable;
73 /* Function prototype for gen_ functions for calling Neon helpers */
74 typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32);
75 typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32);
76 typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
77 typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64);
78 typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64);
79 typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64);
80 typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64);
81 typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32);
82 typedef void NeonGenTwoSingleOPFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
83 typedef void NeonGenTwoDoubleOPFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
84 typedef void NeonGenOneOpFn(TCGv_i64, TCGv_i64);
85 typedef void CryptoTwoOpFn(TCGv_ptr, TCGv_ptr);
86 typedef void CryptoThreeOpIntFn(TCGv_ptr, TCGv_ptr, TCGv_i32);
87 typedef void CryptoThreeOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr);
88 typedef void AtomicThreeOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGArg, TCGMemOp);
90 /* initialize TCG globals. */
91 void a64_translate_init(void)
93 int i;
95 cpu_pc = tcg_global_mem_new_i64(cpu_env,
96 offsetof(CPUARMState, pc),
97 "pc");
98 for (i = 0; i < 32; i++) {
99 cpu_X[i] = tcg_global_mem_new_i64(cpu_env,
100 offsetof(CPUARMState, xregs[i]),
101 regnames[i]);
104 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env,
105 offsetof(CPUARMState, exclusive_high), "exclusive_high");
108 static inline int get_a64_user_mem_index(DisasContext *s)
110 /* Return the core mmu_idx to use for A64 "unprivileged load/store" insns:
111 * if EL1, access as if EL0; otherwise access at current EL
113 ARMMMUIdx useridx;
115 switch (s->mmu_idx) {
116 case ARMMMUIdx_S12NSE1:
117 useridx = ARMMMUIdx_S12NSE0;
118 break;
119 case ARMMMUIdx_S1SE1:
120 useridx = ARMMMUIdx_S1SE0;
121 break;
122 case ARMMMUIdx_S2NS:
123 g_assert_not_reached();
124 default:
125 useridx = s->mmu_idx;
126 break;
128 return arm_to_core_mmu_idx(useridx);
131 void aarch64_cpu_dump_state(CPUState *cs, FILE *f,
132 fprintf_function cpu_fprintf, int flags)
134 ARMCPU *cpu = ARM_CPU(cs);
135 CPUARMState *env = &cpu->env;
136 uint32_t psr = pstate_read(env);
137 int i;
138 int el = arm_current_el(env);
139 const char *ns_status;
141 cpu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
142 for (i = 0; i < 32; i++) {
143 if (i == 31) {
144 cpu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
145 } else {
146 cpu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
147 (i + 2) % 3 ? " " : "\n");
151 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
152 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
153 } else {
154 ns_status = "";
156 cpu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
157 psr,
158 psr & PSTATE_N ? 'N' : '-',
159 psr & PSTATE_Z ? 'Z' : '-',
160 psr & PSTATE_C ? 'C' : '-',
161 psr & PSTATE_V ? 'V' : '-',
162 ns_status,
164 psr & PSTATE_SP ? 'h' : 't');
166 if (!(flags & CPU_DUMP_FPU)) {
167 cpu_fprintf(f, "\n");
168 return;
170 if (fp_exception_el(env, el) != 0) {
171 cpu_fprintf(f, " FPU disabled\n");
172 return;
174 cpu_fprintf(f, " FPCR=%08x FPSR=%08x\n",
175 vfp_get_fpcr(env), vfp_get_fpsr(env));
177 if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
178 int j, zcr_len = sve_zcr_len_for_el(env, el);
180 for (i = 0; i <= FFR_PRED_NUM; i++) {
181 bool eol;
182 if (i == FFR_PRED_NUM) {
183 cpu_fprintf(f, "FFR=");
184 /* It's last, so end the line. */
185 eol = true;
186 } else {
187 cpu_fprintf(f, "P%02d=", i);
188 switch (zcr_len) {
189 case 0:
190 eol = i % 8 == 7;
191 break;
192 case 1:
193 eol = i % 6 == 5;
194 break;
195 case 2:
196 case 3:
197 eol = i % 3 == 2;
198 break;
199 default:
200 /* More than one quadword per predicate. */
201 eol = true;
202 break;
205 for (j = zcr_len / 4; j >= 0; j--) {
206 int digits;
207 if (j * 4 + 4 <= zcr_len + 1) {
208 digits = 16;
209 } else {
210 digits = (zcr_len % 4 + 1) * 4;
212 cpu_fprintf(f, "%0*" PRIx64 "%s", digits,
213 env->vfp.pregs[i].p[j],
214 j ? ":" : eol ? "\n" : " ");
218 for (i = 0; i < 32; i++) {
219 if (zcr_len == 0) {
220 cpu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
221 i, env->vfp.zregs[i].d[1],
222 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
223 } else if (zcr_len == 1) {
224 cpu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
225 ":%016" PRIx64 ":%016" PRIx64 "\n",
226 i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
227 env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
228 } else {
229 for (j = zcr_len; j >= 0; j--) {
230 bool odd = (zcr_len - j) % 2 != 0;
231 if (j == zcr_len) {
232 cpu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
233 } else if (!odd) {
234 if (j > 0) {
235 cpu_fprintf(f, " [%x-%x]=", j, j - 1);
236 } else {
237 cpu_fprintf(f, " [%x]=", j);
240 cpu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
241 env->vfp.zregs[i].d[j * 2 + 1],
242 env->vfp.zregs[i].d[j * 2],
243 odd || j == 0 ? "\n" : ":");
247 } else {
248 for (i = 0; i < 32; i++) {
249 uint64_t *q = aa64_vfp_qreg(env, i);
250 cpu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
251 i, q[1], q[0], (i & 1 ? "\n" : " "));
256 void gen_a64_set_pc_im(uint64_t val)
258 tcg_gen_movi_i64(cpu_pc, val);
261 /* Load the PC from a generic TCG variable.
263 * If address tagging is enabled via the TCR TBI bits, then loading
264 * an address into the PC will clear out any tag in it:
265 * + for EL2 and EL3 there is only one TBI bit, and if it is set
266 * then the address is zero-extended, clearing bits [63:56]
267 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
268 * and TBI1 controls addressses with bit 55 == 1.
269 * If the appropriate TBI bit is set for the address then
270 * the address is sign-extended from bit 55 into bits [63:56]
272 * We can avoid doing this for relative-branches, because the
273 * PC + offset can never overflow into the tag bits (assuming
274 * that virtual addresses are less than 56 bits wide, as they
275 * are currently), but we must handle it for branch-to-register.
277 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
279 /* Note that TBII is TBI1:TBI0. */
280 int tbi = s->tbii;
282 if (s->current_el <= 1) {
283 if (tbi != 0) {
284 /* Sign-extend from bit 55. */
285 tcg_gen_sextract_i64(cpu_pc, src, 0, 56);
287 if (tbi != 3) {
288 TCGv_i64 tcg_zero = tcg_const_i64(0);
291 * The two TBI bits differ.
292 * If tbi0, then !tbi1: only use the extension if positive.
293 * if !tbi0, then tbi1: only use the extension if negative.
295 tcg_gen_movcond_i64(tbi == 1 ? TCG_COND_GE : TCG_COND_LT,
296 cpu_pc, cpu_pc, tcg_zero, cpu_pc, src);
297 tcg_temp_free_i64(tcg_zero);
299 return;
301 } else {
302 if (tbi != 0) {
303 /* Force tag byte to all zero */
304 tcg_gen_extract_i64(cpu_pc, src, 0, 56);
305 return;
309 /* Load unmodified address */
310 tcg_gen_mov_i64(cpu_pc, src);
313 typedef struct DisasCompare64 {
314 TCGCond cond;
315 TCGv_i64 value;
316 } DisasCompare64;
318 static void a64_test_cc(DisasCompare64 *c64, int cc)
320 DisasCompare c32;
322 arm_test_cc(&c32, cc);
324 /* Sign-extend the 32-bit value so that the GE/LT comparisons work
325 * properly. The NE/EQ comparisons are also fine with this choice. */
326 c64->cond = c32.cond;
327 c64->value = tcg_temp_new_i64();
328 tcg_gen_ext_i32_i64(c64->value, c32.value);
330 arm_free_cc(&c32);
333 static void a64_free_cc(DisasCompare64 *c64)
335 tcg_temp_free_i64(c64->value);
338 static void gen_exception_internal(int excp)
340 TCGv_i32 tcg_excp = tcg_const_i32(excp);
342 assert(excp_is_internal(excp));
343 gen_helper_exception_internal(cpu_env, tcg_excp);
344 tcg_temp_free_i32(tcg_excp);
347 static void gen_exception(int excp, uint32_t syndrome, uint32_t target_el)
349 TCGv_i32 tcg_excp = tcg_const_i32(excp);
350 TCGv_i32 tcg_syn = tcg_const_i32(syndrome);
351 TCGv_i32 tcg_el = tcg_const_i32(target_el);
353 gen_helper_exception_with_syndrome(cpu_env, tcg_excp,
354 tcg_syn, tcg_el);
355 tcg_temp_free_i32(tcg_el);
356 tcg_temp_free_i32(tcg_syn);
357 tcg_temp_free_i32(tcg_excp);
360 static void gen_exception_internal_insn(DisasContext *s, int offset, int excp)
362 gen_a64_set_pc_im(s->pc - offset);
363 gen_exception_internal(excp);
364 s->base.is_jmp = DISAS_NORETURN;
367 static void gen_exception_insn(DisasContext *s, int offset, int excp,
368 uint32_t syndrome, uint32_t target_el)
370 gen_a64_set_pc_im(s->pc - offset);
371 gen_exception(excp, syndrome, target_el);
372 s->base.is_jmp = DISAS_NORETURN;
375 static void gen_exception_bkpt_insn(DisasContext *s, int offset,
376 uint32_t syndrome)
378 TCGv_i32 tcg_syn;
380 gen_a64_set_pc_im(s->pc - offset);
381 tcg_syn = tcg_const_i32(syndrome);
382 gen_helper_exception_bkpt_insn(cpu_env, tcg_syn);
383 tcg_temp_free_i32(tcg_syn);
384 s->base.is_jmp = DISAS_NORETURN;
387 static void gen_ss_advance(DisasContext *s)
389 /* If the singlestep state is Active-not-pending, advance to
390 * Active-pending.
392 if (s->ss_active) {
393 s->pstate_ss = 0;
394 gen_helper_clear_pstate_ss(cpu_env);
398 static void gen_step_complete_exception(DisasContext *s)
400 /* We just completed step of an insn. Move from Active-not-pending
401 * to Active-pending, and then also take the swstep exception.
402 * This corresponds to making the (IMPDEF) choice to prioritize
403 * swstep exceptions over asynchronous exceptions taken to an exception
404 * level where debug is disabled. This choice has the advantage that
405 * we do not need to maintain internal state corresponding to the
406 * ISV/EX syndrome bits between completion of the step and generation
407 * of the exception, and our syndrome information is always correct.
409 gen_ss_advance(s);
410 gen_exception(EXCP_UDEF, syn_swstep(s->ss_same_el, 1, s->is_ldex),
411 default_exception_el(s));
412 s->base.is_jmp = DISAS_NORETURN;
415 static inline bool use_goto_tb(DisasContext *s, int n, uint64_t dest)
417 /* No direct tb linking with singlestep (either QEMU's or the ARM
418 * debug architecture kind) or deterministic io
420 if (s->base.singlestep_enabled || s->ss_active ||
421 (tb_cflags(s->base.tb) & CF_LAST_IO)) {
422 return false;
425 #ifndef CONFIG_USER_ONLY
426 /* Only link tbs from inside the same guest page */
427 if ((s->base.tb->pc & TARGET_PAGE_MASK) != (dest & TARGET_PAGE_MASK)) {
428 return false;
430 #endif
432 return true;
435 static inline void gen_goto_tb(DisasContext *s, int n, uint64_t dest)
437 TranslationBlock *tb;
439 tb = s->base.tb;
440 if (use_goto_tb(s, n, dest)) {
441 tcg_gen_goto_tb(n);
442 gen_a64_set_pc_im(dest);
443 tcg_gen_exit_tb(tb, n);
444 s->base.is_jmp = DISAS_NORETURN;
445 } else {
446 gen_a64_set_pc_im(dest);
447 if (s->ss_active) {
448 gen_step_complete_exception(s);
449 } else if (s->base.singlestep_enabled) {
450 gen_exception_internal(EXCP_DEBUG);
451 } else {
452 tcg_gen_lookup_and_goto_ptr();
453 s->base.is_jmp = DISAS_NORETURN;
458 void unallocated_encoding(DisasContext *s)
460 /* Unallocated and reserved encodings are uncategorized */
461 gen_exception_insn(s, 4, EXCP_UDEF, syn_uncategorized(),
462 default_exception_el(s));
465 static void init_tmp_a64_array(DisasContext *s)
467 #ifdef CONFIG_DEBUG_TCG
468 memset(s->tmp_a64, 0, sizeof(s->tmp_a64));
469 #endif
470 s->tmp_a64_count = 0;
473 static void free_tmp_a64(DisasContext *s)
475 int i;
476 for (i = 0; i < s->tmp_a64_count; i++) {
477 tcg_temp_free_i64(s->tmp_a64[i]);
479 init_tmp_a64_array(s);
482 TCGv_i64 new_tmp_a64(DisasContext *s)
484 assert(s->tmp_a64_count < TMP_A64_MAX);
485 return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_new_i64();
488 TCGv_i64 new_tmp_a64_zero(DisasContext *s)
490 TCGv_i64 t = new_tmp_a64(s);
491 tcg_gen_movi_i64(t, 0);
492 return t;
496 * Register access functions
498 * These functions are used for directly accessing a register in where
499 * changes to the final register value are likely to be made. If you
500 * need to use a register for temporary calculation (e.g. index type
501 * operations) use the read_* form.
503 * B1.2.1 Register mappings
505 * In instruction register encoding 31 can refer to ZR (zero register) or
506 * the SP (stack pointer) depending on context. In QEMU's case we map SP
507 * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
508 * This is the point of the _sp forms.
510 TCGv_i64 cpu_reg(DisasContext *s, int reg)
512 if (reg == 31) {
513 return new_tmp_a64_zero(s);
514 } else {
515 return cpu_X[reg];
519 /* register access for when 31 == SP */
520 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
522 return cpu_X[reg];
525 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
526 * representing the register contents. This TCGv is an auto-freed
527 * temporary so it need not be explicitly freed, and may be modified.
529 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
531 TCGv_i64 v = new_tmp_a64(s);
532 if (reg != 31) {
533 if (sf) {
534 tcg_gen_mov_i64(v, cpu_X[reg]);
535 } else {
536 tcg_gen_ext32u_i64(v, cpu_X[reg]);
538 } else {
539 tcg_gen_movi_i64(v, 0);
541 return v;
544 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
546 TCGv_i64 v = new_tmp_a64(s);
547 if (sf) {
548 tcg_gen_mov_i64(v, cpu_X[reg]);
549 } else {
550 tcg_gen_ext32u_i64(v, cpu_X[reg]);
552 return v;
555 /* Return the offset into CPUARMState of a slice (from
556 * the least significant end) of FP register Qn (ie
557 * Dn, Sn, Hn or Bn).
558 * (Note that this is not the same mapping as for A32; see cpu.h)
560 static inline int fp_reg_offset(DisasContext *s, int regno, TCGMemOp size)
562 return vec_reg_offset(s, regno, 0, size);
565 /* Offset of the high half of the 128 bit vector Qn */
566 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
568 return vec_reg_offset(s, regno, 1, MO_64);
571 /* Convenience accessors for reading and writing single and double
572 * FP registers. Writing clears the upper parts of the associated
573 * 128 bit vector register, as required by the architecture.
574 * Note that unlike the GP register accessors, the values returned
575 * by the read functions must be manually freed.
577 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
579 TCGv_i64 v = tcg_temp_new_i64();
581 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
582 return v;
585 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
587 TCGv_i32 v = tcg_temp_new_i32();
589 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32));
590 return v;
593 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
595 TCGv_i32 v = tcg_temp_new_i32();
597 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16));
598 return v;
601 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
602 * If SVE is not enabled, then there are only 128 bits in the vector.
604 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
606 unsigned ofs = fp_reg_offset(s, rd, MO_64);
607 unsigned vsz = vec_full_reg_size(s);
609 if (!is_q) {
610 TCGv_i64 tcg_zero = tcg_const_i64(0);
611 tcg_gen_st_i64(tcg_zero, cpu_env, ofs + 8);
612 tcg_temp_free_i64(tcg_zero);
614 if (vsz > 16) {
615 tcg_gen_gvec_dup8i(ofs + 16, vsz - 16, vsz - 16, 0);
619 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
621 unsigned ofs = fp_reg_offset(s, reg, MO_64);
623 tcg_gen_st_i64(v, cpu_env, ofs);
624 clear_vec_high(s, false, reg);
627 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
629 TCGv_i64 tmp = tcg_temp_new_i64();
631 tcg_gen_extu_i32_i64(tmp, v);
632 write_fp_dreg(s, reg, tmp);
633 tcg_temp_free_i64(tmp);
636 TCGv_ptr get_fpstatus_ptr(bool is_f16)
638 TCGv_ptr statusptr = tcg_temp_new_ptr();
639 int offset;
641 /* In A64 all instructions (both FP and Neon) use the FPCR; there
642 * is no equivalent of the A32 Neon "standard FPSCR value".
643 * However half-precision operations operate under a different
644 * FZ16 flag and use vfp.fp_status_f16 instead of vfp.fp_status.
646 if (is_f16) {
647 offset = offsetof(CPUARMState, vfp.fp_status_f16);
648 } else {
649 offset = offsetof(CPUARMState, vfp.fp_status);
651 tcg_gen_addi_ptr(statusptr, cpu_env, offset);
652 return statusptr;
655 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */
656 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
657 GVecGen2Fn *gvec_fn, int vece)
659 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
660 is_q ? 16 : 8, vec_full_reg_size(s));
663 /* Expand a 2-operand + immediate AdvSIMD vector operation using
664 * an expander function.
666 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
667 int64_t imm, GVecGen2iFn *gvec_fn, int vece)
669 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
670 imm, is_q ? 16 : 8, vec_full_reg_size(s));
673 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */
674 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
675 GVecGen3Fn *gvec_fn, int vece)
677 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
678 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
681 /* Expand a 2-operand + immediate AdvSIMD vector operation using
682 * an op descriptor.
684 static void gen_gvec_op2i(DisasContext *s, bool is_q, int rd,
685 int rn, int64_t imm, const GVecGen2i *gvec_op)
687 tcg_gen_gvec_2i(vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
688 is_q ? 16 : 8, vec_full_reg_size(s), imm, gvec_op);
691 /* Expand a 3-operand AdvSIMD vector operation using an op descriptor. */
692 static void gen_gvec_op3(DisasContext *s, bool is_q, int rd,
693 int rn, int rm, const GVecGen3 *gvec_op)
695 tcg_gen_gvec_3(vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
696 vec_full_reg_offset(s, rm), is_q ? 16 : 8,
697 vec_full_reg_size(s), gvec_op);
700 /* Expand a 3-operand operation using an out-of-line helper. */
701 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
702 int rn, int rm, int data, gen_helper_gvec_3 *fn)
704 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
705 vec_full_reg_offset(s, rn),
706 vec_full_reg_offset(s, rm),
707 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
710 /* Expand a 3-operand + env pointer operation using
711 * an out-of-line helper.
713 static void gen_gvec_op3_env(DisasContext *s, bool is_q, int rd,
714 int rn, int rm, gen_helper_gvec_3_ptr *fn)
716 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
717 vec_full_reg_offset(s, rn),
718 vec_full_reg_offset(s, rm), cpu_env,
719 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
722 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
723 * an out-of-line helper.
725 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
726 int rm, bool is_fp16, int data,
727 gen_helper_gvec_3_ptr *fn)
729 TCGv_ptr fpst = get_fpstatus_ptr(is_fp16);
730 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
731 vec_full_reg_offset(s, rn),
732 vec_full_reg_offset(s, rm), fpst,
733 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
734 tcg_temp_free_ptr(fpst);
737 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
738 * than the 32 bit equivalent.
740 static inline void gen_set_NZ64(TCGv_i64 result)
742 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
743 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
746 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
747 static inline void gen_logic_CC(int sf, TCGv_i64 result)
749 if (sf) {
750 gen_set_NZ64(result);
751 } else {
752 tcg_gen_extrl_i64_i32(cpu_ZF, result);
753 tcg_gen_mov_i32(cpu_NF, cpu_ZF);
755 tcg_gen_movi_i32(cpu_CF, 0);
756 tcg_gen_movi_i32(cpu_VF, 0);
759 /* dest = T0 + T1; compute C, N, V and Z flags */
760 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
762 if (sf) {
763 TCGv_i64 result, flag, tmp;
764 result = tcg_temp_new_i64();
765 flag = tcg_temp_new_i64();
766 tmp = tcg_temp_new_i64();
768 tcg_gen_movi_i64(tmp, 0);
769 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
771 tcg_gen_extrl_i64_i32(cpu_CF, flag);
773 gen_set_NZ64(result);
775 tcg_gen_xor_i64(flag, result, t0);
776 tcg_gen_xor_i64(tmp, t0, t1);
777 tcg_gen_andc_i64(flag, flag, tmp);
778 tcg_temp_free_i64(tmp);
779 tcg_gen_extrh_i64_i32(cpu_VF, flag);
781 tcg_gen_mov_i64(dest, result);
782 tcg_temp_free_i64(result);
783 tcg_temp_free_i64(flag);
784 } else {
785 /* 32 bit arithmetic */
786 TCGv_i32 t0_32 = tcg_temp_new_i32();
787 TCGv_i32 t1_32 = tcg_temp_new_i32();
788 TCGv_i32 tmp = tcg_temp_new_i32();
790 tcg_gen_movi_i32(tmp, 0);
791 tcg_gen_extrl_i64_i32(t0_32, t0);
792 tcg_gen_extrl_i64_i32(t1_32, t1);
793 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
794 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
795 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
796 tcg_gen_xor_i32(tmp, t0_32, t1_32);
797 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
798 tcg_gen_extu_i32_i64(dest, cpu_NF);
800 tcg_temp_free_i32(tmp);
801 tcg_temp_free_i32(t0_32);
802 tcg_temp_free_i32(t1_32);
806 /* dest = T0 - T1; compute C, N, V and Z flags */
807 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
809 if (sf) {
810 /* 64 bit arithmetic */
811 TCGv_i64 result, flag, tmp;
813 result = tcg_temp_new_i64();
814 flag = tcg_temp_new_i64();
815 tcg_gen_sub_i64(result, t0, t1);
817 gen_set_NZ64(result);
819 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
820 tcg_gen_extrl_i64_i32(cpu_CF, flag);
822 tcg_gen_xor_i64(flag, result, t0);
823 tmp = tcg_temp_new_i64();
824 tcg_gen_xor_i64(tmp, t0, t1);
825 tcg_gen_and_i64(flag, flag, tmp);
826 tcg_temp_free_i64(tmp);
827 tcg_gen_extrh_i64_i32(cpu_VF, flag);
828 tcg_gen_mov_i64(dest, result);
829 tcg_temp_free_i64(flag);
830 tcg_temp_free_i64(result);
831 } else {
832 /* 32 bit arithmetic */
833 TCGv_i32 t0_32 = tcg_temp_new_i32();
834 TCGv_i32 t1_32 = tcg_temp_new_i32();
835 TCGv_i32 tmp;
837 tcg_gen_extrl_i64_i32(t0_32, t0);
838 tcg_gen_extrl_i64_i32(t1_32, t1);
839 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
840 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
841 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
842 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
843 tmp = tcg_temp_new_i32();
844 tcg_gen_xor_i32(tmp, t0_32, t1_32);
845 tcg_temp_free_i32(t0_32);
846 tcg_temp_free_i32(t1_32);
847 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
848 tcg_temp_free_i32(tmp);
849 tcg_gen_extu_i32_i64(dest, cpu_NF);
853 /* dest = T0 + T1 + CF; do not compute flags. */
854 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
856 TCGv_i64 flag = tcg_temp_new_i64();
857 tcg_gen_extu_i32_i64(flag, cpu_CF);
858 tcg_gen_add_i64(dest, t0, t1);
859 tcg_gen_add_i64(dest, dest, flag);
860 tcg_temp_free_i64(flag);
862 if (!sf) {
863 tcg_gen_ext32u_i64(dest, dest);
867 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
868 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
870 if (sf) {
871 TCGv_i64 result, cf_64, vf_64, tmp;
872 result = tcg_temp_new_i64();
873 cf_64 = tcg_temp_new_i64();
874 vf_64 = tcg_temp_new_i64();
875 tmp = tcg_const_i64(0);
877 tcg_gen_extu_i32_i64(cf_64, cpu_CF);
878 tcg_gen_add2_i64(result, cf_64, t0, tmp, cf_64, tmp);
879 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, tmp);
880 tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
881 gen_set_NZ64(result);
883 tcg_gen_xor_i64(vf_64, result, t0);
884 tcg_gen_xor_i64(tmp, t0, t1);
885 tcg_gen_andc_i64(vf_64, vf_64, tmp);
886 tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
888 tcg_gen_mov_i64(dest, result);
890 tcg_temp_free_i64(tmp);
891 tcg_temp_free_i64(vf_64);
892 tcg_temp_free_i64(cf_64);
893 tcg_temp_free_i64(result);
894 } else {
895 TCGv_i32 t0_32, t1_32, tmp;
896 t0_32 = tcg_temp_new_i32();
897 t1_32 = tcg_temp_new_i32();
898 tmp = tcg_const_i32(0);
900 tcg_gen_extrl_i64_i32(t0_32, t0);
901 tcg_gen_extrl_i64_i32(t1_32, t1);
902 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, cpu_CF, tmp);
903 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, tmp);
905 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
906 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
907 tcg_gen_xor_i32(tmp, t0_32, t1_32);
908 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
909 tcg_gen_extu_i32_i64(dest, cpu_NF);
911 tcg_temp_free_i32(tmp);
912 tcg_temp_free_i32(t1_32);
913 tcg_temp_free_i32(t0_32);
918 * Load/Store generators
922 * Store from GPR register to memory.
924 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
925 TCGv_i64 tcg_addr, int size, int memidx,
926 bool iss_valid,
927 unsigned int iss_srt,
928 bool iss_sf, bool iss_ar)
930 g_assert(size <= 3);
931 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, s->be_data + size);
933 if (iss_valid) {
934 uint32_t syn;
936 syn = syn_data_abort_with_iss(0,
937 size,
938 false,
939 iss_srt,
940 iss_sf,
941 iss_ar,
942 0, 0, 0, 0, 0, false);
943 disas_set_insn_syndrome(s, syn);
947 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
948 TCGv_i64 tcg_addr, int size,
949 bool iss_valid,
950 unsigned int iss_srt,
951 bool iss_sf, bool iss_ar)
953 do_gpr_st_memidx(s, source, tcg_addr, size, get_mem_index(s),
954 iss_valid, iss_srt, iss_sf, iss_ar);
958 * Load from memory to GPR register
960 static void do_gpr_ld_memidx(DisasContext *s,
961 TCGv_i64 dest, TCGv_i64 tcg_addr,
962 int size, bool is_signed,
963 bool extend, int memidx,
964 bool iss_valid, unsigned int iss_srt,
965 bool iss_sf, bool iss_ar)
967 TCGMemOp memop = s->be_data + size;
969 g_assert(size <= 3);
971 if (is_signed) {
972 memop += MO_SIGN;
975 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
977 if (extend && is_signed) {
978 g_assert(size < 3);
979 tcg_gen_ext32u_i64(dest, dest);
982 if (iss_valid) {
983 uint32_t syn;
985 syn = syn_data_abort_with_iss(0,
986 size,
987 is_signed,
988 iss_srt,
989 iss_sf,
990 iss_ar,
991 0, 0, 0, 0, 0, false);
992 disas_set_insn_syndrome(s, syn);
996 static void do_gpr_ld(DisasContext *s,
997 TCGv_i64 dest, TCGv_i64 tcg_addr,
998 int size, bool is_signed, bool extend,
999 bool iss_valid, unsigned int iss_srt,
1000 bool iss_sf, bool iss_ar)
1002 do_gpr_ld_memidx(s, dest, tcg_addr, size, is_signed, extend,
1003 get_mem_index(s),
1004 iss_valid, iss_srt, iss_sf, iss_ar);
1008 * Store from FP register to memory
1010 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size)
1012 /* This writes the bottom N bits of a 128 bit wide vector to memory */
1013 TCGv_i64 tmp = tcg_temp_new_i64();
1014 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_offset(s, srcidx, MO_64));
1015 if (size < 4) {
1016 tcg_gen_qemu_st_i64(tmp, tcg_addr, get_mem_index(s),
1017 s->be_data + size);
1018 } else {
1019 bool be = s->be_data == MO_BE;
1020 TCGv_i64 tcg_hiaddr = tcg_temp_new_i64();
1022 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
1023 tcg_gen_qemu_st_i64(tmp, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
1024 s->be_data | MO_Q);
1025 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_hi_offset(s, srcidx));
1026 tcg_gen_qemu_st_i64(tmp, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
1027 s->be_data | MO_Q);
1028 tcg_temp_free_i64(tcg_hiaddr);
1031 tcg_temp_free_i64(tmp);
1035 * Load from memory to FP register
1037 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size)
1039 /* This always zero-extends and writes to a full 128 bit wide vector */
1040 TCGv_i64 tmplo = tcg_temp_new_i64();
1041 TCGv_i64 tmphi;
1043 if (size < 4) {
1044 TCGMemOp memop = s->be_data + size;
1045 tmphi = tcg_const_i64(0);
1046 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), memop);
1047 } else {
1048 bool be = s->be_data == MO_BE;
1049 TCGv_i64 tcg_hiaddr;
1051 tmphi = tcg_temp_new_i64();
1052 tcg_hiaddr = tcg_temp_new_i64();
1054 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
1055 tcg_gen_qemu_ld_i64(tmplo, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
1056 s->be_data | MO_Q);
1057 tcg_gen_qemu_ld_i64(tmphi, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
1058 s->be_data | MO_Q);
1059 tcg_temp_free_i64(tcg_hiaddr);
1062 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64));
1063 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx));
1065 tcg_temp_free_i64(tmplo);
1066 tcg_temp_free_i64(tmphi);
1068 clear_vec_high(s, true, destidx);
1072 * Vector load/store helpers.
1074 * The principal difference between this and a FP load is that we don't
1075 * zero extend as we are filling a partial chunk of the vector register.
1076 * These functions don't support 128 bit loads/stores, which would be
1077 * normal load/store operations.
1079 * The _i32 versions are useful when operating on 32 bit quantities
1080 * (eg for floating point single or using Neon helper functions).
1083 /* Get value of an element within a vector register */
1084 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1085 int element, TCGMemOp memop)
1087 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1088 switch (memop) {
1089 case MO_8:
1090 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
1091 break;
1092 case MO_16:
1093 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
1094 break;
1095 case MO_32:
1096 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
1097 break;
1098 case MO_8|MO_SIGN:
1099 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
1100 break;
1101 case MO_16|MO_SIGN:
1102 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
1103 break;
1104 case MO_32|MO_SIGN:
1105 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
1106 break;
1107 case MO_64:
1108 case MO_64|MO_SIGN:
1109 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
1110 break;
1111 default:
1112 g_assert_not_reached();
1116 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1117 int element, TCGMemOp memop)
1119 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1120 switch (memop) {
1121 case MO_8:
1122 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
1123 break;
1124 case MO_16:
1125 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
1126 break;
1127 case MO_8|MO_SIGN:
1128 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
1129 break;
1130 case MO_16|MO_SIGN:
1131 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
1132 break;
1133 case MO_32:
1134 case MO_32|MO_SIGN:
1135 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
1136 break;
1137 default:
1138 g_assert_not_reached();
1142 /* Set value of an element within a vector register */
1143 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1144 int element, TCGMemOp memop)
1146 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1147 switch (memop) {
1148 case MO_8:
1149 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
1150 break;
1151 case MO_16:
1152 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
1153 break;
1154 case MO_32:
1155 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
1156 break;
1157 case MO_64:
1158 tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
1159 break;
1160 default:
1161 g_assert_not_reached();
1165 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1166 int destidx, int element, TCGMemOp memop)
1168 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1169 switch (memop) {
1170 case MO_8:
1171 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
1172 break;
1173 case MO_16:
1174 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
1175 break;
1176 case MO_32:
1177 tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
1178 break;
1179 default:
1180 g_assert_not_reached();
1184 /* Store from vector register to memory */
1185 static void do_vec_st(DisasContext *s, int srcidx, int element,
1186 TCGv_i64 tcg_addr, int size, TCGMemOp endian)
1188 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1190 read_vec_element(s, tcg_tmp, srcidx, element, size);
1191 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), endian | size);
1193 tcg_temp_free_i64(tcg_tmp);
1196 /* Load from memory to vector register */
1197 static void do_vec_ld(DisasContext *s, int destidx, int element,
1198 TCGv_i64 tcg_addr, int size, TCGMemOp endian)
1200 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1202 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), endian | size);
1203 write_vec_element(s, tcg_tmp, destidx, element, size);
1205 tcg_temp_free_i64(tcg_tmp);
1208 /* Check that FP/Neon access is enabled. If it is, return
1209 * true. If not, emit code to generate an appropriate exception,
1210 * and return false; the caller should not emit any code for
1211 * the instruction. Note that this check must happen after all
1212 * unallocated-encoding checks (otherwise the syndrome information
1213 * for the resulting exception will be incorrect).
1215 static inline bool fp_access_check(DisasContext *s)
1217 assert(!s->fp_access_checked);
1218 s->fp_access_checked = true;
1220 if (!s->fp_excp_el) {
1221 return true;
1224 gen_exception_insn(s, 4, EXCP_UDEF, syn_fp_access_trap(1, 0xe, false),
1225 s->fp_excp_el);
1226 return false;
1229 /* Check that SVE access is enabled. If it is, return true.
1230 * If not, emit code to generate an appropriate exception and return false.
1232 bool sve_access_check(DisasContext *s)
1234 if (s->sve_excp_el) {
1235 gen_exception_insn(s, 4, EXCP_UDEF, syn_sve_access_trap(),
1236 s->sve_excp_el);
1237 return false;
1239 return fp_access_check(s);
1243 * This utility function is for doing register extension with an
1244 * optional shift. You will likely want to pass a temporary for the
1245 * destination register. See DecodeRegExtend() in the ARM ARM.
1247 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1248 int option, unsigned int shift)
1250 int extsize = extract32(option, 0, 2);
1251 bool is_signed = extract32(option, 2, 1);
1253 if (is_signed) {
1254 switch (extsize) {
1255 case 0:
1256 tcg_gen_ext8s_i64(tcg_out, tcg_in);
1257 break;
1258 case 1:
1259 tcg_gen_ext16s_i64(tcg_out, tcg_in);
1260 break;
1261 case 2:
1262 tcg_gen_ext32s_i64(tcg_out, tcg_in);
1263 break;
1264 case 3:
1265 tcg_gen_mov_i64(tcg_out, tcg_in);
1266 break;
1268 } else {
1269 switch (extsize) {
1270 case 0:
1271 tcg_gen_ext8u_i64(tcg_out, tcg_in);
1272 break;
1273 case 1:
1274 tcg_gen_ext16u_i64(tcg_out, tcg_in);
1275 break;
1276 case 2:
1277 tcg_gen_ext32u_i64(tcg_out, tcg_in);
1278 break;
1279 case 3:
1280 tcg_gen_mov_i64(tcg_out, tcg_in);
1281 break;
1285 if (shift) {
1286 tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1290 static inline void gen_check_sp_alignment(DisasContext *s)
1292 /* The AArch64 architecture mandates that (if enabled via PSTATE
1293 * or SCTLR bits) there is a check that SP is 16-aligned on every
1294 * SP-relative load or store (with an exception generated if it is not).
1295 * In line with general QEMU practice regarding misaligned accesses,
1296 * we omit these checks for the sake of guest program performance.
1297 * This function is provided as a hook so we can more easily add these
1298 * checks in future (possibly as a "favour catching guest program bugs
1299 * over speed" user selectable option).
1304 * This provides a simple table based table lookup decoder. It is
1305 * intended to be used when the relevant bits for decode are too
1306 * awkwardly placed and switch/if based logic would be confusing and
1307 * deeply nested. Since it's a linear search through the table, tables
1308 * should be kept small.
1310 * It returns the first handler where insn & mask == pattern, or
1311 * NULL if there is no match.
1312 * The table is terminated by an empty mask (i.e. 0)
1314 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1315 uint32_t insn)
1317 const AArch64DecodeTable *tptr = table;
1319 while (tptr->mask) {
1320 if ((insn & tptr->mask) == tptr->pattern) {
1321 return tptr->disas_fn;
1323 tptr++;
1325 return NULL;
1329 * The instruction disassembly implemented here matches
1330 * the instruction encoding classifications in chapter C4
1331 * of the ARM Architecture Reference Manual (DDI0487B_a);
1332 * classification names and decode diagrams here should generally
1333 * match up with those in the manual.
1336 /* Unconditional branch (immediate)
1337 * 31 30 26 25 0
1338 * +----+-----------+-------------------------------------+
1339 * | op | 0 0 1 0 1 | imm26 |
1340 * +----+-----------+-------------------------------------+
1342 static void disas_uncond_b_imm(DisasContext *s, uint32_t insn)
1344 uint64_t addr = s->pc + sextract32(insn, 0, 26) * 4 - 4;
1346 if (insn & (1U << 31)) {
1347 /* BL Branch with link */
1348 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
1351 /* B Branch / BL Branch with link */
1352 gen_goto_tb(s, 0, addr);
1355 /* Compare and branch (immediate)
1356 * 31 30 25 24 23 5 4 0
1357 * +----+-------------+----+---------------------+--------+
1358 * | sf | 0 1 1 0 1 0 | op | imm19 | Rt |
1359 * +----+-------------+----+---------------------+--------+
1361 static void disas_comp_b_imm(DisasContext *s, uint32_t insn)
1363 unsigned int sf, op, rt;
1364 uint64_t addr;
1365 TCGLabel *label_match;
1366 TCGv_i64 tcg_cmp;
1368 sf = extract32(insn, 31, 1);
1369 op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */
1370 rt = extract32(insn, 0, 5);
1371 addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
1373 tcg_cmp = read_cpu_reg(s, rt, sf);
1374 label_match = gen_new_label();
1376 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1377 tcg_cmp, 0, label_match);
1379 gen_goto_tb(s, 0, s->pc);
1380 gen_set_label(label_match);
1381 gen_goto_tb(s, 1, addr);
1384 /* Test and branch (immediate)
1385 * 31 30 25 24 23 19 18 5 4 0
1386 * +----+-------------+----+-------+-------------+------+
1387 * | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt |
1388 * +----+-------------+----+-------+-------------+------+
1390 static void disas_test_b_imm(DisasContext *s, uint32_t insn)
1392 unsigned int bit_pos, op, rt;
1393 uint64_t addr;
1394 TCGLabel *label_match;
1395 TCGv_i64 tcg_cmp;
1397 bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5);
1398 op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */
1399 addr = s->pc + sextract32(insn, 5, 14) * 4 - 4;
1400 rt = extract32(insn, 0, 5);
1402 tcg_cmp = tcg_temp_new_i64();
1403 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos));
1404 label_match = gen_new_label();
1405 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1406 tcg_cmp, 0, label_match);
1407 tcg_temp_free_i64(tcg_cmp);
1408 gen_goto_tb(s, 0, s->pc);
1409 gen_set_label(label_match);
1410 gen_goto_tb(s, 1, addr);
1413 /* Conditional branch (immediate)
1414 * 31 25 24 23 5 4 3 0
1415 * +---------------+----+---------------------+----+------+
1416 * | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond |
1417 * +---------------+----+---------------------+----+------+
1419 static void disas_cond_b_imm(DisasContext *s, uint32_t insn)
1421 unsigned int cond;
1422 uint64_t addr;
1424 if ((insn & (1 << 4)) || (insn & (1 << 24))) {
1425 unallocated_encoding(s);
1426 return;
1428 addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
1429 cond = extract32(insn, 0, 4);
1431 if (cond < 0x0e) {
1432 /* genuinely conditional branches */
1433 TCGLabel *label_match = gen_new_label();
1434 arm_gen_test_cc(cond, label_match);
1435 gen_goto_tb(s, 0, s->pc);
1436 gen_set_label(label_match);
1437 gen_goto_tb(s, 1, addr);
1438 } else {
1439 /* 0xe and 0xf are both "always" conditions */
1440 gen_goto_tb(s, 0, addr);
1444 /* HINT instruction group, including various allocated HINTs */
1445 static void handle_hint(DisasContext *s, uint32_t insn,
1446 unsigned int op1, unsigned int op2, unsigned int crm)
1448 unsigned int selector = crm << 3 | op2;
1450 if (op1 != 3) {
1451 unallocated_encoding(s);
1452 return;
1455 switch (selector) {
1456 case 0b00000: /* NOP */
1457 break;
1458 case 0b00011: /* WFI */
1459 s->base.is_jmp = DISAS_WFI;
1460 break;
1461 case 0b00001: /* YIELD */
1462 /* When running in MTTCG we don't generate jumps to the yield and
1463 * WFE helpers as it won't affect the scheduling of other vCPUs.
1464 * If we wanted to more completely model WFE/SEV so we don't busy
1465 * spin unnecessarily we would need to do something more involved.
1467 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1468 s->base.is_jmp = DISAS_YIELD;
1470 break;
1471 case 0b00010: /* WFE */
1472 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1473 s->base.is_jmp = DISAS_WFE;
1475 break;
1476 case 0b00100: /* SEV */
1477 case 0b00101: /* SEVL */
1478 /* we treat all as NOP at least for now */
1479 break;
1480 case 0b00111: /* XPACLRI */
1481 if (s->pauth_active) {
1482 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]);
1484 break;
1485 case 0b01000: /* PACIA1716 */
1486 if (s->pauth_active) {
1487 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1489 break;
1490 case 0b01010: /* PACIB1716 */
1491 if (s->pauth_active) {
1492 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1494 break;
1495 case 0b01100: /* AUTIA1716 */
1496 if (s->pauth_active) {
1497 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1499 break;
1500 case 0b01110: /* AUTIB1716 */
1501 if (s->pauth_active) {
1502 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1504 break;
1505 case 0b11000: /* PACIAZ */
1506 if (s->pauth_active) {
1507 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30],
1508 new_tmp_a64_zero(s));
1510 break;
1511 case 0b11001: /* PACIASP */
1512 if (s->pauth_active) {
1513 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1515 break;
1516 case 0b11010: /* PACIBZ */
1517 if (s->pauth_active) {
1518 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30],
1519 new_tmp_a64_zero(s));
1521 break;
1522 case 0b11011: /* PACIBSP */
1523 if (s->pauth_active) {
1524 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1526 break;
1527 case 0b11100: /* AUTIAZ */
1528 if (s->pauth_active) {
1529 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30],
1530 new_tmp_a64_zero(s));
1532 break;
1533 case 0b11101: /* AUTIASP */
1534 if (s->pauth_active) {
1535 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1537 break;
1538 case 0b11110: /* AUTIBZ */
1539 if (s->pauth_active) {
1540 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30],
1541 new_tmp_a64_zero(s));
1543 break;
1544 case 0b11111: /* AUTIBSP */
1545 if (s->pauth_active) {
1546 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1548 break;
1549 default:
1550 /* default specified as NOP equivalent */
1551 break;
1555 static void gen_clrex(DisasContext *s, uint32_t insn)
1557 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1560 /* CLREX, DSB, DMB, ISB */
1561 static void handle_sync(DisasContext *s, uint32_t insn,
1562 unsigned int op1, unsigned int op2, unsigned int crm)
1564 TCGBar bar;
1566 if (op1 != 3) {
1567 unallocated_encoding(s);
1568 return;
1571 switch (op2) {
1572 case 2: /* CLREX */
1573 gen_clrex(s, insn);
1574 return;
1575 case 4: /* DSB */
1576 case 5: /* DMB */
1577 switch (crm & 3) {
1578 case 1: /* MBReqTypes_Reads */
1579 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1580 break;
1581 case 2: /* MBReqTypes_Writes */
1582 bar = TCG_BAR_SC | TCG_MO_ST_ST;
1583 break;
1584 default: /* MBReqTypes_All */
1585 bar = TCG_BAR_SC | TCG_MO_ALL;
1586 break;
1588 tcg_gen_mb(bar);
1589 return;
1590 case 6: /* ISB */
1591 /* We need to break the TB after this insn to execute
1592 * a self-modified code correctly and also to take
1593 * any pending interrupts immediately.
1595 gen_goto_tb(s, 0, s->pc);
1596 return;
1597 default:
1598 unallocated_encoding(s);
1599 return;
1603 /* MSR (immediate) - move immediate to processor state field */
1604 static void handle_msr_i(DisasContext *s, uint32_t insn,
1605 unsigned int op1, unsigned int op2, unsigned int crm)
1607 int op = op1 << 3 | op2;
1608 switch (op) {
1609 case 0x05: /* SPSel */
1610 if (s->current_el == 0) {
1611 unallocated_encoding(s);
1612 return;
1614 /* fall through */
1615 case 0x1e: /* DAIFSet */
1616 case 0x1f: /* DAIFClear */
1618 TCGv_i32 tcg_imm = tcg_const_i32(crm);
1619 TCGv_i32 tcg_op = tcg_const_i32(op);
1620 gen_a64_set_pc_im(s->pc - 4);
1621 gen_helper_msr_i_pstate(cpu_env, tcg_op, tcg_imm);
1622 tcg_temp_free_i32(tcg_imm);
1623 tcg_temp_free_i32(tcg_op);
1624 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */
1625 gen_a64_set_pc_im(s->pc);
1626 s->base.is_jmp = (op == 0x1f ? DISAS_EXIT : DISAS_JUMP);
1627 break;
1629 default:
1630 unallocated_encoding(s);
1631 return;
1635 static void gen_get_nzcv(TCGv_i64 tcg_rt)
1637 TCGv_i32 tmp = tcg_temp_new_i32();
1638 TCGv_i32 nzcv = tcg_temp_new_i32();
1640 /* build bit 31, N */
1641 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
1642 /* build bit 30, Z */
1643 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
1644 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
1645 /* build bit 29, C */
1646 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
1647 /* build bit 28, V */
1648 tcg_gen_shri_i32(tmp, cpu_VF, 31);
1649 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
1650 /* generate result */
1651 tcg_gen_extu_i32_i64(tcg_rt, nzcv);
1653 tcg_temp_free_i32(nzcv);
1654 tcg_temp_free_i32(tmp);
1657 static void gen_set_nzcv(TCGv_i64 tcg_rt)
1660 TCGv_i32 nzcv = tcg_temp_new_i32();
1662 /* take NZCV from R[t] */
1663 tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
1665 /* bit 31, N */
1666 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
1667 /* bit 30, Z */
1668 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
1669 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
1670 /* bit 29, C */
1671 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
1672 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
1673 /* bit 28, V */
1674 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
1675 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
1676 tcg_temp_free_i32(nzcv);
1679 /* MRS - move from system register
1680 * MSR (register) - move to system register
1681 * SYS
1682 * SYSL
1683 * These are all essentially the same insn in 'read' and 'write'
1684 * versions, with varying op0 fields.
1686 static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
1687 unsigned int op0, unsigned int op1, unsigned int op2,
1688 unsigned int crn, unsigned int crm, unsigned int rt)
1690 const ARMCPRegInfo *ri;
1691 TCGv_i64 tcg_rt;
1693 ri = get_arm_cp_reginfo(s->cp_regs,
1694 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1695 crn, crm, op0, op1, op2));
1697 if (!ri) {
1698 /* Unknown register; this might be a guest error or a QEMU
1699 * unimplemented feature.
1701 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
1702 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
1703 isread ? "read" : "write", op0, op1, crn, crm, op2);
1704 unallocated_encoding(s);
1705 return;
1708 /* Check access permissions */
1709 if (!cp_access_ok(s->current_el, ri, isread)) {
1710 unallocated_encoding(s);
1711 return;
1714 if (ri->accessfn) {
1715 /* Emit code to perform further access permissions checks at
1716 * runtime; this may result in an exception.
1718 TCGv_ptr tmpptr;
1719 TCGv_i32 tcg_syn, tcg_isread;
1720 uint32_t syndrome;
1722 gen_a64_set_pc_im(s->pc - 4);
1723 tmpptr = tcg_const_ptr(ri);
1724 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
1725 tcg_syn = tcg_const_i32(syndrome);
1726 tcg_isread = tcg_const_i32(isread);
1727 gen_helper_access_check_cp_reg(cpu_env, tmpptr, tcg_syn, tcg_isread);
1728 tcg_temp_free_ptr(tmpptr);
1729 tcg_temp_free_i32(tcg_syn);
1730 tcg_temp_free_i32(tcg_isread);
1733 /* Handle special cases first */
1734 switch (ri->type & ~(ARM_CP_FLAG_MASK & ~ARM_CP_SPECIAL)) {
1735 case ARM_CP_NOP:
1736 return;
1737 case ARM_CP_NZCV:
1738 tcg_rt = cpu_reg(s, rt);
1739 if (isread) {
1740 gen_get_nzcv(tcg_rt);
1741 } else {
1742 gen_set_nzcv(tcg_rt);
1744 return;
1745 case ARM_CP_CURRENTEL:
1746 /* Reads as current EL value from pstate, which is
1747 * guaranteed to be constant by the tb flags.
1749 tcg_rt = cpu_reg(s, rt);
1750 tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
1751 return;
1752 case ARM_CP_DC_ZVA:
1753 /* Writes clear the aligned block of memory which rt points into. */
1754 tcg_rt = cpu_reg(s, rt);
1755 gen_helper_dc_zva(cpu_env, tcg_rt);
1756 return;
1757 default:
1758 break;
1760 if ((ri->type & ARM_CP_FPU) && !fp_access_check(s)) {
1761 return;
1762 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
1763 return;
1766 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1767 gen_io_start();
1770 tcg_rt = cpu_reg(s, rt);
1772 if (isread) {
1773 if (ri->type & ARM_CP_CONST) {
1774 tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
1775 } else if (ri->readfn) {
1776 TCGv_ptr tmpptr;
1777 tmpptr = tcg_const_ptr(ri);
1778 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tmpptr);
1779 tcg_temp_free_ptr(tmpptr);
1780 } else {
1781 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset);
1783 } else {
1784 if (ri->type & ARM_CP_CONST) {
1785 /* If not forbidden by access permissions, treat as WI */
1786 return;
1787 } else if (ri->writefn) {
1788 TCGv_ptr tmpptr;
1789 tmpptr = tcg_const_ptr(ri);
1790 gen_helper_set_cp_reg64(cpu_env, tmpptr, tcg_rt);
1791 tcg_temp_free_ptr(tmpptr);
1792 } else {
1793 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset);
1797 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1798 /* I/O operations must end the TB here (whether read or write) */
1799 gen_io_end();
1800 s->base.is_jmp = DISAS_UPDATE;
1801 } else if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
1802 /* We default to ending the TB on a coprocessor register write,
1803 * but allow this to be suppressed by the register definition
1804 * (usually only necessary to work around guest bugs).
