2 * RAM allocation and memory access
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
24 #include "qemu/cutils.h"
25 #include "qemu/cacheflush.h"
28 #include "hw/core/tcg-cpu-ops.h"
29 #endif /* CONFIG_TCG */
31 #include "exec/exec-all.h"
32 #include "exec/target_page.h"
33 #include "hw/qdev-core.h"
34 #include "hw/qdev-properties.h"
35 #include "hw/boards.h"
36 #include "hw/xen/xen.h"
37 #include "sysemu/kvm.h"
38 #include "sysemu/tcg.h"
39 #include "sysemu/qtest.h"
40 #include "qemu/timer.h"
41 #include "qemu/config-file.h"
42 #include "qemu/error-report.h"
43 #include "qemu/qemu-print.h"
44 #include "exec/memory.h"
45 #include "exec/ioport.h"
46 #include "sysemu/dma.h"
47 #include "sysemu/hostmem.h"
48 #include "sysemu/hw_accel.h"
49 #include "sysemu/xen-mapcache.h"
50 #include "trace/trace-root.h"
52 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
53 #include <linux/falloc.h>
56 #include "qemu/rcu_queue.h"
57 #include "qemu/main-loop.h"
58 #include "exec/translate-all.h"
59 #include "sysemu/replay.h"
61 #include "exec/memory-internal.h"
62 #include "exec/ram_addr.h"
65 #include "qemu/pmem.h"
67 #include "migration/vmstate.h"
69 #include "qemu/range.h"
71 #include "qemu/mmap-alloc.h"
74 #include "monitor/monitor.h"
76 #ifdef CONFIG_LIBDAXCTL
77 #include <daxctl/libdaxctl.h>
80 //#define DEBUG_SUBPAGE
82 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
83 * are protected by the ramlist lock.
85 RAMList ram_list
= { .blocks
= QLIST_HEAD_INITIALIZER(ram_list
.blocks
) };
87 static MemoryRegion
*system_memory
;
88 static MemoryRegion
*system_io
;
90 AddressSpace address_space_io
;
91 AddressSpace address_space_memory
;
93 static MemoryRegion io_mem_unassigned
;
95 typedef struct PhysPageEntry PhysPageEntry
;
97 struct PhysPageEntry
{
98 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
100 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
104 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
106 /* Size of the L2 (and L3, etc) page tables. */
107 #define ADDR_SPACE_BITS 64
110 #define P_L2_SIZE (1 << P_L2_BITS)
112 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
114 typedef PhysPageEntry Node
[P_L2_SIZE
];
116 typedef struct PhysPageMap
{
119 unsigned sections_nb
;
120 unsigned sections_nb_alloc
;
122 unsigned nodes_nb_alloc
;
124 MemoryRegionSection
*sections
;
127 struct AddressSpaceDispatch
{
128 MemoryRegionSection
*mru_section
;
129 /* This is a multi-level map on the physical address space.
130 * The bottom level has pointers to MemoryRegionSections.
132 PhysPageEntry phys_map
;
136 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
137 typedef struct subpage_t
{
141 uint16_t sub_section
[];
144 #define PHYS_SECTION_UNASSIGNED 0
146 static void io_mem_init(void);
147 static void memory_map_init(void);
148 static void tcg_log_global_after_sync(MemoryListener
*listener
);
149 static void tcg_commit(MemoryListener
*listener
);
152 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
153 * @cpu: the CPU whose AddressSpace this is
154 * @as: the AddressSpace itself
155 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
156 * @tcg_as_listener: listener for tracking changes to the AddressSpace
158 struct CPUAddressSpace
{
161 struct AddressSpaceDispatch
*memory_dispatch
;
162 MemoryListener tcg_as_listener
;
165 struct DirtyBitmapSnapshot
{
168 unsigned long dirty
[];
171 static void phys_map_node_reserve(PhysPageMap
*map
, unsigned nodes
)
173 static unsigned alloc_hint
= 16;
174 if (map
->nodes_nb
+ nodes
> map
->nodes_nb_alloc
) {
175 map
->nodes_nb_alloc
= MAX(alloc_hint
, map
->nodes_nb
+ nodes
);
176 map
->nodes
= g_renew(Node
, map
->nodes
, map
->nodes_nb_alloc
);
177 alloc_hint
= map
->nodes_nb_alloc
;
181 static uint32_t phys_map_node_alloc(PhysPageMap
*map
, bool leaf
)
188 ret
= map
->nodes_nb
++;
190 assert(ret
!= PHYS_MAP_NODE_NIL
);
191 assert(ret
!= map
->nodes_nb_alloc
);
193 e
.skip
= leaf
? 0 : 1;
194 e
.ptr
= leaf
? PHYS_SECTION_UNASSIGNED
: PHYS_MAP_NODE_NIL
;
195 for (i
= 0; i
< P_L2_SIZE
; ++i
) {
196 memcpy(&p
[i
], &e
, sizeof(e
));
201 static void phys_page_set_level(PhysPageMap
*map
, PhysPageEntry
*lp
,
202 hwaddr
*index
, uint64_t *nb
, uint16_t leaf
,
206 hwaddr step
= (hwaddr
)1 << (level
* P_L2_BITS
);
208 if (lp
->skip
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
209 lp
->ptr
= phys_map_node_alloc(map
, level
== 0);
211 p
= map
->nodes
[lp
->ptr
];
212 lp
= &p
[(*index
>> (level
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
214 while (*nb
&& lp
< &p
[P_L2_SIZE
]) {
215 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
221 phys_page_set_level(map
, lp
, index
, nb
, leaf
, level
- 1);
227 static void phys_page_set(AddressSpaceDispatch
*d
,
228 hwaddr index
, uint64_t nb
,
231 /* Wildly overreserve - it doesn't matter much. */
232 phys_map_node_reserve(&d
->map
, 3 * P_L2_LEVELS
);
234 phys_page_set_level(&d
->map
, &d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
237 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
238 * and update our entry so we can skip it and go directly to the destination.
240 static void phys_page_compact(PhysPageEntry
*lp
, Node
*nodes
)
242 unsigned valid_ptr
= P_L2_SIZE
;
247 if (lp
->ptr
== PHYS_MAP_NODE_NIL
) {
252 for (i
= 0; i
< P_L2_SIZE
; i
++) {
253 if (p
[i
].ptr
== PHYS_MAP_NODE_NIL
) {
260 phys_page_compact(&p
[i
], nodes
);
264 /* We can only compress if there's only one child. */
269 assert(valid_ptr
< P_L2_SIZE
);
271 /* Don't compress if it won't fit in the # of bits we have. */
272 if (P_L2_LEVELS
>= (1 << 6) &&
273 lp
->skip
+ p
[valid_ptr
].skip
>= (1 << 6)) {
277 lp
->ptr
= p
[valid_ptr
].ptr
;
278 if (!p
[valid_ptr
].skip
) {
279 /* If our only child is a leaf, make this a leaf. */
280 /* By design, we should have made this node a leaf to begin with so we
281 * should never reach here.
282 * But since it's so simple to handle this, let's do it just in case we
287 lp
->skip
+= p
[valid_ptr
].skip
;
291 void address_space_dispatch_compact(AddressSpaceDispatch
*d
)
293 if (d
->phys_map
.skip
) {
294 phys_page_compact(&d
->phys_map
, d
->map
.nodes
);
298 static inline bool section_covers_addr(const MemoryRegionSection
*section
,
301 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
302 * the section must cover the entire address space.
304 return int128_gethi(section
->size
) ||
305 range_covers_byte(section
->offset_within_address_space
,
306 int128_getlo(section
->size
), addr
);
309 static MemoryRegionSection
*phys_page_find(AddressSpaceDispatch
*d
, hwaddr addr
)
311 PhysPageEntry lp
= d
->phys_map
, *p
;
312 Node
*nodes
= d
->map
.nodes
;
313 MemoryRegionSection
*sections
= d
->map
.sections
;
314 hwaddr index
= addr
>> TARGET_PAGE_BITS
;
317 for (i
= P_L2_LEVELS
; lp
.skip
&& (i
-= lp
.skip
) >= 0;) {
318 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
319 return §ions
[PHYS_SECTION_UNASSIGNED
];
322 lp
= p
[(index
>> (i
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
325 if (section_covers_addr(§ions
[lp
.ptr
], addr
)) {
326 return §ions
[lp
.ptr
];
328 return §ions
[PHYS_SECTION_UNASSIGNED
];
332 /* Called from RCU critical section */
333 static MemoryRegionSection
*address_space_lookup_region(AddressSpaceDispatch
*d
,
335 bool resolve_subpage
)
337 MemoryRegionSection
*section
= qatomic_read(&d
->mru_section
);
340 if (!section
|| section
== &d
->map
.sections
[PHYS_SECTION_UNASSIGNED
] ||
341 !section_covers_addr(section
, addr
)) {
342 section
= phys_page_find(d
, addr
);
343 qatomic_set(&d
->mru_section
, section
);
345 if (resolve_subpage
&& section
->mr
->subpage
) {
346 subpage
= container_of(section
->mr
, subpage_t
, iomem
);
347 section
= &d
->map
.sections
[subpage
->sub_section
[SUBPAGE_IDX(addr
)]];
352 /* Called from RCU critical section */
353 static MemoryRegionSection
*
354 address_space_translate_internal(AddressSpaceDispatch
*d
, hwaddr addr
, hwaddr
*xlat
,
355 hwaddr
*plen
, bool resolve_subpage
)
357 MemoryRegionSection
*section
;
361 section
= address_space_lookup_region(d
, addr
, resolve_subpage
);
362 /* Compute offset within MemoryRegionSection */
363 addr
-= section
->offset_within_address_space
;
365 /* Compute offset within MemoryRegion */
366 *xlat
= addr
+ section
->offset_within_region
;
370 /* MMIO registers can be expected to perform full-width accesses based only
371 * on their address, without considering adjacent registers that could
372 * decode to completely different MemoryRegions. When such registers
373 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
374 * regions overlap wildly. For this reason we cannot clamp the accesses
377 * If the length is small (as is the case for address_space_ldl/stl),
378 * everything works fine. If the incoming length is large, however,
379 * the caller really has to do the clamping through memory_access_size.
381 if (memory_region_is_ram(mr
)) {
382 diff
= int128_sub(section
->size
, int128_make64(addr
));
383 *plen
= int128_get64(int128_min(diff
, int128_make64(*plen
)));
389 * address_space_translate_iommu - translate an address through an IOMMU
390 * memory region and then through the target address space.
392 * @iommu_mr: the IOMMU memory region that we start the translation from
393 * @addr: the address to be translated through the MMU
394 * @xlat: the translated address offset within the destination memory region.
395 * It cannot be %NULL.
396 * @plen_out: valid read/write length of the translated address. It
398 * @page_mask_out: page mask for the translated address. This
399 * should only be meaningful for IOMMU translated
400 * addresses, since there may be huge pages that this bit
401 * would tell. It can be %NULL if we don't care about it.
402 * @is_write: whether the translation operation is for write
403 * @is_mmio: whether this can be MMIO, set true if it can
404 * @target_as: the address space targeted by the IOMMU
405 * @attrs: transaction attributes
407 * This function is called from RCU critical section. It is the common
408 * part of flatview_do_translate and address_space_translate_cached.
410 static MemoryRegionSection
address_space_translate_iommu(IOMMUMemoryRegion
*iommu_mr
,
413 hwaddr
*page_mask_out
,
416 AddressSpace
**target_as
,
419 MemoryRegionSection
*section
;
420 hwaddr page_mask
= (hwaddr
)-1;
424 IOMMUMemoryRegionClass
*imrc
= memory_region_get_iommu_class_nocheck(iommu_mr
);
428 if (imrc
->attrs_to_index
) {
429 iommu_idx
= imrc
->attrs_to_index(iommu_mr
, attrs
);
432 iotlb
= imrc
->translate(iommu_mr
, addr
, is_write
?
433 IOMMU_WO
: IOMMU_RO
, iommu_idx
);
435 if (!(iotlb
.perm
& (1 << is_write
))) {
439 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
440 | (addr
& iotlb
.addr_mask
));
441 page_mask
&= iotlb
.addr_mask
;
442 *plen_out
= MIN(*plen_out
, (addr
| iotlb
.addr_mask
) - addr
+ 1);
443 *target_as
= iotlb
.target_as
;
445 section
= address_space_translate_internal(
446 address_space_to_dispatch(iotlb
.target_as
), addr
, xlat
,
449 iommu_mr
= memory_region_get_iommu(section
->mr
);
450 } while (unlikely(iommu_mr
));
453 *page_mask_out
= page_mask
;
458 return (MemoryRegionSection
) { .mr
= &io_mem_unassigned
};
462 * flatview_do_translate - translate an address in FlatView
464 * @fv: the flat view that we want to translate on
465 * @addr: the address to be translated in above address space
466 * @xlat: the translated address offset within memory region. It
468 * @plen_out: valid read/write length of the translated address. It
469 * can be @NULL when we don't care about it.
