error: Avoid unnecessary error_propagate() after error_setg()
[qemu/ar7.git] / hw / ppc / spapr.c
blob299908cc7396ac99f828e1fa9fc6637f5cd0d1af
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/hostmem.h"
33 #include "sysemu/numa.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/reset.h"
36 #include "sysemu/runstate.h"
37 #include "qemu/log.h"
38 #include "hw/fw-path-provider.h"
39 #include "elf.h"
40 #include "net/net.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/cpus.h"
43 #include "sysemu/hw_accel.h"
44 #include "kvm_ppc.h"
45 #include "migration/misc.h"
46 #include "migration/qemu-file-types.h"
47 #include "migration/global_state.h"
48 #include "migration/register.h"
49 #include "migration/blocker.h"
50 #include "mmu-hash64.h"
51 #include "mmu-book3s-v3.h"
52 #include "cpu-models.h"
53 #include "hw/core/cpu.h"
55 #include "hw/boards.h"
56 #include "hw/ppc/ppc.h"
57 #include "hw/loader.h"
59 #include "hw/ppc/fdt.h"
60 #include "hw/ppc/spapr.h"
61 #include "hw/ppc/spapr_vio.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/pci-host/spapr.h"
64 #include "hw/pci/msi.h"
66 #include "hw/pci/pci.h"
67 #include "hw/scsi/scsi.h"
68 #include "hw/virtio/virtio-scsi.h"
69 #include "hw/virtio/vhost-scsi-common.h"
71 #include "exec/address-spaces.h"
72 #include "exec/ram_addr.h"
73 #include "hw/usb.h"
74 #include "qemu/config-file.h"
75 #include "qemu/error-report.h"
76 #include "trace.h"
77 #include "hw/nmi.h"
78 #include "hw/intc/intc.h"
80 #include "hw/ppc/spapr_cpu_core.h"
81 #include "hw/mem/memory-device.h"
82 #include "hw/ppc/spapr_tpm_proxy.h"
83 #include "hw/ppc/spapr_nvdimm.h"
85 #include "monitor/monitor.h"
87 #include <libfdt.h>
89 /* SLOF memory layout:
91 * SLOF raw image loaded at 0, copies its romfs right below the flat
92 * device-tree, then position SLOF itself 31M below that
94 * So we set FW_OVERHEAD to 40MB which should account for all of that
95 * and more
97 * We load our kernel at 4M, leaving space for SLOF initial image
99 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
100 #define FW_MAX_SIZE 0x400000
101 #define FW_FILE_NAME "slof.bin"
102 #define FW_OVERHEAD 0x2800000
103 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
105 #define MIN_RMA_SLOF (128 * MiB)
107 #define PHANDLE_INTC 0x00001111
109 /* These two functions implement the VCPU id numbering: one to compute them
110 * all and one to identify thread 0 of a VCORE. Any change to the first one
111 * is likely to have an impact on the second one, so let's keep them close.
113 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
115 MachineState *ms = MACHINE(spapr);
116 unsigned int smp_threads = ms->smp.threads;
118 assert(spapr->vsmt);
119 return
120 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
122 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
123 PowerPCCPU *cpu)
125 assert(spapr->vsmt);
126 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
129 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
131 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
132 * and newer QEMUs don't even have them. In both cases, we don't want
133 * to send anything on the wire.
135 return false;
138 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
139 .name = "icp/server",
140 .version_id = 1,
141 .minimum_version_id = 1,
142 .needed = pre_2_10_vmstate_dummy_icp_needed,
143 .fields = (VMStateField[]) {
144 VMSTATE_UNUSED(4), /* uint32_t xirr */
145 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
146 VMSTATE_UNUSED(1), /* uint8_t mfrr */
147 VMSTATE_END_OF_LIST()
151 static void pre_2_10_vmstate_register_dummy_icp(int i)
153 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
154 (void *)(uintptr_t) i);
157 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
159 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
160 (void *)(uintptr_t) i);
163 int spapr_max_server_number(SpaprMachineState *spapr)
165 MachineState *ms = MACHINE(spapr);
167 assert(spapr->vsmt);
168 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
171 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
172 int smt_threads)
174 int i, ret = 0;
175 uint32_t servers_prop[smt_threads];
176 uint32_t gservers_prop[smt_threads * 2];
177 int index = spapr_get_vcpu_id(cpu);
179 if (cpu->compat_pvr) {
180 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
181 if (ret < 0) {
182 return ret;
186 /* Build interrupt servers and gservers properties */
187 for (i = 0; i < smt_threads; i++) {
188 servers_prop[i] = cpu_to_be32(index + i);
189 /* Hack, direct the group queues back to cpu 0 */
190 gservers_prop[i*2] = cpu_to_be32(index + i);
191 gservers_prop[i*2 + 1] = 0;
193 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
194 servers_prop, sizeof(servers_prop));
195 if (ret < 0) {
196 return ret;
198 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
199 gservers_prop, sizeof(gservers_prop));
201 return ret;
204 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
206 int index = spapr_get_vcpu_id(cpu);
207 uint32_t associativity[] = {cpu_to_be32(0x5),
208 cpu_to_be32(0x0),
209 cpu_to_be32(0x0),
210 cpu_to_be32(0x0),
211 cpu_to_be32(cpu->node_id),
212 cpu_to_be32(index)};
214 /* Advertise NUMA via ibm,associativity */
215 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
216 sizeof(associativity));
219 static void spapr_dt_pa_features(SpaprMachineState *spapr,
220 PowerPCCPU *cpu,
221 void *fdt, int offset)
223 uint8_t pa_features_206[] = { 6, 0,
224 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
225 uint8_t pa_features_207[] = { 24, 0,
226 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
227 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
228 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
229 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
230 uint8_t pa_features_300[] = { 66, 0,
231 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
232 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
233 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
234 /* 6: DS207 */
235 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
236 /* 16: Vector */
237 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
238 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
239 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
240 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
242 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
243 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
244 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
245 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
246 /* 42: PM, 44: PC RA, 46: SC vec'd */
247 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
248 /* 48: SIMD, 50: QP BFP, 52: String */
249 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
250 /* 54: DecFP, 56: DecI, 58: SHA */
251 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
252 /* 60: NM atomic, 62: RNG */
253 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
255 uint8_t *pa_features = NULL;
256 size_t pa_size;
258 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
259 pa_features = pa_features_206;
260 pa_size = sizeof(pa_features_206);
262 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
263 pa_features = pa_features_207;
264 pa_size = sizeof(pa_features_207);
266 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
267 pa_features = pa_features_300;
268 pa_size = sizeof(pa_features_300);
270 if (!pa_features) {
271 return;
274 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
276 * Note: we keep CI large pages off by default because a 64K capable
277 * guest provisioned with large pages might otherwise try to map a qemu
278 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
279 * even if that qemu runs on a 4k host.
280 * We dd this bit back here if we are confident this is not an issue
282 pa_features[3] |= 0x20;
284 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
285 pa_features[24] |= 0x80; /* Transactional memory support */
287 if (spapr->cas_pre_isa3_guest && pa_size > 40) {
288 /* Workaround for broken kernels that attempt (guest) radix
289 * mode when they can't handle it, if they see the radix bit set
290 * in pa-features. So hide it from them. */
291 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
294 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
297 static hwaddr spapr_node0_size(MachineState *machine)
299 if (machine->numa_state->num_nodes) {
300 int i;
301 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
302 if (machine->numa_state->nodes[i].node_mem) {
303 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
304 machine->ram_size);
308 return machine->ram_size;
311 static void add_str(GString *s, const gchar *s1)
313 g_string_append_len(s, s1, strlen(s1) + 1);
316 static int spapr_dt_memory_node(void *fdt, int nodeid, hwaddr start,
317 hwaddr size)
319 uint32_t associativity[] = {
320 cpu_to_be32(0x4), /* length */
321 cpu_to_be32(0x0), cpu_to_be32(0x0),
322 cpu_to_be32(0x0), cpu_to_be32(nodeid)
324 char mem_name[32];
325 uint64_t mem_reg_property[2];
326 int off;
328 mem_reg_property[0] = cpu_to_be64(start);
329 mem_reg_property[1] = cpu_to_be64(size);
331 sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
332 off = fdt_add_subnode(fdt, 0, mem_name);
333 _FDT(off);
334 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
335 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
336 sizeof(mem_reg_property))));
337 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
338 sizeof(associativity))));
339 return off;
342 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
344 MemoryDeviceInfoList *info;
346 for (info = list; info; info = info->next) {
347 MemoryDeviceInfo *value = info->value;
349 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
350 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
352 if (addr >= pcdimm_info->addr &&
353 addr < (pcdimm_info->addr + pcdimm_info->size)) {
354 return pcdimm_info->node;
359 return -1;
362 struct sPAPRDrconfCellV2 {
363 uint32_t seq_lmbs;
364 uint64_t base_addr;
365 uint32_t drc_index;
366 uint32_t aa_index;
367 uint32_t flags;
368 } QEMU_PACKED;
370 typedef struct DrconfCellQueue {
371 struct sPAPRDrconfCellV2 cell;
372 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
373 } DrconfCellQueue;
375 static DrconfCellQueue *
376 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
377 uint32_t drc_index, uint32_t aa_index,
378 uint32_t flags)
380 DrconfCellQueue *elem;
382 elem = g_malloc0(sizeof(*elem));
383 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
384 elem->cell.base_addr = cpu_to_be64(base_addr);
385 elem->cell.drc_index = cpu_to_be32(drc_index);
386 elem->cell.aa_index = cpu_to_be32(aa_index);
387 elem->cell.flags = cpu_to_be32(flags);
389 return elem;
392 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
393 int offset, MemoryDeviceInfoList *dimms)
395 MachineState *machine = MACHINE(spapr);
396 uint8_t *int_buf, *cur_index;
397 int ret;
398 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
399 uint64_t addr, cur_addr, size;
400 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
401 uint64_t mem_end = machine->device_memory->base +
402 memory_region_size(&machine->device_memory->mr);
403 uint32_t node, buf_len, nr_entries = 0;
404 SpaprDrc *drc;
405 DrconfCellQueue *elem, *next;
406 MemoryDeviceInfoList *info;
407 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
408 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
410 /* Entry to cover RAM and the gap area */
411 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
412 SPAPR_LMB_FLAGS_RESERVED |
413 SPAPR_LMB_FLAGS_DRC_INVALID);
414 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
415 nr_entries++;
417 cur_addr = machine->device_memory->base;
418 for (info = dimms; info; info = info->next) {
419 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
421 addr = di->addr;
422 size = di->size;
423 node = di->node;
426 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
427 * area is marked hotpluggable in the next iteration for the bigger
428 * chunk including the NVDIMM occupied area.
430 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
431 continue;
433 /* Entry for hot-pluggable area */
434 if (cur_addr < addr) {
435 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
436 g_assert(drc);
437 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
438 cur_addr, spapr_drc_index(drc), -1, 0);
439 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
440 nr_entries++;
443 /* Entry for DIMM */
444 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
445 g_assert(drc);
446 elem = spapr_get_drconf_cell(size / lmb_size, addr,
447 spapr_drc_index(drc), node,
448 (SPAPR_LMB_FLAGS_ASSIGNED |
449 SPAPR_LMB_FLAGS_HOTREMOVABLE));
450 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
451 nr_entries++;
452 cur_addr = addr + size;
455 /* Entry for remaining hotpluggable area */
456 if (cur_addr < mem_end) {
457 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
458 g_assert(drc);
459 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
460 cur_addr, spapr_drc_index(drc), -1, 0);
461 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
462 nr_entries++;
465 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
466 int_buf = cur_index = g_malloc0(buf_len);
467 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
468 cur_index += sizeof(nr_entries);
470 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
471 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
472 cur_index += sizeof(elem->cell);
473 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
474 g_free(elem);
477 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
478 g_free(int_buf);
479 if (ret < 0) {
480 return -1;
482 return 0;
485 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
486 int offset, MemoryDeviceInfoList *dimms)
488 MachineState *machine = MACHINE(spapr);
489 int i, ret;
490 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
491 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
492 uint32_t nr_lmbs = (machine->device_memory->base +
493 memory_region_size(&machine->device_memory->mr)) /
494 lmb_size;
495 uint32_t *int_buf, *cur_index, buf_len;
498 * Allocate enough buffer size to fit in ibm,dynamic-memory
500 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
501 cur_index = int_buf = g_malloc0(buf_len);
502 int_buf[0] = cpu_to_be32(nr_lmbs);
503 cur_index++;
504 for (i = 0; i < nr_lmbs; i++) {
505 uint64_t addr = i * lmb_size;
506 uint32_t *dynamic_memory = cur_index;
508 if (i >= device_lmb_start) {
509 SpaprDrc *drc;
511 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
512 g_assert(drc);
514 dynamic_memory[0] = cpu_to_be32(addr >> 32);
515 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
516 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
517 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
518 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
519 if (memory_region_present(get_system_memory(), addr)) {
520 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
521 } else {
522 dynamic_memory[5] = cpu_to_be32(0);
524 } else {
526 * LMB information for RMA, boot time RAM and gap b/n RAM and
527 * device memory region -- all these are marked as reserved
528 * and as having no valid DRC.
530 dynamic_memory[0] = cpu_to_be32(addr >> 32);
531 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
532 dynamic_memory[2] = cpu_to_be32(0);
533 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
534 dynamic_memory[4] = cpu_to_be32(-1);
535 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
536 SPAPR_LMB_FLAGS_DRC_INVALID);
539 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
541 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
542 g_free(int_buf);
543 if (ret < 0) {
544 return -1;
546 return 0;
550 * Adds ibm,dynamic-reconfiguration-memory node.
551 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
552 * of this device tree node.
