1 #include "qemu/osdep.h"
4 #include "exec/gdbstub.h"
5 #include "exec/helper-proto.h"
6 #include "qemu/host-utils.h"
7 #include "sysemu/arch_init.h"
8 #include "sysemu/sysemu.h"
9 #include "qemu/bitops.h"
10 #include "qemu/crc32c.h"
11 #include "exec/cpu_ldst.h"
13 #include <zlib.h> /* For crc32 */
14 #include "exec/semihost.h"
15 #include "sysemu/kvm.h"
17 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
19 #ifndef CONFIG_USER_ONLY
20 static bool get_phys_addr(CPUARMState
*env
, target_ulong address
,
21 int access_type
, ARMMMUIdx mmu_idx
,
22 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
23 target_ulong
*page_size
, uint32_t *fsr
,
26 static bool get_phys_addr_lpae(CPUARMState
*env
, target_ulong address
,
27 int access_type
, ARMMMUIdx mmu_idx
,
28 hwaddr
*phys_ptr
, MemTxAttrs
*txattrs
, int *prot
,
29 target_ulong
*page_size_ptr
, uint32_t *fsr
,
32 /* Definitions for the PMCCNTR and PMCR registers */
38 static int vfp_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
42 /* VFP data registers are always little-endian. */
43 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
45 stfq_le_p(buf
, env
->vfp
.regs
[reg
]);
48 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
49 /* Aliases for Q regs. */
52 stfq_le_p(buf
, env
->vfp
.regs
[(reg
- 32) * 2]);
53 stfq_le_p(buf
+ 8, env
->vfp
.regs
[(reg
- 32) * 2 + 1]);
57 switch (reg
- nregs
) {
58 case 0: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSID
]); return 4;
59 case 1: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSCR
]); return 4;
60 case 2: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPEXC
]); return 4;
65 static int vfp_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
69 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
71 env
->vfp
.regs
[reg
] = ldfq_le_p(buf
);
74 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
77 env
->vfp
.regs
[(reg
- 32) * 2] = ldfq_le_p(buf
);
78 env
->vfp
.regs
[(reg
- 32) * 2 + 1] = ldfq_le_p(buf
+ 8);
82 switch (reg
- nregs
) {
83 case 0: env
->vfp
.xregs
[ARM_VFP_FPSID
] = ldl_p(buf
); return 4;
84 case 1: env
->vfp
.xregs
[ARM_VFP_FPSCR
] = ldl_p(buf
); return 4;
85 case 2: env
->vfp
.xregs
[ARM_VFP_FPEXC
] = ldl_p(buf
) & (1 << 30); return 4;
90 static int aarch64_fpu_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
94 /* 128 bit FP register */
95 stfq_le_p(buf
, env
->vfp
.regs
[reg
* 2]);
96 stfq_le_p(buf
+ 8, env
->vfp
.regs
[reg
* 2 + 1]);
100 stl_p(buf
, vfp_get_fpsr(env
));
104 stl_p(buf
, vfp_get_fpcr(env
));
111 static int aarch64_fpu_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
115 /* 128 bit FP register */
116 env
->vfp
.regs
[reg
* 2] = ldfq_le_p(buf
);
117 env
->vfp
.regs
[reg
* 2 + 1] = ldfq_le_p(buf
+ 8);
121 vfp_set_fpsr(env
, ldl_p(buf
));
125 vfp_set_fpcr(env
, ldl_p(buf
));
132 static uint64_t raw_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
134 assert(ri
->fieldoffset
);
135 if (cpreg_field_is_64bit(ri
)) {
136 return CPREG_FIELD64(env
, ri
);
138 return CPREG_FIELD32(env
, ri
);
142 static void raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
145 assert(ri
->fieldoffset
);
146 if (cpreg_field_is_64bit(ri
)) {
147 CPREG_FIELD64(env
, ri
) = value
;
149 CPREG_FIELD32(env
, ri
) = value
;
153 static void *raw_ptr(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
155 return (char *)env
+ ri
->fieldoffset
;
158 uint64_t read_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
160 /* Raw read of a coprocessor register (as needed for migration, etc). */
161 if (ri
->type
& ARM_CP_CONST
) {
162 return ri
->resetvalue
;
163 } else if (ri
->raw_readfn
) {
164 return ri
->raw_readfn(env
, ri
);
165 } else if (ri
->readfn
) {
166 return ri
->readfn(env
, ri
);
168 return raw_read(env
, ri
);
172 static void write_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
175 /* Raw write of a coprocessor register (as needed for migration, etc).
176 * Note that constant registers are treated as write-ignored; the
177 * caller should check for success by whether a readback gives the
180 if (ri
->type
& ARM_CP_CONST
) {
182 } else if (ri
->raw_writefn
) {
183 ri
->raw_writefn(env
, ri
, v
);
184 } else if (ri
->writefn
) {
185 ri
->writefn(env
, ri
, v
);
187 raw_write(env
, ri
, v
);
191 static bool raw_accessors_invalid(const ARMCPRegInfo
*ri
)
193 /* Return true if the regdef would cause an assertion if you called
194 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
195 * program bug for it not to have the NO_RAW flag).