1806 s->base.is_jmp = DISAS_UPDATE;
1810 /* System
1811 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0
1812 * +---------------------+---+-----+-----+-------+-------+-----+------+
1813 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt |
1814 * +---------------------+---+-----+-----+-------+-------+-----+------+
1816 static void disas_system(DisasContext *s, uint32_t insn)
1818 unsigned int l, op0, op1, crn, crm, op2, rt;
1819 l = extract32(insn, 21, 1);
1820 op0 = extract32(insn, 19, 2);
1821 op1 = extract32(insn, 16, 3);
1822 crn = extract32(insn, 12, 4);
1823 crm = extract32(insn, 8, 4);
1824 op2 = extract32(insn, 5, 3);
1825 rt = extract32(insn, 0, 5);
1827 if (op0 == 0) {
1828 if (l || rt != 31) {
1829 unallocated_encoding(s);
1830 return;
1832 switch (crn) {
1833 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */
1834 handle_hint(s, insn, op1, op2, crm);
1835 break;
1836 case 3: /* CLREX, DSB, DMB, ISB */
1837 handle_sync(s, insn, op1, op2, crm);
1838 break;
1839 case 4: /* MSR (immediate) */
1840 handle_msr_i(s, insn, op1, op2, crm);
1841 break;
1842 default:
1843 unallocated_encoding(s);
1844 break;
1846 return;
1848 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt);
1851 /* Exception generation
1853 * 31 24 23 21 20 5 4 2 1 0
1854 * +-----------------+-----+------------------------+-----+----+
1855 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL |
1856 * +-----------------------+------------------------+----------+
1858 static void disas_exc(DisasContext *s, uint32_t insn)
1860 int opc = extract32(insn, 21, 3);
1861 int op2_ll = extract32(insn, 0, 5);
1862 int imm16 = extract32(insn, 5, 16);
1863 TCGv_i32 tmp;
1865 switch (opc) {
1866 case 0:
1867 /* For SVC, HVC and SMC we advance the single-step state
1868 * machine before taking the exception. This is architecturally
1869 * mandated, to ensure that single-stepping a system call
1870 * instruction works properly.
1872 switch (op2_ll) {
1873 case 1: /* SVC */
1874 gen_ss_advance(s);
1875 gen_exception_insn(s, 0, EXCP_SWI, syn_aa64_svc(imm16),
1876 default_exception_el(s));
1877 break;
1878 case 2: /* HVC */
1879 if (s->current_el == 0) {
1880 unallocated_encoding(s);
1881 break;
1883 /* The pre HVC helper handles cases when HVC gets trapped
1884 * as an undefined insn by runtime configuration.
1886 gen_a64_set_pc_im(s->pc - 4);
1887 gen_helper_pre_hvc(cpu_env);
1888 gen_ss_advance(s);
1889 gen_exception_insn(s, 0, EXCP_HVC, syn_aa64_hvc(imm16), 2);
1890 break;
1891 case 3: /* SMC */
1892 if (s->current_el == 0) {
1893 unallocated_encoding(s);
1894 break;
1896 gen_a64_set_pc_im(s->pc - 4);
1897 tmp = tcg_const_i32(syn_aa64_smc(imm16));
1898 gen_helper_pre_smc(cpu_env, tmp);
1899 tcg_temp_free_i32(tmp);
1900 gen_ss_advance(s);
1901 gen_exception_insn(s, 0, EXCP_SMC, syn_aa64_smc(imm16), 3);
1902 break;
1903 default:
1904 unallocated_encoding(s);
1905 break;
1907 break;
1908 case 1:
1909 if (op2_ll != 0) {
1910 unallocated_encoding(s);
1911 break;
1913 /* BRK */
1914 gen_exception_bkpt_insn(s, 4, syn_aa64_bkpt(imm16));
1915 break;
1916 case 2:
1917 if (op2_ll != 0) {
1918 unallocated_encoding(s);
1919 break;
1921 /* HLT. This has two purposes.
1922 * Architecturally, it is an external halting debug instruction.
1923 * Since QEMU doesn't implement external debug, we treat this as
1924 * it is required for halting debug disabled: it will UNDEF.
1925 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
1927 if (semihosting_enabled() && imm16 == 0xf000) {
1928 #ifndef CONFIG_USER_ONLY
1929 /* In system mode, don't allow userspace access to semihosting,
1930 * to provide some semblance of security (and for consistency
1931 * with our 32-bit semihosting).
1933 if (s->current_el == 0) {
1934 unsupported_encoding(s, insn);
1935 break;
1937 #endif
1938 gen_exception_internal_insn(s, 0, EXCP_SEMIHOST);
1939 } else {
1940 unsupported_encoding(s, insn);
1942 break;
1943 case 5:
1944 if (op2_ll < 1 || op2_ll > 3) {
1945 unallocated_encoding(s);
1946 break;
1948 /* DCPS1, DCPS2, DCPS3 */
1949 unsupported_encoding(s, insn);
1950 break;
1951 default:
1952 unallocated_encoding(s);
1953 break;
1957 /* Unconditional branch (register)
1958 * 31 25 24 21 20 16 15 10 9 5 4 0
1959 * +---------------+-------+-------+-------+------+-------+
1960 * | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 |
1961 * +---------------+-------+-------+-------+------+-------+
1963 static void disas_uncond_b_reg(DisasContext *s, uint32_t insn)
1965 unsigned int opc, op2, op3, rn, op4;
1966 TCGv_i64 dst;
1967 TCGv_i64 modifier;
1969 opc = extract32(insn, 21, 4);
1970 op2 = extract32(insn, 16, 5);
1971 op3 = extract32(insn, 10, 6);
1972 rn = extract32(insn, 5, 5);
1973 op4 = extract32(insn, 0, 5);
1975 if (op2 != 0x1f) {
1976 goto do_unallocated;
1979 switch (opc) {
1980 case 0: /* BR */
1981 case 1: /* BLR */
1982 case 2: /* RET */
1983 switch (op3) {
1984 case 0:
1985 /* BR, BLR, RET */
1986 if (op4 != 0) {
1987 goto do_unallocated;
1989 dst = cpu_reg(s, rn);
1990 break;
1992 case 2:
1993 case 3:
1994 if (!dc_isar_feature(aa64_pauth, s)) {
1995 goto do_unallocated;
1997 if (opc == 2) {
1998 /* RETAA, RETAB */
1999 if (rn != 0x1f || op4 != 0x1f) {
2000 goto do_unallocated;
2002 rn = 30;
2003 modifier = cpu_X[31];
2004 } else {
2005 /* BRAAZ, BRABZ, BLRAAZ, BLRABZ */
2006 if (op4 != 0x1f) {
2007 goto do_unallocated;
2009 modifier = new_tmp_a64_zero(s);
2011 if (s->pauth_active) {
2012 dst = new_tmp_a64(s);
2013 if (op3 == 2) {
2014 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier);
2015 } else {
2016 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier);
2018 } else {
2019 dst = cpu_reg(s, rn);
2021 break;
2023 default:
2024 goto do_unallocated;
2027 gen_a64_set_pc(s, dst);
2028 /* BLR also needs to load return address */
2029 if (opc == 1) {
2030 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
2032 break;
2034 case 8: /* BRAA */
2035 case 9: /* BLRAA */
2036 if (!dc_isar_feature(aa64_pauth, s)) {
2037 goto do_unallocated;
2039 if (op3 != 2 || op3 != 3) {
2040 goto do_unallocated;
2042 if (s->pauth_active) {
2043 dst = new_tmp_a64(s);
2044 modifier = cpu_reg_sp(s, op4);
2045 if (op3 == 2) {
2046 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier);
2047 } else {
2048 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier);
2050 } else {
2051 dst = cpu_reg(s, rn);
2053 gen_a64_set_pc(s, dst);
2054 /* BLRAA also needs to load return address */
2055 if (opc == 9) {
2056 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
2058 break;
2060 case 4: /* ERET */
2061 if (s->current_el == 0) {
2062 goto do_unallocated;
2064 switch (op3) {
2065 case 0: /* ERET */
2066 if (op4 != 0) {
2067 goto do_unallocated;
2069 dst = tcg_temp_new_i64();
2070 tcg_gen_ld_i64(dst, cpu_env,
2071 offsetof(CPUARMState, elr_el[s->current_el]));
2072 break;
2074 case 2: /* ERETAA */
2075 case 3: /* ERETAB */
2076 if (!dc_isar_feature(aa64_pauth, s)) {
2077 goto do_unallocated;
2079 if (rn != 0x1f || op4 != 0x1f) {
2080 goto do_unallocated;
2082 dst = tcg_temp_new_i64();
2083 tcg_gen_ld_i64(dst, cpu_env,
2084 offsetof(CPUARMState, elr_el[s->current_el]));
2085 if (s->pauth_active) {
2086 modifier = cpu_X[31];
2087 if (op3 == 2) {
2088 gen_helper_autia(dst, cpu_env, dst, modifier);
2089 } else {
2090 gen_helper_autib(dst, cpu_env, dst, modifier);
2093 break;
2095 default:
2096 goto do_unallocated;
2098 if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
2099 gen_io_start();
2102 gen_helper_exception_return(cpu_env, dst);
2103 tcg_temp_free_i64(dst);
2104 if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
2105 gen_io_end();
2107 /* Must exit loop to check un-masked IRQs */
2108 s->base.is_jmp = DISAS_EXIT;
2109 return;
2111 case 5: /* DRPS */
2112 if (op3 != 0 || op4 != 0 || rn != 0x1f) {
2113 goto do_unallocated;
2114 } else {
2115 unsupported_encoding(s, insn);
2117 return;
2119 default:
2120 do_unallocated:
2121 unallocated_encoding(s);
2122 return;
2125 s->base.is_jmp = DISAS_JUMP;
2128 /* Branches, exception generating and system instructions */
2129 static void disas_b_exc_sys(DisasContext *s, uint32_t insn)
2131 switch (extract32(insn, 25, 7)) {
2132 case 0x0a: case 0x0b:
2133 case 0x4a: case 0x4b: /* Unconditional branch (immediate) */
2134 disas_uncond_b_imm(s, insn);
2135 break;
2136 case 0x1a: case 0x5a: /* Compare & branch (immediate) */
2137 disas_comp_b_imm(s, insn);
2138 break;
2139 case 0x1b: case 0x5b: /* Test & branch (immediate) */
2140 disas_test_b_imm(s, insn);
2141 break;
2142 case 0x2a: /* Conditional branch (immediate) */
2143 disas_cond_b_imm(s, insn);
2144 break;
2145 case 0x6a: /* Exception generation / System */
2146 if (insn & (1 << 24)) {
2147 disas_system(s, insn);
2148 } else {
2149 disas_exc(s, insn);
2151 break;
2152 case 0x6b: /* Unconditional branch (register) */
2153 disas_uncond_b_reg(s, insn);
2154 break;
2155 default:
2156 unallocated_encoding(s);
2157 break;
2162 * Load/Store exclusive instructions are implemented by remembering
2163 * the value/address loaded, and seeing if these are the same
2164 * when the store is performed. This is not actually the architecturally
2165 * mandated semantics, but it works for typical guest code sequences
2166 * and avoids having to monitor regular stores.
2168 * The store exclusive uses the atomic cmpxchg primitives to avoid
2169 * races in multi-threaded linux-user and when MTTCG softmmu is
2170 * enabled.
2172 static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
2173 TCGv_i64 addr, int size, bool is_pair)
2175 int idx = get_mem_index(s);
2176 TCGMemOp memop = s->be_data;
2178 g_assert(size <= 3);
2179 if (is_pair) {
2180 g_assert(size >= 2);
2181 if (size == 2) {
2182 /* The pair must be single-copy atomic for the doubleword. */
2183 memop |= MO_64 | MO_ALIGN;
2184 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2185 if (s->be_data == MO_LE) {
2186 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2187 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2188 } else {
2189 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2190 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2192 } else {
2193 /* The pair must be single-copy atomic for *each* doubleword, not
2194 the entire quadword, however it must be quadword aligned. */
2195 memop |= MO_64;
2196 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx,
2197 memop | MO_ALIGN_16);
2199 TCGv_i64 addr2 = tcg_temp_new_i64();
2200 tcg_gen_addi_i64(addr2, addr, 8);
2201 tcg_gen_qemu_ld_i64(cpu_exclusive_high, addr2, idx, memop);
2202 tcg_temp_free_i64(addr2);
2204 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2205 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2207 } else {
2208 memop |= size | MO_ALIGN;
2209 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2210 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2212 tcg_gen_mov_i64(cpu_exclusive_addr, addr);
2215 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2216 TCGv_i64 addr, int size, int is_pair)
2218 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2219 * && (!is_pair || env->exclusive_high == [addr + datasize])) {
2220 * [addr] = {Rt};
2221 * if (is_pair) {
2222 * [addr + datasize] = {Rt2};
2224 * {Rd} = 0;
2225 * } else {
2226 * {Rd} = 1;
2228 * env->exclusive_addr = -1;
2230 TCGLabel *fail_label = gen_new_label();
2231 TCGLabel *done_label = gen_new_label();
2232 TCGv_i64 tmp;
2234 tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label);
2236 tmp = tcg_temp_new_i64();
2237 if (is_pair) {
2238 if (size == 2) {
2239 if (s->be_data == MO_LE) {
2240 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2241 } else {
2242 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2244 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2245 cpu_exclusive_val, tmp,
2246 get_mem_index(s),
2247 MO_64 | MO_ALIGN | s->be_data);
2248 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2249 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2250 if (!HAVE_CMPXCHG128) {
2251 gen_helper_exit_atomic(cpu_env);
2252 s->base.is_jmp = DISAS_NORETURN;
2253 } else if (s->be_data == MO_LE) {
2254 gen_helper_paired_cmpxchg64_le_parallel(tmp, cpu_env,
2255 cpu_exclusive_addr,
2256 cpu_reg(s, rt),
2257 cpu_reg(s, rt2));
2258 } else {
2259 gen_helper_paired_cmpxchg64_be_parallel(tmp, cpu_env,
2260 cpu_exclusive_addr,
2261 cpu_reg(s, rt),
2262 cpu_reg(s, rt2));
2264 } else if (s->be_data == MO_LE) {
2265 gen_helper_paired_cmpxchg64_le(tmp, cpu_env, cpu_exclusive_addr,
2266 cpu_reg(s, rt), cpu_reg(s, rt2));
2267 } else {
2268 gen_helper_paired_cmpxchg64_be(tmp, cpu_env, cpu_exclusive_addr,
2269 cpu_reg(s, rt), cpu_reg(s, rt2));
2271 } else {
2272 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2273 cpu_reg(s, rt), get_mem_index(s),
2274 size | MO_ALIGN | s->be_data);
2275 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2277 tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2278 tcg_temp_free_i64(tmp);
2279 tcg_gen_br(done_label);
2281 gen_set_label(fail_label);
2282 tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2283 gen_set_label(done_label);
2284 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2287 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2288 int rn, int size)
2290 TCGv_i64 tcg_rs = cpu_reg(s, rs);
2291 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2292 int memidx = get_mem_index(s);
2293 TCGv_i64 addr = cpu_reg_sp(s, rn);
2295 if (rn == 31) {
2296 gen_check_sp_alignment(s);
2298 tcg_gen_atomic_cmpxchg_i64(tcg_rs, addr, tcg_rs, tcg_rt, memidx,
2299 size | MO_ALIGN | s->be_data);
2302 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2303 int rn, int size)
2305 TCGv_i64 s1 = cpu_reg(s, rs);
2306 TCGv_i64 s2 = cpu_reg(s, rs + 1);
2307 TCGv_i64 t1 = cpu_reg(s, rt);
2308 TCGv_i64 t2 = cpu_reg(s, rt + 1);
2309 TCGv_i64 addr = cpu_reg_sp(s, rn);
2310 int memidx = get_mem_index(s);
2312 if (rn == 31) {
2313 gen_check_sp_alignment(s);
2316 if (size == 2) {
2317 TCGv_i64 cmp = tcg_temp_new_i64();
2318 TCGv_i64 val = tcg_temp_new_i64();
2320 if (s->be_data == MO_LE) {
2321 tcg_gen_concat32_i64(val, t1, t2);
2322 tcg_gen_concat32_i64(cmp, s1, s2);
2323 } else {
2324 tcg_gen_concat32_i64(val, t2, t1);
2325 tcg_gen_concat32_i64(cmp, s2, s1);
2328 tcg_gen_atomic_cmpxchg_i64(cmp, addr, cmp, val, memidx,
2329 MO_64 | MO_ALIGN | s->be_data);
2330 tcg_temp_free_i64(val);
2332 if (s->be_data == MO_LE) {
2333 tcg_gen_extr32_i64(s1, s2, cmp);
2334 } else {
2335 tcg_gen_extr32_i64(s2, s1, cmp);
2337 tcg_temp_free_i64(cmp);
2338 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2339 if (HAVE_CMPXCHG128) {
2340 TCGv_i32 tcg_rs = tcg_const_i32(rs);
2341 if (s->be_data == MO_LE) {
2342 gen_helper_casp_le_parallel(cpu_env, tcg_rs, addr, t1, t2);
2343 } else {
2344 gen_helper_casp_be_parallel(cpu_env, tcg_rs, addr, t1, t2);
2346 tcg_temp_free_i32(tcg_rs);
2347 } else {
2348 gen_helper_exit_atomic(cpu_env);
2349 s->base.is_jmp = DISAS_NORETURN;
2351 } else {
2352 TCGv_i64 d1 = tcg_temp_new_i64();
2353 TCGv_i64 d2 = tcg_temp_new_i64();
2354 TCGv_i64 a2 = tcg_temp_new_i64();
2355 TCGv_i64 c1 = tcg_temp_new_i64();
2356 TCGv_i64 c2 = tcg_temp_new_i64();
2357 TCGv_i64 zero = tcg_const_i64(0);
2359 /* Load the two words, in memory order. */
2360 tcg_gen_qemu_ld_i64(d1, addr, memidx,
2361 MO_64 | MO_ALIGN_16 | s->be_data);
2362 tcg_gen_addi_i64(a2, addr, 8);
2363 tcg_gen_qemu_ld_i64(d2, addr, memidx, MO_64 | s->be_data);
2365 /* Compare the two words, also in memory order. */
2366 tcg_gen_setcond_i64(TCG_COND_EQ, c1, d1, s1);
2367 tcg_gen_setcond_i64(TCG_COND_EQ, c2, d2, s2);
2368 tcg_gen_and_i64(c2, c2, c1);
2370 /* If compare equal, write back new data, else write back old data. */
2371 tcg_gen_movcond_i64(TCG_COND_NE, c1, c2, zero, t1, d1);
2372 tcg_gen_movcond_i64(TCG_COND_NE, c2, c2, zero, t2, d2);
2373 tcg_gen_qemu_st_i64(c1, addr, memidx, MO_64 | s->be_data);
2374 tcg_gen_qemu_st_i64(c2, a2, memidx, MO_64 | s->be_data);
2375 tcg_temp_free_i64(a2);
2376 tcg_temp_free_i64(c1);
2377 tcg_temp_free_i64(c2);
2378 tcg_temp_free_i64(zero);
2380 /* Write back the data from memory to Rs. */
2381 tcg_gen_mov_i64(s1, d1);
2382 tcg_gen_mov_i64(s2, d2);
2383 tcg_temp_free_i64(d1);
2384 tcg_temp_free_i64(d2);
2388 /* Update the Sixty-Four bit (SF) registersize. This logic is derived
2389 * from the ARMv8 specs for LDR (Shared decode for all encodings).
2391 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc)
2393 int opc0 = extract32(opc, 0, 1);
2394 int regsize;
2396 if (is_signed) {
2397 regsize = opc0 ? 32 : 64;
2398 } else {
2399 regsize = size == 3 ? 64 : 32;
2401 return regsize == 64;
2404 /* Load/store exclusive
2406 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0
2407 * +-----+-------------+----+---+----+------+----+-------+------+------+
2408 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt |
2409 * +-----+-------------+----+---+----+------+----+-------+------+------+
2411 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
2412 * L: 0 -> store, 1 -> load
2413 * o2: 0 -> exclusive, 1 -> not
2414 * o1: 0 -> single register, 1 -> register pair
2415 * o0: 1 -> load-acquire/store-release, 0 -> not
2417 static void disas_ldst_excl(DisasContext *s, uint32_t insn)
2419 int rt = extract32(insn, 0, 5);
2420 int rn = extract32(insn, 5, 5);
2421 int rt2 = extract32(insn, 10, 5);
2422 int rs = extract32(insn, 16, 5);
2423 int is_lasr = extract32(insn, 15, 1);
2424 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr;
2425 int size = extract32(insn, 30, 2);
2426 TCGv_i64 tcg_addr;
2428 switch (o2_L_o1_o0) {
2429 case 0x0: /* STXR */
2430 case 0x1: /* STLXR */
2431 if (rn == 31) {
2432 gen_check_sp_alignment(s);
2434 if (is_lasr) {
2435 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2437 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2438 gen_store_exclusive(s, rs, rt, rt2, tcg_addr, size, false);
2439 return;
2441 case 0x4: /* LDXR */
2442 case 0x5: /* LDAXR */
2443 if (rn == 31) {
2444 gen_check_sp_alignment(s);
2446 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2447 s->is_ldex = true;
2448 gen_load_exclusive(s, rt, rt2, tcg_addr, size, false);
2449 if (is_lasr) {
2450 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2452 return;
2454 case 0x8: /* STLLR */
2455 if (!dc_isar_feature(aa64_lor, s)) {
2456 break;
2458 /* StoreLORelease is the same as Store-Release for QEMU. */
2459 /* fall through */
2460 case 0x9: /* STLR */
2461 /* Generate ISS for non-exclusive accesses including LASR. */
2462 if (rn == 31) {
2463 gen_check_sp_alignment(s);
2465 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2466 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2467 do_gpr_st(s, cpu_reg(s, rt), tcg_addr, size, true, rt,
2468 disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2469 return;
2471 case 0xc: /* LDLAR */
2472 if (!dc_isar_feature(aa64_lor, s)) {
2473 break;
2475 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */
2476 /* fall through */
2477 case 0xd: /* LDAR */
2478 /* Generate ISS for non-exclusive accesses including LASR. */
2479 if (rn == 31) {
2480 gen_check_sp_alignment(s);
2482 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2483 do_gpr_ld(s, cpu_reg(s, rt), tcg_addr, size, false, false, true, rt,
2484 disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2485 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2486 return;
2488 case 0x2: case 0x3: /* CASP / STXP */
2489 if (size & 2) { /* STXP / STLXP */
2490 if (rn == 31) {
2491 gen_check_sp_alignment(s);
2493 if (is_lasr) {
2494 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2496 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2497 gen_store_exclusive(s, rs, rt, rt2, tcg_addr, size, true);
2498 return;
2500 if (rt2 == 31
2501 && ((rt | rs) & 1) == 0
2502 && dc_isar_feature(aa64_atomics, s)) {
2503 /* CASP / CASPL */
2504 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2505 return;
2507 break;
2509 case 0x6: case 0x7: /* CASPA / LDXP */
2510 if (size & 2) { /* LDXP / LDAXP */
2511 if (rn == 31) {
2512 gen_check_sp_alignment(s);
2514 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2515 s->is_ldex = true;
2516 gen_load_exclusive(s, rt, rt2, tcg_addr, size, true);
2517 if (is_lasr) {
2518 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2520 return;
2522 if (rt2 == 31
2523 && ((rt | rs) & 1) == 0
2524 && dc_isar_feature(aa64_atomics, s)) {
2525 /* CASPA / CASPAL */
2526 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2527 return;
2529 break;
2531 case 0xa: /* CAS */
2532 case 0xb: /* CASL */
2533 case 0xe: /* CASA */
2534 case 0xf: /* CASAL */
2535 if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) {
2536 gen_compare_and_swap(s, rs, rt, rn, size);
2537 return;
2539 break;
2541 unallocated_encoding(s);
2545 * Load register (literal)
2547 * 31 30 29 27 26 25 24 23 5 4 0
2548 * +-----+-------+---+-----+-------------------+-------+
2549 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt |
2550 * +-----+-------+---+-----+-------------------+-------+
2552 * V: 1 -> vector (simd/fp)
2553 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit,
2554 * 10-> 32 bit signed, 11 -> prefetch
2555 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated)
2557 static void disas_ld_lit(DisasContext *s, uint32_t insn)
2559 int rt = extract32(insn, 0, 5);
2560 int64_t imm = sextract32(insn, 5, 19) << 2;
2561 bool is_vector = extract32(insn, 26, 1);
2562 int opc = extract32(insn, 30, 2);
2563 bool is_signed = false;
2564 int size = 2;
2565 TCGv_i64 tcg_rt, tcg_addr;
2567 if (is_vector) {
2568 if (opc == 3) {
2569 unallocated_encoding(s);
2570 return;
2572 size = 2 + opc;
2573 if (!fp_access_check(s)) {
2574 return;
2576 } else {
2577 if (opc == 3) {
2578 /* PRFM (literal) : prefetch */
2579 return;
2581 size = 2 + extract32(opc, 0, 1);
2582 is_signed = extract32(opc, 1, 1);
2585 tcg_rt = cpu_reg(s, rt);
2587 tcg_addr = tcg_const_i64((s->pc - 4) + imm);
2588 if (is_vector) {
2589 do_fp_ld(s, rt, tcg_addr, size);
2590 } else {
2591 /* Only unsigned 32bit loads target 32bit registers. */
2592 bool iss_sf = opc != 0;
2594 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, false,
2595 true, rt, iss_sf, false);
2597 tcg_temp_free_i64(tcg_addr);
2601 * LDNP (Load Pair - non-temporal hint)
2602 * LDP (Load Pair - non vector)
2603 * LDPSW (Load Pair Signed Word - non vector)
2604 * STNP (Store Pair - non-temporal hint)
2605 * STP (Store Pair - non vector)
2606 * LDNP (Load Pair of SIMD&FP - non-temporal hint)
2607 * LDP (Load Pair of SIMD&FP)
2608 * STNP (Store Pair of SIMD&FP - non-temporal hint)
2609 * STP (Store Pair of SIMD&FP)
2611 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0
2612 * +-----+-------+---+---+-------+---+-----------------------------+
2613 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt |
2614 * +-----+-------+---+---+-------+---+-------+-------+------+------+
2616 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit
2617 * LDPSW 01
2618 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit
2619 * V: 0 -> GPR, 1 -> Vector
2620 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index,
2621 * 10 -> signed offset, 11 -> pre-index
2622 * L: 0 -> Store 1 -> Load
2624 * Rt, Rt2 = GPR or SIMD registers to be stored
2625 * Rn = general purpose register containing address
2626 * imm7 = signed offset (multiple of 4 or 8 depending on size)
2628 static void disas_ldst_pair(DisasContext *s, uint32_t insn)
2630 int rt = extract32(insn, 0, 5);
2631 int rn = extract32(insn, 5, 5);
2632 int rt2 = extract32(insn, 10, 5);
2633 uint64_t offset = sextract64(insn, 15, 7);
2634 int index = extract32(insn, 23, 2);
2635 bool is_vector = extract32(insn, 26, 1);
2636 bool is_load = extract32(insn, 22, 1);
2637 int opc = extract32(insn, 30, 2);
2639 bool is_signed = false;
2640 bool postindex = false;
2641 bool wback = false;
2643 TCGv_i64 tcg_addr; /* calculated address */
2644 int size;
2646 if (opc == 3) {
2647 unallocated_encoding(s);
2648 return;
2651 if (is_vector) {
2652 size = 2 + opc;
2653 } else {
2654 size = 2 + extract32(opc, 1, 1);
2655 is_signed = extract32(opc, 0, 1);
2656 if (!is_load && is_signed) {
2657 unallocated_encoding(s);
2658 return;
2662 switch (index) {
2663 case 1: /* post-index */
2664 postindex = true;
2665 wback = true;
2666 break;
2667 case 0:
2668 /* signed offset with "non-temporal" hint. Since we don't emulate
2669 * caches we don't care about hints to the cache system about
2670 * data access patterns, and handle this identically to plain
2671 * signed offset.
2673 if (is_signed) {
2674 /* There is no non-temporal-hint version of LDPSW */
2675 unallocated_encoding(s);
2676 return;
2678 postindex = false;
2679 break;
2680 case 2: /* signed offset, rn not updated */
2681 postindex = false;
2682 break;
2683 case 3: /* pre-index */
2684 postindex = false;
2685 wback = true;
2686 break;
2689 if (is_vector && !fp_access_check(s)) {
2690 return;
2693 offset <<= size;
2695 if (rn == 31) {
2696 gen_check_sp_alignment(s);
2699 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2701 if (!postindex) {
2702 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset);
2705 if (is_vector) {
2706 if (is_load) {
2707 do_fp_ld(s, rt, tcg_addr, size);
2708 } else {
2709 do_fp_st(s, rt, tcg_addr, size);
2711 tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size);
2712 if (is_load) {
2713 do_fp_ld(s, rt2, tcg_addr, size);
2714 } else {
2715 do_fp_st(s, rt2, tcg_addr, size);
2717 } else {
2718 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2719 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2);
2721 if (is_load) {
2722 TCGv_i64 tmp = tcg_temp_new_i64();
2724 /* Do not modify tcg_rt before recognizing any exception
2725 * from the second load.
2727 do_gpr_ld(s, tmp, tcg_addr, size, is_signed, false,
2728 false, 0, false, false);
2729 tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size);
2730 do_gpr_ld(s, tcg_rt2, tcg_addr, size, is_signed, false,
2731 false, 0, false, false);
2733 tcg_gen_mov_i64(tcg_rt, tmp);
2734 tcg_temp_free_i64(tmp);
2735 } else {
2736 do_gpr_st(s, tcg_rt, tcg_addr, size,
2737 false, 0, false, false);
2738 tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size);
2739 do_gpr_st(s, tcg_rt2, tcg_addr, size,
2740 false, 0, false, false);
2744 if (wback) {
2745 if (postindex) {
2746 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset - (1 << size));
2747 } else {
2748 tcg_gen_subi_i64(tcg_addr, tcg_addr, 1 << size);
2750 tcg_gen_mov_i64(cpu_reg_sp(s, rn), tcg_addr);
2755 * Load/store (immediate post-indexed)
2756 * Load/store (immediate pre-indexed)
2757 * Load/store (unscaled immediate)
2759 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
2760 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2761 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt |
2762 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2764 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback)
2765 10 -> unprivileged
2766 * V = 0 -> non-vector
2767 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit
2768 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2770 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn,
2771 int opc,
2772 int size,
2773 int rt,
2774 bool is_vector)
2776 int rn = extract32(insn, 5, 5);
2777 int imm9 = sextract32(insn, 12, 9);
2778 int idx = extract32(insn, 10, 2);
2779 bool is_signed = false;
2780 bool is_store = false;
2781 bool is_extended = false;
2782 bool is_unpriv = (idx == 2);
2783 bool iss_valid = !is_vector;
2784 bool post_index;
2785 bool writeback;
2787 TCGv_i64 tcg_addr;
2789 if (is_vector) {
2790 size |= (opc & 2) << 1;
2791 if (size > 4 || is_unpriv) {
2792 unallocated_encoding(s);
2793 return;
2795 is_store = ((opc & 1) == 0);
2796 if (!fp_access_check(s)) {
2797 return;
2799 } else {
2800 if (size == 3 && opc == 2) {
2801 /* PRFM - prefetch */
2802 if (is_unpriv) {
2803 unallocated_encoding(s);
2804 return;
2806 return;
2808 if (opc == 3 && size > 1) {
2809 unallocated_encoding(s);
2810 return;
2812 is_store = (opc == 0);
2813 is_signed = extract32(opc, 1, 1);
2814 is_extended = (size < 3) && extract32(opc, 0, 1);
2817 switch (idx) {
2818 case 0:
2819 case 2:
2820 post_index = false;
2821 writeback = false;
2822 break;
2823 case 1:
2824 post_index = true;
2825 writeback = true;
2826 break;
2827 case 3:
2828 post_index = false;
2829 writeback = true;
2830 break;
2831 default:
2832 g_assert_not_reached();
2835 if (rn == 31) {
2836 gen_check_sp_alignment(s);
2838 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2840 if (!post_index) {
2841 tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9);
2844 if (is_vector) {
2845 if (is_store) {
2846 do_fp_st(s, rt, tcg_addr, size);
2847 } else {
2848 do_fp_ld(s, rt, tcg_addr, size);
2850 } else {
2851 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2852 int memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
2853 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
2855 if (is_store) {
2856 do_gpr_st_memidx(s, tcg_rt, tcg_addr, size, memidx,
2857 iss_valid, rt, iss_sf, false);
2858 } else {
2859 do_gpr_ld_memidx(s, tcg_rt, tcg_addr, size,
2860 is_signed, is_extended, memidx,
2861 iss_valid, rt, iss_sf, false);
2865 if (writeback) {
2866 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
2867 if (post_index) {
2868 tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9);
2870 tcg_gen_mov_i64(tcg_rn, tcg_addr);
2875 * Load/store (register offset)
2877 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2878 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2879 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt |
2880 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2882 * For non-vector:
2883 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
2884 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2885 * For vector:
2886 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
2887 * opc<0>: 0 -> store, 1 -> load
2888 * V: 1 -> vector/simd
2889 * opt: extend encoding (see DecodeRegExtend)
2890 * S: if S=1 then scale (essentially index by sizeof(size))
2891 * Rt: register to transfer into/out of
2892 * Rn: address register or SP for base
2893 * Rm: offset register or ZR for offset
2895 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn,
2896 int opc,
2897 int size,
2898 int rt,
2899 bool is_vector)
2901 int rn = extract32(insn, 5, 5);
2902 int shift = extract32(insn, 12, 1);
2903 int rm = extract32(insn, 16, 5);
2904 int opt = extract32(insn, 13, 3);
2905 bool is_signed = false;
2906 bool is_store = false;
2907 bool is_extended = false;
2909 TCGv_i64 tcg_rm;
2910 TCGv_i64 tcg_addr;
2912 if (extract32(opt, 1, 1) == 0) {
2913 unallocated_encoding(s);
2914 return;
2917 if (is_vector) {
2918 size |= (opc & 2) << 1;
2919 if (size > 4) {
2920 unallocated_encoding(s);
2921 return;
2923 is_store = !extract32(opc, 0, 1);
2924 if (!fp_access_check(s)) {
2925 return;
2927 } else {
2928 if (size == 3 && opc == 2) {
2929 /* PRFM - prefetch */
2930 return;
2932 if (opc == 3 && size > 1) {
2933 unallocated_encoding(s);
2934 return;
2936 is_store = (opc == 0);
2937 is_signed = extract32(opc, 1, 1);
2938 is_extended = (size < 3) && extract32(opc, 0, 1);
2941 if (rn == 31) {
2942 gen_check_sp_alignment(s);
2944 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2946 tcg_rm = read_cpu_reg(s, rm, 1);
2947 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0);
2949 tcg_gen_add_i64(tcg_addr, tcg_addr, tcg_rm);
2951 if (is_vector) {
2952 if (is_store) {
2953 do_fp_st(s, rt, tcg_addr, size);
2954 } else {
2955 do_fp_ld(s, rt, tcg_addr, size);
2957 } else {
2958 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2959 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
2960 if (is_store) {
2961 do_gpr_st(s, tcg_rt, tcg_addr, size,
2962 true, rt, iss_sf, false);
2963 } else {
2964 do_gpr_ld(s, tcg_rt, tcg_addr, size,
2965 is_signed, is_extended,
2966 true, rt, iss_sf, false);
2972 * Load/store (unsigned immediate)
2974 * 31 30 29 27 26 25 24 23 22 21 10 9 5
2975 * +----+-------+---+-----+-----+------------+-------+------+
2976 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt |
2977 * +----+-------+---+-----+-----+------------+-------+------+
2979 * For non-vector:
2980 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
2981 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2982 * For vector:
2983 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
2984 * opc<0>: 0 -> store, 1 -> load
2985 * Rn: base address register (inc SP)
2986 * Rt: target register
2988 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn,
2989 int opc,
2990 int size,
2991 int rt,
2992 bool is_vector)
2994 int rn = extract32(insn, 5, 5);
2995 unsigned int imm12 = extract32(insn, 10, 12);
2996 unsigned int offset;
2998 TCGv_i64 tcg_addr;
3000 bool is_store;
3001 bool is_signed = false;
3002 bool is_extended = false;
3004 if (is_vector) {
3005 size |= (opc & 2) << 1;
3006 if (size > 4) {
3007 unallocated_encoding(s);
3008 return;
3010 is_store = !extract32(opc, 0, 1);
3011 if (!fp_access_check(s)) {
3012 return;
3014 } else {
3015 if (size == 3 && opc == 2) {
3016 /* PRFM - prefetch */
3017 return;
3019 if (opc == 3 && size > 1) {
3020 unallocated_encoding(s);
3021 return;
3023 is_store = (opc == 0);
3024 is_signed = extract32(opc, 1, 1);
3025 is_extended = (size < 3) && extract32(opc, 0, 1);
3028 if (rn == 31) {
3029 gen_check_sp_alignment(s);
3031 tcg_addr = read_cpu_reg_sp(s, rn, 1);
3032 offset = imm12 << size;
3033 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset);
3035 if (is_vector) {
3036 if (is_store) {
3037 do_fp_st(s, rt, tcg_addr, size);
3038 } else {
3039 do_fp_ld(s, rt, tcg_addr, size);
3041 } else {
3042 TCGv_i64 tcg_rt = cpu_reg(s, rt);
3043 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3044 if (is_store) {
3045 do_gpr_st(s, tcg_rt, tcg_addr, size,
3046 true, rt, iss_sf, false);
3047 } else {
3048 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, is_extended,
3049 true, rt, iss_sf, false);
3054 /* Atomic memory operations
3056 * 31 30 27 26 24 22 21 16 15 12 10 5 0
3057 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+
3058 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt |
3059 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+
3061 * Rt: the result register
3062 * Rn: base address or SP
3063 * Rs: the source register for the operation
3064 * V: vector flag (always 0 as of v8.3)
3065 * A: acquire flag
3066 * R: release flag
3068 static void disas_ldst_atomic(DisasContext *s, uint32_t insn,
3069 int size, int rt, bool is_vector)
3071 int rs = extract32(insn, 16, 5);
3072 int rn = extract32(insn, 5, 5);
3073 int o3_opc = extract32(insn, 12, 4);
3074 TCGv_i64 tcg_rn, tcg_rs;
3075 AtomicThreeOpFn *fn;
3077 if (is_vector || !dc_isar_feature(aa64_atomics, s)) {
3078 unallocated_encoding(s);
3079 return;
3081 switch (o3_opc) {
3082 case 000: /* LDADD */
3083 fn = tcg_gen_atomic_fetch_add_i64;
3084 break;
3085 case 001: /* LDCLR */
3086 fn = tcg_gen_atomic_fetch_and_i64;
3087 break;
3088 case 002: /* LDEOR */
3089 fn = tcg_gen_atomic_fetch_xor_i64;
3090 break;
3091 case 003: /* LDSET */
3092 fn = tcg_gen_atomic_fetch_or_i64;
3093 break;
3094 case 004: /* LDSMAX */
3095 fn = tcg_gen_atomic_fetch_smax_i64;
3096 break;
3097 case 005: /* LDSMIN */
3098 fn = tcg_gen_atomic_fetch_smin_i64;
3099 break;
3100 case 006: /* LDUMAX */
3101 fn = tcg_gen_atomic_fetch_umax_i64;
3102 break;
3103 case 007: /* LDUMIN */
3104 fn = tcg_gen_atomic_fetch_umin_i64;
3105 break;
3106 case 010: /* SWP */
3107 fn = tcg_gen_atomic_xchg_i64;
3108 break;
3109 default:
3110 unallocated_encoding(s);
3111 return;
3114 if (rn == 31) {
3115 gen_check_sp_alignment(s);
3117 tcg_rn = cpu_reg_sp(s, rn);
3118 tcg_rs = read_cpu_reg(s, rs, true);
3120 if (o3_opc == 1) { /* LDCLR */
3121 tcg_gen_not_i64(tcg_rs, tcg_rs);
3124 /* The tcg atomic primitives are all full barriers. Therefore we
3125 * can ignore the Acquire and Release bits of this instruction.
3127 fn(cpu_reg(s, rt), tcg_rn, tcg_rs, get_mem_index(s),
3128 s->be_data | size | MO_ALIGN);
3132 * PAC memory operations
3134 * 31 30 27 26 24 22 21 12 11 10 5 0
3135 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3136 * | size | 1 1 1 | V | 0 0 | M S | 1 | imm9 | W | 1 | Rn | Rt |
3137 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3139 * Rt: the result register
3140 * Rn: base address or SP
3141 * V: vector flag (always 0 as of v8.3)
3142 * M: clear for key DA, set for key DB
3143 * W: pre-indexing flag
3144 * S: sign for imm9.
3146 static void disas_ldst_pac(DisasContext *s, uint32_t insn,
3147 int size, int rt, bool is_vector)
3149 int rn = extract32(insn, 5, 5);
3150 bool is_wback = extract32(insn, 11, 1);
3151 bool use_key_a = !extract32(insn, 23, 1);
3152 int offset;
3153 TCGv_i64 tcg_addr, tcg_rt;
3155 if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) {
3156 unallocated_encoding(s);
3157 return;
3160 if (rn == 31) {
3161 gen_check_sp_alignment(s);
3163 tcg_addr = read_cpu_reg_sp(s, rn, 1);
3165 if (s->pauth_active) {
3166 if (use_key_a) {
3167 gen_helper_autda(tcg_addr, cpu_env, tcg_addr, cpu_X[31]);
3168 } else {
3169 gen_helper_autdb(tcg_addr, cpu_env, tcg_addr, cpu_X[31]);
3173 /* Form the 10-bit signed, scaled offset. */
3174 offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9);
3175 offset = sextract32(offset << size, 0, 10 + size);
3176 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset);
3178 tcg_rt = cpu_reg(s, rt);
3180 do_gpr_ld(s, tcg_rt, tcg_addr, size, /* is_signed */ false,
3181 /* extend */ false, /* iss_valid */ !is_wback,
3182 /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false);
3184 if (is_wback) {
3185 tcg_gen_mov_i64(cpu_reg_sp(s, rn), tcg_addr);
3189 /* Load/store register (all forms) */
3190 static void disas_ldst_reg(DisasContext *s, uint32_t insn)
3192 int rt = extract32(insn, 0, 5);
3193 int opc = extract32(insn, 22, 2);
3194 bool is_vector = extract32(insn, 26, 1);
3195 int size = extract32(insn, 30, 2);
3197 switch (extract32(insn, 24, 2)) {
3198 case 0:
3199 if (extract32(insn, 21, 1) == 0) {
3200 /* Load/store register (unscaled immediate)
3201 * Load/store immediate pre/post-indexed
3202 * Load/store register unprivileged
3204 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector);
3205 return;
3207 switch (extract32(insn, 10, 2)) {
3208 case 0:
3209 disas_ldst_atomic(s, insn, size, rt, is_vector);
3210 return;
3211 case 2:
3212 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector);
3213 return;
3214 default:
3215 disas_ldst_pac(s, insn, size, rt, is_vector);
3216 return;
3218 break;
3219 case 1:
3220 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector);
3221 return;
3223 unallocated_encoding(s);
3226 /* AdvSIMD load/store multiple structures
3228 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0
3229 * +---+---+---------------+---+-------------+--------+------+------+------+
3230 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt |
3231 * +---+---+---------------+---+-------------+--------+------+------+------+
3233 * AdvSIMD load/store multiple structures (post-indexed)
3235 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0
3236 * +---+---+---------------+---+---+---------+--------+------+------+------+
3237 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt |
3238 * +---+---+---------------+---+---+---------+--------+------+------+------+
3240 * Rt: first (or only) SIMD&FP register to be transferred
3241 * Rn: base address or SP
3242 * Rm (post-index only): post-index register (when !31) or size dependent #imm
3244 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
3246 int rt = extract32(insn, 0, 5);
3247 int rn = extract32(insn, 5, 5);
3248 int size = extract32(insn, 10, 2);
3249 int opcode = extract32(insn, 12, 4);
3250 bool is_store = !extract32(insn, 22, 1);
3251 bool is_postidx = extract32(insn, 23, 1);
3252 bool is_q = extract32(insn, 30, 1);
3253 TCGv_i64 tcg_addr, tcg_rn, tcg_ebytes;
3254 TCGMemOp endian = s->be_data;
3256 int ebytes; /* bytes per element */
3257 int elements; /* elements per vector */
3258 int rpt; /* num iterations */
3259 int selem; /* structure elements */
3260 int r;
3262 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) {
3263 unallocated_encoding(s);
3264 return;
3267 /* From the shared decode logic */
3268 switch (opcode) {
3269 case 0x0:
3270 rpt = 1;
3271 selem = 4;
3272 break;
3273 case 0x2:
3274 rpt = 4;
3275 selem = 1;
3276 break;
3277 case 0x4:
3278 rpt = 1;
3279 selem = 3;
3280 break;
3281 case 0x6:
3282 rpt = 3;
3283 selem = 1;
3284 break;
3285 case 0x7:
3286 rpt = 1;
3287 selem = 1;
3288 break;
3289 case 0x8:
3290 rpt = 1;
3291 selem = 2;
3292 break;
3293 case 0xa:
3294 rpt = 2;
3295 selem = 1;
3296 break;
3297 default:
3298 unallocated_encoding(s);
3299 return;
3302 if (size == 3 && !is_q && selem != 1) {
3303 /* reserved */
3304 unallocated_encoding(s);
3305 return;
3308 if (!fp_access_check(s)) {
3309 return;
3312 if (rn == 31) {
3313 gen_check_sp_alignment(s);
3316 /* For our purposes, bytes are always little-endian. */
3317 if (size == 0) {
3318 endian = MO_LE;
3321 /* Consecutive little-endian elements from a single register
3322 * can be promoted to a larger little-endian operation.
3324 if (selem == 1 && endian == MO_LE) {
3325 size = 3;
3327 ebytes = 1 << size;
3328 elements = (is_q ? 16 : 8) / ebytes;
3330 tcg_rn = cpu_reg_sp(s, rn);
3331 tcg_addr = tcg_temp_new_i64();
3332 tcg_gen_mov_i64(tcg_addr, tcg_rn);
3333 tcg_ebytes = tcg_const_i64(ebytes);
3335 for (r = 0; r < rpt; r++) {
3336 int e;
3337 for (e = 0; e < elements; e++) {
3338 int xs;
3339 for (xs = 0; xs < selem; xs++) {
3340 int tt = (rt + r + xs) % 32;
3341 if (is_store) {
3342 do_vec_st(s, tt, e, tcg_addr, size, endian);
3343 } else {
3344 do_vec_ld(s, tt, e, tcg_addr, size, endian);
3346 tcg_gen_add_i64(tcg_addr, tcg_addr, tcg_ebytes);
3351 if (!is_store) {
3352 /* For non-quad operations, setting a slice of the low
3353 * 64 bits of the register clears the high 64 bits (in
3354 * the ARM ARM pseudocode this is implicit in the fact
3355 * that 'rval' is a 64 bit wide variable).
3356 * For quad operations, we might still need to zero the
3357 * high bits of SVE.