554 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
555 void *fdt)
557 MachineState *machine = MACHINE(spapr);
558 int nb_numa_nodes = machine->numa_state->num_nodes;
559 int ret, i, offset;
560 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
561 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
562 uint32_t *int_buf, *cur_index, buf_len;
563 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
564 MemoryDeviceInfoList *dimms = NULL;
567 * Don't create the node if there is no device memory
569 if (machine->ram_size == machine->maxram_size) {
570 return 0;
573 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
575 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
576 sizeof(prop_lmb_size));
577 if (ret < 0) {
578 return ret;
581 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
582 if (ret < 0) {
583 return ret;
586 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
587 if (ret < 0) {
588 return ret;
591 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
592 dimms = qmp_memory_device_list();
593 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
594 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
595 } else {
596 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
598 qapi_free_MemoryDeviceInfoList(dimms);
600 if (ret < 0) {
601 return ret;
604 /* ibm,associativity-lookup-arrays */
605 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
606 cur_index = int_buf = g_malloc0(buf_len);
607 int_buf[0] = cpu_to_be32(nr_nodes);
608 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
609 cur_index += 2;
610 for (i = 0; i < nr_nodes; i++) {
611 uint32_t associativity[] = {
612 cpu_to_be32(0x0),
613 cpu_to_be32(0x0),
614 cpu_to_be32(0x0),
615 cpu_to_be32(i)
617 memcpy(cur_index, associativity, sizeof(associativity));
618 cur_index += 4;
620 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
621 (cur_index - int_buf) * sizeof(uint32_t));
622 g_free(int_buf);
624 return ret;
627 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
629 MachineState *machine = MACHINE(spapr);
630 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
631 hwaddr mem_start, node_size;
632 int i, nb_nodes = machine->numa_state->num_nodes;
633 NodeInfo *nodes = machine->numa_state->nodes;
635 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
636 if (!nodes[i].node_mem) {
637 continue;
639 if (mem_start >= machine->ram_size) {
640 node_size = 0;
641 } else {
642 node_size = nodes[i].node_mem;
643 if (node_size > machine->ram_size - mem_start) {
644 node_size = machine->ram_size - mem_start;
647 if (!mem_start) {
648 /* spapr_machine_init() checks for rma_size <= node0_size
649 * already */
650 spapr_dt_memory_node(fdt, i, 0, spapr->rma_size);
651 mem_start += spapr->rma_size;
652 node_size -= spapr->rma_size;
654 for ( ; node_size; ) {
655 hwaddr sizetmp = pow2floor(node_size);
657 /* mem_start != 0 here */
658 if (ctzl(mem_start) < ctzl(sizetmp)) {
659 sizetmp = 1ULL << ctzl(mem_start);
662 spapr_dt_memory_node(fdt, i, mem_start, sizetmp);
663 node_size -= sizetmp;
664 mem_start += sizetmp;
668 /* Generate ibm,dynamic-reconfiguration-memory node if required */
669 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
670 int ret;
672 g_assert(smc->dr_lmb_enabled);
673 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
674 if (ret) {
675 return ret;
679 return 0;
682 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
683 SpaprMachineState *spapr)
685 MachineState *ms = MACHINE(spapr);
686 PowerPCCPU *cpu = POWERPC_CPU(cs);
687 CPUPPCState *env = &cpu->env;
688 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
689 int index = spapr_get_vcpu_id(cpu);
690 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
691 0xffffffff, 0xffffffff};
692 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
693 : SPAPR_TIMEBASE_FREQ;
694 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
695 uint32_t page_sizes_prop[64];
696 size_t page_sizes_prop_size;
697 unsigned int smp_threads = ms->smp.threads;
698 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
699 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
700 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
701 SpaprDrc *drc;
702 int drc_index;
703 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
704 int i;
706 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
707 if (drc) {
708 drc_index = spapr_drc_index(drc);
709 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
712 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
713 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
715 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
716 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
717 env->dcache_line_size)));
718 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
719 env->dcache_line_size)));
720 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
721 env->icache_line_size)));
722 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
723 env->icache_line_size)));
725 if (pcc->l1_dcache_size) {
726 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
727 pcc->l1_dcache_size)));
728 } else {
729 warn_report("Unknown L1 dcache size for cpu");
731 if (pcc->l1_icache_size) {
732 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
733 pcc->l1_icache_size)));
734 } else {
735 warn_report("Unknown L1 icache size for cpu");
738 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
739 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
740 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
741 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
742 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
743 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
745 if (env->spr_cb[SPR_PURR].oea_read) {
746 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
748 if (env->spr_cb[SPR_SPURR].oea_read) {
749 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
752 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
753 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
754 segs, sizeof(segs))));
757 /* Advertise VSX (vector extensions) if available
758 * 1 == VMX / Altivec available
759 * 2 == VSX available
761 * Only CPUs for which we create core types in spapr_cpu_core.c
762 * are possible, and all of those have VMX */
763 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
764 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
765 } else {
766 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
769 /* Advertise DFP (Decimal Floating Point) if available
770 * 0 / no property == no DFP
771 * 1 == DFP available */
772 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
773 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
776 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
777 sizeof(page_sizes_prop));
778 if (page_sizes_prop_size) {
779 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
780 page_sizes_prop, page_sizes_prop_size)));
783 spapr_dt_pa_features(spapr, cpu, fdt, offset);
785 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
786 cs->cpu_index / vcpus_per_socket)));
788 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
789 pft_size_prop, sizeof(pft_size_prop))));
791 if (ms->numa_state->num_nodes > 1) {
792 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
795 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
797 if (pcc->radix_page_info) {
798 for (i = 0; i < pcc->radix_page_info->count; i++) {
799 radix_AP_encodings[i] =
800 cpu_to_be32(pcc->radix_page_info->entries[i]);
802 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
803 radix_AP_encodings,
804 pcc->radix_page_info->count *
805 sizeof(radix_AP_encodings[0]))));
809 * We set this property to let the guest know that it can use the large
810 * decrementer and its width in bits.
812 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
813 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
814 pcc->lrg_decr_bits)));
817 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
819 CPUState **rev;
820 CPUState *cs;
821 int n_cpus;
822 int cpus_offset;
823 char *nodename;
824 int i;
826 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
827 _FDT(cpus_offset);
828 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
829 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
832 * We walk the CPUs in reverse order to ensure that CPU DT nodes
833 * created by fdt_add_subnode() end up in the right order in FDT
834 * for the guest kernel the enumerate the CPUs correctly.
836 * The CPU list cannot be traversed in reverse order, so we need
837 * to do extra work.
839 n_cpus = 0;
840 rev = NULL;
841 CPU_FOREACH(cs) {
842 rev = g_renew(CPUState *, rev, n_cpus + 1);
843 rev[n_cpus++] = cs;
846 for (i = n_cpus - 1; i >= 0; i--) {
847 CPUState *cs = rev[i];
848 PowerPCCPU *cpu = POWERPC_CPU(cs);
849 int index = spapr_get_vcpu_id(cpu);
850 DeviceClass *dc = DEVICE_GET_CLASS(cs);
851 int offset;
853 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
854 continue;
857 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
858 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
859 g_free(nodename);
860 _FDT(offset);
861 spapr_dt_cpu(cs, fdt, offset, spapr);
864 g_free(rev);
867 static int spapr_dt_rng(void *fdt)
869 int node;
870 int ret;
872 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
873 if (node <= 0) {
874 return -1;
876 ret = fdt_setprop_string(fdt, node, "device_type",
877 "ibm,platform-facilities");
878 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
879 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
881 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
882 if (node <= 0) {
883 return -1;
885 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
887 return ret ? -1 : 0;
890 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
892 MachineState *ms = MACHINE(spapr);
893 int rtas;
894 GString *hypertas = g_string_sized_new(256);
895 GString *qemu_hypertas = g_string_sized_new(256);
896 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
897 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
898 memory_region_size(&MACHINE(spapr)->device_memory->mr);
899 uint32_t lrdr_capacity[] = {
900 cpu_to_be32(max_device_addr >> 32),
901 cpu_to_be32(max_device_addr & 0xffffffff),
902 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
903 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
905 uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
906 uint32_t maxdomains[] = {
907 cpu_to_be32(4),
908 maxdomain,
909 maxdomain,
910 maxdomain,
911 cpu_to_be32(spapr->gpu_numa_id),
914 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
916 /* hypertas */
917 add_str(hypertas, "hcall-pft");
918 add_str(hypertas, "hcall-term");
919 add_str(hypertas, "hcall-dabr");
920 add_str(hypertas, "hcall-interrupt");
921 add_str(hypertas, "hcall-tce");
922 add_str(hypertas, "hcall-vio");
923 add_str(hypertas, "hcall-splpar");
924 add_str(hypertas, "hcall-join");
925 add_str(hypertas, "hcall-bulk");
926 add_str(hypertas, "hcall-set-mode");
927 add_str(hypertas, "hcall-sprg0");
928 add_str(hypertas, "hcall-copy");
929 add_str(hypertas, "hcall-debug");
930 add_str(hypertas, "hcall-vphn");
931 add_str(qemu_hypertas, "hcall-memop1");
933 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
934 add_str(hypertas, "hcall-multi-tce");
937 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
938 add_str(hypertas, "hcall-hpt-resize");
941 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
942 hypertas->str, hypertas->len));
943 g_string_free(hypertas, TRUE);
944 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
945 qemu_hypertas->str, qemu_hypertas->len));
946 g_string_free(qemu_hypertas, TRUE);
948 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
949 refpoints, sizeof(refpoints)));
951 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
952 maxdomains, sizeof(maxdomains)));
955 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
956 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
958 * The system reset requirements are driven by existing Linux and PowerVM
959 * implementation which (contrary to PAPR) saves r3 in the error log
960 * structure like machine check, so Linux expects to find the saved r3
961 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
962 * does not look at the error value).
964 * System reset interrupts are not subject to interlock like machine
965 * check, so this memory area could be corrupted if the sreset is
966 * interrupted by a machine check (or vice versa) if it was shared. To
967 * prevent this, system reset uses per-CPU areas for the sreset save
968 * area. A system reset that interrupts a system reset handler could
969 * still overwrite this area, but Linux doesn't try to recover in that
970 * case anyway.
972 * The extra 8 bytes is required because Linux's FWNMI error log check
973 * is off-by-one.
975 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_ERROR_LOG_MAX +
976 ms->smp.max_cpus * sizeof(uint64_t)*2 + sizeof(uint64_t)));
977 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
978 RTAS_ERROR_LOG_MAX));
979 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
980 RTAS_EVENT_SCAN_RATE));
982 g_assert(msi_nonbroken);
983 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
986 * According to PAPR, rtas ibm,os-term does not guarantee a return
987 * back to the guest cpu.
989 * While an additional ibm,extended-os-term property indicates
990 * that rtas call return will always occur. Set this property.
992 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
994 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
995 lrdr_capacity, sizeof(lrdr_capacity)));
997 spapr_dt_rtas_tokens(fdt, rtas);
1001 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1002 * and the XIVE features that the guest may request and thus the valid
1003 * values for bytes 23..26 of option vector 5:
1005 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1006 int chosen)
1008 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1010 char val[2 * 4] = {
1011 23, 0x00, /* XICS / XIVE mode */
1012 24, 0x00, /* Hash/Radix, filled in below. */
1013 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1014 26, 0x40, /* Radix options: GTSE == yes. */
1017 if (spapr->irq->xics && spapr->irq->xive) {
1018 val[1] = SPAPR_OV5_XIVE_BOTH;
1019 } else if (spapr->irq->xive) {
1020 val[1] = SPAPR_OV5_XIVE_EXPLOIT;
1021 } else {
1022 assert(spapr->irq->xics);
1023 val[1] = SPAPR_OV5_XIVE_LEGACY;
1026 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1027 first_ppc_cpu->compat_pvr)) {
1029 * If we're in a pre POWER9 compat mode then the guest should
1030 * do hash and use the legacy interrupt mode
1032 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
1033 val[3] = 0x00; /* Hash */
1034 } else if (kvm_enabled()) {
1035 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1036 val[3] = 0x80; /* OV5_MMU_BOTH */
1037 } else if (kvmppc_has_cap_mmu_radix()) {
1038 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1039 } else {
1040 val[3] = 0x00; /* Hash */
1042 } else {
1043 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1044 val[3] = 0xC0;
1046 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1047 val, sizeof(val)));
1050 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1052 MachineState *machine = MACHINE(spapr);
1053 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1054 int chosen;
1056 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1058 if (reset) {
1059 const char *boot_device = machine->boot_order;
1060 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1061 size_t cb = 0;
1062 char *bootlist = get_boot_devices_list(&cb);
1064 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1065 _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1066 machine->kernel_cmdline));
1069 if (spapr->initrd_size) {
1070 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1071 spapr->initrd_base));
1072 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1073 spapr->initrd_base + spapr->initrd_size));
1076 if (spapr->kernel_size) {
1077 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1078 cpu_to_be64(spapr->kernel_size) };
1080 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1081 &kprop, sizeof(kprop)));
1082 if (spapr->kernel_le) {
1083 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1086 if (boot_menu) {
1087 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1089 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1090 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1091 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1093 if (cb && bootlist) {
1094 int i;
1096 for (i = 0; i < cb; i++) {
1097 if (bootlist[i] == '\n') {
1098 bootlist[i] = ' ';
1101 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1104 if (boot_device && strlen(boot_device)) {
1105 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1108 if (!spapr->has_graphics && stdout_path) {
1110 * "linux,stdout-path" and "stdout" properties are
1111 * deprecated by linux kernel. New platforms should only
1112 * use the "stdout-path" property. Set the new property
1113 * and continue using older property to remain compatible
1114 * with the existing firmware.
1116 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1117 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1121 * We can deal with BAR reallocation just fine, advertise it
1122 * to the guest
1124 if (smc->linux_pci_probe) {
1125 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1128 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1130 g_free(stdout_path);
1131 g_free(bootlist);
1134 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1137 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1139 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1140 * KVM to work under pHyp with some guest co-operation */
1141 int hypervisor;
1142 uint8_t hypercall[16];
1144 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1145 /* indicate KVM hypercall interface */
1146 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1147 if (kvmppc_has_cap_fixup_hcalls()) {
1149 * Older KVM versions with older guest kernels were broken
1150 * with the magic page, don't allow the guest to map it.