470 * @page_mask_out: page mask for the translated address. This
471 * should only be meaningful for IOMMU translated
472 * addresses, since there may be huge pages that this bit
473 * would tell. It can be @NULL if we don't care about it.
474 * @is_write: whether the translation operation is for write
475 * @is_mmio: whether this can be MMIO, set true if it can
476 * @target_as: the address space targeted by the IOMMU
477 * @attrs: memory transaction attributes
479 * This function is called from RCU critical section
481 static MemoryRegionSection
flatview_do_translate(FlatView
*fv
,
485 hwaddr
*page_mask_out
,
488 AddressSpace
**target_as
,
491 MemoryRegionSection
*section
;
492 IOMMUMemoryRegion
*iommu_mr
;
493 hwaddr plen
= (hwaddr
)(-1);
499 section
= address_space_translate_internal(
500 flatview_to_dispatch(fv
), addr
, xlat
,
503 iommu_mr
= memory_region_get_iommu(section
->mr
);
504 if (unlikely(iommu_mr
)) {
505 return address_space_translate_iommu(iommu_mr
, xlat
,
506 plen_out
, page_mask_out
,
511 /* Not behind an IOMMU, use default page size. */
512 *page_mask_out
= ~TARGET_PAGE_MASK
;
518 /* Called from RCU critical section */
519 IOMMUTLBEntry
address_space_get_iotlb_entry(AddressSpace
*as
, hwaddr addr
,
520 bool is_write
, MemTxAttrs attrs
)
522 MemoryRegionSection section
;
523 hwaddr xlat
, page_mask
;
526 * This can never be MMIO, and we don't really care about plen,
529 section
= flatview_do_translate(address_space_to_flatview(as
), addr
, &xlat
,
530 NULL
, &page_mask
, is_write
, false, &as
,
533 /* Illegal translation */
534 if (section
.mr
== &io_mem_unassigned
) {
538 /* Convert memory region offset into address space offset */
539 xlat
+= section
.offset_within_address_space
-
540 section
.offset_within_region
;
542 return (IOMMUTLBEntry
) {
544 .iova
= addr
& ~page_mask
,
545 .translated_addr
= xlat
& ~page_mask
,
546 .addr_mask
= page_mask
,
547 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
552 return (IOMMUTLBEntry
) {0};
555 /* Called from RCU critical section */
556 MemoryRegion
*flatview_translate(FlatView
*fv
, hwaddr addr
, hwaddr
*xlat
,
557 hwaddr
*plen
, bool is_write
,
561 MemoryRegionSection section
;
562 AddressSpace
*as
= NULL
;
564 /* This can be MMIO, so setup MMIO bit. */
565 section
= flatview_do_translate(fv
, addr
, xlat
, plen
, NULL
,
566 is_write
, true, &as
, attrs
);
569 if (xen_enabled() && memory_access_is_direct(mr
, is_write
)) {
570 hwaddr page
= ((addr
& TARGET_PAGE_MASK
) + TARGET_PAGE_SIZE
) - addr
;
571 *plen
= MIN(page
, *plen
);
577 typedef struct TCGIOMMUNotifier
{
585 static void tcg_iommu_unmap_notify(IOMMUNotifier
*n
, IOMMUTLBEntry
*iotlb
)
587 TCGIOMMUNotifier
*notifier
= container_of(n
, TCGIOMMUNotifier
, n
);
589 if (!notifier
->active
) {
592 tlb_flush(notifier
->cpu
);
593 notifier
->active
= false;
594 /* We leave the notifier struct on the list to avoid reallocating it later.
595 * Generally the number of IOMMUs a CPU deals with will be small.
596 * In any case we can't unregister the iommu notifier from a notify
601 static void tcg_register_iommu_notifier(CPUState
*cpu
,
602 IOMMUMemoryRegion
*iommu_mr
,
605 /* Make sure this CPU has an IOMMU notifier registered for this
606 * IOMMU/IOMMU index combination, so that we can flush its TLB
607 * when the IOMMU tells us the mappings we've cached have changed.
609 MemoryRegion
*mr
= MEMORY_REGION(iommu_mr
);
610 TCGIOMMUNotifier
*notifier
= NULL
;
613 for (i
= 0; i
< cpu
->iommu_notifiers
->len
; i
++) {
614 notifier
= g_array_index(cpu
->iommu_notifiers
, TCGIOMMUNotifier
*, i
);
615 if (notifier
->mr
== mr
&& notifier
->iommu_idx
== iommu_idx
) {
619 if (i
== cpu
->iommu_notifiers
->len
) {
620 /* Not found, add a new entry at the end of the array */
621 cpu
->iommu_notifiers
= g_array_set_size(cpu
->iommu_notifiers
, i
+ 1);
622 notifier
= g_new0(TCGIOMMUNotifier
, 1);
623 g_array_index(cpu
->iommu_notifiers
, TCGIOMMUNotifier
*, i
) = notifier
;
626 notifier
->iommu_idx
= iommu_idx
;
628 /* Rather than trying to register interest in the specific part
629 * of the iommu's address space that we've accessed and then
630 * expand it later as subsequent accesses touch more of it, we
631 * just register interest in the whole thing, on the assumption
632 * that iommu reconfiguration will be rare.
634 iommu_notifier_init(¬ifier
->n
,
635 tcg_iommu_unmap_notify
,
636 IOMMU_NOTIFIER_UNMAP
,
640 memory_region_register_iommu_notifier(notifier
->mr
, ¬ifier
->n
,
644 if (!notifier
->active
) {
645 notifier
->active
= true;
649 void tcg_iommu_free_notifier_list(CPUState
*cpu
)
651 /* Destroy the CPU's notifier list */
653 TCGIOMMUNotifier
*notifier
;
655 for (i
= 0; i
< cpu
->iommu_notifiers
->len
; i
++) {
656 notifier
= g_array_index(cpu
->iommu_notifiers
, TCGIOMMUNotifier
*, i
);
657 memory_region_unregister_iommu_notifier(notifier
->mr
, ¬ifier
->n
);
660 g_array_free(cpu
->iommu_notifiers
, true);
663 void tcg_iommu_init_notifier_list(CPUState
*cpu
)
665 cpu
->iommu_notifiers
= g_array_new(false, true, sizeof(TCGIOMMUNotifier
*));
668 /* Called from RCU critical section */
669 MemoryRegionSection
*
670 address_space_translate_for_iotlb(CPUState
*cpu
, int asidx
, hwaddr addr
,
671 hwaddr
*xlat
, hwaddr
*plen
,
672 MemTxAttrs attrs
, int *prot
)
674 MemoryRegionSection
*section
;
675 IOMMUMemoryRegion
*iommu_mr
;
676 IOMMUMemoryRegionClass
*imrc
;
679 AddressSpaceDispatch
*d
=
680 qatomic_rcu_read(&cpu
->cpu_ases
[asidx
].memory_dispatch
);
683 section
= address_space_translate_internal(d
, addr
, &addr
, plen
, false);
685 iommu_mr
= memory_region_get_iommu(section
->mr
);
690 imrc
= memory_region_get_iommu_class_nocheck(iommu_mr
);
692 iommu_idx
= imrc
->attrs_to_index(iommu_mr
, attrs
);
693 tcg_register_iommu_notifier(cpu
, iommu_mr
, iommu_idx
);
694 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
695 * doesn't short-cut its translation table walk.
697 iotlb
= imrc
->translate(iommu_mr
, addr
, IOMMU_NONE
, iommu_idx
);
698 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
699 | (addr
& iotlb
.addr_mask
));
700 /* Update the caller's prot bits to remove permissions the IOMMU
701 * is giving us a failure response for. If we get down to no
702 * permissions left at all we can give up now.
704 if (!(iotlb
.perm
& IOMMU_RO
)) {
705 *prot
&= ~(PAGE_READ
| PAGE_EXEC
);
707 if (!(iotlb
.perm
& IOMMU_WO
)) {
708 *prot
&= ~PAGE_WRITE
;
715 d
= flatview_to_dispatch(address_space_to_flatview(iotlb
.target_as
));
718 assert(!memory_region_is_iommu(section
->mr
));
723 return &d
->map
.sections
[PHYS_SECTION_UNASSIGNED
];
726 void cpu_address_space_init(CPUState
*cpu
, int asidx
,
727 const char *prefix
, MemoryRegion
*mr
)
729 CPUAddressSpace
*newas
;
730 AddressSpace
*as
= g_new0(AddressSpace
, 1);
734 as_name
= g_strdup_printf("%s-%d", prefix
, cpu
->cpu_index
);
735 address_space_init(as
, mr
, as_name
);
738 /* Target code should have set num_ases before calling us */
739 assert(asidx
< cpu
->num_ases
);
742 /* address space 0 gets the convenience alias */
746 /* KVM cannot currently support multiple address spaces. */
747 assert(asidx
== 0 || !kvm_enabled());
749 if (!cpu
->cpu_ases
) {
750 cpu
->cpu_ases
= g_new0(CPUAddressSpace
, cpu
->num_ases
);
753 newas
= &cpu
->cpu_ases
[asidx
];
757 newas
->tcg_as_listener
.log_global_after_sync
= tcg_log_global_after_sync
;
758 newas
->tcg_as_listener
.commit
= tcg_commit
;
759 memory_listener_register(&newas
->tcg_as_listener
, as
);
763 AddressSpace
*cpu_get_address_space(CPUState
*cpu
, int asidx
)
765 /* Return the AddressSpace corresponding to the specified index */
766 return cpu
->cpu_ases
[asidx
].as
;
769 /* Add a watchpoint. */
770 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
771 int flags
, CPUWatchpoint
**watchpoint
)
776 /* forbid ranges which are empty or run off the end of the address space */
777 if (len
== 0 || (addr
+ len
- 1) < addr
) {
778 error_report("tried to set invalid watchpoint at %"
779 VADDR_PRIx
", len=%" VADDR_PRIu
, addr
, len
);
782 wp
= g_malloc(sizeof(*wp
));
788 /* keep all GDB-injected watchpoints in front */
789 if (flags
& BP_GDB
) {
790 QTAILQ_INSERT_HEAD(&cpu
->watchpoints
, wp
, entry
);
792 QTAILQ_INSERT_TAIL(&cpu
->watchpoints
, wp
, entry
);
795 in_page
= -(addr
| TARGET_PAGE_MASK
);
796 if (len
<= in_page
) {
797 tlb_flush_page(cpu
, addr
);
807 /* Remove a specific watchpoint. */
808 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
813 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
814 if (addr
== wp
->vaddr
&& len
== wp
->len
815 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
816 cpu_watchpoint_remove_by_ref(cpu
, wp
);
823 /* Remove a specific watchpoint by reference. */
824 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
826 QTAILQ_REMOVE(&cpu
->watchpoints
, watchpoint
, entry
);
828 tlb_flush_page(cpu
, watchpoint
->vaddr
);
833 /* Remove all matching watchpoints. */
834 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
836 CPUWatchpoint
*wp
, *next
;
838 QTAILQ_FOREACH_SAFE(wp
, &cpu
->watchpoints
, entry
, next
) {
839 if (wp
->flags
& mask
) {
840 cpu_watchpoint_remove_by_ref(cpu
, wp
);
846 /* Return true if this watchpoint address matches the specified
847 * access (ie the address range covered by the watchpoint overlaps
848 * partially or completely with the address range covered by the
851 static inline bool watchpoint_address_matches(CPUWatchpoint
*wp
,
852 vaddr addr
, vaddr len
)
854 /* We know the lengths are non-zero, but a little caution is
855 * required to avoid errors in the case where the range ends
856 * exactly at the top of the address space and so addr + len
857 * wraps round to zero.
859 vaddr wpend
= wp
->vaddr
+ wp
->len
- 1;
860 vaddr addrend
= addr
+ len
- 1;
862 return !(addr
> wpend
|| wp
->vaddr
> addrend
);
865 /* Return flags for watchpoints that match addr + prot. */
866 int cpu_watchpoint_address_matches(CPUState
*cpu
, vaddr addr
, vaddr len
)
871 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
872 if (watchpoint_address_matches(wp
, addr
, len
)) {
879 /* Generate a debug exception if a watchpoint has been hit. */
880 void cpu_check_watchpoint(CPUState
*cpu
, vaddr addr
, vaddr len
,
881 MemTxAttrs attrs
, int flags
, uintptr_t ra
)
883 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
886 assert(tcg_enabled());
887 if (cpu
->watchpoint_hit
) {
889 * We re-entered the check after replacing the TB.
890 * Now raise the debug interrupt so that it will
891 * trigger after the current instruction.
893 qemu_mutex_lock_iothread();
894 cpu_interrupt(cpu
, CPU_INTERRUPT_DEBUG
);
895 qemu_mutex_unlock_iothread();
899 if (cc
->tcg_ops
->adjust_watchpoint_address
) {
900 /* this is currently used only by ARM BE32 */
901 addr
= cc
->tcg_ops
->adjust_watchpoint_address(cpu
, addr
, len
);
903 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
904 if (watchpoint_address_matches(wp
, addr
, len
)
905 && (wp
->flags
& flags
)) {
906 if (replay_running_debug()) {
908 * Don't process the watchpoints when we are
909 * in a reverse debugging operation.