3359 for (r = 0; r < rpt * selem; r++) {
3360 int tt = (rt + r) % 32;
3361 clear_vec_high(s, is_q, tt);
3365 if (is_postidx) {
3366 int rm = extract32(insn, 16, 5);
3367 if (rm == 31) {
3368 tcg_gen_mov_i64(tcg_rn, tcg_addr);
3369 } else {
3370 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3373 tcg_temp_free_i64(tcg_ebytes);
3374 tcg_temp_free_i64(tcg_addr);
3377 /* AdvSIMD load/store single structure
3379 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3380 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3381 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt |
3382 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3384 * AdvSIMD load/store single structure (post-indexed)
3386 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3387 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3388 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt |
3389 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3391 * Rt: first (or only) SIMD&FP register to be transferred
3392 * Rn: base address or SP
3393 * Rm (post-index only): post-index register (when !31) or size dependent #imm
3394 * index = encoded in Q:S:size dependent on size
3396 * lane_size = encoded in R, opc
3397 * transfer width = encoded in opc, S, size
3399 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
3401 int rt = extract32(insn, 0, 5);
3402 int rn = extract32(insn, 5, 5);
3403 int size = extract32(insn, 10, 2);
3404 int S = extract32(insn, 12, 1);
3405 int opc = extract32(insn, 13, 3);
3406 int R = extract32(insn, 21, 1);
3407 int is_load = extract32(insn, 22, 1);
3408 int is_postidx = extract32(insn, 23, 1);
3409 int is_q = extract32(insn, 30, 1);
3411 int scale = extract32(opc, 1, 2);
3412 int selem = (extract32(opc, 0, 1) << 1 | R) + 1;
3413 bool replicate = false;
3414 int index = is_q << 3 | S << 2 | size;
3415 int ebytes, xs;
3416 TCGv_i64 tcg_addr, tcg_rn, tcg_ebytes;
3418 switch (scale) {
3419 case 3:
3420 if (!is_load || S) {
3421 unallocated_encoding(s);
3422 return;
3424 scale = size;
3425 replicate = true;
3426 break;
3427 case 0:
3428 break;
3429 case 1:
3430 if (extract32(size, 0, 1)) {
3431 unallocated_encoding(s);
3432 return;
3434 index >>= 1;
3435 break;
3436 case 2:
3437 if (extract32(size, 1, 1)) {
3438 unallocated_encoding(s);
3439 return;
3441 if (!extract32(size, 0, 1)) {
3442 index >>= 2;
3443 } else {
3444 if (S) {
3445 unallocated_encoding(s);
3446 return;
3448 index >>= 3;
3449 scale = 3;
3451 break;
3452 default:
3453 g_assert_not_reached();
3456 if (!fp_access_check(s)) {
3457 return;
3460 ebytes = 1 << scale;
3462 if (rn == 31) {
3463 gen_check_sp_alignment(s);
3466 tcg_rn = cpu_reg_sp(s, rn);
3467 tcg_addr = tcg_temp_new_i64();
3468 tcg_gen_mov_i64(tcg_addr, tcg_rn);
3469 tcg_ebytes = tcg_const_i64(ebytes);
3471 for (xs = 0; xs < selem; xs++) {
3472 if (replicate) {
3473 /* Load and replicate to all elements */
3474 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3476 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr,
3477 get_mem_index(s), s->be_data + scale);
3478 tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt),
3479 (is_q + 1) * 8, vec_full_reg_size(s),
3480 tcg_tmp);
3481 tcg_temp_free_i64(tcg_tmp);
3482 } else {
3483 /* Load/store one element per register */
3484 if (is_load) {
3485 do_vec_ld(s, rt, index, tcg_addr, scale, s->be_data);
3486 } else {
3487 do_vec_st(s, rt, index, tcg_addr, scale, s->be_data);
3490 tcg_gen_add_i64(tcg_addr, tcg_addr, tcg_ebytes);
3491 rt = (rt + 1) % 32;
3494 if (is_postidx) {
3495 int rm = extract32(insn, 16, 5);
3496 if (rm == 31) {
3497 tcg_gen_mov_i64(tcg_rn, tcg_addr);
3498 } else {
3499 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3502 tcg_temp_free_i64(tcg_ebytes);
3503 tcg_temp_free_i64(tcg_addr);
3506 /* Loads and stores */
3507 static void disas_ldst(DisasContext *s, uint32_t insn)
3509 switch (extract32(insn, 24, 6)) {
3510 case 0x08: /* Load/store exclusive */
3511 disas_ldst_excl(s, insn);
3512 break;
3513 case 0x18: case 0x1c: /* Load register (literal) */
3514 disas_ld_lit(s, insn);
3515 break;
3516 case 0x28: case 0x29:
3517 case 0x2c: case 0x2d: /* Load/store pair (all forms) */
3518 disas_ldst_pair(s, insn);
3519 break;
3520 case 0x38: case 0x39:
3521 case 0x3c: case 0x3d: /* Load/store register (all forms) */
3522 disas_ldst_reg(s, insn);
3523 break;
3524 case 0x0c: /* AdvSIMD load/store multiple structures */
3525 disas_ldst_multiple_struct(s, insn);
3526 break;
3527 case 0x0d: /* AdvSIMD load/store single structure */
3528 disas_ldst_single_struct(s, insn);
3529 break;
3530 default:
3531 unallocated_encoding(s);
3532 break;
3536 /* PC-rel. addressing
3537 * 31 30 29 28 24 23 5 4 0
3538 * +----+-------+-----------+-------------------+------+
3539 * | op | immlo | 1 0 0 0 0 | immhi | Rd |
3540 * +----+-------+-----------+-------------------+------+
3542 static void disas_pc_rel_adr(DisasContext *s, uint32_t insn)
3544 unsigned int page, rd;
3545 uint64_t base;
3546 uint64_t offset;
3548 page = extract32(insn, 31, 1);
3549 /* SignExtend(immhi:immlo) -> offset */
3550 offset = sextract64(insn, 5, 19);
3551 offset = offset << 2 | extract32(insn, 29, 2);
3552 rd = extract32(insn, 0, 5);
3553 base = s->pc - 4;
3555 if (page) {
3556 /* ADRP (page based) */
3557 base &= ~0xfff;
3558 offset <<= 12;
3561 tcg_gen_movi_i64(cpu_reg(s, rd), base + offset);
3565 * Add/subtract (immediate)
3567 * 31 30 29 28 24 23 22 21 10 9 5 4 0
3568 * +--+--+--+-----------+-----+-------------+-----+-----+
3569 * |sf|op| S| 1 0 0 0 1 |shift| imm12 | Rn | Rd |
3570 * +--+--+--+-----------+-----+-------------+-----+-----+
3572 * sf: 0 -> 32bit, 1 -> 64bit
3573 * op: 0 -> add , 1 -> sub
3574 * S: 1 -> set flags
3575 * shift: 00 -> LSL imm by 0, 01 -> LSL imm by 12
3577 static void disas_add_sub_imm(DisasContext *s, uint32_t insn)
3579 int rd = extract32(insn, 0, 5);
3580 int rn = extract32(insn, 5, 5);
3581 uint64_t imm = extract32(insn, 10, 12);
3582 int shift = extract32(insn, 22, 2);
3583 bool setflags = extract32(insn, 29, 1);
3584 bool sub_op = extract32(insn, 30, 1);
3585 bool is_64bit = extract32(insn, 31, 1);
3587 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
3588 TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd);
3589 TCGv_i64 tcg_result;
3591 switch (shift) {
3592 case 0x0:
3593 break;
3594 case 0x1:
3595 imm <<= 12;
3596 break;
3597 default:
3598 unallocated_encoding(s);
3599 return;
3602 tcg_result = tcg_temp_new_i64();
3603 if (!setflags) {
3604 if (sub_op) {
3605 tcg_gen_subi_i64(tcg_result, tcg_rn, imm);
3606 } else {
3607 tcg_gen_addi_i64(tcg_result, tcg_rn, imm);
3609 } else {
3610 TCGv_i64 tcg_imm = tcg_const_i64(imm);
3611 if (sub_op) {
3612 gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
3613 } else {
3614 gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
3616 tcg_temp_free_i64(tcg_imm);
3619 if (is_64bit) {
3620 tcg_gen_mov_i64(tcg_rd, tcg_result);
3621 } else {
3622 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
3625 tcg_temp_free_i64(tcg_result);
3628 /* The input should be a value in the bottom e bits (with higher
3629 * bits zero); returns that value replicated into every element
3630 * of size e in a 64 bit integer.
3632 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
3634 assert(e != 0);
3635 while (e < 64) {
3636 mask |= mask << e;
3637 e *= 2;
3639 return mask;
3642 /* Return a value with the bottom len bits set (where 0 < len <= 64) */
3643 static inline uint64_t bitmask64(unsigned int length)
3645 assert(length > 0 && length <= 64);
3646 return ~0ULL >> (64 - length);
3649 /* Simplified variant of pseudocode DecodeBitMasks() for the case where we
3650 * only require the wmask. Returns false if the imms/immr/immn are a reserved
3651 * value (ie should cause a guest UNDEF exception), and true if they are
3652 * valid, in which case the decoded bit pattern is written to result.
3654 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
3655 unsigned int imms, unsigned int immr)
3657 uint64_t mask;
3658 unsigned e, levels, s, r;
3659 int len;
3661 assert(immn < 2 && imms < 64 && immr < 64);
3663 /* The bit patterns we create here are 64 bit patterns which
3664 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
3665 * 64 bits each. Each element contains the same value: a run
3666 * of between 1 and e-1 non-zero bits, rotated within the
3667 * element by between 0 and e-1 bits.
3669 * The element size and run length are encoded into immn (1 bit)
3670 * and imms (6 bits) as follows:
3671 * 64 bit elements: immn = 1, imms = <length of run - 1>
3672 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
3673 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
3674 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
3675 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
3676 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
3677 * Notice that immn = 0, imms = 11111x is the only combination
3678 * not covered by one of the above options; this is reserved.
3679 * Further, <length of run - 1> all-ones is a reserved pattern.
3681 * In all cases the rotation is by immr % e (and immr is 6 bits).
3684 /* First determine the element size */
3685 len = 31 - clz32((immn << 6) | (~imms & 0x3f));
3686 if (len < 1) {
3687 /* This is the immn == 0, imms == 0x11111x case */
3688 return false;
3690 e = 1 << len;
3692 levels = e - 1;
3693 s = imms & levels;
3694 r = immr & levels;
3696 if (s == levels) {
3697 /* <length of run - 1> mustn't be all-ones. */
3698 return false;
3701 /* Create the value of one element: s+1 set bits rotated
3702 * by r within the element (which is e bits wide)...
3704 mask = bitmask64(s + 1);
3705 if (r) {
3706 mask = (mask >> r) | (mask << (e - r));
3707 mask &= bitmask64(e);
3709 /* ...then replicate the element over the whole 64 bit value */
3710 mask = bitfield_replicate(mask, e);
3711 *result = mask;
3712 return true;
3715 /* Logical (immediate)
3716 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
3717 * +----+-----+-------------+---+------+------+------+------+
3718 * | sf | opc | 1 0 0 1 0 0 | N | immr | imms | Rn | Rd |
3719 * +----+-----+-------------+---+------+------+------+------+
3721 static void disas_logic_imm(DisasContext *s, uint32_t insn)
3723 unsigned int sf, opc, is_n, immr, imms, rn, rd;
3724 TCGv_i64 tcg_rd, tcg_rn;
3725 uint64_t wmask;
3726 bool is_and = false;
3728 sf = extract32(insn, 31, 1);
3729 opc = extract32(insn, 29, 2);
3730 is_n = extract32(insn, 22, 1);
3731 immr = extract32(insn, 16, 6);
3732 imms = extract32(insn, 10, 6);
3733 rn = extract32(insn, 5, 5);
3734 rd = extract32(insn, 0, 5);
3736 if (!sf && is_n) {
3737 unallocated_encoding(s);
3738 return;
3741 if (opc == 0x3) { /* ANDS */
3742 tcg_rd = cpu_reg(s, rd);
3743 } else {
3744 tcg_rd = cpu_reg_sp(s, rd);
3746 tcg_rn = cpu_reg(s, rn);
3748 if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) {
3749 /* some immediate field values are reserved */
3750 unallocated_encoding(s);
3751 return;
3754 if (!sf) {
3755 wmask &= 0xffffffff;
3758 switch (opc) {
3759 case 0x3: /* ANDS */
3760 case 0x0: /* AND */
3761 tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask);
3762 is_and = true;
3763 break;
3764 case 0x1: /* ORR */
3765 tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask);
3766 break;
3767 case 0x2: /* EOR */
3768 tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask);
3769 break;
3770 default:
3771 assert(FALSE); /* must handle all above */
3772 break;
3775 if (!sf && !is_and) {
3776 /* zero extend final result; we know we can skip this for AND
3777 * since the immediate had the high 32 bits clear.
3779 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3782 if (opc == 3) { /* ANDS */
3783 gen_logic_CC(sf, tcg_rd);
3788 * Move wide (immediate)
3790 * 31 30 29 28 23 22 21 20 5 4 0
3791 * +--+-----+-------------+-----+----------------+------+
3792 * |sf| opc | 1 0 0 1 0 1 | hw | imm16 | Rd |
3793 * +--+-----+-------------+-----+----------------+------+
3795 * sf: 0 -> 32 bit, 1 -> 64 bit
3796 * opc: 00 -> N, 10 -> Z, 11 -> K
3797 * hw: shift/16 (0,16, and sf only 32, 48)
3799 static void disas_movw_imm(DisasContext *s, uint32_t insn)
3801 int rd = extract32(insn, 0, 5);
3802 uint64_t imm = extract32(insn, 5, 16);
3803 int sf = extract32(insn, 31, 1);
3804 int opc = extract32(insn, 29, 2);
3805 int pos = extract32(insn, 21, 2) << 4;
3806 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3807 TCGv_i64 tcg_imm;
3809 if (!sf && (pos >= 32)) {
3810 unallocated_encoding(s);
3811 return;
3814 switch (opc) {
3815 case 0: /* MOVN */
3816 case 2: /* MOVZ */
3817 imm <<= pos;
3818 if (opc == 0) {
3819 imm = ~imm;
3821 if (!sf) {
3822 imm &= 0xffffffffu;
3824 tcg_gen_movi_i64(tcg_rd, imm);
3825 break;
3826 case 3: /* MOVK */
3827 tcg_imm = tcg_const_i64(imm);
3828 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_imm, pos, 16);
3829 tcg_temp_free_i64(tcg_imm);
3830 if (!sf) {
3831 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3833 break;
3834 default:
3835 unallocated_encoding(s);
3836 break;
3840 /* Bitfield
3841 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
3842 * +----+-----+-------------+---+------+------+------+------+
3843 * | sf | opc | 1 0 0 1 1 0 | N | immr | imms | Rn | Rd |
3844 * +----+-----+-------------+---+------+------+------+------+
3846 static void disas_bitfield(DisasContext *s, uint32_t insn)
3848 unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len;
3849 TCGv_i64 tcg_rd, tcg_tmp;
3851 sf = extract32(insn, 31, 1);
3852 opc = extract32(insn, 29, 2);
3853 n = extract32(insn, 22, 1);
3854 ri = extract32(insn, 16, 6);
3855 si = extract32(insn, 10, 6);
3856 rn = extract32(insn, 5, 5);
3857 rd = extract32(insn, 0, 5);
3858 bitsize = sf ? 64 : 32;
3860 if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) {
3861 unallocated_encoding(s);
3862 return;
3865 tcg_rd = cpu_reg(s, rd);
3867 /* Suppress the zero-extend for !sf. Since RI and SI are constrained
3868 to be smaller than bitsize, we'll never reference data outside the
3869 low 32-bits anyway. */
3870 tcg_tmp = read_cpu_reg(s, rn, 1);
3872 /* Recognize simple(r) extractions. */
3873 if (si >= ri) {
3874 /* Wd<s-r:0> = Wn<s:r> */
3875 len = (si - ri) + 1;
3876 if (opc == 0) { /* SBFM: ASR, SBFX, SXTB, SXTH, SXTW */
3877 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
3878 goto done;
3879 } else if (opc == 2) { /* UBFM: UBFX, LSR, UXTB, UXTH */
3880 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
3881 return;
3883 /* opc == 1, BXFIL fall through to deposit */
3884 tcg_gen_extract_i64(tcg_tmp, tcg_tmp, ri, len);
3885 pos = 0;
3886 } else {
3887 /* Handle the ri > si case with a deposit
3888 * Wd<32+s-r,32-r> = Wn<s:0>
3890 len = si + 1;
3891 pos = (bitsize - ri) & (bitsize - 1);
3894 if (opc == 0 && len < ri) {
3895 /* SBFM: sign extend the destination field from len to fill
3896 the balance of the word. Let the deposit below insert all
3897 of those sign bits. */
3898 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
3899 len = ri;
3902 if (opc == 1) { /* BFM, BXFIL */
3903 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
3904 } else {
3905 /* SBFM or UBFM: We start with zero, and we haven't modified
3906 any bits outside bitsize, therefore the zero-extension
3907 below is unneeded. */
3908 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
3909 return;
3912 done:
3913 if (!sf) { /* zero extend final result */
3914 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3918 /* Extract
3919 * 31 30 29 28 23 22 21 20 16 15 10 9 5 4 0
3920 * +----+------+-------------+---+----+------+--------+------+------+
3921 * | sf | op21 | 1 0 0 1 1 1 | N | o0 | Rm | imms | Rn | Rd |
3922 * +----+------+-------------+---+----+------+--------+------+------+
3924 static void disas_extract(DisasContext *s, uint32_t insn)
3926 unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0;
3928 sf = extract32(insn, 31, 1);
3929 n = extract32(insn, 22, 1);
3930 rm = extract32(insn, 16, 5);
3931 imm = extract32(insn, 10, 6);
3932 rn = extract32(insn, 5, 5);
3933 rd = extract32(insn, 0, 5);
3934 op21 = extract32(insn, 29, 2);
3935 op0 = extract32(insn, 21, 1);
3936 bitsize = sf ? 64 : 32;
3938 if (sf != n || op21 || op0 || imm >= bitsize) {
3939 unallocated_encoding(s);
3940 } else {
3941 TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
3943 tcg_rd = cpu_reg(s, rd);
3945 if (unlikely(imm == 0)) {
3946 /* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
3947 * so an extract from bit 0 is a special case.
3949 if (sf) {
3950 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm));
3951 } else {
3952 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm));
3954 } else if (rm == rn) { /* ROR */
3955 tcg_rm = cpu_reg(s, rm);
3956 if (sf) {
3957 tcg_gen_rotri_i64(tcg_rd, tcg_rm, imm);
3958 } else {
3959 TCGv_i32 tmp = tcg_temp_new_i32();
3960 tcg_gen_extrl_i64_i32(tmp, tcg_rm);
3961 tcg_gen_rotri_i32(tmp, tmp, imm);
3962 tcg_gen_extu_i32_i64(tcg_rd, tmp);
3963 tcg_temp_free_i32(tmp);
3965 } else {
3966 tcg_rm = read_cpu_reg(s, rm, sf);
3967 tcg_rn = read_cpu_reg(s, rn, sf);
3968 tcg_gen_shri_i64(tcg_rm, tcg_rm, imm);
3969 tcg_gen_shli_i64(tcg_rn, tcg_rn, bitsize - imm);
3970 tcg_gen_or_i64(tcg_rd, tcg_rm, tcg_rn);
3971 if (!sf) {
3972 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3978 /* Data processing - immediate */
3979 static void disas_data_proc_imm(DisasContext *s, uint32_t insn)
3981 switch (extract32(insn, 23, 6)) {
3982 case 0x20: case 0x21: /* PC-rel. addressing */
3983 disas_pc_rel_adr(s, insn);
3984 break;
3985 case 0x22: case 0x23: /* Add/subtract (immediate) */
3986 disas_add_sub_imm(s, insn);
3987 break;
3988 case 0x24: /* Logical (immediate) */
3989 disas_logic_imm(s, insn);
3990 break;
3991 case 0x25: /* Move wide (immediate) */
3992 disas_movw_imm(s, insn);
3993 break;
3994 case 0x26: /* Bitfield */
3995 disas_bitfield(s, insn);
3996 break;
3997 case 0x27: /* Extract */
3998 disas_extract(s, insn);
3999 break;
4000 default:
4001 unallocated_encoding(s);
4002 break;
4006 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
4007 * Note that it is the caller's responsibility to ensure that the
4008 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
4009 * mandated semantics for out of range shifts.
4011 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
4012 enum a64_shift_type shift_type, TCGv_i64 shift_amount)
4014 switch (shift_type) {
4015 case A64_SHIFT_TYPE_LSL:
4016 tcg_gen_shl_i64(dst, src, shift_amount);
4017 break;
4018 case A64_SHIFT_TYPE_LSR:
4019 tcg_gen_shr_i64(dst, src, shift_amount);
4020 break;
4021 case A64_SHIFT_TYPE_ASR:
4022 if (!sf) {
4023 tcg_gen_ext32s_i64(dst, src);
4025 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
4026 break;
4027 case A64_SHIFT_TYPE_ROR:
4028 if (sf) {
4029 tcg_gen_rotr_i64(dst, src, shift_amount);
4030 } else {
4031 TCGv_i32 t0, t1;
4032 t0 = tcg_temp_new_i32();
4033 t1 = tcg_temp_new_i32();
4034 tcg_gen_extrl_i64_i32(t0, src);
4035 tcg_gen_extrl_i64_i32(t1, shift_amount);
4036 tcg_gen_rotr_i32(t0, t0, t1);
4037 tcg_gen_extu_i32_i64(dst, t0);
4038 tcg_temp_free_i32(t0);
4039 tcg_temp_free_i32(t1);
4041 break;
4042 default:
4043 assert(FALSE); /* all shift types should be handled */
4044 break;
4047 if (!sf) { /* zero extend final result */
4048 tcg_gen_ext32u_i64(dst, dst);
4052 /* Shift a TCGv src by immediate, put result in dst.
4053 * The shift amount must be in range (this should always be true as the
4054 * relevant instructions will UNDEF on bad shift immediates).
4056 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
4057 enum a64_shift_type shift_type, unsigned int shift_i)
4059 assert(shift_i < (sf ? 64 : 32));
4061 if (shift_i == 0) {
4062 tcg_gen_mov_i64(dst, src);
4063 } else {
4064 TCGv_i64 shift_const;
4066 shift_const = tcg_const_i64(shift_i);
4067 shift_reg(dst, src, sf, shift_type, shift_const);
4068 tcg_temp_free_i64(shift_const);
4072 /* Logical (shifted register)
4073 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
4074 * +----+-----+-----------+-------+---+------+--------+------+------+
4075 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
4076 * +----+-----+-----------+-------+---+------+--------+------+------+
4078 static void disas_logic_reg(DisasContext *s, uint32_t insn)
4080 TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
4081 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
4083 sf = extract32(insn, 31, 1);
4084 opc = extract32(insn, 29, 2);
4085 shift_type = extract32(insn, 22, 2);
4086 invert = extract32(insn, 21, 1);
4087 rm = extract32(insn, 16, 5);
4088 shift_amount = extract32(insn, 10, 6);
4089 rn = extract32(insn, 5, 5);
4090 rd = extract32(insn, 0, 5);
4092 if (!sf && (shift_amount & (1 << 5))) {
4093 unallocated_encoding(s);
4094 return;
4097 tcg_rd = cpu_reg(s, rd);
4099 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
4100 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
4101 * register-register MOV and MVN, so it is worth special casing.
4103 tcg_rm = cpu_reg(s, rm);
4104 if (invert) {
4105 tcg_gen_not_i64(tcg_rd, tcg_rm);
4106 if (!sf) {
4107 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4109 } else {
4110 if (sf) {
4111 tcg_gen_mov_i64(tcg_rd, tcg_rm);
4112 } else {
4113 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
4116 return;
4119 tcg_rm = read_cpu_reg(s, rm, sf);
4121 if (shift_amount) {
4122 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
4125 tcg_rn = cpu_reg(s, rn);
4127 switch (opc | (invert << 2)) {
4128 case 0: /* AND */
4129 case 3: /* ANDS */
4130 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
4131 break;
4132 case 1: /* ORR */
4133 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
4134 break;
4135 case 2: /* EOR */
4136 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
4137 break;
4138 case 4: /* BIC */
4139 case 7: /* BICS */
4140 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
4141 break;
4142 case 5: /* ORN */
4143 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
4144 break;
4145 case 6: /* EON */
4146 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
4147 break;
4148 default:
4149 assert(FALSE);
4150 break;
4153 if (!sf) {
4154 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4157 if (opc == 3) {
4158 gen_logic_CC(sf, tcg_rd);
4163 * Add/subtract (extended register)
4165 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
4166 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4167 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
4168 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4170 * sf: 0 -> 32bit, 1 -> 64bit
4171 * op: 0 -> add , 1 -> sub
4172 * S: 1 -> set flags
4173 * opt: 00
4174 * option: extension type (see DecodeRegExtend)
4175 * imm3: optional shift to Rm
4177 * Rd = Rn + LSL(extend(Rm), amount)
4179 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
4181 int rd = extract32(insn, 0, 5);
4182 int rn = extract32(insn, 5, 5);
4183 int imm3 = extract32(insn, 10, 3);
4184 int option = extract32(insn, 13, 3);
4185 int rm = extract32(insn, 16, 5);
4186 bool setflags = extract32(insn, 29, 1);
4187 bool sub_op = extract32(insn, 30, 1);
4188 bool sf = extract32(insn, 31, 1);
4190 TCGv_i64 tcg_rm, tcg_rn; /* temps */
4191 TCGv_i64 tcg_rd;
4192 TCGv_i64 tcg_result;
4194 if (imm3 > 4) {
4195 unallocated_encoding(s);
4196 return;
4199 /* non-flag setting ops may use SP */
4200 if (!setflags) {
4201 tcg_rd = cpu_reg_sp(s, rd);
4202 } else {
4203 tcg_rd = cpu_reg(s, rd);
4205 tcg_rn = read_cpu_reg_sp(s, rn, sf);
4207 tcg_rm = read_cpu_reg(s, rm, sf);
4208 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
4210 tcg_result = tcg_temp_new_i64();
4212 if (!setflags) {
4213 if (sub_op) {
4214 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4215 } else {
4216 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4218 } else {
4219 if (sub_op) {
4220 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4221 } else {
4222 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4226 if (sf) {
4227 tcg_gen_mov_i64(tcg_rd, tcg_result);
4228 } else {
4229 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4232 tcg_temp_free_i64(tcg_result);
4236 * Add/subtract (shifted register)
4238 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
4239 * +--+--+--+-----------+-----+--+-------+---------+------+------+
4240 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
4241 * +--+--+--+-----------+-----+--+-------+---------+------+------+
4243 * sf: 0 -> 32bit, 1 -> 64bit
4244 * op: 0 -> add , 1 -> sub
4245 * S: 1 -> set flags
4246 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
4247 * imm6: Shift amount to apply to Rm before the add/sub
4249 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
4251 int rd = extract32(insn, 0, 5);
4252 int rn = extract32(insn, 5, 5);
4253 int imm6 = extract32(insn, 10, 6);
4254 int rm = extract32(insn, 16, 5);
4255 int shift_type = extract32(insn, 22, 2);
4256 bool setflags = extract32(insn, 29, 1);
4257 bool sub_op = extract32(insn, 30, 1);
4258 bool sf = extract32(insn, 31, 1);
4260 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4261 TCGv_i64 tcg_rn, tcg_rm;
4262 TCGv_i64 tcg_result;
4264 if ((shift_type == 3) || (!sf && (imm6 > 31))) {
4265 unallocated_encoding(s);
4266 return;
4269 tcg_rn = read_cpu_reg(s, rn, sf);
4270 tcg_rm = read_cpu_reg(s, rm, sf);
4272 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
4274 tcg_result = tcg_temp_new_i64();
4276 if (!setflags) {
4277 if (sub_op) {
4278 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4279 } else {
4280 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4282 } else {
4283 if (sub_op) {
4284 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4285 } else {
4286 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4290 if (sf) {
4291 tcg_gen_mov_i64(tcg_rd, tcg_result);
4292 } else {
4293 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4296 tcg_temp_free_i64(tcg_result);
4299 /* Data-processing (3 source)
4301 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
4302 * +--+------+-----------+------+------+----+------+------+------+
4303 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
4304 * +--+------+-----------+------+------+----+------+------+------+
4306 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
4308 int rd = extract32(insn, 0, 5);
4309 int rn = extract32(insn, 5, 5);
4310 int ra = extract32(insn, 10, 5);
4311 int rm = extract32(insn, 16, 5);
4312 int op_id = (extract32(insn, 29, 3) << 4) |
4313 (extract32(insn, 21, 3) << 1) |
4314 extract32(insn, 15, 1);
4315 bool sf = extract32(insn, 31, 1);
4316 bool is_sub = extract32(op_id, 0, 1);
4317 bool is_high = extract32(op_id, 2, 1);
4318 bool is_signed = false;
4319 TCGv_i64 tcg_op1;
4320 TCGv_i64 tcg_op2;
4321 TCGv_i64 tcg_tmp;
4323 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
4324 switch (op_id) {
4325 case 0x42: /* SMADDL */
4326 case 0x43: /* SMSUBL */
4327 case 0x44: /* SMULH */
4328 is_signed = true;
4329 break;
4330 case 0x0: /* MADD (32bit) */
4331 case 0x1: /* MSUB (32bit) */
4332 case 0x40: /* MADD (64bit) */
4333 case 0x41: /* MSUB (64bit) */
4334 case 0x4a: /* UMADDL */
4335 case 0x4b: /* UMSUBL */
4336 case 0x4c: /* UMULH */
4337 break;
4338 default:
4339 unallocated_encoding(s);
4340 return;
4343 if (is_high) {
4344 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
4345 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4346 TCGv_i64 tcg_rn = cpu_reg(s, rn);
4347 TCGv_i64 tcg_rm = cpu_reg(s, rm);
4349 if (is_signed) {
4350 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4351 } else {
4352 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4355 tcg_temp_free_i64(low_bits);
4356 return;
4359 tcg_op1 = tcg_temp_new_i64();
4360 tcg_op2 = tcg_temp_new_i64();
4361 tcg_tmp = tcg_temp_new_i64();
4363 if (op_id < 0x42) {
4364 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
4365 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
4366 } else {
4367 if (is_signed) {
4368 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
4369 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
4370 } else {
4371 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
4372 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
4376 if (ra == 31 && !is_sub) {
4377 /* Special-case MADD with rA == XZR; it is the standard MUL alias */
4378 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
4379 } else {
4380 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
4381 if (is_sub) {
4382 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4383 } else {
4384 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4388 if (!sf) {
4389 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
4392 tcg_temp_free_i64(tcg_op1);
4393 tcg_temp_free_i64(tcg_op2);
4394 tcg_temp_free_i64(tcg_tmp);
4397 /* Add/subtract (with carry)
4398 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
4399 * +--+--+--+------------------------+------+---------+------+-----+
4400 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | opcode2 | Rn | Rd |
4401 * +--+--+--+------------------------+------+---------+------+-----+
4402 * [000000]
4405 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
4407 unsigned int sf, op, setflags, rm, rn, rd;
4408 TCGv_i64 tcg_y, tcg_rn, tcg_rd;
4410 if (extract32(insn, 10, 6) != 0) {
4411 unallocated_encoding(s);
4412 return;
4415 sf = extract32(insn, 31, 1);
4416 op = extract32(insn, 30, 1);
4417 setflags = extract32(insn, 29, 1);
4418 rm = extract32(insn, 16, 5);
4419 rn = extract32(insn, 5, 5);
4420 rd = extract32(insn, 0, 5);
4422 tcg_rd = cpu_reg(s, rd);
4423 tcg_rn = cpu_reg(s, rn);
4425 if (op) {
4426 tcg_y = new_tmp_a64(s);
4427 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
4428 } else {
4429 tcg_y = cpu_reg(s, rm);
4432 if (setflags) {
4433 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
4434 } else {
4435 gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
4439 /* Conditional compare (immediate / register)
4440 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
4441 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
4442 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
4443 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
4444 * [1] y [0] [0]
4446 static void disas_cc(DisasContext *s, uint32_t insn)
4448 unsigned int sf, op, y, cond, rn, nzcv, is_imm;
4449 TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
4450 TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
4451 DisasCompare c;
4453 if (!extract32(insn, 29, 1)) {
4454 unallocated_encoding(s);
4455 return;
4457 if (insn & (1 << 10 | 1 << 4)) {
4458 unallocated_encoding(s);
4459 return;
4461 sf = extract32(insn, 31, 1);
4462 op = extract32(insn, 30, 1);
4463 is_imm = extract32(insn, 11, 1);
4464 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
4465 cond = extract32(insn, 12, 4);
4466 rn = extract32(insn, 5, 5);
4467 nzcv = extract32(insn, 0, 4);
4469 /* Set T0 = !COND. */
4470 tcg_t0 = tcg_temp_new_i32();
4471 arm_test_cc(&c, cond);
4472 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
4473 arm_free_cc(&c);
4475 /* Load the arguments for the new comparison. */
4476 if (is_imm) {
4477 tcg_y = new_tmp_a64(s);
4478 tcg_gen_movi_i64(tcg_y, y);
4479 } else {
4480 tcg_y = cpu_reg(s, y);
4482 tcg_rn = cpu_reg(s, rn);
4484 /* Set the flags for the new comparison. */
4485 tcg_tmp = tcg_temp_new_i64();
4486 if (op) {
4487 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
4488 } else {
4489 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
4491 tcg_temp_free_i64(tcg_tmp);
4493 /* If COND was false, force the flags to #nzcv. Compute two masks
4494 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
4495 * For tcg hosts that support ANDC, we can make do with just T1.
4496 * In either case, allow the tcg optimizer to delete any unused mask.
4498 tcg_t1 = tcg_temp_new_i32();
4499 tcg_t2 = tcg_temp_new_i32();
4500 tcg_gen_neg_i32(tcg_t1, tcg_t0);
4501 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
4503 if (nzcv & 8) { /* N */
4504 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
4505 } else {
4506 if (TCG_TARGET_HAS_andc_i32) {
4507 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
4508 } else {
4509 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
4512 if (nzcv & 4) { /* Z */
4513 if (TCG_TARGET_HAS_andc_i32) {
4514 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
4515 } else {
4516 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
4518 } else {
4519 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
4521 if (nzcv & 2) { /* C */
4522 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
4523 } else {
4524 if (TCG_TARGET_HAS_andc_i32) {
4525 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
4526 } else {
4527 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
4530 if (nzcv & 1) { /* V */
4531 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
4532 } else {
4533 if (TCG_TARGET_HAS_andc_i32) {
4534 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
4535 } else {
4536 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
4539 tcg_temp_free_i32(tcg_t0);
4540 tcg_temp_free_i32(tcg_t1);
4541 tcg_temp_free_i32(tcg_t2);
4544 /* Conditional select
4545 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
4546 * +----+----+---+-----------------+------+------+-----+------+------+
4547 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
4548 * +----+----+---+-----------------+------+------+-----+------+------+
4550 static void disas_cond_select(DisasContext *s, uint32_t insn)
4552 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
4553 TCGv_i64 tcg_rd, zero;
4554 DisasCompare64 c;
4556 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
4557 /* S == 1 or op2<1> == 1 */
4558 unallocated_encoding(s);
4559 return;
4561 sf = extract32(insn, 31, 1);
4562 else_inv = extract32(insn, 30, 1);
4563 rm = extract32(insn, 16, 5);
4564 cond = extract32(insn, 12, 4);
4565 else_inc = extract32(insn, 10, 1);
4566 rn = extract32(insn, 5, 5);
4567 rd = extract32(insn, 0, 5);
4569 tcg_rd = cpu_reg(s, rd);
4571 a64_test_cc(&c, cond);
4572 zero = tcg_const_i64(0);
4574 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
4575 /* CSET & CSETM. */
4576 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero);
4577 if (else_inv) {
4578 tcg_gen_neg_i64(tcg_rd, tcg_rd);
4580 } else {
4581 TCGv_i64 t_true = cpu_reg(s, rn);
4582 TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
4583 if (else_inv && else_inc) {
4584 tcg_gen_neg_i64(t_false, t_false);
4585 } else if (else_inv) {
4586 tcg_gen_not_i64(t_false, t_false);
4587 } else if (else_inc) {
4588 tcg_gen_addi_i64(t_false, t_false, 1);
4590 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
4593 tcg_temp_free_i64(zero);
4594 a64_free_cc(&c);
4596 if (!sf) {
4597 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4601 static void handle_clz(DisasContext *s, unsigned int sf,
4602 unsigned int rn, unsigned int rd)
4604 TCGv_i64 tcg_rd, tcg_rn;
4605 tcg_rd = cpu_reg(s, rd);
4606 tcg_rn = cpu_reg(s, rn);
4608 if (sf) {
4609 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
4610 } else {
4611 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4612 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4613 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
4614 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4615 tcg_temp_free_i32(tcg_tmp32);
4619 static void handle_cls(DisasContext *s, unsigned int sf,
4620 unsigned int rn, unsigned int rd)
4622 TCGv_i64 tcg_rd, tcg_rn;
4623 tcg_rd = cpu_reg(s, rd);
4624 tcg_rn = cpu_reg(s, rn);
4626 if (sf) {
4627 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
4628 } else {
4629 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4630 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4631 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
4632 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4633 tcg_temp_free_i32(tcg_tmp32);
4637 static void handle_rbit(DisasContext *s, unsigned int sf,
4638 unsigned int rn, unsigned int rd)
4640 TCGv_i64 tcg_rd, tcg_rn;
4641 tcg_rd = cpu_reg(s, rd);
4642 tcg_rn = cpu_reg(s, rn);
4644 if (sf) {
4645 gen_helper_rbit64(tcg_rd, tcg_rn);
4646 } else {
4647 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4648 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4649 gen_helper_rbit(tcg_tmp32, tcg_tmp32);
4650 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4651 tcg_temp_free_i32(tcg_tmp32);
4655 /* REV with sf==1, opcode==3 ("REV64") */
4656 static void handle_rev64(DisasContext *s, unsigned int sf,
4657 unsigned int rn, unsigned int rd)
4659 if (!sf) {
4660 unallocated_encoding(s);
4661 return;
4663 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
4666 /* REV with sf==0, opcode==2
4667 * REV32 (sf==1, opcode==2)
4669 static void handle_rev32(DisasContext *s, unsigned int sf,
4670 unsigned int rn, unsigned int rd)
4672 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4674 if (sf) {
4675 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
4676 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4678 /* bswap32_i64 requires zero high word */
4679 tcg_gen_ext32u_i64(tcg_tmp, tcg_rn);
4680 tcg_gen_bswap32_i64(tcg_rd, tcg_tmp);
4681 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 32);
4682 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
4683 tcg_gen_concat32_i64(tcg_rd, tcg_rd, tcg_tmp);
4685 tcg_temp_free_i64(tcg_tmp);
4686 } else {
4687 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rn));
4688 tcg_gen_bswap32_i64(tcg_rd, tcg_rd);
4692 /* REV16 (opcode==1) */
4693 static void handle_rev16(DisasContext *s, unsigned int sf,
4694 unsigned int rn, unsigned int rd)
4696 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4697 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
4698 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4699 TCGv_i64 mask = tcg_const_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
4701 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
4702 tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
4703 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
4704 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
4705 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
4707 tcg_temp_free_i64(mask);
4708 tcg_temp_free_i64(tcg_tmp);
4711 /* Data-processing (1 source)
4712 * 31 30 29 28 21 20 16 15 10 9 5 4 0
4713 * +----+---+---+-----------------+---------+--------+------+------+
4714 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
4715 * +----+---+---+-----------------+---------+--------+------+------+
4717 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
4719 unsigned int sf, opcode, opcode2, rn, rd;
4720 TCGv_i64 tcg_rd;
4722 if (extract32(insn, 29, 1)) {
4723 unallocated_encoding(s);
4724 return;
4727 sf = extract32(insn, 31, 1);
4728 opcode = extract32(insn, 10, 6);
4729 opcode2 = extract32(insn, 16, 5);
4730 rn = extract32(insn, 5, 5);
4731 rd = extract32(insn, 0, 5);
4733 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
4735 switch (MAP(sf, opcode2, opcode)) {
4736 case MAP(0, 0x00, 0x00): /* RBIT */
4737 case MAP(1, 0x00, 0x00):
4738 handle_rbit(s, sf, rn, rd);
4739 break;
4740 case MAP(0, 0x00, 0x01): /* REV16 */
4741 case MAP(1, 0x00, 0x01):
4742 handle_rev16(s, sf, rn, rd);
4743 break;
4744 case MAP(0, 0x00, 0x02): /* REV/REV32 */
4745 case MAP(1, 0x00, 0x02):
4746 handle_rev32(s, sf, rn, rd);
4747 break;
4748 case MAP(1, 0x00, 0x03): /* REV64 */
4749 handle_rev64(s, sf, rn, rd);
4750 break;
4751 case MAP(0, 0x00, 0x04): /* CLZ */
4752 case MAP(1, 0x00, 0x04):
4753 handle_clz(s, sf, rn, rd);
4754 break;
4755 case MAP(0, 0x00, 0x05): /* CLS */
4756 case MAP(1, 0x00, 0x05):
4757 handle_cls(s, sf, rn, rd);
4758 break;
4759 case MAP(1, 0x01, 0x00): /* PACIA */
4760 if (s->pauth_active) {
4761 tcg_rd = cpu_reg(s, rd);
4762 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
4763 } else if (!dc_isar_feature(aa64_pauth, s)) {
4764 goto do_unallocated;
4766 break;
4767 case MAP(1, 0x01, 0x01): /* PACIB */
4768 if (s->pauth_active) {
4769 tcg_rd = cpu_reg(s, rd);
4770 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
4771 } else if (!dc_isar_feature(aa64_pauth, s)) {
4772 goto do_unallocated;
4774 break;
4775 case MAP(1, 0x01, 0x02): /* PACDA */
4776 if (s->pauth_active) {
4777 tcg_rd = cpu_reg(s, rd);
4778 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
4779 } else if (!dc_isar_feature(aa64_pauth, s)) {
4780 goto do_unallocated;
4782 break;
4783 case MAP(1, 0x01, 0x03): /* PACDB */
4784 if (s->pauth_active) {
4785 tcg_rd = cpu_reg(s, rd);
4786 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
4787 } else if (!dc_isar_feature(aa64_pauth, s)) {
4788 goto do_unallocated;
4790 break;
4791 case MAP(1, 0x01, 0x04): /* AUTIA */
4792 if (s->pauth_active) {
4793 tcg_rd = cpu_reg(s, rd);
4794 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
4795 } else if (!dc_isar_feature(aa64_pauth, s)) {
4796 goto do_unallocated;
4798 break;
4799 case MAP(1, 0x01, 0x05): /* AUTIB */
4800 if (s->pauth_active) {
4801 tcg_rd = cpu_reg(s, rd);
4802 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
4803 } else if (!dc_isar_feature(aa64_pauth, s)) {
4804 goto do_unallocated;
4806 break;
4807 case MAP(1, 0x01, 0x06): /* AUTDA */
4808 if (s->pauth_active) {
4809 tcg_rd = cpu_reg(s, rd);
4810 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
4811 } else if (!dc_isar_feature(aa64_pauth, s)) {
4812 goto do_unallocated;
4814 break;
4815 case MAP(1, 0x01, 0x07): /* AUTDB */
4816 if (s->pauth_active) {
4817 tcg_rd = cpu_reg(s, rd);
4818 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
4819 } else if (!dc_isar_feature(aa64_pauth, s)) {
4820 goto do_unallocated;
4822 break;
4823 case MAP(1, 0x01, 0x08): /* PACIZA */
4824 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
4825 goto do_unallocated;
4826 } else if (s->pauth_active) {
4827 tcg_rd = cpu_reg(s, rd);
4828 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
4830 break;
4831 case MAP(1, 0x01, 0x09): /* PACIZB */
4832 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
4833 goto do_unallocated;
4834 } else if (s->pauth_active) {
4835 tcg_rd = cpu_reg(s, rd);
4836 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
4838 break;
4839 case MAP(1, 0x01, 0x0a): /* PACDZA */
4840 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
4841 goto do_unallocated;
4842 } else if (s->pauth_active) {
4843 tcg_rd = cpu_reg(s, rd);
4844 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
4846 break;
4847 case MAP(1, 0x01, 0x0b): /* PACDZB */
4848 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
4849 goto do_unallocated;
4850 } else if (s->pauth_active) {
4851 tcg_rd = cpu_reg(s, rd);
4852 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
4854 break;
4855 case MAP(1, 0x01, 0x0c): /* AUTIZA */
4856 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
4857 goto do_unallocated;
4858 } else if (s->pauth_active) {
4859 tcg_rd = cpu_reg(s, rd);
4860 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
4862 break;
4863 case MAP(1, 0x01, 0x0d): /* AUTIZB */
4864 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
4865 goto do_unallocated;
4866 } else if (s->pauth_active) {
4867 tcg_rd = cpu_reg(s, rd);
4868 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
4870 break;
4871 case MAP(1, 0x01, 0x0e): /* AUTDZA */
4872 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
4873 goto do_unallocated;
4874 } else if (s->pauth_active) {
4875 tcg_rd = cpu_reg(s, rd);
4876 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
4878 break;
4879 case MAP(1, 0x01, 0x0f): /* AUTDZB */
4880 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
4881 goto do_unallocated;
4882 } else if (s->pauth_active) {
4883 tcg_rd = cpu_reg(s, rd);
4884 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
4886 break;
4887 case MAP(1, 0x01, 0x10): /* XPACI */
4888 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
4889 goto do_unallocated;
4890 } else if (s->pauth_active) {
4891 tcg_rd = cpu_reg(s, rd);
4892 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd);
4894 break;
4895 case MAP(1, 0x01, 0x11): /* XPACD */
4896 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
4897 goto do_unallocated;
4898 } else if (s->pauth_active) {
4899 tcg_rd = cpu_reg(s, rd);
4900 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd);
4902 break;
4903 default:
4904 do_unallocated:
4905 unallocated_encoding(s);
4906 break;
4909 #undef MAP
4912 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
4913 unsigned int rm, unsigned int rn, unsigned int rd)
4915 TCGv_i64 tcg_n, tcg_m, tcg_rd;
4916 tcg_rd = cpu_reg(s, rd);
4918 if (!sf && is_signed) {
4919 tcg_n = new_tmp_a64(s);
4920 tcg_m = new_tmp_a64(s);
4921 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
4922 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
4923 } else {
4924 tcg_n = read_cpu_reg(s, rn, sf);
4925 tcg_m = read_cpu_reg(s, rm, sf);
4928 if (is_signed) {
4929 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
4930 } else {
4931 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
4934 if (!sf) { /* zero extend final result */
4935 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4939 /* LSLV, LSRV, ASRV, RORV */
4940 static void handle_shift_reg(DisasContext *s,
4941 enum a64_shift_type shift_type, unsigned int sf,
4942 unsigned int rm, unsigned int rn, unsigned int rd)
4944 TCGv_i64 tcg_shift = tcg_temp_new_i64();
4945 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4946 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4948 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
4949 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
4950 tcg_temp_free_i64(tcg_shift);
4953 /* CRC32[BHWX], CRC32C[BHWX] */
4954 static void handle_crc32(DisasContext *s,
4955 unsigned int sf, unsigned int sz, bool crc32c,
4956 unsigned int rm, unsigned int rn, unsigned int rd)
4958 TCGv_i64 tcg_acc, tcg_val;
4959 TCGv_i32 tcg_bytes;
4961 if (!dc_isar_feature(aa64_crc32, s)
4962 || (sf == 1 && sz != 3)
4963 || (sf == 0 && sz == 3)) {
4964 unallocated_encoding(s);
4965 return;
4968 if (sz == 3) {
4969 tcg_val = cpu_reg(s, rm);
4970 } else {
4971 uint64_t mask;
4972 switch (sz) {
4973 case 0:
4974 mask = 0xFF;
4975 break;
4976 case 1:
4977 mask = 0xFFFF;
4978 break;
4979 case 2:
4980 mask = 0xFFFFFFFF;
4981 break;
4982 default:
4983 g_assert_not_reached();
4985 tcg_val = new_tmp_a64(s);
4986 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
4989 tcg_acc = cpu_reg(s, rn);
4990 tcg_bytes = tcg_const_i32(1 << sz);
4992 if (crc32c) {
4993 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
4994 } else {
4995 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
4998 tcg_temp_free_i32(tcg_bytes);
5001 /* Data-processing (2 source)
5002 * 31 30 29 28 21 20 16 15 10 9 5 4 0
5003 * +----+---+---+-----------------+------+--------+------+------+
5004 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
5005 * +----+---+---+-----------------+------+--------+------+------+
5007 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
5009 unsigned int sf, rm, opcode, rn, rd;
5010 sf = extract32(insn, 31, 1);
5011 rm = extract32(insn, 16, 5);
5012 opcode = extract32(insn, 10, 6);
5013 rn = extract32(insn, 5, 5);
5014 rd = extract32(insn, 0, 5);
5016 if (extract32(insn, 29, 1)) {
5017 unallocated_encoding(s);
5018 return;
5021 switch (opcode) {
5022 case 2: /* UDIV */
5023 handle_div(s, false, sf, rm, rn, rd);
5024 break;
5025 case 3: /* SDIV */
5026 handle_div(s, true, sf, rm, rn, rd);
5027 break;
5028 case 8: /* LSLV */
5029 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
5030 break;
5031 case 9: /* LSRV */
5032 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
5033 break;
5034 case 10: /* ASRV */
5035 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
5036 break;
5037 case 11: /* RORV */
5038 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
5039 break;
5040 case 12: /* PACGA */
5041 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
5042 goto do_unallocated;
5044 gen_helper_pacga(cpu_reg(s, rd), cpu_env,
5045 cpu_reg(s, rn), cpu_reg_sp(s, rm));
5046 break;
5047 case 16:
5048 case 17:
5049 case 18:
5050 case 19:
5051 case 20:
5052 case 21:
5053 case 22:
5054 case 23: /* CRC32 */
5056 int sz = extract32(opcode, 0, 2);
5057 bool crc32c = extract32(opcode, 2, 1);
5058 handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
5059 break;
5061 default:
5062 do_unallocated:
5063 unallocated_encoding(s);
5064 break;
5068 /* Data processing - register */
5069 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
5071 switch (extract32(insn, 24, 5)) {
5072 case 0x0a: /* Logical (shifted register) */
5073 disas_logic_reg(s, insn);
5074 break;
5075 case 0x0b: /* Add/subtract */
5076 if (insn & (1 << 21)) { /* (extended register) */
5077 disas_add_sub_ext_reg(s, insn);
5078 } else {