1152 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1153 sizeof(hypercall))) {
1154 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1155 hypercall, sizeof(hypercall)));
1160 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1162 MachineState *machine = MACHINE(spapr);
1163 MachineClass *mc = MACHINE_GET_CLASS(machine);
1164 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1165 int ret;
1166 void *fdt;
1167 SpaprPhbState *phb;
1168 char *buf;
1170 fdt = g_malloc0(space);
1171 _FDT((fdt_create_empty_tree(fdt, space)));
1173 /* Root node */
1174 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1175 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1176 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1178 /* Guest UUID & Name*/
1179 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1180 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1181 if (qemu_uuid_set) {
1182 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1184 g_free(buf);
1186 if (qemu_get_vm_name()) {
1187 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1188 qemu_get_vm_name()));
1191 /* Host Model & Serial Number */
1192 if (spapr->host_model) {
1193 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1194 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1195 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1196 g_free(buf);
1199 if (spapr->host_serial) {
1200 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1201 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1202 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1203 g_free(buf);
1206 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1207 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1209 /* /interrupt controller */
1210 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1212 ret = spapr_dt_memory(spapr, fdt);
1213 if (ret < 0) {
1214 error_report("couldn't setup memory nodes in fdt");
1215 exit(1);
1218 /* /vdevice */
1219 spapr_dt_vdevice(spapr->vio_bus, fdt);
1221 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1222 ret = spapr_dt_rng(fdt);
1223 if (ret < 0) {
1224 error_report("could not set up rng device in the fdt");
1225 exit(1);
1229 QLIST_FOREACH(phb, &spapr->phbs, list) {
1230 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1231 if (ret < 0) {
1232 error_report("couldn't setup PCI devices in fdt");
1233 exit(1);
1237 spapr_dt_cpus(fdt, spapr);
1239 if (smc->dr_lmb_enabled) {
1240 _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1243 if (mc->has_hotpluggable_cpus) {
1244 int offset = fdt_path_offset(fdt, "/cpus");
1245 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1246 if (ret < 0) {
1247 error_report("Couldn't set up CPU DR device tree properties");
1248 exit(1);
1252 /* /event-sources */
1253 spapr_dt_events(spapr, fdt);
1255 /* /rtas */
1256 spapr_dt_rtas(spapr, fdt);
1258 /* /chosen */
1259 spapr_dt_chosen(spapr, fdt, reset);
1261 /* /hypervisor */
1262 if (kvm_enabled()) {
1263 spapr_dt_hypervisor(spapr, fdt);
1266 /* Build memory reserve map */
1267 if (reset) {
1268 if (spapr->kernel_size) {
1269 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1270 spapr->kernel_size)));
1272 if (spapr->initrd_size) {
1273 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1274 spapr->initrd_size)));
1278 if (smc->dr_phb_enabled) {
1279 ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1280 if (ret < 0) {
1281 error_report("Couldn't set up PHB DR device tree properties");
1282 exit(1);
1286 /* NVDIMM devices */
1287 if (mc->nvdimm_supported) {
1288 spapr_dt_persistent_memory(fdt);
1291 return fdt;
1294 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1296 SpaprMachineState *spapr = opaque;
1298 return (addr & 0x0fffffff) + spapr->kernel_addr;
1301 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1302 PowerPCCPU *cpu)
1304 CPUPPCState *env = &cpu->env;
1306 /* The TCG path should also be holding the BQL at this point */
1307 g_assert(qemu_mutex_iothread_locked());
1309 if (msr_pr) {
1310 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1311 env->gpr[3] = H_PRIVILEGE;
1312 } else {
1313 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1317 struct LPCRSyncState {
1318 target_ulong value;
1319 target_ulong mask;
1322 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1324 struct LPCRSyncState *s = arg.host_ptr;
1325 PowerPCCPU *cpu = POWERPC_CPU(cs);
1326 CPUPPCState *env = &cpu->env;
1327 target_ulong lpcr;
1329 cpu_synchronize_state(cs);
1330 lpcr = env->spr[SPR_LPCR];
1331 lpcr &= ~s->mask;
1332 lpcr |= s->value;
1333 ppc_store_lpcr(cpu, lpcr);
1336 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1338 CPUState *cs;
1339 struct LPCRSyncState s = {
1340 .value = value,
1341 .mask = mask
1343 CPU_FOREACH(cs) {
1344 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1348 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1350 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1352 /* Copy PATE1:GR into PATE0:HR */
1353 entry->dw0 = spapr->patb_entry & PATE0_HR;
1354 entry->dw1 = spapr->patb_entry;
1357 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1358 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1359 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1360 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1361 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1364 * Get the fd to access the kernel htab, re-opening it if necessary
1366 static int get_htab_fd(SpaprMachineState *spapr)
1368 Error *local_err = NULL;
1370 if (spapr->htab_fd >= 0) {
1371 return spapr->htab_fd;
1374 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1375 if (spapr->htab_fd < 0) {
1376 error_report_err(local_err);
1379 return spapr->htab_fd;
1382 void close_htab_fd(SpaprMachineState *spapr)
1384 if (spapr->htab_fd >= 0) {
1385 close(spapr->htab_fd);
1387 spapr->htab_fd = -1;
1390 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1392 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1394 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1397 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1399 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1401 assert(kvm_enabled());
1403 if (!spapr->htab) {
1404 return 0;
1407 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1410 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1411 hwaddr ptex, int n)
1413 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1414 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1416 if (!spapr->htab) {
1418 * HTAB is controlled by KVM. Fetch into temporary buffer
1420 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1421 kvmppc_read_hptes(hptes, ptex, n);
1422 return hptes;
1426 * HTAB is controlled by QEMU. Just point to the internally
1427 * accessible PTEG.
1429 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1432 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1433 const ppc_hash_pte64_t *hptes,
1434 hwaddr ptex, int n)
1436 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1438 if (!spapr->htab) {
1439 g_free((void *)hptes);
1442 /* Nothing to do for qemu managed HPT */
1445 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1446 uint64_t pte0, uint64_t pte1)
1448 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1449 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1451 if (!spapr->htab) {
1452 kvmppc_write_hpte(ptex, pte0, pte1);
1453 } else {
1454 if (pte0 & HPTE64_V_VALID) {
1455 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1457 * When setting valid, we write PTE1 first. This ensures
1458 * proper synchronization with the reading code in
1459 * ppc_hash64_pteg_search()
1461 smp_wmb();
1462 stq_p(spapr->htab + offset, pte0);
1463 } else {
1464 stq_p(spapr->htab + offset, pte0);
1466 * When clearing it we set PTE0 first. This ensures proper
1467 * synchronization with the reading code in
1468 * ppc_hash64_pteg_search()
1470 smp_wmb();
1471 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1476 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1477 uint64_t pte1)
1479 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1480 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1482 if (!spapr->htab) {
1483 /* There should always be a hash table when this is called */
1484 error_report("spapr_hpte_set_c called with no hash table !");
1485 return;
1488 /* The HW performs a non-atomic byte update */
1489 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1492 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1493 uint64_t pte1)
1495 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1496 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1498 if (!spapr->htab) {
1499 /* There should always be a hash table when this is called */
1500 error_report("spapr_hpte_set_r called with no hash table !");
1501 return;
1504 /* The HW performs a non-atomic byte update */
1505 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1508 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1510 int shift;
1512 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1513 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1514 * that's much more than is needed for Linux guests */
1515 shift = ctz64(pow2ceil(ramsize)) - 7;
1516 shift = MAX(shift, 18); /* Minimum architected size */
1517 shift = MIN(shift, 46); /* Maximum architected size */
1518 return shift;
1521 void spapr_free_hpt(SpaprMachineState *spapr)
1523 g_free(spapr->htab);
1524 spapr->htab = NULL;
1525 spapr->htab_shift = 0;
1526 close_htab_fd(spapr);
1529 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1530 Error **errp)
1532 long rc;
1534 /* Clean up any HPT info from a previous boot */
1535 spapr_free_hpt(spapr);
1537 rc = kvmppc_reset_htab(shift);
1538 if (rc < 0) {
1539 /* kernel-side HPT needed, but couldn't allocate one */
1540 error_setg_errno(errp, errno,
1541 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1542 shift);
1543 /* This is almost certainly fatal, but if the caller really
1544 * wants to carry on with shift == 0, it's welcome to try */
1545 } else if (rc > 0) {
1546 /* kernel-side HPT allocated */
1547 if (rc != shift) {
1548 error_setg(errp,
1549 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1550 shift, rc);
1553 spapr->htab_shift = shift;
1554 spapr->htab = NULL;
1555 } else {
1556 /* kernel-side HPT not needed, allocate in userspace instead */
1557 size_t size = 1ULL << shift;
1558 int i;
1560 spapr->htab = qemu_memalign(size, size);
1561 if (!spapr->htab) {
1562 error_setg_errno(errp, errno,
1563 "Could not allocate HPT of order %d", shift);
1564 return;
1567 memset(spapr->htab, 0, size);
1568 spapr->htab_shift = shift;
1570 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1571 DIRTY_HPTE(HPTE(spapr->htab, i));
1574 /* We're setting up a hash table, so that means we're not radix */
1575 spapr->patb_entry = 0;
1576 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1579 void spapr_setup_hpt(SpaprMachineState *spapr)
1581 int hpt_shift;
1583 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1584 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1585 } else {
1586 uint64_t current_ram_size;
1588 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1589 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1591 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1593 if (kvm_enabled()) {
1594 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1596 /* Check our RMA fits in the possible VRMA */
1597 if (vrma_limit < spapr->rma_size) {
1598 error_report("Unable to create %" HWADDR_PRIu
1599 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1600 spapr->rma_size / MiB, vrma_limit / MiB);
1601 exit(EXIT_FAILURE);
1606 static int spapr_reset_drcs(Object *child, void *opaque)
1608 SpaprDrc *drc =
1609 (SpaprDrc *) object_dynamic_cast(child,
1610 TYPE_SPAPR_DR_CONNECTOR);
1612 if (drc) {
1613 spapr_drc_reset(drc);
1616 return 0;
1619 static void spapr_machine_reset(MachineState *machine)
1621 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1622 PowerPCCPU *first_ppc_cpu;
1623 hwaddr fdt_addr;
1624 void *fdt;
1625 int rc;
1627 kvmppc_svm_off(&error_fatal);
1628 spapr_caps_apply(spapr);
1630 first_ppc_cpu = POWERPC_CPU(first_cpu);
1631 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1632 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1633 spapr->max_compat_pvr)) {
1635 * If using KVM with radix mode available, VCPUs can be started
1636 * without a HPT because KVM will start them in radix mode.
1637 * Set the GR bit in PATE so that we know there is no HPT.
1639 spapr->patb_entry = PATE1_GR;
1640 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1641 } else {
1642 spapr_setup_hpt(spapr);
1645 qemu_devices_reset();
1647 spapr_ovec_cleanup(spapr->ov5_cas);
1648 spapr->ov5_cas = spapr_ovec_new();
1650 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1653 * This is fixing some of the default configuration of the XIVE
1654 * devices. To be called after the reset of the machine devices.
1656 spapr_irq_reset(spapr, &error_fatal);
1659 * There is no CAS under qtest. Simulate one to please the code that
1660 * depends on spapr->ov5_cas. This is especially needed to test device
1661 * unplug, so we do that before resetting the DRCs.
1663 if (qtest_enabled()) {
1664 spapr_ovec_cleanup(spapr->ov5_cas);
1665 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1668 /* DRC reset may cause a device to be unplugged. This will cause troubles
1669 * if this device is used by another device (eg, a running vhost backend
1670 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1671 * situations, we reset DRCs after all devices have been reset.
1673 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1675 spapr_clear_pending_events(spapr);
1678 * We place the device tree and RTAS just below either the top of the RMA,
1679 * or just below 2GB, whichever is lower, so that it can be
1680 * processed with 32-bit real mode code if necessary
1682 fdt_addr = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FDT_MAX_SIZE;
1684 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1686 rc = fdt_pack(fdt);
1688 /* Should only fail if we've built a corrupted tree */
1689 assert(rc == 0);
1691 /* Load the fdt */
1692 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1693 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1694 g_free(spapr->fdt_blob);
1695 spapr->fdt_size = fdt_totalsize(fdt);
1696 spapr->fdt_initial_size = spapr->fdt_size;
1697 spapr->fdt_blob = fdt;
1699 /* Set up the entry state */
1700 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 0, fdt_addr, 0);
1701 first_ppc_cpu->env.gpr[5] = 0;
1703 spapr->fwnmi_system_reset_addr = -1;
1704 spapr->fwnmi_machine_check_addr = -1;
1705 spapr->fwnmi_machine_check_interlock = -1;
1707 /* Signal all vCPUs waiting on this condition */
1708 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1710 migrate_del_blocker(spapr->fwnmi_migration_blocker);
1713 static void spapr_create_nvram(SpaprMachineState *spapr)
1715 DeviceState *dev = qdev_new("spapr-nvram");
1716 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1718 if (dinfo) {
1719 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1720 &error_fatal);
1723 qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1725 spapr->nvram = (struct SpaprNvram *)dev;
1728 static void spapr_rtc_create(SpaprMachineState *spapr)
1730 object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1731 sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1732 &error_fatal, NULL);
1733 qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1734 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1735 "date");
1738 /* Returns whether we want to use VGA or not */
1739 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1741 switch (vga_interface_type) {
1742 case VGA_NONE:
1743 return false;
1744 case VGA_DEVICE:
1745 return true;
1746 case VGA_STD:
1747 case VGA_VIRTIO:
1748 case VGA_CIRRUS:
1749 return pci_vga_init(pci_bus) != NULL;
1750 default:
1751 error_setg(errp,
1752 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1753 return false;
1757 static int spapr_pre_load(void *opaque)
1759 int rc;
1761 rc = spapr_caps_pre_load(opaque);
1762 if (rc) {
1763 return rc;
1766 return 0;
1769 static int spapr_post_load(void *opaque, int version_id)
1771 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1772 int err = 0;
1774 err = spapr_caps_post_migration(spapr);
1775 if (err) {
1776 return err;
1780 * In earlier versions, there was no separate qdev for the PAPR
1781 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1782 * So when migrating from those versions, poke the incoming offset
1783 * value into the RTC device
1785 if (version_id < 3) {
1786 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1787 if (err) {
1788 return err;
1792 if (kvm_enabled() && spapr->patb_entry) {
1793 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1794 bool radix = !!(spapr->patb_entry & PATE1_GR);
1795 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1798 * Update LPCR:HR and UPRT as they may not be set properly in
1799 * the stream
1801 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1802 LPCR_HR | LPCR_UPRT);
1804 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1805 if (err) {
1806 error_report("Process table config unsupported by the host");
1807 return -EINVAL;
1811 err = spapr_irq_post_load(spapr, version_id);
1812 if (err) {
1813 return err;
1816 return err;
1819 static int spapr_pre_save(void *opaque)
1821 int rc;
1823 rc = spapr_caps_pre_save(opaque);
1824 if (rc) {
1825 return rc;
1828 return 0;
1831 static bool version_before_3(void *opaque, int version_id)
1833 return version_id < 3;
1836 static bool spapr_pending_events_needed(void *opaque)
1838 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1839 return !QTAILQ_EMPTY(&spapr->pending_events);
1842 static const VMStateDescription vmstate_spapr_event_entry = {
1843 .name = "spapr_event_log_entry",
1844 .version_id = 1,
1845 .minimum_version_id = 1,
1846 .fields = (VMStateField[]) {
1847 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1848 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1849 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1850 NULL, extended_length),
1851 VMSTATE_END_OF_LIST()
1855 static const VMStateDescription vmstate_spapr_pending_events = {
1856 .name = "spapr_pending_events",
1857 .version_id = 1,
1858 .minimum_version_id = 1,
1859 .needed = spapr_pending_events_needed,
1860 .fields = (VMStateField[]) {
1861 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1862 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1863 VMSTATE_END_OF_LIST()
1867 static bool spapr_ov5_cas_needed(void *opaque)
1869 SpaprMachineState *spapr = opaque;
1870 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1871 bool cas_needed;
1873 /* Prior to the introduction of SpaprOptionVector, we had two option
1874 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1875 * Both of these options encode machine topology into the device-tree
1876 * in such a way that the now-booted OS should still be able to interact
1877 * appropriately with QEMU regardless of what options were actually
1878 * negotiatied on the source side.
1880 * As such, we can avoid migrating the CAS-negotiated options if these
1881 * are the only options available on the current machine/platform.
1882 * Since these are the only options available for pseries-2.7 and
1883 * earlier, this allows us to maintain old->new/new->old migration
1884 * compatibility.
