sparc: disable floppy DMA
[qemu/ar7.git] / hw / block / fdc.c
blob40abeef61528fc8e4c8e3f13c6f44fff3df10eb8
1 /*
2 * QEMU Floppy disk emulator (Intel 82078)
4 * Copyright (c) 2003, 2007 Jocelyn Mayer
5 * Copyright (c) 2008 Hervé Poussineau
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
26 * The controller is used in Sun4m systems in a slightly different
27 * way. There are changes in DOR register and DMA is not available.
30 #include "qemu/osdep.h"
31 #include "hw/hw.h"
32 #include "hw/block/fdc.h"
33 #include "qemu/error-report.h"
34 #include "qemu/timer.h"
35 #include "hw/isa/isa.h"
36 #include "hw/sysbus.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/blockdev.h"
39 #include "sysemu/sysemu.h"
40 #include "qemu/log.h"
42 /********************************************************/
43 /* debug Floppy devices */
44 //#define DEBUG_FLOPPY
46 #ifdef DEBUG_FLOPPY
47 #define FLOPPY_DPRINTF(fmt, ...) \
48 do { printf("FLOPPY: " fmt , ## __VA_ARGS__); } while (0)
49 #else
50 #define FLOPPY_DPRINTF(fmt, ...)
51 #endif
53 /********************************************************/
54 /* Floppy drive emulation */
56 typedef enum FDriveRate {
57 FDRIVE_RATE_500K = 0x00, /* 500 Kbps */
58 FDRIVE_RATE_300K = 0x01, /* 300 Kbps */
59 FDRIVE_RATE_250K = 0x02, /* 250 Kbps */
60 FDRIVE_RATE_1M = 0x03, /* 1 Mbps */
61 } FDriveRate;
63 typedef enum FDriveSize {
64 FDRIVE_SIZE_UNKNOWN,
65 FDRIVE_SIZE_350,
66 FDRIVE_SIZE_525,
67 } FDriveSize;
69 typedef struct FDFormat {
70 FloppyDriveType drive;
71 uint8_t last_sect;
72 uint8_t max_track;
73 uint8_t max_head;
74 FDriveRate rate;
75 } FDFormat;
77 /* In many cases, the total sector size of a format is enough to uniquely
78 * identify it. However, there are some total sector collisions between
79 * formats of different physical size, and these are noted below by
80 * highlighting the total sector size for entries with collisions. */
81 static const FDFormat fd_formats[] = {
82 /* First entry is default format */
83 /* 1.44 MB 3"1/2 floppy disks */
84 { FLOPPY_DRIVE_TYPE_144, 18, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 2880 */
85 { FLOPPY_DRIVE_TYPE_144, 20, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 3200 */
86 { FLOPPY_DRIVE_TYPE_144, 21, 80, 1, FDRIVE_RATE_500K, },
87 { FLOPPY_DRIVE_TYPE_144, 21, 82, 1, FDRIVE_RATE_500K, },
88 { FLOPPY_DRIVE_TYPE_144, 21, 83, 1, FDRIVE_RATE_500K, },
89 { FLOPPY_DRIVE_TYPE_144, 22, 80, 1, FDRIVE_RATE_500K, },
90 { FLOPPY_DRIVE_TYPE_144, 23, 80, 1, FDRIVE_RATE_500K, },
91 { FLOPPY_DRIVE_TYPE_144, 24, 80, 1, FDRIVE_RATE_500K, },
92 /* 2.88 MB 3"1/2 floppy disks */
93 { FLOPPY_DRIVE_TYPE_288, 36, 80, 1, FDRIVE_RATE_1M, },
94 { FLOPPY_DRIVE_TYPE_288, 39, 80, 1, FDRIVE_RATE_1M, },
95 { FLOPPY_DRIVE_TYPE_288, 40, 80, 1, FDRIVE_RATE_1M, },
96 { FLOPPY_DRIVE_TYPE_288, 44, 80, 1, FDRIVE_RATE_1M, },
97 { FLOPPY_DRIVE_TYPE_288, 48, 80, 1, FDRIVE_RATE_1M, },
98 /* 720 kB 3"1/2 floppy disks */
99 { FLOPPY_DRIVE_TYPE_144, 9, 80, 1, FDRIVE_RATE_250K, }, /* 3.5" 1440 */
100 { FLOPPY_DRIVE_TYPE_144, 10, 80, 1, FDRIVE_RATE_250K, },
101 { FLOPPY_DRIVE_TYPE_144, 10, 82, 1, FDRIVE_RATE_250K, },
102 { FLOPPY_DRIVE_TYPE_144, 10, 83, 1, FDRIVE_RATE_250K, },
103 { FLOPPY_DRIVE_TYPE_144, 13, 80, 1, FDRIVE_RATE_250K, },
104 { FLOPPY_DRIVE_TYPE_144, 14, 80, 1, FDRIVE_RATE_250K, },
105 /* 1.2 MB 5"1/4 floppy disks */
106 { FLOPPY_DRIVE_TYPE_120, 15, 80, 1, FDRIVE_RATE_500K, },
107 { FLOPPY_DRIVE_TYPE_120, 18, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 2880 */
108 { FLOPPY_DRIVE_TYPE_120, 18, 82, 1, FDRIVE_RATE_500K, },
109 { FLOPPY_DRIVE_TYPE_120, 18, 83, 1, FDRIVE_RATE_500K, },
110 { FLOPPY_DRIVE_TYPE_120, 20, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 3200 */
111 /* 720 kB 5"1/4 floppy disks */
112 { FLOPPY_DRIVE_TYPE_120, 9, 80, 1, FDRIVE_RATE_250K, }, /* 5.25" 1440 */
113 { FLOPPY_DRIVE_TYPE_120, 11, 80, 1, FDRIVE_RATE_250K, },
114 /* 360 kB 5"1/4 floppy disks */
115 { FLOPPY_DRIVE_TYPE_120, 9, 40, 1, FDRIVE_RATE_300K, }, /* 5.25" 720 */
116 { FLOPPY_DRIVE_TYPE_120, 9, 40, 0, FDRIVE_RATE_300K, },
117 { FLOPPY_DRIVE_TYPE_120, 10, 41, 1, FDRIVE_RATE_300K, },
118 { FLOPPY_DRIVE_TYPE_120, 10, 42, 1, FDRIVE_RATE_300K, },
119 /* 320 kB 5"1/4 floppy disks */
120 { FLOPPY_DRIVE_TYPE_120, 8, 40, 1, FDRIVE_RATE_250K, },
121 { FLOPPY_DRIVE_TYPE_120, 8, 40, 0, FDRIVE_RATE_250K, },
122 /* 360 kB must match 5"1/4 better than 3"1/2... */
123 { FLOPPY_DRIVE_TYPE_144, 9, 80, 0, FDRIVE_RATE_250K, }, /* 3.5" 720 */
124 /* end */
125 { FLOPPY_DRIVE_TYPE_NONE, -1, -1, 0, 0, },
128 static FDriveSize drive_size(FloppyDriveType drive)
130 switch (drive) {
131 case FLOPPY_DRIVE_TYPE_120:
132 return FDRIVE_SIZE_525;
133 case FLOPPY_DRIVE_TYPE_144:
134 case FLOPPY_DRIVE_TYPE_288:
135 return FDRIVE_SIZE_350;
136 default:
137 return FDRIVE_SIZE_UNKNOWN;
141 #define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv)
142 #define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive))
144 /* Will always be a fixed parameter for us */
145 #define FD_SECTOR_LEN 512
146 #define FD_SECTOR_SC 2 /* Sector size code */
147 #define FD_RESET_SENSEI_COUNT 4 /* Number of sense interrupts on RESET */
149 typedef struct FDCtrl FDCtrl;
151 /* Floppy disk drive emulation */
152 typedef enum FDiskFlags {
153 FDISK_DBL_SIDES = 0x01,
154 } FDiskFlags;
156 typedef struct FDrive {
157 FDCtrl *fdctrl;
158 BlockBackend *blk;
159 /* Drive status */
160 FloppyDriveType drive; /* CMOS drive type */
161 uint8_t perpendicular; /* 2.88 MB access mode */
162 /* Position */
163 uint8_t head;
164 uint8_t track;
165 uint8_t sect;
166 /* Media */
167 FloppyDriveType disk; /* Current disk type */
168 FDiskFlags flags;
169 uint8_t last_sect; /* Nb sector per track */
170 uint8_t max_track; /* Nb of tracks */
171 uint16_t bps; /* Bytes per sector */
172 uint8_t ro; /* Is read-only */
173 uint8_t media_changed; /* Is media changed */
174 uint8_t media_rate; /* Data rate of medium */
176 bool media_validated; /* Have we validated the media? */
177 } FDrive;
180 static FloppyDriveType get_fallback_drive_type(FDrive *drv);
182 /* Hack: FD_SEEK is expected to work on empty drives. However, QEMU
183 * currently goes through some pains to keep seeks within the bounds
184 * established by last_sect and max_track. Correcting this is difficult,
185 * as refactoring FDC code tends to expose nasty bugs in the Linux kernel.
187 * For now: allow empty drives to have large bounds so we can seek around,
188 * with the understanding that when a diskette is inserted, the bounds will
189 * properly tighten to match the geometry of that inserted medium.
191 static void fd_empty_seek_hack(FDrive *drv)
193 drv->last_sect = 0xFF;
194 drv->max_track = 0xFF;
197 static void fd_init(FDrive *drv)
199 /* Drive */
200 drv->perpendicular = 0;
201 /* Disk */
202 drv->disk = FLOPPY_DRIVE_TYPE_NONE;
203 drv->last_sect = 0;
204 drv->max_track = 0;
205 drv->ro = true;
206 drv->media_changed = 1;
209 #define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1)
211 static int fd_sector_calc(uint8_t head, uint8_t track, uint8_t sect,
212 uint8_t last_sect, uint8_t num_sides)
214 return (((track * num_sides) + head) * last_sect) + sect - 1;
217 /* Returns current position, in sectors, for given drive */
218 static int fd_sector(FDrive *drv)
220 return fd_sector_calc(drv->head, drv->track, drv->sect, drv->last_sect,
221 NUM_SIDES(drv));
224 /* Seek to a new position:
225 * returns 0 if already on right track
226 * returns 1 if track changed
227 * returns 2 if track is invalid
228 * returns 3 if sector is invalid
229 * returns 4 if seek is disabled
231 static int fd_seek(FDrive *drv, uint8_t head, uint8_t track, uint8_t sect,
232 int enable_seek)
234 uint32_t sector;
235 int ret;
237 if (track > drv->max_track ||
238 (head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) {
239 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
240 head, track, sect, 1,
241 (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
242 drv->max_track, drv->last_sect);
243 return 2;
245 if (sect > drv->last_sect) {
246 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
247 head, track, sect, 1,
248 (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
249 drv->max_track, drv->last_sect);
250 return 3;
252 sector = fd_sector_calc(head, track, sect, drv->last_sect, NUM_SIDES(drv));
253 ret = 0;
254 if (sector != fd_sector(drv)) {
255 #if 0
256 if (!enable_seek) {
257 FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x"
258 " (max=%d %02x %02x)\n",
259 head, track, sect, 1, drv->max_track,
260 drv->last_sect);
261 return 4;
263 #endif
264 drv->head = head;
265 if (drv->track != track) {
266 if (drv->blk != NULL && blk_is_inserted(drv->blk)) {
267 drv->media_changed = 0;
269 ret = 1;
271 drv->track = track;
272 drv->sect = sect;
275 if (drv->blk == NULL || !blk_is_inserted(drv->blk)) {
276 ret = 2;
279 return ret;
282 /* Set drive back to track 0 */
283 static void fd_recalibrate(FDrive *drv)
285 FLOPPY_DPRINTF("recalibrate\n");
286 fd_seek(drv, 0, 0, 1, 1);
290 * Determine geometry based on inserted diskette.
291 * Will not operate on an empty drive.
293 * @return: 0 on success, -1 if the drive is empty.