5079 disas_add_sub_reg(s, insn);
5081 break;
5082 case 0x1b: /* Data-processing (3 source) */
5083 disas_data_proc_3src(s, insn);
5084 break;
5085 case 0x1a:
5086 switch (extract32(insn, 21, 3)) {
5087 case 0x0: /* Add/subtract (with carry) */
5088 disas_adc_sbc(s, insn);
5089 break;
5090 case 0x2: /* Conditional compare */
5091 disas_cc(s, insn); /* both imm and reg forms */
5092 break;
5093 case 0x4: /* Conditional select */
5094 disas_cond_select(s, insn);
5095 break;
5096 case 0x6: /* Data-processing */
5097 if (insn & (1 << 30)) { /* (1 source) */
5098 disas_data_proc_1src(s, insn);
5099 } else { /* (2 source) */
5100 disas_data_proc_2src(s, insn);
5102 break;
5103 default:
5104 unallocated_encoding(s);
5105 break;
5107 break;
5108 default:
5109 unallocated_encoding(s);
5110 break;
5114 static void handle_fp_compare(DisasContext *s, int size,
5115 unsigned int rn, unsigned int rm,
5116 bool cmp_with_zero, bool signal_all_nans)
5118 TCGv_i64 tcg_flags = tcg_temp_new_i64();
5119 TCGv_ptr fpst = get_fpstatus_ptr(size == MO_16);
5121 if (size == MO_64) {
5122 TCGv_i64 tcg_vn, tcg_vm;
5124 tcg_vn = read_fp_dreg(s, rn);
5125 if (cmp_with_zero) {
5126 tcg_vm = tcg_const_i64(0);
5127 } else {
5128 tcg_vm = read_fp_dreg(s, rm);
5130 if (signal_all_nans) {
5131 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5132 } else {
5133 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5135 tcg_temp_free_i64(tcg_vn);
5136 tcg_temp_free_i64(tcg_vm);
5137 } else {
5138 TCGv_i32 tcg_vn = tcg_temp_new_i32();
5139 TCGv_i32 tcg_vm = tcg_temp_new_i32();
5141 read_vec_element_i32(s, tcg_vn, rn, 0, size);
5142 if (cmp_with_zero) {
5143 tcg_gen_movi_i32(tcg_vm, 0);
5144 } else {
5145 read_vec_element_i32(s, tcg_vm, rm, 0, size);
5148 switch (size) {
5149 case MO_32:
5150 if (signal_all_nans) {
5151 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5152 } else {
5153 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5155 break;
5156 case MO_16:
5157 if (signal_all_nans) {
5158 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5159 } else {
5160 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5162 break;
5163 default:
5164 g_assert_not_reached();
5167 tcg_temp_free_i32(tcg_vn);
5168 tcg_temp_free_i32(tcg_vm);
5171 tcg_temp_free_ptr(fpst);
5173 gen_set_nzcv(tcg_flags);
5175 tcg_temp_free_i64(tcg_flags);
5178 /* Floating point compare
5179 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
5180 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5181 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
5182 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5184 static void disas_fp_compare(DisasContext *s, uint32_t insn)
5186 unsigned int mos, type, rm, op, rn, opc, op2r;
5187 int size;
5189 mos = extract32(insn, 29, 3);
5190 type = extract32(insn, 22, 2);
5191 rm = extract32(insn, 16, 5);
5192 op = extract32(insn, 14, 2);
5193 rn = extract32(insn, 5, 5);
5194 opc = extract32(insn, 3, 2);
5195 op2r = extract32(insn, 0, 3);
5197 if (mos || op || op2r) {
5198 unallocated_encoding(s);
5199 return;
5202 switch (type) {
5203 case 0:
5204 size = MO_32;
5205 break;
5206 case 1:
5207 size = MO_64;
5208 break;
5209 case 3:
5210 size = MO_16;
5211 if (dc_isar_feature(aa64_fp16, s)) {
5212 break;
5214 /* fallthru */
5215 default:
5216 unallocated_encoding(s);
5217 return;
5220 if (!fp_access_check(s)) {
5221 return;
5224 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
5227 /* Floating point conditional compare
5228 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
5229 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5230 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
5231 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5233 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
5235 unsigned int mos, type, rm, cond, rn, op, nzcv;
5236 TCGv_i64 tcg_flags;
5237 TCGLabel *label_continue = NULL;
5238 int size;
5240 mos = extract32(insn, 29, 3);
5241 type = extract32(insn, 22, 2);
5242 rm = extract32(insn, 16, 5);
5243 cond = extract32(insn, 12, 4);
5244 rn = extract32(insn, 5, 5);
5245 op = extract32(insn, 4, 1);
5246 nzcv = extract32(insn, 0, 4);
5248 if (mos) {
5249 unallocated_encoding(s);
5250 return;
5253 switch (type) {
5254 case 0:
5255 size = MO_32;
5256 break;
5257 case 1:
5258 size = MO_64;
5259 break;
5260 case 3:
5261 size = MO_16;
5262 if (dc_isar_feature(aa64_fp16, s)) {
5263 break;
5265 /* fallthru */
5266 default:
5267 unallocated_encoding(s);
5268 return;
5271 if (!fp_access_check(s)) {
5272 return;
5275 if (cond < 0x0e) { /* not always */
5276 TCGLabel *label_match = gen_new_label();
5277 label_continue = gen_new_label();
5278 arm_gen_test_cc(cond, label_match);
5279 /* nomatch: */
5280 tcg_flags = tcg_const_i64(nzcv << 28);
5281 gen_set_nzcv(tcg_flags);
5282 tcg_temp_free_i64(tcg_flags);
5283 tcg_gen_br(label_continue);
5284 gen_set_label(label_match);
5287 handle_fp_compare(s, size, rn, rm, false, op);
5289 if (cond < 0x0e) {
5290 gen_set_label(label_continue);
5294 /* Floating point conditional select
5295 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
5296 * +---+---+---+-----------+------+---+------+------+-----+------+------+
5297 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd |
5298 * +---+---+---+-----------+------+---+------+------+-----+------+------+
5300 static void disas_fp_csel(DisasContext *s, uint32_t insn)
5302 unsigned int mos, type, rm, cond, rn, rd;
5303 TCGv_i64 t_true, t_false, t_zero;
5304 DisasCompare64 c;
5305 TCGMemOp sz;
5307 mos = extract32(insn, 29, 3);
5308 type = extract32(insn, 22, 2);
5309 rm = extract32(insn, 16, 5);
5310 cond = extract32(insn, 12, 4);
5311 rn = extract32(insn, 5, 5);
5312 rd = extract32(insn, 0, 5);
5314 if (mos) {
5315 unallocated_encoding(s);
5316 return;
5319 switch (type) {
5320 case 0:
5321 sz = MO_32;
5322 break;
5323 case 1:
5324 sz = MO_64;
5325 break;
5326 case 3:
5327 sz = MO_16;
5328 if (dc_isar_feature(aa64_fp16, s)) {
5329 break;
5331 /* fallthru */
5332 default:
5333 unallocated_encoding(s);
5334 return;
5337 if (!fp_access_check(s)) {
5338 return;
5341 /* Zero extend sreg & hreg inputs to 64 bits now. */
5342 t_true = tcg_temp_new_i64();
5343 t_false = tcg_temp_new_i64();
5344 read_vec_element(s, t_true, rn, 0, sz);
5345 read_vec_element(s, t_false, rm, 0, sz);
5347 a64_test_cc(&c, cond);
5348 t_zero = tcg_const_i64(0);
5349 tcg_gen_movcond_i64(c.cond, t_true, c.value, t_zero, t_true, t_false);
5350 tcg_temp_free_i64(t_zero);
5351 tcg_temp_free_i64(t_false);
5352 a64_free_cc(&c);
5354 /* Note that sregs & hregs write back zeros to the high bits,
5355 and we've already done the zero-extension. */
5356 write_fp_dreg(s, rd, t_true);
5357 tcg_temp_free_i64(t_true);
5360 /* Floating-point data-processing (1 source) - half precision */
5361 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
5363 TCGv_ptr fpst = NULL;
5364 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
5365 TCGv_i32 tcg_res = tcg_temp_new_i32();
5367 switch (opcode) {
5368 case 0x0: /* FMOV */
5369 tcg_gen_mov_i32(tcg_res, tcg_op);
5370 break;
5371 case 0x1: /* FABS */
5372 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
5373 break;
5374 case 0x2: /* FNEG */
5375 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
5376 break;
5377 case 0x3: /* FSQRT */
5378 fpst = get_fpstatus_ptr(true);
5379 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
5380 break;
5381 case 0x8: /* FRINTN */
5382 case 0x9: /* FRINTP */
5383 case 0xa: /* FRINTM */
5384 case 0xb: /* FRINTZ */
5385 case 0xc: /* FRINTA */
5387 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
5388 fpst = get_fpstatus_ptr(true);
5390 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5391 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
5393 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5394 tcg_temp_free_i32(tcg_rmode);
5395 break;
5397 case 0xe: /* FRINTX */
5398 fpst = get_fpstatus_ptr(true);
5399 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
5400 break;
5401 case 0xf: /* FRINTI */
5402 fpst = get_fpstatus_ptr(true);
5403 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
5404 break;
5405 default:
5406 abort();
5409 write_fp_sreg(s, rd, tcg_res);
5411 if (fpst) {
5412 tcg_temp_free_ptr(fpst);
5414 tcg_temp_free_i32(tcg_op);
5415 tcg_temp_free_i32(tcg_res);
5418 /* Floating-point data-processing (1 source) - single precision */
5419 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
5421 TCGv_ptr fpst;
5422 TCGv_i32 tcg_op;
5423 TCGv_i32 tcg_res;
5425 fpst = get_fpstatus_ptr(false);
5426 tcg_op = read_fp_sreg(s, rn);
5427 tcg_res = tcg_temp_new_i32();
5429 switch (opcode) {
5430 case 0x0: /* FMOV */
5431 tcg_gen_mov_i32(tcg_res, tcg_op);
5432 break;
5433 case 0x1: /* FABS */
5434 gen_helper_vfp_abss(tcg_res, tcg_op);
5435 break;
5436 case 0x2: /* FNEG */
5437 gen_helper_vfp_negs(tcg_res, tcg_op);
5438 break;
5439 case 0x3: /* FSQRT */
5440 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
5441 break;
5442 case 0x8: /* FRINTN */
5443 case 0x9: /* FRINTP */
5444 case 0xa: /* FRINTM */
5445 case 0xb: /* FRINTZ */
5446 case 0xc: /* FRINTA */
5448 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
5450 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5451 gen_helper_rints(tcg_res, tcg_op, fpst);
5453 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5454 tcg_temp_free_i32(tcg_rmode);
5455 break;
5457 case 0xe: /* FRINTX */
5458 gen_helper_rints_exact(tcg_res, tcg_op, fpst);
5459 break;
5460 case 0xf: /* FRINTI */
5461 gen_helper_rints(tcg_res, tcg_op, fpst);
5462 break;
5463 default:
5464 abort();
5467 write_fp_sreg(s, rd, tcg_res);
5469 tcg_temp_free_ptr(fpst);
5470 tcg_temp_free_i32(tcg_op);
5471 tcg_temp_free_i32(tcg_res);
5474 /* Floating-point data-processing (1 source) - double precision */
5475 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
5477 TCGv_ptr fpst;
5478 TCGv_i64 tcg_op;
5479 TCGv_i64 tcg_res;
5481 switch (opcode) {
5482 case 0x0: /* FMOV */
5483 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
5484 return;
5487 fpst = get_fpstatus_ptr(false);
5488 tcg_op = read_fp_dreg(s, rn);
5489 tcg_res = tcg_temp_new_i64();
5491 switch (opcode) {
5492 case 0x1: /* FABS */
5493 gen_helper_vfp_absd(tcg_res, tcg_op);
5494 break;
5495 case 0x2: /* FNEG */
5496 gen_helper_vfp_negd(tcg_res, tcg_op);
5497 break;
5498 case 0x3: /* FSQRT */
5499 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env);
5500 break;
5501 case 0x8: /* FRINTN */
5502 case 0x9: /* FRINTP */
5503 case 0xa: /* FRINTM */
5504 case 0xb: /* FRINTZ */
5505 case 0xc: /* FRINTA */
5507 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
5509 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5510 gen_helper_rintd(tcg_res, tcg_op, fpst);
5512 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5513 tcg_temp_free_i32(tcg_rmode);
5514 break;
5516 case 0xe: /* FRINTX */
5517 gen_helper_rintd_exact(tcg_res, tcg_op, fpst);
5518 break;
5519 case 0xf: /* FRINTI */
5520 gen_helper_rintd(tcg_res, tcg_op, fpst);
5521 break;
5522 default:
5523 abort();
5526 write_fp_dreg(s, rd, tcg_res);
5528 tcg_temp_free_ptr(fpst);
5529 tcg_temp_free_i64(tcg_op);
5530 tcg_temp_free_i64(tcg_res);
5533 static void handle_fp_fcvt(DisasContext *s, int opcode,
5534 int rd, int rn, int dtype, int ntype)
5536 switch (ntype) {
5537 case 0x0:
5539 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
5540 if (dtype == 1) {
5541 /* Single to double */
5542 TCGv_i64 tcg_rd = tcg_temp_new_i64();
5543 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env);
5544 write_fp_dreg(s, rd, tcg_rd);
5545 tcg_temp_free_i64(tcg_rd);
5546 } else {
5547 /* Single to half */
5548 TCGv_i32 tcg_rd = tcg_temp_new_i32();
5549 TCGv_i32 ahp = get_ahp_flag();
5550 TCGv_ptr fpst = get_fpstatus_ptr(false);
5552 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
5553 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
5554 write_fp_sreg(s, rd, tcg_rd);
5555 tcg_temp_free_i32(tcg_rd);
5556 tcg_temp_free_i32(ahp);
5557 tcg_temp_free_ptr(fpst);
5559 tcg_temp_free_i32(tcg_rn);
5560 break;
5562 case 0x1:
5564 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
5565 TCGv_i32 tcg_rd = tcg_temp_new_i32();
5566 if (dtype == 0) {
5567 /* Double to single */
5568 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env);
5569 } else {
5570 TCGv_ptr fpst = get_fpstatus_ptr(false);
5571 TCGv_i32 ahp = get_ahp_flag();
5572 /* Double to half */
5573 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
5574 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
5575 tcg_temp_free_ptr(fpst);
5576 tcg_temp_free_i32(ahp);
5578 write_fp_sreg(s, rd, tcg_rd);
5579 tcg_temp_free_i32(tcg_rd);
5580 tcg_temp_free_i64(tcg_rn);
5581 break;
5583 case 0x3:
5585 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
5586 TCGv_ptr tcg_fpst = get_fpstatus_ptr(false);
5587 TCGv_i32 tcg_ahp = get_ahp_flag();
5588 tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
5589 if (dtype == 0) {
5590 /* Half to single */
5591 TCGv_i32 tcg_rd = tcg_temp_new_i32();
5592 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
5593 write_fp_sreg(s, rd, tcg_rd);
5594 tcg_temp_free_ptr(tcg_fpst);
5595 tcg_temp_free_i32(tcg_ahp);
5596 tcg_temp_free_i32(tcg_rd);
5597 } else {
5598 /* Half to double */
5599 TCGv_i64 tcg_rd = tcg_temp_new_i64();
5600 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
5601 write_fp_dreg(s, rd, tcg_rd);
5602 tcg_temp_free_i64(tcg_rd);
5604 tcg_temp_free_i32(tcg_rn);
5605 break;
5607 default:
5608 abort();
5612 /* Floating point data-processing (1 source)
5613 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
5614 * +---+---+---+-----------+------+---+--------+-----------+------+------+
5615 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
5616 * +---+---+---+-----------+------+---+--------+-----------+------+------+
5618 static void disas_fp_1src(DisasContext *s, uint32_t insn)
5620 int type = extract32(insn, 22, 2);
5621 int opcode = extract32(insn, 15, 6);
5622 int rn = extract32(insn, 5, 5);
5623 int rd = extract32(insn, 0, 5);
5625 switch (opcode) {
5626 case 0x4: case 0x5: case 0x7:
5628 /* FCVT between half, single and double precision */
5629 int dtype = extract32(opcode, 0, 2);
5630 if (type == 2 || dtype == type) {
5631 unallocated_encoding(s);
5632 return;
5634 if (!fp_access_check(s)) {
5635 return;
5638 handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
5639 break;
5641 case 0x0 ... 0x3:
5642 case 0x8 ... 0xc:
5643 case 0xe ... 0xf:
5644 /* 32-to-32 and 64-to-64 ops */
5645 switch (type) {
5646 case 0:
5647 if (!fp_access_check(s)) {
5648 return;
5651 handle_fp_1src_single(s, opcode, rd, rn);
5652 break;
5653 case 1:
5654 if (!fp_access_check(s)) {
5655 return;
5658 handle_fp_1src_double(s, opcode, rd, rn);
5659 break;
5660 case 3:
5661 if (!dc_isar_feature(aa64_fp16, s)) {
5662 unallocated_encoding(s);
5663 return;
5666 if (!fp_access_check(s)) {
5667 return;
5670 handle_fp_1src_half(s, opcode, rd, rn);
5671 break;
5672 default:
5673 unallocated_encoding(s);
5675 break;
5676 default:
5677 unallocated_encoding(s);
5678 break;
5682 /* Floating-point data-processing (2 source) - single precision */
5683 static void handle_fp_2src_single(DisasContext *s, int opcode,
5684 int rd, int rn, int rm)
5686 TCGv_i32 tcg_op1;
5687 TCGv_i32 tcg_op2;
5688 TCGv_i32 tcg_res;
5689 TCGv_ptr fpst;
5691 tcg_res = tcg_temp_new_i32();
5692 fpst = get_fpstatus_ptr(false);
5693 tcg_op1 = read_fp_sreg(s, rn);
5694 tcg_op2 = read_fp_sreg(s, rm);
5696 switch (opcode) {
5697 case 0x0: /* FMUL */
5698 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
5699 break;
5700 case 0x1: /* FDIV */
5701 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
5702 break;
5703 case 0x2: /* FADD */
5704 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
5705 break;
5706 case 0x3: /* FSUB */
5707 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
5708 break;
5709 case 0x4: /* FMAX */
5710 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
5711 break;
5712 case 0x5: /* FMIN */
5713 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
5714 break;
5715 case 0x6: /* FMAXNM */
5716 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
5717 break;
5718 case 0x7: /* FMINNM */
5719 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
5720 break;
5721 case 0x8: /* FNMUL */
5722 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
5723 gen_helper_vfp_negs(tcg_res, tcg_res);
5724 break;
5727 write_fp_sreg(s, rd, tcg_res);
5729 tcg_temp_free_ptr(fpst);
5730 tcg_temp_free_i32(tcg_op1);
5731 tcg_temp_free_i32(tcg_op2);
5732 tcg_temp_free_i32(tcg_res);
5735 /* Floating-point data-processing (2 source) - double precision */
5736 static void handle_fp_2src_double(DisasContext *s, int opcode,
5737 int rd, int rn, int rm)
5739 TCGv_i64 tcg_op1;
5740 TCGv_i64 tcg_op2;
5741 TCGv_i64 tcg_res;
5742 TCGv_ptr fpst;
5744 tcg_res = tcg_temp_new_i64();
5745 fpst = get_fpstatus_ptr(false);
5746 tcg_op1 = read_fp_dreg(s, rn);
5747 tcg_op2 = read_fp_dreg(s, rm);
5749 switch (opcode) {
5750 case 0x0: /* FMUL */
5751 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
5752 break;
5753 case 0x1: /* FDIV */
5754 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
5755 break;
5756 case 0x2: /* FADD */
5757 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
5758 break;
5759 case 0x3: /* FSUB */
5760 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
5761 break;
5762 case 0x4: /* FMAX */
5763 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
5764 break;
5765 case 0x5: /* FMIN */
5766 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
5767 break;
5768 case 0x6: /* FMAXNM */
5769 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
5770 break;
5771 case 0x7: /* FMINNM */
5772 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
5773 break;
5774 case 0x8: /* FNMUL */
5775 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
5776 gen_helper_vfp_negd(tcg_res, tcg_res);
5777 break;
5780 write_fp_dreg(s, rd, tcg_res);
5782 tcg_temp_free_ptr(fpst);
5783 tcg_temp_free_i64(tcg_op1);
5784 tcg_temp_free_i64(tcg_op2);
5785 tcg_temp_free_i64(tcg_res);
5788 /* Floating-point data-processing (2 source) - half precision */
5789 static void handle_fp_2src_half(DisasContext *s, int opcode,
5790 int rd, int rn, int rm)
5792 TCGv_i32 tcg_op1;
5793 TCGv_i32 tcg_op2;
5794 TCGv_i32 tcg_res;
5795 TCGv_ptr fpst;
5797 tcg_res = tcg_temp_new_i32();
5798 fpst = get_fpstatus_ptr(true);
5799 tcg_op1 = read_fp_hreg(s, rn);
5800 tcg_op2 = read_fp_hreg(s, rm);
5802 switch (opcode) {
5803 case 0x0: /* FMUL */
5804 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
5805 break;
5806 case 0x1: /* FDIV */
5807 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
5808 break;
5809 case 0x2: /* FADD */
5810 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
5811 break;
5812 case 0x3: /* FSUB */
5813 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
5814 break;
5815 case 0x4: /* FMAX */
5816 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
5817 break;
5818 case 0x5: /* FMIN */
5819 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
5820 break;
5821 case 0x6: /* FMAXNM */
5822 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
5823 break;
5824 case 0x7: /* FMINNM */
5825 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
5826 break;
5827 case 0x8: /* FNMUL */
5828 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
5829 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000);
5830 break;
5831 default:
5832 g_assert_not_reached();
5835 write_fp_sreg(s, rd, tcg_res);
5837 tcg_temp_free_ptr(fpst);
5838 tcg_temp_free_i32(tcg_op1);
5839 tcg_temp_free_i32(tcg_op2);
5840 tcg_temp_free_i32(tcg_res);
5843 /* Floating point data-processing (2 source)
5844 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
5845 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
5846 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd |
5847 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
5849 static void disas_fp_2src(DisasContext *s, uint32_t insn)
5851 int type = extract32(insn, 22, 2);
5852 int rd = extract32(insn, 0, 5);
5853 int rn = extract32(insn, 5, 5);
5854 int rm = extract32(insn, 16, 5);
5855 int opcode = extract32(insn, 12, 4);
5857 if (opcode > 8) {
5858 unallocated_encoding(s);
5859 return;
5862 switch (type) {
5863 case 0:
5864 if (!fp_access_check(s)) {
5865 return;
5867 handle_fp_2src_single(s, opcode, rd, rn, rm);
5868 break;
5869 case 1:
5870 if (!fp_access_check(s)) {
5871 return;
5873 handle_fp_2src_double(s, opcode, rd, rn, rm);
5874 break;
5875 case 3:
5876 if (!dc_isar_feature(aa64_fp16, s)) {
5877 unallocated_encoding(s);
5878 return;
5880 if (!fp_access_check(s)) {
5881 return;
5883 handle_fp_2src_half(s, opcode, rd, rn, rm);
5884 break;
5885 default:
5886 unallocated_encoding(s);
5890 /* Floating-point data-processing (3 source) - single precision */
5891 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
5892 int rd, int rn, int rm, int ra)
5894 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
5895 TCGv_i32 tcg_res = tcg_temp_new_i32();
5896 TCGv_ptr fpst = get_fpstatus_ptr(false);
5898 tcg_op1 = read_fp_sreg(s, rn);
5899 tcg_op2 = read_fp_sreg(s, rm);
5900 tcg_op3 = read_fp_sreg(s, ra);
5902 /* These are fused multiply-add, and must be done as one
5903 * floating point operation with no rounding between the
5904 * multiplication and addition steps.
5905 * NB that doing the negations here as separate steps is
5906 * correct : an input NaN should come out with its sign bit
5907 * flipped if it is a negated-input.
5909 if (o1 == true) {
5910 gen_helper_vfp_negs(tcg_op3, tcg_op3);
5913 if (o0 != o1) {
5914 gen_helper_vfp_negs(tcg_op1, tcg_op1);
5917 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
5919 write_fp_sreg(s, rd, tcg_res);
5921 tcg_temp_free_ptr(fpst);
5922 tcg_temp_free_i32(tcg_op1);
5923 tcg_temp_free_i32(tcg_op2);
5924 tcg_temp_free_i32(tcg_op3);
5925 tcg_temp_free_i32(tcg_res);
5928 /* Floating-point data-processing (3 source) - double precision */
5929 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
5930 int rd, int rn, int rm, int ra)
5932 TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
5933 TCGv_i64 tcg_res = tcg_temp_new_i64();
5934 TCGv_ptr fpst = get_fpstatus_ptr(false);
5936 tcg_op1 = read_fp_dreg(s, rn);
5937 tcg_op2 = read_fp_dreg(s, rm);
5938 tcg_op3 = read_fp_dreg(s, ra);
5940 /* These are fused multiply-add, and must be done as one
5941 * floating point operation with no rounding between the
5942 * multiplication and addition steps.
5943 * NB that doing the negations here as separate steps is
5944 * correct : an input NaN should come out with its sign bit
5945 * flipped if it is a negated-input.
5947 if (o1 == true) {
5948 gen_helper_vfp_negd(tcg_op3, tcg_op3);
5951 if (o0 != o1) {
5952 gen_helper_vfp_negd(tcg_op1, tcg_op1);
5955 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
5957 write_fp_dreg(s, rd, tcg_res);
5959 tcg_temp_free_ptr(fpst);
5960 tcg_temp_free_i64(tcg_op1);
5961 tcg_temp_free_i64(tcg_op2);
5962 tcg_temp_free_i64(tcg_op3);
5963 tcg_temp_free_i64(tcg_res);
5966 /* Floating-point data-processing (3 source) - half precision */
5967 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
5968 int rd, int rn, int rm, int ra)
5970 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
5971 TCGv_i32 tcg_res = tcg_temp_new_i32();
5972 TCGv_ptr fpst = get_fpstatus_ptr(true);
5974 tcg_op1 = read_fp_hreg(s, rn);
5975 tcg_op2 = read_fp_hreg(s, rm);
5976 tcg_op3 = read_fp_hreg(s, ra);
5978 /* These are fused multiply-add, and must be done as one
5979 * floating point operation with no rounding between the
5980 * multiplication and addition steps.
5981 * NB that doing the negations here as separate steps is
5982 * correct : an input NaN should come out with its sign bit
5983 * flipped if it is a negated-input.
5985 if (o1 == true) {
5986 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
5989 if (o0 != o1) {
5990 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
5993 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
5995 write_fp_sreg(s, rd, tcg_res);
5997 tcg_temp_free_ptr(fpst);
5998 tcg_temp_free_i32(tcg_op1);
5999 tcg_temp_free_i32(tcg_op2);
6000 tcg_temp_free_i32(tcg_op3);
6001 tcg_temp_free_i32(tcg_res);
6004 /* Floating point data-processing (3 source)
6005 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0
6006 * +---+---+---+-----------+------+----+------+----+------+------+------+
6007 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd |
6008 * +---+---+---+-----------+------+----+------+----+------+------+------+
6010 static void disas_fp_3src(DisasContext *s, uint32_t insn)
6012 int type = extract32(insn, 22, 2);
6013 int rd = extract32(insn, 0, 5);
6014 int rn = extract32(insn, 5, 5);
6015 int ra = extract32(insn, 10, 5);
6016 int rm = extract32(insn, 16, 5);
6017 bool o0 = extract32(insn, 15, 1);
6018 bool o1 = extract32(insn, 21, 1);
6020 switch (type) {
6021 case 0:
6022 if (!fp_access_check(s)) {
6023 return;
6025 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
6026 break;
6027 case 1:
6028 if (!fp_access_check(s)) {
6029 return;
6031 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
6032 break;
6033 case 3:
6034 if (!dc_isar_feature(aa64_fp16, s)) {
6035 unallocated_encoding(s);
6036 return;
6038 if (!fp_access_check(s)) {
6039 return;
6041 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
6042 break;
6043 default:
6044 unallocated_encoding(s);
6048 /* The imm8 encodes the sign bit, enough bits to represent an exponent in
6049 * the range 01....1xx to 10....0xx, and the most significant 4 bits of
6050 * the mantissa; see VFPExpandImm() in the v8 ARM ARM.
6052 uint64_t vfp_expand_imm(int size, uint8_t imm8)
6054 uint64_t imm;
6056 switch (size) {
6057 case MO_64:
6058 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
6059 (extract32(imm8, 6, 1) ? 0x3fc0 : 0x4000) |
6060 extract32(imm8, 0, 6);
6061 imm <<= 48;
6062 break;
6063 case MO_32:
6064 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
6065 (extract32(imm8, 6, 1) ? 0x3e00 : 0x4000) |
6066 (extract32(imm8, 0, 6) << 3);
6067 imm <<= 16;
6068 break;
6069 case MO_16:
6070 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
6071 (extract32(imm8, 6, 1) ? 0x3000 : 0x4000) |
6072 (extract32(imm8, 0, 6) << 6);
6073 break;
6074 default:
6075 g_assert_not_reached();
6077 return imm;
6080 /* Floating point immediate
6081 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
6082 * +---+---+---+-----------+------+---+------------+-------+------+------+
6083 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
6084 * +---+---+---+-----------+------+---+------------+-------+------+------+
6086 static void disas_fp_imm(DisasContext *s, uint32_t insn)
6088 int rd = extract32(insn, 0, 5);
6089 int imm8 = extract32(insn, 13, 8);
6090 int type = extract32(insn, 22, 2);
6091 uint64_t imm;
6092 TCGv_i64 tcg_res;
6093 TCGMemOp sz;
6095 switch (type) {
6096 case 0:
6097 sz = MO_32;
6098 break;
6099 case 1:
6100 sz = MO_64;
6101 break;
6102 case 3:
6103 sz = MO_16;
6104 if (dc_isar_feature(aa64_fp16, s)) {
6105 break;
6107 /* fallthru */
6108 default:
6109 unallocated_encoding(s);
6110 return;
6113 if (!fp_access_check(s)) {
6114 return;
6117 imm = vfp_expand_imm(sz, imm8);
6119 tcg_res = tcg_const_i64(imm);
6120 write_fp_dreg(s, rd, tcg_res);
6121 tcg_temp_free_i64(tcg_res);
6124 /* Handle floating point <=> fixed point conversions. Note that we can
6125 * also deal with fp <=> integer conversions as a special case (scale == 64)
6126 * OPTME: consider handling that special case specially or at least skipping
6127 * the call to scalbn in the helpers for zero shifts.
6129 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
6130 bool itof, int rmode, int scale, int sf, int type)
6132 bool is_signed = !(opcode & 1);
6133 TCGv_ptr tcg_fpstatus;
6134 TCGv_i32 tcg_shift, tcg_single;
6135 TCGv_i64 tcg_double;
6137 tcg_fpstatus = get_fpstatus_ptr(type == 3);
6139 tcg_shift = tcg_const_i32(64 - scale);
6141 if (itof) {
6142 TCGv_i64 tcg_int = cpu_reg(s, rn);
6143 if (!sf) {
6144 TCGv_i64 tcg_extend = new_tmp_a64(s);
6146 if (is_signed) {
6147 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
6148 } else {
6149 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
6152 tcg_int = tcg_extend;
6155 switch (type) {
6156 case 1: /* float64 */
6157 tcg_double = tcg_temp_new_i64();
6158 if (is_signed) {
6159 gen_helper_vfp_sqtod(tcg_double, tcg_int,
6160 tcg_shift, tcg_fpstatus);
6161 } else {
6162 gen_helper_vfp_uqtod(tcg_double, tcg_int,
6163 tcg_shift, tcg_fpstatus);
6165 write_fp_dreg(s, rd, tcg_double);
6166 tcg_temp_free_i64(tcg_double);
6167 break;
6169 case 0: /* float32 */
6170 tcg_single = tcg_temp_new_i32();
6171 if (is_signed) {
6172 gen_helper_vfp_sqtos(tcg_single, tcg_int,
6173 tcg_shift, tcg_fpstatus);
6174 } else {
6175 gen_helper_vfp_uqtos(tcg_single, tcg_int,
6176 tcg_shift, tcg_fpstatus);
6178 write_fp_sreg(s, rd, tcg_single);
6179 tcg_temp_free_i32(tcg_single);
6180 break;
6182 case 3: /* float16 */
6183 tcg_single = tcg_temp_new_i32();
6184 if (is_signed) {
6185 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
6186 tcg_shift, tcg_fpstatus);
6187 } else {
6188 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
6189 tcg_shift, tcg_fpstatus);
6191 write_fp_sreg(s, rd, tcg_single);
6192 tcg_temp_free_i32(tcg_single);
6193 break;
6195 default:
6196 g_assert_not_reached();
6198 } else {
6199 TCGv_i64 tcg_int = cpu_reg(s, rd);
6200 TCGv_i32 tcg_rmode;
6202 if (extract32(opcode, 2, 1)) {
6203 /* There are too many rounding modes to all fit into rmode,
6204 * so FCVTA[US] is a special case.
6206 rmode = FPROUNDING_TIEAWAY;
6209 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
6211 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
6213 switch (type) {
6214 case 1: /* float64 */
6215 tcg_double = read_fp_dreg(s, rn);
6216 if (is_signed) {
6217 if (!sf) {
6218 gen_helper_vfp_tosld(tcg_int, tcg_double,
6219 tcg_shift, tcg_fpstatus);
6220 } else {
6221 gen_helper_vfp_tosqd(tcg_int, tcg_double,
6222 tcg_shift, tcg_fpstatus);
6224 } else {
6225 if (!sf) {
6226 gen_helper_vfp_tould(tcg_int, tcg_double,
6227 tcg_shift, tcg_fpstatus);
6228 } else {
6229 gen_helper_vfp_touqd(tcg_int, tcg_double,
6230 tcg_shift, tcg_fpstatus);
6233 if (!sf) {
6234 tcg_gen_ext32u_i64(tcg_int, tcg_int);
6236 tcg_temp_free_i64(tcg_double);
6237 break;
6239 case 0: /* float32 */
6240 tcg_single = read_fp_sreg(s, rn);
6241 if (sf) {
6242 if (is_signed) {
6243 gen_helper_vfp_tosqs(tcg_int, tcg_single,
6244 tcg_shift, tcg_fpstatus);
6245 } else {
6246 gen_helper_vfp_touqs(tcg_int, tcg_single,
6247 tcg_shift, tcg_fpstatus);
6249 } else {
6250 TCGv_i32 tcg_dest = tcg_temp_new_i32();
6251 if (is_signed) {
6252 gen_helper_vfp_tosls(tcg_dest, tcg_single,
6253 tcg_shift, tcg_fpstatus);
6254 } else {
6255 gen_helper_vfp_touls(tcg_dest, tcg_single,
6256 tcg_shift, tcg_fpstatus);
6258 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
6259 tcg_temp_free_i32(tcg_dest);
6261 tcg_temp_free_i32(tcg_single);
6262 break;
6264 case 3: /* float16 */
6265 tcg_single = read_fp_sreg(s, rn);
6266 if (sf) {
6267 if (is_signed) {
6268 gen_helper_vfp_tosqh(tcg_int, tcg_single,
6269 tcg_shift, tcg_fpstatus);
6270 } else {
6271 gen_helper_vfp_touqh(tcg_int, tcg_single,
6272 tcg_shift, tcg_fpstatus);
6274 } else {
6275 TCGv_i32 tcg_dest = tcg_temp_new_i32();
6276 if (is_signed) {
6277 gen_helper_vfp_toslh(tcg_dest, tcg_single,
6278 tcg_shift, tcg_fpstatus);
6279 } else {
6280 gen_helper_vfp_toulh(tcg_dest, tcg_single,
6281 tcg_shift, tcg_fpstatus);
6283 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
6284 tcg_temp_free_i32(tcg_dest);
6286 tcg_temp_free_i32(tcg_single);
6287 break;
6289 default:
6290 g_assert_not_reached();
6293 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
6294 tcg_temp_free_i32(tcg_rmode);
6297 tcg_temp_free_ptr(tcg_fpstatus);
6298 tcg_temp_free_i32(tcg_shift);
6301 /* Floating point <-> fixed point conversions
6302 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
6303 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
6304 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
6305 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
6307 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
6309 int rd = extract32(insn, 0, 5);
6310 int rn = extract32(insn, 5, 5);
6311 int scale = extract32(insn, 10, 6);
6312 int opcode = extract32(insn, 16, 3);
6313 int rmode = extract32(insn, 19, 2);
6314 int type = extract32(insn, 22, 2);
6315 bool sbit = extract32(insn, 29, 1);
6316 bool sf = extract32(insn, 31, 1);
6317 bool itof;
6319 if (sbit || (!sf && scale < 32)) {
6320 unallocated_encoding(s);
6321 return;
6324 switch (type) {
6325 case 0: /* float32 */
6326 case 1: /* float64 */
6327 break;
6328 case 3: /* float16 */
6329 if (dc_isar_feature(aa64_fp16, s)) {
6330 break;
6332 /* fallthru */
6333 default:
6334 unallocated_encoding(s);
6335 return;
6338 switch ((rmode << 3) | opcode) {
6339 case 0x2: /* SCVTF */
6340 case 0x3: /* UCVTF */
6341 itof = true;
6342 break;
6343 case 0x18: /* FCVTZS */
6344 case 0x19: /* FCVTZU */
6345 itof = false;
6346 break;
6347 default:
6348 unallocated_encoding(s);
6349 return;
6352 if (!fp_access_check(s)) {
6353 return;
6356 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
6359 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
6361 /* FMOV: gpr to or from float, double, or top half of quad fp reg,
6362 * without conversion.
6365 if (itof) {
6366 TCGv_i64 tcg_rn = cpu_reg(s, rn);
6367 TCGv_i64 tmp;
6369 switch (type) {
6370 case 0:
6371 /* 32 bit */
6372 tmp = tcg_temp_new_i64();
6373 tcg_gen_ext32u_i64(tmp, tcg_rn);
6374 write_fp_dreg(s, rd, tmp);
6375 tcg_temp_free_i64(tmp);
6376 break;
6377 case 1:
6378 /* 64 bit */
6379 write_fp_dreg(s, rd, tcg_rn);
6380 break;
6381 case 2:
6382 /* 64 bit to top half. */
6383 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd));
6384 clear_vec_high(s, true, rd);
6385 break;
6386 case 3:
6387 /* 16 bit */
6388 tmp = tcg_temp_new_i64();
6389 tcg_gen_ext16u_i64(tmp, tcg_rn);
6390 write_fp_dreg(s, rd, tmp);
6391 tcg_temp_free_i64(tmp);
6392 break;
6393 default:
6394 g_assert_not_reached();
6396 } else {
6397 TCGv_i64 tcg_rd = cpu_reg(s, rd);
6399 switch (type) {
6400 case 0:
6401 /* 32 bit */
6402 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32));
6403 break;
6404 case 1:
6405 /* 64 bit */
6406 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64));
6407 break;
6408 case 2:
6409 /* 64 bits from top half */
6410 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn));
6411 break;
6412 case 3:
6413 /* 16 bit */
6414 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16));
6415 break;
6416 default:
6417 g_assert_not_reached();
6422 /* Floating point <-> integer conversions
6423 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
6424 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
6425 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
6426 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
6428 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
6430 int rd = extract32(insn, 0, 5);
6431 int rn = extract32(insn, 5, 5);
6432 int opcode = extract32(insn, 16, 3);
6433 int rmode = extract32(insn, 19, 2);
6434 int type = extract32(insn, 22, 2);
6435 bool sbit = extract32(insn, 29, 1);
6436 bool sf = extract32(insn, 31, 1);
6438 if (sbit) {
6439 unallocated_encoding(s);
6440 return;
6443 if (opcode > 5) {
6444 /* FMOV */
6445 bool itof = opcode & 1;
6447 if (rmode >= 2) {
6448 unallocated_encoding(s);
6449 return;
6452 switch (sf << 3 | type << 1 | rmode) {
6453 case 0x0: /* 32 bit */
6454 case 0xa: /* 64 bit */
6455 case 0xd: /* 64 bit to top half of quad */
6456 break;
6457 case 0x6: /* 16-bit float, 32-bit int */
6458 case 0xe: /* 16-bit float, 64-bit int */
6459 if (dc_isar_feature(aa64_fp16, s)) {
6460 break;
6462 /* fallthru */
6463 default:
6464 /* all other sf/type/rmode combinations are invalid */
6465 unallocated_encoding(s);
6466 return;
6469 if (!fp_access_check(s)) {
6470 return;
6472 handle_fmov(s, rd, rn, type, itof);
6473 } else {
6474 /* actual FP conversions */
6475 bool itof = extract32(opcode, 1, 1);
6477 if (rmode != 0 && opcode > 1) {
6478 unallocated_encoding(s);
6479 return;
6481 switch (type) {
6482 case 0: /* float32 */
6483 case 1: /* float64 */
6484 break;
6485 case 3: /* float16 */
6486 if (dc_isar_feature(aa64_fp16, s)) {
6487 break;
6489 /* fallthru */
6490 default:
6491 unallocated_encoding(s);
6492 return;
6495 if (!fp_access_check(s)) {
6496 return;
6498 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
6502 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
6503 * 31 30 29 28 25 24 0
6504 * +---+---+---+---------+-----------------------------+
6505 * | | 0 | | 1 1 1 1 | |
6506 * +---+---+---+---------+-----------------------------+
6508 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
6510 if (extract32(insn, 24, 1)) {
6511 /* Floating point data-processing (3 source) */
6512 disas_fp_3src(s, insn);
6513 } else if (extract32(insn, 21, 1) == 0) {
6514 /* Floating point to fixed point conversions */
6515 disas_fp_fixed_conv(s, insn);
6516 } else {
6517 switch (extract32(insn, 10, 2)) {
6518 case 1:
6519 /* Floating point conditional compare */
6520 disas_fp_ccomp(s, insn);
6521 break;
6522 case 2:
6523 /* Floating point data-processing (2 source) */
6524 disas_fp_2src(s, insn);
6525 break;
6526 case 3:
6527 /* Floating point conditional select */
6528 disas_fp_csel(s, insn);
6529 break;
6530 case 0:
6531 switch (ctz32(extract32(insn, 12, 4))) {
6532 case 0: /* [15:12] == xxx1 */
6533 /* Floating point immediate */
6534 disas_fp_imm(s, insn);
6535 break;
6536 case 1: /* [15:12] == xx10 */
6537 /* Floating point compare */
6538 disas_fp_compare(s, insn);
6539 break;
6540 case 2: /* [15:12] == x100 */
6541 /* Floating point data-processing (1 source) */
6542 disas_fp_1src(s, insn);
6543 break;
6544 case 3: /* [15:12] == 1000 */
6545 unallocated_encoding(s);
6546 break;
6547 default: /* [15:12] == 0000 */
6548 /* Floating point <-> integer conversions */
6549 disas_fp_int_conv(s, insn);
6550 break;
6552 break;
6557 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
6558 int pos)
6560 /* Extract 64 bits from the middle of two concatenated 64 bit
6561 * vector register slices left:right. The extracted bits start
6562 * at 'pos' bits into the right (least significant) side.
6563 * We return the result in tcg_right, and guarantee not to
6564 * trash tcg_left.
6566 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
6567 assert(pos > 0 && pos < 64);
6569 tcg_gen_shri_i64(tcg_right, tcg_right, pos);
6570 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
6571 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
6573 tcg_temp_free_i64(tcg_tmp);
6576 /* EXT
6577 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
6578 * +---+---+-------------+-----+---+------+---+------+---+------+------+
6579 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
6580 * +---+---+-------------+-----+---+------+---+------+---+------+------+
6582 static void disas_simd_ext(DisasContext *s, uint32_t insn)
6584 int is_q = extract32(insn, 30, 1);
6585 int op2 = extract32(insn, 22, 2);
6586 int imm4 = extract32(insn, 11, 4);
6587 int rm = extract32(insn, 16, 5);
6588 int rn = extract32(insn, 5, 5);
6589 int rd = extract32(insn, 0, 5);
6590 int pos = imm4 << 3;
6591 TCGv_i64 tcg_resl, tcg_resh;
6593 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
6594 unallocated_encoding(s);
6595 return;
6598 if (!fp_access_check(s)) {
6599 return;
6602 tcg_resh = tcg_temp_new_i64();
6603 tcg_resl = tcg_temp_new_i64();
6605 /* Vd gets bits starting at pos bits into Vm:Vn. This is
6606 * either extracting 128 bits from a 128:128 concatenation, or
6607 * extracting 64 bits from a 64:64 concatenation.
6609 if (!is_q) {
6610 read_vec_element(s, tcg_resl, rn, 0, MO_64);
6611 if (pos != 0) {
6612 read_vec_element(s, tcg_resh, rm, 0, MO_64);
6613 do_ext64(s, tcg_resh, tcg_resl, pos);
6615 tcg_gen_movi_i64(tcg_resh, 0);
6616 } else {
6617 TCGv_i64 tcg_hh;
6618 typedef struct {
6619 int reg;
6620 int elt;
6621 } EltPosns;
6622 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
6623 EltPosns *elt = eltposns;
6625 if (pos >= 64) {
6626 elt++;
6627 pos -= 64;
6630 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
6631 elt++;
6632 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
6633 elt++;
6634 if (pos != 0) {
6635 do_ext64(s, tcg_resh, tcg_resl, pos);
6636 tcg_hh = tcg_temp_new_i64();
6637 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
6638 do_ext64(s, tcg_hh, tcg_resh, pos);
6639 tcg_temp_free_i64(tcg_hh);
6643 write_vec_element(s, tcg_resl, rd, 0, MO_64);
6644 tcg_temp_free_i64(tcg_resl);
6645 write_vec_element(s, tcg_resh, rd, 1, MO_64);
6646 tcg_temp_free_i64(tcg_resh);
6649 /* TBL/TBX
6650 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
6651 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
6652 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
6653 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
6655 static void disas_simd_tb(DisasContext *s, uint32_t insn)
6657 int op2 = extract32(insn, 22, 2);
6658 int is_q = extract32(insn, 30, 1);
6659 int rm = extract32(insn, 16, 5);
6660 int rn = extract32(insn, 5, 5);
6661 int rd = extract32(insn, 0, 5);
6662 int is_tblx = extract32(insn, 12, 1);
6663 int len = extract32(insn, 13, 2);
6664 TCGv_i64 tcg_resl, tcg_resh, tcg_idx;
6665 TCGv_i32 tcg_regno, tcg_numregs;
6667 if (op2 != 0) {
6668 unallocated_encoding(s);
6669 return;
6672 if (!fp_access_check(s)) {
6673 return;
6676 /* This does a table lookup: for every byte element in the input
6677 * we index into a table formed from up to four vector registers,
6678 * and then the output is the result of the lookups. Our helper
6679 * function does the lookup operation for a single 64 bit part of
6680 * the input.
6682 tcg_resl = tcg_temp_new_i64();
6683 tcg_resh = tcg_temp_new_i64();
6685 if (is_tblx) {
6686 read_vec_element(s, tcg_resl, rd, 0, MO_64);
6687 } else {
6688 tcg_gen_movi_i64(tcg_resl, 0);
6690 if (is_tblx && is_q) {
6691 read_vec_element(s, tcg_resh, rd, 1, MO_64);
6692 } else {
6693 tcg_gen_movi_i64(tcg_resh, 0);
6696 tcg_idx = tcg_temp_new_i64();
6697 tcg_regno = tcg_const_i32(rn);
6698 tcg_numregs = tcg_const_i32(len + 1);
6699 read_vec_element(s, tcg_idx, rm, 0, MO_64);
6700 gen_helper_simd_tbl(tcg_resl, cpu_env, tcg_resl, tcg_idx,
6701 tcg_regno, tcg_numregs);
6702 if (is_q) {
6703 read_vec_element(s, tcg_idx, rm, 1, MO_64);
6704 gen_helper_simd_tbl(tcg_resh, cpu_env, tcg_resh, tcg_idx,
6705 tcg_regno, tcg_numregs);
6707 tcg_temp_free_i64(tcg_idx);
6708 tcg_temp_free_i32(tcg_regno);
6709 tcg_temp_free_i32(tcg_numregs);
6711 write_vec_element(s, tcg_resl, rd, 0, MO_64);
6712 tcg_temp_free_i64(tcg_resl);
6713 write_vec_element(s, tcg_resh, rd, 1, MO_64);
6714 tcg_temp_free_i64(tcg_resh);
6717 /* ZIP/UZP/TRN
6718 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
6719 * +---+---+-------------+------+---+------+---+------------------+------+
6720 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
6721 * +---+---+-------------+------+---+------+---+------------------+------+
6723 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
6725 int rd = extract32(insn, 0, 5);
6726 int rn = extract32(insn, 5, 5);
6727 int rm = extract32(insn, 16, 5);
6728 int size = extract32(insn, 22, 2);
6729 /* opc field bits [1:0] indicate ZIP/UZP/TRN;
6730 * bit 2 indicates 1 vs 2 variant of the insn.
6732 int opcode = extract32(insn, 12, 2);
6733 bool part = extract32(insn, 14, 1);
6734 bool is_q = extract32(insn, 30, 1);
6735 int esize = 8 << size;
6736 int i, ofs;
6737 int datasize = is_q ? 128 : 64;
6738 int elements = datasize / esize;
6739 TCGv_i64 tcg_res, tcg_resl, tcg_resh;
6741 if (opcode == 0 || (size == 3 && !is_q)) {
6742 unallocated_encoding(s);
6743 return;
6746 if (!fp_access_check(s)) {
6747 return;
6750 tcg_resl = tcg_const_i64(0);
6751 tcg_resh = tcg_const_i64(0);
6752 tcg_res = tcg_temp_new_i64();
6754 for (i = 0; i < elements; i++) {
6755 switch (opcode) {
6756 case 1: /* UZP1/2 */
6758 int midpoint = elements / 2;
6759 if (i < midpoint) {
6760 read_vec_element(s, tcg_res, rn, 2 * i + part, size);
6761 } else {
6762 read_vec_element(s, tcg_res, rm,
6763 2 * (i - midpoint) + part, size);
6765 break;
6767 case 2: /* TRN1/2 */
6768 if (i & 1) {
6769 read_vec_element(s, tcg_res, rm, (i & ~1) + part, size);
6770 } else {
6771 read_vec_element(s, tcg_res, rn, (i & ~1) + part, size);
6773 break;
6774 case 3: /* ZIP1/2 */
6776 int base = part * elements / 2;
6777 if (i & 1) {
6778 read_vec_element(s, tcg_res, rm, base + (i >> 1), size);
6779 } else {
6780 read_vec_element(s, tcg_res, rn, base + (i >> 1), size);
6782 break;
6784 default:
6785 g_assert_not_reached();
6788 ofs = i * esize;
6789 if (ofs < 64) {
6790 tcg_gen_shli_i64(tcg_res, tcg_res, ofs);
6791 tcg_gen_or_i64(tcg_resl, tcg_resl, tcg_res);
6792 } else {
6793 tcg_gen_shli_i64(tcg_res, tcg_res, ofs - 64);
6794 tcg_gen_or_i64(tcg_resh, tcg_resh, tcg_res);
6798 tcg_temp_free_i64(tcg_res);
6800 write_vec_element(s, tcg_resl, rd, 0, MO_64);
6801 tcg_temp_free_i64(tcg_resl);
6802 write_vec_element(s, tcg_resh, rd, 1, MO_64);
6803 tcg_temp_free_i64(tcg_resh);
6807 * do_reduction_op helper
6809 * This mirrors the Reduce() pseudocode in the ARM ARM. It is
6810 * important for correct NaN propagation that we do these
6811 * operations in exactly the order specified by the pseudocode.
6813 * This is a recursive function, TCG temps should be freed by the
6814 * calling function once it is done with the values.
6816 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
6817 int esize, int size, int vmap, TCGv_ptr fpst)
6819 if (esize == size) {
6820 int element;
6821 TCGMemOp msize = esize == 16 ? MO_16 : MO_32;
6822 TCGv_i32 tcg_elem;
6824 /* We should have one register left here */
6825 assert(ctpop8(vmap) == 1);
6826 element = ctz32(vmap);
6827 assert(element < 8);
6829 tcg_elem = tcg_temp_new_i32();
6830 read_vec_element_i32(s, tcg_elem, rn, element, msize);
6831 return tcg_elem;
6832 } else {
6833 int bits = size / 2;
6834 int shift = ctpop8(vmap) / 2;
6835 int vmap_lo = (vmap >> shift) & vmap;
6836 int vmap_hi = (vmap & ~vmap_lo);
6837 TCGv_i32 tcg_hi, tcg_lo, tcg_res;
6839 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
6840 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
6841 tcg_res = tcg_temp_new_i32();
6843 switch (fpopcode) {
6844 case 0x0c: /* fmaxnmv half-precision */
6845 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
6846 break;
6847 case 0x0f: /* fmaxv half-precision */
6848 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
6849 break;
6850 case 0x1c: /* fminnmv half-precision */
6851 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
6852 break;
6853 case 0x1f: /* fminv half-precision */
6854 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
6855 break;
6856 case 0x2c: /* fmaxnmv */
6857 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
6858 break;
6859 case 0x2f: /* fmaxv */
6860 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
6861 break;
6862 case 0x3c: /* fminnmv */
6863 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
6864 break;
6865 case 0x3f: /* fminv */
6866 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
6867 break;
6868 default:
6869 g_assert_not_reached();
6872 tcg_temp_free_i32(tcg_hi);
6873 tcg_temp_free_i32(tcg_lo);
6874 return tcg_res;
6878 /* AdvSIMD across lanes
6879 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
6880 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
6881 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
6882 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
6884 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
6886 int rd = extract32(insn, 0, 5);
6887 int rn = extract32(insn, 5, 5);
6888 int size = extract32(insn, 22, 2);
6889 int opcode = extract32(insn, 12, 5);
6890 bool is_q = extract32(insn, 30, 1);
6891 bool is_u = extract32(insn, 29, 1);
6892 bool is_fp = false;
6893 bool is_min = false;
6894 int esize;
6895 int elements;
6896 int i;
6897 TCGv_i64 tcg_res, tcg_elt;
6899 switch (opcode) {
6900 case 0x1b: /* ADDV */
6901 if (is_u) {
6902 unallocated_encoding(s);
6903 return;
6905 /* fall through */
6906 case 0x3: /* SADDLV, UADDLV */
6907 case 0xa: /* SMAXV, UMAXV */
6908 case 0x1a: /* SMINV, UMINV */
6909 if (size == 3 || (size == 2 && !is_q)) {
6910 unallocated_encoding(s);
6911 return;
6913 break;
6914 case 0xc: /* FMAXNMV, FMINNMV */
6915 case 0xf: /* FMAXV, FMINV */
6916 /* Bit 1 of size field encodes min vs max and the actual size
6917 * depends on the encoding of the U bit. If not set (and FP16
6918 * enabled) then we do half-precision float instead of single
6919 * precision.