1886 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1887 * via default pseries-2.8 machines and explicit command-line parameters.
1888 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1889 * of the actual CAS-negotiated values to continue working properly. For
1890 * example, availability of memory unplug depends on knowing whether
1891 * OV5_HP_EVT was negotiated via CAS.
1893 * Thus, for any cases where the set of available CAS-negotiatable
1894 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1895 * include the CAS-negotiated options in the migration stream, unless
1896 * if they affect boot time behaviour only.
1898 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1899 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1900 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1902 /* We need extra information if we have any bits outside the mask
1903 * defined above */
1904 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1906 spapr_ovec_cleanup(ov5_mask);
1908 return cas_needed;
1911 static const VMStateDescription vmstate_spapr_ov5_cas = {
1912 .name = "spapr_option_vector_ov5_cas",
1913 .version_id = 1,
1914 .minimum_version_id = 1,
1915 .needed = spapr_ov5_cas_needed,
1916 .fields = (VMStateField[]) {
1917 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1918 vmstate_spapr_ovec, SpaprOptionVector),
1919 VMSTATE_END_OF_LIST()
1923 static bool spapr_patb_entry_needed(void *opaque)
1925 SpaprMachineState *spapr = opaque;
1927 return !!spapr->patb_entry;
1930 static const VMStateDescription vmstate_spapr_patb_entry = {
1931 .name = "spapr_patb_entry",
1932 .version_id = 1,
1933 .minimum_version_id = 1,
1934 .needed = spapr_patb_entry_needed,
1935 .fields = (VMStateField[]) {
1936 VMSTATE_UINT64(patb_entry, SpaprMachineState),
1937 VMSTATE_END_OF_LIST()
1941 static bool spapr_irq_map_needed(void *opaque)
1943 SpaprMachineState *spapr = opaque;
1945 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1948 static const VMStateDescription vmstate_spapr_irq_map = {
1949 .name = "spapr_irq_map",
1950 .version_id = 1,
1951 .minimum_version_id = 1,
1952 .needed = spapr_irq_map_needed,
1953 .fields = (VMStateField[]) {
1954 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1955 VMSTATE_END_OF_LIST()
1959 static bool spapr_dtb_needed(void *opaque)
1961 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1963 return smc->update_dt_enabled;
1966 static int spapr_dtb_pre_load(void *opaque)
1968 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1970 g_free(spapr->fdt_blob);
1971 spapr->fdt_blob = NULL;
1972 spapr->fdt_size = 0;
1974 return 0;
1977 static const VMStateDescription vmstate_spapr_dtb = {
1978 .name = "spapr_dtb",
1979 .version_id = 1,
1980 .minimum_version_id = 1,
1981 .needed = spapr_dtb_needed,
1982 .pre_load = spapr_dtb_pre_load,
1983 .fields = (VMStateField[]) {
1984 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
1985 VMSTATE_UINT32(fdt_size, SpaprMachineState),
1986 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
1987 fdt_size),
1988 VMSTATE_END_OF_LIST()
1992 static bool spapr_fwnmi_needed(void *opaque)
1994 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1996 return spapr->fwnmi_machine_check_addr != -1;
1999 static int spapr_fwnmi_pre_save(void *opaque)
2001 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2004 * Check if machine check handling is in progress and print a
2005 * warning message.
2007 if (spapr->fwnmi_machine_check_interlock != -1) {
2008 warn_report("A machine check is being handled during migration. The"
2009 "handler may run and log hardware error on the destination");
2012 return 0;
2015 static const VMStateDescription vmstate_spapr_fwnmi = {
2016 .name = "spapr_fwnmi",
2017 .version_id = 1,
2018 .minimum_version_id = 1,
2019 .needed = spapr_fwnmi_needed,
2020 .pre_save = spapr_fwnmi_pre_save,
2021 .fields = (VMStateField[]) {
2022 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
2023 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
2024 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
2025 VMSTATE_END_OF_LIST()
2029 static const VMStateDescription vmstate_spapr = {
2030 .name = "spapr",
2031 .version_id = 3,
2032 .minimum_version_id = 1,
2033 .pre_load = spapr_pre_load,
2034 .post_load = spapr_post_load,
2035 .pre_save = spapr_pre_save,
2036 .fields = (VMStateField[]) {
2037 /* used to be @next_irq */
2038 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2040 /* RTC offset */
2041 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2043 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2044 VMSTATE_END_OF_LIST()
2046 .subsections = (const VMStateDescription*[]) {
2047 &vmstate_spapr_ov5_cas,
2048 &vmstate_spapr_patb_entry,
2049 &vmstate_spapr_pending_events,
2050 &vmstate_spapr_cap_htm,
2051 &vmstate_spapr_cap_vsx,
2052 &vmstate_spapr_cap_dfp,
2053 &vmstate_spapr_cap_cfpc,
2054 &vmstate_spapr_cap_sbbc,
2055 &vmstate_spapr_cap_ibs,
2056 &vmstate_spapr_cap_hpt_maxpagesize,
2057 &vmstate_spapr_irq_map,
2058 &vmstate_spapr_cap_nested_kvm_hv,
2059 &vmstate_spapr_dtb,
2060 &vmstate_spapr_cap_large_decr,
2061 &vmstate_spapr_cap_ccf_assist,
2062 &vmstate_spapr_cap_fwnmi,
2063 &vmstate_spapr_fwnmi,
2064 NULL
2068 static int htab_save_setup(QEMUFile *f, void *opaque)
2070 SpaprMachineState *spapr = opaque;
2072 /* "Iteration" header */
2073 if (!spapr->htab_shift) {
2074 qemu_put_be32(f, -1);
2075 } else {
2076 qemu_put_be32(f, spapr->htab_shift);
2079 if (spapr->htab) {
2080 spapr->htab_save_index = 0;
2081 spapr->htab_first_pass = true;
2082 } else {
2083 if (spapr->htab_shift) {
2084 assert(kvm_enabled());
2089 return 0;
2092 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2093 int chunkstart, int n_valid, int n_invalid)
2095 qemu_put_be32(f, chunkstart);
2096 qemu_put_be16(f, n_valid);
2097 qemu_put_be16(f, n_invalid);
2098 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2099 HASH_PTE_SIZE_64 * n_valid);
2102 static void htab_save_end_marker(QEMUFile *f)
2104 qemu_put_be32(f, 0);
2105 qemu_put_be16(f, 0);
2106 qemu_put_be16(f, 0);
2109 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2110 int64_t max_ns)
2112 bool has_timeout = max_ns != -1;
2113 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2114 int index = spapr->htab_save_index;
2115 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2117 assert(spapr->htab_first_pass);
2119 do {
2120 int chunkstart;
2122 /* Consume invalid HPTEs */
2123 while ((index < htabslots)
2124 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2125 CLEAN_HPTE(HPTE(spapr->htab, index));
2126 index++;
2129 /* Consume valid HPTEs */
2130 chunkstart = index;
2131 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2132 && HPTE_VALID(HPTE(spapr->htab, index))) {
2133 CLEAN_HPTE(HPTE(spapr->htab, index));
2134 index++;
2137 if (index > chunkstart) {
2138 int n_valid = index - chunkstart;
2140 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2142 if (has_timeout &&
2143 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2144 break;
2147 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2149 if (index >= htabslots) {
2150 assert(index == htabslots);
2151 index = 0;
2152 spapr->htab_first_pass = false;
2154 spapr->htab_save_index = index;
2157 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2158 int64_t max_ns)
2160 bool final = max_ns < 0;
2161 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2162 int examined = 0, sent = 0;
2163 int index = spapr->htab_save_index;
2164 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2166 assert(!spapr->htab_first_pass);
2168 do {
2169 int chunkstart, invalidstart;
2171 /* Consume non-dirty HPTEs */
2172 while ((index < htabslots)
2173 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2174 index++;
2175 examined++;
2178 chunkstart = index;
2179 /* Consume valid dirty HPTEs */
2180 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2181 && HPTE_DIRTY(HPTE(spapr->htab, index))
2182 && HPTE_VALID(HPTE(spapr->htab, index))) {
2183 CLEAN_HPTE(HPTE(spapr->htab, index));
2184 index++;
2185 examined++;
2188 invalidstart = index;
2189 /* Consume invalid dirty HPTEs */
2190 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2191 && HPTE_DIRTY(HPTE(spapr->htab, index))
2192 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2193 CLEAN_HPTE(HPTE(spapr->htab, index));
2194 index++;
2195 examined++;
2198 if (index > chunkstart) {
2199 int n_valid = invalidstart - chunkstart;
2200 int n_invalid = index - invalidstart;
2202 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2203 sent += index - chunkstart;
2205 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2206 break;
2210 if (examined >= htabslots) {
2211 break;
2214 if (index >= htabslots) {
2215 assert(index == htabslots);
2216 index = 0;
2218 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2220 if (index >= htabslots) {
2221 assert(index == htabslots);
2222 index = 0;
2225 spapr->htab_save_index = index;
2227 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2230 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2231 #define MAX_KVM_BUF_SIZE 2048
2233 static int htab_save_iterate(QEMUFile *f, void *opaque)
2235 SpaprMachineState *spapr = opaque;
2236 int fd;
2237 int rc = 0;
2239 /* Iteration header */
2240 if (!spapr->htab_shift) {
2241 qemu_put_be32(f, -1);
2242 return 1;
2243 } else {
2244 qemu_put_be32(f, 0);
2247 if (!spapr->htab) {
2248 assert(kvm_enabled());
2250 fd = get_htab_fd(spapr);
2251 if (fd < 0) {
2252 return fd;
2255 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2256 if (rc < 0) {
2257 return rc;
2259 } else if (spapr->htab_first_pass) {
2260 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2261 } else {
2262 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2265 htab_save_end_marker(f);
2267 return rc;
2270 static int htab_save_complete(QEMUFile *f, void *opaque)
2272 SpaprMachineState *spapr = opaque;
2273 int fd;
2275 /* Iteration header */
2276 if (!spapr->htab_shift) {
2277 qemu_put_be32(f, -1);
2278 return 0;
2279 } else {
2280 qemu_put_be32(f, 0);
2283 if (!spapr->htab) {
2284 int rc;
2286 assert(kvm_enabled());
2288 fd = get_htab_fd(spapr);
2289 if (fd < 0) {
2290 return fd;
2293 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2294 if (rc < 0) {
2295 return rc;
2297 } else {
2298 if (spapr->htab_first_pass) {
2299 htab_save_first_pass(f, spapr, -1);
2301 htab_save_later_pass(f, spapr, -1);
2304 /* End marker */
2305 htab_save_end_marker(f);
2307 return 0;
2310 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2312 SpaprMachineState *spapr = opaque;
2313 uint32_t section_hdr;
2314 int fd = -1;
2315 Error *local_err = NULL;
2317 if (version_id < 1 || version_id > 1) {
2318 error_report("htab_load() bad version");
2319 return -EINVAL;
2322 section_hdr = qemu_get_be32(f);
2324 if (section_hdr == -1) {
2325 spapr_free_hpt(spapr);
2326 return 0;
2329 if (section_hdr) {
2330 /* First section gives the htab size */
2331 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2332 if (local_err) {
2333 error_report_err(local_err);
2334 return -EINVAL;
2336 return 0;
2339 if (!spapr->htab) {
2340 assert(kvm_enabled());
2342 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2343 if (fd < 0) {
2344 error_report_err(local_err);
2345 return fd;
2349 while (true) {
2350 uint32_t index;
2351 uint16_t n_valid, n_invalid;
2353 index = qemu_get_be32(f);
2354 n_valid = qemu_get_be16(f);
2355 n_invalid = qemu_get_be16(f);
2357 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2358 /* End of Stream */
2359 break;
2362 if ((index + n_valid + n_invalid) >
2363 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2364 /* Bad index in stream */
2365 error_report(
2366 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2367 index, n_valid, n_invalid, spapr->htab_shift);
2368 return -EINVAL;
2371 if (spapr->htab) {
2372 if (n_valid) {
2373 qemu_get_buffer(f, HPTE(spapr->htab, index),
2374 HASH_PTE_SIZE_64 * n_valid);
2376 if (n_invalid) {
2377 memset(HPTE(spapr->htab, index + n_valid), 0,
2378 HASH_PTE_SIZE_64 * n_invalid);
2380 } else {
2381 int rc;
2383 assert(fd >= 0);
2385 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2386 if (rc < 0) {
2387 return rc;
2392 if (!spapr->htab) {
2393 assert(fd >= 0);
2394 close(fd);
2397 return 0;
2400 static void htab_save_cleanup(void *opaque)
2402 SpaprMachineState *spapr = opaque;
2404 close_htab_fd(spapr);
2407 static SaveVMHandlers savevm_htab_handlers = {
2408 .save_setup = htab_save_setup,
2409 .save_live_iterate = htab_save_iterate,
2410 .save_live_complete_precopy = htab_save_complete,
2411 .save_cleanup = htab_save_cleanup,
2412 .load_state = htab_load,
2415 static void spapr_boot_set(void *opaque, const char *boot_device,
2416 Error **errp)
2418 MachineState *machine = MACHINE(opaque);
2419 machine->boot_order = g_strdup(boot_device);
2422 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2424 MachineState *machine = MACHINE(spapr);
2425 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2426 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2427 int i;
2429 for (i = 0; i < nr_lmbs; i++) {
2430 uint64_t addr;
2432 addr = i * lmb_size + machine->device_memory->base;
2433 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2434 addr / lmb_size);
2439 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2440 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2441 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2443 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2445 int i;
2447 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2448 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2449 " is not aligned to %" PRIu64 " MiB",
2450 machine->ram_size,
2451 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2452 return;
2455 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2456 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2457 " is not aligned to %" PRIu64 " MiB",
2458 machine->ram_size,
2459 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2460 return;
2463 for (i = 0; i < machine->numa_state->num_nodes; i++) {
2464 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2465 error_setg(errp,
2466 "Node %d memory size 0x%" PRIx64
2467 " is not aligned to %" PRIu64 " MiB",
2468 i, machine->numa_state->nodes[i].node_mem,
2469 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2470 return;
2475 /* find cpu slot in machine->possible_cpus by core_id */
2476 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2478 int index = id / ms->smp.threads;
2480 if (index >= ms->possible_cpus->len) {
2481 return NULL;
2483 if (idx) {
2484 *idx = index;
2486 return &ms->possible_cpus->cpus[index];
2489 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2491 MachineState *ms = MACHINE(spapr);
2492 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2493 Error *local_err = NULL;
2494 bool vsmt_user = !!spapr->vsmt;
2495 int kvm_smt = kvmppc_smt_threads();
2496 int ret;
2497 unsigned int smp_threads = ms->smp.threads;
2499 if (!kvm_enabled() && (smp_threads > 1)) {
2500 error_setg(errp, "TCG cannot support more than 1 thread/core "
2501 "on a pseries machine");
2502 return;
2504 if (!is_power_of_2(smp_threads)) {
2505 error_setg(errp, "Cannot support %d threads/core on a pseries "
2506 "machine because it must be a power of 2", smp_threads);
2507 return;
2510 /* Detemine the VSMT mode to use: */
2511 if (vsmt_user) {
2512 if (spapr->vsmt < smp_threads) {
2513 error_setg(errp, "Cannot support VSMT mode %d"
2514 " because it must be >= threads/core (%d)",
2515 spapr->vsmt, smp_threads);
2516 return;
2518 /* In this case, spapr->vsmt has been set by the command line */
2519 } else if (!smc->smp_threads_vsmt) {
2521 * Default VSMT value is tricky, because we need it to be as
2522 * consistent as possible (for migration), but this requires
2523 * changing it for at least some existing cases. We pick 8 as
2524 * the value that we'd get with KVM on POWER8, the
2525 * overwhelmingly common case in production systems.