196 * NB that returning false here doesn't necessarily mean that calling
197 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
198 * read/write access functions which are safe for raw use" from "has
199 * read/write access functions which have side effects but has forgotten
200 * to provide raw access functions".
201 * The tests here line up with the conditions in read/write_raw_cp_reg()
202 * and assertions in raw_read()/raw_write().
204 if ((ri
->type
& ARM_CP_CONST
) ||
206 ((ri
->raw_writefn
|| ri
->writefn
) && (ri
->raw_readfn
|| ri
->readfn
))) {
212 bool write_cpustate_to_list(ARMCPU
*cpu
)
214 /* Write the coprocessor state from cpu->env to the (index,value) list. */
218 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
219 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
220 const ARMCPRegInfo
*ri
;
222 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
227 if (ri
->type
& ARM_CP_NO_RAW
) {
230 cpu
->cpreg_values
[i
] = read_raw_cp_reg(&cpu
->env
, ri
);
235 bool write_list_to_cpustate(ARMCPU
*cpu
)
240 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
241 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
242 uint64_t v
= cpu
->cpreg_values
[i
];
243 const ARMCPRegInfo
*ri
;
245 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
250 if (ri
->type
& ARM_CP_NO_RAW
) {
253 /* Write value and confirm it reads back as written
254 * (to catch read-only registers and partially read-only
255 * registers where the incoming migration value doesn't match)
257 write_raw_cp_reg(&cpu
->env
, ri
, v
);
258 if (read_raw_cp_reg(&cpu
->env
, ri
) != v
) {
265 static void add_cpreg_to_list(gpointer key
, gpointer opaque
)
267 ARMCPU
*cpu
= opaque
;
269 const ARMCPRegInfo
*ri
;
271 regidx
= *(uint32_t *)key
;
272 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
274 if (!(ri
->type
& (ARM_CP_NO_RAW
|ARM_CP_ALIAS
))) {
275 cpu
->cpreg_indexes
[cpu
->cpreg_array_len
] = cpreg_to_kvm_id(regidx
);
276 /* The value array need not be initialized at this point */
277 cpu
->cpreg_array_len
++;
281 static void count_cpreg(gpointer key
, gpointer opaque
)
283 ARMCPU
*cpu
= opaque
;
285 const ARMCPRegInfo
*ri
;
287 regidx
= *(uint32_t *)key
;
288 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
290 if (!(ri
->type
& (ARM_CP_NO_RAW
|ARM_CP_ALIAS
))) {
291 cpu
->cpreg_array_len
++;
295 static gint
cpreg_key_compare(gconstpointer a
, gconstpointer b
)
297 uint64_t aidx
= cpreg_to_kvm_id(*(uint32_t *)a
);
298 uint64_t bidx
= cpreg_to_kvm_id(*(uint32_t *)b
);
309 void init_cpreg_list(ARMCPU
*cpu
)
311 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
312 * Note that we require cpreg_tuples[] to be sorted by key ID.
317 keys
= g_hash_table_get_keys(cpu
->cp_regs
);
318 keys
= g_list_sort(keys
, cpreg_key_compare
);
320 cpu
->cpreg_array_len
= 0;
322 g_list_foreach(keys
, count_cpreg
, cpu
);
324 arraylen
= cpu
->cpreg_array_len
;
325 cpu
->cpreg_indexes
= g_new(uint64_t, arraylen
);
326 cpu
->cpreg_values
= g_new(uint64_t, arraylen
);
327 cpu
->cpreg_vmstate_indexes
= g_new(uint64_t, arraylen
);
328 cpu
->cpreg_vmstate_values
= g_new(uint64_t, arraylen
);
329 cpu
->cpreg_vmstate_array_len
= cpu
->cpreg_array_len
;
330 cpu
->cpreg_array_len
= 0;
332 g_list_foreach(keys
, add_cpreg_to_list
, cpu
);
334 assert(cpu
->cpreg_array_len
== arraylen
);
340 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
341 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
343 * access_el3_aa32ns: Used to check AArch32 register views.
344 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
346 static CPAccessResult
access_el3_aa32ns(CPUARMState
*env
,
347 const ARMCPRegInfo
*ri
,
350 bool secure
= arm_is_secure_below_el3(env
);
352 assert(!arm_el_is_aa64(env
, 3));
354 return CP_ACCESS_TRAP_UNCATEGORIZED
;
359 static CPAccessResult
access_el3_aa32ns_aa64any(CPUARMState
*env
,
360 const ARMCPRegInfo
*ri
,
363 if (!arm_el_is_aa64(env
, 3)) {
364 return access_el3_aa32ns(env
, ri
, isread
);
369 /* Some secure-only AArch32 registers trap to EL3 if used from
370 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
371 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
372 * We assume that the .access field is set to PL1_RW.