914 if (flags
== BP_MEM_READ
) {
915 wp
->flags
|= BP_WATCHPOINT_HIT_READ
;
917 wp
->flags
|= BP_WATCHPOINT_HIT_WRITE
;
919 wp
->hitaddr
= MAX(addr
, wp
->vaddr
);
920 wp
->hitattrs
= attrs
;
921 if (!cpu
->watchpoint_hit
) {
922 if (wp
->flags
& BP_CPU
&& cc
->tcg_ops
->debug_check_watchpoint
&&
923 !cc
->tcg_ops
->debug_check_watchpoint(cpu
, wp
)) {
924 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
927 cpu
->watchpoint_hit
= wp
;
930 tb_check_watchpoint(cpu
, ra
);
931 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
932 cpu
->exception_index
= EXCP_DEBUG
;
934 cpu_loop_exit_restore(cpu
, ra
);
936 /* Force execution of one insn next time. */
937 cpu
->cflags_next_tb
= 1 | curr_cflags(cpu
);
940 cpu_restore_state(cpu
, ra
, true);
942 cpu_loop_exit_noexc(cpu
);
946 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
951 #endif /* CONFIG_TCG */
953 /* Called from RCU critical section */
954 static RAMBlock
*qemu_get_ram_block(ram_addr_t addr
)
958 block
= qatomic_rcu_read(&ram_list
.mru_block
);
959 if (block
&& addr
- block
->offset
< block
->max_length
) {
962 RAMBLOCK_FOREACH(block
) {
963 if (addr
- block
->offset
< block
->max_length
) {
968 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
972 /* It is safe to write mru_block outside the iothread lock. This
977 * xxx removed from list
981 * call_rcu(reclaim_ramblock, xxx);
984 * qatomic_rcu_set is not needed here. The block was already published
985 * when it was placed into the list. Here we're just making an extra
986 * copy of the pointer.
988 ram_list
.mru_block
= block
;
992 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t length
)
999 assert(tcg_enabled());
1000 end
= TARGET_PAGE_ALIGN(start
+ length
);
1001 start
&= TARGET_PAGE_MASK
;
1003 RCU_READ_LOCK_GUARD();
1004 block
= qemu_get_ram_block(start
);
1005 assert(block
== qemu_get_ram_block(end
- 1));
1006 start1
= (uintptr_t)ramblock_ptr(block
, start
- block
->offset
);
1008 tlb_reset_dirty(cpu
, start1
, length
);
1012 /* Note: start and end must be within the same ram block. */
1013 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start
,
1017 DirtyMemoryBlocks
*blocks
;
1018 unsigned long end
, page
, start_page
;
1021 uint64_t mr_offset
, mr_size
;
1027 end
= TARGET_PAGE_ALIGN(start
+ length
) >> TARGET_PAGE_BITS
;
1028 start_page
= start
>> TARGET_PAGE_BITS
;
1031 WITH_RCU_READ_LOCK_GUARD() {
1032 blocks
= qatomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1033 ramblock
= qemu_get_ram_block(start
);
1034 /* Range sanity check on the ramblock */
1035 assert(start
>= ramblock
->offset
&&
1036 start
+ length
<= ramblock
->offset
+ ramblock
->used_length
);
1038 while (page
< end
) {
1039 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1040 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1041 unsigned long num
= MIN(end
- page
,
1042 DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1044 dirty
|= bitmap_test_and_clear_atomic(blocks
->blocks
[idx
],
1049 mr_offset
= (ram_addr_t
)(start_page
<< TARGET_PAGE_BITS
) - ramblock
->offset
;
1050 mr_size
= (end
- start_page
) << TARGET_PAGE_BITS
;
1051 memory_region_clear_dirty_bitmap(ramblock
->mr
, mr_offset
, mr_size
);
1054 if (dirty
&& tcg_enabled()) {
1055 tlb_reset_dirty_range_all(start
, length
);
1061 DirtyBitmapSnapshot
*cpu_physical_memory_snapshot_and_clear_dirty
1062 (MemoryRegion
*mr
, hwaddr offset
, hwaddr length
, unsigned client
)
1064 DirtyMemoryBlocks
*blocks
;
1065 ram_addr_t start
= memory_region_get_ram_addr(mr
) + offset
;
1066 unsigned long align
= 1UL << (TARGET_PAGE_BITS
+ BITS_PER_LEVEL
);
1067 ram_addr_t first
= QEMU_ALIGN_DOWN(start
, align
);
1068 ram_addr_t last
= QEMU_ALIGN_UP(start
+ length
, align
);
1069 DirtyBitmapSnapshot
*snap
;
1070 unsigned long page
, end
, dest
;
1072 snap
= g_malloc0(sizeof(*snap
) +
1073 ((last
- first
) >> (TARGET_PAGE_BITS
+ 3)));
1074 snap
->start
= first
;
1077 page
= first
>> TARGET_PAGE_BITS
;
1078 end
= last
>> TARGET_PAGE_BITS
;
1081 WITH_RCU_READ_LOCK_GUARD() {
1082 blocks
= qatomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1084 while (page
< end
) {
1085 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1086 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1087 unsigned long num
= MIN(end
- page
,
1088 DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1090 assert(QEMU_IS_ALIGNED(offset
, (1 << BITS_PER_LEVEL
)));
1091 assert(QEMU_IS_ALIGNED(num
, (1 << BITS_PER_LEVEL
)));
1092 offset
>>= BITS_PER_LEVEL
;
1094 bitmap_copy_and_clear_atomic(snap
->dirty
+ dest
,
1095 blocks
->blocks
[idx
] + offset
,
1098 dest
+= num
>> BITS_PER_LEVEL
;
1102 if (tcg_enabled()) {
1103 tlb_reset_dirty_range_all(start
, length
);
1106 memory_region_clear_dirty_bitmap(mr
, offset
, length
);
1111 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot
*snap
,
1115 unsigned long page
, end
;
1117 assert(start
>= snap
->start
);
1118 assert(start
+ length
<= snap
->end
);
1120 end
= TARGET_PAGE_ALIGN(start
+ length
- snap
->start
) >> TARGET_PAGE_BITS
;
1121 page
= (start
- snap
->start
) >> TARGET_PAGE_BITS
;
1123 while (page
< end
) {
1124 if (test_bit(page
, snap
->dirty
)) {
1132 /* Called from RCU critical section */
1133 hwaddr
memory_region_section_get_iotlb(CPUState
*cpu
,
1134 MemoryRegionSection
*section
)
1136 AddressSpaceDispatch
*d
= flatview_to_dispatch(section
->fv
);
1137 return section
- d
->map
.sections
;
1140 static int subpage_register(subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1142 static subpage_t
*subpage_init(FlatView
*fv
, hwaddr base
);
1144 static uint16_t phys_section_add(PhysPageMap
*map
,
1145 MemoryRegionSection
*section
)
1147 /* The physical section number is ORed with a page-aligned
1148 * pointer to produce the iotlb entries. Thus it should
1149 * never overflow into the page-aligned value.
1151 assert(map
->sections_nb
< TARGET_PAGE_SIZE
);
1153 if (map
->sections_nb
== map
->sections_nb_alloc
) {
1154 map
->sections_nb_alloc
= MAX(map
->sections_nb_alloc
* 2, 16);
1155 map
->sections
= g_renew(MemoryRegionSection
, map
->sections
,
1156 map
->sections_nb_alloc
);
1158 map
->sections
[map
->sections_nb
] = *section
;
1159 memory_region_ref(section
->mr
);
1160 return map
->sections_nb
++;
1163 static void phys_section_destroy(MemoryRegion
*mr
)
1165 bool have_sub_page
= mr
->subpage
;
1167 memory_region_unref(mr
);
1169 if (have_sub_page
) {
1170 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
1171 object_unref(OBJECT(&subpage
->iomem
));
1176 static void phys_sections_free(PhysPageMap
*map
)
1178 while (map
->sections_nb
> 0) {
1179 MemoryRegionSection
*section
= &map
->sections
[--map
->sections_nb
];
1180 phys_section_destroy(section
->mr
);
1182 g_free(map
->sections
);
1186 static void register_subpage(FlatView
*fv
, MemoryRegionSection
*section
)
1188 AddressSpaceDispatch
*d
= flatview_to_dispatch(fv
);
1190 hwaddr base
= section
->offset_within_address_space
1192 MemoryRegionSection
*existing
= phys_page_find(d
, base
);
1193 MemoryRegionSection subsection
= {
1194 .offset_within_address_space
= base
,
1195 .size
= int128_make64(TARGET_PAGE_SIZE
),
1199 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
1201 if (!(existing
->mr
->subpage
)) {
1202 subpage
= subpage_init(fv
, base
);
1204 subsection
.mr
= &subpage
->iomem
;
1205 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
1206 phys_section_add(&d
->map
, &subsection
));
1208 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
1210 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
1211 end
= start
+ int128_get64(section
->size
) - 1;
1212 subpage_register(subpage
, start
, end
,
1213 phys_section_add(&d
->map
, section
));
1217 static void register_multipage(FlatView
*fv
,
1218 MemoryRegionSection
*section
)
1220 AddressSpaceDispatch
*d
= flatview_to_dispatch(fv
);
1221 hwaddr start_addr
= section
->offset_within_address_space
;
1222 uint16_t section_index
= phys_section_add(&d
->map
, section
);
1223 uint64_t num_pages
= int128_get64(int128_rshift(section
->size
,
1227 phys_page_set(d
, start_addr
>> TARGET_PAGE_BITS
, num_pages
, section_index
);
1231 * The range in *section* may look like this:
1235 * where s stands for subpage and P for page.
1237 void flatview_add_to_dispatch(FlatView
*fv
, MemoryRegionSection
*section
)
1239 MemoryRegionSection remain
= *section
;
1240 Int128 page_size
= int128_make64(TARGET_PAGE_SIZE
);
1242 /* register first subpage */
1243 if (remain
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1244 uint64_t left
= TARGET_PAGE_ALIGN(remain
.offset_within_address_space
)
1245 - remain
.offset_within_address_space
;
1247 MemoryRegionSection now
= remain
;
1248 now
.size
= int128_min(int128_make64(left
), now
.size
);
1249 register_subpage(fv
, &now
);
1250 if (int128_eq(remain
.size
, now
.size
)) {
1253 remain
.size
= int128_sub(remain
.size
, now
.size
);
1254 remain
.offset_within_address_space
+= int128_get64(now
.size
);
1255 remain
.offset_within_region
+= int128_get64(now
.size
);
1258 /* register whole pages */
1259 if (int128_ge(remain
.size
, page_size
)) {
1260 MemoryRegionSection now
= remain
;
1261 now
.size
= int128_and(now
.size
, int128_neg(page_size
));
1262 register_multipage(fv
, &now
);
1263 if (int128_eq(remain
.size
, now
.size
)) {
1266 remain
.size
= int128_sub(remain
.size
, now
.size
);
1267 remain
.offset_within_address_space
+= int128_get64(now
.size
);
1268 remain
.offset_within_region
+= int128_get64(now
.size
);
1271 /* register last subpage */
1272 register_subpage(fv
, &remain
);
1275 void qemu_flush_coalesced_mmio_buffer(void)
1278 kvm_flush_coalesced_mmio_buffer();
1281 void qemu_mutex_lock_ramlist(void)
1283 qemu_mutex_lock(&ram_list
.mutex
);
1286 void qemu_mutex_unlock_ramlist(void)
1288 qemu_mutex_unlock(&ram_list
.mutex
);
1291 void ram_block_dump(Monitor
*mon
)
1296 RCU_READ_LOCK_GUARD();
1297 monitor_printf(mon
, "%24s %8s %18s %18s %18s\n",
1298 "Block Name", "PSize", "Offset", "Used", "Total");
1299 RAMBLOCK_FOREACH(block
) {
1300 psize
= size_to_str(block
->page_size
);
1301 monitor_printf(mon
, "%24s %8s 0x%016" PRIx64
" 0x%016" PRIx64
1302 " 0x%016" PRIx64
"\n", block
->idstr
, psize
,
1303 (uint64_t)block
->offset
,
1304 (uint64_t)block
->used_length
,
1305 (uint64_t)block
->max_length
);
1312 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1313 * may or may not name the same files / on the same filesystem now as
1314 * when we actually open and map them. Iterate over the file
1315 * descriptors instead, and use qemu_fd_getpagesize().