295 static int pick_geometry(FDrive *drv)
297 BlockBackend *blk = drv->blk;
298 const FDFormat *parse;
299 uint64_t nb_sectors, size;
300 int i;
301 int match, size_match, type_match;
302 bool magic = drv->drive == FLOPPY_DRIVE_TYPE_AUTO;
304 /* We can only pick a geometry if we have a diskette. */
305 if (!drv->blk || !blk_is_inserted(drv->blk) ||
306 drv->drive == FLOPPY_DRIVE_TYPE_NONE)
308 return -1;
311 /* We need to determine the likely geometry of the inserted medium.
312 * In order of preference, we look for:
313 * (1) The same drive type and number of sectors,
314 * (2) The same diskette size and number of sectors,
315 * (3) The same drive type.
317 * In all cases, matches that occur higher in the drive table will take
318 * precedence over matches that occur later in the table.
320 blk_get_geometry(blk, &nb_sectors);
321 match = size_match = type_match = -1;
322 for (i = 0; ; i++) {
323 parse = &fd_formats[i];
324 if (parse->drive == FLOPPY_DRIVE_TYPE_NONE) {
325 break;
327 size = (parse->max_head + 1) * parse->max_track * parse->last_sect;
328 if (nb_sectors == size) {
329 if (magic || parse->drive == drv->drive) {
330 /* (1) perfect match -- nb_sectors and drive type */
331 goto out;
332 } else if (drive_size(parse->drive) == drive_size(drv->drive)) {
333 /* (2) size match -- nb_sectors and physical medium size */
334 match = (match == -1) ? i : match;
335 } else {
336 /* This is suspicious -- Did the user misconfigure? */
337 size_match = (size_match == -1) ? i : size_match;
339 } else if (type_match == -1) {
340 if ((parse->drive == drv->drive) ||
341 (magic && (parse->drive == get_fallback_drive_type(drv)))) {
342 /* (3) type match -- nb_sectors mismatch, but matches the type
343 * specified explicitly by the user, or matches the fallback
344 * default type when using the drive autodetect mechanism */
345 type_match = i;
350 /* No exact match found */
351 if (match == -1) {
352 if (size_match != -1) {
353 parse = &fd_formats[size_match];
354 FLOPPY_DPRINTF("User requested floppy drive type '%s', "
355 "but inserted medium appears to be a "
356 "%d sector '%s' type\n",
357 FloppyDriveType_lookup[drv->drive],
358 nb_sectors,
359 FloppyDriveType_lookup[parse->drive]);
361 match = type_match;
364 /* No match of any kind found -- fd_format is misconfigured, abort. */
365 if (match == -1) {
366 error_setg(&error_abort, "No candidate geometries present in table "
367 " for floppy drive type '%s'",
368 FloppyDriveType_lookup[drv->drive]);
371 parse = &(fd_formats[match]);
373 out:
374 if (parse->max_head == 0) {
375 drv->flags &= ~FDISK_DBL_SIDES;
376 } else {
377 drv->flags |= FDISK_DBL_SIDES;
379 drv->max_track = parse->max_track;
380 drv->last_sect = parse->last_sect;
381 drv->disk = parse->drive;
382 drv->media_rate = parse->rate;
383 return 0;
386 static void pick_drive_type(FDrive *drv)
388 if (drv->drive != FLOPPY_DRIVE_TYPE_AUTO) {
389 return;
392 if (pick_geometry(drv) == 0) {
393 drv->drive = drv->disk;
394 } else {
395 drv->drive = get_fallback_drive_type(drv);
398 g_assert(drv->drive != FLOPPY_DRIVE_TYPE_AUTO);
401 /* Revalidate a disk drive after a disk change */
402 static void fd_revalidate(FDrive *drv)
404 int rc;
406 FLOPPY_DPRINTF("revalidate\n");
407 if (drv->blk != NULL) {
408 drv->ro = blk_is_read_only(drv->blk);
409 if (!blk_is_inserted(drv->blk)) {
410 FLOPPY_DPRINTF("No disk in drive\n");
411 drv->disk = FLOPPY_DRIVE_TYPE_NONE;
412 fd_empty_seek_hack(drv);
413 } else if (!drv->media_validated) {
414 rc = pick_geometry(drv);
415 if (rc) {
416 FLOPPY_DPRINTF("Could not validate floppy drive media");
417 } else {
418 drv->media_validated = true;
419 FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n",
420 (drv->flags & FDISK_DBL_SIDES) ? 2 : 1,
421 drv->max_track, drv->last_sect,
422 drv->ro ? "ro" : "rw");
425 } else {
426 FLOPPY_DPRINTF("No drive connected\n");
427 drv->last_sect = 0;
428 drv->max_track = 0;
429 drv->flags &= ~FDISK_DBL_SIDES;
430 drv->drive = FLOPPY_DRIVE_TYPE_NONE;
431 drv->disk = FLOPPY_DRIVE_TYPE_NONE;
435 /********************************************************/
436 /* Intel 82078 floppy disk controller emulation */
438 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq);
439 static void fdctrl_to_command_phase(FDCtrl *fdctrl);
440 static int fdctrl_transfer_handler (void *opaque, int nchan,
441 int dma_pos, int dma_len);
442 static void fdctrl_raise_irq(FDCtrl *fdctrl);
443 static FDrive *get_cur_drv(FDCtrl *fdctrl);
445 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl);
446 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl);
447 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl);
448 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value);
449 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl);
450 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value);
451 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl);
452 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value);
453 static uint32_t fdctrl_read_data(FDCtrl *fdctrl);
454 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value);
455 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl);
456 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value);
458 enum {
459 FD_DIR_WRITE = 0,
460 FD_DIR_READ = 1,
461 FD_DIR_SCANE = 2,
462 FD_DIR_SCANL = 3,
463 FD_DIR_SCANH = 4,
464 FD_DIR_VERIFY = 5,
467 enum {
468 FD_STATE_MULTI = 0x01, /* multi track flag */
469 FD_STATE_FORMAT = 0x02, /* format flag */
472 enum {
473 FD_REG_SRA = 0x00,
474 FD_REG_SRB = 0x01,
475 FD_REG_DOR = 0x02,
476 FD_REG_TDR = 0x03,
477 FD_REG_MSR = 0x04,
478 FD_REG_DSR = 0x04,
479 FD_REG_FIFO = 0x05,
480 FD_REG_DIR = 0x07,
481 FD_REG_CCR = 0x07,
484 enum {
485 FD_CMD_READ_TRACK = 0x02,
486 FD_CMD_SPECIFY = 0x03,
487 FD_CMD_SENSE_DRIVE_STATUS = 0x04,
488 FD_CMD_WRITE = 0x05,
489 FD_CMD_READ = 0x06,
490 FD_CMD_RECALIBRATE = 0x07,
491 FD_CMD_SENSE_INTERRUPT_STATUS = 0x08,
492 FD_CMD_WRITE_DELETED = 0x09,
493 FD_CMD_READ_ID = 0x0a,
494 FD_CMD_READ_DELETED = 0x0c,
495 FD_CMD_FORMAT_TRACK = 0x0d,
496 FD_CMD_DUMPREG = 0x0e,
497 FD_CMD_SEEK = 0x0f,
498 FD_CMD_VERSION = 0x10,
499 FD_CMD_SCAN_EQUAL = 0x11,
500 FD_CMD_PERPENDICULAR_MODE = 0x12,
501 FD_CMD_CONFIGURE = 0x13,
502 FD_CMD_LOCK = 0x14,
503 FD_CMD_VERIFY = 0x16,
504 FD_CMD_POWERDOWN_MODE = 0x17,
505 FD_CMD_PART_ID = 0x18,
506 FD_CMD_SCAN_LOW_OR_EQUAL = 0x19,
507 FD_CMD_SCAN_HIGH_OR_EQUAL = 0x1d,
508 FD_CMD_SAVE = 0x2e,
509 FD_CMD_OPTION = 0x33,
510 FD_CMD_RESTORE = 0x4e,
511 FD_CMD_DRIVE_SPECIFICATION_COMMAND = 0x8e,
512 FD_CMD_RELATIVE_SEEK_OUT = 0x8f,
513 FD_CMD_FORMAT_AND_WRITE = 0xcd,
514 FD_CMD_RELATIVE_SEEK_IN = 0xcf,
517 enum {
518 FD_CONFIG_PRETRK = 0xff, /* Pre-compensation set to track 0 */
519 FD_CONFIG_FIFOTHR = 0x0f, /* FIFO threshold set to 1 byte */
520 FD_CONFIG_POLL = 0x10, /* Poll enabled */
521 FD_CONFIG_EFIFO = 0x20, /* FIFO disabled */
522 FD_CONFIG_EIS = 0x40, /* No implied seeks */
525 enum {
526 FD_SR0_DS0 = 0x01,
527 FD_SR0_DS1 = 0x02,
528 FD_SR0_HEAD = 0x04,
529 FD_SR0_EQPMT = 0x10,
530 FD_SR0_SEEK = 0x20,
531 FD_SR0_ABNTERM = 0x40,
532 FD_SR0_INVCMD = 0x80,
533 FD_SR0_RDYCHG = 0xc0,
536 enum {
537 FD_SR1_MA = 0x01, /* Missing address mark */
538 FD_SR1_NW = 0x02, /* Not writable */
539 FD_SR1_EC = 0x80, /* End of cylinder */
542 enum {
543 FD_SR2_SNS = 0x04, /* Scan not satisfied */
544 FD_SR2_SEH = 0x08, /* Scan equal hit */
547 enum {
548 FD_SRA_DIR = 0x01,
549 FD_SRA_nWP = 0x02,
550 FD_SRA_nINDX = 0x04,
551 FD_SRA_HDSEL = 0x08,
552 FD_SRA_nTRK0 = 0x10,
553 FD_SRA_STEP = 0x20,
554 FD_SRA_nDRV2 = 0x40,
555 FD_SRA_INTPEND = 0x80,
558 enum {
559 FD_SRB_MTR0 = 0x01,
560 FD_SRB_MTR1 = 0x02,
561 FD_SRB_WGATE = 0x04,
562 FD_SRB_RDATA = 0x08,
563 FD_SRB_WDATA = 0x10,
564 FD_SRB_DR0 = 0x20,
567 enum {
568 #if MAX_FD == 4
569 FD_DOR_SELMASK = 0x03,
570 #else
571 FD_DOR_SELMASK = 0x01,
572 #endif
573 FD_DOR_nRESET = 0x04,
574 FD_DOR_DMAEN = 0x08,
575 FD_DOR_MOTEN0 = 0x10,
576 FD_DOR_MOTEN1 = 0x20,
577 FD_DOR_MOTEN2 = 0x40,
578 FD_DOR_MOTEN3 = 0x80,
581 enum {
582 #if MAX_FD == 4
583 FD_TDR_BOOTSEL = 0x0c,
584 #else
585 FD_TDR_BOOTSEL = 0x04,
586 #endif
589 enum {
590 FD_DSR_DRATEMASK= 0x03,
591 FD_DSR_PWRDOWN = 0x40,
592 FD_DSR_SWRESET = 0x80,
595 enum {
596 FD_MSR_DRV0BUSY = 0x01,
597 FD_MSR_DRV1BUSY = 0x02,
598 FD_MSR_DRV2BUSY = 0x04,
599 FD_MSR_DRV3BUSY = 0x08,
600 FD_MSR_CMDBUSY = 0x10,
601 FD_MSR_NONDMA = 0x20,
602 FD_MSR_DIO = 0x40,
603 FD_MSR_RQM = 0x80,
606 enum {
607 FD_DIR_DSKCHG = 0x80,
611 * See chapter 5.0 "Controller phases" of the spec:
613 * Command phase:
614 * The host writes a command and its parameters into the FIFO. The command
615 * phase is completed when all parameters for the command have been supplied,
616 * and execution phase is entered.
618 * Execution phase:
619 * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO
620 * contains the payload now, otherwise it's unused. When all bytes of the
621 * required data have been transferred, the state is switched to either result
622 * phase (if the command produces status bytes) or directly back into the
623 * command phase for the next command.
625 * Result phase:
626 * The host reads out the FIFO, which contains one or more result bytes now.