6921 is_min = extract32(size, 1, 1);
6922 is_fp = true;
6923 if (!is_u && dc_isar_feature(aa64_fp16, s)) {
6924 size = 1;
6925 } else if (!is_u || !is_q || extract32(size, 0, 1)) {
6926 unallocated_encoding(s);
6927 return;
6928 } else {
6929 size = 2;
6931 break;
6932 default:
6933 unallocated_encoding(s);
6934 return;
6937 if (!fp_access_check(s)) {
6938 return;
6941 esize = 8 << size;
6942 elements = (is_q ? 128 : 64) / esize;
6944 tcg_res = tcg_temp_new_i64();
6945 tcg_elt = tcg_temp_new_i64();
6947 /* These instructions operate across all lanes of a vector
6948 * to produce a single result. We can guarantee that a 64
6949 * bit intermediate is sufficient:
6950 * + for [US]ADDLV the maximum element size is 32 bits, and
6951 * the result type is 64 bits
6952 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the
6953 * same as the element size, which is 32 bits at most
6954 * For the integer operations we can choose to work at 64
6955 * or 32 bits and truncate at the end; for simplicity
6956 * we use 64 bits always. The floating point
6957 * ops do require 32 bit intermediates, though.
6959 if (!is_fp) {
6960 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
6962 for (i = 1; i < elements; i++) {
6963 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
6965 switch (opcode) {
6966 case 0x03: /* SADDLV / UADDLV */
6967 case 0x1b: /* ADDV */
6968 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
6969 break;
6970 case 0x0a: /* SMAXV / UMAXV */
6971 if (is_u) {
6972 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
6973 } else {
6974 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
6976 break;
6977 case 0x1a: /* SMINV / UMINV */
6978 if (is_u) {
6979 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
6980 } else {
6981 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
6983 break;
6984 default:
6985 g_assert_not_reached();
6989 } else {
6990 /* Floating point vector reduction ops which work across 32
6991 * bit (single) or 16 bit (half-precision) intermediates.
6992 * Note that correct NaN propagation requires that we do these
6993 * operations in exactly the order specified by the pseudocode.
6995 TCGv_ptr fpst = get_fpstatus_ptr(size == MO_16);
6996 int fpopcode = opcode | is_min << 4 | is_u << 5;
6997 int vmap = (1 << elements) - 1;
6998 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
6999 (is_q ? 128 : 64), vmap, fpst);
7000 tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
7001 tcg_temp_free_i32(tcg_res32);
7002 tcg_temp_free_ptr(fpst);
7005 tcg_temp_free_i64(tcg_elt);
7007 /* Now truncate the result to the width required for the final output */
7008 if (opcode == 0x03) {
7009 /* SADDLV, UADDLV: result is 2*esize */
7010 size++;
7013 switch (size) {
7014 case 0:
7015 tcg_gen_ext8u_i64(tcg_res, tcg_res);
7016 break;
7017 case 1:
7018 tcg_gen_ext16u_i64(tcg_res, tcg_res);
7019 break;
7020 case 2:
7021 tcg_gen_ext32u_i64(tcg_res, tcg_res);
7022 break;
7023 case 3:
7024 break;
7025 default:
7026 g_assert_not_reached();
7029 write_fp_dreg(s, rd, tcg_res);
7030 tcg_temp_free_i64(tcg_res);
7033 /* DUP (Element, Vector)
7035 * 31 30 29 21 20 16 15 10 9 5 4 0
7036 * +---+---+-------------------+--------+-------------+------+------+
7037 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
7038 * +---+---+-------------------+--------+-------------+------+------+
7040 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7042 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
7043 int imm5)
7045 int size = ctz32(imm5);
7046 int index = imm5 >> (size + 1);
7048 if (size > 3 || (size == 3 && !is_q)) {
7049 unallocated_encoding(s);
7050 return;
7053 if (!fp_access_check(s)) {
7054 return;
7057 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd),
7058 vec_reg_offset(s, rn, index, size),
7059 is_q ? 16 : 8, vec_full_reg_size(s));
7062 /* DUP (element, scalar)
7063 * 31 21 20 16 15 10 9 5 4 0
7064 * +-----------------------+--------+-------------+------+------+
7065 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
7066 * +-----------------------+--------+-------------+------+------+
7068 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
7069 int imm5)
7071 int size = ctz32(imm5);
7072 int index;
7073 TCGv_i64 tmp;
7075 if (size > 3) {
7076 unallocated_encoding(s);
7077 return;
7080 if (!fp_access_check(s)) {
7081 return;
7084 index = imm5 >> (size + 1);
7086 /* This instruction just extracts the specified element and
7087 * zero-extends it into the bottom of the destination register.
7089 tmp = tcg_temp_new_i64();
7090 read_vec_element(s, tmp, rn, index, size);
7091 write_fp_dreg(s, rd, tmp);
7092 tcg_temp_free_i64(tmp);
7095 /* DUP (General)
7097 * 31 30 29 21 20 16 15 10 9 5 4 0
7098 * +---+---+-------------------+--------+-------------+------+------+
7099 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd |
7100 * +---+---+-------------------+--------+-------------+------+------+
7102 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7104 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
7105 int imm5)
7107 int size = ctz32(imm5);
7108 uint32_t dofs, oprsz, maxsz;
7110 if (size > 3 || ((size == 3) && !is_q)) {
7111 unallocated_encoding(s);
7112 return;
7115 if (!fp_access_check(s)) {
7116 return;
7119 dofs = vec_full_reg_offset(s, rd);
7120 oprsz = is_q ? 16 : 8;
7121 maxsz = vec_full_reg_size(s);
7123 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn));
7126 /* INS (Element)
7128 * 31 21 20 16 15 14 11 10 9 5 4 0
7129 * +-----------------------+--------+------------+---+------+------+
7130 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7131 * +-----------------------+--------+------------+---+------+------+
7133 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7134 * index: encoded in imm5<4:size+1>
7136 static void handle_simd_inse(DisasContext *s, int rd, int rn,
7137 int imm4, int imm5)
7139 int size = ctz32(imm5);
7140 int src_index, dst_index;
7141 TCGv_i64 tmp;
7143 if (size > 3) {
7144 unallocated_encoding(s);
7145 return;
7148 if (!fp_access_check(s)) {
7149 return;
7152 dst_index = extract32(imm5, 1+size, 5);
7153 src_index = extract32(imm4, size, 4);
7155 tmp = tcg_temp_new_i64();
7157 read_vec_element(s, tmp, rn, src_index, size);
7158 write_vec_element(s, tmp, rd, dst_index, size);
7160 tcg_temp_free_i64(tmp);
7164 /* INS (General)
7166 * 31 21 20 16 15 10 9 5 4 0
7167 * +-----------------------+--------+-------------+------+------+
7168 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd |
7169 * +-----------------------+--------+-------------+------+------+
7171 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7172 * index: encoded in imm5<4:size+1>
7174 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
7176 int size = ctz32(imm5);
7177 int idx;
7179 if (size > 3) {
7180 unallocated_encoding(s);
7181 return;
7184 if (!fp_access_check(s)) {
7185 return;
7188 idx = extract32(imm5, 1 + size, 4 - size);
7189 write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
7193 * UMOV (General)
7194 * SMOV (General)
7196 * 31 30 29 21 20 16 15 12 10 9 5 4 0
7197 * +---+---+-------------------+--------+-------------+------+------+
7198 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd |
7199 * +---+---+-------------------+--------+-------------+------+------+
7201 * U: unsigned when set
7202 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7204 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
7205 int rn, int rd, int imm5)
7207 int size = ctz32(imm5);
7208 int element;
7209 TCGv_i64 tcg_rd;
7211 /* Check for UnallocatedEncodings */
7212 if (is_signed) {
7213 if (size > 2 || (size == 2 && !is_q)) {
7214 unallocated_encoding(s);
7215 return;
7217 } else {
7218 if (size > 3
7219 || (size < 3 && is_q)
7220 || (size == 3 && !is_q)) {
7221 unallocated_encoding(s);
7222 return;
7226 if (!fp_access_check(s)) {
7227 return;
7230 element = extract32(imm5, 1+size, 4);
7232 tcg_rd = cpu_reg(s, rd);
7233 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
7234 if (is_signed && !is_q) {
7235 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
7239 /* AdvSIMD copy
7240 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
7241 * +---+---+----+-----------------+------+---+------+---+------+------+
7242 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7243 * +---+---+----+-----------------+------+---+------+---+------+------+
7245 static void disas_simd_copy(DisasContext *s, uint32_t insn)
7247 int rd = extract32(insn, 0, 5);
7248 int rn = extract32(insn, 5, 5);
7249 int imm4 = extract32(insn, 11, 4);
7250 int op = extract32(insn, 29, 1);
7251 int is_q = extract32(insn, 30, 1);
7252 int imm5 = extract32(insn, 16, 5);
7254 if (op) {
7255 if (is_q) {
7256 /* INS (element) */
7257 handle_simd_inse(s, rd, rn, imm4, imm5);
7258 } else {
7259 unallocated_encoding(s);
7261 } else {
7262 switch (imm4) {
7263 case 0:
7264 /* DUP (element - vector) */
7265 handle_simd_dupe(s, is_q, rd, rn, imm5);
7266 break;
7267 case 1:
7268 /* DUP (general) */
7269 handle_simd_dupg(s, is_q, rd, rn, imm5);
7270 break;
7271 case 3:
7272 if (is_q) {
7273 /* INS (general) */
7274 handle_simd_insg(s, rd, rn, imm5);
7275 } else {
7276 unallocated_encoding(s);
7278 break;
7279 case 5:
7280 case 7:
7281 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
7282 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
7283 break;
7284 default:
7285 unallocated_encoding(s);
7286 break;
7291 /* AdvSIMD modified immediate
7292 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
7293 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
7294 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
7295 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
7297 * There are a number of operations that can be carried out here:
7298 * MOVI - move (shifted) imm into register
7299 * MVNI - move inverted (shifted) imm into register
7300 * ORR - bitwise OR of (shifted) imm with register
7301 * BIC - bitwise clear of (shifted) imm with register
7302 * With ARMv8.2 we also have:
7303 * FMOV half-precision
7305 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
7307 int rd = extract32(insn, 0, 5);
7308 int cmode = extract32(insn, 12, 4);
7309 int cmode_3_1 = extract32(cmode, 1, 3);
7310 int cmode_0 = extract32(cmode, 0, 1);
7311 int o2 = extract32(insn, 11, 1);
7312 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
7313 bool is_neg = extract32(insn, 29, 1);
7314 bool is_q = extract32(insn, 30, 1);
7315 uint64_t imm = 0;
7317 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
7318 /* Check for FMOV (vector, immediate) - half-precision */
7319 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) {
7320 unallocated_encoding(s);
7321 return;
7325 if (!fp_access_check(s)) {
7326 return;
7329 /* See AdvSIMDExpandImm() in ARM ARM */
7330 switch (cmode_3_1) {
7331 case 0: /* Replicate(Zeros(24):imm8, 2) */
7332 case 1: /* Replicate(Zeros(16):imm8:Zeros(8), 2) */
7333 case 2: /* Replicate(Zeros(8):imm8:Zeros(16), 2) */
7334 case 3: /* Replicate(imm8:Zeros(24), 2) */
7336 int shift = cmode_3_1 * 8;
7337 imm = bitfield_replicate(abcdefgh << shift, 32);
7338 break;
7340 case 4: /* Replicate(Zeros(8):imm8, 4) */
7341 case 5: /* Replicate(imm8:Zeros(8), 4) */
7343 int shift = (cmode_3_1 & 0x1) * 8;
7344 imm = bitfield_replicate(abcdefgh << shift, 16);
7345 break;
7347 case 6:
7348 if (cmode_0) {
7349 /* Replicate(Zeros(8):imm8:Ones(16), 2) */
7350 imm = (abcdefgh << 16) | 0xffff;
7351 } else {
7352 /* Replicate(Zeros(16):imm8:Ones(8), 2) */
7353 imm = (abcdefgh << 8) | 0xff;
7355 imm = bitfield_replicate(imm, 32);
7356 break;
7357 case 7:
7358 if (!cmode_0 && !is_neg) {
7359 imm = bitfield_replicate(abcdefgh, 8);
7360 } else if (!cmode_0 && is_neg) {
7361 int i;
7362 imm = 0;
7363 for (i = 0; i < 8; i++) {
7364 if ((abcdefgh) & (1 << i)) {
7365 imm |= 0xffULL << (i * 8);
7368 } else if (cmode_0) {
7369 if (is_neg) {
7370 imm = (abcdefgh & 0x3f) << 48;
7371 if (abcdefgh & 0x80) {
7372 imm |= 0x8000000000000000ULL;
7374 if (abcdefgh & 0x40) {
7375 imm |= 0x3fc0000000000000ULL;
7376 } else {
7377 imm |= 0x4000000000000000ULL;
7379 } else {
7380 if (o2) {
7381 /* FMOV (vector, immediate) - half-precision */
7382 imm = vfp_expand_imm(MO_16, abcdefgh);
7383 /* now duplicate across the lanes */
7384 imm = bitfield_replicate(imm, 16);
7385 } else {
7386 imm = (abcdefgh & 0x3f) << 19;
7387 if (abcdefgh & 0x80) {
7388 imm |= 0x80000000;
7390 if (abcdefgh & 0x40) {
7391 imm |= 0x3e000000;
7392 } else {
7393 imm |= 0x40000000;
7395 imm |= (imm << 32);
7399 break;
7400 default:
7401 fprintf(stderr, "%s: cmode_3_1: %x\n", __func__, cmode_3_1);
7402 g_assert_not_reached();
7405 if (cmode_3_1 != 7 && is_neg) {
7406 imm = ~imm;
7409 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
7410 /* MOVI or MVNI, with MVNI negation handled above. */
7411 tcg_gen_gvec_dup64i(vec_full_reg_offset(s, rd), is_q ? 16 : 8,
7412 vec_full_reg_size(s), imm);
7413 } else {
7414 /* ORR or BIC, with BIC negation to AND handled above. */
7415 if (is_neg) {
7416 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
7417 } else {
7418 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
7423 /* AdvSIMD scalar copy
7424 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
7425 * +-----+----+-----------------+------+---+------+---+------+------+
7426 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7427 * +-----+----+-----------------+------+---+------+---+------+------+
7429 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
7431 int rd = extract32(insn, 0, 5);
7432 int rn = extract32(insn, 5, 5);
7433 int imm4 = extract32(insn, 11, 4);
7434 int imm5 = extract32(insn, 16, 5);
7435 int op = extract32(insn, 29, 1);
7437 if (op != 0 || imm4 != 0) {
7438 unallocated_encoding(s);
7439 return;
7442 /* DUP (element, scalar) */
7443 handle_simd_dupes(s, rd, rn, imm5);
7446 /* AdvSIMD scalar pairwise
7447 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
7448 * +-----+---+-----------+------+-----------+--------+-----+------+------+
7449 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
7450 * +-----+---+-----------+------+-----------+--------+-----+------+------+
7452 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
7454 int u = extract32(insn, 29, 1);
7455 int size = extract32(insn, 22, 2);
7456 int opcode = extract32(insn, 12, 5);
7457 int rn = extract32(insn, 5, 5);
7458 int rd = extract32(insn, 0, 5);
7459 TCGv_ptr fpst;
7461 /* For some ops (the FP ones), size[1] is part of the encoding.
7462 * For ADDP strictly it is not but size[1] is always 1 for valid
7463 * encodings.
7465 opcode |= (extract32(size, 1, 1) << 5);
7467 switch (opcode) {
7468 case 0x3b: /* ADDP */
7469 if (u || size != 3) {
7470 unallocated_encoding(s);
7471 return;
7473 if (!fp_access_check(s)) {
7474 return;
7477 fpst = NULL;
7478 break;
7479 case 0xc: /* FMAXNMP */
7480 case 0xd: /* FADDP */
7481 case 0xf: /* FMAXP */
7482 case 0x2c: /* FMINNMP */
7483 case 0x2f: /* FMINP */
7484 /* FP op, size[0] is 32 or 64 bit*/
7485 if (!u) {
7486 if (!dc_isar_feature(aa64_fp16, s)) {
7487 unallocated_encoding(s);
7488 return;
7489 } else {
7490 size = MO_16;
7492 } else {
7493 size = extract32(size, 0, 1) ? MO_64 : MO_32;
7496 if (!fp_access_check(s)) {
7497 return;
7500 fpst = get_fpstatus_ptr(size == MO_16);
7501 break;
7502 default:
7503 unallocated_encoding(s);
7504 return;
7507 if (size == MO_64) {
7508 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
7509 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
7510 TCGv_i64 tcg_res = tcg_temp_new_i64();
7512 read_vec_element(s, tcg_op1, rn, 0, MO_64);
7513 read_vec_element(s, tcg_op2, rn, 1, MO_64);
7515 switch (opcode) {
7516 case 0x3b: /* ADDP */
7517 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
7518 break;
7519 case 0xc: /* FMAXNMP */
7520 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7521 break;
7522 case 0xd: /* FADDP */
7523 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
7524 break;
7525 case 0xf: /* FMAXP */
7526 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
7527 break;
7528 case 0x2c: /* FMINNMP */
7529 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7530 break;
7531 case 0x2f: /* FMINP */
7532 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
7533 break;
7534 default:
7535 g_assert_not_reached();
7538 write_fp_dreg(s, rd, tcg_res);
7540 tcg_temp_free_i64(tcg_op1);
7541 tcg_temp_free_i64(tcg_op2);
7542 tcg_temp_free_i64(tcg_res);
7543 } else {
7544 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
7545 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
7546 TCGv_i32 tcg_res = tcg_temp_new_i32();
7548 read_vec_element_i32(s, tcg_op1, rn, 0, size);
7549 read_vec_element_i32(s, tcg_op2, rn, 1, size);
7551 if (size == MO_16) {
7552 switch (opcode) {
7553 case 0xc: /* FMAXNMP */
7554 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
7555 break;
7556 case 0xd: /* FADDP */
7557 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
7558 break;
7559 case 0xf: /* FMAXP */
7560 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
7561 break;
7562 case 0x2c: /* FMINNMP */
7563 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
7564 break;
7565 case 0x2f: /* FMINP */
7566 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
7567 break;
7568 default:
7569 g_assert_not_reached();
7571 } else {
7572 switch (opcode) {
7573 case 0xc: /* FMAXNMP */
7574 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
7575 break;
7576 case 0xd: /* FADDP */
7577 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
7578 break;
7579 case 0xf: /* FMAXP */
7580 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
7581 break;
7582 case 0x2c: /* FMINNMP */
7583 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
7584 break;
7585 case 0x2f: /* FMINP */
7586 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
7587 break;
7588 default:
7589 g_assert_not_reached();
7593 write_fp_sreg(s, rd, tcg_res);
7595 tcg_temp_free_i32(tcg_op1);
7596 tcg_temp_free_i32(tcg_op2);
7597 tcg_temp_free_i32(tcg_res);
7600 if (fpst) {
7601 tcg_temp_free_ptr(fpst);
7606 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
7608 * This code is handles the common shifting code and is used by both
7609 * the vector and scalar code.
7611 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
7612 TCGv_i64 tcg_rnd, bool accumulate,
7613 bool is_u, int size, int shift)
7615 bool extended_result = false;
7616 bool round = tcg_rnd != NULL;
7617 int ext_lshift = 0;
7618 TCGv_i64 tcg_src_hi;
7620 if (round && size == 3) {
7621 extended_result = true;
7622 ext_lshift = 64 - shift;
7623 tcg_src_hi = tcg_temp_new_i64();
7624 } else if (shift == 64) {
7625 if (!accumulate && is_u) {
7626 /* result is zero */
7627 tcg_gen_movi_i64(tcg_res, 0);
7628 return;
7632 /* Deal with the rounding step */
7633 if (round) {
7634 if (extended_result) {
7635 TCGv_i64 tcg_zero = tcg_const_i64(0);
7636 if (!is_u) {
7637 /* take care of sign extending tcg_res */
7638 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
7639 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
7640 tcg_src, tcg_src_hi,
7641 tcg_rnd, tcg_zero);
7642 } else {
7643 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
7644 tcg_src, tcg_zero,
7645 tcg_rnd, tcg_zero);
7647 tcg_temp_free_i64(tcg_zero);
7648 } else {
7649 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
7653 /* Now do the shift right */
7654 if (round && extended_result) {
7655 /* extended case, >64 bit precision required */
7656 if (ext_lshift == 0) {
7657 /* special case, only high bits matter */
7658 tcg_gen_mov_i64(tcg_src, tcg_src_hi);
7659 } else {
7660 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
7661 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
7662 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
7664 } else {
7665 if (is_u) {
7666 if (shift == 64) {
7667 /* essentially shifting in 64 zeros */
7668 tcg_gen_movi_i64(tcg_src, 0);
7669 } else {
7670 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
7672 } else {
7673 if (shift == 64) {
7674 /* effectively extending the sign-bit */
7675 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
7676 } else {
7677 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
7682 if (accumulate) {
7683 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
7684 } else {
7685 tcg_gen_mov_i64(tcg_res, tcg_src);
7688 if (extended_result) {
7689 tcg_temp_free_i64(tcg_src_hi);
7693 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
7694 static void handle_scalar_simd_shri(DisasContext *s,
7695 bool is_u, int immh, int immb,
7696 int opcode, int rn, int rd)
7698 const int size = 3;
7699 int immhb = immh << 3 | immb;
7700 int shift = 2 * (8 << size) - immhb;
7701 bool accumulate = false;
7702 bool round = false;
7703 bool insert = false;
7704 TCGv_i64 tcg_rn;
7705 TCGv_i64 tcg_rd;
7706 TCGv_i64 tcg_round;
7708 if (!extract32(immh, 3, 1)) {
7709 unallocated_encoding(s);
7710 return;
7713 if (!fp_access_check(s)) {
7714 return;
7717 switch (opcode) {
7718 case 0x02: /* SSRA / USRA (accumulate) */
7719 accumulate = true;
7720 break;
7721 case 0x04: /* SRSHR / URSHR (rounding) */
7722 round = true;
7723 break;
7724 case 0x06: /* SRSRA / URSRA (accum + rounding) */
7725 accumulate = round = true;
7726 break;
7727 case 0x08: /* SRI */
7728 insert = true;
7729 break;
7732 if (round) {
7733 uint64_t round_const = 1ULL << (shift - 1);
7734 tcg_round = tcg_const_i64(round_const);
7735 } else {
7736 tcg_round = NULL;
7739 tcg_rn = read_fp_dreg(s, rn);
7740 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
7742 if (insert) {
7743 /* shift count same as element size is valid but does nothing;
7744 * special case to avoid potential shift by 64.
7746 int esize = 8 << size;
7747 if (shift != esize) {
7748 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
7749 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
7751 } else {
7752 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
7753 accumulate, is_u, size, shift);
7756 write_fp_dreg(s, rd, tcg_rd);
7758 tcg_temp_free_i64(tcg_rn);
7759 tcg_temp_free_i64(tcg_rd);
7760 if (round) {
7761 tcg_temp_free_i64(tcg_round);
7765 /* SHL/SLI - Scalar shift left */
7766 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
7767 int immh, int immb, int opcode,
7768 int rn, int rd)
7770 int size = 32 - clz32(immh) - 1;
7771 int immhb = immh << 3 | immb;
7772 int shift = immhb - (8 << size);
7773 TCGv_i64 tcg_rn = new_tmp_a64(s);
7774 TCGv_i64 tcg_rd = new_tmp_a64(s);
7776 if (!extract32(immh, 3, 1)) {
7777 unallocated_encoding(s);
7778 return;
7781 if (!fp_access_check(s)) {
7782 return;
7785 tcg_rn = read_fp_dreg(s, rn);
7786 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
7788 if (insert) {
7789 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
7790 } else {
7791 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
7794 write_fp_dreg(s, rd, tcg_rd);
7796 tcg_temp_free_i64(tcg_rn);
7797 tcg_temp_free_i64(tcg_rd);
7800 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
7801 * (signed/unsigned) narrowing */
7802 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
7803 bool is_u_shift, bool is_u_narrow,
7804 int immh, int immb, int opcode,
7805 int rn, int rd)
7807 int immhb = immh << 3 | immb;
7808 int size = 32 - clz32(immh) - 1;
7809 int esize = 8 << size;
7810 int shift = (2 * esize) - immhb;
7811 int elements = is_scalar ? 1 : (64 / esize);
7812 bool round = extract32(opcode, 0, 1);
7813 TCGMemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
7814 TCGv_i64 tcg_rn, tcg_rd, tcg_round;
7815 TCGv_i32 tcg_rd_narrowed;
7816 TCGv_i64 tcg_final;
7818 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
7819 { gen_helper_neon_narrow_sat_s8,
7820 gen_helper_neon_unarrow_sat8 },
7821 { gen_helper_neon_narrow_sat_s16,
7822 gen_helper_neon_unarrow_sat16 },
7823 { gen_helper_neon_narrow_sat_s32,
7824 gen_helper_neon_unarrow_sat32 },
7825 { NULL, NULL },
7827 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
7828 gen_helper_neon_narrow_sat_u8,
7829 gen_helper_neon_narrow_sat_u16,
7830 gen_helper_neon_narrow_sat_u32,
7831 NULL
7833 NeonGenNarrowEnvFn *narrowfn;
7835 int i;
7837 assert(size < 4);
7839 if (extract32(immh, 3, 1)) {
7840 unallocated_encoding(s);
7841 return;
7844 if (!fp_access_check(s)) {
7845 return;
7848 if (is_u_shift) {
7849 narrowfn = unsigned_narrow_fns[size];
7850 } else {
7851 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
7854 tcg_rn = tcg_temp_new_i64();
7855 tcg_rd = tcg_temp_new_i64();
7856 tcg_rd_narrowed = tcg_temp_new_i32();
7857 tcg_final = tcg_const_i64(0);
7859 if (round) {
7860 uint64_t round_const = 1ULL << (shift - 1);
7861 tcg_round = tcg_const_i64(round_const);
7862 } else {
7863 tcg_round = NULL;
7866 for (i = 0; i < elements; i++) {
7867 read_vec_element(s, tcg_rn, rn, i, ldop);
7868 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
7869 false, is_u_shift, size+1, shift);
7870 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd);
7871 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
7872 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
7875 if (!is_q) {
7876 write_vec_element(s, tcg_final, rd, 0, MO_64);
7877 } else {
7878 write_vec_element(s, tcg_final, rd, 1, MO_64);
7881 if (round) {
7882 tcg_temp_free_i64(tcg_round);
7884 tcg_temp_free_i64(tcg_rn);
7885 tcg_temp_free_i64(tcg_rd);
7886 tcg_temp_free_i32(tcg_rd_narrowed);
7887 tcg_temp_free_i64(tcg_final);
7889 clear_vec_high(s, is_q, rd);
7892 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
7893 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
7894 bool src_unsigned, bool dst_unsigned,
7895 int immh, int immb, int rn, int rd)
7897 int immhb = immh << 3 | immb;
7898 int size = 32 - clz32(immh) - 1;
7899 int shift = immhb - (8 << size);
7900 int pass;
7902 assert(immh != 0);
7903 assert(!(scalar && is_q));
7905 if (!scalar) {
7906 if (!is_q && extract32(immh, 3, 1)) {
7907 unallocated_encoding(s);
7908 return;
7911 /* Since we use the variable-shift helpers we must
7912 * replicate the shift count into each element of
7913 * the tcg_shift value.
7915 switch (size) {
7916 case 0:
7917 shift |= shift << 8;
7918 /* fall through */
7919 case 1:
7920 shift |= shift << 16;
7921 break;
7922 case 2:
7923 case 3:
7924 break;
7925 default:
7926 g_assert_not_reached();
7930 if (!fp_access_check(s)) {
7931 return;
7934 if (size == 3) {
7935 TCGv_i64 tcg_shift = tcg_const_i64(shift);
7936 static NeonGenTwo64OpEnvFn * const fns[2][2] = {
7937 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
7938 { NULL, gen_helper_neon_qshl_u64 },
7940 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
7941 int maxpass = is_q ? 2 : 1;
7943 for (pass = 0; pass < maxpass; pass++) {
7944 TCGv_i64 tcg_op = tcg_temp_new_i64();
7946 read_vec_element(s, tcg_op, rn, pass, MO_64);
7947 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
7948 write_vec_element(s, tcg_op, rd, pass, MO_64);
7950 tcg_temp_free_i64(tcg_op);
7952 tcg_temp_free_i64(tcg_shift);
7953 clear_vec_high(s, is_q, rd);
7954 } else {
7955 TCGv_i32 tcg_shift = tcg_const_i32(shift);
7956 static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
7958 { gen_helper_neon_qshl_s8,
7959 gen_helper_neon_qshl_s16,
7960 gen_helper_neon_qshl_s32 },
7961 { gen_helper_neon_qshlu_s8,
7962 gen_helper_neon_qshlu_s16,
7963 gen_helper_neon_qshlu_s32 }
7964 }, {
7965 { NULL, NULL, NULL },
7966 { gen_helper_neon_qshl_u8,
7967 gen_helper_neon_qshl_u16,
7968 gen_helper_neon_qshl_u32 }
7971 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
7972 TCGMemOp memop = scalar ? size : MO_32;
7973 int maxpass = scalar ? 1 : is_q ? 4 : 2;
7975 for (pass = 0; pass < maxpass; pass++) {
7976 TCGv_i32 tcg_op = tcg_temp_new_i32();
7978 read_vec_element_i32(s, tcg_op, rn, pass, memop);
7979 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
7980 if (scalar) {
7981 switch (size) {
7982 case 0:
7983 tcg_gen_ext8u_i32(tcg_op, tcg_op);
7984 break;
7985 case 1:
7986 tcg_gen_ext16u_i32(tcg_op, tcg_op);
7987 break;
7988 case 2:
7989 break;
7990 default:
7991 g_assert_not_reached();
7993 write_fp_sreg(s, rd, tcg_op);
7994 } else {
7995 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
7998 tcg_temp_free_i32(tcg_op);
8000 tcg_temp_free_i32(tcg_shift);
8002 if (!scalar) {
8003 clear_vec_high(s, is_q, rd);
8008 /* Common vector code for handling integer to FP conversion */
8009 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
8010 int elements, int is_signed,
8011 int fracbits, int size)
8013 TCGv_ptr tcg_fpst = get_fpstatus_ptr(size == MO_16);
8014 TCGv_i32 tcg_shift = NULL;
8016 TCGMemOp mop = size | (is_signed ? MO_SIGN : 0);
8017 int pass;
8019 if (fracbits || size == MO_64) {
8020 tcg_shift = tcg_const_i32(fracbits);
8023 if (size == MO_64) {
8024 TCGv_i64 tcg_int64 = tcg_temp_new_i64();
8025 TCGv_i64 tcg_double = tcg_temp_new_i64();
8027 for (pass = 0; pass < elements; pass++) {
8028 read_vec_element(s, tcg_int64, rn, pass, mop);
8030 if (is_signed) {
8031 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
8032 tcg_shift, tcg_fpst);
8033 } else {
8034 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
8035 tcg_shift, tcg_fpst);
8037 if (elements == 1) {
8038 write_fp_dreg(s, rd, tcg_double);
8039 } else {
8040 write_vec_element(s, tcg_double, rd, pass, MO_64);
8044 tcg_temp_free_i64(tcg_int64);
8045 tcg_temp_free_i64(tcg_double);
8047 } else {
8048 TCGv_i32 tcg_int32 = tcg_temp_new_i32();
8049 TCGv_i32 tcg_float = tcg_temp_new_i32();
8051 for (pass = 0; pass < elements; pass++) {
8052 read_vec_element_i32(s, tcg_int32, rn, pass, mop);
8054 switch (size) {
8055 case MO_32:
8056 if (fracbits) {
8057 if (is_signed) {
8058 gen_helper_vfp_sltos(tcg_float, tcg_int32,
8059 tcg_shift, tcg_fpst);
8060 } else {
8061 gen_helper_vfp_ultos(tcg_float, tcg_int32,
8062 tcg_shift, tcg_fpst);
8064 } else {
8065 if (is_signed) {
8066 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
8067 } else {
8068 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
8071 break;
8072 case MO_16:
8073 if (fracbits) {
8074 if (is_signed) {
8075 gen_helper_vfp_sltoh(tcg_float, tcg_int32,
8076 tcg_shift, tcg_fpst);
8077 } else {
8078 gen_helper_vfp_ultoh(tcg_float, tcg_int32,
8079 tcg_shift, tcg_fpst);
8081 } else {
8082 if (is_signed) {
8083 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
8084 } else {
8085 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
8088 break;
8089 default:
8090 g_assert_not_reached();
8093 if (elements == 1) {
8094 write_fp_sreg(s, rd, tcg_float);
8095 } else {
8096 write_vec_element_i32(s, tcg_float, rd, pass, size);
8100 tcg_temp_free_i32(tcg_int32);
8101 tcg_temp_free_i32(tcg_float);
8104 tcg_temp_free_ptr(tcg_fpst);
8105 if (tcg_shift) {
8106 tcg_temp_free_i32(tcg_shift);
8109 clear_vec_high(s, elements << size == 16, rd);
8112 /* UCVTF/SCVTF - Integer to FP conversion */
8113 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
8114 bool is_q, bool is_u,
8115 int immh, int immb, int opcode,
8116 int rn, int rd)
8118 int size, elements, fracbits;
8119 int immhb = immh << 3 | immb;
8121 if (immh & 8) {
8122 size = MO_64;
8123 if (!is_scalar && !is_q) {
8124 unallocated_encoding(s);
8125 return;
8127 } else if (immh & 4) {
8128 size = MO_32;
8129 } else if (immh & 2) {
8130 size = MO_16;
8131 if (!dc_isar_feature(aa64_fp16, s)) {
8132 unallocated_encoding(s);
8133 return;
8135 } else {
8136 /* immh == 0 would be a failure of the decode logic */
8137 g_assert(immh == 1);
8138 unallocated_encoding(s);
8139 return;
8142 if (is_scalar) {
8143 elements = 1;
8144 } else {
8145 elements = (8 << is_q) >> size;
8147 fracbits = (16 << size) - immhb;
8149 if (!fp_access_check(s)) {
8150 return;
8153 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
8156 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
8157 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
8158 bool is_q, bool is_u,
8159 int immh, int immb, int rn, int rd)
8161 int immhb = immh << 3 | immb;
8162 int pass, size, fracbits;
8163 TCGv_ptr tcg_fpstatus;
8164 TCGv_i32 tcg_rmode, tcg_shift;
8166 if (immh & 0x8) {
8167 size = MO_64;
8168 if (!is_scalar && !is_q) {
8169 unallocated_encoding(s);
8170 return;
8172 } else if (immh & 0x4) {
8173 size = MO_32;
8174 } else if (immh & 0x2) {
8175 size = MO_16;
8176 if (!dc_isar_feature(aa64_fp16, s)) {
8177 unallocated_encoding(s);
8178 return;
8180 } else {
8181 /* Should have split out AdvSIMD modified immediate earlier. */
8182 assert(immh == 1);
8183 unallocated_encoding(s);
8184 return;
8187 if (!fp_access_check(s)) {
8188 return;
8191 assert(!(is_scalar && is_q));
8193 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(FPROUNDING_ZERO));
8194 tcg_fpstatus = get_fpstatus_ptr(size == MO_16);
8195 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
8196 fracbits = (16 << size) - immhb;
8197 tcg_shift = tcg_const_i32(fracbits);
8199 if (size == MO_64) {
8200 int maxpass = is_scalar ? 1 : 2;
8202 for (pass = 0; pass < maxpass; pass++) {
8203 TCGv_i64 tcg_op = tcg_temp_new_i64();
8205 read_vec_element(s, tcg_op, rn, pass, MO_64);
8206 if (is_u) {
8207 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8208 } else {
8209 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8211 write_vec_element(s, tcg_op, rd, pass, MO_64);
8212 tcg_temp_free_i64(tcg_op);
8214 clear_vec_high(s, is_q, rd);
8215 } else {
8216 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
8217 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
8219 switch (size) {
8220 case MO_16:
8221 if (is_u) {
8222 fn = gen_helper_vfp_touhh;
8223 } else {
8224 fn = gen_helper_vfp_toshh;
8226 break;
8227 case MO_32:
8228 if (is_u) {
8229 fn = gen_helper_vfp_touls;
8230 } else {
8231 fn = gen_helper_vfp_tosls;
8233 break;
8234 default:
8235 g_assert_not_reached();
8238 for (pass = 0; pass < maxpass; pass++) {
8239 TCGv_i32 tcg_op = tcg_temp_new_i32();
8241 read_vec_element_i32(s, tcg_op, rn, pass, size);
8242 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8243 if (is_scalar) {
8244 write_fp_sreg(s, rd, tcg_op);
8245 } else {
8246 write_vec_element_i32(s, tcg_op, rd, pass, size);
8248 tcg_temp_free_i32(tcg_op);
8250 if (!is_scalar) {
8251 clear_vec_high(s, is_q, rd);
8255 tcg_temp_free_ptr(tcg_fpstatus);
8256 tcg_temp_free_i32(tcg_shift);
8257 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
8258 tcg_temp_free_i32(tcg_rmode);
8261 /* AdvSIMD scalar shift by immediate
8262 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
8263 * +-----+---+-------------+------+------+--------+---+------+------+
8264 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
8265 * +-----+---+-------------+------+------+--------+---+------+------+
8267 * This is the scalar version so it works on a fixed sized registers
8269 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
8271 int rd = extract32(insn, 0, 5);
8272 int rn = extract32(insn, 5, 5);
8273 int opcode = extract32(insn, 11, 5);
8274 int immb = extract32(insn, 16, 3);
8275 int immh = extract32(insn, 19, 4);
8276 bool is_u = extract32(insn, 29, 1);
8278 if (immh == 0) {
8279 unallocated_encoding(s);
8280 return;
8283 switch (opcode) {
8284 case 0x08: /* SRI */
8285 if (!is_u) {
8286 unallocated_encoding(s);
8287 return;
8289 /* fall through */
8290 case 0x00: /* SSHR / USHR */
8291 case 0x02: /* SSRA / USRA */
8292 case 0x04: /* SRSHR / URSHR */
8293 case 0x06: /* SRSRA / URSRA */
8294 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
8295 break;
8296 case 0x0a: /* SHL / SLI */
8297 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
8298 break;
8299 case 0x1c: /* SCVTF, UCVTF */
8300 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
8301 opcode, rn, rd);
8302 break;
8303 case 0x10: /* SQSHRUN, SQSHRUN2 */
8304 case 0x11: /* SQRSHRUN, SQRSHRUN2 */
8305 if (!is_u) {
8306 unallocated_encoding(s);
8307 return;
8309 handle_vec_simd_sqshrn(s, true, false, false, true,
8310 immh, immb, opcode, rn, rd);
8311 break;
8312 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
8313 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
8314 handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
8315 immh, immb, opcode, rn, rd);
8316 break;
8317 case 0xc: /* SQSHLU */
8318 if (!is_u) {
8319 unallocated_encoding(s);
8320 return;
8322 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
8323 break;
8324 case 0xe: /* SQSHL, UQSHL */
8325 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
8326 break;
8327 case 0x1f: /* FCVTZS, FCVTZU */
8328 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
8329 break;
8330 default:
8331 unallocated_encoding(s);
8332 break;
8336 /* AdvSIMD scalar three different
8337 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
8338 * +-----+---+-----------+------+---+------+--------+-----+------+------+
8339 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
8340 * +-----+---+-----------+------+---+------+--------+-----+------+------+
8342 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
8344 bool is_u = extract32(insn, 29, 1);
8345 int size = extract32(insn, 22, 2);
8346 int opcode = extract32(insn, 12, 4);
8347 int rm = extract32(insn, 16, 5);
8348 int rn = extract32(insn, 5, 5);
8349 int rd = extract32(insn, 0, 5);
8351 if (is_u) {
8352 unallocated_encoding(s);
8353 return;
8356 switch (opcode) {
8357 case 0x9: /* SQDMLAL, SQDMLAL2 */
8358 case 0xb: /* SQDMLSL, SQDMLSL2 */
8359 case 0xd: /* SQDMULL, SQDMULL2 */
8360 if (size == 0 || size == 3) {
8361 unallocated_encoding(s);
8362 return;
8364 break;
8365 default:
8366 unallocated_encoding(s);
8367 return;
8370 if (!fp_access_check(s)) {
8371 return;
8374 if (size == 2) {
8375 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8376 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8377 TCGv_i64 tcg_res = tcg_temp_new_i64();
8379 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
8380 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
8382 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
8383 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res);
8385 switch (opcode) {
8386 case 0xd: /* SQDMULL, SQDMULL2 */
8387 break;
8388 case 0xb: /* SQDMLSL, SQDMLSL2 */
8389 tcg_gen_neg_i64(tcg_res, tcg_res);
8390 /* fall through */
8391 case 0x9: /* SQDMLAL, SQDMLAL2 */
8392 read_vec_element(s, tcg_op1, rd, 0, MO_64);
8393 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env,
8394 tcg_res, tcg_op1);
8395 break;
8396 default:
8397 g_assert_not_reached();
8400 write_fp_dreg(s, rd, tcg_res);
8402 tcg_temp_free_i64(tcg_op1);
8403 tcg_temp_free_i64(tcg_op2);
8404 tcg_temp_free_i64(tcg_res);
8405 } else {
8406 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
8407 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
8408 TCGv_i64 tcg_res = tcg_temp_new_i64();
8410 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
8411 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res);
8413 switch (opcode) {
8414 case 0xd: /* SQDMULL, SQDMULL2 */
8415 break;
8416 case 0xb: /* SQDMLSL, SQDMLSL2 */
8417 gen_helper_neon_negl_u32(tcg_res, tcg_res);
8418 /* fall through */
8419 case 0x9: /* SQDMLAL, SQDMLAL2 */
8421 TCGv_i64 tcg_op3 = tcg_temp_new_i64();
8422 read_vec_element(s, tcg_op3, rd, 0, MO_32);
8423 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env,
8424 tcg_res, tcg_op3);
8425 tcg_temp_free_i64(tcg_op3);
8426 break;
8428 default:
8429 g_assert_not_reached();
8432 tcg_gen_ext32u_i64(tcg_res, tcg_res);
8433 write_fp_dreg(s, rd, tcg_res);
8435 tcg_temp_free_i32(tcg_op1);
8436 tcg_temp_free_i32(tcg_op2);
8437 tcg_temp_free_i64(tcg_res);
8441 static void handle_3same_64(DisasContext *s, int opcode, bool u,
8442 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
8444 /* Handle 64x64->64 opcodes which are shared between the scalar
8445 * and vector 3-same groups. We cover every opcode where size == 3
8446 * is valid in either the three-reg-same (integer, not pairwise)
8447 * or scalar-three-reg-same groups.
8449 TCGCond cond;
8451 switch (opcode) {
8452 case 0x1: /* SQADD */
8453 if (u) {
8454 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8455 } else {
8456 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8458 break;
8459 case 0x5: /* SQSUB */
8460 if (u) {
8461 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8462 } else {
8463 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8465 break;
8466 case 0x6: /* CMGT, CMHI */
8467 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
8468 * We implement this using setcond (test) and then negating.
8470 cond = u ? TCG_COND_GTU : TCG_COND_GT;
8471 do_cmop:
8472 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
8473 tcg_gen_neg_i64(tcg_rd, tcg_rd);
8474 break;
8475 case 0x7: /* CMGE, CMHS */
8476 cond = u ? TCG_COND_GEU : TCG_COND_GE;
8477 goto do_cmop;
8478 case 0x11: /* CMTST, CMEQ */
8479 if (u) {
8480 cond = TCG_COND_EQ;
8481 goto do_cmop;
8483 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
8484 break;
8485 case 0x8: /* SSHL, USHL */
8486 if (u) {
8487 gen_helper_neon_shl_u64(tcg_rd, tcg_rn, tcg_rm);
8488 } else {
8489 gen_helper_neon_shl_s64(tcg_rd, tcg_rn, tcg_rm);
8491 break;
8492 case 0x9: /* SQSHL, UQSHL */
8493 if (u) {
8494 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8495 } else {
8496 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8498 break;
8499 case 0xa: /* SRSHL, URSHL */
8500 if (u) {
8501 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
8502 } else {
8503 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
8505 break;
8506 case 0xb: /* SQRSHL, UQRSHL */
8507 if (u) {
8508 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8509 } else {
8510 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8512 break;
8513 case 0x10: /* ADD, SUB */
8514 if (u) {
8515 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
8516 } else {
8517 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
8519 break;
8520 default:
8521 g_assert_not_reached();
8525 /* Handle the 3-same-operands float operations; shared by the scalar
8526 * and vector encodings. The caller must filter out any encodings
8527 * not allocated for the encoding it is dealing with.
8529 static void handle_3same_float(DisasContext *s, int size, int elements,
8530 int fpopcode, int rd, int rn, int rm)
8532 int pass;
8533 TCGv_ptr fpst = get_fpstatus_ptr(false);
8535 for (pass = 0; pass < elements; pass++) {
8536 if (size) {
8537 /* Double */
8538 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8539 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8540 TCGv_i64 tcg_res = tcg_temp_new_i64();
8542 read_vec_element(s, tcg_op1, rn, pass, MO_64);
8543 read_vec_element(s, tcg_op2, rm, pass, MO_64);
8545 switch (fpopcode) {
8546 case 0x39: /* FMLS */
8547 /* As usual for ARM, separate negation for fused multiply-add */
8548 gen_helper_vfp_negd(tcg_op1, tcg_op1);
8549 /* fall through */
8550 case 0x19: /* FMLA */
8551 read_vec_element(s, tcg_res, rd, pass, MO_64);
8552 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
8553 tcg_res, fpst);
8554 break;
8555 case 0x18: /* FMAXNM */
8556 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8557 break;
8558 case 0x1a: /* FADD */
8559 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
8560 break;
8561 case 0x1b: /* FMULX */
8562 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
8563 break;
8564 case 0x1c: /* FCMEQ */
8565 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8566 break;
8567 case 0x1e: /* FMAX */
8568 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
8569 break;
8570 case 0x1f: /* FRECPS */
8571 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8572 break;
8573 case 0x38: /* FMINNM */
8574 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8575 break;
8576 case 0x3a: /* FSUB */
8577 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
8578 break;
8579 case 0x3e: /* FMIN */
8580 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
8581 break;
8582 case 0x3f: /* FRSQRTS */
8583 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8584 break;
8585 case 0x5b: /* FMUL */
8586 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
8587 break;
8588 case 0x5c: /* FCMGE */
8589 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8590 break;
8591 case 0x5d: /* FACGE */
8592 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8593 break;
8594 case 0x5f: /* FDIV */
8595 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
8596 break;
8597 case 0x7a: /* FABD */
8598 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
8599 gen_helper_vfp_absd(tcg_res, tcg_res);
8600 break;
8601 case 0x7c: /* FCMGT */
8602 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8603 break;
8604 case 0x7d: /* FACGT */
8605 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8606 break;
8607 default:
8608 g_assert_not_reached();
8611 write_vec_element(s, tcg_res, rd, pass, MO_64);
8613 tcg_temp_free_i64(tcg_res);
8614 tcg_temp_free_i64(tcg_op1);
8615 tcg_temp_free_i64(tcg_op2);
8616 } else {
8617 /* Single */
8618 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8619 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8620 TCGv_i32 tcg_res = tcg_temp_new_i32();
8622 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
8623 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
8625 switch (fpopcode) {
8626 case 0x39: /* FMLS */
8627 /* As usual for ARM, separate negation for fused multiply-add */
8628 gen_helper_vfp_negs(tcg_op1, tcg_op1);
8629 /* fall through */
8630 case 0x19: /* FMLA */
8631 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
8632 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
8633 tcg_res, fpst);
8634 break;
8635 case 0x1a: /* FADD */
8636 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
8637 break;
8638 case 0x1b: /* FMULX */
8639 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
8640 break;
8641 case 0x1c: /* FCMEQ */
8642 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8643 break;
8644 case 0x1e: /* FMAX */
8645 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
8646 break;
8647 case 0x1f: /* FRECPS */
8648 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8649 break;
8650 case 0x18: /* FMAXNM */
8651 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
8652 break;
8653 case 0x38: /* FMINNM */
8654 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
8655 break;
8656 case 0x3a: /* FSUB */
8657 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
8658 break;
8659 case 0x3e: /* FMIN */
8660 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
8661 break;
8662 case 0x3f: /* FRSQRTS */
8663 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8664 break;
8665 case 0x5b: /* FMUL */
8666 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
8667 break;
8668 case 0x5c: /* FCMGE */
8669 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8670 break;
8671 case 0x5d: /* FACGE */
8672 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8673 break;
8674 case 0x5f: /* FDIV */
8675 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
8676 break;
8677 case 0x7a: /* FABD */
8678 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
8679 gen_helper_vfp_abss(tcg_res, tcg_res);
8680 break;
8681 case 0x7c: /* FCMGT */
8682 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8683 break;
8684 case 0x7d: /* FACGT */
8685 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8686 break;
8687 default:
8688 g_assert_not_reached();
8691 if (elements == 1) {
8692 /* scalar single so clear high part */
8693 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
8695 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
8696 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
8697 tcg_temp_free_i64(tcg_tmp);
8698 } else {
8699 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
8702 tcg_temp_free_i32(tcg_res);
8703 tcg_temp_free_i32(tcg_op1);
8704 tcg_temp_free_i32(tcg_op2);
8708 tcg_temp_free_ptr(fpst);
8710 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd);
8713 /* AdvSIMD scalar three same
8714 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
8715 * +-----+---+-----------+------+---+------+--------+---+------+------+
8716 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
8717 * +-----+---+-----------+------+---+------+--------+---+------+------+
8719 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
8721 int rd = extract32(insn, 0, 5);
8722 int rn = extract32(insn, 5, 5);
8723 int opcode = extract32(insn, 11, 5);
8724 int rm = extract32(insn, 16, 5);
8725 int size = extract32(insn, 22, 2);
8726 bool u = extract32(insn, 29, 1);
8727 TCGv_i64 tcg_rd;
8729 if (opcode >= 0x18) {
8730 /* Floating point: U, size[1] and opcode indicate operation */
8731 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
8732 switch (fpopcode) {
8733 case 0x1b: /* FMULX */
8734 case 0x1f: /* FRECPS */
8735 case 0x3f: /* FRSQRTS */
8736 case 0x5d: /* FACGE */
8737 case 0x7d: /* FACGT */
8738 case 0x1c: /* FCMEQ */
8739 case 0x5c: /* FCMGE */
8740 case 0x7c: /* FCMGT */
8741 case 0x7a: /* FABD */
8742 break;
8743 default:
8744 unallocated_encoding(s);
8745 return;
8748 if (!fp_access_check(s)) {
8749 return;
8752 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
8753 return;
8756 switch (opcode) {
8757 case 0x1: /* SQADD, UQADD */
8758 case 0x5: /* SQSUB, UQSUB */
8759 case 0x9: /* SQSHL, UQSHL */
8760 case 0xb: /* SQRSHL, UQRSHL */
8761 break;
8762 case 0x8: /* SSHL, USHL */
8763 case 0xa: /* SRSHL, URSHL */
8764 case 0x6: /* CMGT, CMHI */
8765 case 0x7: /* CMGE, CMHS */
8766 case 0x11: /* CMTST, CMEQ */
8767 case 0x10: /* ADD, SUB (vector) */
8768 if (size != 3) {
8769 unallocated_encoding(s);
8770 return;
8772 break;
8773 case 0x16: /* SQDMULH, SQRDMULH (vector) */
8774 if (size != 1 && size != 2) {
8775 unallocated_encoding(s);
8776 return;
8778 break;
8779 default:
8780 unallocated_encoding(s);
8781 return;
8784 if (!fp_access_check(s)) {
8785 return;
8788 tcg_rd = tcg_temp_new_i64();
8790 if (size == 3) {
8791 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
8792 TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
8794 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
8795 tcg_temp_free_i64(tcg_rn);
8796 tcg_temp_free_i64(tcg_rm);
8797 } else {
8798 /* Do a single operation on the lowest element in the vector.