2527 spapr->vsmt = MAX(8, smp_threads);
2528 } else {
2529 spapr->vsmt = smp_threads;
2532 /* KVM: If necessary, set the SMT mode: */
2533 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2534 ret = kvmppc_set_smt_threads(spapr->vsmt);
2535 if (ret) {
2536 /* Looks like KVM isn't able to change VSMT mode */
2537 error_setg(&local_err,
2538 "Failed to set KVM's VSMT mode to %d (errno %d)",
2539 spapr->vsmt, ret);
2540 /* We can live with that if the default one is big enough
2541 * for the number of threads, and a submultiple of the one
2542 * we want. In this case we'll waste some vcpu ids, but
2543 * behaviour will be correct */
2544 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2545 warn_report_err(local_err);
2546 } else {
2547 if (!vsmt_user) {
2548 error_append_hint(&local_err,
2549 "On PPC, a VM with %d threads/core"
2550 " on a host with %d threads/core"
2551 " requires the use of VSMT mode %d.\n",
2552 smp_threads, kvm_smt, spapr->vsmt);
2554 kvmppc_error_append_smt_possible_hint(&local_err);
2555 error_propagate(errp, local_err);
2559 /* else TCG: nothing to do currently */
2562 static void spapr_init_cpus(SpaprMachineState *spapr)
2564 MachineState *machine = MACHINE(spapr);
2565 MachineClass *mc = MACHINE_GET_CLASS(machine);
2566 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2567 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2568 const CPUArchIdList *possible_cpus;
2569 unsigned int smp_cpus = machine->smp.cpus;
2570 unsigned int smp_threads = machine->smp.threads;
2571 unsigned int max_cpus = machine->smp.max_cpus;
2572 int boot_cores_nr = smp_cpus / smp_threads;
2573 int i;
2575 possible_cpus = mc->possible_cpu_arch_ids(machine);
2576 if (mc->has_hotpluggable_cpus) {
2577 if (smp_cpus % smp_threads) {
2578 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2579 smp_cpus, smp_threads);
2580 exit(1);
2582 if (max_cpus % smp_threads) {
2583 error_report("max_cpus (%u) must be multiple of threads (%u)",
2584 max_cpus, smp_threads);
2585 exit(1);
2587 } else {
2588 if (max_cpus != smp_cpus) {
2589 error_report("This machine version does not support CPU hotplug");
2590 exit(1);
2592 boot_cores_nr = possible_cpus->len;
2595 if (smc->pre_2_10_has_unused_icps) {
2596 int i;
2598 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2599 /* Dummy entries get deregistered when real ICPState objects
2600 * are registered during CPU core hotplug.
2602 pre_2_10_vmstate_register_dummy_icp(i);
2606 for (i = 0; i < possible_cpus->len; i++) {
2607 int core_id = i * smp_threads;
2609 if (mc->has_hotpluggable_cpus) {
2610 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2611 spapr_vcpu_id(spapr, core_id));
2614 if (i < boot_cores_nr) {
2615 Object *core = object_new(type);
2616 int nr_threads = smp_threads;
2618 /* Handle the partially filled core for older machine types */
2619 if ((i + 1) * smp_threads >= smp_cpus) {
2620 nr_threads = smp_cpus - i * smp_threads;
2623 object_property_set_int(core, "nr-threads", nr_threads,
2624 &error_fatal);
2625 object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2626 &error_fatal);
2627 qdev_realize(DEVICE(core), NULL, &error_fatal);
2629 object_unref(core);
2634 static PCIHostState *spapr_create_default_phb(void)
2636 DeviceState *dev;
2638 dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2639 qdev_prop_set_uint32(dev, "index", 0);
2640 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2642 return PCI_HOST_BRIDGE(dev);
2645 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2647 MachineState *machine = MACHINE(spapr);
2648 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2649 hwaddr rma_size = machine->ram_size;
2650 hwaddr node0_size = spapr_node0_size(machine);
2652 /* RMA has to fit in the first NUMA node */
2653 rma_size = MIN(rma_size, node0_size);
2656 * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2657 * never exceed that
2659 rma_size = MIN(rma_size, 1 * TiB);
2662 * Clamp the RMA size based on machine type. This is for
2663 * migration compatibility with older qemu versions, which limited
2664 * the RMA size for complicated and mostly bad reasons.
2666 if (smc->rma_limit) {
2667 rma_size = MIN(rma_size, smc->rma_limit);
2670 if (rma_size < MIN_RMA_SLOF) {
2671 error_setg(errp,
2672 "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2673 "ldMiB guest RMA (Real Mode Area memory)",
2674 MIN_RMA_SLOF / MiB);
2675 return 0;
2678 return rma_size;
2681 /* pSeries LPAR / sPAPR hardware init */
2682 static void spapr_machine_init(MachineState *machine)
2684 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2685 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2686 MachineClass *mc = MACHINE_GET_CLASS(machine);
2687 const char *kernel_filename = machine->kernel_filename;
2688 const char *initrd_filename = machine->initrd_filename;
2689 PCIHostState *phb;
2690 int i;
2691 MemoryRegion *sysmem = get_system_memory();
2692 long load_limit, fw_size;
2693 char *filename;
2694 Error *resize_hpt_err = NULL;
2696 msi_nonbroken = true;
2698 QLIST_INIT(&spapr->phbs);
2699 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2701 /* Determine capabilities to run with */
2702 spapr_caps_init(spapr);
2704 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2705 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2707 * If the user explicitly requested a mode we should either
2708 * supply it, or fail completely (which we do below). But if
2709 * it's not set explicitly, we reset our mode to something
2710 * that works
2712 if (resize_hpt_err) {
2713 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2714 error_free(resize_hpt_err);
2715 resize_hpt_err = NULL;
2716 } else {
2717 spapr->resize_hpt = smc->resize_hpt_default;
2721 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2723 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2725 * User requested HPT resize, but this host can't supply it. Bail out
2727 error_report_err(resize_hpt_err);
2728 exit(1);
2730 error_free(resize_hpt_err);
2732 spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2734 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2735 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2738 * VSMT must be set in order to be able to compute VCPU ids, ie to
2739 * call spapr_max_server_number() or spapr_vcpu_id().
2741 spapr_set_vsmt_mode(spapr, &error_fatal);
2743 /* Set up Interrupt Controller before we create the VCPUs */
2744 spapr_irq_init(spapr, &error_fatal);
2746 /* Set up containers for ibm,client-architecture-support negotiated options
2748 spapr->ov5 = spapr_ovec_new();
2749 spapr->ov5_cas = spapr_ovec_new();
2751 if (smc->dr_lmb_enabled) {
2752 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2753 spapr_validate_node_memory(machine, &error_fatal);
2756 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2758 /* advertise support for dedicated HP event source to guests */
2759 if (spapr->use_hotplug_event_source) {
2760 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2763 /* advertise support for HPT resizing */
2764 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2765 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2768 /* advertise support for ibm,dyamic-memory-v2 */
2769 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2771 /* advertise XIVE on POWER9 machines */
2772 if (spapr->irq->xive) {
2773 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2776 /* init CPUs */
2777 spapr_init_cpus(spapr);
2780 * check we don't have a memory-less/cpu-less NUMA node
2781 * Firmware relies on the existing memory/cpu topology to provide the
2782 * NUMA topology to the kernel.
2783 * And the linux kernel needs to know the NUMA topology at start
2784 * to be able to hotplug CPUs later.
2786 if (machine->numa_state->num_nodes) {
2787 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2788 /* check for memory-less node */
2789 if (machine->numa_state->nodes[i].node_mem == 0) {
2790 CPUState *cs;
2791 int found = 0;
2792 /* check for cpu-less node */
2793 CPU_FOREACH(cs) {
2794 PowerPCCPU *cpu = POWERPC_CPU(cs);
2795 if (cpu->node_id == i) {
2796 found = 1;
2797 break;
2800 /* memory-less and cpu-less node */
2801 if (!found) {
2802 error_report(
2803 "Memory-less/cpu-less nodes are not supported (node %d)",
2805 exit(1);
2813 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
2814 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
2815 * called from vPHB reset handler so we initialize the counter here.
2816 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
2817 * must be equally distant from any other node.
2818 * The final value of spapr->gpu_numa_id is going to be written to
2819 * max-associativity-domains in spapr_build_fdt().
2821 spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes);
2823 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2824 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2825 spapr->max_compat_pvr)) {
2826 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2827 /* KVM and TCG always allow GTSE with radix... */
2828 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2830 /* ... but not with hash (currently). */
2832 if (kvm_enabled()) {
2833 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2834 kvmppc_enable_logical_ci_hcalls();
2835 kvmppc_enable_set_mode_hcall();
2837 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2838 kvmppc_enable_clear_ref_mod_hcalls();
2840 /* Enable H_PAGE_INIT */
2841 kvmppc_enable_h_page_init();
2844 /* map RAM */
2845 memory_region_add_subregion(sysmem, 0, machine->ram);
2847 /* always allocate the device memory information */
2848 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2850 /* initialize hotplug memory address space */
2851 if (machine->ram_size < machine->maxram_size) {
2852 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2854 * Limit the number of hotpluggable memory slots to half the number
2855 * slots that KVM supports, leaving the other half for PCI and other
2856 * devices. However ensure that number of slots doesn't drop below 32.
2858 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2859 SPAPR_MAX_RAM_SLOTS;
2861 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2862 max_memslots = SPAPR_MAX_RAM_SLOTS;
2864 if (machine->ram_slots > max_memslots) {
2865 error_report("Specified number of memory slots %"
2866 PRIu64" exceeds max supported %d",
2867 machine->ram_slots, max_memslots);
2868 exit(1);
2871 machine->device_memory->base = ROUND_UP(machine->ram_size,
2872 SPAPR_DEVICE_MEM_ALIGN);
2873 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2874 "device-memory", device_mem_size);
2875 memory_region_add_subregion(sysmem, machine->device_memory->base,
2876 &machine->device_memory->mr);
2879 if (smc->dr_lmb_enabled) {
2880 spapr_create_lmb_dr_connectors(spapr);
2883 if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2884 /* Create the error string for live migration blocker */
2885 error_setg(&spapr->fwnmi_migration_blocker,
2886 "A machine check is being handled during migration. The handler"
2887 "may run and log hardware error on the destination");
2890 if (mc->nvdimm_supported) {
2891 spapr_create_nvdimm_dr_connectors(spapr);
2894 /* Set up RTAS event infrastructure */
2895 spapr_events_init(spapr);
2897 /* Set up the RTC RTAS interfaces */
2898 spapr_rtc_create(spapr);
2900 /* Set up VIO bus */
2901 spapr->vio_bus = spapr_vio_bus_init();
2903 for (i = 0; i < serial_max_hds(); i++) {
2904 if (serial_hd(i)) {
2905 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2909 /* We always have at least the nvram device on VIO */
2910 spapr_create_nvram(spapr);
2913 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2914 * connectors (described in root DT node's "ibm,drc-types" property)
2915 * are pre-initialized here. additional child connectors (such as
2916 * connectors for a PHBs PCI slots) are added as needed during their
2917 * parent's realization.
2919 if (smc->dr_phb_enabled) {
2920 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2921 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2925 /* Set up PCI */
2926 spapr_pci_rtas_init();
2928 phb = spapr_create_default_phb();
2930 for (i = 0; i < nb_nics; i++) {
2931 NICInfo *nd = &nd_table[i];
2933 if (!nd->model) {
2934 nd->model = g_strdup("spapr-vlan");
2937 if (g_str_equal(nd->model, "spapr-vlan") ||
2938 g_str_equal(nd->model, "ibmveth")) {
2939 spapr_vlan_create(spapr->vio_bus, nd);
2940 } else {
2941 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2945 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2946 spapr_vscsi_create(spapr->vio_bus);
2949 /* Graphics */
2950 if (spapr_vga_init(phb->bus, &error_fatal)) {
2951 spapr->has_graphics = true;
2952 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2955 if (machine->usb) {
2956 if (smc->use_ohci_by_default) {
2957 pci_create_simple(phb->bus, -1, "pci-ohci");
2958 } else {
2959 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2962 if (spapr->has_graphics) {
2963 USBBus *usb_bus = usb_bus_find(-1);
2965 usb_create_simple(usb_bus, "usb-kbd");
2966 usb_create_simple(usb_bus, "usb-mouse");
2970 if (kernel_filename) {
2971 uint64_t lowaddr = 0;
2973 spapr->kernel_size = load_elf(kernel_filename, NULL,
2974 translate_kernel_address, spapr,
2975 NULL, &lowaddr, NULL, NULL, 1,
2976 PPC_ELF_MACHINE, 0, 0);
2977 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2978 spapr->kernel_size = load_elf(kernel_filename, NULL,
2979 translate_kernel_address, spapr, NULL,
2980 &lowaddr, NULL, NULL, 0,
2981 PPC_ELF_MACHINE,
2982 0, 0);
2983 spapr->kernel_le = spapr->kernel_size > 0;
2985 if (spapr->kernel_size < 0) {
2986 error_report("error loading %s: %s", kernel_filename,
2987 load_elf_strerror(spapr->kernel_size));
2988 exit(1);
2991 /* load initrd */
2992 if (initrd_filename) {
2993 /* Try to locate the initrd in the gap between the kernel
2994 * and the firmware. Add a bit of space just in case
2996 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
2997 + 0x1ffff) & ~0xffff;
2998 spapr->initrd_size = load_image_targphys(initrd_filename,
2999 spapr->initrd_base,
3000 load_limit
3001 - spapr->initrd_base);
3002 if (spapr->initrd_size < 0) {
3003 error_report("could not load initial ram disk '%s'",
3004 initrd_filename);
3005 exit(1);
3010 if (bios_name == NULL) {
3011 bios_name = FW_FILE_NAME;
3013 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
3014 if (!filename) {
3015 error_report("Could not find LPAR firmware '%s'", bios_name);
3016 exit(1);
3018 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3019 if (fw_size <= 0) {
3020 error_report("Could not load LPAR firmware '%s'", filename);
3021 exit(1);
3023 g_free(filename);
3025 /* FIXME: Should register things through the MachineState's qdev
3026 * interface, this is a legacy from the sPAPREnvironment structure
3027 * which predated MachineState but had a similar function */
3028 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3029 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3030 &savevm_htab_handlers, spapr);
3032 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
3034 qemu_register_boot_set(spapr_boot_set, spapr);
3037 * Nothing needs to be done to resume a suspended guest because
3038 * suspending does not change the machine state, so no need for
3039 * a ->wakeup method.