1317 static int find_min_backend_pagesize(Object
*obj
, void *opaque
)
1319 long *hpsize_min
= opaque
;
1321 if (object_dynamic_cast(obj
, TYPE_MEMORY_BACKEND
)) {
1322 HostMemoryBackend
*backend
= MEMORY_BACKEND(obj
);
1323 long hpsize
= host_memory_backend_pagesize(backend
);
1325 if (host_memory_backend_is_mapped(backend
) && (hpsize
< *hpsize_min
)) {
1326 *hpsize_min
= hpsize
;
1333 static int find_max_backend_pagesize(Object
*obj
, void *opaque
)
1335 long *hpsize_max
= opaque
;
1337 if (object_dynamic_cast(obj
, TYPE_MEMORY_BACKEND
)) {
1338 HostMemoryBackend
*backend
= MEMORY_BACKEND(obj
);
1339 long hpsize
= host_memory_backend_pagesize(backend
);
1341 if (host_memory_backend_is_mapped(backend
) && (hpsize
> *hpsize_max
)) {
1342 *hpsize_max
= hpsize
;
1350 * TODO: We assume right now that all mapped host memory backends are
1351 * used as RAM, however some might be used for different purposes.
1353 long qemu_minrampagesize(void)
1355 long hpsize
= LONG_MAX
;
1356 Object
*memdev_root
= object_resolve_path("/objects", NULL
);
1358 object_child_foreach(memdev_root
, find_min_backend_pagesize
, &hpsize
);
1362 long qemu_maxrampagesize(void)
1365 Object
*memdev_root
= object_resolve_path("/objects", NULL
);
1367 object_child_foreach(memdev_root
, find_max_backend_pagesize
, &pagesize
);
1371 long qemu_minrampagesize(void)
1373 return qemu_real_host_page_size
;
1375 long qemu_maxrampagesize(void)
1377 return qemu_real_host_page_size
;
1382 static int64_t get_file_size(int fd
)
1385 #if defined(__linux__)
1388 if (fstat(fd
, &st
) < 0) {
1392 /* Special handling for devdax character devices */
1393 if (S_ISCHR(st
.st_mode
)) {
1394 g_autofree
char *subsystem_path
= NULL
;
1395 g_autofree
char *subsystem
= NULL
;
1397 subsystem_path
= g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1398 major(st
.st_rdev
), minor(st
.st_rdev
));
1399 subsystem
= g_file_read_link(subsystem_path
, NULL
);
1401 if (subsystem
&& g_str_has_suffix(subsystem
, "/dax")) {
1402 g_autofree
char *size_path
= NULL
;
1403 g_autofree
char *size_str
= NULL
;
1405 size_path
= g_strdup_printf("/sys/dev/char/%d:%d/size",
1406 major(st
.st_rdev
), minor(st
.st_rdev
));
1408 if (g_file_get_contents(size_path
, &size_str
, NULL
, NULL
)) {
1409 return g_ascii_strtoll(size_str
, NULL
, 0);
1413 #endif /* defined(__linux__) */
1415 /* st.st_size may be zero for special files yet lseek(2) works */
1416 size
= lseek(fd
, 0, SEEK_END
);
1423 static int64_t get_file_align(int fd
)
1426 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1429 if (fstat(fd
, &st
) < 0) {
1433 /* Special handling for devdax character devices */
1434 if (S_ISCHR(st
.st_mode
)) {
1435 g_autofree
char *path
= NULL
;
1436 g_autofree
char *rpath
= NULL
;
1437 struct daxctl_ctx
*ctx
;
1438 struct daxctl_region
*region
;
1441 path
= g_strdup_printf("/sys/dev/char/%d:%d",
1442 major(st
.st_rdev
), minor(st
.st_rdev
));
1443 rpath
= realpath(path
, NULL
);
1445 rc
= daxctl_new(&ctx
);
1450 daxctl_region_foreach(ctx
, region
) {
1451 if (strstr(rpath
, daxctl_region_get_path(region
))) {
1452 align
= daxctl_region_get_align(region
);
1458 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1463 static int file_ram_open(const char *path
,
1464 const char *region_name
,
1470 char *sanitized_name
;
1476 fd
= open(path
, readonly
? O_RDONLY
: O_RDWR
);
1478 /* @path names an existing file, use it */
1481 if (errno
== ENOENT
) {
1482 /* @path names a file that doesn't exist, create it */
1483 fd
= open(path
, O_RDWR
| O_CREAT
| O_EXCL
, 0644);
1488 } else if (errno
== EISDIR
) {
1489 /* @path names a directory, create a file there */
1490 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1491 sanitized_name
= g_strdup(region_name
);
1492 for (c
= sanitized_name
; *c
!= '\0'; c
++) {
1498 filename
= g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path
,
1500 g_free(sanitized_name
);
1502 fd
= mkstemp(filename
);
1510 if (errno
!= EEXIST
&& errno
!= EINTR
) {
1511 error_setg_errno(errp
, errno
,
1512 "can't open backing store %s for guest RAM",
1517 * Try again on EINTR and EEXIST. The latter happens when
1518 * something else creates the file between our two open().
1525 static void *file_ram_alloc(RAMBlock
*block
,
1535 block
->page_size
= qemu_fd_getpagesize(fd
);
1536 if (block
->mr
->align
% block
->page_size
) {
1537 error_setg(errp
, "alignment 0x%" PRIx64
1538 " must be multiples of page size 0x%zx",
1539 block
->mr
->align
, block
->page_size
);
1541 } else if (block
->mr
->align
&& !is_power_of_2(block
->mr
->align
)) {
1542 error_setg(errp
, "alignment 0x%" PRIx64
1543 " must be a power of two", block
->mr
->align
);
1546 block
->mr
->align
= MAX(block
->page_size
, block
->mr
->align
);
1547 #if defined(__s390x__)
1548 if (kvm_enabled()) {
1549 block
->mr
->align
= MAX(block
->mr
->align
, QEMU_VMALLOC_ALIGN
);
1553 if (memory
< block
->page_size
) {
1554 error_setg(errp
, "memory size 0x" RAM_ADDR_FMT
" must be equal to "
1555 "or larger than page size 0x%zx",
1556 memory
, block
->page_size
);
1560 memory
= ROUND_UP(memory
, block
->page_size
);
1563 * ftruncate is not supported by hugetlbfs in older
1564 * hosts, so don't bother bailing out on errors.
1565 * If anything goes wrong with it under other filesystems,
1568 * Do not truncate the non-empty backend file to avoid corrupting
1569 * the existing data in the file. Disabling shrinking is not
1570 * enough. For example, the current vNVDIMM implementation stores
1571 * the guest NVDIMM labels at the end of the backend file. If the
1572 * backend file is later extended, QEMU will not be able to find
1573 * those labels. Therefore, extending the non-empty backend file
1574 * is disabled as well.
1576 if (truncate
&& ftruncate(fd
, memory
)) {
1577 perror("ftruncate");
1580 area
= qemu_ram_mmap(fd
, memory
, block
->mr
->align
, readonly
,
1581 block
->flags
& RAM_SHARED
, block
->flags
& RAM_PMEM
,
1583 if (area
== MAP_FAILED
) {
1584 error_setg_errno(errp
, errno
,
1585 "unable to map backing store for guest RAM");
1594 /* Allocate space within the ram_addr_t space that governs the
1596 * Called with the ramlist lock held.
1598 static ram_addr_t
find_ram_offset(ram_addr_t size
)
1600 RAMBlock
*block
, *next_block
;
1601 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
1603 assert(size
!= 0); /* it would hand out same offset multiple times */
1605 if (QLIST_EMPTY_RCU(&ram_list
.blocks
)) {
1609 RAMBLOCK_FOREACH(block
) {
1610 ram_addr_t candidate
, next
= RAM_ADDR_MAX
;
1612 /* Align blocks to start on a 'long' in the bitmap
1613 * which makes the bitmap sync'ing take the fast path.
1615 candidate
= block
->offset
+ block
->max_length
;
1616 candidate
= ROUND_UP(candidate
, BITS_PER_LONG
<< TARGET_PAGE_BITS
);
1618 /* Search for the closest following block
1621 RAMBLOCK_FOREACH(next_block
) {
1622 if (next_block
->offset
>= candidate
) {
1623 next
= MIN(next
, next_block
->offset
);
1627 /* If it fits remember our place and remember the size
1628 * of gap, but keep going so that we might find a smaller
1629 * gap to fill so avoiding fragmentation.
1631 if (next
- candidate
>= size
&& next
- candidate
< mingap
) {
1633 mingap
= next
- candidate
;
1636 trace_find_ram_offset_loop(size
, candidate
, offset
, next
, mingap
);
1639 if (offset
== RAM_ADDR_MAX
) {
1640 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
1645 trace_find_ram_offset(size
, offset
);
1650 static unsigned long last_ram_page(void)
1653 ram_addr_t last
= 0;
1655 RCU_READ_LOCK_GUARD();
1656 RAMBLOCK_FOREACH(block
) {
1657 last
= MAX(last
, block
->offset
+ block
->max_length
);
1659 return last
>> TARGET_PAGE_BITS
;
1662 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
1666 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1667 if (!machine_dump_guest_core(current_machine
)) {
1668 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
1670 perror("qemu_madvise");
1671 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
1672 "but dump_guest_core=off specified\n");
1677 const char *qemu_ram_get_idstr(RAMBlock
*rb
)
1682 void *qemu_ram_get_host_addr(RAMBlock
*rb
)
1687 ram_addr_t
qemu_ram_get_offset(RAMBlock
*rb
)
1692 ram_addr_t
qemu_ram_get_used_length(RAMBlock
*rb
)
1694 return rb
->used_length
;
1697 ram_addr_t
qemu_ram_get_max_length(RAMBlock
*rb
)
1699 return rb
->max_length
;
1702 bool qemu_ram_is_shared(RAMBlock
*rb
)
1704 return rb
->flags
& RAM_SHARED
;
1707 /* Note: Only set at the start of postcopy */
1708 bool qemu_ram_is_uf_zeroable(RAMBlock
*rb
)
1710 return rb
->flags
& RAM_UF_ZEROPAGE
;
1713 void qemu_ram_set_uf_zeroable(RAMBlock
*rb
)
1715 rb
->flags
|= RAM_UF_ZEROPAGE
;
1718 bool qemu_ram_is_migratable(RAMBlock
*rb
)
1720 return rb
->flags
& RAM_MIGRATABLE
;
1723 void qemu_ram_set_migratable(RAMBlock
*rb
)
1725 rb
->flags
|= RAM_MIGRATABLE
;
1728 void qemu_ram_unset_migratable(RAMBlock
*rb
)
1730 rb
->flags
&= ~RAM_MIGRATABLE
;
1733 /* Called with iothread lock held. */
1734 void qemu_ram_set_idstr(RAMBlock
*new_block
, const char *name
, DeviceState
*dev
)
1739 assert(!new_block
->idstr
[0]);
1742 char *id
= qdev_get_dev_path(dev
);
1744 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
1748 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
1750 RCU_READ_LOCK_GUARD();
1751 RAMBLOCK_FOREACH(block
) {
1752 if (block
!= new_block
&&
1753 !strcmp(block
->idstr
, new_block
->idstr
)) {
1754 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
1761 /* Called with iothread lock held. */
1762 void qemu_ram_unset_idstr(RAMBlock
*block
)
1764 /* FIXME: arch_init.c assumes that this is not called throughout
1765 * migration. Ignore the problem since hot-unplug during migration
1766 * does not work anyway.
1769 memset(block
->idstr
, 0, sizeof(block
->idstr
));
1773 size_t qemu_ram_pagesize(RAMBlock
*rb
)
1775 return rb
->page_size
;
1778 /* Returns the largest size of page in use */
1779 size_t qemu_ram_pagesize_largest(void)
1784 RAMBLOCK_FOREACH(block
) {
1785 largest
= MAX(largest
, qemu_ram_pagesize(block
));
1791 static int memory_try_enable_merging(void *addr
, size_t len
)
1793 if (!machine_mem_merge(current_machine
)) {
1794 /* disabled by the user */
1798 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
1802 * Resizing RAM while migrating can result in the migration being canceled.
1803 * Care has to be taken if the guest might have already detected the memory.
1805 * As memory core doesn't know how is memory accessed, it is up to
1806 * resize callback to update device state and/or add assertions to detect
1807 * misuse, if necessary.
1809 int qemu_ram_resize(RAMBlock
*block
, ram_addr_t newsize
, Error
**errp
)
1811 const ram_addr_t oldsize
= block
->used_length
;
1812 const ram_addr_t unaligned_size
= newsize
;
1816 newsize
= HOST_PAGE_ALIGN(newsize
);
1818 if (block
->used_length
== newsize
) {
1820 * We don't have to resize the ram block (which only knows aligned
1821 * sizes), however, we have to notify if the unaligned size changed.