628 enum {
629 /* Only for migration: reconstruct phase from registers like qemu 2.3 */
630 FD_PHASE_RECONSTRUCT = 0,
632 FD_PHASE_COMMAND = 1,
633 FD_PHASE_EXECUTION = 2,
634 FD_PHASE_RESULT = 3,
637 #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
638 #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
640 struct FDCtrl {
641 MemoryRegion iomem;
642 qemu_irq irq;
643 /* Controller state */
644 QEMUTimer *result_timer;
645 int dma_chann;
646 uint8_t phase;
647 /* Controller's identification */
648 uint8_t version;
649 /* HW */
650 uint8_t sra;
651 uint8_t srb;
652 uint8_t dor;
653 uint8_t dor_vmstate; /* only used as temp during vmstate */
654 uint8_t tdr;
655 uint8_t dsr;
656 uint8_t msr;
657 uint8_t cur_drv;
658 uint8_t status0;
659 uint8_t status1;
660 uint8_t status2;
661 /* Command FIFO */
662 uint8_t *fifo;
663 int32_t fifo_size;
664 uint32_t data_pos;
665 uint32_t data_len;
666 uint8_t data_state;
667 uint8_t data_dir;
668 uint8_t eot; /* last wanted sector */
669 /* States kept only to be returned back */
670 /* precompensation */
671 uint8_t precomp_trk;
672 uint8_t config;
673 uint8_t lock;
674 /* Power down config (also with status regB access mode */
675 uint8_t pwrd;
676 /* Floppy drives */
677 uint8_t num_floppies;
678 FDrive drives[MAX_FD];
679 int reset_sensei;
680 uint32_t check_media_rate;
681 FloppyDriveType fallback; /* type=auto failure fallback */
682 /* Timers state */
683 uint8_t timer0;
684 uint8_t timer1;
687 static FloppyDriveType get_fallback_drive_type(FDrive *drv)
689 return drv->fdctrl->fallback;
692 #define TYPE_SYSBUS_FDC "base-sysbus-fdc"
693 #define SYSBUS_FDC(obj) OBJECT_CHECK(FDCtrlSysBus, (obj), TYPE_SYSBUS_FDC)
695 typedef struct FDCtrlSysBus {
696 /*< private >*/
697 SysBusDevice parent_obj;
698 /*< public >*/
700 struct FDCtrl state;
701 } FDCtrlSysBus;
703 #define ISA_FDC(obj) OBJECT_CHECK(FDCtrlISABus, (obj), TYPE_ISA_FDC)
705 typedef struct FDCtrlISABus {
706 ISADevice parent_obj;
708 uint32_t iobase;
709 uint32_t irq;
710 uint32_t dma;
711 struct FDCtrl state;
712 int32_t bootindexA;
713 int32_t bootindexB;
714 } FDCtrlISABus;
716 static uint32_t fdctrl_read (void *opaque, uint32_t reg)
718 FDCtrl *fdctrl = opaque;
719 uint32_t retval;
721 reg &= 7;
722 switch (reg) {
723 case FD_REG_SRA:
724 retval = fdctrl_read_statusA(fdctrl);
725 break;
726 case FD_REG_SRB:
727 retval = fdctrl_read_statusB(fdctrl);
728 break;
729 case FD_REG_DOR:
730 retval = fdctrl_read_dor(fdctrl);
731 break;
732 case FD_REG_TDR:
733 retval = fdctrl_read_tape(fdctrl);
734 break;
735 case FD_REG_MSR:
736 retval = fdctrl_read_main_status(fdctrl);
737 break;
738 case FD_REG_FIFO:
739 retval = fdctrl_read_data(fdctrl);
740 break;
741 case FD_REG_DIR:
742 retval = fdctrl_read_dir(fdctrl);
743 break;
744 default:
745 retval = (uint32_t)(-1);
746 break;
748 FLOPPY_DPRINTF("read reg%d: 0x%02x\n", reg & 7, retval);
750 return retval;
753 static void fdctrl_write (void *opaque, uint32_t reg, uint32_t value)
755 FDCtrl *fdctrl = opaque;
757 FLOPPY_DPRINTF("write reg%d: 0x%02x\n", reg & 7, value);
759 reg &= 7;
760 switch (reg) {
761 case FD_REG_DOR:
762 fdctrl_write_dor(fdctrl, value);
763 break;
764 case FD_REG_TDR:
765 fdctrl_write_tape(fdctrl, value);
766 break;
767 case FD_REG_DSR:
768 fdctrl_write_rate(fdctrl, value);
769 break;
770 case FD_REG_FIFO:
771 fdctrl_write_data(fdctrl, value);
772 break;
773 case FD_REG_CCR:
774 fdctrl_write_ccr(fdctrl, value);
775 break;
776 default:
777 break;
781 static uint64_t fdctrl_read_mem (void *opaque, hwaddr reg,
782 unsigned ize)
784 return fdctrl_read(opaque, (uint32_t)reg);
787 static void fdctrl_write_mem (void *opaque, hwaddr reg,
788 uint64_t value, unsigned size)
790 fdctrl_write(opaque, (uint32_t)reg, value);
793 static const MemoryRegionOps fdctrl_mem_ops = {
794 .read = fdctrl_read_mem,
795 .write = fdctrl_write_mem,
796 .endianness = DEVICE_NATIVE_ENDIAN,
799 static const MemoryRegionOps fdctrl_mem_strict_ops = {
800 .read = fdctrl_read_mem,
801 .write = fdctrl_write_mem,
802 .endianness = DEVICE_NATIVE_ENDIAN,
803 .valid = {
804 .min_access_size = 1,
805 .max_access_size = 1,
809 static bool fdrive_media_changed_needed(void *opaque)
811 FDrive *drive = opaque;
813 return (drive->blk != NULL && drive->media_changed != 1);
816 static const VMStateDescription vmstate_fdrive_media_changed = {
817 .name = "fdrive/media_changed",
818 .version_id = 1,
819 .minimum_version_id = 1,
820 .needed = fdrive_media_changed_needed,
821 .fields = (VMStateField[]) {
822 VMSTATE_UINT8(media_changed, FDrive),
823 VMSTATE_END_OF_LIST()
827 static bool fdrive_media_rate_needed(void *opaque)
829 FDrive *drive = opaque;
831 return drive->fdctrl->check_media_rate;
834 static const VMStateDescription vmstate_fdrive_media_rate = {
835 .name = "fdrive/media_rate",
836 .version_id = 1,
837 .minimum_version_id = 1,
838 .needed = fdrive_media_rate_needed,
839 .fields = (VMStateField[]) {
840 VMSTATE_UINT8(media_rate, FDrive),
841 VMSTATE_END_OF_LIST()
845 static bool fdrive_perpendicular_needed(void *opaque)
847 FDrive *drive = opaque;
849 return drive->perpendicular != 0;
852 static const VMStateDescription vmstate_fdrive_perpendicular = {
853 .name = "fdrive/perpendicular",
854 .version_id = 1,
855 .minimum_version_id = 1,
856 .needed = fdrive_perpendicular_needed,
857 .fields = (VMStateField[]) {
858 VMSTATE_UINT8(perpendicular, FDrive),
859 VMSTATE_END_OF_LIST()
863 static int fdrive_post_load(void *opaque, int version_id)
865 fd_revalidate(opaque);
866 return 0;
869 static const VMStateDescription vmstate_fdrive = {
870 .name = "fdrive",
871 .version_id = 1,
872 .minimum_version_id = 1,
873 .post_load = fdrive_post_load,
874 .fields = (VMStateField[]) {
875 VMSTATE_UINT8(head, FDrive),
876 VMSTATE_UINT8(track, FDrive),
877 VMSTATE_UINT8(sect, FDrive),
878 VMSTATE_END_OF_LIST()
880 .subsections = (const VMStateDescription*[]) {
881 &vmstate_fdrive_media_changed,
882 &vmstate_fdrive_media_rate,
883 &vmstate_fdrive_perpendicular,
884 NULL
889 * Reconstructs the phase from register values according to the logic that was
890 * implemented in qemu 2.3. This is the default value that is used if the phase
891 * subsection is not present on migration.
893 * Don't change this function to reflect newer qemu versions, it is part of
894 * the migration ABI.
896 static int reconstruct_phase(FDCtrl *fdctrl)
898 if (fdctrl->msr & FD_MSR_NONDMA) {
899 return FD_PHASE_EXECUTION;
900 } else if ((fdctrl->msr & FD_MSR_RQM) == 0) {
901 /* qemu 2.3 disabled RQM only during DMA transfers */
902 return FD_PHASE_EXECUTION;
903 } else if (fdctrl->msr & FD_MSR_DIO) {
904 return FD_PHASE_RESULT;
905 } else {
906 return FD_PHASE_COMMAND;
910 static void fdc_pre_save(void *opaque)
912 FDCtrl *s = opaque;
914 s->dor_vmstate = s->dor | GET_CUR_DRV(s);
917 static int fdc_pre_load(void *opaque)
919 FDCtrl *s = opaque;
920 s->phase = FD_PHASE_RECONSTRUCT;
921 return 0;
924 static int fdc_post_load(void *opaque, int version_id)
926 FDCtrl *s = opaque;
928 SET_CUR_DRV(s, s->dor_vmstate & FD_DOR_SELMASK);
929 s->dor = s->dor_vmstate & ~FD_DOR_SELMASK;
931 if (s->phase == FD_PHASE_RECONSTRUCT) {
932 s->phase = reconstruct_phase(s);
935 return 0;
938 static bool fdc_reset_sensei_needed(void *opaque)
940 FDCtrl *s = opaque;
942 return s->reset_sensei != 0;
945 static const VMStateDescription vmstate_fdc_reset_sensei = {
946 .name = "fdc/reset_sensei",
947 .version_id = 1,
948 .minimum_version_id = 1,
949 .needed = fdc_reset_sensei_needed,
950 .fields = (VMStateField[]) {
951 VMSTATE_INT32(reset_sensei, FDCtrl),
952 VMSTATE_END_OF_LIST()
956 static bool fdc_result_timer_needed(void *opaque)
958 FDCtrl *s = opaque;
960 return timer_pending(s->result_timer);
963 static const VMStateDescription vmstate_fdc_result_timer = {
964 .name = "fdc/result_timer",
965 .version_id = 1,
966 .minimum_version_id = 1,
967 .needed = fdc_result_timer_needed,
968 .fields = (VMStateField[]) {
969 VMSTATE_TIMER_PTR(result_timer, FDCtrl),
970 VMSTATE_END_OF_LIST()
974 static bool fdc_phase_needed(void *opaque)
976 FDCtrl *fdctrl = opaque;
978 return reconstruct_phase(fdctrl) != fdctrl->phase;
981 static const VMStateDescription vmstate_fdc_phase = {
982 .name = "fdc/phase",
983 .version_id = 1,
984 .minimum_version_id = 1,
985 .needed = fdc_phase_needed,
986 .fields = (VMStateField[]) {
987 VMSTATE_UINT8(phase, FDCtrl),
988 VMSTATE_END_OF_LIST()
992 static const VMStateDescription vmstate_fdc = {
993 .name = "fdc",
994 .version_id = 2,
995 .minimum_version_id = 2,
996 .pre_save = fdc_pre_save,
997 .pre_load = fdc_pre_load,
998 .post_load = fdc_post_load,
999 .fields = (VMStateField[]) {
1000 /* Controller State */
1001 VMSTATE_UINT8(sra, FDCtrl),
1002 VMSTATE_UINT8(srb, FDCtrl),