3041 qemu_register_wakeup_support();
3043 if (kvm_enabled()) {
3044 /* to stop and start vmclock */
3045 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3046 &spapr->tb);
3048 kvmppc_spapr_enable_inkernel_multitce();
3051 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3054 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3056 if (!vm_type) {
3057 return 0;
3060 if (!strcmp(vm_type, "HV")) {
3061 return 1;
3064 if (!strcmp(vm_type, "PR")) {
3065 return 2;
3068 error_report("Unknown kvm-type specified '%s'", vm_type);
3069 exit(1);
3073 * Implementation of an interface to adjust firmware path
3074 * for the bootindex property handling.
3076 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3077 DeviceState *dev)
3079 #define CAST(type, obj, name) \
3080 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3081 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3082 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3083 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3085 if (d) {
3086 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3087 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3088 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3090 if (spapr) {
3092 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3093 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3094 * 0x8000 | (target << 8) | (bus << 5) | lun
3095 * (see the "Logical unit addressing format" table in SAM5)
3097 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3098 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3099 (uint64_t)id << 48);
3100 } else if (virtio) {
3102 * We use SRP luns of the form 01000000 | (target << 8) | lun
3103 * in the top 32 bits of the 64-bit LUN
3104 * Note: the quote above is from SLOF and it is wrong,
3105 * the actual binding is:
3106 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3108 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3109 if (d->lun >= 256) {
3110 /* Use the LUN "flat space addressing method" */
3111 id |= 0x4000;
3113 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3114 (uint64_t)id << 32);
3115 } else if (usb) {
3117 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3118 * in the top 32 bits of the 64-bit LUN
3120 unsigned usb_port = atoi(usb->port->path);
3121 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3122 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3123 (uint64_t)id << 32);
3128 * SLOF probes the USB devices, and if it recognizes that the device is a
3129 * storage device, it changes its name to "storage" instead of "usb-host",
3130 * and additionally adds a child node for the SCSI LUN, so the correct
3131 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3133 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3134 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3135 if (usb_host_dev_is_scsi_storage(usbdev)) {
3136 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3140 if (phb) {
3141 /* Replace "pci" with "pci@800000020000000" */
3142 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3145 if (vsc) {
3146 /* Same logic as virtio above */
3147 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3148 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3151 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3152 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3153 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3154 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3157 return NULL;
3160 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3162 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3164 return g_strdup(spapr->kvm_type);
3167 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3169 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3171 g_free(spapr->kvm_type);
3172 spapr->kvm_type = g_strdup(value);
3175 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3177 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3179 return spapr->use_hotplug_event_source;
3182 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3183 Error **errp)
3185 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3187 spapr->use_hotplug_event_source = value;
3190 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3192 return true;
3195 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3197 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3199 switch (spapr->resize_hpt) {
3200 case SPAPR_RESIZE_HPT_DEFAULT:
3201 return g_strdup("default");
3202 case SPAPR_RESIZE_HPT_DISABLED:
3203 return g_strdup("disabled");
3204 case SPAPR_RESIZE_HPT_ENABLED:
3205 return g_strdup("enabled");
3206 case SPAPR_RESIZE_HPT_REQUIRED:
3207 return g_strdup("required");
3209 g_assert_not_reached();
3212 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3214 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3216 if (strcmp(value, "default") == 0) {
3217 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3218 } else if (strcmp(value, "disabled") == 0) {
3219 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3220 } else if (strcmp(value, "enabled") == 0) {
3221 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3222 } else if (strcmp(value, "required") == 0) {
3223 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3224 } else {
3225 error_setg(errp, "Bad value for \"resize-hpt\" property");
3229 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3231 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3233 if (spapr->irq == &spapr_irq_xics_legacy) {
3234 return g_strdup("legacy");
3235 } else if (spapr->irq == &spapr_irq_xics) {
3236 return g_strdup("xics");
3237 } else if (spapr->irq == &spapr_irq_xive) {
3238 return g_strdup("xive");
3239 } else if (spapr->irq == &spapr_irq_dual) {
3240 return g_strdup("dual");
3242 g_assert_not_reached();
3245 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3247 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3249 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3250 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3251 return;
3254 /* The legacy IRQ backend can not be set */
3255 if (strcmp(value, "xics") == 0) {
3256 spapr->irq = &spapr_irq_xics;
3257 } else if (strcmp(value, "xive") == 0) {
3258 spapr->irq = &spapr_irq_xive;
3259 } else if (strcmp(value, "dual") == 0) {
3260 spapr->irq = &spapr_irq_dual;
3261 } else {
3262 error_setg(errp, "Bad value for \"ic-mode\" property");
3266 static char *spapr_get_host_model(Object *obj, Error **errp)
3268 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3270 return g_strdup(spapr->host_model);
3273 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3275 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3277 g_free(spapr->host_model);
3278 spapr->host_model = g_strdup(value);
3281 static char *spapr_get_host_serial(Object *obj, Error **errp)
3283 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3285 return g_strdup(spapr->host_serial);
3288 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3290 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3292 g_free(spapr->host_serial);
3293 spapr->host_serial = g_strdup(value);
3296 static void spapr_instance_init(Object *obj)
3298 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3299 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3301 spapr->htab_fd = -1;
3302 spapr->use_hotplug_event_source = true;
3303 object_property_add_str(obj, "kvm-type",
3304 spapr_get_kvm_type, spapr_set_kvm_type);
3305 object_property_set_description(obj, "kvm-type",
3306 "Specifies the KVM virtualization mode (HV, PR)");
3307 object_property_add_bool(obj, "modern-hotplug-events",
3308 spapr_get_modern_hotplug_events,
3309 spapr_set_modern_hotplug_events);
3310 object_property_set_description(obj, "modern-hotplug-events",
3311 "Use dedicated hotplug event mechanism in"
3312 " place of standard EPOW events when possible"
3313 " (required for memory hot-unplug support)");
3314 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3315 "Maximum permitted CPU compatibility mode");
3317 object_property_add_str(obj, "resize-hpt",
3318 spapr_get_resize_hpt, spapr_set_resize_hpt);
3319 object_property_set_description(obj, "resize-hpt",
3320 "Resizing of the Hash Page Table (enabled, disabled, required)");
3321 object_property_add_uint32_ptr(obj, "vsmt",
3322 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3323 object_property_set_description(obj, "vsmt",
3324 "Virtual SMT: KVM behaves as if this were"
3325 " the host's SMT mode");
3327 object_property_add_bool(obj, "vfio-no-msix-emulation",
3328 spapr_get_msix_emulation, NULL);
3330 object_property_add_uint64_ptr(obj, "kernel-addr",
3331 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3332 object_property_set_description(obj, "kernel-addr",
3333 stringify(KERNEL_LOAD_ADDR)
3334 " for -kernel is the default");
3335 spapr->kernel_addr = KERNEL_LOAD_ADDR;
3336 /* The machine class defines the default interrupt controller mode */
3337 spapr->irq = smc->irq;
3338 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3339 spapr_set_ic_mode);
3340 object_property_set_description(obj, "ic-mode",
3341 "Specifies the interrupt controller mode (xics, xive, dual)");
3343 object_property_add_str(obj, "host-model",
3344 spapr_get_host_model, spapr_set_host_model);
3345 object_property_set_description(obj, "host-model",
3346 "Host model to advertise in guest device tree");
3347 object_property_add_str(obj, "host-serial",
3348 spapr_get_host_serial, spapr_set_host_serial);
3349 object_property_set_description(obj, "host-serial",
3350 "Host serial number to advertise in guest device tree");
3353 static void spapr_machine_finalizefn(Object *obj)
3355 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3357 g_free(spapr->kvm_type);
3360 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3362 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3363 PowerPCCPU *cpu = POWERPC_CPU(cs);
3364 CPUPPCState *env = &cpu->env;
3366 cpu_synchronize_state(cs);
3367 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3368 if (spapr->fwnmi_system_reset_addr != -1) {
3369 uint64_t rtas_addr, addr;
3371 /* get rtas addr from fdt */
3372 rtas_addr = spapr_get_rtas_addr();
3373 if (!rtas_addr) {
3374 qemu_system_guest_panicked(NULL);
3375 return;
3378 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3379 stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3380 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3381 env->gpr[3] = addr;
3383 ppc_cpu_do_system_reset(cs);
3384 if (spapr->fwnmi_system_reset_addr != -1) {
3385 env->nip = spapr->fwnmi_system_reset_addr;
3389 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3391 CPUState *cs;
3393 CPU_FOREACH(cs) {
3394 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3398 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3399 void *fdt, int *fdt_start_offset, Error **errp)
3401 uint64_t addr;
3402 uint32_t node;
3404 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3405 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3406 &error_abort);
3407 *fdt_start_offset = spapr_dt_memory_node(fdt, node, addr,
3408 SPAPR_MEMORY_BLOCK_SIZE);
3409 return 0;
3412 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3413 bool dedicated_hp_event_source, Error **errp)
3415 SpaprDrc *drc;
3416 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3417 int i;
3418 uint64_t addr = addr_start;
3419 bool hotplugged = spapr_drc_hotplugged(dev);
3420 Error *local_err = NULL;
3422 for (i = 0; i < nr_lmbs; i++) {
3423 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3424 addr / SPAPR_MEMORY_BLOCK_SIZE);
3425 g_assert(drc);
3427 spapr_drc_attach(drc, dev, &local_err);
3428 if (local_err) {
3429 while (addr > addr_start) {
3430 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3431 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3432 addr / SPAPR_MEMORY_BLOCK_SIZE);
3433 spapr_drc_detach(drc);
3435 error_propagate(errp, local_err);
3436 return;
3438 if (!hotplugged) {
3439 spapr_drc_reset(drc);
3441 addr += SPAPR_MEMORY_BLOCK_SIZE;
3443 /* send hotplug notification to the
3444 * guest only in case of hotplugged memory
3446 if (hotplugged) {
3447 if (dedicated_hp_event_source) {
3448 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3449 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3450 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3451 nr_lmbs,
3452 spapr_drc_index(drc));
3453 } else {
3454 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3455 nr_lmbs);
3460 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3461 Error **errp)
3463 Error *local_err = NULL;
3464 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3465 PCDIMMDevice *dimm = PC_DIMM(dev);
3466 uint64_t size, addr, slot;
3467 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3469 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3471 pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3472 if (local_err) {
3473 goto out;
3476 if (!is_nvdimm) {
3477 addr = object_property_get_uint(OBJECT(dimm),
3478 PC_DIMM_ADDR_PROP, &local_err);
3479 if (local_err) {
3480 goto out_unplug;
3482 spapr_add_lmbs(dev, addr, size,
3483 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3484 &local_err);
3485 } else {
3486 slot = object_property_get_uint(OBJECT(dimm),
3487 PC_DIMM_SLOT_PROP, &local_err);
3488 if (local_err) {
3489 goto out_unplug;
3491 spapr_add_nvdimm(dev, slot, &local_err);
3494 if (local_err) {
3495 goto out_unplug;
3498 return;
3500 out_unplug:
3501 pc_dimm_unplug(dimm, MACHINE(ms));
3502 out:
3503 error_propagate(errp, local_err);
3506 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3507 Error **errp)
3509 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3510 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3511 const MachineClass *mc = MACHINE_CLASS(smc);
3512 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3513 PCDIMMDevice *dimm = PC_DIMM(dev);
3514 Error *local_err = NULL;
3515 uint64_t size;
3516 Object *memdev;
3517 hwaddr pagesize;
3519 if (!smc->dr_lmb_enabled) {
3520 error_setg(errp, "Memory hotplug not supported for this machine");
3521 return;
3524 if (is_nvdimm && !mc->nvdimm_supported) {
3525 error_setg(errp, "NVDIMM hotplug not supported for this machine");
3526 return;
3529 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3530 if (local_err) {
3531 error_propagate(errp, local_err);
3532 return;
3535 if (!is_nvdimm && size % SPAPR_MEMORY_BLOCK_SIZE) {
3536 error_setg(errp, "Hotplugged memory size must be a multiple of "
3537 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3538 return;
3539 } else if (is_nvdimm) {
3540 spapr_nvdimm_validate_opts(NVDIMM(dev), size, &local_err);
3541 if (local_err) {
3542 error_propagate(errp, local_err);
3543 return;
3547 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3548 &error_abort);
3549 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3550 spapr_check_pagesize(spapr, pagesize, &local_err);
3551 if (local_err) {
3552 error_propagate(errp, local_err);
3553 return;
3556 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3559 struct SpaprDimmState {
3560 PCDIMMDevice *dimm;
3561 uint32_t nr_lmbs;
3562 QTAILQ_ENTRY(SpaprDimmState) next;
3565 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3566 PCDIMMDevice *dimm)
3568 SpaprDimmState *dimm_state = NULL;
3570 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3571 if (dimm_state->dimm == dimm) {
3572 break;
3575 return dimm_state;
3578 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3579 uint32_t nr_lmbs,
3580 PCDIMMDevice *dimm)
3582 SpaprDimmState *ds = NULL;
3585 * If this request is for a DIMM whose removal had failed earlier
3586 * (due to guest's refusal to remove the LMBs), we would have this
3587 * dimm already in the pending_dimm_unplugs list. In that
3588 * case don't add again.
3590 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3591 if (!ds) {
3592 ds = g_malloc0(sizeof(SpaprDimmState));
3593 ds->nr_lmbs = nr_lmbs;
3594 ds->dimm = dimm;
3595 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3597 return ds;
3600 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3601 SpaprDimmState *dimm_state)
3603 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3604 g_free(dimm_state);
3607 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3608 PCDIMMDevice *dimm)
3610 SpaprDrc *drc;
3611 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3612 &error_abort);
3613 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3614 uint32_t avail_lmbs = 0;
3615 uint64_t addr_start, addr;
3616 int i;
3618 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3619 &error_abort);
3621 addr = addr_start;
3622 for (i = 0; i < nr_lmbs; i++) {
3623 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3624 addr / SPAPR_MEMORY_BLOCK_SIZE);
3625 g_assert(drc);
3626 if (drc->dev) {
3627 avail_lmbs++;
3629 addr += SPAPR_MEMORY_BLOCK_SIZE;
3632 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3635 /* Callback to be called during DRC release. */
3636 void spapr_lmb_release(DeviceState *dev)
3638 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3639 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3640 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3642 /* This information will get lost if a migration occurs
3643 * during the unplug process. In this case recover it. */
3644 if (ds == NULL) {
3645 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3646 g_assert(ds);
3647 /* The DRC being examined by the caller at least must be counted */
3648 g_assert(ds->nr_lmbs);
3651 if (--ds->nr_lmbs) {
3652 return;
3656 * Now that all the LMBs have been removed by the guest, call the
3657 * unplug handler chain. This can never fail.