1823 if (unaligned_size
!= memory_region_size(block
->mr
)) {
1824 memory_region_set_size(block
->mr
, unaligned_size
);
1825 if (block
->resized
) {
1826 block
->resized(block
->idstr
, unaligned_size
, block
->host
);
1832 if (!(block
->flags
& RAM_RESIZEABLE
)) {
1833 error_setg_errno(errp
, EINVAL
,
1834 "Size mismatch: %s: 0x" RAM_ADDR_FMT
1835 " != 0x" RAM_ADDR_FMT
, block
->idstr
,
1836 newsize
, block
->used_length
);
1840 if (block
->max_length
< newsize
) {
1841 error_setg_errno(errp
, EINVAL
,
1842 "Size too large: %s: 0x" RAM_ADDR_FMT
1843 " > 0x" RAM_ADDR_FMT
, block
->idstr
,
1844 newsize
, block
->max_length
);
1848 /* Notify before modifying the ram block and touching the bitmaps. */
1850 ram_block_notify_resize(block
->host
, oldsize
, newsize
);
1853 cpu_physical_memory_clear_dirty_range(block
->offset
, block
->used_length
);
1854 block
->used_length
= newsize
;
1855 cpu_physical_memory_set_dirty_range(block
->offset
, block
->used_length
,
1857 memory_region_set_size(block
->mr
, unaligned_size
);
1858 if (block
->resized
) {
1859 block
->resized(block
->idstr
, unaligned_size
, block
->host
);
1865 * Trigger sync on the given ram block for range [start, start + length]
1866 * with the backing store if one is available.
1868 * @Note: this is supposed to be a synchronous op.
1870 void qemu_ram_msync(RAMBlock
*block
, ram_addr_t start
, ram_addr_t length
)
1872 /* The requested range should fit in within the block range */
1873 g_assert((start
+ length
) <= block
->used_length
);
1875 #ifdef CONFIG_LIBPMEM
1876 /* The lack of support for pmem should not block the sync */
1877 if (ramblock_is_pmem(block
)) {
1878 void *addr
= ramblock_ptr(block
, start
);
1879 pmem_persist(addr
, length
);
1883 if (block
->fd
>= 0) {
1885 * Case there is no support for PMEM or the memory has not been
1886 * specified as persistent (or is not one) - use the msync.
1887 * Less optimal but still achieves the same goal
1889 void *addr
= ramblock_ptr(block
, start
);
1890 if (qemu_msync(addr
, length
, block
->fd
)) {
1891 warn_report("%s: failed to sync memory range: start: "
1892 RAM_ADDR_FMT
" length: " RAM_ADDR_FMT
,
1893 __func__
, start
, length
);
1898 /* Called with ram_list.mutex held */
1899 static void dirty_memory_extend(ram_addr_t old_ram_size
,
1900 ram_addr_t new_ram_size
)
1902 ram_addr_t old_num_blocks
= DIV_ROUND_UP(old_ram_size
,
1903 DIRTY_MEMORY_BLOCK_SIZE
);
1904 ram_addr_t new_num_blocks
= DIV_ROUND_UP(new_ram_size
,
1905 DIRTY_MEMORY_BLOCK_SIZE
);
1908 /* Only need to extend if block count increased */
1909 if (new_num_blocks
<= old_num_blocks
) {
1913 for (i
= 0; i
< DIRTY_MEMORY_NUM
; i
++) {
1914 DirtyMemoryBlocks
*old_blocks
;
1915 DirtyMemoryBlocks
*new_blocks
;
1918 old_blocks
= qatomic_rcu_read(&ram_list
.dirty_memory
[i
]);
1919 new_blocks
= g_malloc(sizeof(*new_blocks
) +
1920 sizeof(new_blocks
->blocks
[0]) * new_num_blocks
);
1922 if (old_num_blocks
) {
1923 memcpy(new_blocks
->blocks
, old_blocks
->blocks
,
1924 old_num_blocks
* sizeof(old_blocks
->blocks
[0]));
1927 for (j
= old_num_blocks
; j
< new_num_blocks
; j
++) {
1928 new_blocks
->blocks
[j
] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE
);
1931 qatomic_rcu_set(&ram_list
.dirty_memory
[i
], new_blocks
);
1934 g_free_rcu(old_blocks
, rcu
);
1939 static void ram_block_add(RAMBlock
*new_block
, Error
**errp
, bool shared
)
1942 RAMBlock
*last_block
= NULL
;
1943 ram_addr_t old_ram_size
, new_ram_size
;
1946 old_ram_size
= last_ram_page();
1948 qemu_mutex_lock_ramlist();
1949 new_block
->offset
= find_ram_offset(new_block
->max_length
);
1951 if (!new_block
->host
) {
1952 if (xen_enabled()) {
1953 xen_ram_alloc(new_block
->offset
, new_block
->max_length
,
1954 new_block
->mr
, &err
);
1956 error_propagate(errp
, err
);
1957 qemu_mutex_unlock_ramlist();
1961 new_block
->host
= qemu_anon_ram_alloc(new_block
->max_length
,
1962 &new_block
->mr
->align
,
1964 if (!new_block
->host
) {
1965 error_setg_errno(errp
, errno
,
1966 "cannot set up guest memory '%s'",
1967 memory_region_name(new_block
->mr
));
1968 qemu_mutex_unlock_ramlist();
1971 memory_try_enable_merging(new_block
->host
, new_block
->max_length
);
1975 new_ram_size
= MAX(old_ram_size
,
1976 (new_block
->offset
+ new_block
->max_length
) >> TARGET_PAGE_BITS
);
1977 if (new_ram_size
> old_ram_size
) {
1978 dirty_memory_extend(old_ram_size
, new_ram_size
);
1980 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1981 * QLIST (which has an RCU-friendly variant) does not have insertion at
1982 * tail, so save the last element in last_block.
1984 RAMBLOCK_FOREACH(block
) {
1986 if (block
->max_length
< new_block
->max_length
) {
1991 QLIST_INSERT_BEFORE_RCU(block
, new_block
, next
);
1992 } else if (last_block
) {
1993 QLIST_INSERT_AFTER_RCU(last_block
, new_block
, next
);
1994 } else { /* list is empty */
1995 QLIST_INSERT_HEAD_RCU(&ram_list
.blocks
, new_block
, next
);
1997 ram_list
.mru_block
= NULL
;
1999 /* Write list before version */
2002 qemu_mutex_unlock_ramlist();
2004 cpu_physical_memory_set_dirty_range(new_block
->offset
,
2005 new_block
->used_length
,
2008 if (new_block
->host
) {
2009 qemu_ram_setup_dump(new_block
->host
, new_block
->max_length
);
2010 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_HUGEPAGE
);
2012 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
2013 * Configure it unless the machine is a qtest server, in which case
2014 * KVM is not used and it may be forked (eg for fuzzing purposes).
2016 if (!qtest_enabled()) {
2017 qemu_madvise(new_block
->host
, new_block
->max_length
,
2018 QEMU_MADV_DONTFORK
);
2020 ram_block_notify_add(new_block
->host
, new_block
->used_length
,
2021 new_block
->max_length
);
2026 RAMBlock
*qemu_ram_alloc_from_fd(ram_addr_t size
, MemoryRegion
*mr
,
2027 uint32_t ram_flags
, int fd
, off_t offset
,
2028 bool readonly
, Error
**errp
)
2030 RAMBlock
*new_block
;
2031 Error
*local_err
= NULL
;
2032 int64_t file_size
, file_align
;
2034 /* Just support these ram flags by now. */
2035 assert((ram_flags
& ~(RAM_SHARED
| RAM_PMEM
)) == 0);
2037 if (xen_enabled()) {
2038 error_setg(errp
, "-mem-path not supported with Xen");
2042 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2044 "host lacks kvm mmu notifiers, -mem-path unsupported");
2048 size
= HOST_PAGE_ALIGN(size
);
2049 file_size
= get_file_size(fd
);
2050 if (file_size
> 0 && file_size
< size
) {
2051 error_setg(errp
, "backing store size 0x%" PRIx64
2052 " does not match 'size' option 0x" RAM_ADDR_FMT
,
2057 file_align
= get_file_align(fd
);
2058 if (file_align
> 0 && mr
&& file_align
> mr
->align
) {
2059 error_setg(errp
, "backing store align 0x%" PRIx64
2060 " is larger than 'align' option 0x%" PRIx64
,
2061 file_align
, mr
->align
);
2065 new_block
= g_malloc0(sizeof(*new_block
));
2067 new_block
->used_length
= size
;
2068 new_block
->max_length
= size
;
2069 new_block
->flags
= ram_flags
;
2070 new_block
->host
= file_ram_alloc(new_block
, size
, fd
, readonly
,
2071 !file_size
, offset
, errp
);
2072 if (!new_block
->host
) {
2077 ram_block_add(new_block
, &local_err
, ram_flags
& RAM_SHARED
);
2080 error_propagate(errp
, local_err
);
2088 RAMBlock
*qemu_ram_alloc_from_file(ram_addr_t size
, MemoryRegion
*mr
,
2089 uint32_t ram_flags
, const char *mem_path
,
2090 bool readonly
, Error
**errp
)
2096 fd
= file_ram_open(mem_path
, memory_region_name(mr
), readonly
, &created
,
2102 block
= qemu_ram_alloc_from_fd(size
, mr
, ram_flags
, fd
, 0, readonly
, errp
);
2116 RAMBlock
*qemu_ram_alloc_internal(ram_addr_t size
, ram_addr_t max_size
,
2117 void (*resized
)(const char*,
2120 void *host
, bool resizeable
, bool share
,
2121 MemoryRegion
*mr
, Error
**errp
)
2123 RAMBlock
*new_block
;
2124 Error
*local_err
= NULL
;
2126 size
= HOST_PAGE_ALIGN(size
);
2127 max_size
= HOST_PAGE_ALIGN(max_size
);
2128 new_block
= g_malloc0(sizeof(*new_block
));
2130 new_block
->resized
= resized
;
2131 new_block
->used_length
= size
;
2132 new_block
->max_length
= max_size
;
2133 assert(max_size
>= size
);
2135 new_block
->page_size
= qemu_real_host_page_size
;
2136 new_block
->host
= host
;
2138 new_block
->flags
|= RAM_PREALLOC
;
2141 new_block
->flags
|= RAM_RESIZEABLE
;
2143 ram_block_add(new_block
, &local_err
, share
);
2146 error_propagate(errp
, local_err
);
2152 RAMBlock
*qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
2153 MemoryRegion
*mr
, Error
**errp
)
2155 return qemu_ram_alloc_internal(size
, size
, NULL
, host
, false,
2159 RAMBlock
*qemu_ram_alloc(ram_addr_t size
, bool share
,
2160 MemoryRegion
*mr
, Error
**errp
)
2162 return qemu_ram_alloc_internal(size
, size
, NULL
, NULL
, false,
2166 RAMBlock
*qemu_ram_alloc_resizeable(ram_addr_t size
, ram_addr_t maxsz
,
2167 void (*resized
)(const char*,
2170 MemoryRegion
*mr
, Error
**errp
)
2172 return qemu_ram_alloc_internal(size
, maxsz
, resized
, NULL
, true,
2176 static void reclaim_ramblock(RAMBlock
*block
)
2178 if (block
->flags
& RAM_PREALLOC
) {
2180 } else if (xen_enabled()) {
2181 xen_invalidate_map_cache_entry(block
->host
);
2183 } else if (block
->fd
>= 0) {
2184 qemu_ram_munmap(block
->fd
, block
->host
, block
->max_length
);
2188 qemu_anon_ram_free(block
->host
, block
->max_length
);
2193 void qemu_ram_free(RAMBlock
*block
)
2200 ram_block_notify_remove(block
->host
, block
->used_length
,
2204 qemu_mutex_lock_ramlist();
2205 QLIST_REMOVE_RCU(block
, next
);
2206 ram_list
.mru_block
= NULL
;
2207 /* Write list before version */
2210 call_rcu(block
, reclaim_ramblock
, rcu
);
2211 qemu_mutex_unlock_ramlist();
2215 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
2222 RAMBLOCK_FOREACH(block
) {
2223 offset
= addr
- block
->offset
;
2224 if (offset
< block
->max_length
) {
2225 vaddr
= ramblock_ptr(block
, offset
);
2226 if (block
->flags
& RAM_PREALLOC
) {
2228 } else if (xen_enabled()) {
2232 if (block
->fd
>= 0) {
2233 flags
|= (block
->flags
& RAM_SHARED
?
2234 MAP_SHARED
: MAP_PRIVATE
);
2235 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2236 flags
, block
->fd
, offset
);
2238 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
2239 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2242 if (area
!= vaddr
) {
2243 error_report("Could not remap addr: "
2244 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"",
2248 memory_try_enable_merging(vaddr
, length
);
2249 qemu_ram_setup_dump(vaddr
, length
);
2254 #endif /* !_WIN32 */
2256 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2257 * This should not be used for general purpose DMA. Use address_space_map
2258 * or address_space_rw instead. For local memory (e.g. video ram) that the
2259 * device owns, use memory_region_get_ram_ptr.
2261 * Called within RCU critical section.
2263 void *qemu_map_ram_ptr(RAMBlock
*ram_block
, ram_addr_t addr
)
2265 RAMBlock
*block
= ram_block
;
2267 if (block
== NULL
) {
2268 block
= qemu_get_ram_block(addr
);
2269 addr
-= block
->offset
;
2272 if (xen_enabled() && block
->host
== NULL
) {
2273 /* We need to check if the requested address is in the RAM
2274 * because we don't want to map the entire memory in QEMU.
2275 * In that case just map until the end of the page.