8799 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
8800 * no side effects for all these operations.
8801 * OPTME: special-purpose helpers would avoid doing some
8802 * unnecessary work in the helper for the 8 and 16 bit cases.
8804 NeonGenTwoOpEnvFn *genenvfn;
8805 TCGv_i32 tcg_rn = tcg_temp_new_i32();
8806 TCGv_i32 tcg_rm = tcg_temp_new_i32();
8807 TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
8809 read_vec_element_i32(s, tcg_rn, rn, 0, size);
8810 read_vec_element_i32(s, tcg_rm, rm, 0, size);
8812 switch (opcode) {
8813 case 0x1: /* SQADD, UQADD */
8815 static NeonGenTwoOpEnvFn * const fns[3][2] = {
8816 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
8817 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
8818 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
8820 genenvfn = fns[size][u];
8821 break;
8823 case 0x5: /* SQSUB, UQSUB */
8825 static NeonGenTwoOpEnvFn * const fns[3][2] = {
8826 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
8827 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
8828 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
8830 genenvfn = fns[size][u];
8831 break;
8833 case 0x9: /* SQSHL, UQSHL */
8835 static NeonGenTwoOpEnvFn * const fns[3][2] = {
8836 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
8837 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
8838 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
8840 genenvfn = fns[size][u];
8841 break;
8843 case 0xb: /* SQRSHL, UQRSHL */
8845 static NeonGenTwoOpEnvFn * const fns[3][2] = {
8846 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
8847 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
8848 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
8850 genenvfn = fns[size][u];
8851 break;
8853 case 0x16: /* SQDMULH, SQRDMULH */
8855 static NeonGenTwoOpEnvFn * const fns[2][2] = {
8856 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
8857 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
8859 assert(size == 1 || size == 2);
8860 genenvfn = fns[size - 1][u];
8861 break;
8863 default:
8864 g_assert_not_reached();
8867 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm);
8868 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
8869 tcg_temp_free_i32(tcg_rd32);
8870 tcg_temp_free_i32(tcg_rn);
8871 tcg_temp_free_i32(tcg_rm);
8874 write_fp_dreg(s, rd, tcg_rd);
8876 tcg_temp_free_i64(tcg_rd);
8879 /* AdvSIMD scalar three same FP16
8880 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
8881 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
8882 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
8883 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
8884 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
8885 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
8887 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s,
8888 uint32_t insn)
8890 int rd = extract32(insn, 0, 5);
8891 int rn = extract32(insn, 5, 5);
8892 int opcode = extract32(insn, 11, 3);
8893 int rm = extract32(insn, 16, 5);
8894 bool u = extract32(insn, 29, 1);
8895 bool a = extract32(insn, 23, 1);
8896 int fpopcode = opcode | (a << 3) | (u << 4);
8897 TCGv_ptr fpst;
8898 TCGv_i32 tcg_op1;
8899 TCGv_i32 tcg_op2;
8900 TCGv_i32 tcg_res;
8902 switch (fpopcode) {
8903 case 0x03: /* FMULX */
8904 case 0x04: /* FCMEQ (reg) */
8905 case 0x07: /* FRECPS */
8906 case 0x0f: /* FRSQRTS */
8907 case 0x14: /* FCMGE (reg) */
8908 case 0x15: /* FACGE */
8909 case 0x1a: /* FABD */
8910 case 0x1c: /* FCMGT (reg) */
8911 case 0x1d: /* FACGT */
8912 break;
8913 default:
8914 unallocated_encoding(s);
8915 return;
8918 if (!dc_isar_feature(aa64_fp16, s)) {
8919 unallocated_encoding(s);
8922 if (!fp_access_check(s)) {
8923 return;
8926 fpst = get_fpstatus_ptr(true);
8928 tcg_op1 = read_fp_hreg(s, rn);
8929 tcg_op2 = read_fp_hreg(s, rm);
8930 tcg_res = tcg_temp_new_i32();
8932 switch (fpopcode) {
8933 case 0x03: /* FMULX */
8934 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
8935 break;
8936 case 0x04: /* FCMEQ (reg) */
8937 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
8938 break;
8939 case 0x07: /* FRECPS */
8940 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
8941 break;
8942 case 0x0f: /* FRSQRTS */
8943 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
8944 break;
8945 case 0x14: /* FCMGE (reg) */
8946 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
8947 break;
8948 case 0x15: /* FACGE */
8949 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
8950 break;
8951 case 0x1a: /* FABD */
8952 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
8953 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
8954 break;
8955 case 0x1c: /* FCMGT (reg) */
8956 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
8957 break;
8958 case 0x1d: /* FACGT */
8959 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
8960 break;
8961 default:
8962 g_assert_not_reached();
8965 write_fp_sreg(s, rd, tcg_res);
8968 tcg_temp_free_i32(tcg_res);
8969 tcg_temp_free_i32(tcg_op1);
8970 tcg_temp_free_i32(tcg_op2);
8971 tcg_temp_free_ptr(fpst);
8974 /* AdvSIMD scalar three same extra
8975 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
8976 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
8977 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
8978 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
8980 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
8981 uint32_t insn)
8983 int rd = extract32(insn, 0, 5);
8984 int rn = extract32(insn, 5, 5);
8985 int opcode = extract32(insn, 11, 4);
8986 int rm = extract32(insn, 16, 5);
8987 int size = extract32(insn, 22, 2);
8988 bool u = extract32(insn, 29, 1);
8989 TCGv_i32 ele1, ele2, ele3;
8990 TCGv_i64 res;
8991 bool feature;
8993 switch (u * 16 + opcode) {
8994 case 0x10: /* SQRDMLAH (vector) */
8995 case 0x11: /* SQRDMLSH (vector) */
8996 if (size != 1 && size != 2) {
8997 unallocated_encoding(s);
8998 return;
9000 feature = dc_isar_feature(aa64_rdm, s);
9001 break;
9002 default:
9003 unallocated_encoding(s);
9004 return;
9006 if (!feature) {
9007 unallocated_encoding(s);
9008 return;
9010 if (!fp_access_check(s)) {
9011 return;
9014 /* Do a single operation on the lowest element in the vector.
9015 * We use the standard Neon helpers and rely on 0 OP 0 == 0
9016 * with no side effects for all these operations.
9017 * OPTME: special-purpose helpers would avoid doing some
9018 * unnecessary work in the helper for the 16 bit cases.
9020 ele1 = tcg_temp_new_i32();
9021 ele2 = tcg_temp_new_i32();
9022 ele3 = tcg_temp_new_i32();
9024 read_vec_element_i32(s, ele1, rn, 0, size);
9025 read_vec_element_i32(s, ele2, rm, 0, size);
9026 read_vec_element_i32(s, ele3, rd, 0, size);
9028 switch (opcode) {
9029 case 0x0: /* SQRDMLAH */
9030 if (size == 1) {
9031 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3);
9032 } else {
9033 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3);
9035 break;
9036 case 0x1: /* SQRDMLSH */
9037 if (size == 1) {
9038 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3);
9039 } else {
9040 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3);
9042 break;
9043 default:
9044 g_assert_not_reached();
9046 tcg_temp_free_i32(ele1);
9047 tcg_temp_free_i32(ele2);
9049 res = tcg_temp_new_i64();
9050 tcg_gen_extu_i32_i64(res, ele3);
9051 tcg_temp_free_i32(ele3);
9053 write_fp_dreg(s, rd, res);
9054 tcg_temp_free_i64(res);
9057 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9058 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9059 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9061 /* Handle 64->64 opcodes which are shared between the scalar and
9062 * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9063 * is valid in either group and also the double-precision fp ops.
9064 * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9065 * requires them.
9067 TCGCond cond;
9069 switch (opcode) {
9070 case 0x4: /* CLS, CLZ */
9071 if (u) {
9072 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9073 } else {
9074 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9076 break;
9077 case 0x5: /* NOT */
9078 /* This opcode is shared with CNT and RBIT but we have earlier
9079 * enforced that size == 3 if and only if this is the NOT insn.
9081 tcg_gen_not_i64(tcg_rd, tcg_rn);
9082 break;
9083 case 0x7: /* SQABS, SQNEG */
9084 if (u) {
9085 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn);
9086 } else {
9087 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn);
9089 break;
9090 case 0xa: /* CMLT */
9091 /* 64 bit integer comparison against zero, result is
9092 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and
9093 * subtracting 1.
9095 cond = TCG_COND_LT;
9096 do_cmop:
9097 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0);
9098 tcg_gen_neg_i64(tcg_rd, tcg_rd);
9099 break;
9100 case 0x8: /* CMGT, CMGE */
9101 cond = u ? TCG_COND_GE : TCG_COND_GT;
9102 goto do_cmop;
9103 case 0x9: /* CMEQ, CMLE */
9104 cond = u ? TCG_COND_LE : TCG_COND_EQ;
9105 goto do_cmop;
9106 case 0xb: /* ABS, NEG */
9107 if (u) {
9108 tcg_gen_neg_i64(tcg_rd, tcg_rn);
9109 } else {
9110 TCGv_i64 tcg_zero = tcg_const_i64(0);
9111 tcg_gen_neg_i64(tcg_rd, tcg_rn);
9112 tcg_gen_movcond_i64(TCG_COND_GT, tcg_rd, tcg_rn, tcg_zero,
9113 tcg_rn, tcg_rd);
9114 tcg_temp_free_i64(tcg_zero);
9116 break;
9117 case 0x2f: /* FABS */
9118 gen_helper_vfp_absd(tcg_rd, tcg_rn);
9119 break;
9120 case 0x6f: /* FNEG */
9121 gen_helper_vfp_negd(tcg_rd, tcg_rn);
9122 break;
9123 case 0x7f: /* FSQRT */
9124 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env);
9125 break;
9126 case 0x1a: /* FCVTNS */
9127 case 0x1b: /* FCVTMS */
9128 case 0x1c: /* FCVTAS */
9129 case 0x3a: /* FCVTPS */
9130 case 0x3b: /* FCVTZS */
9132 TCGv_i32 tcg_shift = tcg_const_i32(0);
9133 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
9134 tcg_temp_free_i32(tcg_shift);
9135 break;
9137 case 0x5a: /* FCVTNU */
9138 case 0x5b: /* FCVTMU */
9139 case 0x5c: /* FCVTAU */
9140 case 0x7a: /* FCVTPU */
9141 case 0x7b: /* FCVTZU */
9143 TCGv_i32 tcg_shift = tcg_const_i32(0);
9144 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
9145 tcg_temp_free_i32(tcg_shift);
9146 break;
9148 case 0x18: /* FRINTN */
9149 case 0x19: /* FRINTM */
9150 case 0x38: /* FRINTP */
9151 case 0x39: /* FRINTZ */
9152 case 0x58: /* FRINTA */
9153 case 0x79: /* FRINTI */
9154 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9155 break;
9156 case 0x59: /* FRINTX */
9157 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9158 break;
9159 default:
9160 g_assert_not_reached();
9164 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9165 bool is_scalar, bool is_u, bool is_q,
9166 int size, int rn, int rd)
9168 bool is_double = (size == MO_64);
9169 TCGv_ptr fpst;
9171 if (!fp_access_check(s)) {
9172 return;
9175 fpst = get_fpstatus_ptr(size == MO_16);
9177 if (is_double) {
9178 TCGv_i64 tcg_op = tcg_temp_new_i64();
9179 TCGv_i64 tcg_zero = tcg_const_i64(0);
9180 TCGv_i64 tcg_res = tcg_temp_new_i64();
9181 NeonGenTwoDoubleOPFn *genfn;
9182 bool swap = false;
9183 int pass;
9185 switch (opcode) {
9186 case 0x2e: /* FCMLT (zero) */
9187 swap = true;
9188 /* fallthrough */
9189 case 0x2c: /* FCMGT (zero) */
9190 genfn = gen_helper_neon_cgt_f64;
9191 break;
9192 case 0x2d: /* FCMEQ (zero) */
9193 genfn = gen_helper_neon_ceq_f64;
9194 break;
9195 case 0x6d: /* FCMLE (zero) */
9196 swap = true;
9197 /* fall through */
9198 case 0x6c: /* FCMGE (zero) */
9199 genfn = gen_helper_neon_cge_f64;
9200 break;
9201 default:
9202 g_assert_not_reached();
9205 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9206 read_vec_element(s, tcg_op, rn, pass, MO_64);
9207 if (swap) {
9208 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9209 } else {
9210 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9212 write_vec_element(s, tcg_res, rd, pass, MO_64);
9214 tcg_temp_free_i64(tcg_res);
9215 tcg_temp_free_i64(tcg_zero);
9216 tcg_temp_free_i64(tcg_op);
9218 clear_vec_high(s, !is_scalar, rd);
9219 } else {
9220 TCGv_i32 tcg_op = tcg_temp_new_i32();
9221 TCGv_i32 tcg_zero = tcg_const_i32(0);
9222 TCGv_i32 tcg_res = tcg_temp_new_i32();
9223 NeonGenTwoSingleOPFn *genfn;
9224 bool swap = false;
9225 int pass, maxpasses;
9227 if (size == MO_16) {
9228 switch (opcode) {
9229 case 0x2e: /* FCMLT (zero) */
9230 swap = true;
9231 /* fall through */
9232 case 0x2c: /* FCMGT (zero) */
9233 genfn = gen_helper_advsimd_cgt_f16;
9234 break;
9235 case 0x2d: /* FCMEQ (zero) */
9236 genfn = gen_helper_advsimd_ceq_f16;
9237 break;
9238 case 0x6d: /* FCMLE (zero) */
9239 swap = true;
9240 /* fall through */
9241 case 0x6c: /* FCMGE (zero) */
9242 genfn = gen_helper_advsimd_cge_f16;
9243 break;
9244 default:
9245 g_assert_not_reached();
9247 } else {
9248 switch (opcode) {
9249 case 0x2e: /* FCMLT (zero) */
9250 swap = true;
9251 /* fall through */
9252 case 0x2c: /* FCMGT (zero) */
9253 genfn = gen_helper_neon_cgt_f32;
9254 break;
9255 case 0x2d: /* FCMEQ (zero) */
9256 genfn = gen_helper_neon_ceq_f32;
9257 break;
9258 case 0x6d: /* FCMLE (zero) */
9259 swap = true;
9260 /* fall through */
9261 case 0x6c: /* FCMGE (zero) */
9262 genfn = gen_helper_neon_cge_f32;
9263 break;
9264 default:
9265 g_assert_not_reached();
9269 if (is_scalar) {
9270 maxpasses = 1;
9271 } else {
9272 int vector_size = 8 << is_q;
9273 maxpasses = vector_size >> size;
9276 for (pass = 0; pass < maxpasses; pass++) {
9277 read_vec_element_i32(s, tcg_op, rn, pass, size);
9278 if (swap) {
9279 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9280 } else {
9281 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9283 if (is_scalar) {
9284 write_fp_sreg(s, rd, tcg_res);
9285 } else {
9286 write_vec_element_i32(s, tcg_res, rd, pass, size);
9289 tcg_temp_free_i32(tcg_res);
9290 tcg_temp_free_i32(tcg_zero);
9291 tcg_temp_free_i32(tcg_op);
9292 if (!is_scalar) {
9293 clear_vec_high(s, is_q, rd);
9297 tcg_temp_free_ptr(fpst);
9300 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
9301 bool is_scalar, bool is_u, bool is_q,
9302 int size, int rn, int rd)
9304 bool is_double = (size == 3);
9305 TCGv_ptr fpst = get_fpstatus_ptr(false);
9307 if (is_double) {
9308 TCGv_i64 tcg_op = tcg_temp_new_i64();
9309 TCGv_i64 tcg_res = tcg_temp_new_i64();
9310 int pass;
9312 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9313 read_vec_element(s, tcg_op, rn, pass, MO_64);
9314 switch (opcode) {
9315 case 0x3d: /* FRECPE */
9316 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
9317 break;
9318 case 0x3f: /* FRECPX */
9319 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
9320 break;
9321 case 0x7d: /* FRSQRTE */
9322 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
9323 break;
9324 default:
9325 g_assert_not_reached();
9327 write_vec_element(s, tcg_res, rd, pass, MO_64);
9329 tcg_temp_free_i64(tcg_res);
9330 tcg_temp_free_i64(tcg_op);
9331 clear_vec_high(s, !is_scalar, rd);
9332 } else {
9333 TCGv_i32 tcg_op = tcg_temp_new_i32();
9334 TCGv_i32 tcg_res = tcg_temp_new_i32();
9335 int pass, maxpasses;
9337 if (is_scalar) {
9338 maxpasses = 1;
9339 } else {
9340 maxpasses = is_q ? 4 : 2;
9343 for (pass = 0; pass < maxpasses; pass++) {
9344 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
9346 switch (opcode) {
9347 case 0x3c: /* URECPE */
9348 gen_helper_recpe_u32(tcg_res, tcg_op, fpst);
9349 break;
9350 case 0x3d: /* FRECPE */
9351 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
9352 break;
9353 case 0x3f: /* FRECPX */
9354 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
9355 break;
9356 case 0x7d: /* FRSQRTE */
9357 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
9358 break;
9359 default:
9360 g_assert_not_reached();
9363 if (is_scalar) {
9364 write_fp_sreg(s, rd, tcg_res);
9365 } else {
9366 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9369 tcg_temp_free_i32(tcg_res);
9370 tcg_temp_free_i32(tcg_op);
9371 if (!is_scalar) {
9372 clear_vec_high(s, is_q, rd);
9375 tcg_temp_free_ptr(fpst);
9378 static void handle_2misc_narrow(DisasContext *s, bool scalar,
9379 int opcode, bool u, bool is_q,
9380 int size, int rn, int rd)
9382 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
9383 * in the source becomes a size element in the destination).
9385 int pass;
9386 TCGv_i32 tcg_res[2];
9387 int destelt = is_q ? 2 : 0;
9388 int passes = scalar ? 1 : 2;
9390 if (scalar) {
9391 tcg_res[1] = tcg_const_i32(0);
9394 for (pass = 0; pass < passes; pass++) {
9395 TCGv_i64 tcg_op = tcg_temp_new_i64();
9396 NeonGenNarrowFn *genfn = NULL;
9397 NeonGenNarrowEnvFn *genenvfn = NULL;
9399 if (scalar) {
9400 read_vec_element(s, tcg_op, rn, pass, size + 1);
9401 } else {
9402 read_vec_element(s, tcg_op, rn, pass, MO_64);
9404 tcg_res[pass] = tcg_temp_new_i32();
9406 switch (opcode) {
9407 case 0x12: /* XTN, SQXTUN */
9409 static NeonGenNarrowFn * const xtnfns[3] = {
9410 gen_helper_neon_narrow_u8,
9411 gen_helper_neon_narrow_u16,
9412 tcg_gen_extrl_i64_i32,
9414 static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
9415 gen_helper_neon_unarrow_sat8,
9416 gen_helper_neon_unarrow_sat16,
9417 gen_helper_neon_unarrow_sat32,
9419 if (u) {
9420 genenvfn = sqxtunfns[size];
9421 } else {
9422 genfn = xtnfns[size];
9424 break;
9426 case 0x14: /* SQXTN, UQXTN */
9428 static NeonGenNarrowEnvFn * const fns[3][2] = {
9429 { gen_helper_neon_narrow_sat_s8,
9430 gen_helper_neon_narrow_sat_u8 },
9431 { gen_helper_neon_narrow_sat_s16,
9432 gen_helper_neon_narrow_sat_u16 },
9433 { gen_helper_neon_narrow_sat_s32,
9434 gen_helper_neon_narrow_sat_u32 },
9436 genenvfn = fns[size][u];
9437 break;
9439 case 0x16: /* FCVTN, FCVTN2 */
9440 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
9441 if (size == 2) {
9442 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env);
9443 } else {
9444 TCGv_i32 tcg_lo = tcg_temp_new_i32();
9445 TCGv_i32 tcg_hi = tcg_temp_new_i32();
9446 TCGv_ptr fpst = get_fpstatus_ptr(false);
9447 TCGv_i32 ahp = get_ahp_flag();
9449 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
9450 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
9451 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
9452 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
9453 tcg_temp_free_i32(tcg_lo);
9454 tcg_temp_free_i32(tcg_hi);
9455 tcg_temp_free_ptr(fpst);
9456 tcg_temp_free_i32(ahp);
9458 break;
9459 case 0x56: /* FCVTXN, FCVTXN2 */
9460 /* 64 bit to 32 bit float conversion
9461 * with von Neumann rounding (round to odd)
9463 assert(size == 2);
9464 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env);
9465 break;
9466 default:
9467 g_assert_not_reached();
9470 if (genfn) {
9471 genfn(tcg_res[pass], tcg_op);
9472 } else if (genenvfn) {
9473 genenvfn(tcg_res[pass], cpu_env, tcg_op);
9476 tcg_temp_free_i64(tcg_op);
9479 for (pass = 0; pass < 2; pass++) {
9480 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
9481 tcg_temp_free_i32(tcg_res[pass]);
9483 clear_vec_high(s, is_q, rd);
9486 /* Remaining saturating accumulating ops */
9487 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
9488 bool is_q, int size, int rn, int rd)
9490 bool is_double = (size == 3);
9492 if (is_double) {
9493 TCGv_i64 tcg_rn = tcg_temp_new_i64();
9494 TCGv_i64 tcg_rd = tcg_temp_new_i64();
9495 int pass;
9497 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9498 read_vec_element(s, tcg_rn, rn, pass, MO_64);
9499 read_vec_element(s, tcg_rd, rd, pass, MO_64);
9501 if (is_u) { /* USQADD */
9502 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9503 } else { /* SUQADD */
9504 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9506 write_vec_element(s, tcg_rd, rd, pass, MO_64);
9508 tcg_temp_free_i64(tcg_rd);
9509 tcg_temp_free_i64(tcg_rn);
9510 clear_vec_high(s, !is_scalar, rd);
9511 } else {
9512 TCGv_i32 tcg_rn = tcg_temp_new_i32();
9513 TCGv_i32 tcg_rd = tcg_temp_new_i32();
9514 int pass, maxpasses;
9516 if (is_scalar) {
9517 maxpasses = 1;
9518 } else {
9519 maxpasses = is_q ? 4 : 2;
9522 for (pass = 0; pass < maxpasses; pass++) {
9523 if (is_scalar) {
9524 read_vec_element_i32(s, tcg_rn, rn, pass, size);
9525 read_vec_element_i32(s, tcg_rd, rd, pass, size);
9526 } else {
9527 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
9528 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9531 if (is_u) { /* USQADD */
9532 switch (size) {
9533 case 0:
9534 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9535 break;
9536 case 1:
9537 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9538 break;
9539 case 2:
9540 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9541 break;
9542 default:
9543 g_assert_not_reached();
9545 } else { /* SUQADD */
9546 switch (size) {
9547 case 0:
9548 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9549 break;
9550 case 1:
9551 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9552 break;
9553 case 2:
9554 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9555 break;
9556 default:
9557 g_assert_not_reached();
9561 if (is_scalar) {
9562 TCGv_i64 tcg_zero = tcg_const_i64(0);
9563 write_vec_element(s, tcg_zero, rd, 0, MO_64);
9564 tcg_temp_free_i64(tcg_zero);
9566 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9568 tcg_temp_free_i32(tcg_rd);
9569 tcg_temp_free_i32(tcg_rn);
9570 clear_vec_high(s, is_q, rd);
9574 /* AdvSIMD scalar two reg misc
9575 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
9576 * +-----+---+-----------+------+-----------+--------+-----+------+------+
9577 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
9578 * +-----+---+-----------+------+-----------+--------+-----+------+------+
9580 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
9582 int rd = extract32(insn, 0, 5);
9583 int rn = extract32(insn, 5, 5);
9584 int opcode = extract32(insn, 12, 5);
9585 int size = extract32(insn, 22, 2);
9586 bool u = extract32(insn, 29, 1);
9587 bool is_fcvt = false;
9588 int rmode;
9589 TCGv_i32 tcg_rmode;
9590 TCGv_ptr tcg_fpstatus;
9592 switch (opcode) {
9593 case 0x3: /* USQADD / SUQADD*/
9594 if (!fp_access_check(s)) {
9595 return;
9597 handle_2misc_satacc(s, true, u, false, size, rn, rd);
9598 return;
9599 case 0x7: /* SQABS / SQNEG */
9600 break;
9601 case 0xa: /* CMLT */
9602 if (u) {
9603 unallocated_encoding(s);
9604 return;
9606 /* fall through */
9607 case 0x8: /* CMGT, CMGE */
9608 case 0x9: /* CMEQ, CMLE */
9609 case 0xb: /* ABS, NEG */
9610 if (size != 3) {
9611 unallocated_encoding(s);
9612 return;
9614 break;
9615 case 0x12: /* SQXTUN */
9616 if (!u) {
9617 unallocated_encoding(s);
9618 return;
9620 /* fall through */
9621 case 0x14: /* SQXTN, UQXTN */
9622 if (size == 3) {
9623 unallocated_encoding(s);
9624 return;
9626 if (!fp_access_check(s)) {
9627 return;
9629 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
9630 return;
9631 case 0xc ... 0xf:
9632 case 0x16 ... 0x1d:
9633 case 0x1f:
9634 /* Floating point: U, size[1] and opcode indicate operation;
9635 * size[0] indicates single or double precision.
9637 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
9638 size = extract32(size, 0, 1) ? 3 : 2;
9639 switch (opcode) {
9640 case 0x2c: /* FCMGT (zero) */
9641 case 0x2d: /* FCMEQ (zero) */
9642 case 0x2e: /* FCMLT (zero) */
9643 case 0x6c: /* FCMGE (zero) */
9644 case 0x6d: /* FCMLE (zero) */
9645 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
9646 return;
9647 case 0x1d: /* SCVTF */
9648 case 0x5d: /* UCVTF */
9650 bool is_signed = (opcode == 0x1d);
9651 if (!fp_access_check(s)) {
9652 return;
9654 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
9655 return;
9657 case 0x3d: /* FRECPE */
9658 case 0x3f: /* FRECPX */
9659 case 0x7d: /* FRSQRTE */
9660 if (!fp_access_check(s)) {
9661 return;
9663 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
9664 return;
9665 case 0x1a: /* FCVTNS */
9666 case 0x1b: /* FCVTMS */
9667 case 0x3a: /* FCVTPS */
9668 case 0x3b: /* FCVTZS */
9669 case 0x5a: /* FCVTNU */
9670 case 0x5b: /* FCVTMU */
9671 case 0x7a: /* FCVTPU */
9672 case 0x7b: /* FCVTZU */
9673 is_fcvt = true;
9674 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
9675 break;
9676 case 0x1c: /* FCVTAS */
9677 case 0x5c: /* FCVTAU */
9678 /* TIEAWAY doesn't fit in the usual rounding mode encoding */
9679 is_fcvt = true;
9680 rmode = FPROUNDING_TIEAWAY;
9681 break;
9682 case 0x56: /* FCVTXN, FCVTXN2 */
9683 if (size == 2) {
9684 unallocated_encoding(s);
9685 return;
9687 if (!fp_access_check(s)) {
9688 return;
9690 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
9691 return;
9692 default:
9693 unallocated_encoding(s);
9694 return;
9696 break;
9697 default:
9698 unallocated_encoding(s);
9699 return;
9702 if (!fp_access_check(s)) {
9703 return;
9706 if (is_fcvt) {
9707 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
9708 tcg_fpstatus = get_fpstatus_ptr(false);
9709 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
9710 } else {
9711 tcg_rmode = NULL;
9712 tcg_fpstatus = NULL;
9715 if (size == 3) {
9716 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9717 TCGv_i64 tcg_rd = tcg_temp_new_i64();
9719 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
9720 write_fp_dreg(s, rd, tcg_rd);
9721 tcg_temp_free_i64(tcg_rd);
9722 tcg_temp_free_i64(tcg_rn);
9723 } else {
9724 TCGv_i32 tcg_rn = tcg_temp_new_i32();
9725 TCGv_i32 tcg_rd = tcg_temp_new_i32();
9727 read_vec_element_i32(s, tcg_rn, rn, 0, size);
9729 switch (opcode) {
9730 case 0x7: /* SQABS, SQNEG */
9732 NeonGenOneOpEnvFn *genfn;
9733 static NeonGenOneOpEnvFn * const fns[3][2] = {
9734 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
9735 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
9736 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
9738 genfn = fns[size][u];
9739 genfn(tcg_rd, cpu_env, tcg_rn);
9740 break;
9742 case 0x1a: /* FCVTNS */
9743 case 0x1b: /* FCVTMS */
9744 case 0x1c: /* FCVTAS */
9745 case 0x3a: /* FCVTPS */
9746 case 0x3b: /* FCVTZS */
9748 TCGv_i32 tcg_shift = tcg_const_i32(0);
9749 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
9750 tcg_temp_free_i32(tcg_shift);
9751 break;
9753 case 0x5a: /* FCVTNU */
9754 case 0x5b: /* FCVTMU */
9755 case 0x5c: /* FCVTAU */
9756 case 0x7a: /* FCVTPU */
9757 case 0x7b: /* FCVTZU */
9759 TCGv_i32 tcg_shift = tcg_const_i32(0);
9760 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
9761 tcg_temp_free_i32(tcg_shift);
9762 break;
9764 default:
9765 g_assert_not_reached();
9768 write_fp_sreg(s, rd, tcg_rd);
9769 tcg_temp_free_i32(tcg_rd);
9770 tcg_temp_free_i32(tcg_rn);
9773 if (is_fcvt) {
9774 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
9775 tcg_temp_free_i32(tcg_rmode);
9776 tcg_temp_free_ptr(tcg_fpstatus);
9780 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
9781 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
9782 int immh, int immb, int opcode, int rn, int rd)
9784 int size = 32 - clz32(immh) - 1;
9785 int immhb = immh << 3 | immb;
9786 int shift = 2 * (8 << size) - immhb;
9787 bool accumulate = false;
9788 int dsize = is_q ? 128 : 64;
9789 int esize = 8 << size;
9790 int elements = dsize/esize;
9791 TCGMemOp memop = size | (is_u ? 0 : MO_SIGN);
9792 TCGv_i64 tcg_rn = new_tmp_a64(s);
9793 TCGv_i64 tcg_rd = new_tmp_a64(s);
9794 TCGv_i64 tcg_round;
9795 uint64_t round_const;
9796 int i;
9798 if (extract32(immh, 3, 1) && !is_q) {
9799 unallocated_encoding(s);
9800 return;
9802 tcg_debug_assert(size <= 3);
9804 if (!fp_access_check(s)) {
9805 return;
9808 switch (opcode) {
9809 case 0x02: /* SSRA / USRA (accumulate) */
9810 if (is_u) {
9811 /* Shift count same as element size produces zero to add. */
9812 if (shift == 8 << size) {
9813 goto done;
9815 gen_gvec_op2i(s, is_q, rd, rn, shift, &usra_op[size]);
9816 } else {
9817 /* Shift count same as element size produces all sign to add. */
9818 if (shift == 8 << size) {
9819 shift -= 1;
9821 gen_gvec_op2i(s, is_q, rd, rn, shift, &ssra_op[size]);
9823 return;
9824 case 0x08: /* SRI */
9825 /* Shift count same as element size is valid but does nothing. */
9826 if (shift == 8 << size) {
9827 goto done;
9829 gen_gvec_op2i(s, is_q, rd, rn, shift, &sri_op[size]);
9830 return;
9832 case 0x00: /* SSHR / USHR */
9833 if (is_u) {
9834 if (shift == 8 << size) {
9835 /* Shift count the same size as element size produces zero. */
9836 tcg_gen_gvec_dup8i(vec_full_reg_offset(s, rd),
9837 is_q ? 16 : 8, vec_full_reg_size(s), 0);
9838 } else {
9839 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shri, size);
9841 } else {
9842 /* Shift count the same size as element size produces all sign. */
9843 if (shift == 8 << size) {
9844 shift -= 1;
9846 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_sari, size);
9848 return;
9850 case 0x04: /* SRSHR / URSHR (rounding) */
9851 break;
9852 case 0x06: /* SRSRA / URSRA (accum + rounding) */
9853 accumulate = true;
9854 break;
9855 default:
9856 g_assert_not_reached();
9859 round_const = 1ULL << (shift - 1);
9860 tcg_round = tcg_const_i64(round_const);
9862 for (i = 0; i < elements; i++) {
9863 read_vec_element(s, tcg_rn, rn, i, memop);
9864 if (accumulate) {
9865 read_vec_element(s, tcg_rd, rd, i, memop);
9868 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
9869 accumulate, is_u, size, shift);
9871 write_vec_element(s, tcg_rd, rd, i, size);
9873 tcg_temp_free_i64(tcg_round);
9875 done:
9876 clear_vec_high(s, is_q, rd);
9879 /* SHL/SLI - Vector shift left */
9880 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
9881 int immh, int immb, int opcode, int rn, int rd)
9883 int size = 32 - clz32(immh) - 1;
9884 int immhb = immh << 3 | immb;
9885 int shift = immhb - (8 << size);
9887 /* Range of size is limited by decode: immh is a non-zero 4 bit field */
9888 assert(size >= 0 && size <= 3);
9890 if (extract32(immh, 3, 1) && !is_q) {
9891 unallocated_encoding(s);
9892 return;
9895 if (!fp_access_check(s)) {
9896 return;
9899 if (insert) {
9900 gen_gvec_op2i(s, is_q, rd, rn, shift, &sli_op[size]);
9901 } else {
9902 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
9906 /* USHLL/SHLL - Vector shift left with widening */
9907 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
9908 int immh, int immb, int opcode, int rn, int rd)
9910 int size = 32 - clz32(immh) - 1;
9911 int immhb = immh << 3 | immb;
9912 int shift = immhb - (8 << size);
9913 int dsize = 64;
9914 int esize = 8 << size;
9915 int elements = dsize/esize;
9916 TCGv_i64 tcg_rn = new_tmp_a64(s);
9917 TCGv_i64 tcg_rd = new_tmp_a64(s);
9918 int i;
9920 if (size >= 3) {
9921 unallocated_encoding(s);
9922 return;
9925 if (!fp_access_check(s)) {
9926 return;
9929 /* For the LL variants the store is larger than the load,
9930 * so if rd == rn we would overwrite parts of our input.
9931 * So load everything right now and use shifts in the main loop.
9933 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
9935 for (i = 0; i < elements; i++) {
9936 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
9937 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
9938 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
9939 write_vec_element(s, tcg_rd, rd, i, size + 1);
9943 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
9944 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
9945 int immh, int immb, int opcode, int rn, int rd)
9947 int immhb = immh << 3 | immb;
9948 int size = 32 - clz32(immh) - 1;
9949 int dsize = 64;
9950 int esize = 8 << size;
9951 int elements = dsize/esize;
9952 int shift = (2 * esize) - immhb;
9953 bool round = extract32(opcode, 0, 1);
9954 TCGv_i64 tcg_rn, tcg_rd, tcg_final;
9955 TCGv_i64 tcg_round;
9956 int i;
9958 if (extract32(immh, 3, 1)) {
9959 unallocated_encoding(s);
9960 return;
9963 if (!fp_access_check(s)) {
9964 return;
9967 tcg_rn = tcg_temp_new_i64();
9968 tcg_rd = tcg_temp_new_i64();
9969 tcg_final = tcg_temp_new_i64();
9970 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
9972 if (round) {
9973 uint64_t round_const = 1ULL << (shift - 1);
9974 tcg_round = tcg_const_i64(round_const);
9975 } else {
9976 tcg_round = NULL;
9979 for (i = 0; i < elements; i++) {
9980 read_vec_element(s, tcg_rn, rn, i, size+1);
9981 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
9982 false, true, size+1, shift);
9984 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
9987 if (!is_q) {
9988 write_vec_element(s, tcg_final, rd, 0, MO_64);
9989 } else {
9990 write_vec_element(s, tcg_final, rd, 1, MO_64);
9992 if (round) {
9993 tcg_temp_free_i64(tcg_round);
9995 tcg_temp_free_i64(tcg_rn);
9996 tcg_temp_free_i64(tcg_rd);
9997 tcg_temp_free_i64(tcg_final);
9999 clear_vec_high(s, is_q, rd);
10003 /* AdvSIMD shift by immediate
10004 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
10005 * +---+---+---+-------------+------+------+--------+---+------+------+
10006 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
10007 * +---+---+---+-------------+------+------+--------+---+------+------+
10009 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10011 int rd = extract32(insn, 0, 5);
10012 int rn = extract32(insn, 5, 5);
10013 int opcode = extract32(insn, 11, 5);
10014 int immb = extract32(insn, 16, 3);
10015 int immh = extract32(insn, 19, 4);
10016 bool is_u = extract32(insn, 29, 1);
10017 bool is_q = extract32(insn, 30, 1);
10019 switch (opcode) {
10020 case 0x08: /* SRI */
10021 if (!is_u) {
10022 unallocated_encoding(s);
10023 return;
10025 /* fall through */
10026 case 0x00: /* SSHR / USHR */
10027 case 0x02: /* SSRA / USRA (accumulate) */
10028 case 0x04: /* SRSHR / URSHR (rounding) */
10029 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10030 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10031 break;
10032 case 0x0a: /* SHL / SLI */
10033 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10034 break;
10035 case 0x10: /* SHRN */
10036 case 0x11: /* RSHRN / SQRSHRUN */
10037 if (is_u) {
10038 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10039 opcode, rn, rd);
10040 } else {
10041 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10043 break;
10044 case 0x12: /* SQSHRN / UQSHRN */
10045 case 0x13: /* SQRSHRN / UQRSHRN */
10046 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10047 opcode, rn, rd);
10048 break;
10049 case 0x14: /* SSHLL / USHLL */
10050 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10051 break;
10052 case 0x1c: /* SCVTF / UCVTF */
10053 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10054 opcode, rn, rd);
10055 break;
10056 case 0xc: /* SQSHLU */
10057 if (!is_u) {
10058 unallocated_encoding(s);
10059 return;
10061 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10062 break;
10063 case 0xe: /* SQSHL, UQSHL */
10064 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10065 break;
10066 case 0x1f: /* FCVTZS/ FCVTZU */
10067 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10068 return;
10069 default:
10070 unallocated_encoding(s);
10071 return;
10075 /* Generate code to do a "long" addition or subtraction, ie one done in
10076 * TCGv_i64 on vector lanes twice the width specified by size.
10078 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10079 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10081 static NeonGenTwo64OpFn * const fns[3][2] = {
10082 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10083 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10084 { tcg_gen_add_i64, tcg_gen_sub_i64 },
10086 NeonGenTwo64OpFn *genfn;
10087 assert(size < 3);
10089 genfn = fns[size][is_sub];
10090 genfn(tcg_res, tcg_op1, tcg_op2);
10093 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10094 int opcode, int rd, int rn, int rm)
10096 /* 3-reg-different widening insns: 64 x 64 -> 128 */
10097 TCGv_i64 tcg_res[2];
10098 int pass, accop;
10100 tcg_res[0] = tcg_temp_new_i64();
10101 tcg_res[1] = tcg_temp_new_i64();
10103 /* Does this op do an adding accumulate, a subtracting accumulate,
10104 * or no accumulate at all?
10106 switch (opcode) {
10107 case 5:
10108 case 8:
10109 case 9:
10110 accop = 1;
10111 break;
10112 case 10:
10113 case 11:
10114 accop = -1;
10115 break;
10116 default:
10117 accop = 0;
10118 break;
10121 if (accop != 0) {
10122 read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10123 read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10126 /* size == 2 means two 32x32->64 operations; this is worth special
10127 * casing because we can generally handle it inline.
10129 if (size == 2) {
10130 for (pass = 0; pass < 2; pass++) {
10131 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10132 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10133 TCGv_i64 tcg_passres;
10134 TCGMemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10136 int elt = pass + is_q * 2;
10138 read_vec_element(s, tcg_op1, rn, elt, memop);
10139 read_vec_element(s, tcg_op2, rm, elt, memop);
10141 if (accop == 0) {
10142 tcg_passres = tcg_res[pass];
10143 } else {
10144 tcg_passres = tcg_temp_new_i64();
10147 switch (opcode) {
10148 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10149 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10150 break;
10151 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10152 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10153 break;
10154 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10155 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10157 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10158 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10160 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10161 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10162 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10163 tcg_passres,
10164 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10165 tcg_temp_free_i64(tcg_tmp1);
10166 tcg_temp_free_i64(tcg_tmp2);
10167 break;
10169 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10170 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10171 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10172 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10173 break;
10174 case 9: /* SQDMLAL, SQDMLAL2 */
10175 case 11: /* SQDMLSL, SQDMLSL2 */
10176 case 13: /* SQDMULL, SQDMULL2 */
10177 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10178 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
10179 tcg_passres, tcg_passres);
10180 break;
10181 default:
10182 g_assert_not_reached();
10185 if (opcode == 9 || opcode == 11) {
10186 /* saturating accumulate ops */
10187 if (accop < 0) {
10188 tcg_gen_neg_i64(tcg_passres, tcg_passres);
10190 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
10191 tcg_res[pass], tcg_passres);
10192 } else if (accop > 0) {
10193 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10194 } else if (accop < 0) {
10195 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10198 if (accop != 0) {
10199 tcg_temp_free_i64(tcg_passres);
10202 tcg_temp_free_i64(tcg_op1);
10203 tcg_temp_free_i64(tcg_op2);
10205 } else {
10206 /* size 0 or 1, generally helper functions */
10207 for (pass = 0; pass < 2; pass++) {
10208 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10209 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10210 TCGv_i64 tcg_passres;
10211 int elt = pass + is_q * 2;
10213 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10214 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10216 if (accop == 0) {
10217 tcg_passres = tcg_res[pass];
10218 } else {
10219 tcg_passres = tcg_temp_new_i64();
10222 switch (opcode) {
10223 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10224 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10226 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10227 static NeonGenWidenFn * const widenfns[2][2] = {
10228 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10229 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10231 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10233 widenfn(tcg_op2_64, tcg_op2);
10234 widenfn(tcg_passres, tcg_op1);
10235 gen_neon_addl(size, (opcode == 2), tcg_passres,
10236 tcg_passres, tcg_op2_64);
10237 tcg_temp_free_i64(tcg_op2_64);
10238 break;
10240 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10241 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10242 if (size == 0) {
10243 if (is_u) {
10244 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10245 } else {
10246 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10248 } else {
10249 if (is_u) {
10250 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10251 } else {
10252 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10255 break;
10256 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10257 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10258 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10259 if (size == 0) {
10260 if (is_u) {
10261 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10262 } else {
10263 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10265 } else {
10266 if (is_u) {
10267 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10268 } else {
10269 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10272 break;
10273 case 9: /* SQDMLAL, SQDMLAL2 */
10274 case 11: /* SQDMLSL, SQDMLSL2 */
10275 case 13: /* SQDMULL, SQDMULL2 */
10276 assert(size == 1);
10277 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10278 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
10279 tcg_passres, tcg_passres);
10280 break;
10281 case 14: /* PMULL */
10282 assert(size == 0);
10283 gen_helper_neon_mull_p8(tcg_passres, tcg_op1, tcg_op2);
10284 break;
10285 default:
10286 g_assert_not_reached();
10288 tcg_temp_free_i32(tcg_op1);
10289 tcg_temp_free_i32(tcg_op2);
10291 if (accop != 0) {
10292 if (opcode == 9 || opcode == 11) {
10293 /* saturating accumulate ops */
10294 if (accop < 0) {
10295 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10297 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
10298 tcg_res[pass],
10299 tcg_passres);
10300 } else {
10301 gen_neon_addl(size, (accop < 0), tcg_res[pass],
10302 tcg_res[pass], tcg_passres);
10304 tcg_temp_free_i64(tcg_passres);
10309 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10310 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10311 tcg_temp_free_i64(tcg_res[0]);
10312 tcg_temp_free_i64(tcg_res[1]);
10315 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10316 int opcode, int rd, int rn, int rm)
10318 TCGv_i64 tcg_res[2];
10319 int part = is_q ? 2 : 0;
10320 int pass;
10322 for (pass = 0; pass < 2; pass++) {
10323 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10324 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10325 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10326 static NeonGenWidenFn * const widenfns[3][2] = {
10327 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10328 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10329 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10331 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10333 read_vec_element(s, tcg_op1, rn, pass, MO_64);
10334 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10335 widenfn(tcg_op2_wide, tcg_op2);
10336 tcg_temp_free_i32(tcg_op2);
10337 tcg_res[pass] = tcg_temp_new_i64();
10338 gen_neon_addl(size, (opcode == 3),
10339 tcg_res[pass], tcg_op1, tcg_op2_wide);
10340 tcg_temp_free_i64(tcg_op1);
10341 tcg_temp_free_i64(tcg_op2_wide);
10344 for (pass = 0; pass < 2; pass++) {
10345 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10346 tcg_temp_free_i64(tcg_res[pass]);
10350 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10352 tcg_gen_addi_i64(in, in, 1U << 31);
10353 tcg_gen_extrh_i64_i32(res, in);
10356 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10357 int opcode, int rd, int rn, int rm)
10359 TCGv_i32 tcg_res[2];
10360 int part = is_q ? 2 : 0;
10361 int pass;
10363 for (pass = 0; pass < 2; pass++) {
10364 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10365 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10366 TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10367 static NeonGenNarrowFn * const narrowfns[3][2] = {
10368 { gen_helper_neon_narrow_high_u8,
10369 gen_helper_neon_narrow_round_high_u8 },
10370 { gen_helper_neon_narrow_high_u16,
10371 gen_helper_neon_narrow_round_high_u16 },
10372 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10374 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10376 read_vec_element(s, tcg_op1, rn, pass, MO_64);
10377 read_vec_element(s, tcg_op2, rm, pass, MO_64);
10379 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10381 tcg_temp_free_i64(tcg_op1);
10382 tcg_temp_free_i64(tcg_op2);
10384 tcg_res[pass] = tcg_temp_new_i32();
10385 gennarrow(tcg_res[pass], tcg_wideres);
10386 tcg_temp_free_i64(tcg_wideres);
10389 for (pass = 0; pass < 2; pass++) {
10390 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10391 tcg_temp_free_i32(tcg_res[pass]);
10393 clear_vec_high(s, is_q, rd);
10396 static void handle_pmull_64(DisasContext *s, int is_q, int rd, int rn, int rm)
10398 /* PMULL of 64 x 64 -> 128 is an odd special case because it
10399 * is the only three-reg-diff instruction which produces a
10400 * 128-bit wide result from a single operation. However since
10401 * it's possible to calculate the two halves more or less
10402 * separately we just use two helper calls.
10404 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10405 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10406 TCGv_i64 tcg_res = tcg_temp_new_i64();
10408 read_vec_element(s, tcg_op1, rn, is_q, MO_64);
10409 read_vec_element(s, tcg_op2, rm, is_q, MO_64);
10410 gen_helper_neon_pmull_64_lo(tcg_res, tcg_op1, tcg_op2);
10411 write_vec_element(s, tcg_res, rd, 0, MO_64);
10412 gen_helper_neon_pmull_64_hi(tcg_res, tcg_op1, tcg_op2);
10413 write_vec_element(s, tcg_res, rd, 1, MO_64);
10415 tcg_temp_free_i64(tcg_op1);
10416 tcg_temp_free_i64(tcg_op2);
10417 tcg_temp_free_i64(tcg_res);
10420 /* AdvSIMD three different
10421 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
10422 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10423 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
10424 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10426 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10428 /* Instructions in this group fall into three basic classes
10429 * (in each case with the operation working on each element in
10430 * the input vectors):
10431 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10432 * 128 bit input)
10433 * (2) wide 64 x 128 -> 128
10434 * (3) narrowing 128 x 128 -> 64
10435 * Here we do initial decode, catch unallocated cases and
10436 * dispatch to separate functions for each class.
10438 int is_q = extract32(insn, 30, 1);
10439 int is_u = extract32(insn, 29, 1);
10440 int size = extract32(insn, 22, 2);
10441 int opcode = extract32(insn, 12, 4);
10442 int rm = extract32(insn, 16, 5);
10443 int rn = extract32(insn, 5, 5);
10444 int rd = extract32(insn, 0, 5);
10446 switch (opcode) {
10447 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10448 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10449 /* 64 x 128 -> 128 */
10450 if (size == 3) {
10451 unallocated_encoding(s);
10452 return;
10454 if (!fp_access_check(s)) {
10455 return;
10457 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10458 break;
10459 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10460 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10461 /* 128 x 128 -> 64 */
10462 if (size == 3) {
10463 unallocated_encoding(s);
10464 return;
10466 if (!fp_access_check(s)) {
10467 return;
10469 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10470 break;
10471 case 14: /* PMULL, PMULL2 */
10472 if (is_u || size == 1 || size == 2) {
10473 unallocated_encoding(s);
10474 return;
10476 if (size == 3) {
10477 if (!dc_isar_feature(aa64_pmull, s)) {
10478 unallocated_encoding(s);
10479 return;
10481 if (!fp_access_check(s)) {
10482 return;
10484 handle_pmull_64(s, is_q, rd, rn, rm);
10485 return;
10487 goto is_widening;
10488 case 9: /* SQDMLAL, SQDMLAL2 */
10489 case 11: /* SQDMLSL, SQDMLSL2 */
10490 case 13: /* SQDMULL, SQDMULL2 */
10491 if (is_u || size == 0) {
10492 unallocated_encoding(s);
10493 return;
10495 /* fall through */
10496 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10497 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10498 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10499 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10500 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10501 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10502 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
10503 /* 64 x 64 -> 128 */
10504 if (size == 3) {
10505 unallocated_encoding(s);
10506 return;
10508 is_widening:
10509 if (!fp_access_check(s)) {
10510 return;
10513 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
10514 break;
10515 default:
10516 /* opcode 15 not allocated */
10517 unallocated_encoding(s);
10518 break;
10522 /* Logic op (opcode == 3) subgroup of C3.6.16. */
10523 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
10525 int rd = extract32(insn, 0, 5);
10526 int rn = extract32(insn, 5, 5);
10527 int rm = extract32(insn, 16, 5);
10528 int size = extract32(insn, 22, 2);
10529 bool is_u = extract32(insn, 29, 1);
10530 bool is_q = extract32(insn, 30, 1);
10532 if (!fp_access_check(s)) {
10533 return;
10536 switch (size + 4 * is_u) {
10537 case 0: /* AND */
10538 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
10539 return;
10540 case 1: /* BIC */
10541 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
10542 return;
10543 case 2: /* ORR */
10544 if (rn == rm) { /* MOV */
10545 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_mov, 0);
10546 } else {
10547 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
10549 return;
10550 case 3: /* ORN */
10551 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
10552 return;
10553 case 4: /* EOR */
10554 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
10555 return;
10557 case 5: /* BSL bitwise select */
10558 gen_gvec_op3(s, is_q, rd, rn, rm, &bsl_op);
10559 return;
10560 case 6: /* BIT, bitwise insert if true */
10561 gen_gvec_op3(s, is_q, rd, rn, rm, &bit_op);
10562 return;
10563 case 7: /* BIF, bitwise insert if false */
10564 gen_gvec_op3(s, is_q, rd, rn, rm, &bif_op);
10565 return;
10567 default:
10568 g_assert_not_reached();
10572 /* Pairwise op subgroup of C3.6.16.