3659 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3660 object_unparent(OBJECT(dev));
3663 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3665 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3666 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3668 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3669 qdev_unrealize(dev);
3670 spapr_pending_dimm_unplugs_remove(spapr, ds);
3673 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3674 DeviceState *dev, Error **errp)
3676 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3677 Error *local_err = NULL;
3678 PCDIMMDevice *dimm = PC_DIMM(dev);
3679 uint32_t nr_lmbs;
3680 uint64_t size, addr_start, addr;
3681 int i;
3682 SpaprDrc *drc;
3684 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3685 error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3686 return;
3689 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3690 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3692 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3693 &local_err);
3694 if (local_err) {
3695 error_propagate(errp, local_err);
3696 return;
3700 * An existing pending dimm state for this DIMM means that there is an
3701 * unplug operation in progress, waiting for the spapr_lmb_release
3702 * callback to complete the job (BQL can't cover that far). In this case,
3703 * bail out to avoid detaching DRCs that were already released.
3705 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3706 error_setg(errp, "Memory unplug already in progress for device %s",
3707 dev->id);
3708 return;
3711 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3713 addr = addr_start;
3714 for (i = 0; i < nr_lmbs; i++) {
3715 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3716 addr / SPAPR_MEMORY_BLOCK_SIZE);
3717 g_assert(drc);
3719 spapr_drc_detach(drc);
3720 addr += SPAPR_MEMORY_BLOCK_SIZE;
3723 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3724 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3725 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3726 nr_lmbs, spapr_drc_index(drc));
3729 /* Callback to be called during DRC release. */
3730 void spapr_core_release(DeviceState *dev)
3732 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3734 /* Call the unplug handler chain. This can never fail. */
3735 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3736 object_unparent(OBJECT(dev));
3739 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3741 MachineState *ms = MACHINE(hotplug_dev);
3742 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3743 CPUCore *cc = CPU_CORE(dev);
3744 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3746 if (smc->pre_2_10_has_unused_icps) {
3747 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3748 int i;
3750 for (i = 0; i < cc->nr_threads; i++) {
3751 CPUState *cs = CPU(sc->threads[i]);
3753 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3757 assert(core_slot);
3758 core_slot->cpu = NULL;
3759 qdev_unrealize(dev);
3762 static
3763 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3764 Error **errp)
3766 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3767 int index;
3768 SpaprDrc *drc;
3769 CPUCore *cc = CPU_CORE(dev);
3771 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3772 error_setg(errp, "Unable to find CPU core with core-id: %d",
3773 cc->core_id);
3774 return;
3776 if (index == 0) {
3777 error_setg(errp, "Boot CPU core may not be unplugged");
3778 return;
3781 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3782 spapr_vcpu_id(spapr, cc->core_id));
3783 g_assert(drc);
3785 if (!spapr_drc_unplug_requested(drc)) {
3786 spapr_drc_detach(drc);
3787 spapr_hotplug_req_remove_by_index(drc);
3791 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3792 void *fdt, int *fdt_start_offset, Error **errp)
3794 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3795 CPUState *cs = CPU(core->threads[0]);
3796 PowerPCCPU *cpu = POWERPC_CPU(cs);
3797 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3798 int id = spapr_get_vcpu_id(cpu);
3799 char *nodename;
3800 int offset;
3802 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3803 offset = fdt_add_subnode(fdt, 0, nodename);
3804 g_free(nodename);
3806 spapr_dt_cpu(cs, fdt, offset, spapr);
3808 *fdt_start_offset = offset;
3809 return 0;
3812 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3813 Error **errp)
3815 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3816 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3817 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3818 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3819 CPUCore *cc = CPU_CORE(dev);
3820 CPUState *cs;
3821 SpaprDrc *drc;
3822 Error *local_err = NULL;
3823 CPUArchId *core_slot;
3824 int index;
3825 bool hotplugged = spapr_drc_hotplugged(dev);
3826 int i;
3828 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3829 if (!core_slot) {
3830 error_setg(errp, "Unable to find CPU core with core-id: %d",
3831 cc->core_id);
3832 return;
3834 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3835 spapr_vcpu_id(spapr, cc->core_id));
3837 g_assert(drc || !mc->has_hotpluggable_cpus);
3839 if (drc) {
3840 spapr_drc_attach(drc, dev, &local_err);
3841 if (local_err) {
3842 error_propagate(errp, local_err);
3843 return;
3846 if (hotplugged) {
3848 * Send hotplug notification interrupt to the guest only
3849 * in case of hotplugged CPUs.
3851 spapr_hotplug_req_add_by_index(drc);
3852 } else {
3853 spapr_drc_reset(drc);
3857 core_slot->cpu = OBJECT(dev);
3859 if (smc->pre_2_10_has_unused_icps) {
3860 for (i = 0; i < cc->nr_threads; i++) {
3861 cs = CPU(core->threads[i]);
3862 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3867 * Set compatibility mode to match the boot CPU, which was either set
3868 * by the machine reset code or by CAS.
3870 if (hotplugged) {
3871 for (i = 0; i < cc->nr_threads; i++) {
3872 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3873 &local_err);
3874 if (local_err) {
3875 error_propagate(errp, local_err);
3876 return;
3882 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3883 Error **errp)
3885 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3886 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3887 CPUCore *cc = CPU_CORE(dev);
3888 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3889 const char *type = object_get_typename(OBJECT(dev));
3890 CPUArchId *core_slot;
3891 int index;
3892 unsigned int smp_threads = machine->smp.threads;
3894 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3895 error_setg(errp, "CPU hotplug not supported for this machine");
3896 return;
3899 if (strcmp(base_core_type, type)) {
3900 error_setg(errp, "CPU core type should be %s", base_core_type);
3901 return;
3904 if (cc->core_id % smp_threads) {
3905 error_setg(errp, "invalid core id %d", cc->core_id);
3906 return;
3910 * In general we should have homogeneous threads-per-core, but old
3911 * (pre hotplug support) machine types allow the last core to have
3912 * reduced threads as a compatibility hack for when we allowed
3913 * total vcpus not a multiple of threads-per-core.
3915 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3916 error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
3917 smp_threads);
3918 return;
3921 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3922 if (!core_slot) {
3923 error_setg(errp, "core id %d out of range", cc->core_id);
3924 return;
3927 if (core_slot->cpu) {
3928 error_setg(errp, "core %d already populated", cc->core_id);
3929 return;
3932 numa_cpu_pre_plug(core_slot, dev, errp);
3935 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3936 void *fdt, int *fdt_start_offset, Error **errp)
3938 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3939 int intc_phandle;
3941 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3942 if (intc_phandle <= 0) {
3943 return -1;
3946 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
3947 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3948 return -1;
3951 /* generally SLOF creates these, for hotplug it's up to QEMU */
3952 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3954 return 0;
3957 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3958 Error **errp)
3960 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3961 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3962 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3963 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3965 if (dev->hotplugged && !smc->dr_phb_enabled) {
3966 error_setg(errp, "PHB hotplug not supported for this machine");
3967 return;
3970 if (sphb->index == (uint32_t)-1) {
3971 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3972 return;
3976 * This will check that sphb->index doesn't exceed the maximum number of
3977 * PHBs for the current machine type.
3979 smc->phb_placement(spapr, sphb->index,
3980 &sphb->buid, &sphb->io_win_addr,
3981 &sphb->mem_win_addr, &sphb->mem64_win_addr,
3982 windows_supported, sphb->dma_liobn,
3983 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3984 errp);
3987 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3988 Error **errp)
3990 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3991 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3992 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3993 SpaprDrc *drc;
3994 bool hotplugged = spapr_drc_hotplugged(dev);
3995 Error *local_err = NULL;
3997 if (!smc->dr_phb_enabled) {
3998 return;
4001 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4002 /* hotplug hooks should check it's enabled before getting this far */
4003 assert(drc);
4005 spapr_drc_attach(drc, dev, &local_err);
4006 if (local_err) {
4007 error_propagate(errp, local_err);
4008 return;
4011 if (hotplugged) {
4012 spapr_hotplug_req_add_by_index(drc);
4013 } else {
4014 spapr_drc_reset(drc);
4018 void spapr_phb_release(DeviceState *dev)
4020 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4022 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4023 object_unparent(OBJECT(dev));
4026 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4028 qdev_unrealize(dev);
4031 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4032 DeviceState *dev, Error **errp)
4034 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4035 SpaprDrc *drc;
4037 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4038 assert(drc);
4040 if (!spapr_drc_unplug_requested(drc)) {
4041 spapr_drc_detach(drc);
4042 spapr_hotplug_req_remove_by_index(drc);
4046 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4047 Error **errp)
4049 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4050 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4052 if (spapr->tpm_proxy != NULL) {
4053 error_setg(errp, "Only one TPM proxy can be specified for this machine");
4054 return;
4057 spapr->tpm_proxy = tpm_proxy;
4060 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4062 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4064 qdev_unrealize(dev);
4065 object_unparent(OBJECT(dev));
4066 spapr->tpm_proxy = NULL;
4069 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4070 DeviceState *dev, Error **errp)
4072 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4073 spapr_memory_plug(hotplug_dev, dev, errp);
4074 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4075 spapr_core_plug(hotplug_dev, dev, errp);
4076 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4077 spapr_phb_plug(hotplug_dev, dev, errp);
4078 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4079 spapr_tpm_proxy_plug(hotplug_dev, dev, errp);
4083 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4084 DeviceState *dev, Error **errp)
4086 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4087 spapr_memory_unplug(hotplug_dev, dev);
4088 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4089 spapr_core_unplug(hotplug_dev, dev);
4090 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4091 spapr_phb_unplug(hotplug_dev, dev);
4092 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4093 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4097 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4098 DeviceState *dev, Error **errp)
4100 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4101 MachineClass *mc = MACHINE_GET_CLASS(sms);
4102 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4104 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4105 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4106 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4107 } else {
4108 /* NOTE: this means there is a window after guest reset, prior to
4109 * CAS negotiation, where unplug requests will fail due to the
4110 * capability not being detected yet. This is a bit different than
4111 * the case with PCI unplug, where the events will be queued and
4112 * eventually handled by the guest after boot
4114 error_setg(errp, "Memory hot unplug not supported for this guest");
4116 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4117 if (!mc->has_hotpluggable_cpus) {
4118 error_setg(errp, "CPU hot unplug not supported on this machine");
4119 return;
4121 spapr_core_unplug_request(hotplug_dev, dev, errp);
4122 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4123 if (!smc->dr_phb_enabled) {
4124 error_setg(errp, "PHB hot unplug not supported on this machine");
4125 return;
4127 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4128 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4129 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4133 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4134 DeviceState *dev, Error **errp)
4136 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4137 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4138 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4139 spapr_core_pre_plug(hotplug_dev, dev, errp);
4140 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4141 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4145 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4146 DeviceState *dev)
4148 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4149 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4150 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4151 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4152 return HOTPLUG_HANDLER(machine);
4154 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4155 PCIDevice *pcidev = PCI_DEVICE(dev);
4156 PCIBus *root = pci_device_root_bus(pcidev);
4157 SpaprPhbState *phb =
4158 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4159 TYPE_SPAPR_PCI_HOST_BRIDGE);
4161 if (phb) {
4162 return HOTPLUG_HANDLER(phb);
4165 return NULL;
4168 static CpuInstanceProperties
4169 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4171 CPUArchId *core_slot;
4172 MachineClass *mc = MACHINE_GET_CLASS(machine);
4174 /* make sure possible_cpu are intialized */
4175 mc->possible_cpu_arch_ids(machine);
4176 /* get CPU core slot containing thread that matches cpu_index */
4177 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4178 assert(core_slot);
4179 return core_slot->props;
4182 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4184 return idx / ms->smp.cores % ms->numa_state->num_nodes;
4187 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4189 int i;
4190 unsigned int smp_threads = machine->smp.threads;
4191 unsigned int smp_cpus = machine->smp.cpus;
4192 const char *core_type;
4193 int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4194 MachineClass *mc = MACHINE_GET_CLASS(machine);
4196 if (!mc->has_hotpluggable_cpus) {
4197 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4199 if (machine->possible_cpus) {
4200 assert(machine->possible_cpus->len == spapr_max_cores);
4201 return machine->possible_cpus;
4204 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4205 if (!core_type) {
4206 error_report("Unable to find sPAPR CPU Core definition");
4207 exit(1);
4210 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4211 sizeof(CPUArchId) * spapr_max_cores);
4212 machine->possible_cpus->len = spapr_max_cores;
4213 for (i = 0; i < machine->possible_cpus->len; i++) {
4214 int core_id = i * smp_threads;
4216 machine->possible_cpus->cpus[i].type = core_type;
4217 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4218 machine->possible_cpus->cpus[i].arch_id = core_id;
4219 machine->possible_cpus->cpus[i].props.has_core_id = true;
4220 machine->possible_cpus->cpus[i].props.core_id = core_id;
4222 return machine->possible_cpus;
4225 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4226 uint64_t *buid, hwaddr *pio,
4227 hwaddr *mmio32, hwaddr *mmio64,
4228 unsigned n_dma, uint32_t *liobns,
4229 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4232 * New-style PHB window placement.
4234 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4235 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4236 * windows.
4238 * Some guest kernels can't work with MMIO windows above 1<<46
4239 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4241 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4242 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4243 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4244 * 1TiB 64-bit MMIO windows for each PHB.
4246 const uint64_t base_buid = 0x800000020000000ULL;
4247 int i;
4249 /* Sanity check natural alignments */
4250 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4251 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4252 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4253 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4254 /* Sanity check bounds */
4255 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4256 SPAPR_PCI_MEM32_WIN_SIZE);
4257 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4258 SPAPR_PCI_MEM64_WIN_SIZE);
4260 if (index >= SPAPR_MAX_PHBS) {
4261 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4262 SPAPR_MAX_PHBS - 1);
4263 return;
4266 *buid = base_buid + index;
4267 for (i = 0; i < n_dma; ++i) {
4268 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4271 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4272 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4273 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4275 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4276 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4279 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4281 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4283 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4286 static void spapr_ics_resend(XICSFabric *dev)
4288 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4290 ics_resend(spapr->ics);
4293 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4295 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4297 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4300 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4301 Monitor *mon)
4303 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4305 spapr_irq_print_info(spapr, mon);
4306 monitor_printf(mon, "irqchip: %s\n",
4307 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4311 * This is a XIVE only operation
4313 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4314 uint8_t nvt_blk, uint32_t nvt_idx,
4315 bool cam_ignore, uint8_t priority,
4316 uint32_t logic_serv, XiveTCTXMatch *match)
4318 SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4319 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4320 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4321 int count;
4323 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4324 priority, logic_serv, match);
4325 if (count < 0) {
4326 return count;
4330 * When we implement the save and restore of the thread interrupt
4331 * contexts in the enter/exit CPU handlers of the machine and the
4332 * escalations in QEMU, we should be able to handle non dispatched
4333 * vCPUs.