2277 if (block
->offset
== 0) {
2278 return xen_map_cache(addr
, 0, 0, false);
2281 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1, false);
2283 return ramblock_ptr(block
, addr
);
2286 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2287 * but takes a size argument.
2289 * Called within RCU critical section.
2291 static void *qemu_ram_ptr_length(RAMBlock
*ram_block
, ram_addr_t addr
,
2292 hwaddr
*size
, bool lock
)
2294 RAMBlock
*block
= ram_block
;
2299 if (block
== NULL
) {
2300 block
= qemu_get_ram_block(addr
);
2301 addr
-= block
->offset
;
2303 *size
= MIN(*size
, block
->max_length
- addr
);
2305 if (xen_enabled() && block
->host
== NULL
) {
2306 /* We need to check if the requested address is in the RAM
2307 * because we don't want to map the entire memory in QEMU.
2308 * In that case just map the requested area.
2310 if (block
->offset
== 0) {
2311 return xen_map_cache(addr
, *size
, lock
, lock
);
2314 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1, lock
);
2317 return ramblock_ptr(block
, addr
);
2320 /* Return the offset of a hostpointer within a ramblock */
2321 ram_addr_t
qemu_ram_block_host_offset(RAMBlock
*rb
, void *host
)
2323 ram_addr_t res
= (uint8_t *)host
- (uint8_t *)rb
->host
;
2324 assert((uintptr_t)host
>= (uintptr_t)rb
->host
);
2325 assert(res
< rb
->max_length
);
2331 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2334 * ptr: Host pointer to look up
2335 * round_offset: If true round the result offset down to a page boundary
2336 * *ram_addr: set to result ram_addr
2337 * *offset: set to result offset within the RAMBlock
2339 * Returns: RAMBlock (or NULL if not found)
2341 * By the time this function returns, the returned pointer is not protected
2342 * by RCU anymore. If the caller is not within an RCU critical section and
2343 * does not hold the iothread lock, it must have other means of protecting the
2344 * pointer, such as a reference to the region that includes the incoming
2347 RAMBlock
*qemu_ram_block_from_host(void *ptr
, bool round_offset
,
2351 uint8_t *host
= ptr
;
2353 if (xen_enabled()) {
2354 ram_addr_t ram_addr
;
2355 RCU_READ_LOCK_GUARD();
2356 ram_addr
= xen_ram_addr_from_mapcache(ptr
);
2357 block
= qemu_get_ram_block(ram_addr
);
2359 *offset
= ram_addr
- block
->offset
;
2364 RCU_READ_LOCK_GUARD();
2365 block
= qatomic_rcu_read(&ram_list
.mru_block
);
2366 if (block
&& block
->host
&& host
- block
->host
< block
->max_length
) {
2370 RAMBLOCK_FOREACH(block
) {
2371 /* This case append when the block is not mapped. */
2372 if (block
->host
== NULL
) {
2375 if (host
- block
->host
< block
->max_length
) {
2383 *offset
= (host
- block
->host
);
2385 *offset
&= TARGET_PAGE_MASK
;
2391 * Finds the named RAMBlock
2393 * name: The name of RAMBlock to find
2395 * Returns: RAMBlock (or NULL if not found)
2397 RAMBlock
*qemu_ram_block_by_name(const char *name
)
2401 RAMBLOCK_FOREACH(block
) {
2402 if (!strcmp(name
, block
->idstr
)) {
2410 /* Some of the softmmu routines need to translate from a host pointer
2411 (typically a TLB entry) back to a ram offset. */
2412 ram_addr_t
qemu_ram_addr_from_host(void *ptr
)
2417 block
= qemu_ram_block_from_host(ptr
, false, &offset
);
2419 return RAM_ADDR_INVALID
;
2422 return block
->offset
+ offset
;
2425 static MemTxResult
flatview_read(FlatView
*fv
, hwaddr addr
,
2426 MemTxAttrs attrs
, void *buf
, hwaddr len
);
2427 static MemTxResult
flatview_write(FlatView
*fv
, hwaddr addr
, MemTxAttrs attrs
,
2428 const void *buf
, hwaddr len
);
2429 static bool flatview_access_valid(FlatView
*fv
, hwaddr addr
, hwaddr len
,
2430 bool is_write
, MemTxAttrs attrs
);
2432 static MemTxResult
subpage_read(void *opaque
, hwaddr addr
, uint64_t *data
,
2433 unsigned len
, MemTxAttrs attrs
)
2435 subpage_t
*subpage
= opaque
;
2439 #if defined(DEBUG_SUBPAGE)
2440 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
"\n", __func__
,
2441 subpage
, len
, addr
);
2443 res
= flatview_read(subpage
->fv
, addr
+ subpage
->base
, attrs
, buf
, len
);
2447 *data
= ldn_p(buf
, len
);
2451 static MemTxResult
subpage_write(void *opaque
, hwaddr addr
,
2452 uint64_t value
, unsigned len
, MemTxAttrs attrs
)
2454 subpage_t
*subpage
= opaque
;
2457 #if defined(DEBUG_SUBPAGE)
2458 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2459 " value %"PRIx64
"\n",
2460 __func__
, subpage
, len
, addr
, value
);
2462 stn_p(buf
, len
, value
);
2463 return flatview_write(subpage
->fv
, addr
+ subpage
->base
, attrs
, buf
, len
);
2466 static bool subpage_accepts(void *opaque
, hwaddr addr
,
2467 unsigned len
, bool is_write
,
2470 subpage_t
*subpage
= opaque
;
2471 #if defined(DEBUG_SUBPAGE)
2472 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx
"\n",
2473 __func__
, subpage
, is_write
? 'w' : 'r', len
, addr
);
2476 return flatview_access_valid(subpage
->fv
, addr
+ subpage
->base
,
2477 len
, is_write
, attrs
);
2480 static const MemoryRegionOps subpage_ops
= {
2481 .read_with_attrs
= subpage_read
,
2482 .write_with_attrs
= subpage_write
,
2483 .impl
.min_access_size
= 1,
2484 .impl
.max_access_size
= 8,
2485 .valid
.min_access_size
= 1,
2486 .valid
.max_access_size
= 8,
2487 .valid
.accepts
= subpage_accepts
,
2488 .endianness
= DEVICE_NATIVE_ENDIAN
,
2491 static int subpage_register(subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2496 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
2498 idx
= SUBPAGE_IDX(start
);
2499 eidx
= SUBPAGE_IDX(end
);
2500 #if defined(DEBUG_SUBPAGE)
2501 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2502 __func__
, mmio
, start
, end
, idx
, eidx
, section
);
2504 for (; idx
<= eidx
; idx
++) {
2505 mmio
->sub_section
[idx
] = section
;
2511 static subpage_t
*subpage_init(FlatView
*fv
, hwaddr base
)
2515 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2516 mmio
= g_malloc0(sizeof(subpage_t
) + TARGET_PAGE_SIZE
* sizeof(uint16_t));
2519 memory_region_init_io(&mmio
->iomem
, NULL
, &subpage_ops
, mmio
,
2520 NULL
, TARGET_PAGE_SIZE
);
2521 mmio
->iomem
.subpage
= true;
2522 #if defined(DEBUG_SUBPAGE)
2523 printf("%s: %p base " TARGET_FMT_plx
" len %08x\n", __func__
,
2524 mmio
, base
, TARGET_PAGE_SIZE
);
2530 static uint16_t dummy_section(PhysPageMap
*map
, FlatView
*fv
, MemoryRegion
*mr
)
2533 MemoryRegionSection section
= {
2536 .offset_within_address_space
= 0,
2537 .offset_within_region
= 0,
2538 .size
= int128_2_64(),
2541 return phys_section_add(map
, §ion
);
2544 MemoryRegionSection
*iotlb_to_section(CPUState
*cpu
,
2545 hwaddr index
, MemTxAttrs attrs
)
2547 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
2548 CPUAddressSpace
*cpuas
= &cpu
->cpu_ases
[asidx
];
2549 AddressSpaceDispatch
*d
= qatomic_rcu_read(&cpuas
->memory_dispatch
);
2550 MemoryRegionSection
*sections
= d
->map
.sections
;
2552 return §ions
[index
& ~TARGET_PAGE_MASK
];
2555 static void io_mem_init(void)
2557 memory_region_init_io(&io_mem_unassigned
, NULL
, &unassigned_mem_ops
, NULL
,
2561 AddressSpaceDispatch
*address_space_dispatch_new(FlatView
*fv
)
2563 AddressSpaceDispatch
*d
= g_new0(AddressSpaceDispatch
, 1);
2566 n
= dummy_section(&d
->map
, fv
, &io_mem_unassigned
);
2567 assert(n
== PHYS_SECTION_UNASSIGNED
);
2569 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .skip
= 1 };
2574 void address_space_dispatch_free(AddressSpaceDispatch
*d
)
2576 phys_sections_free(&d
->map
);
2580 static void do_nothing(CPUState
*cpu
, run_on_cpu_data d
)
2584 static void tcg_log_global_after_sync(MemoryListener
*listener
)
2586 CPUAddressSpace
*cpuas
;
2588 /* Wait for the CPU to end the current TB. This avoids the following
2592 * ---------------------- -------------------------
2593 * TLB check -> slow path
2594 * notdirty_mem_write
2598 * TLB check -> fast path
2602 * by pushing the migration thread's memory read after the vCPU thread has
2603 * written the memory.
2605 if (replay_mode
== REPLAY_MODE_NONE
) {
2607 * VGA can make calls to this function while updating the screen.
2608 * In record/replay mode this causes a deadlock, because
2609 * run_on_cpu waits for rr mutex. Therefore no races are possible
2610 * in this case and no need for making run_on_cpu when
2611 * record/replay is not enabled.
2613 cpuas
= container_of(listener
, CPUAddressSpace
, tcg_as_listener
);
2614 run_on_cpu(cpuas
->cpu
, do_nothing
, RUN_ON_CPU_NULL
);
2618 static void tcg_commit(MemoryListener
*listener
)
2620 CPUAddressSpace
*cpuas
;
2621 AddressSpaceDispatch
*d
;
2623 assert(tcg_enabled());
2624 /* since each CPU stores ram addresses in its TLB cache, we must
2625 reset the modified entries */
2626 cpuas
= container_of(listener
, CPUAddressSpace
, tcg_as_listener
);
2627 cpu_reloading_memory_map();
2628 /* The CPU and TLB are protected by the iothread lock.
2629 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2630 * may have split the RCU critical section.
2632 d
= address_space_to_dispatch(cpuas
->as
);
2633 qatomic_rcu_set(&cpuas
->memory_dispatch
, d
);
2634 tlb_flush(cpuas
->cpu
);
2637 static void memory_map_init(void)
2639 system_memory
= g_malloc(sizeof(*system_memory
));
2641 memory_region_init(system_memory
, NULL
, "system", UINT64_MAX
);
2642 address_space_init(&address_space_memory
, system_memory
, "memory");
2644 system_io
= g_malloc(sizeof(*system_io
));
2645 memory_region_init_io(system_io
, NULL
, &unassigned_io_ops
, NULL
, "io",
2647 address_space_init(&address_space_io
, system_io
, "I/O");
2650 MemoryRegion
*get_system_memory(void)
2652 return system_memory
;
2655 MemoryRegion
*get_system_io(void)
2660 static void invalidate_and_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
2663 uint8_t dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
2664 addr
+= memory_region_get_ram_addr(mr
);
2666 /* No early return if dirty_log_mask is or becomes 0, because
2667 * cpu_physical_memory_set_dirty_range will still call
2668 * xen_modified_memory.
2670 if (dirty_log_mask
) {
2672 cpu_physical_memory_range_includes_clean(addr
, length
, dirty_log_mask
);
2674 if (dirty_log_mask
& (1 << DIRTY_MEMORY_CODE
)) {
2675 assert(tcg_enabled());
2676 tb_invalidate_phys_range(addr
, addr
+ length
);
2677 dirty_log_mask
&= ~(1 << DIRTY_MEMORY_CODE
);
2679 cpu_physical_memory_set_dirty_range(addr
, length
, dirty_log_mask
);
2682 void memory_region_flush_rom_device(MemoryRegion
*mr
, hwaddr addr
, hwaddr size
)
2685 * In principle this function would work on other memory region types too,
2686 * but the ROM device use case is the only one where this operation is
2687 * necessary. Other memory regions should use the
2688 * address_space_read/write() APIs.