10574 * This is called directly or via the handle_3same_float for float pairwise
10575 * operations where the opcode and size are calculated differently.
10577 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
10578 int size, int rn, int rm, int rd)
10580 TCGv_ptr fpst;
10581 int pass;
10583 /* Floating point operations need fpst */
10584 if (opcode >= 0x58) {
10585 fpst = get_fpstatus_ptr(false);
10586 } else {
10587 fpst = NULL;
10590 if (!fp_access_check(s)) {
10591 return;
10594 /* These operations work on the concatenated rm:rn, with each pair of
10595 * adjacent elements being operated on to produce an element in the result.
10597 if (size == 3) {
10598 TCGv_i64 tcg_res[2];
10600 for (pass = 0; pass < 2; pass++) {
10601 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10602 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10603 int passreg = (pass == 0) ? rn : rm;
10605 read_vec_element(s, tcg_op1, passreg, 0, MO_64);
10606 read_vec_element(s, tcg_op2, passreg, 1, MO_64);
10607 tcg_res[pass] = tcg_temp_new_i64();
10609 switch (opcode) {
10610 case 0x17: /* ADDP */
10611 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
10612 break;
10613 case 0x58: /* FMAXNMP */
10614 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10615 break;
10616 case 0x5a: /* FADDP */
10617 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10618 break;
10619 case 0x5e: /* FMAXP */
10620 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10621 break;
10622 case 0x78: /* FMINNMP */
10623 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10624 break;
10625 case 0x7e: /* FMINP */
10626 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10627 break;
10628 default:
10629 g_assert_not_reached();
10632 tcg_temp_free_i64(tcg_op1);
10633 tcg_temp_free_i64(tcg_op2);
10636 for (pass = 0; pass < 2; pass++) {
10637 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10638 tcg_temp_free_i64(tcg_res[pass]);
10640 } else {
10641 int maxpass = is_q ? 4 : 2;
10642 TCGv_i32 tcg_res[4];
10644 for (pass = 0; pass < maxpass; pass++) {
10645 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10646 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10647 NeonGenTwoOpFn *genfn = NULL;
10648 int passreg = pass < (maxpass / 2) ? rn : rm;
10649 int passelt = (is_q && (pass & 1)) ? 2 : 0;
10651 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
10652 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
10653 tcg_res[pass] = tcg_temp_new_i32();
10655 switch (opcode) {
10656 case 0x17: /* ADDP */
10658 static NeonGenTwoOpFn * const fns[3] = {
10659 gen_helper_neon_padd_u8,
10660 gen_helper_neon_padd_u16,
10661 tcg_gen_add_i32,
10663 genfn = fns[size];
10664 break;
10666 case 0x14: /* SMAXP, UMAXP */
10668 static NeonGenTwoOpFn * const fns[3][2] = {
10669 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
10670 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
10671 { tcg_gen_smax_i32, tcg_gen_umax_i32 },
10673 genfn = fns[size][u];
10674 break;
10676 case 0x15: /* SMINP, UMINP */
10678 static NeonGenTwoOpFn * const fns[3][2] = {
10679 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
10680 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
10681 { tcg_gen_smin_i32, tcg_gen_umin_i32 },
10683 genfn = fns[size][u];
10684 break;
10686 /* The FP operations are all on single floats (32 bit) */
10687 case 0x58: /* FMAXNMP */
10688 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10689 break;
10690 case 0x5a: /* FADDP */
10691 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10692 break;
10693 case 0x5e: /* FMAXP */
10694 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10695 break;
10696 case 0x78: /* FMINNMP */
10697 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10698 break;
10699 case 0x7e: /* FMINP */
10700 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10701 break;
10702 default:
10703 g_assert_not_reached();
10706 /* FP ops called directly, otherwise call now */
10707 if (genfn) {
10708 genfn(tcg_res[pass], tcg_op1, tcg_op2);
10711 tcg_temp_free_i32(tcg_op1);
10712 tcg_temp_free_i32(tcg_op2);
10715 for (pass = 0; pass < maxpass; pass++) {
10716 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
10717 tcg_temp_free_i32(tcg_res[pass]);
10719 clear_vec_high(s, is_q, rd);
10722 if (fpst) {
10723 tcg_temp_free_ptr(fpst);
10727 /* Floating point op subgroup of C3.6.16. */
10728 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
10730 /* For floating point ops, the U, size[1] and opcode bits
10731 * together indicate the operation. size[0] indicates single
10732 * or double.
10734 int fpopcode = extract32(insn, 11, 5)
10735 | (extract32(insn, 23, 1) << 5)
10736 | (extract32(insn, 29, 1) << 6);
10737 int is_q = extract32(insn, 30, 1);
10738 int size = extract32(insn, 22, 1);
10739 int rm = extract32(insn, 16, 5);
10740 int rn = extract32(insn, 5, 5);
10741 int rd = extract32(insn, 0, 5);
10743 int datasize = is_q ? 128 : 64;
10744 int esize = 32 << size;
10745 int elements = datasize / esize;
10747 if (size == 1 && !is_q) {
10748 unallocated_encoding(s);
10749 return;
10752 switch (fpopcode) {
10753 case 0x58: /* FMAXNMP */
10754 case 0x5a: /* FADDP */
10755 case 0x5e: /* FMAXP */
10756 case 0x78: /* FMINNMP */
10757 case 0x7e: /* FMINP */
10758 if (size && !is_q) {
10759 unallocated_encoding(s);
10760 return;
10762 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
10763 rn, rm, rd);
10764 return;
10765 case 0x1b: /* FMULX */
10766 case 0x1f: /* FRECPS */
10767 case 0x3f: /* FRSQRTS */
10768 case 0x5d: /* FACGE */
10769 case 0x7d: /* FACGT */
10770 case 0x19: /* FMLA */
10771 case 0x39: /* FMLS */
10772 case 0x18: /* FMAXNM */
10773 case 0x1a: /* FADD */
10774 case 0x1c: /* FCMEQ */
10775 case 0x1e: /* FMAX */
10776 case 0x38: /* FMINNM */
10777 case 0x3a: /* FSUB */
10778 case 0x3e: /* FMIN */
10779 case 0x5b: /* FMUL */
10780 case 0x5c: /* FCMGE */
10781 case 0x5f: /* FDIV */
10782 case 0x7a: /* FABD */
10783 case 0x7c: /* FCMGT */
10784 if (!fp_access_check(s)) {
10785 return;
10788 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
10789 return;
10790 default:
10791 unallocated_encoding(s);
10792 return;
10796 /* Integer op subgroup of C3.6.16. */
10797 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
10799 int is_q = extract32(insn, 30, 1);
10800 int u = extract32(insn, 29, 1);
10801 int size = extract32(insn, 22, 2);
10802 int opcode = extract32(insn, 11, 5);
10803 int rm = extract32(insn, 16, 5);
10804 int rn = extract32(insn, 5, 5);
10805 int rd = extract32(insn, 0, 5);
10806 int pass;
10807 TCGCond cond;
10809 switch (opcode) {
10810 case 0x13: /* MUL, PMUL */
10811 if (u && size != 0) {
10812 unallocated_encoding(s);
10813 return;
10815 /* fall through */
10816 case 0x0: /* SHADD, UHADD */
10817 case 0x2: /* SRHADD, URHADD */
10818 case 0x4: /* SHSUB, UHSUB */
10819 case 0xc: /* SMAX, UMAX */
10820 case 0xd: /* SMIN, UMIN */
10821 case 0xe: /* SABD, UABD */
10822 case 0xf: /* SABA, UABA */
10823 case 0x12: /* MLA, MLS */
10824 if (size == 3) {
10825 unallocated_encoding(s);
10826 return;
10828 break;
10829 case 0x16: /* SQDMULH, SQRDMULH */
10830 if (size == 0 || size == 3) {
10831 unallocated_encoding(s);
10832 return;
10834 break;
10835 default:
10836 if (size == 3 && !is_q) {
10837 unallocated_encoding(s);
10838 return;
10840 break;
10843 if (!fp_access_check(s)) {
10844 return;
10847 switch (opcode) {
10848 case 0x10: /* ADD, SUB */
10849 if (u) {
10850 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
10851 } else {
10852 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
10854 return;
10855 case 0x13: /* MUL, PMUL */
10856 if (!u) { /* MUL */
10857 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
10858 return;
10860 break;
10861 case 0x12: /* MLA, MLS */
10862 if (u) {
10863 gen_gvec_op3(s, is_q, rd, rn, rm, &mls_op[size]);
10864 } else {
10865 gen_gvec_op3(s, is_q, rd, rn, rm, &mla_op[size]);
10867 return;
10868 case 0x11:
10869 if (!u) { /* CMTST */
10870 gen_gvec_op3(s, is_q, rd, rn, rm, &cmtst_op[size]);
10871 return;
10873 /* else CMEQ */
10874 cond = TCG_COND_EQ;
10875 goto do_gvec_cmp;
10876 case 0x06: /* CMGT, CMHI */
10877 cond = u ? TCG_COND_GTU : TCG_COND_GT;
10878 goto do_gvec_cmp;
10879 case 0x07: /* CMGE, CMHS */
10880 cond = u ? TCG_COND_GEU : TCG_COND_GE;
10881 do_gvec_cmp:
10882 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
10883 vec_full_reg_offset(s, rn),
10884 vec_full_reg_offset(s, rm),
10885 is_q ? 16 : 8, vec_full_reg_size(s));
10886 return;
10889 if (size == 3) {
10890 assert(is_q);
10891 for (pass = 0; pass < 2; pass++) {
10892 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10893 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10894 TCGv_i64 tcg_res = tcg_temp_new_i64();
10896 read_vec_element(s, tcg_op1, rn, pass, MO_64);
10897 read_vec_element(s, tcg_op2, rm, pass, MO_64);
10899 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
10901 write_vec_element(s, tcg_res, rd, pass, MO_64);
10903 tcg_temp_free_i64(tcg_res);
10904 tcg_temp_free_i64(tcg_op1);
10905 tcg_temp_free_i64(tcg_op2);
10907 } else {
10908 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
10909 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10910 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10911 TCGv_i32 tcg_res = tcg_temp_new_i32();
10912 NeonGenTwoOpFn *genfn = NULL;
10913 NeonGenTwoOpEnvFn *genenvfn = NULL;
10915 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
10916 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
10918 switch (opcode) {
10919 case 0x0: /* SHADD, UHADD */
10921 static NeonGenTwoOpFn * const fns[3][2] = {
10922 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
10923 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
10924 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
10926 genfn = fns[size][u];
10927 break;
10929 case 0x1: /* SQADD, UQADD */
10931 static NeonGenTwoOpEnvFn * const fns[3][2] = {
10932 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
10933 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
10934 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
10936 genenvfn = fns[size][u];
10937 break;
10939 case 0x2: /* SRHADD, URHADD */
10941 static NeonGenTwoOpFn * const fns[3][2] = {
10942 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
10943 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
10944 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
10946 genfn = fns[size][u];
10947 break;
10949 case 0x4: /* SHSUB, UHSUB */
10951 static NeonGenTwoOpFn * const fns[3][2] = {
10952 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
10953 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
10954 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
10956 genfn = fns[size][u];
10957 break;
10959 case 0x5: /* SQSUB, UQSUB */
10961 static NeonGenTwoOpEnvFn * const fns[3][2] = {
10962 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
10963 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
10964 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
10966 genenvfn = fns[size][u];
10967 break;
10969 case 0x8: /* SSHL, USHL */
10971 static NeonGenTwoOpFn * const fns[3][2] = {
10972 { gen_helper_neon_shl_s8, gen_helper_neon_shl_u8 },
10973 { gen_helper_neon_shl_s16, gen_helper_neon_shl_u16 },
10974 { gen_helper_neon_shl_s32, gen_helper_neon_shl_u32 },
10976 genfn = fns[size][u];
10977 break;
10979 case 0x9: /* SQSHL, UQSHL */
10981 static NeonGenTwoOpEnvFn * const fns[3][2] = {
10982 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
10983 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
10984 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
10986 genenvfn = fns[size][u];
10987 break;
10989 case 0xa: /* SRSHL, URSHL */
10991 static NeonGenTwoOpFn * const fns[3][2] = {
10992 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
10993 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
10994 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
10996 genfn = fns[size][u];
10997 break;
10999 case 0xb: /* SQRSHL, UQRSHL */
11001 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11002 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
11003 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
11004 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
11006 genenvfn = fns[size][u];
11007 break;
11009 case 0xc: /* SMAX, UMAX */
11011 static NeonGenTwoOpFn * const fns[3][2] = {
11012 { gen_helper_neon_max_s8, gen_helper_neon_max_u8 },
11013 { gen_helper_neon_max_s16, gen_helper_neon_max_u16 },
11014 { tcg_gen_smax_i32, tcg_gen_umax_i32 },
11016 genfn = fns[size][u];
11017 break;
11020 case 0xd: /* SMIN, UMIN */
11022 static NeonGenTwoOpFn * const fns[3][2] = {
11023 { gen_helper_neon_min_s8, gen_helper_neon_min_u8 },
11024 { gen_helper_neon_min_s16, gen_helper_neon_min_u16 },
11025 { tcg_gen_smin_i32, tcg_gen_umin_i32 },
11027 genfn = fns[size][u];
11028 break;
11030 case 0xe: /* SABD, UABD */
11031 case 0xf: /* SABA, UABA */
11033 static NeonGenTwoOpFn * const fns[3][2] = {
11034 { gen_helper_neon_abd_s8, gen_helper_neon_abd_u8 },
11035 { gen_helper_neon_abd_s16, gen_helper_neon_abd_u16 },
11036 { gen_helper_neon_abd_s32, gen_helper_neon_abd_u32 },
11038 genfn = fns[size][u];
11039 break;
11041 case 0x13: /* MUL, PMUL */
11042 assert(u); /* PMUL */
11043 assert(size == 0);
11044 genfn = gen_helper_neon_mul_p8;
11045 break;
11046 case 0x16: /* SQDMULH, SQRDMULH */
11048 static NeonGenTwoOpEnvFn * const fns[2][2] = {
11049 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
11050 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
11052 assert(size == 1 || size == 2);
11053 genenvfn = fns[size - 1][u];
11054 break;
11056 default:
11057 g_assert_not_reached();
11060 if (genenvfn) {
11061 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2);
11062 } else {
11063 genfn(tcg_res, tcg_op1, tcg_op2);
11066 if (opcode == 0xf) {
11067 /* SABA, UABA: accumulating ops */
11068 static NeonGenTwoOpFn * const fns[3] = {
11069 gen_helper_neon_add_u8,
11070 gen_helper_neon_add_u16,
11071 tcg_gen_add_i32,
11074 read_vec_element_i32(s, tcg_op1, rd, pass, MO_32);
11075 fns[size](tcg_res, tcg_op1, tcg_res);
11078 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11080 tcg_temp_free_i32(tcg_res);
11081 tcg_temp_free_i32(tcg_op1);
11082 tcg_temp_free_i32(tcg_op2);
11085 clear_vec_high(s, is_q, rd);
11088 /* AdvSIMD three same
11089 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
11090 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11091 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
11092 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11094 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11096 int opcode = extract32(insn, 11, 5);
11098 switch (opcode) {
11099 case 0x3: /* logic ops */
11100 disas_simd_3same_logic(s, insn);
11101 break;
11102 case 0x17: /* ADDP */
11103 case 0x14: /* SMAXP, UMAXP */
11104 case 0x15: /* SMINP, UMINP */
11106 /* Pairwise operations */
11107 int is_q = extract32(insn, 30, 1);
11108 int u = extract32(insn, 29, 1);
11109 int size = extract32(insn, 22, 2);
11110 int rm = extract32(insn, 16, 5);
11111 int rn = extract32(insn, 5, 5);
11112 int rd = extract32(insn, 0, 5);
11113 if (opcode == 0x17) {
11114 if (u || (size == 3 && !is_q)) {
11115 unallocated_encoding(s);
11116 return;
11118 } else {
11119 if (size == 3) {
11120 unallocated_encoding(s);
11121 return;
11124 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
11125 break;
11127 case 0x18 ... 0x31:
11128 /* floating point ops, sz[1] and U are part of opcode */
11129 disas_simd_3same_float(s, insn);
11130 break;
11131 default:
11132 disas_simd_3same_int(s, insn);
11133 break;
11138 * Advanced SIMD three same (ARMv8.2 FP16 variants)
11140 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
11141 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11142 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
11143 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11145 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
11146 * (register), FACGE, FABD, FCMGT (register) and FACGT.
11149 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
11151 int opcode, fpopcode;
11152 int is_q, u, a, rm, rn, rd;
11153 int datasize, elements;
11154 int pass;
11155 TCGv_ptr fpst;
11156 bool pairwise = false;
11158 if (!dc_isar_feature(aa64_fp16, s)) {
11159 unallocated_encoding(s);
11160 return;
11163 if (!fp_access_check(s)) {
11164 return;
11167 /* For these floating point ops, the U, a and opcode bits
11168 * together indicate the operation.
11170 opcode = extract32(insn, 11, 3);
11171 u = extract32(insn, 29, 1);
11172 a = extract32(insn, 23, 1);
11173 is_q = extract32(insn, 30, 1);
11174 rm = extract32(insn, 16, 5);
11175 rn = extract32(insn, 5, 5);
11176 rd = extract32(insn, 0, 5);
11178 fpopcode = opcode | (a << 3) | (u << 4);
11179 datasize = is_q ? 128 : 64;
11180 elements = datasize / 16;
11182 switch (fpopcode) {
11183 case 0x10: /* FMAXNMP */
11184 case 0x12: /* FADDP */
11185 case 0x16: /* FMAXP */
11186 case 0x18: /* FMINNMP */
11187 case 0x1e: /* FMINP */
11188 pairwise = true;
11189 break;
11192 fpst = get_fpstatus_ptr(true);
11194 if (pairwise) {
11195 int maxpass = is_q ? 8 : 4;
11196 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11197 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11198 TCGv_i32 tcg_res[8];
11200 for (pass = 0; pass < maxpass; pass++) {
11201 int passreg = pass < (maxpass / 2) ? rn : rm;
11202 int passelt = (pass << 1) & (maxpass - 1);
11204 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
11205 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
11206 tcg_res[pass] = tcg_temp_new_i32();
11208 switch (fpopcode) {
11209 case 0x10: /* FMAXNMP */
11210 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
11211 fpst);
11212 break;
11213 case 0x12: /* FADDP */
11214 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11215 break;
11216 case 0x16: /* FMAXP */
11217 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11218 break;
11219 case 0x18: /* FMINNMP */
11220 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
11221 fpst);
11222 break;
11223 case 0x1e: /* FMINP */
11224 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11225 break;
11226 default:
11227 g_assert_not_reached();
11231 for (pass = 0; pass < maxpass; pass++) {
11232 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
11233 tcg_temp_free_i32(tcg_res[pass]);
11236 tcg_temp_free_i32(tcg_op1);
11237 tcg_temp_free_i32(tcg_op2);
11239 } else {
11240 for (pass = 0; pass < elements; pass++) {
11241 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11242 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11243 TCGv_i32 tcg_res = tcg_temp_new_i32();
11245 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16);
11246 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16);
11248 switch (fpopcode) {
11249 case 0x0: /* FMAXNM */
11250 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11251 break;
11252 case 0x1: /* FMLA */
11253 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11254 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11255 fpst);
11256 break;
11257 case 0x2: /* FADD */
11258 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
11259 break;
11260 case 0x3: /* FMULX */
11261 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
11262 break;
11263 case 0x4: /* FCMEQ */
11264 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11265 break;
11266 case 0x6: /* FMAX */
11267 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
11268 break;
11269 case 0x7: /* FRECPS */
11270 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11271 break;
11272 case 0x8: /* FMINNM */
11273 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11274 break;
11275 case 0x9: /* FMLS */
11276 /* As usual for ARM, separate negation for fused multiply-add */
11277 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
11278 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11279 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11280 fpst);
11281 break;
11282 case 0xa: /* FSUB */
11283 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11284 break;
11285 case 0xe: /* FMIN */
11286 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
11287 break;
11288 case 0xf: /* FRSQRTS */
11289 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11290 break;
11291 case 0x13: /* FMUL */
11292 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
11293 break;
11294 case 0x14: /* FCMGE */
11295 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11296 break;
11297 case 0x15: /* FACGE */
11298 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11299 break;
11300 case 0x17: /* FDIV */
11301 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
11302 break;
11303 case 0x1a: /* FABD */
11304 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11305 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
11306 break;
11307 case 0x1c: /* FCMGT */
11308 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11309 break;
11310 case 0x1d: /* FACGT */
11311 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11312 break;
11313 default:
11314 fprintf(stderr, "%s: insn %#04x, fpop %#2x @ %#" PRIx64 "\n",
11315 __func__, insn, fpopcode, s->pc);
11316 g_assert_not_reached();
11319 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11320 tcg_temp_free_i32(tcg_res);
11321 tcg_temp_free_i32(tcg_op1);
11322 tcg_temp_free_i32(tcg_op2);
11326 tcg_temp_free_ptr(fpst);
11328 clear_vec_high(s, is_q, rd);
11331 /* AdvSIMD three same extra
11332 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
11333 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11334 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
11335 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11337 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
11339 int rd = extract32(insn, 0, 5);
11340 int rn = extract32(insn, 5, 5);
11341 int opcode = extract32(insn, 11, 4);
11342 int rm = extract32(insn, 16, 5);
11343 int size = extract32(insn, 22, 2);
11344 bool u = extract32(insn, 29, 1);
11345 bool is_q = extract32(insn, 30, 1);
11346 bool feature;
11347 int rot;
11349 switch (u * 16 + opcode) {
11350 case 0x10: /* SQRDMLAH (vector) */
11351 case 0x11: /* SQRDMLSH (vector) */
11352 if (size != 1 && size != 2) {
11353 unallocated_encoding(s);
11354 return;
11356 feature = dc_isar_feature(aa64_rdm, s);
11357 break;
11358 case 0x02: /* SDOT (vector) */
11359 case 0x12: /* UDOT (vector) */
11360 if (size != MO_32) {
11361 unallocated_encoding(s);
11362 return;
11364 feature = dc_isar_feature(aa64_dp, s);
11365 break;
11366 case 0x18: /* FCMLA, #0 */
11367 case 0x19: /* FCMLA, #90 */
11368 case 0x1a: /* FCMLA, #180 */
11369 case 0x1b: /* FCMLA, #270 */
11370 case 0x1c: /* FCADD, #90 */
11371 case 0x1e: /* FCADD, #270 */
11372 if (size == 0
11373 || (size == 1 && !dc_isar_feature(aa64_fp16, s))
11374 || (size == 3 && !is_q)) {
11375 unallocated_encoding(s);
11376 return;
11378 feature = dc_isar_feature(aa64_fcma, s);
11379 break;
11380 default:
11381 unallocated_encoding(s);
11382 return;
11384 if (!feature) {
11385 unallocated_encoding(s);
11386 return;
11388 if (!fp_access_check(s)) {
11389 return;
11392 switch (opcode) {
11393 case 0x0: /* SQRDMLAH (vector) */
11394 switch (size) {
11395 case 1:
11396 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlah_s16);
11397 break;
11398 case 2:
11399 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlah_s32);
11400 break;
11401 default:
11402 g_assert_not_reached();
11404 return;
11406 case 0x1: /* SQRDMLSH (vector) */
11407 switch (size) {
11408 case 1:
11409 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlsh_s16);
11410 break;
11411 case 2:
11412 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlsh_s32);
11413 break;
11414 default:
11415 g_assert_not_reached();
11417 return;
11419 case 0x2: /* SDOT / UDOT */
11420 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0,
11421 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
11422 return;
11424 case 0x8: /* FCMLA, #0 */
11425 case 0x9: /* FCMLA, #90 */
11426 case 0xa: /* FCMLA, #180 */
11427 case 0xb: /* FCMLA, #270 */
11428 rot = extract32(opcode, 0, 2);
11429 switch (size) {
11430 case 1:
11431 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, true, rot,
11432 gen_helper_gvec_fcmlah);
11433 break;
11434 case 2:
11435 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, false, rot,
11436 gen_helper_gvec_fcmlas);
11437 break;
11438 case 3:
11439 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, false, rot,
11440 gen_helper_gvec_fcmlad);
11441 break;
11442 default:
11443 g_assert_not_reached();
11445 return;
11447 case 0xc: /* FCADD, #90 */
11448 case 0xe: /* FCADD, #270 */
11449 rot = extract32(opcode, 1, 1);
11450 switch (size) {
11451 case 1:
11452 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11453 gen_helper_gvec_fcaddh);
11454 break;
11455 case 2:
11456 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11457 gen_helper_gvec_fcadds);
11458 break;
11459 case 3:
11460 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11461 gen_helper_gvec_fcaddd);
11462 break;
11463 default:
11464 g_assert_not_reached();
11466 return;
11468 default:
11469 g_assert_not_reached();
11473 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11474 int size, int rn, int rd)
11476 /* Handle 2-reg-misc ops which are widening (so each size element
11477 * in the source becomes a 2*size element in the destination.
11478 * The only instruction like this is FCVTL.
11480 int pass;
11482 if (size == 3) {
11483 /* 32 -> 64 bit fp conversion */
11484 TCGv_i64 tcg_res[2];
11485 int srcelt = is_q ? 2 : 0;
11487 for (pass = 0; pass < 2; pass++) {
11488 TCGv_i32 tcg_op = tcg_temp_new_i32();
11489 tcg_res[pass] = tcg_temp_new_i64();
11491 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
11492 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env);
11493 tcg_temp_free_i32(tcg_op);
11495 for (pass = 0; pass < 2; pass++) {
11496 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11497 tcg_temp_free_i64(tcg_res[pass]);
11499 } else {
11500 /* 16 -> 32 bit fp conversion */
11501 int srcelt = is_q ? 4 : 0;
11502 TCGv_i32 tcg_res[4];
11503 TCGv_ptr fpst = get_fpstatus_ptr(false);
11504 TCGv_i32 ahp = get_ahp_flag();
11506 for (pass = 0; pass < 4; pass++) {
11507 tcg_res[pass] = tcg_temp_new_i32();
11509 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
11510 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
11511 fpst, ahp);
11513 for (pass = 0; pass < 4; pass++) {
11514 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11515 tcg_temp_free_i32(tcg_res[pass]);
11518 tcg_temp_free_ptr(fpst);
11519 tcg_temp_free_i32(ahp);
11523 static void handle_rev(DisasContext *s, int opcode, bool u,
11524 bool is_q, int size, int rn, int rd)
11526 int op = (opcode << 1) | u;
11527 int opsz = op + size;
11528 int grp_size = 3 - opsz;
11529 int dsize = is_q ? 128 : 64;
11530 int i;
11532 if (opsz >= 3) {
11533 unallocated_encoding(s);
11534 return;
11537 if (!fp_access_check(s)) {
11538 return;
11541 if (size == 0) {
11542 /* Special case bytes, use bswap op on each group of elements */
11543 int groups = dsize / (8 << grp_size);
11545 for (i = 0; i < groups; i++) {
11546 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
11548 read_vec_element(s, tcg_tmp, rn, i, grp_size);
11549 switch (grp_size) {
11550 case MO_16:
11551 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
11552 break;
11553 case MO_32:
11554 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
11555 break;
11556 case MO_64:
11557 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
11558 break;
11559 default:
11560 g_assert_not_reached();
11562 write_vec_element(s, tcg_tmp, rd, i, grp_size);
11563 tcg_temp_free_i64(tcg_tmp);
11565 clear_vec_high(s, is_q, rd);
11566 } else {
11567 int revmask = (1 << grp_size) - 1;
11568 int esize = 8 << size;
11569 int elements = dsize / esize;
11570 TCGv_i64 tcg_rn = tcg_temp_new_i64();
11571 TCGv_i64 tcg_rd = tcg_const_i64(0);
11572 TCGv_i64 tcg_rd_hi = tcg_const_i64(0);
11574 for (i = 0; i < elements; i++) {
11575 int e_rev = (i & 0xf) ^ revmask;
11576 int off = e_rev * esize;
11577 read_vec_element(s, tcg_rn, rn, i, size);
11578 if (off >= 64) {
11579 tcg_gen_deposit_i64(tcg_rd_hi, tcg_rd_hi,
11580 tcg_rn, off - 64, esize);
11581 } else {
11582 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, off, esize);
11585 write_vec_element(s, tcg_rd, rd, 0, MO_64);
11586 write_vec_element(s, tcg_rd_hi, rd, 1, MO_64);
11588 tcg_temp_free_i64(tcg_rd_hi);
11589 tcg_temp_free_i64(tcg_rd);
11590 tcg_temp_free_i64(tcg_rn);
11594 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
11595 bool is_q, int size, int rn, int rd)
11597 /* Implement the pairwise operations from 2-misc:
11598 * SADDLP, UADDLP, SADALP, UADALP.
11599 * These all add pairs of elements in the input to produce a
11600 * double-width result element in the output (possibly accumulating).
11602 bool accum = (opcode == 0x6);
11603 int maxpass = is_q ? 2 : 1;
11604 int pass;
11605 TCGv_i64 tcg_res[2];
11607 if (size == 2) {
11608 /* 32 + 32 -> 64 op */
11609 TCGMemOp memop = size + (u ? 0 : MO_SIGN);
11611 for (pass = 0; pass < maxpass; pass++) {
11612 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11613 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11615 tcg_res[pass] = tcg_temp_new_i64();
11617 read_vec_element(s, tcg_op1, rn, pass * 2, memop);
11618 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
11619 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11620 if (accum) {
11621 read_vec_element(s, tcg_op1, rd, pass, MO_64);
11622 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
11625 tcg_temp_free_i64(tcg_op1);
11626 tcg_temp_free_i64(tcg_op2);
11628 } else {
11629 for (pass = 0; pass < maxpass; pass++) {
11630 TCGv_i64 tcg_op = tcg_temp_new_i64();
11631 NeonGenOneOpFn *genfn;
11632 static NeonGenOneOpFn * const fns[2][2] = {
11633 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 },
11634 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 },
11637 genfn = fns[size][u];
11639 tcg_res[pass] = tcg_temp_new_i64();
11641 read_vec_element(s, tcg_op, rn, pass, MO_64);
11642 genfn(tcg_res[pass], tcg_op);
11644 if (accum) {
11645 read_vec_element(s, tcg_op, rd, pass, MO_64);
11646 if (size == 0) {
11647 gen_helper_neon_addl_u16(tcg_res[pass],
11648 tcg_res[pass], tcg_op);
11649 } else {
11650 gen_helper_neon_addl_u32(tcg_res[pass],
11651 tcg_res[pass], tcg_op);
11654 tcg_temp_free_i64(tcg_op);
11657 if (!is_q) {
11658 tcg_res[1] = tcg_const_i64(0);
11660 for (pass = 0; pass < 2; pass++) {
11661 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11662 tcg_temp_free_i64(tcg_res[pass]);
11666 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
11668 /* Implement SHLL and SHLL2 */
11669 int pass;
11670 int part = is_q ? 2 : 0;
11671 TCGv_i64 tcg_res[2];
11673 for (pass = 0; pass < 2; pass++) {
11674 static NeonGenWidenFn * const widenfns[3] = {
11675 gen_helper_neon_widen_u8,
11676 gen_helper_neon_widen_u16,
11677 tcg_gen_extu_i32_i64,
11679 NeonGenWidenFn *widenfn = widenfns[size];
11680 TCGv_i32 tcg_op = tcg_temp_new_i32();
11682 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
11683 tcg_res[pass] = tcg_temp_new_i64();
11684 widenfn(tcg_res[pass], tcg_op);
11685 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
11687 tcg_temp_free_i32(tcg_op);
11690 for (pass = 0; pass < 2; pass++) {
11691 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11692 tcg_temp_free_i64(tcg_res[pass]);
11696 /* AdvSIMD two reg misc
11697 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
11698 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11699 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
11700 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11702 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
11704 int size = extract32(insn, 22, 2);
11705 int opcode = extract32(insn, 12, 5);
11706 bool u = extract32(insn, 29, 1);
11707 bool is_q = extract32(insn, 30, 1);
11708 int rn = extract32(insn, 5, 5);
11709 int rd = extract32(insn, 0, 5);
11710 bool need_fpstatus = false;
11711 bool need_rmode = false;
11712 int rmode = -1;
11713 TCGv_i32 tcg_rmode;
11714 TCGv_ptr tcg_fpstatus;
11716 switch (opcode) {
11717 case 0x0: /* REV64, REV32 */
11718 case 0x1: /* REV16 */
11719 handle_rev(s, opcode, u, is_q, size, rn, rd);
11720 return;
11721 case 0x5: /* CNT, NOT, RBIT */
11722 if (u && size == 0) {
11723 /* NOT */
11724 break;
11725 } else if (u && size == 1) {
11726 /* RBIT */
11727 break;
11728 } else if (!u && size == 0) {
11729 /* CNT */
11730 break;
11732 unallocated_encoding(s);
11733 return;
11734 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
11735 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
11736 if (size == 3) {
11737 unallocated_encoding(s);
11738 return;
11740 if (!fp_access_check(s)) {
11741 return;
11744 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
11745 return;
11746 case 0x4: /* CLS, CLZ */
11747 if (size == 3) {
11748 unallocated_encoding(s);
11749 return;
11751 break;
11752 case 0x2: /* SADDLP, UADDLP */
11753 case 0x6: /* SADALP, UADALP */
11754 if (size == 3) {
11755 unallocated_encoding(s);
11756 return;
11758 if (!fp_access_check(s)) {
11759 return;
11761 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
11762 return;
11763 case 0x13: /* SHLL, SHLL2 */
11764 if (u == 0 || size == 3) {
11765 unallocated_encoding(s);
11766 return;
11768 if (!fp_access_check(s)) {
11769 return;
11771 handle_shll(s, is_q, size, rn, rd);
11772 return;
11773 case 0xa: /* CMLT */
11774 if (u == 1) {
11775 unallocated_encoding(s);
11776 return;
11778 /* fall through */
11779 case 0x8: /* CMGT, CMGE */
11780 case 0x9: /* CMEQ, CMLE */
11781 case 0xb: /* ABS, NEG */
11782 if (size == 3 && !is_q) {
11783 unallocated_encoding(s);
11784 return;
11786 break;
11787 case 0x3: /* SUQADD, USQADD */
11788 if (size == 3 && !is_q) {
11789 unallocated_encoding(s);
11790 return;
11792 if (!fp_access_check(s)) {
11793 return;
11795 handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
11796 return;
11797 case 0x7: /* SQABS, SQNEG */
11798 if (size == 3 && !is_q) {
11799 unallocated_encoding(s);
11800 return;
11802 break;
11803 case 0xc ... 0xf:
11804 case 0x16 ... 0x1d:
11805 case 0x1f:
11807 /* Floating point: U, size[1] and opcode indicate operation;
11808 * size[0] indicates single or double precision.
11810 int is_double = extract32(size, 0, 1);
11811 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
11812 size = is_double ? 3 : 2;
11813 switch (opcode) {
11814 case 0x2f: /* FABS */
11815 case 0x6f: /* FNEG */
11816 if (size == 3 && !is_q) {
11817 unallocated_encoding(s);
11818 return;
11820 break;
11821 case 0x1d: /* SCVTF */
11822 case 0x5d: /* UCVTF */
11824 bool is_signed = (opcode == 0x1d) ? true : false;
11825 int elements = is_double ? 2 : is_q ? 4 : 2;
11826 if (is_double && !is_q) {
11827 unallocated_encoding(s);
11828 return;
11830 if (!fp_access_check(s)) {
11831 return;
11833 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
11834 return;
11836 case 0x2c: /* FCMGT (zero) */
11837 case 0x2d: /* FCMEQ (zero) */
11838 case 0x2e: /* FCMLT (zero) */
11839 case 0x6c: /* FCMGE (zero) */
11840 case 0x6d: /* FCMLE (zero) */
11841 if (size == 3 && !is_q) {
11842 unallocated_encoding(s);
11843 return;
11845 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
11846 return;
11847 case 0x7f: /* FSQRT */
11848 if (size == 3 && !is_q) {
11849 unallocated_encoding(s);
11850 return;
11852 break;
11853 case 0x1a: /* FCVTNS */
11854 case 0x1b: /* FCVTMS */
11855 case 0x3a: /* FCVTPS */
11856 case 0x3b: /* FCVTZS */
11857 case 0x5a: /* FCVTNU */
11858 case 0x5b: /* FCVTMU */
11859 case 0x7a: /* FCVTPU */
11860 case 0x7b: /* FCVTZU */
11861 need_fpstatus = true;
11862 need_rmode = true;
11863 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11864 if (size == 3 && !is_q) {
11865 unallocated_encoding(s);
11866 return;
11868 break;
11869 case 0x5c: /* FCVTAU */
11870 case 0x1c: /* FCVTAS */
11871 need_fpstatus = true;
11872 need_rmode = true;
11873 rmode = FPROUNDING_TIEAWAY;
11874 if (size == 3 && !is_q) {
11875 unallocated_encoding(s);
11876 return;
11878 break;
11879 case 0x3c: /* URECPE */
11880 if (size == 3) {
11881 unallocated_encoding(s);
11882 return;
11884 /* fall through */
11885 case 0x3d: /* FRECPE */
11886 case 0x7d: /* FRSQRTE */
11887 if (size == 3 && !is_q) {
11888 unallocated_encoding(s);
11889 return;
11891 if (!fp_access_check(s)) {
11892 return;
11894 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
11895 return;
11896 case 0x56: /* FCVTXN, FCVTXN2 */
11897 if (size == 2) {
11898 unallocated_encoding(s);
11899 return;
11901 /* fall through */
11902 case 0x16: /* FCVTN, FCVTN2 */
11903 /* handle_2misc_narrow does a 2*size -> size operation, but these
11904 * instructions encode the source size rather than dest size.
11906 if (!fp_access_check(s)) {
11907 return;
11909 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
11910 return;
11911 case 0x17: /* FCVTL, FCVTL2 */
11912 if (!fp_access_check(s)) {
11913 return;
11915 handle_2misc_widening(s, opcode, is_q, size, rn, rd);
11916 return;
11917 case 0x18: /* FRINTN */
11918 case 0x19: /* FRINTM */
11919 case 0x38: /* FRINTP */
11920 case 0x39: /* FRINTZ */
11921 need_rmode = true;
11922 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11923 /* fall through */
11924 case 0x59: /* FRINTX */
11925 case 0x79: /* FRINTI */
11926 need_fpstatus = true;
11927 if (size == 3 && !is_q) {
11928 unallocated_encoding(s);
11929 return;
11931 break;
11932 case 0x58: /* FRINTA */
11933 need_rmode = true;
11934 rmode = FPROUNDING_TIEAWAY;
11935 need_fpstatus = true;
11936 if (size == 3 && !is_q) {
11937 unallocated_encoding(s);
11938 return;
11940 break;
11941 case 0x7c: /* URSQRTE */
11942 if (size == 3) {
11943 unallocated_encoding(s);
11944 return;
11946 need_fpstatus = true;
11947 break;
11948 default:
11949 unallocated_encoding(s);
11950 return;
11952 break;
11954 default:
11955 unallocated_encoding(s);
11956 return;
11959 if (!fp_access_check(s)) {
11960 return;
11963 if (need_fpstatus || need_rmode) {
11964 tcg_fpstatus = get_fpstatus_ptr(false);
11965 } else {
11966 tcg_fpstatus = NULL;
11968 if (need_rmode) {
11969 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
11970 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
11971 } else {
11972 tcg_rmode = NULL;
11975 switch (opcode) {
11976 case 0x5:
11977 if (u && size == 0) { /* NOT */
11978 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
11979 return;
11981 break;
11982 case 0xb:
11983 if (u) { /* NEG */
11984 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
11985 return;
11987 break;
11990 if (size == 3) {
11991 /* All 64-bit element operations can be shared with scalar 2misc */
11992 int pass;
11994 /* Coverity claims (size == 3 && !is_q) has been eliminated
11995 * from all paths leading to here.
11997 tcg_debug_assert(is_q);
11998 for (pass = 0; pass < 2; pass++) {
11999 TCGv_i64 tcg_op = tcg_temp_new_i64();
12000 TCGv_i64 tcg_res = tcg_temp_new_i64();
12002 read_vec_element(s, tcg_op, rn, pass, MO_64);
12004 handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
12005 tcg_rmode, tcg_fpstatus);
12007 write_vec_element(s, tcg_res, rd, pass, MO_64);
12009 tcg_temp_free_i64(tcg_res);
12010 tcg_temp_free_i64(tcg_op);
12012 } else {
12013 int pass;
12015 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
12016 TCGv_i32 tcg_op = tcg_temp_new_i32();
12017 TCGv_i32 tcg_res = tcg_temp_new_i32();
12018 TCGCond cond;
12020 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
12022 if (size == 2) {
12023 /* Special cases for 32 bit elements */
12024 switch (opcode) {
12025 case 0xa: /* CMLT */
12026 /* 32 bit integer comparison against zero, result is
12027 * test ? (2^32 - 1) : 0. We implement via setcond(test)
12028 * and inverting.
12030 cond = TCG_COND_LT;
12031 do_cmop:
12032 tcg_gen_setcondi_i32(cond, tcg_res, tcg_op, 0);
12033 tcg_gen_neg_i32(tcg_res, tcg_res);
12034 break;
12035 case 0x8: /* CMGT, CMGE */
12036 cond = u ? TCG_COND_GE : TCG_COND_GT;
12037 goto do_cmop;
12038 case 0x9: /* CMEQ, CMLE */
12039 cond = u ? TCG_COND_LE : TCG_COND_EQ;
12040 goto do_cmop;
12041 case 0x4: /* CLS */
12042 if (u) {
12043 tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
12044 } else {
12045 tcg_gen_clrsb_i32(tcg_res, tcg_op);
12047 break;
12048 case 0x7: /* SQABS, SQNEG */
12049 if (u) {
12050 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op);
12051 } else {
12052 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op);
12054 break;
12055 case 0xb: /* ABS, NEG */
12056 if (u) {
12057 tcg_gen_neg_i32(tcg_res, tcg_op);
12058 } else {
12059 TCGv_i32 tcg_zero = tcg_const_i32(0);
12060 tcg_gen_neg_i32(tcg_res, tcg_op);
12061 tcg_gen_movcond_i32(TCG_COND_GT, tcg_res, tcg_op,
12062 tcg_zero, tcg_op, tcg_res);
12063 tcg_temp_free_i32(tcg_zero);
12065 break;
12066 case 0x2f: /* FABS */
12067 gen_helper_vfp_abss(tcg_res, tcg_op);
12068 break;
12069 case 0x6f: /* FNEG */
12070 gen_helper_vfp_negs(tcg_res, tcg_op);
12071 break;
12072 case 0x7f: /* FSQRT */
12073 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
12074 break;
12075 case 0x1a: /* FCVTNS */
12076 case 0x1b: /* FCVTMS */
12077 case 0x1c: /* FCVTAS */
12078 case 0x3a: /* FCVTPS */
12079 case 0x3b: /* FCVTZS */
12081 TCGv_i32 tcg_shift = tcg_const_i32(0);
12082 gen_helper_vfp_tosls(tcg_res, tcg_op,
12083 tcg_shift, tcg_fpstatus);
12084 tcg_temp_free_i32(tcg_shift);
12085 break;
12087 case 0x5a: /* FCVTNU */
12088 case 0x5b: /* FCVTMU */
12089 case 0x5c: /* FCVTAU */
12090 case 0x7a: /* FCVTPU */
12091 case 0x7b: /* FCVTZU */
12093 TCGv_i32 tcg_shift = tcg_const_i32(0);
12094 gen_helper_vfp_touls(tcg_res, tcg_op,
12095 tcg_shift, tcg_fpstatus);
12096 tcg_temp_free_i32(tcg_shift);
12097 break;
12099 case 0x18: /* FRINTN */
12100 case 0x19: /* FRINTM */
12101 case 0x38: /* FRINTP */
12102 case 0x39: /* FRINTZ */
12103 case 0x58: /* FRINTA */
12104 case 0x79: /* FRINTI */
12105 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
12106 break;
12107 case 0x59: /* FRINTX */
12108 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
12109 break;
12110 case 0x7c: /* URSQRTE */
12111 gen_helper_rsqrte_u32(tcg_res, tcg_op, tcg_fpstatus);
12112 break;
12113 default:
12114 g_assert_not_reached();
12116 } else {
12117 /* Use helpers for 8 and 16 bit elements */
12118 switch (opcode) {
12119 case 0x5: /* CNT, RBIT */
12120 /* For these two insns size is part of the opcode specifier
12121 * (handled earlier); they always operate on byte elements.
12123 if (u) {
12124 gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12125 } else {
12126 gen_helper_neon_cnt_u8(tcg_res, tcg_op);
12128 break;
12129 case 0x7: /* SQABS, SQNEG */
12131 NeonGenOneOpEnvFn *genfn;
12132 static NeonGenOneOpEnvFn * const fns[2][2] = {
12133 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
12134 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
12136 genfn = fns[size][u];
12137 genfn(tcg_res, cpu_env, tcg_op);
12138 break;
12140 case 0x8: /* CMGT, CMGE */
12141 case 0x9: /* CMEQ, CMLE */
12142 case 0xa: /* CMLT */
12144 static NeonGenTwoOpFn * const fns[3][2] = {
12145 { gen_helper_neon_cgt_s8, gen_helper_neon_cgt_s16 },
12146 { gen_helper_neon_cge_s8, gen_helper_neon_cge_s16 },
12147 { gen_helper_neon_ceq_u8, gen_helper_neon_ceq_u16 },
12149 NeonGenTwoOpFn *genfn;
12150 int comp;
12151 bool reverse;
12152 TCGv_i32 tcg_zero = tcg_const_i32(0);
12154 /* comp = index into [CMGT, CMGE, CMEQ, CMLE, CMLT] */
12155 comp = (opcode - 0x8) * 2 + u;
12156 /* ...but LE, LT are implemented as reverse GE, GT */
12157 reverse = (comp > 2);
12158 if (reverse) {
12159 comp = 4 - comp;
12161 genfn = fns[comp][size];
12162 if (reverse) {
12163 genfn(tcg_res, tcg_zero, tcg_op);
12164 } else {
12165 genfn(tcg_res, tcg_op, tcg_zero);
12167 tcg_temp_free_i32(tcg_zero);
12168 break;
12170 case 0xb: /* ABS, NEG */
12171 if (u) {
12172 TCGv_i32 tcg_zero = tcg_const_i32(0);
12173 if (size) {
12174 gen_helper_neon_sub_u16(tcg_res, tcg_zero, tcg_op);
12175 } else {
12176 gen_helper_neon_sub_u8(tcg_res, tcg_zero, tcg_op);
12178 tcg_temp_free_i32(tcg_zero);
12179 } else {
12180 if (size) {
12181 gen_helper_neon_abs_s16(tcg_res, tcg_op);
12182 } else {
12183 gen_helper_neon_abs_s8(tcg_res, tcg_op);
12186 break;
12187 case 0x4: /* CLS, CLZ */
12188 if (u) {
12189 if (size == 0) {
12190 gen_helper_neon_clz_u8(tcg_res, tcg_op);
12191 } else {
12192 gen_helper_neon_clz_u16(tcg_res, tcg_op);
12194 } else {
12195 if (size == 0) {
12196 gen_helper_neon_cls_s8(tcg_res, tcg_op);
12197 } else {
12198 gen_helper_neon_cls_s16(tcg_res, tcg_op);
12201 break;
12202 default:
12203 g_assert_not_reached();
12207 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12209 tcg_temp_free_i32(tcg_res);
12210 tcg_temp_free_i32(tcg_op);
12213 clear_vec_high(s, is_q, rd);
12215 if (need_rmode) {
12216 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12217 tcg_temp_free_i32(tcg_rmode);
12219 if (need_fpstatus) {
12220 tcg_temp_free_ptr(tcg_fpstatus);
12224 /* AdvSIMD [scalar] two register miscellaneous (FP16)
12226 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0
12227 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12228 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd |
12229 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12230 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
12231 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
12233 * This actually covers two groups where scalar access is governed by
12234 * bit 28. A bunch of the instructions (float to integral) only exist
12235 * in the vector form and are un-allocated for the scalar decode. Also
12236 * in the scalar decode Q is always 1.