1003 VMSTATE_UINT8(dor_vmstate, FDCtrl),
1004 VMSTATE_UINT8(tdr, FDCtrl),
1005 VMSTATE_UINT8(dsr, FDCtrl),
1006 VMSTATE_UINT8(msr, FDCtrl),
1007 VMSTATE_UINT8(status0, FDCtrl),
1008 VMSTATE_UINT8(status1, FDCtrl),
1009 VMSTATE_UINT8(status2, FDCtrl),
1010 /* Command FIFO */
1011 VMSTATE_VARRAY_INT32(fifo, FDCtrl, fifo_size, 0, vmstate_info_uint8,
1012 uint8_t),
1013 VMSTATE_UINT32(data_pos, FDCtrl),
1014 VMSTATE_UINT32(data_len, FDCtrl),
1015 VMSTATE_UINT8(data_state, FDCtrl),
1016 VMSTATE_UINT8(data_dir, FDCtrl),
1017 VMSTATE_UINT8(eot, FDCtrl),
1018 /* States kept only to be returned back */
1019 VMSTATE_UINT8(timer0, FDCtrl),
1020 VMSTATE_UINT8(timer1, FDCtrl),
1021 VMSTATE_UINT8(precomp_trk, FDCtrl),
1022 VMSTATE_UINT8(config, FDCtrl),
1023 VMSTATE_UINT8(lock, FDCtrl),
1024 VMSTATE_UINT8(pwrd, FDCtrl),
1025 VMSTATE_UINT8_EQUAL(num_floppies, FDCtrl),
1026 VMSTATE_STRUCT_ARRAY(drives, FDCtrl, MAX_FD, 1,
1027 vmstate_fdrive, FDrive),
1028 VMSTATE_END_OF_LIST()
1030 .subsections = (const VMStateDescription*[]) {
1031 &vmstate_fdc_reset_sensei,
1032 &vmstate_fdc_result_timer,
1033 &vmstate_fdc_phase,
1034 NULL
1038 static void fdctrl_external_reset_sysbus(DeviceState *d)
1040 FDCtrlSysBus *sys = SYSBUS_FDC(d);
1041 FDCtrl *s = &sys->state;
1043 fdctrl_reset(s, 0);
1046 static void fdctrl_external_reset_isa(DeviceState *d)
1048 FDCtrlISABus *isa = ISA_FDC(d);
1049 FDCtrl *s = &isa->state;
1051 fdctrl_reset(s, 0);
1054 static void fdctrl_handle_tc(void *opaque, int irq, int level)
1056 //FDCtrl *s = opaque;
1058 if (level) {
1059 // XXX
1060 FLOPPY_DPRINTF("TC pulsed\n");
1064 /* Change IRQ state */
1065 static void fdctrl_reset_irq(FDCtrl *fdctrl)
1067 fdctrl->status0 = 0;
1068 if (!(fdctrl->sra & FD_SRA_INTPEND))
1069 return;
1070 FLOPPY_DPRINTF("Reset interrupt\n");
1071 qemu_set_irq(fdctrl->irq, 0);
1072 fdctrl->sra &= ~FD_SRA_INTPEND;
1075 static void fdctrl_raise_irq(FDCtrl *fdctrl)
1077 if (!(fdctrl->sra & FD_SRA_INTPEND)) {
1078 qemu_set_irq(fdctrl->irq, 1);
1079 fdctrl->sra |= FD_SRA_INTPEND;
1082 fdctrl->reset_sensei = 0;
1083 FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0);
1086 /* Reset controller */
1087 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq)
1089 int i;
1091 FLOPPY_DPRINTF("reset controller\n");
1092 fdctrl_reset_irq(fdctrl);
1093 /* Initialise controller */
1094 fdctrl->sra = 0;
1095 fdctrl->srb = 0xc0;
1096 if (!fdctrl->drives[1].blk) {
1097 fdctrl->sra |= FD_SRA_nDRV2;
1099 fdctrl->cur_drv = 0;
1100 fdctrl->dor = FD_DOR_nRESET;
1101 fdctrl->dor |= (fdctrl->dma_chann != -1) ? FD_DOR_DMAEN : 0;
1102 fdctrl->msr = FD_MSR_RQM;
1103 fdctrl->reset_sensei = 0;
1104 timer_del(fdctrl->result_timer);
1105 /* FIFO state */
1106 fdctrl->data_pos = 0;
1107 fdctrl->data_len = 0;
1108 fdctrl->data_state = 0;
1109 fdctrl->data_dir = FD_DIR_WRITE;
1110 for (i = 0; i < MAX_FD; i++)
1111 fd_recalibrate(&fdctrl->drives[i]);
1112 fdctrl_to_command_phase(fdctrl);
1113 if (do_irq) {
1114 fdctrl->status0 |= FD_SR0_RDYCHG;
1115 fdctrl_raise_irq(fdctrl);
1116 fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT;
1120 static inline FDrive *drv0(FDCtrl *fdctrl)
1122 return &fdctrl->drives[(fdctrl->tdr & FD_TDR_BOOTSEL) >> 2];
1125 static inline FDrive *drv1(FDCtrl *fdctrl)
1127 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (1 << 2))
1128 return &fdctrl->drives[1];
1129 else
1130 return &fdctrl->drives[0];
1133 #if MAX_FD == 4
1134 static inline FDrive *drv2(FDCtrl *fdctrl)
1136 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (2 << 2))
1137 return &fdctrl->drives[2];
1138 else
1139 return &fdctrl->drives[1];
1142 static inline FDrive *drv3(FDCtrl *fdctrl)
1144 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (3 << 2))
1145 return &fdctrl->drives[3];
1146 else
1147 return &fdctrl->drives[2];
1149 #endif
1151 static FDrive *get_cur_drv(FDCtrl *fdctrl)
1153 switch (fdctrl->cur_drv) {
1154 case 0: return drv0(fdctrl);
1155 case 1: return drv1(fdctrl);
1156 #if MAX_FD == 4
1157 case 2: return drv2(fdctrl);
1158 case 3: return drv3(fdctrl);
1159 #endif
1160 default: return NULL;
1164 /* Status A register : 0x00 (read-only) */
1165 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl)
1167 uint32_t retval = fdctrl->sra;
1169 FLOPPY_DPRINTF("status register A: 0x%02x\n", retval);
1171 return retval;
1174 /* Status B register : 0x01 (read-only) */
1175 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl)
1177 uint32_t retval = fdctrl->srb;
1179 FLOPPY_DPRINTF("status register B: 0x%02x\n", retval);
1181 return retval;
1184 /* Digital output register : 0x02 */
1185 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl)
1187 uint32_t retval = fdctrl->dor;
1189 /* Selected drive */
1190 retval |= fdctrl->cur_drv;
1191 FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval);
1193 return retval;
1196 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value)
1198 FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value);
1200 /* Motors */
1201 if (value & FD_DOR_MOTEN0)
1202 fdctrl->srb |= FD_SRB_MTR0;
1203 else
1204 fdctrl->srb &= ~FD_SRB_MTR0;
1205 if (value & FD_DOR_MOTEN1)
1206 fdctrl->srb |= FD_SRB_MTR1;
1207 else
1208 fdctrl->srb &= ~FD_SRB_MTR1;
1210 /* Drive */
1211 if (value & 1)
1212 fdctrl->srb |= FD_SRB_DR0;
1213 else
1214 fdctrl->srb &= ~FD_SRB_DR0;
1216 /* Reset */
1217 if (!(value & FD_DOR_nRESET)) {
1218 if (fdctrl->dor & FD_DOR_nRESET) {
1219 FLOPPY_DPRINTF("controller enter RESET state\n");
1221 } else {
1222 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1223 FLOPPY_DPRINTF("controller out of RESET state\n");
1224 fdctrl_reset(fdctrl, 1);
1225 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1228 /* Selected drive */
1229 fdctrl->cur_drv = value & FD_DOR_SELMASK;
1231 fdctrl->dor = value;
1234 /* Tape drive register : 0x03 */
1235 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl)
1237 uint32_t retval = fdctrl->tdr;
1239 FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval);
1241 return retval;
1244 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value)
1246 /* Reset mode */
1247 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1248 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1249 return;
1251 FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value);
1252 /* Disk boot selection indicator */
1253 fdctrl->tdr = value & FD_TDR_BOOTSEL;
1254 /* Tape indicators: never allow */
1257 /* Main status register : 0x04 (read) */
1258 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl)
1260 uint32_t retval = fdctrl->msr;
1262 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1263 fdctrl->dor |= FD_DOR_nRESET;
1265 FLOPPY_DPRINTF("main status register: 0x%02x\n", retval);
1267 return retval;
1270 /* Data select rate register : 0x04 (write) */
1271 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value)
1273 /* Reset mode */
1274 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1275 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1276 return;
1278 FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value);
1279 /* Reset: autoclear */
1280 if (value & FD_DSR_SWRESET) {
1281 fdctrl->dor &= ~FD_DOR_nRESET;
1282 fdctrl_reset(fdctrl, 1);
1283 fdctrl->dor |= FD_DOR_nRESET;
1285 if (value & FD_DSR_PWRDOWN) {
1286 fdctrl_reset(fdctrl, 1);
1288 fdctrl->dsr = value;
1291 /* Configuration control register: 0x07 (write) */
1292 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value)
1294 /* Reset mode */
1295 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1296 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1297 return;
1299 FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value);
1301 /* Only the rate selection bits used in AT mode, and we
1302 * store those in the DSR.
1304 fdctrl->dsr = (fdctrl->dsr & ~FD_DSR_DRATEMASK) |
1305 (value & FD_DSR_DRATEMASK);
1308 static int fdctrl_media_changed(FDrive *drv)
1310 return drv->media_changed;
1313 /* Digital input register : 0x07 (read-only) */
1314 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl)
1316 uint32_t retval = 0;
1318 if (fdctrl_media_changed(get_cur_drv(fdctrl))) {
1319 retval |= FD_DIR_DSKCHG;
1321 if (retval != 0) {
1322 FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval);
1325 return retval;
1328 /* Clear the FIFO and update the state for receiving the next command */
1329 static void fdctrl_to_command_phase(FDCtrl *fdctrl)
1331 fdctrl->phase = FD_PHASE_COMMAND;
1332 fdctrl->data_dir = FD_DIR_WRITE;
1333 fdctrl->data_pos = 0;
1334 fdctrl->data_len = 1; /* Accept command byte, adjust for params later */
1335 fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO);
1336 fdctrl->msr |= FD_MSR_RQM;
1339 /* Update the state to allow the guest to read out the command status.