2690 assert(memory_region_is_romd(mr
));
2692 invalidate_and_set_dirty(mr
, addr
, size
);
2695 static int memory_access_size(MemoryRegion
*mr
, unsigned l
, hwaddr addr
)
2697 unsigned access_size_max
= mr
->ops
->valid
.max_access_size
;
2699 /* Regions are assumed to support 1-4 byte accesses unless
2700 otherwise specified. */
2701 if (access_size_max
== 0) {
2702 access_size_max
= 4;
2705 /* Bound the maximum access by the alignment of the address. */
2706 if (!mr
->ops
->impl
.unaligned
) {
2707 unsigned align_size_max
= addr
& -addr
;
2708 if (align_size_max
!= 0 && align_size_max
< access_size_max
) {
2709 access_size_max
= align_size_max
;
2713 /* Don't attempt accesses larger than the maximum. */
2714 if (l
> access_size_max
) {
2715 l
= access_size_max
;
2722 static bool prepare_mmio_access(MemoryRegion
*mr
)
2724 bool release_lock
= false;
2726 if (!qemu_mutex_iothread_locked()) {
2727 qemu_mutex_lock_iothread();
2728 release_lock
= true;
2730 if (mr
->flush_coalesced_mmio
) {
2731 qemu_flush_coalesced_mmio_buffer();
2734 return release_lock
;
2737 /* Called within RCU critical section. */
2738 static MemTxResult
flatview_write_continue(FlatView
*fv
, hwaddr addr
,
2741 hwaddr len
, hwaddr addr1
,
2742 hwaddr l
, MemoryRegion
*mr
)
2746 MemTxResult result
= MEMTX_OK
;
2747 bool release_lock
= false;
2748 const uint8_t *buf
= ptr
;
2751 if (!memory_access_is_direct(mr
, true)) {
2752 release_lock
|= prepare_mmio_access(mr
);
2753 l
= memory_access_size(mr
, l
, addr1
);
2754 /* XXX: could force current_cpu to NULL to avoid
2756 val
= ldn_he_p(buf
, l
);
2757 result
|= memory_region_dispatch_write(mr
, addr1
, val
,
2758 size_memop(l
), attrs
);
2761 ram_ptr
= qemu_ram_ptr_length(mr
->ram_block
, addr1
, &l
, false);
2762 memcpy(ram_ptr
, buf
, l
);
2763 invalidate_and_set_dirty(mr
, addr1
, l
);
2767 qemu_mutex_unlock_iothread();
2768 release_lock
= false;
2780 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, true, attrs
);
2786 /* Called from RCU critical section. */
2787 static MemTxResult
flatview_write(FlatView
*fv
, hwaddr addr
, MemTxAttrs attrs
,
2788 const void *buf
, hwaddr len
)
2793 MemTxResult result
= MEMTX_OK
;
2796 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, true, attrs
);
2797 result
= flatview_write_continue(fv
, addr
, attrs
, buf
, len
,
2803 /* Called within RCU critical section. */
2804 MemTxResult
flatview_read_continue(FlatView
*fv
, hwaddr addr
,
2805 MemTxAttrs attrs
, void *ptr
,
2806 hwaddr len
, hwaddr addr1
, hwaddr l
,
2811 MemTxResult result
= MEMTX_OK
;
2812 bool release_lock
= false;
2815 fuzz_dma_read_cb(addr
, len
, mr
);
2817 if (!memory_access_is_direct(mr
, false)) {
2819 release_lock
|= prepare_mmio_access(mr
);
2820 l
= memory_access_size(mr
, l
, addr1
);
2821 result
|= memory_region_dispatch_read(mr
, addr1
, &val
,
2822 size_memop(l
), attrs
);
2823 stn_he_p(buf
, l
, val
);
2826 ram_ptr
= qemu_ram_ptr_length(mr
->ram_block
, addr1
, &l
, false);
2827 memcpy(buf
, ram_ptr
, l
);
2831 qemu_mutex_unlock_iothread();
2832 release_lock
= false;
2844 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, false, attrs
);
2850 /* Called from RCU critical section. */
2851 static MemTxResult
flatview_read(FlatView
*fv
, hwaddr addr
,
2852 MemTxAttrs attrs
, void *buf
, hwaddr len
)
2859 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, false, attrs
);
2860 return flatview_read_continue(fv
, addr
, attrs
, buf
, len
,
2864 MemTxResult
address_space_read_full(AddressSpace
*as
, hwaddr addr
,
2865 MemTxAttrs attrs
, void *buf
, hwaddr len
)
2867 MemTxResult result
= MEMTX_OK
;
2871 RCU_READ_LOCK_GUARD();
2872 fv
= address_space_to_flatview(as
);
2873 result
= flatview_read(fv
, addr
, attrs
, buf
, len
);
2879 MemTxResult
address_space_write(AddressSpace
*as
, hwaddr addr
,
2881 const void *buf
, hwaddr len
)
2883 MemTxResult result
= MEMTX_OK
;
2887 RCU_READ_LOCK_GUARD();
2888 fv
= address_space_to_flatview(as
);
2889 result
= flatview_write(fv
, addr
, attrs
, buf
, len
);
2895 MemTxResult
address_space_rw(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
2896 void *buf
, hwaddr len
, bool is_write
)
2899 return address_space_write(as
, addr
, attrs
, buf
, len
);
2901 return address_space_read_full(as
, addr
, attrs
, buf
, len
);
2905 void cpu_physical_memory_rw(hwaddr addr
, void *buf
,
2906 hwaddr len
, bool is_write
)
2908 address_space_rw(&address_space_memory
, addr
, MEMTXATTRS_UNSPECIFIED
,
2909 buf
, len
, is_write
);
2912 enum write_rom_type
{
2917 static inline MemTxResult
address_space_write_rom_internal(AddressSpace
*as
,
2922 enum write_rom_type type
)
2928 const uint8_t *buf
= ptr
;
2930 RCU_READ_LOCK_GUARD();
2933 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true, attrs
);
2935 if (!(memory_region_is_ram(mr
) ||
2936 memory_region_is_romd(mr
))) {
2937 l
= memory_access_size(mr
, l
, addr1
);
2940 ram_ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
2943 memcpy(ram_ptr
, buf
, l
);
2944 invalidate_and_set_dirty(mr
, addr1
, l
);
2947 flush_idcache_range((uintptr_t)ram_ptr
, (uintptr_t)ram_ptr
, l
);
2958 /* used for ROM loading : can write in RAM and ROM */
2959 MemTxResult
address_space_write_rom(AddressSpace
*as
, hwaddr addr
,
2961 const void *buf
, hwaddr len
)
2963 return address_space_write_rom_internal(as
, addr
, attrs
,
2964 buf
, len
, WRITE_DATA
);
2967 void cpu_flush_icache_range(hwaddr start
, hwaddr len
)
2970 * This function should do the same thing as an icache flush that was
2971 * triggered from within the guest. For TCG we are always cache coherent,
2972 * so there is no need to flush anything. For KVM / Xen we need to flush
2973 * the host's instruction cache at least.
2975 if (tcg_enabled()) {
2979 address_space_write_rom_internal(&address_space_memory
,
2980 start
, MEMTXATTRS_UNSPECIFIED
,
2981 NULL
, len
, FLUSH_CACHE
);
2992 static BounceBuffer bounce
;
2994 typedef struct MapClient
{
2996 QLIST_ENTRY(MapClient
) link
;
2999 QemuMutex map_client_list_lock
;
3000 static QLIST_HEAD(, MapClient
) map_client_list
3001 = QLIST_HEAD_INITIALIZER(map_client_list
);
3003 static void cpu_unregister_map_client_do(MapClient
*client
)
3005 QLIST_REMOVE(client
, link
);
3009 static void cpu_notify_map_clients_locked(void)
3013 while (!QLIST_EMPTY(&map_client_list
)) {
3014 client
= QLIST_FIRST(&map_client_list
);
3015 qemu_bh_schedule(client
->bh
);
3016 cpu_unregister_map_client_do(client
);
3020 void cpu_register_map_client(QEMUBH
*bh
)
3022 MapClient
*client
= g_malloc(sizeof(*client
));
3024 qemu_mutex_lock(&map_client_list_lock
);
3026 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
3027 if (!qatomic_read(&bounce
.in_use
)) {
3028 cpu_notify_map_clients_locked();
3030 qemu_mutex_unlock(&map_client_list_lock
);
3033 void cpu_exec_init_all(void)
3035 qemu_mutex_init(&ram_list
.mutex
);
3036 /* The data structures we set up here depend on knowing the page size,
3037 * so no more changes can be made after this point.
3038 * In an ideal world, nothing we did before we had finished the
3039 * machine setup would care about the target page size, and we could
3040 * do this much later, rather than requiring board models to state
3041 * up front what their requirements are.
3043 finalize_target_page_bits();
3046 qemu_mutex_init(&map_client_list_lock
);
3049 void cpu_unregister_map_client(QEMUBH
*bh
)
3053 qemu_mutex_lock(&map_client_list_lock
);
3054 QLIST_FOREACH(client
, &map_client_list
, link
) {
3055 if (client
->bh
== bh
) {
3056 cpu_unregister_map_client_do(client
);
3060 qemu_mutex_unlock(&map_client_list_lock
);
3063 static void cpu_notify_map_clients(void)
3065 qemu_mutex_lock(&map_client_list_lock
);
3066 cpu_notify_map_clients_locked();
3067 qemu_mutex_unlock(&map_client_list_lock
);
3070 static bool flatview_access_valid(FlatView
*fv
, hwaddr addr
, hwaddr len
,
3071 bool is_write
, MemTxAttrs attrs
)
3078 mr
= flatview_translate(fv
, addr
, &xlat
, &l
, is_write
, attrs
);
3079 if (!memory_access_is_direct(mr
, is_write
)) {
3080 l
= memory_access_size(mr
, l
, addr
);
3081 if (!memory_region_access_valid(mr
, xlat
, l
, is_write
, attrs
)) {
3092 bool address_space_access_valid(AddressSpace
*as
, hwaddr addr
,
3093 hwaddr len
, bool is_write
,
3099 RCU_READ_LOCK_GUARD();
3100 fv
= address_space_to_flatview(as
);
3101 result
= flatview_access_valid(fv
, addr
, len
, is_write
, attrs
);
3106 flatview_extend_translation(FlatView
*fv
, hwaddr addr
,
3108 MemoryRegion
*mr
, hwaddr base
, hwaddr len
,
3109 bool is_write
, MemTxAttrs attrs
)
3113 MemoryRegion
*this_mr
;
3119 if (target_len
== 0) {
3124 this_mr
= flatview_translate(fv
, addr
, &xlat
,
3125 &len
, is_write
, attrs
);
3126 if (this_mr
!= mr
|| xlat
!= base
+ done
) {
3132 /* Map a physical memory region into a host virtual address.
3133 * May map a subset of the requested range, given by and returned in *plen.
3134 * May return NULL if resources needed to perform the mapping are exhausted.
3135 * Use only for reads OR writes - not for read-modify-write operations.
3136 * Use cpu_register_map_client() to know when retrying the map operation is
3137 * likely to succeed.
3139 void *address_space_map(AddressSpace
*as
,
3156 RCU_READ_LOCK_GUARD();
3157 fv
= address_space_to_flatview(as
);
3158 mr
= flatview_translate(fv
, addr
, &xlat
, &l
, is_write
, attrs
);
3160 if (!memory_access_is_direct(mr
, is_write
)) {
3161 if (qatomic_xchg(&bounce
.in_use
, true)) {
3165 /* Avoid unbounded allocations */
3166 l
= MIN(l
, TARGET_PAGE_SIZE
);
3167 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, l
);
3171 memory_region_ref(mr
);
3174 flatview_read(fv
, addr
, MEMTXATTRS_UNSPECIFIED
,
3179 return bounce
.buffer
;
3183 memory_region_ref(mr
);
3184 *plen
= flatview_extend_translation(fv
, addr
, len
, mr
, xlat
,
3185 l
, is_write
, attrs
);
3186 fuzz_dma_read_cb(addr
, *plen
, mr
);
3187 ptr
= qemu_ram_ptr_length(mr
->ram_block
, xlat
, plen
, true);
3192 /* Unmaps a memory region previously mapped by address_space_map().
3193 * Will also mark the memory as dirty if is_write is true. access_len gives
3194 * the amount of memory that was actually read or written by the caller.
3196 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
3197 bool is_write
, hwaddr access_len
)
3199 if (buffer
!= bounce
.buffer
) {
3203 mr
= memory_region_from_host(buffer
, &addr1
);
3206 invalidate_and_set_dirty(mr
, addr1
, access_len
);
3208 if (xen_enabled()) {
3209 xen_invalidate_map_cache_entry(buffer
);
3211 memory_region_unref(mr
);
3215 address_space_write(as
, bounce
.addr
, MEMTXATTRS_UNSPECIFIED
,
3216 bounce
.buffer
, access_len
);
3218 qemu_vfree(bounce
.buffer
);
3219 bounce
.buffer
= NULL
;
3220 memory_region_unref(bounce
.mr
);
3221 qatomic_mb_set(&bounce
.in_use
, false);
3222 cpu_notify_map_clients();
3225 void *cpu_physical_memory_map(hwaddr addr
,
3229 return address_space_map(&address_space_memory
, addr
, plen
, is_write
,
3230 MEMTXATTRS_UNSPECIFIED
);
3233 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
3234 bool is_write
, hwaddr access_len
)
3236 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
3239 #define ARG1_DECL AddressSpace *as
3242 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3243 #define RCU_READ_LOCK(...) rcu_read_lock()
3244 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3245 #include "memory_ldst.c.inc"
3247 int64_t address_space_cache_init(MemoryRegionCache
*cache
,
3253 AddressSpaceDispatch
*d
;
3261 cache
->fv
= address_space_get_flatview(as
);
3262 d
= flatview_to_dispatch(cache
->fv
);
3263 cache
->mrs
= *address_space_translate_internal(d
, addr
, &cache
->xlat
, &l
, true);
3266 * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3267 * Take that into account to compute how many bytes are there between
3268 * cache->xlat and the end of the section.