12238 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
12240 int fpop, opcode, a, u;
12241 int rn, rd;
12242 bool is_q;
12243 bool is_scalar;
12244 bool only_in_vector = false;
12246 int pass;
12247 TCGv_i32 tcg_rmode = NULL;
12248 TCGv_ptr tcg_fpstatus = NULL;
12249 bool need_rmode = false;
12250 bool need_fpst = true;
12251 int rmode;
12253 if (!dc_isar_feature(aa64_fp16, s)) {
12254 unallocated_encoding(s);
12255 return;
12258 rd = extract32(insn, 0, 5);
12259 rn = extract32(insn, 5, 5);
12261 a = extract32(insn, 23, 1);
12262 u = extract32(insn, 29, 1);
12263 is_scalar = extract32(insn, 28, 1);
12264 is_q = extract32(insn, 30, 1);
12266 opcode = extract32(insn, 12, 5);
12267 fpop = deposit32(opcode, 5, 1, a);
12268 fpop = deposit32(fpop, 6, 1, u);
12270 rd = extract32(insn, 0, 5);
12271 rn = extract32(insn, 5, 5);
12273 switch (fpop) {
12274 case 0x1d: /* SCVTF */
12275 case 0x5d: /* UCVTF */
12277 int elements;
12279 if (is_scalar) {
12280 elements = 1;
12281 } else {
12282 elements = (is_q ? 8 : 4);
12285 if (!fp_access_check(s)) {
12286 return;
12288 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
12289 return;
12291 break;
12292 case 0x2c: /* FCMGT (zero) */
12293 case 0x2d: /* FCMEQ (zero) */
12294 case 0x2e: /* FCMLT (zero) */
12295 case 0x6c: /* FCMGE (zero) */
12296 case 0x6d: /* FCMLE (zero) */
12297 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
12298 return;
12299 case 0x3d: /* FRECPE */
12300 case 0x3f: /* FRECPX */
12301 break;
12302 case 0x18: /* FRINTN */
12303 need_rmode = true;
12304 only_in_vector = true;
12305 rmode = FPROUNDING_TIEEVEN;
12306 break;
12307 case 0x19: /* FRINTM */
12308 need_rmode = true;
12309 only_in_vector = true;
12310 rmode = FPROUNDING_NEGINF;
12311 break;
12312 case 0x38: /* FRINTP */
12313 need_rmode = true;
12314 only_in_vector = true;
12315 rmode = FPROUNDING_POSINF;
12316 break;
12317 case 0x39: /* FRINTZ */
12318 need_rmode = true;
12319 only_in_vector = true;
12320 rmode = FPROUNDING_ZERO;
12321 break;
12322 case 0x58: /* FRINTA */
12323 need_rmode = true;
12324 only_in_vector = true;
12325 rmode = FPROUNDING_TIEAWAY;
12326 break;
12327 case 0x59: /* FRINTX */
12328 case 0x79: /* FRINTI */
12329 only_in_vector = true;
12330 /* current rounding mode */
12331 break;
12332 case 0x1a: /* FCVTNS */
12333 need_rmode = true;
12334 rmode = FPROUNDING_TIEEVEN;
12335 break;
12336 case 0x1b: /* FCVTMS */
12337 need_rmode = true;
12338 rmode = FPROUNDING_NEGINF;
12339 break;
12340 case 0x1c: /* FCVTAS */
12341 need_rmode = true;
12342 rmode = FPROUNDING_TIEAWAY;
12343 break;
12344 case 0x3a: /* FCVTPS */
12345 need_rmode = true;
12346 rmode = FPROUNDING_POSINF;
12347 break;
12348 case 0x3b: /* FCVTZS */
12349 need_rmode = true;
12350 rmode = FPROUNDING_ZERO;
12351 break;
12352 case 0x5a: /* FCVTNU */
12353 need_rmode = true;
12354 rmode = FPROUNDING_TIEEVEN;
12355 break;
12356 case 0x5b: /* FCVTMU */
12357 need_rmode = true;
12358 rmode = FPROUNDING_NEGINF;
12359 break;
12360 case 0x5c: /* FCVTAU */
12361 need_rmode = true;
12362 rmode = FPROUNDING_TIEAWAY;
12363 break;
12364 case 0x7a: /* FCVTPU */
12365 need_rmode = true;
12366 rmode = FPROUNDING_POSINF;
12367 break;
12368 case 0x7b: /* FCVTZU */
12369 need_rmode = true;
12370 rmode = FPROUNDING_ZERO;
12371 break;
12372 case 0x2f: /* FABS */
12373 case 0x6f: /* FNEG */
12374 need_fpst = false;
12375 break;
12376 case 0x7d: /* FRSQRTE */
12377 case 0x7f: /* FSQRT (vector) */
12378 break;
12379 default:
12380 fprintf(stderr, "%s: insn %#04x fpop %#2x\n", __func__, insn, fpop);
12381 g_assert_not_reached();
12385 /* Check additional constraints for the scalar encoding */
12386 if (is_scalar) {
12387 if (!is_q) {
12388 unallocated_encoding(s);
12389 return;
12391 /* FRINTxx is only in the vector form */
12392 if (only_in_vector) {
12393 unallocated_encoding(s);
12394 return;
12398 if (!fp_access_check(s)) {
12399 return;
12402 if (need_rmode || need_fpst) {
12403 tcg_fpstatus = get_fpstatus_ptr(true);
12406 if (need_rmode) {
12407 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
12408 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12411 if (is_scalar) {
12412 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
12413 TCGv_i32 tcg_res = tcg_temp_new_i32();
12415 switch (fpop) {
12416 case 0x1a: /* FCVTNS */
12417 case 0x1b: /* FCVTMS */
12418 case 0x1c: /* FCVTAS */
12419 case 0x3a: /* FCVTPS */
12420 case 0x3b: /* FCVTZS */
12421 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12422 break;
12423 case 0x3d: /* FRECPE */
12424 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12425 break;
12426 case 0x3f: /* FRECPX */
12427 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
12428 break;
12429 case 0x5a: /* FCVTNU */
12430 case 0x5b: /* FCVTMU */
12431 case 0x5c: /* FCVTAU */
12432 case 0x7a: /* FCVTPU */
12433 case 0x7b: /* FCVTZU */
12434 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12435 break;
12436 case 0x6f: /* FNEG */
12437 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12438 break;
12439 case 0x7d: /* FRSQRTE */
12440 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12441 break;
12442 default:
12443 g_assert_not_reached();
12446 /* limit any sign extension going on */
12447 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
12448 write_fp_sreg(s, rd, tcg_res);
12450 tcg_temp_free_i32(tcg_res);
12451 tcg_temp_free_i32(tcg_op);
12452 } else {
12453 for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
12454 TCGv_i32 tcg_op = tcg_temp_new_i32();
12455 TCGv_i32 tcg_res = tcg_temp_new_i32();
12457 read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
12459 switch (fpop) {
12460 case 0x1a: /* FCVTNS */
12461 case 0x1b: /* FCVTMS */
12462 case 0x1c: /* FCVTAS */
12463 case 0x3a: /* FCVTPS */
12464 case 0x3b: /* FCVTZS */
12465 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12466 break;
12467 case 0x3d: /* FRECPE */
12468 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12469 break;
12470 case 0x5a: /* FCVTNU */
12471 case 0x5b: /* FCVTMU */
12472 case 0x5c: /* FCVTAU */
12473 case 0x7a: /* FCVTPU */
12474 case 0x7b: /* FCVTZU */
12475 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12476 break;
12477 case 0x18: /* FRINTN */
12478 case 0x19: /* FRINTM */
12479 case 0x38: /* FRINTP */
12480 case 0x39: /* FRINTZ */
12481 case 0x58: /* FRINTA */
12482 case 0x79: /* FRINTI */
12483 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
12484 break;
12485 case 0x59: /* FRINTX */
12486 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
12487 break;
12488 case 0x2f: /* FABS */
12489 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
12490 break;
12491 case 0x6f: /* FNEG */
12492 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12493 break;
12494 case 0x7d: /* FRSQRTE */
12495 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12496 break;
12497 case 0x7f: /* FSQRT */
12498 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
12499 break;
12500 default:
12501 g_assert_not_reached();
12504 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12506 tcg_temp_free_i32(tcg_res);
12507 tcg_temp_free_i32(tcg_op);
12510 clear_vec_high(s, is_q, rd);
12513 if (tcg_rmode) {
12514 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12515 tcg_temp_free_i32(tcg_rmode);
12518 if (tcg_fpstatus) {
12519 tcg_temp_free_ptr(tcg_fpstatus);
12523 /* AdvSIMD scalar x indexed element
12524 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
12525 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12526 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
12527 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12528 * AdvSIMD vector x indexed element
12529 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
12530 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12531 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
12532 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12534 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12536 /* This encoding has two kinds of instruction:
12537 * normal, where we perform elt x idxelt => elt for each
12538 * element in the vector
12539 * long, where we perform elt x idxelt and generate a result of
12540 * double the width of the input element
12541 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12543 bool is_scalar = extract32(insn, 28, 1);
12544 bool is_q = extract32(insn, 30, 1);
12545 bool u = extract32(insn, 29, 1);
12546 int size = extract32(insn, 22, 2);
12547 int l = extract32(insn, 21, 1);
12548 int m = extract32(insn, 20, 1);
12549 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12550 int rm = extract32(insn, 16, 4);
12551 int opcode = extract32(insn, 12, 4);
12552 int h = extract32(insn, 11, 1);
12553 int rn = extract32(insn, 5, 5);
12554 int rd = extract32(insn, 0, 5);
12555 bool is_long = false;
12556 int is_fp = 0;
12557 bool is_fp16 = false;
12558 int index;
12559 TCGv_ptr fpst;
12561 switch (16 * u + opcode) {
12562 case 0x08: /* MUL */
12563 case 0x10: /* MLA */
12564 case 0x14: /* MLS */
12565 if (is_scalar) {
12566 unallocated_encoding(s);
12567 return;
12569 break;
12570 case 0x02: /* SMLAL, SMLAL2 */
12571 case 0x12: /* UMLAL, UMLAL2 */
12572 case 0x06: /* SMLSL, SMLSL2 */
12573 case 0x16: /* UMLSL, UMLSL2 */
12574 case 0x0a: /* SMULL, SMULL2 */
12575 case 0x1a: /* UMULL, UMULL2 */
12576 if (is_scalar) {
12577 unallocated_encoding(s);
12578 return;
12580 is_long = true;
12581 break;
12582 case 0x03: /* SQDMLAL, SQDMLAL2 */
12583 case 0x07: /* SQDMLSL, SQDMLSL2 */
12584 case 0x0b: /* SQDMULL, SQDMULL2 */
12585 is_long = true;
12586 break;
12587 case 0x0c: /* SQDMULH */
12588 case 0x0d: /* SQRDMULH */
12589 break;
12590 case 0x01: /* FMLA */
12591 case 0x05: /* FMLS */
12592 case 0x09: /* FMUL */
12593 case 0x19: /* FMULX */
12594 is_fp = 1;
12595 break;
12596 case 0x1d: /* SQRDMLAH */
12597 case 0x1f: /* SQRDMLSH */
12598 if (!dc_isar_feature(aa64_rdm, s)) {
12599 unallocated_encoding(s);
12600 return;
12602 break;
12603 case 0x0e: /* SDOT */
12604 case 0x1e: /* UDOT */
12605 if (size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
12606 unallocated_encoding(s);
12607 return;
12609 break;
12610 case 0x11: /* FCMLA #0 */
12611 case 0x13: /* FCMLA #90 */
12612 case 0x15: /* FCMLA #180 */
12613 case 0x17: /* FCMLA #270 */
12614 if (!dc_isar_feature(aa64_fcma, s)) {
12615 unallocated_encoding(s);
12616 return;
12618 is_fp = 2;
12619 break;
12620 default:
12621 unallocated_encoding(s);
12622 return;
12625 switch (is_fp) {
12626 case 1: /* normal fp */
12627 /* convert insn encoded size to TCGMemOp size */
12628 switch (size) {
12629 case 0: /* half-precision */
12630 size = MO_16;
12631 is_fp16 = true;
12632 break;
12633 case MO_32: /* single precision */
12634 case MO_64: /* double precision */
12635 break;
12636 default:
12637 unallocated_encoding(s);
12638 return;
12640 break;
12642 case 2: /* complex fp */
12643 /* Each indexable element is a complex pair. */
12644 size <<= 1;
12645 switch (size) {
12646 case MO_32:
12647 if (h && !is_q) {
12648 unallocated_encoding(s);
12649 return;
12651 is_fp16 = true;
12652 break;
12653 case MO_64:
12654 break;
12655 default:
12656 unallocated_encoding(s);
12657 return;
12659 break;
12661 default: /* integer */
12662 switch (size) {
12663 case MO_8:
12664 case MO_64:
12665 unallocated_encoding(s);
12666 return;
12668 break;
12670 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
12671 unallocated_encoding(s);
12672 return;
12675 /* Given TCGMemOp size, adjust register and indexing. */
12676 switch (size) {
12677 case MO_16:
12678 index = h << 2 | l << 1 | m;
12679 break;
12680 case MO_32:
12681 index = h << 1 | l;
12682 rm |= m << 4;
12683 break;
12684 case MO_64:
12685 if (l || !is_q) {
12686 unallocated_encoding(s);
12687 return;
12689 index = h;
12690 rm |= m << 4;
12691 break;
12692 default:
12693 g_assert_not_reached();
12696 if (!fp_access_check(s)) {
12697 return;
12700 if (is_fp) {
12701 fpst = get_fpstatus_ptr(is_fp16);
12702 } else {
12703 fpst = NULL;
12706 switch (16 * u + opcode) {
12707 case 0x0e: /* SDOT */
12708 case 0x1e: /* UDOT */
12709 gen_gvec_op3_ool(s, is_q, rd, rn, rm, index,
12710 u ? gen_helper_gvec_udot_idx_b
12711 : gen_helper_gvec_sdot_idx_b);
12712 return;
12713 case 0x11: /* FCMLA #0 */
12714 case 0x13: /* FCMLA #90 */
12715 case 0x15: /* FCMLA #180 */
12716 case 0x17: /* FCMLA #270 */
12718 int rot = extract32(insn, 13, 2);
12719 int data = (index << 2) | rot;
12720 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
12721 vec_full_reg_offset(s, rn),
12722 vec_full_reg_offset(s, rm), fpst,
12723 is_q ? 16 : 8, vec_full_reg_size(s), data,
12724 size == MO_64
12725 ? gen_helper_gvec_fcmlas_idx
12726 : gen_helper_gvec_fcmlah_idx);
12727 tcg_temp_free_ptr(fpst);
12729 return;
12732 if (size == 3) {
12733 TCGv_i64 tcg_idx = tcg_temp_new_i64();
12734 int pass;
12736 assert(is_fp && is_q && !is_long);
12738 read_vec_element(s, tcg_idx, rm, index, MO_64);
12740 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12741 TCGv_i64 tcg_op = tcg_temp_new_i64();
12742 TCGv_i64 tcg_res = tcg_temp_new_i64();
12744 read_vec_element(s, tcg_op, rn, pass, MO_64);
12746 switch (16 * u + opcode) {
12747 case 0x05: /* FMLS */
12748 /* As usual for ARM, separate negation for fused multiply-add */
12749 gen_helper_vfp_negd(tcg_op, tcg_op);
12750 /* fall through */
12751 case 0x01: /* FMLA */
12752 read_vec_element(s, tcg_res, rd, pass, MO_64);
12753 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
12754 break;
12755 case 0x09: /* FMUL */
12756 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
12757 break;
12758 case 0x19: /* FMULX */
12759 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
12760 break;
12761 default:
12762 g_assert_not_reached();
12765 write_vec_element(s, tcg_res, rd, pass, MO_64);
12766 tcg_temp_free_i64(tcg_op);
12767 tcg_temp_free_i64(tcg_res);
12770 tcg_temp_free_i64(tcg_idx);
12771 clear_vec_high(s, !is_scalar, rd);
12772 } else if (!is_long) {
12773 /* 32 bit floating point, or 16 or 32 bit integer.
12774 * For the 16 bit scalar case we use the usual Neon helpers and
12775 * rely on the fact that 0 op 0 == 0 with no side effects.
12777 TCGv_i32 tcg_idx = tcg_temp_new_i32();
12778 int pass, maxpasses;
12780 if (is_scalar) {
12781 maxpasses = 1;
12782 } else {
12783 maxpasses = is_q ? 4 : 2;
12786 read_vec_element_i32(s, tcg_idx, rm, index, size);
12788 if (size == 1 && !is_scalar) {
12789 /* The simplest way to handle the 16x16 indexed ops is to duplicate
12790 * the index into both halves of the 32 bit tcg_idx and then use
12791 * the usual Neon helpers.
12793 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
12796 for (pass = 0; pass < maxpasses; pass++) {
12797 TCGv_i32 tcg_op = tcg_temp_new_i32();
12798 TCGv_i32 tcg_res = tcg_temp_new_i32();
12800 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
12802 switch (16 * u + opcode) {
12803 case 0x08: /* MUL */
12804 case 0x10: /* MLA */
12805 case 0x14: /* MLS */
12807 static NeonGenTwoOpFn * const fns[2][2] = {
12808 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
12809 { tcg_gen_add_i32, tcg_gen_sub_i32 },
12811 NeonGenTwoOpFn *genfn;
12812 bool is_sub = opcode == 0x4;
12814 if (size == 1) {
12815 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
12816 } else {
12817 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
12819 if (opcode == 0x8) {
12820 break;
12822 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
12823 genfn = fns[size - 1][is_sub];
12824 genfn(tcg_res, tcg_op, tcg_res);
12825 break;
12827 case 0x05: /* FMLS */
12828 case 0x01: /* FMLA */
12829 read_vec_element_i32(s, tcg_res, rd, pass,
12830 is_scalar ? size : MO_32);
12831 switch (size) {
12832 case 1:
12833 if (opcode == 0x5) {
12834 /* As usual for ARM, separate negation for fused
12835 * multiply-add */
12836 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000);
12838 if (is_scalar) {
12839 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx,
12840 tcg_res, fpst);
12841 } else {
12842 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx,
12843 tcg_res, fpst);
12845 break;
12846 case 2:
12847 if (opcode == 0x5) {
12848 /* As usual for ARM, separate negation for
12849 * fused multiply-add */
12850 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000);
12852 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx,
12853 tcg_res, fpst);
12854 break;
12855 default:
12856 g_assert_not_reached();
12858 break;
12859 case 0x09: /* FMUL */
12860 switch (size) {
12861 case 1:
12862 if (is_scalar) {
12863 gen_helper_advsimd_mulh(tcg_res, tcg_op,
12864 tcg_idx, fpst);
12865 } else {
12866 gen_helper_advsimd_mul2h(tcg_res, tcg_op,
12867 tcg_idx, fpst);
12869 break;
12870 case 2:
12871 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
12872 break;
12873 default:
12874 g_assert_not_reached();
12876 break;
12877 case 0x19: /* FMULX */
12878 switch (size) {
12879 case 1:
12880 if (is_scalar) {
12881 gen_helper_advsimd_mulxh(tcg_res, tcg_op,
12882 tcg_idx, fpst);
12883 } else {
12884 gen_helper_advsimd_mulx2h(tcg_res, tcg_op,
12885 tcg_idx, fpst);
12887 break;
12888 case 2:
12889 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
12890 break;
12891 default:
12892 g_assert_not_reached();
12894 break;
12895 case 0x0c: /* SQDMULH */
12896 if (size == 1) {
12897 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env,
12898 tcg_op, tcg_idx);
12899 } else {
12900 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env,
12901 tcg_op, tcg_idx);
12903 break;
12904 case 0x0d: /* SQRDMULH */
12905 if (size == 1) {
12906 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env,
12907 tcg_op, tcg_idx);
12908 } else {
12909 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env,
12910 tcg_op, tcg_idx);
12912 break;
12913 case 0x1d: /* SQRDMLAH */
12914 read_vec_element_i32(s, tcg_res, rd, pass,
12915 is_scalar ? size : MO_32);
12916 if (size == 1) {
12917 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env,
12918 tcg_op, tcg_idx, tcg_res);
12919 } else {
12920 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env,
12921 tcg_op, tcg_idx, tcg_res);
12923 break;
12924 case 0x1f: /* SQRDMLSH */
12925 read_vec_element_i32(s, tcg_res, rd, pass,
12926 is_scalar ? size : MO_32);
12927 if (size == 1) {
12928 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env,
12929 tcg_op, tcg_idx, tcg_res);
12930 } else {
12931 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env,
12932 tcg_op, tcg_idx, tcg_res);
12934 break;
12935 default:
12936 g_assert_not_reached();
12939 if (is_scalar) {
12940 write_fp_sreg(s, rd, tcg_res);
12941 } else {
12942 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12945 tcg_temp_free_i32(tcg_op);
12946 tcg_temp_free_i32(tcg_res);
12949 tcg_temp_free_i32(tcg_idx);
12950 clear_vec_high(s, is_q, rd);
12951 } else {
12952 /* long ops: 16x16->32 or 32x32->64 */
12953 TCGv_i64 tcg_res[2];
12954 int pass;
12955 bool satop = extract32(opcode, 0, 1);
12956 TCGMemOp memop = MO_32;
12958 if (satop || !u) {
12959 memop |= MO_SIGN;
12962 if (size == 2) {
12963 TCGv_i64 tcg_idx = tcg_temp_new_i64();
12965 read_vec_element(s, tcg_idx, rm, index, memop);
12967 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12968 TCGv_i64 tcg_op = tcg_temp_new_i64();
12969 TCGv_i64 tcg_passres;
12970 int passelt;
12972 if (is_scalar) {
12973 passelt = 0;
12974 } else {
12975 passelt = pass + (is_q * 2);
12978 read_vec_element(s, tcg_op, rn, passelt, memop);
12980 tcg_res[pass] = tcg_temp_new_i64();
12982 if (opcode == 0xa || opcode == 0xb) {
12983 /* Non-accumulating ops */
12984 tcg_passres = tcg_res[pass];
12985 } else {
12986 tcg_passres = tcg_temp_new_i64();
12989 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
12990 tcg_temp_free_i64(tcg_op);
12992 if (satop) {
12993 /* saturating, doubling */
12994 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
12995 tcg_passres, tcg_passres);
12998 if (opcode == 0xa || opcode == 0xb) {
12999 continue;
13002 /* Accumulating op: handle accumulate step */
13003 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13005 switch (opcode) {
13006 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13007 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13008 break;
13009 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13010 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13011 break;
13012 case 0x7: /* SQDMLSL, SQDMLSL2 */
13013 tcg_gen_neg_i64(tcg_passres, tcg_passres);
13014 /* fall through */
13015 case 0x3: /* SQDMLAL, SQDMLAL2 */
13016 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
13017 tcg_res[pass],
13018 tcg_passres);
13019 break;
13020 default:
13021 g_assert_not_reached();
13023 tcg_temp_free_i64(tcg_passres);
13025 tcg_temp_free_i64(tcg_idx);
13027 clear_vec_high(s, !is_scalar, rd);
13028 } else {
13029 TCGv_i32 tcg_idx = tcg_temp_new_i32();
13031 assert(size == 1);
13032 read_vec_element_i32(s, tcg_idx, rm, index, size);
13034 if (!is_scalar) {
13035 /* The simplest way to handle the 16x16 indexed ops is to
13036 * duplicate the index into both halves of the 32 bit tcg_idx
13037 * and then use the usual Neon helpers.
13039 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13042 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13043 TCGv_i32 tcg_op = tcg_temp_new_i32();
13044 TCGv_i64 tcg_passres;
13046 if (is_scalar) {
13047 read_vec_element_i32(s, tcg_op, rn, pass, size);
13048 } else {
13049 read_vec_element_i32(s, tcg_op, rn,
13050 pass + (is_q * 2), MO_32);
13053 tcg_res[pass] = tcg_temp_new_i64();
13055 if (opcode == 0xa || opcode == 0xb) {
13056 /* Non-accumulating ops */
13057 tcg_passres = tcg_res[pass];
13058 } else {
13059 tcg_passres = tcg_temp_new_i64();
13062 if (memop & MO_SIGN) {
13063 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
13064 } else {
13065 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
13067 if (satop) {
13068 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
13069 tcg_passres, tcg_passres);
13071 tcg_temp_free_i32(tcg_op);
13073 if (opcode == 0xa || opcode == 0xb) {
13074 continue;
13077 /* Accumulating op: handle accumulate step */
13078 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13080 switch (opcode) {
13081 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13082 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
13083 tcg_passres);
13084 break;
13085 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13086 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
13087 tcg_passres);
13088 break;
13089 case 0x7: /* SQDMLSL, SQDMLSL2 */
13090 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
13091 /* fall through */
13092 case 0x3: /* SQDMLAL, SQDMLAL2 */
13093 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
13094 tcg_res[pass],
13095 tcg_passres);
13096 break;
13097 default:
13098 g_assert_not_reached();
13100 tcg_temp_free_i64(tcg_passres);
13102 tcg_temp_free_i32(tcg_idx);
13104 if (is_scalar) {
13105 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
13109 if (is_scalar) {
13110 tcg_res[1] = tcg_const_i64(0);
13113 for (pass = 0; pass < 2; pass++) {
13114 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13115 tcg_temp_free_i64(tcg_res[pass]);
13119 if (fpst) {
13120 tcg_temp_free_ptr(fpst);
13124 /* Crypto AES
13125 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
13126 * +-----------------+------+-----------+--------+-----+------+------+
13127 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
13128 * +-----------------+------+-----------+--------+-----+------+------+
13130 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
13132 int size = extract32(insn, 22, 2);
13133 int opcode = extract32(insn, 12, 5);
13134 int rn = extract32(insn, 5, 5);
13135 int rd = extract32(insn, 0, 5);
13136 int decrypt;
13137 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr;
13138 TCGv_i32 tcg_decrypt;
13139 CryptoThreeOpIntFn *genfn;
13141 if (!dc_isar_feature(aa64_aes, s) || size != 0) {
13142 unallocated_encoding(s);
13143 return;
13146 switch (opcode) {
13147 case 0x4: /* AESE */
13148 decrypt = 0;
13149 genfn = gen_helper_crypto_aese;
13150 break;
13151 case 0x6: /* AESMC */
13152 decrypt = 0;
13153 genfn = gen_helper_crypto_aesmc;
13154 break;
13155 case 0x5: /* AESD */
13156 decrypt = 1;
13157 genfn = gen_helper_crypto_aese;
13158 break;
13159 case 0x7: /* AESIMC */
13160 decrypt = 1;
13161 genfn = gen_helper_crypto_aesmc;
13162 break;
13163 default:
13164 unallocated_encoding(s);
13165 return;
13168 if (!fp_access_check(s)) {
13169 return;
13172 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13173 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13174 tcg_decrypt = tcg_const_i32(decrypt);
13176 genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_decrypt);
13178 tcg_temp_free_ptr(tcg_rd_ptr);
13179 tcg_temp_free_ptr(tcg_rn_ptr);
13180 tcg_temp_free_i32(tcg_decrypt);
13183 /* Crypto three-reg SHA
13184 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
13185 * +-----------------+------+---+------+---+--------+-----+------+------+
13186 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd |
13187 * +-----------------+------+---+------+---+--------+-----+------+------+
13189 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
13191 int size = extract32(insn, 22, 2);
13192 int opcode = extract32(insn, 12, 3);
13193 int rm = extract32(insn, 16, 5);
13194 int rn = extract32(insn, 5, 5);
13195 int rd = extract32(insn, 0, 5);
13196 CryptoThreeOpFn *genfn;
13197 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr;
13198 bool feature;
13200 if (size != 0) {
13201 unallocated_encoding(s);
13202 return;
13205 switch (opcode) {
13206 case 0: /* SHA1C */
13207 case 1: /* SHA1P */
13208 case 2: /* SHA1M */
13209 case 3: /* SHA1SU0 */
13210 genfn = NULL;
13211 feature = dc_isar_feature(aa64_sha1, s);
13212 break;
13213 case 4: /* SHA256H */
13214 genfn = gen_helper_crypto_sha256h;
13215 feature = dc_isar_feature(aa64_sha256, s);
13216 break;
13217 case 5: /* SHA256H2 */
13218 genfn = gen_helper_crypto_sha256h2;
13219 feature = dc_isar_feature(aa64_sha256, s);
13220 break;
13221 case 6: /* SHA256SU1 */
13222 genfn = gen_helper_crypto_sha256su1;
13223 feature = dc_isar_feature(aa64_sha256, s);
13224 break;
13225 default:
13226 unallocated_encoding(s);
13227 return;
13230 if (!feature) {
13231 unallocated_encoding(s);
13232 return;
13235 if (!fp_access_check(s)) {
13236 return;
13239 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13240 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13241 tcg_rm_ptr = vec_full_reg_ptr(s, rm);
13243 if (genfn) {
13244 genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr);
13245 } else {
13246 TCGv_i32 tcg_opcode = tcg_const_i32(opcode);
13248 gen_helper_crypto_sha1_3reg(tcg_rd_ptr, tcg_rn_ptr,
13249 tcg_rm_ptr, tcg_opcode);
13250 tcg_temp_free_i32(tcg_opcode);
13253 tcg_temp_free_ptr(tcg_rd_ptr);
13254 tcg_temp_free_ptr(tcg_rn_ptr);
13255 tcg_temp_free_ptr(tcg_rm_ptr);
13258 /* Crypto two-reg SHA
13259 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
13260 * +-----------------+------+-----------+--------+-----+------+------+
13261 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
13262 * +-----------------+------+-----------+--------+-----+------+------+
13264 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
13266 int size = extract32(insn, 22, 2);
13267 int opcode = extract32(insn, 12, 5);
13268 int rn = extract32(insn, 5, 5);
13269 int rd = extract32(insn, 0, 5);
13270 CryptoTwoOpFn *genfn;
13271 bool feature;
13272 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr;
13274 if (size != 0) {
13275 unallocated_encoding(s);
13276 return;
13279 switch (opcode) {
13280 case 0: /* SHA1H */
13281 feature = dc_isar_feature(aa64_sha1, s);
13282 genfn = gen_helper_crypto_sha1h;
13283 break;
13284 case 1: /* SHA1SU1 */
13285 feature = dc_isar_feature(aa64_sha1, s);
13286 genfn = gen_helper_crypto_sha1su1;
13287 break;
13288 case 2: /* SHA256SU0 */
13289 feature = dc_isar_feature(aa64_sha256, s);
13290 genfn = gen_helper_crypto_sha256su0;
13291 break;
13292 default:
13293 unallocated_encoding(s);
13294 return;
13297 if (!feature) {
13298 unallocated_encoding(s);
13299 return;
13302 if (!fp_access_check(s)) {
13303 return;
13306 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13307 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13309 genfn(tcg_rd_ptr, tcg_rn_ptr);
13311 tcg_temp_free_ptr(tcg_rd_ptr);
13312 tcg_temp_free_ptr(tcg_rn_ptr);
13315 /* Crypto three-reg SHA512
13316 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
13317 * +-----------------------+------+---+---+-----+--------+------+------+
13318 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd |
13319 * +-----------------------+------+---+---+-----+--------+------+------+
13321 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn)
13323 int opcode = extract32(insn, 10, 2);
13324 int o = extract32(insn, 14, 1);
13325 int rm = extract32(insn, 16, 5);
13326 int rn = extract32(insn, 5, 5);
13327 int rd = extract32(insn, 0, 5);
13328 bool feature;
13329 CryptoThreeOpFn *genfn;
13331 if (o == 0) {
13332 switch (opcode) {
13333 case 0: /* SHA512H */
13334 feature = dc_isar_feature(aa64_sha512, s);
13335 genfn = gen_helper_crypto_sha512h;
13336 break;
13337 case 1: /* SHA512H2 */
13338 feature = dc_isar_feature(aa64_sha512, s);
13339 genfn = gen_helper_crypto_sha512h2;
13340 break;
13341 case 2: /* SHA512SU1 */
13342 feature = dc_isar_feature(aa64_sha512, s);
13343 genfn = gen_helper_crypto_sha512su1;
13344 break;
13345 case 3: /* RAX1 */
13346 feature = dc_isar_feature(aa64_sha3, s);
13347 genfn = NULL;
13348 break;
13350 } else {
13351 switch (opcode) {
13352 case 0: /* SM3PARTW1 */
13353 feature = dc_isar_feature(aa64_sm3, s);
13354 genfn = gen_helper_crypto_sm3partw1;
13355 break;
13356 case 1: /* SM3PARTW2 */
13357 feature = dc_isar_feature(aa64_sm3, s);
13358 genfn = gen_helper_crypto_sm3partw2;
13359 break;
13360 case 2: /* SM4EKEY */
13361 feature = dc_isar_feature(aa64_sm4, s);
13362 genfn = gen_helper_crypto_sm4ekey;
13363 break;
13364 default:
13365 unallocated_encoding(s);
13366 return;
13370 if (!feature) {
13371 unallocated_encoding(s);
13372 return;
13375 if (!fp_access_check(s)) {
13376 return;
13379 if (genfn) {
13380 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr;
13382 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13383 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13384 tcg_rm_ptr = vec_full_reg_ptr(s, rm);
13386 genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr);
13388 tcg_temp_free_ptr(tcg_rd_ptr);
13389 tcg_temp_free_ptr(tcg_rn_ptr);
13390 tcg_temp_free_ptr(tcg_rm_ptr);
13391 } else {
13392 TCGv_i64 tcg_op1, tcg_op2, tcg_res[2];
13393 int pass;
13395 tcg_op1 = tcg_temp_new_i64();
13396 tcg_op2 = tcg_temp_new_i64();
13397 tcg_res[0] = tcg_temp_new_i64();
13398 tcg_res[1] = tcg_temp_new_i64();
13400 for (pass = 0; pass < 2; pass++) {
13401 read_vec_element(s, tcg_op1, rn, pass, MO_64);
13402 read_vec_element(s, tcg_op2, rm, pass, MO_64);
13404 tcg_gen_rotli_i64(tcg_res[pass], tcg_op2, 1);
13405 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
13407 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13408 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13410 tcg_temp_free_i64(tcg_op1);
13411 tcg_temp_free_i64(tcg_op2);
13412 tcg_temp_free_i64(tcg_res[0]);
13413 tcg_temp_free_i64(tcg_res[1]);
13417 /* Crypto two-reg SHA512
13418 * 31 12 11 10 9 5 4 0
13419 * +-----------------------------------------+--------+------+------+
13420 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd |
13421 * +-----------------------------------------+--------+------+------+
13423 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn)
13425 int opcode = extract32(insn, 10, 2);
13426 int rn = extract32(insn, 5, 5);
13427 int rd = extract32(insn, 0, 5);
13428 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr;
13429 bool feature;
13430 CryptoTwoOpFn *genfn;
13432 switch (opcode) {
13433 case 0: /* SHA512SU0 */
13434 feature = dc_isar_feature(aa64_sha512, s);
13435 genfn = gen_helper_crypto_sha512su0;
13436 break;
13437 case 1: /* SM4E */
13438 feature = dc_isar_feature(aa64_sm4, s);
13439 genfn = gen_helper_crypto_sm4e;
13440 break;
13441 default:
13442 unallocated_encoding(s);
13443 return;
13446 if (!feature) {
13447 unallocated_encoding(s);
13448 return;
13451 if (!fp_access_check(s)) {
13452 return;
13455 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13456 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13458 genfn(tcg_rd_ptr, tcg_rn_ptr);
13460 tcg_temp_free_ptr(tcg_rd_ptr);
13461 tcg_temp_free_ptr(tcg_rn_ptr);
13464 /* Crypto four-register
13465 * 31 23 22 21 20 16 15 14 10 9 5 4 0
13466 * +-------------------+-----+------+---+------+------+------+
13467 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd |
13468 * +-------------------+-----+------+---+------+------+------+
13470 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn)
13472 int op0 = extract32(insn, 21, 2);
13473 int rm = extract32(insn, 16, 5);
13474 int ra = extract32(insn, 10, 5);
13475 int rn = extract32(insn, 5, 5);
13476 int rd = extract32(insn, 0, 5);
13477 bool feature;
13479 switch (op0) {
13480 case 0: /* EOR3 */
13481 case 1: /* BCAX */
13482 feature = dc_isar_feature(aa64_sha3, s);
13483 break;
13484 case 2: /* SM3SS1 */
13485 feature = dc_isar_feature(aa64_sm3, s);
13486 break;
13487 default:
13488 unallocated_encoding(s);
13489 return;
13492 if (!feature) {
13493 unallocated_encoding(s);
13494 return;
13497 if (!fp_access_check(s)) {
13498 return;
13501 if (op0 < 2) {
13502 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2];
13503 int pass;
13505 tcg_op1 = tcg_temp_new_i64();
13506 tcg_op2 = tcg_temp_new_i64();
13507 tcg_op3 = tcg_temp_new_i64();
13508 tcg_res[0] = tcg_temp_new_i64();
13509 tcg_res[1] = tcg_temp_new_i64();
13511 for (pass = 0; pass < 2; pass++) {
13512 read_vec_element(s, tcg_op1, rn, pass, MO_64);
13513 read_vec_element(s, tcg_op2, rm, pass, MO_64);
13514 read_vec_element(s, tcg_op3, ra, pass, MO_64);
13516 if (op0 == 0) {
13517 /* EOR3 */
13518 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3);
13519 } else {
13520 /* BCAX */
13521 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3);
13523 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
13525 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13526 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13528 tcg_temp_free_i64(tcg_op1);
13529 tcg_temp_free_i64(tcg_op2);
13530 tcg_temp_free_i64(tcg_op3);
13531 tcg_temp_free_i64(tcg_res[0]);
13532 tcg_temp_free_i64(tcg_res[1]);
13533 } else {
13534 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero;
13536 tcg_op1 = tcg_temp_new_i32();
13537 tcg_op2 = tcg_temp_new_i32();
13538 tcg_op3 = tcg_temp_new_i32();
13539 tcg_res = tcg_temp_new_i32();
13540 tcg_zero = tcg_const_i32(0);
13542 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32);
13543 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32);
13544 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32);
13546 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
13547 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
13548 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
13549 tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
13551 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32);
13552 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32);
13553 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32);
13554 write_vec_element_i32(s, tcg_res, rd, 3, MO_32);
13556 tcg_temp_free_i32(tcg_op1);
13557 tcg_temp_free_i32(tcg_op2);
13558 tcg_temp_free_i32(tcg_op3);
13559 tcg_temp_free_i32(tcg_res);
13560 tcg_temp_free_i32(tcg_zero);
13564 /* Crypto XAR
13565 * 31 21 20 16 15 10 9 5 4 0
13566 * +-----------------------+------+--------+------+------+
13567 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd |
13568 * +-----------------------+------+--------+------+------+
13570 static void disas_crypto_xar(DisasContext *s, uint32_t insn)
13572 int rm = extract32(insn, 16, 5);
13573 int imm6 = extract32(insn, 10, 6);
13574 int rn = extract32(insn, 5, 5);
13575 int rd = extract32(insn, 0, 5);
13576 TCGv_i64 tcg_op1, tcg_op2, tcg_res[2];
13577 int pass;
13579 if (!dc_isar_feature(aa64_sha3, s)) {
13580 unallocated_encoding(s);
13581 return;
13584 if (!fp_access_check(s)) {
13585 return;
13588 tcg_op1 = tcg_temp_new_i64();
13589 tcg_op2 = tcg_temp_new_i64();
13590 tcg_res[0] = tcg_temp_new_i64();
13591 tcg_res[1] = tcg_temp_new_i64();
13593 for (pass = 0; pass < 2; pass++) {
13594 read_vec_element(s, tcg_op1, rn, pass, MO_64);
13595 read_vec_element(s, tcg_op2, rm, pass, MO_64);
13597 tcg_gen_xor_i64(tcg_res[pass], tcg_op1, tcg_op2);
13598 tcg_gen_rotri_i64(tcg_res[pass], tcg_res[pass], imm6);
13600 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13601 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13603 tcg_temp_free_i64(tcg_op1);
13604 tcg_temp_free_i64(tcg_op2);
13605 tcg_temp_free_i64(tcg_res[0]);
13606 tcg_temp_free_i64(tcg_res[1]);
13609 /* Crypto three-reg imm2
13610 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
13611 * +-----------------------+------+-----+------+--------+------+------+
13612 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd |
13613 * +-----------------------+------+-----+------+--------+------+------+
13615 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn)
13617 int opcode = extract32(insn, 10, 2);
13618 int imm2 = extract32(insn, 12, 2);
13619 int rm = extract32(insn, 16, 5);
13620 int rn = extract32(insn, 5, 5);
13621 int rd = extract32(insn, 0, 5);
13622 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr;
13623 TCGv_i32 tcg_imm2, tcg_opcode;
13625 if (!dc_isar_feature(aa64_sm3, s)) {
13626 unallocated_encoding(s);
13627 return;
13630 if (!fp_access_check(s)) {
13631 return;
13634 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13635 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13636 tcg_rm_ptr = vec_full_reg_ptr(s, rm);
13637 tcg_imm2 = tcg_const_i32(imm2);
13638 tcg_opcode = tcg_const_i32(opcode);
13640 gen_helper_crypto_sm3tt(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr, tcg_imm2,
13641 tcg_opcode);
13643 tcg_temp_free_ptr(tcg_rd_ptr);
13644 tcg_temp_free_ptr(tcg_rn_ptr);
13645 tcg_temp_free_ptr(tcg_rm_ptr);
13646 tcg_temp_free_i32(tcg_imm2);
13647 tcg_temp_free_i32(tcg_opcode);
13650 /* C3.6 Data processing - SIMD, inc Crypto
13652 * As the decode gets a little complex we are using a table based
13653 * approach for this part of the decode.
13655 static const AArch64DecodeTable data_proc_simd[] = {
13656 /* pattern , mask , fn */
13657 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
13658 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
13659 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
13660 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
13661 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
13662 { 0x0e000400, 0x9fe08400, disas_simd_copy },
13663 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
13664 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
13665 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
13666 { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
13667 { 0x0e000000, 0xbf208c00, disas_simd_tb },
13668 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
13669 { 0x2e000000, 0xbf208400, disas_simd_ext },
13670 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
13671 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
13672 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
13673 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
13674 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
13675 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
13676 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
13677 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
13678 { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
13679 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
13680 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
13681 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 },
13682 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 },
13683 { 0xce000000, 0xff808000, disas_crypto_four_reg },
13684 { 0xce800000, 0xffe00000, disas_crypto_xar },
13685 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 },
13686 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
13687 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
13688 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 },
13689 { 0x00000000, 0x00000000, NULL }
13692 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
13694 /* Note that this is called with all non-FP cases from
13695 * table C3-6 so it must UNDEF for entries not specifically
13696 * allocated to instructions in that table.
13698 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
13699 if (fn) {
13700 fn(s, insn);
13701 } else {
13702 unallocated_encoding(s);
13706 /* C3.6 Data processing - SIMD and floating point */
13707 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
13709 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
13710 disas_data_proc_fp(s, insn);
13711 } else {
13712 /* SIMD, including crypto */
13713 disas_data_proc_simd(s, insn);
13717 /* C3.1 A64 instruction index by encoding */
13718 static void disas_a64_insn(CPUARMState *env, DisasContext *s)
13720 uint32_t insn;
13722 insn = arm_ldl_code(env, s->pc, s->sctlr_b);
13723 s->insn = insn;
13724 s->pc += 4;
13726 s->fp_access_checked = false;
13728 switch (extract32(insn, 25, 4)) {
13729 case 0x0: case 0x1: case 0x3: /* UNALLOCATED */
13730 unallocated_encoding(s);
13731 break;
13732 case 0x2:
13733 if (!dc_isar_feature(aa64_sve, s) || !disas_sve(s, insn)) {
13734 unallocated_encoding(s);
13736 break;
13737 case 0x8: case 0x9: /* Data processing - immediate */
13738 disas_data_proc_imm(s, insn);
13739 break;
13740 case 0xa: case 0xb: /* Branch, exception generation and system insns */
13741 disas_b_exc_sys(s, insn);
13742 break;
13743 case 0x4:
13744 case 0x6:
13745 case 0xc:
13746 case 0xe: /* Loads and stores */
13747 disas_ldst(s, insn);
13748 break;
13749 case 0x5:
13750 case 0xd: /* Data processing - register */
13751 disas_data_proc_reg(s, insn);
13752 break;
13753 case 0x7:
13754 case 0xf: /* Data processing - SIMD and floating point */
13755 disas_data_proc_simd_fp(s, insn);
13756 break;
13757 default:
13758 assert(FALSE); /* all 15 cases should be handled above */
13759 break;
13762 /* if we allocated any temporaries, free them here */
13763 free_tmp_a64(s);
13766 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
13767 CPUState *cpu)
13769 DisasContext *dc = container_of(dcbase, DisasContext, base);
13770 CPUARMState *env = cpu->env_ptr;
13771 ARMCPU *arm_cpu = arm_env_get_cpu(env);
13772 uint32_t tb_flags = dc->base.tb->flags;
13773 int bound, core_mmu_idx;
13775 dc->isar = &arm_cpu->isar;
13776 dc->pc = dc->base.pc_first;
13777 dc->condjmp = 0;
13779 dc->aarch64 = 1;
13780 /* If we are coming from secure EL0 in a system with a 32-bit EL3, then
13781 * there is no secure EL1, so we route exceptions to EL3.
13783 dc->secure_routed_to_el3 = arm_feature(env, ARM_FEATURE_EL3) &&
13784 !arm_el_is_aa64(env, 3);
13785 dc->thumb = 0;
13786 dc->sctlr_b = 0;
13787 dc->be_data = FIELD_EX32(tb_flags, TBFLAG_ANY, BE_DATA) ? MO_BE : MO_LE;
13788 dc->condexec_mask = 0;
13789 dc->condexec_cond = 0;
13790 core_mmu_idx = FIELD_EX32(tb_flags, TBFLAG_ANY, MMUIDX);
13791 dc->mmu_idx = core_to_arm_mmu_idx(env, core_mmu_idx);
13792 dc->tbii = FIELD_EX32(tb_flags, TBFLAG_A64, TBII);
13793 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
13794 #if !defined(CONFIG_USER_ONLY)
13795 dc->user = (dc->current_el == 0);
13796 #endif
13797 dc->fp_excp_el = FIELD_EX32(tb_flags, TBFLAG_ANY, FPEXC_EL);
13798 dc->sve_excp_el = FIELD_EX32(tb_flags, TBFLAG_A64, SVEEXC_EL);
13799 dc->sve_len = (FIELD_EX32(tb_flags, TBFLAG_A64, ZCR_LEN) + 1) * 16;
13800 dc->pauth_active = FIELD_EX32(tb_flags, TBFLAG_A64, PAUTH_ACTIVE);
13801 dc->vec_len = 0;
13802 dc->vec_stride = 0;
13803 dc->cp_regs = arm_cpu->cp_regs;
13804 dc->features = env->features;
13806 /* Single step state. The code-generation logic here is:
13807 * SS_ACTIVE == 0:
13808 * generate code with no special handling for single-stepping (except
13809 * that anything that can make us go to SS_ACTIVE == 1 must end the TB;
13810 * this happens anyway because those changes are all system register or
13811 * PSTATE writes).
13812 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
13813 * emit code for one insn
13814 * emit code to clear PSTATE.SS
13815 * emit code to generate software step exception for completed step
13816 * end TB (as usual for having generated an exception)
13817 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
13818 * emit code to generate a software step exception
13819 * end the TB
13821 dc->ss_active = FIELD_EX32(tb_flags, TBFLAG_ANY, SS_ACTIVE);
13822 dc->pstate_ss = FIELD_EX32(tb_flags, TBFLAG_ANY, PSTATE_SS);
13823 dc->is_ldex = false;
13824 dc->ss_same_el = (arm_debug_target_el(env) == dc->current_el);
13826 /* Bound the number of insns to execute to those left on the page. */
13827 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
13829 /* If architectural single step active, limit to 1. */
13830 if (dc->ss_active) {
13831 bound = 1;
13833 dc->base.max_insns = MIN(dc->base.max_insns, bound);
13835 init_tmp_a64_array(dc);
13838 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
13842 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
13844 DisasContext *dc = container_of(dcbase, DisasContext, base);
13846 tcg_gen_insn_start(dc->pc, 0, 0);
13847 dc->insn_start = tcg_last_op();
13850 static bool aarch64_tr_breakpoint_check(DisasContextBase *dcbase, CPUState *cpu,
13851 const CPUBreakpoint *bp)
13853 DisasContext *dc = container_of(dcbase, DisasContext, base);
13855 if (bp->flags & BP_CPU) {
13856 gen_a64_set_pc_im(dc->pc);
13857 gen_helper_check_breakpoints(cpu_env);
13858 /* End the TB early; it likely won't be executed */
13859 dc->base.is_jmp = DISAS_TOO_MANY;
13860 } else {
13861 gen_exception_internal_insn(dc, 0, EXCP_DEBUG);
13862 /* The address covered by the breakpoint must be
13863 included in [tb->pc, tb->pc + tb->size) in order
13864 to for it to be properly cleared -- thus we
13865 increment the PC here so that the logic setting
13866 tb->size below does the right thing. */
13867 dc->pc += 4;
13868 dc->base.is_jmp = DISAS_NORETURN;
13871 return true;
13874 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
13876 DisasContext *dc = container_of(dcbase, DisasContext, base);
13877 CPUARMState *env = cpu->env_ptr;
13879 if (dc->ss_active && !dc->pstate_ss) {
13880 /* Singlestep state is Active-pending.
13881 * If we're in this state at the start of a TB then either
13882 * a) we just took an exception to an EL which is being debugged
13883 * and this is the first insn in the exception handler
13884 * b) debug exceptions were masked and we just unmasked them
13885 * without changing EL (eg by clearing PSTATE.D)
13886 * In either case we're going to take a swstep exception in the
13887 * "did not step an insn" case, and so the syndrome ISV and EX
13888 * bits should be zero.
13890 assert(dc->base.num_insns == 1);
13891 gen_exception(EXCP_UDEF, syn_swstep(dc->ss_same_el, 0, 0),
13892 default_exception_el(dc));
13893 dc->base.is_jmp = DISAS_NORETURN;
13894 } else {
13895 disas_a64_insn(env, dc);
13898 dc->base.pc_next = dc->pc;
13899 translator_loop_temp_check(&dc->base);
13902 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
13904 DisasContext *dc = container_of(dcbase, DisasContext, base);
13906 if (unlikely(dc->base.singlestep_enabled || dc->ss_active)) {
13907 /* Note that this means single stepping WFI doesn't halt the CPU.
13908 * For conditional branch insns this is harmless unreachable code as
13909 * gen_goto_tb() has already handled emitting the debug exception
13910 * (and thus a tb-jump is not possible when singlestepping).
13912 switch (dc->base.is_jmp) {
13913 default:
13914 gen_a64_set_pc_im(dc->pc);
13915 /* fall through */
13916 case DISAS_EXIT:
13917 case DISAS_JUMP:
13918 if (dc->base.singlestep_enabled) {
13919 gen_exception_internal(EXCP_DEBUG);
13920 } else {
13921 gen_step_complete_exception(dc);
13923 break;
13924 case DISAS_NORETURN:
13925 break;
13927 } else {
13928 switch (dc->base.is_jmp) {
13929 case DISAS_NEXT:
13930 case DISAS_TOO_MANY:
13931 gen_goto_tb(dc, 1, dc->pc);
13932 break;
13933 default:
13934 case DISAS_UPDATE:
13935 gen_a64_set_pc_im(dc->pc);
13936 /* fall through */
13937 case DISAS_EXIT:
13938 tcg_gen_exit_tb(NULL, 0);
13939 break;
13940 case DISAS_JUMP:
13941 tcg_gen_lookup_and_goto_ptr();
13942 break;
13943 case DISAS_NORETURN:
13944 case DISAS_SWI:
13945 break;
13946 case DISAS_WFE:
13947 gen_a64_set_pc_im(dc->pc);
13948 gen_helper_wfe(cpu_env);
13949 break;
13950 case DISAS_YIELD:
13951 gen_a64_set_pc_im(dc->pc);
13952 gen_helper_yield(cpu_env);
13953 break;
13954 case DISAS_WFI:
13956 /* This is a special case because we don't want to just halt the CPU
13957 * if trying to debug across a WFI.
13959 TCGv_i32 tmp = tcg_const_i32(4);
13961 gen_a64_set_pc_im(dc->pc);
13962 gen_helper_wfi(cpu_env, tmp);
13963 tcg_temp_free_i32(tmp);
13964 /* The helper doesn't necessarily throw an exception, but we
13965 * must go back to the main loop to check for interrupts anyway.
13967 tcg_gen_exit_tb(NULL, 0);
13968 break;
13973 /* Functions above can change dc->pc, so re-align db->pc_next */
13974 dc->base.pc_next = dc->pc;
13977 static void aarch64_tr_disas_log(const DisasContextBase *dcbase,
13978 CPUState *cpu)
13980 DisasContext *dc = container_of(dcbase, DisasContext, base);
13982 qemu_log("IN: %s\n", lookup_symbol(dc->base.pc_first));
13983 log_target_disas(cpu, dc->base.pc_first, dc->base.tb->size);
13986 const TranslatorOps aarch64_translator_ops = {
13987 .init_disas_context = aarch64_tr_init_disas_context,
13988 .tb_start = aarch64_tr_tb_start,
13989 .insn_start = aarch64_tr_insn_start,
13990 .breakpoint_check = aarch64_tr_breakpoint_check,
13991 .translate_insn = aarch64_tr_translate_insn,
13992 .tb_stop = aarch64_tr_tb_stop,
13993 .disas_log = aarch64_tr_disas_log,