1340 * @fifo_len is the number of result bytes to be read out. */
1341 static void fdctrl_to_result_phase(FDCtrl *fdctrl, int fifo_len)
1343 fdctrl->phase = FD_PHASE_RESULT;
1344 fdctrl->data_dir = FD_DIR_READ;
1345 fdctrl->data_len = fifo_len;
1346 fdctrl->data_pos = 0;
1347 fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO;
1350 /* Set an error: unimplemented/unknown command */
1351 static void fdctrl_unimplemented(FDCtrl *fdctrl, int direction)
1353 qemu_log_mask(LOG_UNIMP, "fdc: unimplemented command 0x%02x\n",
1354 fdctrl->fifo[0]);
1355 fdctrl->fifo[0] = FD_SR0_INVCMD;
1356 fdctrl_to_result_phase(fdctrl, 1);
1359 /* Seek to next sector
1360 * returns 0 when end of track reached (for DBL_SIDES on head 1)
1361 * otherwise returns 1
1363 static int fdctrl_seek_to_next_sect(FDCtrl *fdctrl, FDrive *cur_drv)
1365 FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
1366 cur_drv->head, cur_drv->track, cur_drv->sect,
1367 fd_sector(cur_drv));
1368 /* XXX: cur_drv->sect >= cur_drv->last_sect should be an
1369 error in fact */
1370 uint8_t new_head = cur_drv->head;
1371 uint8_t new_track = cur_drv->track;
1372 uint8_t new_sect = cur_drv->sect;
1374 int ret = 1;
1376 if (new_sect >= cur_drv->last_sect ||
1377 new_sect == fdctrl->eot) {
1378 new_sect = 1;
1379 if (FD_MULTI_TRACK(fdctrl->data_state)) {
1380 if (new_head == 0 &&
1381 (cur_drv->flags & FDISK_DBL_SIDES) != 0) {
1382 new_head = 1;
1383 } else {
1384 new_head = 0;
1385 new_track++;
1386 fdctrl->status0 |= FD_SR0_SEEK;
1387 if ((cur_drv->flags & FDISK_DBL_SIDES) == 0) {
1388 ret = 0;
1391 } else {
1392 fdctrl->status0 |= FD_SR0_SEEK;
1393 new_track++;
1394 ret = 0;
1396 if (ret == 1) {
1397 FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n",
1398 new_head, new_track, new_sect, fd_sector(cur_drv));
1400 } else {
1401 new_sect++;
1403 fd_seek(cur_drv, new_head, new_track, new_sect, 1);
1404 return ret;
1407 /* Callback for transfer end (stop or abort) */
1408 static void fdctrl_stop_transfer(FDCtrl *fdctrl, uint8_t status0,
1409 uint8_t status1, uint8_t status2)
1411 FDrive *cur_drv;
1412 cur_drv = get_cur_drv(fdctrl);
1414 fdctrl->status0 &= ~(FD_SR0_DS0 | FD_SR0_DS1 | FD_SR0_HEAD);
1415 fdctrl->status0 |= GET_CUR_DRV(fdctrl);
1416 if (cur_drv->head) {
1417 fdctrl->status0 |= FD_SR0_HEAD;
1419 fdctrl->status0 |= status0;
1421 FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
1422 status0, status1, status2, fdctrl->status0);
1423 fdctrl->fifo[0] = fdctrl->status0;
1424 fdctrl->fifo[1] = status1;
1425 fdctrl->fifo[2] = status2;
1426 fdctrl->fifo[3] = cur_drv->track;
1427 fdctrl->fifo[4] = cur_drv->head;
1428 fdctrl->fifo[5] = cur_drv->sect;
1429 fdctrl->fifo[6] = FD_SECTOR_SC;
1430 fdctrl->data_dir = FD_DIR_READ;
1431 if (!(fdctrl->msr & FD_MSR_NONDMA)) {
1432 DMA_release_DREQ(fdctrl->dma_chann);
1434 fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO;
1435 fdctrl->msr &= ~FD_MSR_NONDMA;
1437 fdctrl_to_result_phase(fdctrl, 7);
1438 fdctrl_raise_irq(fdctrl);
1441 /* Prepare a data transfer (either DMA or FIFO) */
1442 static void fdctrl_start_transfer(FDCtrl *fdctrl, int direction)
1444 FDrive *cur_drv;
1445 uint8_t kh, kt, ks;
1447 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1448 cur_drv = get_cur_drv(fdctrl);
1449 kt = fdctrl->fifo[2];
1450 kh = fdctrl->fifo[3];
1451 ks = fdctrl->fifo[4];
1452 FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
1453 GET_CUR_DRV(fdctrl), kh, kt, ks,
1454 fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1455 NUM_SIDES(cur_drv)));
1456 switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1457 case 2:
1458 /* sect too big */
1459 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1460 fdctrl->fifo[3] = kt;
1461 fdctrl->fifo[4] = kh;
1462 fdctrl->fifo[5] = ks;
1463 return;
1464 case 3:
1465 /* track too big */
1466 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1467 fdctrl->fifo[3] = kt;
1468 fdctrl->fifo[4] = kh;
1469 fdctrl->fifo[5] = ks;
1470 return;
1471 case 4:
1472 /* No seek enabled */
1473 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1474 fdctrl->fifo[3] = kt;
1475 fdctrl->fifo[4] = kh;
1476 fdctrl->fifo[5] = ks;
1477 return;
1478 case 1:
1479 fdctrl->status0 |= FD_SR0_SEEK;
1480 break;
1481 default:
1482 break;
1485 /* Check the data rate. If the programmed data rate does not match
1486 * the currently inserted medium, the operation has to fail. */
1487 if (fdctrl->check_media_rate &&
1488 (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
1489 FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n",
1490 fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
1491 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
1492 fdctrl->fifo[3] = kt;
1493 fdctrl->fifo[4] = kh;
1494 fdctrl->fifo[5] = ks;
1495 return;
1498 /* Set the FIFO state */
1499 fdctrl->data_dir = direction;
1500 fdctrl->data_pos = 0;
1501 assert(fdctrl->msr & FD_MSR_CMDBUSY);
1502 if (fdctrl->fifo[0] & 0x80)
1503 fdctrl->data_state |= FD_STATE_MULTI;
1504 else
1505 fdctrl->data_state &= ~FD_STATE_MULTI;
1506 if (fdctrl->fifo[5] == 0) {
1507 fdctrl->data_len = fdctrl->fifo[8];
1508 } else {
1509 int tmp;
1510 fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]);
1511 tmp = (fdctrl->fifo[6] - ks + 1);
1512 if (fdctrl->fifo[0] & 0x80)
1513 tmp += fdctrl->fifo[6];
1514 fdctrl->data_len *= tmp;
1516 fdctrl->eot = fdctrl->fifo[6];
1517 if (fdctrl->dor & FD_DOR_DMAEN) {
1518 int dma_mode;
1519 /* DMA transfer are enabled. Check if DMA channel is well programmed */
1520 dma_mode = DMA_get_channel_mode(fdctrl->dma_chann);
1521 dma_mode = (dma_mode >> 2) & 3;
1522 FLOPPY_DPRINTF("dma_mode=%d direction=%d (%d - %d)\n",
1523 dma_mode, direction,
1524 (128 << fdctrl->fifo[5]) *
1525 (cur_drv->last_sect - ks + 1), fdctrl->data_len);
1526 if (((direction == FD_DIR_SCANE || direction == FD_DIR_SCANL ||
1527 direction == FD_DIR_SCANH) && dma_mode == 0) ||
1528 (direction == FD_DIR_WRITE && dma_mode == 2) ||
1529 (direction == FD_DIR_READ && dma_mode == 1) ||
1530 (direction == FD_DIR_VERIFY)) {
1531 /* No access is allowed until DMA transfer has completed */
1532 fdctrl->msr &= ~FD_MSR_RQM;
1533 if (direction != FD_DIR_VERIFY) {
1534 /* Now, we just have to wait for the DMA controller to
1535 * recall us...
1537 DMA_hold_DREQ(fdctrl->dma_chann);
1538 DMA_schedule();
1539 } else {
1540 /* Start transfer */
1541 fdctrl_transfer_handler(fdctrl, fdctrl->dma_chann, 0,
1542 fdctrl->data_len);
1544 return;
1545 } else {
1546 FLOPPY_DPRINTF("bad dma_mode=%d direction=%d\n", dma_mode,
1547 direction);
1550 FLOPPY_DPRINTF("start non-DMA transfer\n");
1551 fdctrl->msr |= FD_MSR_NONDMA | FD_MSR_RQM;
1552 if (direction != FD_DIR_WRITE)
1553 fdctrl->msr |= FD_MSR_DIO;
1554 /* IO based transfer: calculate len */
1555 fdctrl_raise_irq(fdctrl);
1558 /* Prepare a transfer of deleted data */
1559 static void fdctrl_start_transfer_del(FDCtrl *fdctrl, int direction)
1561 qemu_log_mask(LOG_UNIMP, "fdctrl_start_transfer_del() unimplemented\n");
1563 /* We don't handle deleted data,
1564 * so we don't return *ANYTHING*
1566 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1569 /* handlers for DMA transfers */
1570 static int fdctrl_transfer_handler (void *opaque, int nchan,
1571 int dma_pos, int dma_len)
1573 FDCtrl *fdctrl;
1574 FDrive *cur_drv;
1575 int len, start_pos, rel_pos;
1576 uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00;
1578 fdctrl = opaque;
1579 if (fdctrl->msr & FD_MSR_RQM) {
1580 FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
1581 return 0;
1583 cur_drv = get_cur_drv(fdctrl);
1584 if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL ||
1585 fdctrl->data_dir == FD_DIR_SCANH)
1586 status2 = FD_SR2_SNS;
1587 if (dma_len > fdctrl->data_len)
1588 dma_len = fdctrl->data_len;
1589 if (cur_drv->blk == NULL) {
1590 if (fdctrl->data_dir == FD_DIR_WRITE)
1591 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1592 else
1593 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1594 len = 0;
1595 goto transfer_error;
1597 rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1598 for (start_pos = fdctrl->data_pos; fdctrl->data_pos < dma_len;) {
1599 len = dma_len - fdctrl->data_pos;
1600 if (len + rel_pos > FD_SECTOR_LEN)
1601 len = FD_SECTOR_LEN - rel_pos;
1602 FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x "
1603 "(%d-0x%08x 0x%08x)\n", len, dma_len, fdctrl->data_pos,
1604 fdctrl->data_len, GET_CUR_DRV(fdctrl), cur_drv->head,
1605 cur_drv->track, cur_drv->sect, fd_sector(cur_drv),
1606 fd_sector(cur_drv) * FD_SECTOR_LEN);
1607 if (fdctrl->data_dir != FD_DIR_WRITE ||
1608 len < FD_SECTOR_LEN || rel_pos != 0) {
1609 /* READ & SCAN commands and realign to a sector for WRITE */
1610 if (blk_read(cur_drv->blk, fd_sector(cur_drv),
1611 fdctrl->fifo, 1) < 0) {
1612 FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
1613 fd_sector(cur_drv));
1614 /* Sure, image size is too small... */
1615 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1618 switch (fdctrl->data_dir) {
1619 case FD_DIR_READ:
1620 /* READ commands */
1621 DMA_write_memory (nchan, fdctrl->fifo + rel_pos,
1622 fdctrl->data_pos, len);
1623 break;
1624 case FD_DIR_WRITE:
1625 /* WRITE commands */
1626 if (cur_drv->ro) {
1627 /* Handle readonly medium early, no need to do DMA, touch the
1628 * LED or attempt any writes. A real floppy doesn't attempt
1629 * to write to readonly media either. */
1630 fdctrl_stop_transfer(fdctrl,
1631 FD_SR0_ABNTERM | FD_SR0_SEEK, FD_SR1_NW,
1632 0x00);
1633 goto transfer_error;
1636 DMA_read_memory (nchan, fdctrl->fifo + rel_pos,
1637 fdctrl->data_pos, len);
1638 if (blk_write(cur_drv->blk, fd_sector(cur_drv),
1639 fdctrl->fifo, 1) < 0) {
1640 FLOPPY_DPRINTF("error writing sector %d\n",
1641 fd_sector(cur_drv));
1642 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1643 goto transfer_error;
1645 break;
1646 case FD_DIR_VERIFY:
1647 /* VERIFY commands */
1648 break;
1649 default:
1650 /* SCAN commands */
1652 uint8_t tmpbuf[FD_SECTOR_LEN];
1653 int ret;
1654 DMA_read_memory (nchan, tmpbuf, fdctrl->data_pos, len);
1655 ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len);
1656 if (ret == 0) {
1657 status2 = FD_SR2_SEH;
1658 goto end_transfer;
1660 if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) ||
1661 (ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) {
1662 status2 = 0x00;
1663 goto end_transfer;
1666 break;
1668 fdctrl->data_pos += len;
1669 rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1670 if (rel_pos == 0) {
1671 /* Seek to next sector */