4335 * Until this is done, the sPAPR machine should find at least one
4336 * matching context always.
4338 if (count == 0) {
4339 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4340 nvt_blk, nvt_idx);
4343 return count;
4346 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4348 return cpu->vcpu_id;
4351 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4353 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4354 MachineState *ms = MACHINE(spapr);
4355 int vcpu_id;
4357 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4359 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4360 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4361 error_append_hint(errp, "Adjust the number of cpus to %d "
4362 "or try to raise the number of threads per core\n",
4363 vcpu_id * ms->smp.threads / spapr->vsmt);
4364 return;
4367 cpu->vcpu_id = vcpu_id;
4370 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4372 CPUState *cs;
4374 CPU_FOREACH(cs) {
4375 PowerPCCPU *cpu = POWERPC_CPU(cs);
4377 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4378 return cpu;
4382 return NULL;
4385 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4387 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4389 /* These are only called by TCG, KVM maintains dispatch state */
4391 spapr_cpu->prod = false;
4392 if (spapr_cpu->vpa_addr) {
4393 CPUState *cs = CPU(cpu);
4394 uint32_t dispatch;
4396 dispatch = ldl_be_phys(cs->as,
4397 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4398 dispatch++;
4399 if ((dispatch & 1) != 0) {
4400 qemu_log_mask(LOG_GUEST_ERROR,
4401 "VPA: incorrect dispatch counter value for "
4402 "dispatched partition %u, correcting.\n", dispatch);
4403 dispatch++;
4405 stl_be_phys(cs->as,
4406 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4410 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4412 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4414 if (spapr_cpu->vpa_addr) {
4415 CPUState *cs = CPU(cpu);
4416 uint32_t dispatch;
4418 dispatch = ldl_be_phys(cs->as,
4419 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4420 dispatch++;
4421 if ((dispatch & 1) != 1) {
4422 qemu_log_mask(LOG_GUEST_ERROR,
4423 "VPA: incorrect dispatch counter value for "
4424 "preempted partition %u, correcting.\n", dispatch);
4425 dispatch++;
4427 stl_be_phys(cs->as,
4428 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4432 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4434 MachineClass *mc = MACHINE_CLASS(oc);
4435 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4436 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4437 NMIClass *nc = NMI_CLASS(oc);
4438 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4439 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4440 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4441 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4442 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4444 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4445 mc->ignore_boot_device_suffixes = true;
4448 * We set up the default / latest behaviour here. The class_init
4449 * functions for the specific versioned machine types can override
4450 * these details for backwards compatibility
4452 mc->init = spapr_machine_init;
4453 mc->reset = spapr_machine_reset;
4454 mc->block_default_type = IF_SCSI;
4455 mc->max_cpus = 1024;
4456 mc->no_parallel = 1;
4457 mc->default_boot_order = "";
4458 mc->default_ram_size = 512 * MiB;
4459 mc->default_ram_id = "ppc_spapr.ram";
4460 mc->default_display = "std";
4461 mc->kvm_type = spapr_kvm_type;
4462 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4463 mc->pci_allow_0_address = true;
4464 assert(!mc->get_hotplug_handler);
4465 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4466 hc->pre_plug = spapr_machine_device_pre_plug;
4467 hc->plug = spapr_machine_device_plug;
4468 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4469 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4470 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4471 hc->unplug_request = spapr_machine_device_unplug_request;
4472 hc->unplug = spapr_machine_device_unplug;
4474 smc->dr_lmb_enabled = true;
4475 smc->update_dt_enabled = true;
4476 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4477 mc->has_hotpluggable_cpus = true;
4478 mc->nvdimm_supported = true;
4479 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4480 fwc->get_dev_path = spapr_get_fw_dev_path;
4481 nc->nmi_monitor_handler = spapr_nmi;
4482 smc->phb_placement = spapr_phb_placement;
4483 vhc->hypercall = emulate_spapr_hypercall;
4484 vhc->hpt_mask = spapr_hpt_mask;
4485 vhc->map_hptes = spapr_map_hptes;
4486 vhc->unmap_hptes = spapr_unmap_hptes;
4487 vhc->hpte_set_c = spapr_hpte_set_c;
4488 vhc->hpte_set_r = spapr_hpte_set_r;
4489 vhc->get_pate = spapr_get_pate;
4490 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4491 vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4492 vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4493 xic->ics_get = spapr_ics_get;
4494 xic->ics_resend = spapr_ics_resend;
4495 xic->icp_get = spapr_icp_get;
4496 ispc->print_info = spapr_pic_print_info;
4497 /* Force NUMA node memory size to be a multiple of
4498 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4499 * in which LMBs are represented and hot-added
4501 mc->numa_mem_align_shift = 28;
4502 mc->auto_enable_numa = true;
4504 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4505 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4506 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4507 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4508 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4509 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4510 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4511 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4512 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4513 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4514 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4515 spapr_caps_add_properties(smc);
4516 smc->irq = &spapr_irq_dual;
4517 smc->dr_phb_enabled = true;
4518 smc->linux_pci_probe = true;
4519 smc->smp_threads_vsmt = true;
4520 smc->nr_xirqs = SPAPR_NR_XIRQS;
4521 xfc->match_nvt = spapr_match_nvt;
4524 static const TypeInfo spapr_machine_info = {
4525 .name = TYPE_SPAPR_MACHINE,
4526 .parent = TYPE_MACHINE,
4527 .abstract = true,
4528 .instance_size = sizeof(SpaprMachineState),
4529 .instance_init = spapr_instance_init,
4530 .instance_finalize = spapr_machine_finalizefn,
4531 .class_size = sizeof(SpaprMachineClass),
4532 .class_init = spapr_machine_class_init,
4533 .interfaces = (InterfaceInfo[]) {
4534 { TYPE_FW_PATH_PROVIDER },
4535 { TYPE_NMI },
4536 { TYPE_HOTPLUG_HANDLER },
4537 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4538 { TYPE_XICS_FABRIC },
4539 { TYPE_INTERRUPT_STATS_PROVIDER },
4540 { TYPE_XIVE_FABRIC },
4545 static void spapr_machine_latest_class_options(MachineClass *mc)
4547 mc->alias = "pseries";
4548 mc->is_default = true;
4551 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4552 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4553 void *data) \
4555 MachineClass *mc = MACHINE_CLASS(oc); \
4556 spapr_machine_##suffix##_class_options(mc); \
4557 if (latest) { \
4558 spapr_machine_latest_class_options(mc); \
4561 static const TypeInfo spapr_machine_##suffix##_info = { \
4562 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4563 .parent = TYPE_SPAPR_MACHINE, \
4564 .class_init = spapr_machine_##suffix##_class_init, \
4565 }; \
4566 static void spapr_machine_register_##suffix(void) \
4568 type_register(&spapr_machine_##suffix##_info); \
4570 type_init(spapr_machine_register_##suffix)
4573 * pseries-5.1
4575 static void spapr_machine_5_1_class_options(MachineClass *mc)
4577 /* Defaults for the latest behaviour inherited from the base class */
4580 DEFINE_SPAPR_MACHINE(5_1, "5.1", true);
4583 * pseries-5.0
4585 static void spapr_machine_5_0_class_options(MachineClass *mc)
4587 spapr_machine_5_1_class_options(mc);
4588 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4589 mc->numa_mem_supported = true;
4592 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4595 * pseries-4.2
4597 static void spapr_machine_4_2_class_options(MachineClass *mc)
4599 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4601 spapr_machine_5_0_class_options(mc);
4602 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4603 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4604 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4605 smc->rma_limit = 16 * GiB;
4606 mc->nvdimm_supported = false;
4609 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4612 * pseries-4.1
4614 static void spapr_machine_4_1_class_options(MachineClass *mc)
4616 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4617 static GlobalProperty compat[] = {
4618 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4619 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4622 spapr_machine_4_2_class_options(mc);
4623 smc->linux_pci_probe = false;
4624 smc->smp_threads_vsmt = false;
4625 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4626 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4629 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4632 * pseries-4.0
4634 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4635 uint64_t *buid, hwaddr *pio,
4636 hwaddr *mmio32, hwaddr *mmio64,
4637 unsigned n_dma, uint32_t *liobns,
4638 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4640 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4641 nv2gpa, nv2atsd, errp);
4642 *nv2gpa = 0;
4643 *nv2atsd = 0;
4646 static void spapr_machine_4_0_class_options(MachineClass *mc)
4648 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4650 spapr_machine_4_1_class_options(mc);
4651 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4652 smc->phb_placement = phb_placement_4_0;
4653 smc->irq = &spapr_irq_xics;
4654 smc->pre_4_1_migration = true;
4657 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4660 * pseries-3.1
4662 static void spapr_machine_3_1_class_options(MachineClass *mc)
4664 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4666 spapr_machine_4_0_class_options(mc);
4667 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4669 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4670 smc->update_dt_enabled = false;
4671 smc->dr_phb_enabled = false;
4672 smc->broken_host_serial_model = true;
4673 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4674 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4675 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4676 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4679 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4682 * pseries-3.0
4685 static void spapr_machine_3_0_class_options(MachineClass *mc)
4687 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4689 spapr_machine_3_1_class_options(mc);
4690 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4692 smc->legacy_irq_allocation = true;
4693 smc->nr_xirqs = 0x400;
4694 smc->irq = &spapr_irq_xics_legacy;
4697 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4700 * pseries-2.12
4702 static void spapr_machine_2_12_class_options(MachineClass *mc)
4704 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4705 static GlobalProperty compat[] = {
4706 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4707 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4710 spapr_machine_3_0_class_options(mc);
4711 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4712 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4714 /* We depend on kvm_enabled() to choose a default value for the
4715 * hpt-max-page-size capability. Of course we can't do it here
4716 * because this is too early and the HW accelerator isn't initialzed
4717 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4719 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4722 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4724 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4726 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4728 spapr_machine_2_12_class_options(mc);
4729 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4730 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4731 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4734 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4737 * pseries-2.11
4740 static void spapr_machine_2_11_class_options(MachineClass *mc)
4742 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4744 spapr_machine_2_12_class_options(mc);
4745 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4746 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4749 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4752 * pseries-2.10
4755 static void spapr_machine_2_10_class_options(MachineClass *mc)
4757 spapr_machine_2_11_class_options(mc);
4758 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4761 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4764 * pseries-2.9
4767 static void spapr_machine_2_9_class_options(MachineClass *mc)
4769 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4770 static GlobalProperty compat[] = {
4771 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4774 spapr_machine_2_10_class_options(mc);
4775 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4776 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4777 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4778 smc->pre_2_10_has_unused_icps = true;
4779 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4782 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4785 * pseries-2.8
4788 static void spapr_machine_2_8_class_options(MachineClass *mc)
4790 static GlobalProperty compat[] = {
4791 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4794 spapr_machine_2_9_class_options(mc);
4795 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4796 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4797 mc->numa_mem_align_shift = 23;
4800 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4803 * pseries-2.7
4806 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4807 uint64_t *buid, hwaddr *pio,
4808 hwaddr *mmio32, hwaddr *mmio64,
4809 unsigned n_dma, uint32_t *liobns,
4810 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4812 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4813 const uint64_t base_buid = 0x800000020000000ULL;
4814 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4815 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4816 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4817 const uint32_t max_index = 255;
4818 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4820 uint64_t ram_top = MACHINE(spapr)->ram_size;
4821 hwaddr phb0_base, phb_base;
4822 int i;
4824 /* Do we have device memory? */
4825 if (MACHINE(spapr)->maxram_size > ram_top) {
4826 /* Can't just use maxram_size, because there may be an
4827 * alignment gap between normal and device memory regions
4829 ram_top = MACHINE(spapr)->device_memory->base +
4830 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4833 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4835 if (index > max_index) {
4836 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4837 max_index);
4838 return;
4841 *buid = base_buid + index;
4842 for (i = 0; i < n_dma; ++i) {
4843 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4846 phb_base = phb0_base + index * phb_spacing;
4847 *pio = phb_base + pio_offset;
4848 *mmio32 = phb_base + mmio_offset;
4850 * We don't set the 64-bit MMIO window, relying on the PHB's
4851 * fallback behaviour of automatically splitting a large "32-bit"
4852 * window into contiguous 32-bit and 64-bit windows
4855 *nv2gpa = 0;
4856 *nv2atsd = 0;
4859 static void spapr_machine_2_7_class_options(MachineClass *mc)
4861 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4862 static GlobalProperty compat[] = {
4863 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4864 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4865 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4866 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4869 spapr_machine_2_8_class_options(mc);
4870 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4871 mc->default_machine_opts = "modern-hotplug-events=off";
4872 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4873 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4874 smc->phb_placement = phb_placement_2_7;
4877 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4880 * pseries-2.6
4883 static void spapr_machine_2_6_class_options(MachineClass *mc)
4885 static GlobalProperty compat[] = {
4886 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4889 spapr_machine_2_7_class_options(mc);
4890 mc->has_hotpluggable_cpus = false;
4891 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4892 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4895 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4898 * pseries-2.5
4901 static void spapr_machine_2_5_class_options(MachineClass *mc)
4903 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4904 static GlobalProperty compat[] = {
4905 { "spapr-vlan", "use-rx-buffer-pools", "off" },
4908 spapr_machine_2_6_class_options(mc);
4909 smc->use_ohci_by_default = true;
4910 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4911 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4914 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4917 * pseries-2.4
4920 static void spapr_machine_2_4_class_options(MachineClass *mc)
4922 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4924 spapr_machine_2_5_class_options(mc);
4925 smc->dr_lmb_enabled = false;
4926 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4929 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4932 * pseries-2.3
4935 static void spapr_machine_2_3_class_options(MachineClass *mc)
4937 static GlobalProperty compat[] = {
4938 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4940 spapr_machine_2_4_class_options(mc);
4941 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4942 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4944 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4947 * pseries-2.2
4950 static void spapr_machine_2_2_class_options(MachineClass *mc)
4952 static GlobalProperty compat[] = {
4953 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4956 spapr_machine_2_3_class_options(mc);
4957 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4958 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4959 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4961 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4964 * pseries-2.1
4967 static void spapr_machine_2_1_class_options(MachineClass *mc)
4969 spapr_machine_2_2_class_options(mc);
4970 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4972 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4974 static void spapr_machine_register_types(void)
4976 type_register_static(&spapr_machine_info);
4979 type_init(spapr_machine_register_types)