3270 diff
= int128_sub(cache
->mrs
.size
,
3271 int128_make64(cache
->xlat
- cache
->mrs
.offset_within_region
));
3272 l
= int128_get64(int128_min(diff
, int128_make64(l
)));
3275 memory_region_ref(mr
);
3276 if (memory_access_is_direct(mr
, is_write
)) {
3277 /* We don't care about the memory attributes here as we're only
3278 * doing this if we found actual RAM, which behaves the same
3279 * regardless of attributes; so UNSPECIFIED is fine.
3281 l
= flatview_extend_translation(cache
->fv
, addr
, len
, mr
,
3282 cache
->xlat
, l
, is_write
,
3283 MEMTXATTRS_UNSPECIFIED
);
3284 cache
->ptr
= qemu_ram_ptr_length(mr
->ram_block
, cache
->xlat
, &l
, true);
3290 cache
->is_write
= is_write
;
3294 void address_space_cache_invalidate(MemoryRegionCache
*cache
,
3298 assert(cache
->is_write
);
3299 if (likely(cache
->ptr
)) {
3300 invalidate_and_set_dirty(cache
->mrs
.mr
, addr
+ cache
->xlat
, access_len
);
3304 void address_space_cache_destroy(MemoryRegionCache
*cache
)
3306 if (!cache
->mrs
.mr
) {
3310 if (xen_enabled()) {
3311 xen_invalidate_map_cache_entry(cache
->ptr
);
3313 memory_region_unref(cache
->mrs
.mr
);
3314 flatview_unref(cache
->fv
);
3315 cache
->mrs
.mr
= NULL
;
3319 /* Called from RCU critical section. This function has the same
3320 * semantics as address_space_translate, but it only works on a
3321 * predefined range of a MemoryRegion that was mapped with
3322 * address_space_cache_init.
3324 static inline MemoryRegion
*address_space_translate_cached(
3325 MemoryRegionCache
*cache
, hwaddr addr
, hwaddr
*xlat
,
3326 hwaddr
*plen
, bool is_write
, MemTxAttrs attrs
)
3328 MemoryRegionSection section
;
3330 IOMMUMemoryRegion
*iommu_mr
;
3331 AddressSpace
*target_as
;
3333 assert(!cache
->ptr
);
3334 *xlat
= addr
+ cache
->xlat
;
3337 iommu_mr
= memory_region_get_iommu(mr
);
3343 section
= address_space_translate_iommu(iommu_mr
, xlat
, plen
,
3344 NULL
, is_write
, true,
3349 /* Called from RCU critical section. address_space_read_cached uses this
3350 * out of line function when the target is an MMIO or IOMMU region.
3353 address_space_read_cached_slow(MemoryRegionCache
*cache
, hwaddr addr
,
3354 void *buf
, hwaddr len
)
3360 mr
= address_space_translate_cached(cache
, addr
, &addr1
, &l
, false,
3361 MEMTXATTRS_UNSPECIFIED
);
3362 return flatview_read_continue(cache
->fv
,
3363 addr
, MEMTXATTRS_UNSPECIFIED
, buf
, len
,
3367 /* Called from RCU critical section. address_space_write_cached uses this
3368 * out of line function when the target is an MMIO or IOMMU region.
3371 address_space_write_cached_slow(MemoryRegionCache
*cache
, hwaddr addr
,
3372 const void *buf
, hwaddr len
)
3378 mr
= address_space_translate_cached(cache
, addr
, &addr1
, &l
, true,
3379 MEMTXATTRS_UNSPECIFIED
);
3380 return flatview_write_continue(cache
->fv
,
3381 addr
, MEMTXATTRS_UNSPECIFIED
, buf
, len
,
3385 #define ARG1_DECL MemoryRegionCache *cache
3387 #define SUFFIX _cached_slow
3388 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3389 #define RCU_READ_LOCK() ((void)0)
3390 #define RCU_READ_UNLOCK() ((void)0)
3391 #include "memory_ldst.c.inc"
3393 /* virtual memory access for debug (includes writing to ROM) */
3394 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
3395 void *ptr
, target_ulong len
, bool is_write
)
3398 target_ulong l
, page
;
3401 cpu_synchronize_state(cpu
);
3407 page
= addr
& TARGET_PAGE_MASK
;
3408 phys_addr
= cpu_get_phys_page_attrs_debug(cpu
, page
, &attrs
);
3409 asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
3410 /* if no physical page mapped, return an error */
3411 if (phys_addr
== -1)
3413 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3416 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
3418 res
= address_space_write_rom(cpu
->cpu_ases
[asidx
].as
, phys_addr
,
3421 res
= address_space_read(cpu
->cpu_ases
[asidx
].as
, phys_addr
,
3424 if (res
!= MEMTX_OK
) {
3435 * Allows code that needs to deal with migration bitmaps etc to still be built
3436 * target independent.
3438 size_t qemu_target_page_size(void)
3440 return TARGET_PAGE_SIZE
;
3443 int qemu_target_page_bits(void)
3445 return TARGET_PAGE_BITS
;
3448 int qemu_target_page_bits_min(void)
3450 return TARGET_PAGE_BITS_MIN
;
3453 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
3459 RCU_READ_LOCK_GUARD();
3460 mr
= address_space_translate(&address_space_memory
,
3461 phys_addr
, &phys_addr
, &l
, false,
3462 MEMTXATTRS_UNSPECIFIED
);
3464 res
= !(memory_region_is_ram(mr
) || memory_region_is_romd(mr
));
3468 int qemu_ram_foreach_block(RAMBlockIterFunc func
, void *opaque
)
3473 RCU_READ_LOCK_GUARD();
3474 RAMBLOCK_FOREACH(block
) {
3475 ret
= func(block
, opaque
);
3484 * Unmap pages of memory from start to start+length such that
3485 * they a) read as 0, b) Trigger whatever fault mechanism
3486 * the OS provides for postcopy.
3487 * The pages must be unmapped by the end of the function.
3488 * Returns: 0 on success, none-0 on failure
3491 int ram_block_discard_range(RAMBlock
*rb
, uint64_t start
, size_t length
)
3495 uint8_t *host_startaddr
= rb
->host
+ start
;
3497 if (!QEMU_PTR_IS_ALIGNED(host_startaddr
, rb
->page_size
)) {
3498 error_report("ram_block_discard_range: Unaligned start address: %p",
3503 if ((start
+ length
) <= rb
->max_length
) {
3504 bool need_madvise
, need_fallocate
;
3505 if (!QEMU_IS_ALIGNED(length
, rb
->page_size
)) {
3506 error_report("ram_block_discard_range: Unaligned length: %zx",
3511 errno
= ENOTSUP
; /* If we are missing MADVISE etc */
3513 /* The logic here is messy;
3514 * madvise DONTNEED fails for hugepages
3515 * fallocate works on hugepages and shmem
3517 need_madvise
= (rb
->page_size
== qemu_host_page_size
);
3518 need_fallocate
= rb
->fd
!= -1;
3519 if (need_fallocate
) {
3520 /* For a file, this causes the area of the file to be zero'd
3521 * if read, and for hugetlbfs also causes it to be unmapped
3522 * so a userfault will trigger.
3524 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3525 ret
= fallocate(rb
->fd
, FALLOC_FL_PUNCH_HOLE
| FALLOC_FL_KEEP_SIZE
,
3529 error_report("ram_block_discard_range: Failed to fallocate "
3530 "%s:%" PRIx64
" +%zx (%d)",
3531 rb
->idstr
, start
, length
, ret
);
3536 error_report("ram_block_discard_range: fallocate not available/file"
3537 "%s:%" PRIx64
" +%zx (%d)",
3538 rb
->idstr
, start
, length
, ret
);
3543 /* For normal RAM this causes it to be unmapped,
3544 * for shared memory it causes the local mapping to disappear
3545 * and to fall back on the file contents (which we just
3546 * fallocate'd away).
3548 #if defined(CONFIG_MADVISE)
3549 ret
= madvise(host_startaddr
, length
, MADV_DONTNEED
);
3552 error_report("ram_block_discard_range: Failed to discard range "
3553 "%s:%" PRIx64
" +%zx (%d)",
3554 rb
->idstr
, start
, length
, ret
);
3559 error_report("ram_block_discard_range: MADVISE not available"
3560 "%s:%" PRIx64
" +%zx (%d)",
3561 rb
->idstr
, start
, length
, ret
);
3565 trace_ram_block_discard_range(rb
->idstr
, host_startaddr
, length
,
3566 need_madvise
, need_fallocate
, ret
);
3568 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3569 "/%zx/" RAM_ADDR_FMT
")",
3570 rb
->idstr
, start
, length
, rb
->max_length
);
3577 bool ramblock_is_pmem(RAMBlock
*rb
)
3579 return rb
->flags
& RAM_PMEM
;
3582 static void mtree_print_phys_entries(int start
, int end
, int skip
, int ptr
)
3584 if (start
== end
- 1) {
3585 qemu_printf("\t%3d ", start
);
3587 qemu_printf("\t%3d..%-3d ", start
, end
- 1);
3589 qemu_printf(" skip=%d ", skip
);
3590 if (ptr
== PHYS_MAP_NODE_NIL
) {
3591 qemu_printf(" ptr=NIL");
3593 qemu_printf(" ptr=#%d", ptr
);
3595 qemu_printf(" ptr=[%d]", ptr
);
3600 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3601 int128_sub((size), int128_one())) : 0)
3603 void mtree_print_dispatch(AddressSpaceDispatch
*d
, MemoryRegion
*root
)
3607 qemu_printf(" Dispatch\n");
3608 qemu_printf(" Physical sections\n");
3610 for (i
= 0; i
< d
->map
.sections_nb
; ++i
) {
3611 MemoryRegionSection
*s
= d
->map
.sections
+ i
;
3612 const char *names
[] = { " [unassigned]", " [not dirty]",
3613 " [ROM]", " [watch]" };
3615 qemu_printf(" #%d @" TARGET_FMT_plx
".." TARGET_FMT_plx
3618 s
->offset_within_address_space
,
3619 s
->offset_within_address_space
+ MR_SIZE(s
->mr
->size
),
3620 s
->mr
->name
? s
->mr
->name
: "(noname)",
3621 i
< ARRAY_SIZE(names
) ? names
[i
] : "",
3622 s
->mr
== root
? " [ROOT]" : "",
3623 s
== d
->mru_section
? " [MRU]" : "",
3624 s
->mr
->is_iommu
? " [iommu]" : "");
3627 qemu_printf(" alias=%s", s
->mr
->alias
->name
?
3628 s
->mr
->alias
->name
: "noname");
3633 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3634 P_L2_BITS
, P_L2_LEVELS
, d
->phys_map
.ptr
, d
->phys_map
.skip
);
3635 for (i
= 0; i
< d
->map
.nodes_nb
; ++i
) {
3638 Node
*n
= d
->map
.nodes
+ i
;
3640 qemu_printf(" [%d]\n", i
);
3642 for (j
= 0, jprev
= 0, prev
= *n
[0]; j
< ARRAY_SIZE(*n
); ++j
) {
3643 PhysPageEntry
*pe
= *n
+ j
;
3645 if (pe
->ptr
== prev
.ptr
&& pe
->skip
== prev
.skip
) {
3649 mtree_print_phys_entries(jprev
, j
, prev
.skip
, prev
.ptr
);
3655 if (jprev
!= ARRAY_SIZE(*n
)) {
3656 mtree_print_phys_entries(jprev
, j
, prev
.skip
, prev
.ptr
);
3662 * If positive, discarding RAM is disabled. If negative, discarding RAM is
3663 * required to work and cannot be disabled.
3665 static int ram_block_discard_disabled
;
3667 int ram_block_discard_disable(bool state
)
3672 qatomic_dec(&ram_block_discard_disabled
);
3677 old
= qatomic_read(&ram_block_discard_disabled
);
3681 } while (qatomic_cmpxchg(&ram_block_discard_disabled
,
3682 old
, old
+ 1) != old
);
3686 int ram_block_discard_require(bool state
)
3691 qatomic_inc(&ram_block_discard_disabled
);
3696 old
= qatomic_read(&ram_block_discard_disabled
);
3700 } while (qatomic_cmpxchg(&ram_block_discard_disabled
,
3701 old
, old
- 1) != old
);
3705 bool ram_block_discard_is_disabled(void)
3707 return qatomic_read(&ram_block_discard_disabled
) > 0;
3710 bool ram_block_discard_is_required(void)
3712 return qatomic_read(&ram_block_discard_disabled
) < 0;