1672 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv))
1673 break;
1676 end_transfer:
1677 len = fdctrl->data_pos - start_pos;
1678 FLOPPY_DPRINTF("end transfer %d %d %d\n",
1679 fdctrl->data_pos, len, fdctrl->data_len);
1680 if (fdctrl->data_dir == FD_DIR_SCANE ||
1681 fdctrl->data_dir == FD_DIR_SCANL ||
1682 fdctrl->data_dir == FD_DIR_SCANH)
1683 status2 = FD_SR2_SEH;
1684 fdctrl->data_len -= len;
1685 fdctrl_stop_transfer(fdctrl, status0, status1, status2);
1686 transfer_error:
1688 return len;
1691 /* Data register : 0x05 */
1692 static uint32_t fdctrl_read_data(FDCtrl *fdctrl)
1694 FDrive *cur_drv;
1695 uint32_t retval = 0;
1696 uint32_t pos;
1698 cur_drv = get_cur_drv(fdctrl);
1699 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1700 if (!(fdctrl->msr & FD_MSR_RQM) || !(fdctrl->msr & FD_MSR_DIO)) {
1701 FLOPPY_DPRINTF("error: controller not ready for reading\n");
1702 return 0;
1705 /* If data_len spans multiple sectors, the current position in the FIFO
1706 * wraps around while fdctrl->data_pos is the real position in the whole
1707 * request. */
1708 pos = fdctrl->data_pos;
1709 pos %= FD_SECTOR_LEN;
1711 switch (fdctrl->phase) {
1712 case FD_PHASE_EXECUTION:
1713 assert(fdctrl->msr & FD_MSR_NONDMA);
1714 if (pos == 0) {
1715 if (fdctrl->data_pos != 0)
1716 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
1717 FLOPPY_DPRINTF("error seeking to next sector %d\n",
1718 fd_sector(cur_drv));
1719 return 0;
1721 if (blk_read(cur_drv->blk, fd_sector(cur_drv), fdctrl->fifo, 1)
1722 < 0) {
1723 FLOPPY_DPRINTF("error getting sector %d\n",
1724 fd_sector(cur_drv));
1725 /* Sure, image size is too small... */
1726 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1730 if (++fdctrl->data_pos == fdctrl->data_len) {
1731 fdctrl->msr &= ~FD_MSR_RQM;
1732 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1734 break;
1736 case FD_PHASE_RESULT:
1737 assert(!(fdctrl->msr & FD_MSR_NONDMA));
1738 if (++fdctrl->data_pos == fdctrl->data_len) {
1739 fdctrl->msr &= ~FD_MSR_RQM;
1740 fdctrl_to_command_phase(fdctrl);
1741 fdctrl_reset_irq(fdctrl);
1743 break;
1745 case FD_PHASE_COMMAND:
1746 default:
1747 abort();
1750 retval = fdctrl->fifo[pos];
1751 FLOPPY_DPRINTF("data register: 0x%02x\n", retval);
1753 return retval;
1756 static void fdctrl_format_sector(FDCtrl *fdctrl)
1758 FDrive *cur_drv;
1759 uint8_t kh, kt, ks;
1761 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1762 cur_drv = get_cur_drv(fdctrl);
1763 kt = fdctrl->fifo[6];
1764 kh = fdctrl->fifo[7];
1765 ks = fdctrl->fifo[8];
1766 FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n",
1767 GET_CUR_DRV(fdctrl), kh, kt, ks,
1768 fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1769 NUM_SIDES(cur_drv)));
1770 switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1771 case 2:
1772 /* sect too big */
1773 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1774 fdctrl->fifo[3] = kt;
1775 fdctrl->fifo[4] = kh;
1776 fdctrl->fifo[5] = ks;
1777 return;
1778 case 3:
1779 /* track too big */
1780 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1781 fdctrl->fifo[3] = kt;
1782 fdctrl->fifo[4] = kh;
1783 fdctrl->fifo[5] = ks;
1784 return;
1785 case 4:
1786 /* No seek enabled */
1787 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1788 fdctrl->fifo[3] = kt;
1789 fdctrl->fifo[4] = kh;
1790 fdctrl->fifo[5] = ks;
1791 return;
1792 case 1:
1793 fdctrl->status0 |= FD_SR0_SEEK;
1794 break;
1795 default:
1796 break;
1798 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1799 if (cur_drv->blk == NULL ||
1800 blk_write(cur_drv->blk, fd_sector(cur_drv), fdctrl->fifo, 1) < 0) {
1801 FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv));
1802 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1803 } else {
1804 if (cur_drv->sect == cur_drv->last_sect) {
1805 fdctrl->data_state &= ~FD_STATE_FORMAT;
1806 /* Last sector done */
1807 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1808 } else {
1809 /* More to do */
1810 fdctrl->data_pos = 0;
1811 fdctrl->data_len = 4;
1816 static void fdctrl_handle_lock(FDCtrl *fdctrl, int direction)
1818 fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0;
1819 fdctrl->fifo[0] = fdctrl->lock << 4;
1820 fdctrl_to_result_phase(fdctrl, 1);
1823 static void fdctrl_handle_dumpreg(FDCtrl *fdctrl, int direction)
1825 FDrive *cur_drv = get_cur_drv(fdctrl);
1827 /* Drives position */
1828 fdctrl->fifo[0] = drv0(fdctrl)->track;
1829 fdctrl->fifo[1] = drv1(fdctrl)->track;
1830 #if MAX_FD == 4
1831 fdctrl->fifo[2] = drv2(fdctrl)->track;
1832 fdctrl->fifo[3] = drv3(fdctrl)->track;
1833 #else
1834 fdctrl->fifo[2] = 0;
1835 fdctrl->fifo[3] = 0;
1836 #endif
1837 /* timers */
1838 fdctrl->fifo[4] = fdctrl->timer0;
1839 fdctrl->fifo[5] = (fdctrl->timer1 << 1) | (fdctrl->dor & FD_DOR_DMAEN ? 1 : 0);
1840 fdctrl->fifo[6] = cur_drv->last_sect;
1841 fdctrl->fifo[7] = (fdctrl->lock << 7) |
1842 (cur_drv->perpendicular << 2);
1843 fdctrl->fifo[8] = fdctrl->config;
1844 fdctrl->fifo[9] = fdctrl->precomp_trk;
1845 fdctrl_to_result_phase(fdctrl, 10);
1848 static void fdctrl_handle_version(FDCtrl *fdctrl, int direction)
1850 /* Controller's version */
1851 fdctrl->fifo[0] = fdctrl->version;
1852 fdctrl_to_result_phase(fdctrl, 1);
1855 static void fdctrl_handle_partid(FDCtrl *fdctrl, int direction)
1857 fdctrl->fifo[0] = 0x41; /* Stepping 1 */
1858 fdctrl_to_result_phase(fdctrl, 1);
1861 static void fdctrl_handle_restore(FDCtrl *fdctrl, int direction)
1863 FDrive *cur_drv = get_cur_drv(fdctrl);
1865 /* Drives position */
1866 drv0(fdctrl)->track = fdctrl->fifo[3];
1867 drv1(fdctrl)->track = fdctrl->fifo[4];
1868 #if MAX_FD == 4
1869 drv2(fdctrl)->track = fdctrl->fifo[5];
1870 drv3(fdctrl)->track = fdctrl->fifo[6];
1871 #endif
1872 /* timers */
1873 fdctrl->timer0 = fdctrl->fifo[7];
1874 fdctrl->timer1 = fdctrl->fifo[8];
1875 cur_drv->last_sect = fdctrl->fifo[9];
1876 fdctrl->lock = fdctrl->fifo[10] >> 7;
1877 cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF;
1878 fdctrl->config = fdctrl->fifo[11];
1879 fdctrl->precomp_trk = fdctrl->fifo[12];
1880 fdctrl->pwrd = fdctrl->fifo[13];
1881 fdctrl_to_command_phase(fdctrl);
1884 static void fdctrl_handle_save(FDCtrl *fdctrl, int direction)
1886 FDrive *cur_drv = get_cur_drv(fdctrl);
1888 fdctrl->fifo[0] = 0;
1889 fdctrl->fifo[1] = 0;
1890 /* Drives position */
1891 fdctrl->fifo[2] = drv0(fdctrl)->track;
1892 fdctrl->fifo[3] = drv1(fdctrl)->track;
1893 #if MAX_FD == 4
1894 fdctrl->fifo[4] = drv2(fdctrl)->track;
1895 fdctrl->fifo[5] = drv3(fdctrl)->track;
1896 #else
1897 fdctrl->fifo[4] = 0;
1898 fdctrl->fifo[5] = 0;
1899 #endif
1900 /* timers */
1901 fdctrl->fifo[6] = fdctrl->timer0;
1902 fdctrl->fifo[7] = fdctrl->timer1;
1903 fdctrl->fifo[8] = cur_drv->last_sect;
1904 fdctrl->fifo[9] = (fdctrl->lock << 7) |
1905 (cur_drv->perpendicular << 2);
1906 fdctrl->fifo[10] = fdctrl->config;
1907 fdctrl->fifo[11] = fdctrl->precomp_trk;
1908 fdctrl->fifo[12] = fdctrl->pwrd;
1909 fdctrl->fifo[13] = 0;
1910 fdctrl->fifo[14] = 0;
1911 fdctrl_to_result_phase(fdctrl, 15);
1914 static void fdctrl_handle_readid(FDCtrl *fdctrl, int direction)
1916 FDrive *cur_drv = get_cur_drv(fdctrl);
1918 cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
1919 timer_mod(fdctrl->result_timer,
1920 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (get_ticks_per_sec() / 50));
1923 static void fdctrl_handle_format_track(FDCtrl *fdctrl, int direction)
1925 FDrive *cur_drv;
1927 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1928 cur_drv = get_cur_drv(fdctrl);
1929 fdctrl->data_state |= FD_STATE_FORMAT;
1930 if (fdctrl->fifo[0] & 0x80)
1931 fdctrl->data_state |= FD_STATE_MULTI;
1932 else
1933 fdctrl->data_state &= ~FD_STATE_MULTI;
1934 cur_drv->bps =
1935 fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2];
1936 #if 0
1937 cur_drv->last_sect =
1938 cur_drv->flags & FDISK_DBL_SIDES ? fdctrl->fifo[3] :
1939 fdctrl->fifo[3] / 2;
1940 #else
1941 cur_drv->last_sect = fdctrl->fifo[3];
1942 #endif
1943 /* TODO: implement format using DMA expected by the Bochs BIOS
1944 * and Linux fdformat (read 3 bytes per sector via DMA and fill
1945 * the sector with the specified fill byte
1947 fdctrl->data_state &= ~FD_STATE_FORMAT;
1948 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1951 static void fdctrl_handle_specify(FDCtrl *fdctrl, int direction)
1953 fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF;
1954 fdctrl->timer1 = fdctrl->fifo[2] >> 1;
1955 if (fdctrl->fifo[2] & 1)
1956 fdctrl->dor &= ~FD_DOR_DMAEN;
1957 else
1958 fdctrl->dor |= FD_DOR_DMAEN;
1959 /* No result back */
1960 fdctrl_to_command_phase(fdctrl);
1963 static void fdctrl_handle_sense_drive_status(FDCtrl *fdctrl, int direction)
1965 FDrive *cur_drv;
1967 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1968 cur_drv = get_cur_drv(fdctrl);
1969 cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
1970 /* 1 Byte status back */
1971 fdctrl->fifo[0] = (cur_drv->ro << 6) |
1972 (cur_drv->track == 0 ? 0x10 : 0x00) |
1973 (cur_drv->head << 2) |
1974 GET_CUR_DRV(fdctrl) |
1975 0x28;
1976 fdctrl_to_result_phase(fdctrl, 1);
1979 static void fdctrl_handle_recalibrate(FDCtrl *fdctrl, int direction)
1981 FDrive *cur_drv;
1983 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1984 cur_drv = get_cur_drv(fdctrl);
1985 fd_recalibrate(cur_drv);
1986 fdctrl_to_command_phase(fdctrl);
1987 /* Raise Interrupt */
1988 fdctrl->status0 |= FD_SR0_SEEK;
1989 fdctrl_raise_irq(fdctrl);
1992 static void fdctrl_handle_sense_interrupt_status(FDCtrl *fdctrl, int direction)
1994 FDrive *cur_drv = get_cur_drv(fdctrl);
1996 if (fdctrl->reset_sensei > 0) {
1997 fdctrl->fifo[0] =
1998 FD_SR0_RDYCHG + FD_RESET_SENSEI_COUNT - fdctrl->reset_sensei;
1999 fdctrl->reset_sensei--;
2000 } else if (!(fdctrl->sra & FD_SRA_INTPEND)) {
2001 fdctrl->fifo[0] = FD_SR0_INVCMD;
2002 fdctrl_to_result_phase(fdctrl, 1);
2003 return;
2004 } else {
2005 fdctrl->fifo[0] =
2006 (fdctrl->status0 & ~(FD_SR0_HEAD | FD_SR0_DS1 | FD_SR0_DS0))
2007 | GET_CUR_DRV(fdctrl);
2010 fdctrl->fifo[1] = cur_drv->track;
2011 fdctrl_to_result_phase(fdctrl, 2);
2012 fdctrl_reset_irq(fdctrl);
2013 fdctrl->status0 = FD_SR0_RDYCHG;
2016 static void fdctrl_handle_seek(FDCtrl *fdctrl, int direction)
2018 FDrive *cur_drv;
2020 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2021 cur_drv = get_cur_drv(fdctrl);
2022 fdctrl_to_command_phase(fdctrl);
2023 /* The seek command just sends step pulses to the drive and doesn't care if
2024 * there is a medium inserted of if it's banging the head against the drive.
2026 fd_seek(cur_drv, cur_drv->head, fdctrl->fifo[2], cur_drv->sect, 1);
2027 /* Raise Interrupt */
2028 fdctrl->status0 |= FD_SR0_SEEK;
2029 fdctrl_raise_irq(fdctrl);
2032 static void fdctrl_handle_perpendicular_mode(FDCtrl *fdctrl, int direction)
2034 FDrive *cur_drv = get_cur_drv(fdctrl);
2036 if (fdctrl->fifo[1] & 0x80)
2037 cur_drv->perpendicular = fdctrl->fifo[1] & 0x7;
2038 /* No result back */
2039 fdctrl_to_command_phase(fdctrl);
2042 static void fdctrl_handle_configure(FDCtrl *fdctrl, int direction)
2044 fdctrl->config = fdctrl->fifo[2];
2045 fdctrl->precomp_trk = fdctrl->fifo[3];
2046 /* No result back */
2047 fdctrl_to_command_phase(fdctrl);
2050 static void fdctrl_handle_powerdown_mode(FDCtrl *fdctrl, int direction)
2052 fdctrl->pwrd = fdctrl->fifo[1];
2053 fdctrl->fifo[0] = fdctrl->fifo[1];
2054 fdctrl_to_result_phase(fdctrl, 1);
2057 static void fdctrl_handle_option(FDCtrl *fdctrl, int direction)
2059 /* No result back */
2060 fdctrl_to_command_phase(fdctrl);
2063 static void fdctrl_handle_drive_specification_command(FDCtrl *fdctrl, int direction)
2065 FDrive *cur_drv = get_cur_drv(fdctrl);
2066 uint32_t pos;
2068 pos = fdctrl->data_pos - 1;
2069 pos %= FD_SECTOR_LEN;
2070 if (fdctrl->fifo[pos] & 0x80) {
2071 /* Command parameters done */
2072 if (fdctrl->fifo[pos] & 0x40) {
2073 fdctrl->fifo[0] = fdctrl->fifo[1];
2074 fdctrl->fifo[2] = 0;
2075 fdctrl->fifo[3] = 0;
2076 fdctrl_to_result_phase(fdctrl, 4);
2077 } else {
2078 fdctrl_to_command_phase(fdctrl);
2080 } else if (fdctrl->data_len > 7) {
2081 /* ERROR */
2082 fdctrl->fifo[0] = 0x80 |
2083 (cur_drv->head << 2) | GET_CUR_DRV(fdctrl);
2084 fdctrl_to_result_phase(fdctrl, 1);
2088 static void fdctrl_handle_relative_seek_in(FDCtrl *fdctrl, int direction)
2090 FDrive *cur_drv;
2092 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2093 cur_drv = get_cur_drv(fdctrl);
2094 if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) {
2095 fd_seek(cur_drv, cur_drv->head, cur_drv->max_track - 1,
2096 cur_drv->sect, 1);
2097 } else {
2098 fd_seek(cur_drv, cur_drv->head,
2099 cur_drv->track + fdctrl->fifo[2], cur_drv->sect, 1);
2101 fdctrl_to_command_phase(fdctrl);
2102 /* Raise Interrupt */
2103 fdctrl->status0 |= FD_SR0_SEEK;
2104 fdctrl_raise_irq(fdctrl);
2107 static void fdctrl_handle_relative_seek_out(FDCtrl *fdctrl, int direction)
2109 FDrive *cur_drv;
2111 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2112 cur_drv = get_cur_drv(fdctrl);
2113 if (fdctrl->fifo[2] > cur_drv->track) {
2114 fd_seek(cur_drv, cur_drv->head, 0, cur_drv->sect, 1);
2115 } else {
2116 fd_seek(cur_drv, cur_drv->head,
2117 cur_drv->track - fdctrl->fifo[2], cur_drv->sect, 1);
2119 fdctrl_to_command_phase(fdctrl);
2120 /* Raise Interrupt */
2121 fdctrl->status0 |= FD_SR0_SEEK;
2122 fdctrl_raise_irq(fdctrl);
2126 * Handlers for the execution phase of each command
2128 typedef struct FDCtrlCommand {
2129 uint8_t value;
2130 uint8_t mask;
2131 const char* name;
2132 int parameters;
2133 void (*handler)(FDCtrl *fdctrl, int direction);
2134 int direction;
2135 } FDCtrlCommand;
2137 static const FDCtrlCommand handlers[] = {
2138 { FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ },
2139 { FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE },
2140 { FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek },
2141 { FD_CMD_SENSE_INTERRUPT_STATUS, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status },
2142 { FD_CMD_RECALIBRATE, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate },
2143 { FD_CMD_FORMAT_TRACK, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track },
2144 { FD_CMD_READ_TRACK, 0xbf, "READ TRACK", 8, fdctrl_start_transfer, FD_DIR_READ },
2145 { FD_CMD_RESTORE, 0xff, "RESTORE", 17, fdctrl_handle_restore }, /* part of READ DELETED DATA */
2146 { FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */
2147 { FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ },
2148 { FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE },
2149 { FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_start_transfer, FD_DIR_VERIFY },
2150 { FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL },
2151 { FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH },
2152 { FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE },
2153 { FD_CMD_READ_ID, 0xbf, "READ ID", 1, fdctrl_handle_readid },
2154 { FD_CMD_SPECIFY, 0xff, "SPECIFY", 2, fdctrl_handle_specify },
2155 { FD_CMD_SENSE_DRIVE_STATUS, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status },
2156 { FD_CMD_PERPENDICULAR_MODE, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode },
2157 { FD_CMD_CONFIGURE, 0xff, "CONFIGURE", 3, fdctrl_handle_configure },
2158 { FD_CMD_POWERDOWN_MODE, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode },
2159 { FD_CMD_OPTION, 0xff, "OPTION", 1, fdctrl_handle_option },
2160 { FD_CMD_DRIVE_SPECIFICATION_COMMAND, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command },
2161 { FD_CMD_RELATIVE_SEEK_OUT, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out },
2162 { FD_CMD_FORMAT_AND_WRITE, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented },
2163 { FD_CMD_RELATIVE_SEEK_IN, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in },
2164 { FD_CMD_LOCK, 0x7f, "LOCK", 0, fdctrl_handle_lock },
2165 { FD_CMD_DUMPREG, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg },
2166 { FD_CMD_VERSION, 0xff, "VERSION", 0, fdctrl_handle_version },
2167 { FD_CMD_PART_ID, 0xff, "PART ID", 0, fdctrl_handle_partid },
2168 { FD_CMD_WRITE, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer, FD_DIR_WRITE }, /* not in specification ; BeOS 4.5 bug */
2169 { 0, 0, "unknown", 0, fdctrl_unimplemented }, /* default handler */
2171 /* Associate command to an index in the 'handlers' array */
2172 static uint8_t command_to_handler[256];
2174 static const FDCtrlCommand *get_command(uint8_t cmd)
2176 int idx;
2178 idx = command_to_handler[cmd];
2179 FLOPPY_DPRINTF("%s command\n", handlers[idx].name);
2180 return &handlers[idx];
2183 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value)
2185 FDrive *cur_drv;
2186 const FDCtrlCommand *cmd;
2187 uint32_t pos;
2189 /* Reset mode */
2190 if (!(fdctrl->dor & FD_DOR_nRESET)) {
2191 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
2192 return;
2194 if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) {
2195 FLOPPY_DPRINTF("error: controller not ready for writing\n");
2196 return;
2198 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
2200 FLOPPY_DPRINTF("%s: %02x\n", __func__, value);
2202 /* If data_len spans multiple sectors, the current position in the FIFO
2203 * wraps around while fdctrl->data_pos is the real position in the whole
2204 * request. */
2205 pos = fdctrl->data_pos++;
2206 pos %= FD_SECTOR_LEN;
2207 fdctrl->fifo[pos] = value;
2209 if (fdctrl->data_pos == fdctrl->data_len) {
2210 fdctrl->msr &= ~FD_MSR_RQM;
2213 switch (fdctrl->phase) {
2214 case FD_PHASE_EXECUTION:
2215 /* For DMA requests, RQM should be cleared during execution phase, so
2216 * we would have errored out above. */
2217 assert(fdctrl->msr & FD_MSR_NONDMA);
2219 /* FIFO data write */
2220 if (pos == FD_SECTOR_LEN - 1 ||
2221 fdctrl->data_pos == fdctrl->data_len) {
2222 cur_drv = get_cur_drv(fdctrl);
2223 if (blk_write(cur_drv->blk, fd_sector(cur_drv), fdctrl->fifo, 1)
2224 < 0) {
2225 FLOPPY_DPRINTF("error writing sector %d\n",
2226 fd_sector(cur_drv));
2227 break;
2229 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
2230 FLOPPY_DPRINTF("error seeking to next sector %d\n",
2231 fd_sector(cur_drv));
2232 break;
2236 /* Switch to result phase when done with the transfer */
2237 if (fdctrl->data_pos == fdctrl->data_len) {
2238 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2240 break;
2242 case FD_PHASE_COMMAND:
2243 assert(!(fdctrl->msr & FD_MSR_NONDMA));
2244 assert(fdctrl->data_pos < FD_SECTOR_LEN);
2246 if (pos == 0) {
2247 /* The first byte specifies the command. Now we start reading
2248 * as many parameters as this command requires. */
2249 cmd = get_command(value);
2250 fdctrl->data_len = cmd->parameters + 1;
2251 if (cmd->parameters) {
2252 fdctrl->msr |= FD_MSR_RQM;
2254 fdctrl->msr |= FD_MSR_CMDBUSY;
2257 if (fdctrl->data_pos == fdctrl->data_len) {
2258 /* We have all parameters now, execute the command */
2259 fdctrl->phase = FD_PHASE_EXECUTION;
2261 if (fdctrl->data_state & FD_STATE_FORMAT) {
2262 fdctrl_format_sector(fdctrl);
2263 break;
2266 cmd = get_command(fdctrl->fifo[0]);
2267 FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd->name);
2268 cmd->handler(fdctrl, cmd->direction);
2270 break;
2272 case FD_PHASE_RESULT:
2273 default:
2274 abort();
2278 static void fdctrl_result_timer(void *opaque)
2280 FDCtrl *fdctrl = opaque;
2281 FDrive *cur_drv = get_cur_drv(fdctrl);
2283 /* Pretend we are spinning.
2284 * This is needed for Coherent, which uses READ ID to check for
2285 * sector interleaving.
2287 if (cur_drv->last_sect != 0) {
2288 cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1;
2290 /* READ_ID can't automatically succeed! */
2291 if (fdctrl->check_media_rate &&
2292 (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
2293 FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n",
2294 fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
2295 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
2296 } else {
2297 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2301 static void fdctrl_change_cb(void *opaque, bool load)
2303 FDrive *drive = opaque;
2305 drive->media_changed = 1;
2306 drive->media_validated = false;
2307 fd_revalidate(drive);
2310 static const BlockDevOps fdctrl_block_ops = {
2311 .change_media_cb = fdctrl_change_cb,
2314 /* Init functions */
2315 static void fdctrl_connect_drives(FDCtrl *fdctrl, Error **errp)
2317 unsigned int i;
2318 FDrive *drive;
2320 for (i = 0; i < MAX_FD; i++) {
2321 drive = &fdctrl->drives[i];
2322 drive->fdctrl = fdctrl;
2324 if (drive->blk) {
2325 if (blk_get_on_error(drive->blk, 0) != BLOCKDEV_ON_ERROR_ENOSPC) {
2326 error_setg(errp, "fdc doesn't support drive option werror");
2327 return;
2329 if (blk_get_on_error(drive->blk, 1) != BLOCKDEV_ON_ERROR_REPORT) {
2330 error_setg(errp, "fdc doesn't support drive option rerror");
2331 return;
2335 fd_init(drive);
2336 if (drive->blk) {
2337 blk_set_dev_ops(drive->blk, &fdctrl_block_ops, drive);
2338 pick_drive_type(drive);
2340 fd_revalidate(drive);
2344 ISADevice *fdctrl_init_isa(ISABus *bus, DriveInfo **fds)
2346 DeviceState *dev;
2347 ISADevice *isadev;
2349 isadev = isa_try_create(bus, TYPE_ISA_FDC);
2350 if (!isadev) {
2351 return NULL;
2353 dev = DEVICE(isadev);
2355 if (fds[0]) {
2356 qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fds[0]),
2357 &error_fatal);
2359 if (fds[1]) {
2360 qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fds[1]),
2361 &error_fatal);
2363 qdev_init_nofail(dev);
2365 return isadev;
2368 void fdctrl_init_sysbus(qemu_irq irq, int dma_chann,
2369 hwaddr mmio_base, DriveInfo **fds)
2371 FDCtrl *fdctrl;
2372 DeviceState *dev;
2373 SysBusDevice *sbd;
2374 FDCtrlSysBus *sys;
2376 dev = qdev_create(NULL, "sysbus-fdc");
2377 sys = SYSBUS_FDC(dev);
2378 fdctrl = &sys->state;
2379 fdctrl->dma_chann = dma_chann; /* FIXME */
2380 if (fds[0]) {
2381 qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fds[0]),
2382 &error_fatal);
2384 if (fds[1]) {
2385 qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fds[1]),
2386 &error_fatal);
2388 qdev_init_nofail(dev);
2389 sbd = SYS_BUS_DEVICE(dev);
2390 sysbus_connect_irq(sbd, 0, irq);
2391 sysbus_mmio_map(sbd, 0, mmio_base);
2394 void sun4m_fdctrl_init(qemu_irq irq, hwaddr io_base,
2395 DriveInfo **fds, qemu_irq *fdc_tc)
2397 DeviceState *dev;
2398 FDCtrlSysBus *sys;
2400 dev = qdev_create(NULL, "SUNW,fdtwo");
2401 if (fds[0]) {
2402 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(fds[0]),
2403 &error_fatal);
2405 qdev_init_nofail(dev);
2406 sys = SYSBUS_FDC(dev);
2407 sysbus_connect_irq(SYS_BUS_DEVICE(sys), 0, irq);
2408 sysbus_mmio_map(SYS_BUS_DEVICE(sys), 0, io_base);
2409 *fdc_tc = qdev_get_gpio_in(dev, 0);
2412 static void fdctrl_realize_common(FDCtrl *fdctrl, Error **errp)
2414 int i, j;
2415 static int command_tables_inited = 0;
2417 if (fdctrl->fallback == FLOPPY_DRIVE_TYPE_AUTO) {
2418 error_setg(errp, "Cannot choose a fallback FDrive type of 'auto'");
2421 /* Fill 'command_to_handler' lookup table */
2422 if (!command_tables_inited) {
2423 command_tables_inited = 1;
2424 for (i = ARRAY_SIZE(handlers) - 1; i >= 0; i--) {
2425 for (j = 0; j < sizeof(command_to_handler); j++) {
2426 if ((j & handlers[i].mask) == handlers[i].value) {
2427 command_to_handler[j] = i;
2433 FLOPPY_DPRINTF("init controller\n");
2434 fdctrl->fifo = qemu_memalign(512, FD_SECTOR_LEN);
2435 fdctrl->fifo_size = 512;
2436 fdctrl->result_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
2437 fdctrl_result_timer, fdctrl);
2439 fdctrl->version = 0x90; /* Intel 82078 controller */
2440 fdctrl->config = FD_CONFIG_EIS | FD_CONFIG_EFIFO; /* Implicit seek, polling & FIFO enabled */
2441 fdctrl->num_floppies = MAX_FD;
2443 if (fdctrl->dma_chann != -1) {
2444 DMA_register_channel(fdctrl->dma_chann, &fdctrl_transfer_handler, fdctrl);
2446 fdctrl_connect_drives(fdctrl, errp);
2449 static const MemoryRegionPortio fdc_portio_list[] = {
2450 { 1, 5, 1, .read = fdctrl_read, .write = fdctrl_write },
2451 { 7, 1, 1, .read = fdctrl_read, .write = fdctrl_write },
2452 PORTIO_END_OF_LIST(),
2455 static void isabus_fdc_realize(DeviceState *dev, Error **errp)
2457 ISADevice *isadev = ISA_DEVICE(dev);
2458 FDCtrlISABus *isa = ISA_FDC(dev);
2459 FDCtrl *fdctrl = &isa->state;
2460 Error *err = NULL;
2462 isa_register_portio_list(isadev, isa->iobase, fdc_portio_list, fdctrl,
2463 "fdc");
2465 isa_init_irq(isadev, &fdctrl->irq, isa->irq);
2466 fdctrl->dma_chann = isa->dma;
2468 qdev_set_legacy_instance_id(dev, isa->iobase, 2);
2469 fdctrl_realize_common(fdctrl, &err);
2470 if (err != NULL) {
2471 error_propagate(errp, err);
2472 return;
2476 static void sysbus_fdc_initfn(Object *obj)
2478 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2479 FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2480 FDCtrl *fdctrl = &sys->state;
2482 fdctrl->dma_chann = -1;
2484 memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_ops, fdctrl,
2485 "fdc", 0x08);
2486 sysbus_init_mmio(sbd, &fdctrl->iomem);
2489 static void sun4m_fdc_initfn(Object *obj)
2491 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2492 FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2493 FDCtrl *fdctrl = &sys->state;
2495 fdctrl->dma_chann = -1;
2497 memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_strict_ops,
2498 fdctrl, "fdctrl", 0x08);
2499 sysbus_init_mmio(sbd, &fdctrl->iomem);
2502 static void sysbus_fdc_common_initfn(Object *obj)
2504 DeviceState *dev = DEVICE(obj);
2505 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2506 FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2507 FDCtrl *fdctrl = &sys->state;
2509 qdev_set_legacy_instance_id(dev, 0 /* io */, 2); /* FIXME */
2511 sysbus_init_irq(sbd, &fdctrl->irq);
2512 qdev_init_gpio_in(dev, fdctrl_handle_tc, 1);
2515 static void sysbus_fdc_common_realize(DeviceState *dev, Error **errp)
2517 FDCtrlSysBus *sys = SYSBUS_FDC(dev);
2518 FDCtrl *fdctrl = &sys->state;
2520 fdctrl_realize_common(fdctrl, errp);
2523 FloppyDriveType isa_fdc_get_drive_type(ISADevice *fdc, int i)
2525 FDCtrlISABus *isa = ISA_FDC(fdc);
2527 return isa->state.drives[i].drive;
2530 static const VMStateDescription vmstate_isa_fdc ={
2531 .name = "fdc",
2532 .version_id = 2,
2533 .minimum_version_id = 2,
2534 .fields = (VMStateField[]) {
2535 VMSTATE_STRUCT(state, FDCtrlISABus, 0, vmstate_fdc, FDCtrl),
2536 VMSTATE_END_OF_LIST()
2540 static Property isa_fdc_properties[] = {
2541 DEFINE_PROP_UINT32("iobase", FDCtrlISABus, iobase, 0x3f0),
2542 DEFINE_PROP_UINT32("irq", FDCtrlISABus, irq, 6),
2543 DEFINE_PROP_UINT32("dma", FDCtrlISABus, dma, 2),
2544 DEFINE_PROP_DRIVE("driveA", FDCtrlISABus, state.drives[0].blk),
2545 DEFINE_PROP_DRIVE("driveB", FDCtrlISABus, state.drives[1].blk),
2546 DEFINE_PROP_BIT("check_media_rate", FDCtrlISABus, state.check_media_rate,
2547 0, true),
2548 DEFINE_PROP_DEFAULT("fdtypeA", FDCtrlISABus, state.drives[0].drive,
2549 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2550 FloppyDriveType),
2551 DEFINE_PROP_DEFAULT("fdtypeB", FDCtrlISABus, state.drives[1].drive,
2552 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2553 FloppyDriveType),
2554 DEFINE_PROP_DEFAULT("fallback", FDCtrlISABus, state.fallback,
2555 FLOPPY_DRIVE_TYPE_288, qdev_prop_fdc_drive_type,
2556 FloppyDriveType),
2557 DEFINE_PROP_END_OF_LIST(),
2560 static void isabus_fdc_class_init(ObjectClass *klass, void *data)
2562 DeviceClass *dc = DEVICE_CLASS(klass);
2564 dc->realize = isabus_fdc_realize;
2565 dc->fw_name = "fdc";
2566 dc->reset = fdctrl_external_reset_isa;
2567 dc->vmsd = &vmstate_isa_fdc;
2568 dc->props = isa_fdc_properties;
2569 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2572 static void isabus_fdc_instance_init(Object *obj)
2574 FDCtrlISABus *isa = ISA_FDC(obj);
2576 device_add_bootindex_property(obj, &isa->bootindexA,
2577 "bootindexA", "/floppy@0",
2578 DEVICE(obj), NULL);
2579 device_add_bootindex_property(obj, &isa->bootindexB,
2580 "bootindexB", "/floppy@1",
2581 DEVICE(obj), NULL);
2584 static const TypeInfo isa_fdc_info = {
2585 .name = TYPE_ISA_FDC,
2586 .parent = TYPE_ISA_DEVICE,
2587 .instance_size = sizeof(FDCtrlISABus),
2588 .class_init = isabus_fdc_class_init,
2589 .instance_init = isabus_fdc_instance_init,
2592 static const VMStateDescription vmstate_sysbus_fdc ={
2593 .name = "fdc",
2594 .version_id = 2,
2595 .minimum_version_id = 2,
2596 .fields = (VMStateField[]) {
2597 VMSTATE_STRUCT(state, FDCtrlSysBus, 0, vmstate_fdc, FDCtrl),
2598 VMSTATE_END_OF_LIST()
2602 static Property sysbus_fdc_properties[] = {
2603 DEFINE_PROP_DRIVE("driveA", FDCtrlSysBus, state.drives[0].blk),
2604 DEFINE_PROP_DRIVE("driveB", FDCtrlSysBus, state.drives[1].blk),
2605 DEFINE_PROP_DEFAULT("fdtypeA", FDCtrlSysBus, state.drives[0].drive,
2606 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2607 FloppyDriveType),
2608 DEFINE_PROP_DEFAULT("fdtypeB", FDCtrlSysBus, state.drives[1].drive,
2609 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2610 FloppyDriveType),
2611 DEFINE_PROP_DEFAULT("fallback", FDCtrlISABus, state.fallback,
2612 FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2613 FloppyDriveType),
2614 DEFINE_PROP_END_OF_LIST(),
2617 static void sysbus_fdc_class_init(ObjectClass *klass, void *data)
2619 DeviceClass *dc = DEVICE_CLASS(klass);
2621 dc->props = sysbus_fdc_properties;
2622 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2625 static const TypeInfo sysbus_fdc_info = {
2626 .name = "sysbus-fdc",
2627 .parent = TYPE_SYSBUS_FDC,
2628 .instance_init = sysbus_fdc_initfn,
2629 .class_init = sysbus_fdc_class_init,
2632 static Property sun4m_fdc_properties[] = {
2633 DEFINE_PROP_DRIVE("drive", FDCtrlSysBus, state.drives[0].blk),
2634 DEFINE_PROP_DEFAULT("fdtype", FDCtrlSysBus, state.drives[0].drive,
2635 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2636 FloppyDriveType),
2637 DEFINE_PROP_DEFAULT("fallback", FDCtrlISABus, state.fallback,
2638 FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2639 FloppyDriveType),
2640 DEFINE_PROP_END_OF_LIST(),
2643 static void sun4m_fdc_class_init(ObjectClass *klass, void *data)
2645 DeviceClass *dc = DEVICE_CLASS(klass);
2647 dc->props = sun4m_fdc_properties;
2648 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2651 static const TypeInfo sun4m_fdc_info = {
2652 .name = "SUNW,fdtwo",
2653 .parent = TYPE_SYSBUS_FDC,
2654 .instance_init = sun4m_fdc_initfn,
2655 .class_init = sun4m_fdc_class_init,
2658 static void sysbus_fdc_common_class_init(ObjectClass *klass, void *data)
2660 DeviceClass *dc = DEVICE_CLASS(klass);
2662 dc->realize = sysbus_fdc_common_realize;
2663 dc->reset = fdctrl_external_reset_sysbus;
2664 dc->vmsd = &vmstate_sysbus_fdc;
2667 static const TypeInfo sysbus_fdc_type_info = {
2668 .name = TYPE_SYSBUS_FDC,
2669 .parent = TYPE_SYS_BUS_DEVICE,
2670 .instance_size = sizeof(FDCtrlSysBus),
2671 .instance_init = sysbus_fdc_common_initfn,
2672 .abstract = true,
2673 .class_init = sysbus_fdc_common_class_init,
2676 static void fdc_register_types(void)
2678 type_register_static(&isa_fdc_info);
2679 type_register_static(&sysbus_fdc_type_info);
2680 type_register_static(&sysbus_fdc_info);
2681 type_register_static(&sun4m_fdc_info);
2684 type_init(fdc_register_types)