374 static CPAccessResult
access_trap_aa32s_el1(CPUARMState
*env
,
375 const ARMCPRegInfo
*ri
,
378 if (arm_current_el(env
) == 3) {
381 if (arm_is_secure_below_el3(env
)) {
382 return CP_ACCESS_TRAP_EL3
;
384 /* This will be EL1 NS and EL2 NS, which just UNDEF */
385 return CP_ACCESS_TRAP_UNCATEGORIZED
;
388 /* Check for traps to "powerdown debug" registers, which are controlled
391 static CPAccessResult
access_tdosa(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
394 int el
= arm_current_el(env
);
396 if (el
< 2 && (env
->cp15
.mdcr_el2
& MDCR_TDOSA
)
397 && !arm_is_secure_below_el3(env
)) {
398 return CP_ACCESS_TRAP_EL2
;
400 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TDOSA
)) {
401 return CP_ACCESS_TRAP_EL3
;
406 /* Check for traps to "debug ROM" registers, which are controlled
407 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
409 static CPAccessResult
access_tdra(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
412 int el
= arm_current_el(env
);
414 if (el
< 2 && (env
->cp15
.mdcr_el2
& MDCR_TDRA
)
415 && !arm_is_secure_below_el3(env
)) {
416 return CP_ACCESS_TRAP_EL2
;
418 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TDA
)) {
419 return CP_ACCESS_TRAP_EL3
;
424 /* Check for traps to general debug registers, which are controlled
425 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
427 static CPAccessResult
access_tda(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
430 int el
= arm_current_el(env
);
432 if (el
< 2 && (env
->cp15
.mdcr_el2
& MDCR_TDA
)
433 && !arm_is_secure_below_el3(env
)) {
434 return CP_ACCESS_TRAP_EL2
;
436 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TDA
)) {
437 return CP_ACCESS_TRAP_EL3
;
442 static void dacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
444 ARMCPU
*cpu
= arm_env_get_cpu(env
);
446 raw_write(env
, ri
, value
);
447 tlb_flush(CPU(cpu
), 1); /* Flush TLB as domain not tracked in TLB */
450 static void fcse_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
452 ARMCPU
*cpu
= arm_env_get_cpu(env
);
454 if (raw_read(env
, ri
) != value
) {
455 /* Unlike real hardware the qemu TLB uses virtual addresses,
456 * not modified virtual addresses, so this causes a TLB flush.
458 tlb_flush(CPU(cpu
), 1);
459 raw_write(env
, ri
, value
);
463 static void contextidr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
466 ARMCPU
*cpu
= arm_env_get_cpu(env
);
468 if (raw_read(env
, ri
) != value
&& !arm_feature(env
, ARM_FEATURE_MPU
)
469 && !extended_addresses_enabled(env
)) {
470 /* For VMSA (when not using the LPAE long descriptor page table
471 * format) this register includes the ASID, so do a TLB flush.
472 * For PMSA it is purely a process ID and no action is needed.
474 tlb_flush(CPU(cpu
), 1);
476 raw_write(env
, ri
, value
);
479 static void tlbiall_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
482 /* Invalidate all (TLBIALL) */
483 ARMCPU
*cpu
= arm_env_get_cpu(env
);
485 tlb_flush(CPU(cpu
), 1);
488 static void tlbimva_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
491 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
492 ARMCPU
*cpu
= arm_env_get_cpu(env
);
494 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
497 static void tlbiasid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
500 /* Invalidate by ASID (TLBIASID) */
501 ARMCPU
*cpu
= arm_env_get_cpu(env
);
503 tlb_flush(CPU(cpu
), value
== 0);
506 static void tlbimvaa_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
509 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
510 ARMCPU
*cpu
= arm_env_get_cpu(env
);
512 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
515 /* IS variants of TLB operations must affect all cores */
516 static void tlbiall_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
521 CPU_FOREACH(other_cs
) {
522 tlb_flush(other_cs
, 1);
526 static void tlbiasid_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
531 CPU_FOREACH(other_cs
) {
532 tlb_flush(other_cs
, value
== 0);
536 static void tlbimva_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
541 CPU_FOREACH(other_cs
) {
542 tlb_flush_page(other_cs
, value
& TARGET_PAGE_MASK
);
546 static void tlbimvaa_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
551 CPU_FOREACH(other_cs
) {
552 tlb_flush_page(other_cs
, value
& TARGET_PAGE_MASK
);
556 static const ARMCPRegInfo cp_reginfo
[] = {
557 /* Define the secure and non-secure FCSE identifier CP registers
558 * separately because there is no secure bank in V8 (no _EL3). This allows
559 * the secure register to be properly reset and migrated. There is also no
560 * v8 EL1 version of the register so the non-secure instance stands alone.
562 { .name
= "FCSEIDR(NS)",
563 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 0,
564 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_NS
,
565 .fieldoffset
= offsetof(CPUARMState
, cp15
.fcseidr_ns
),
566 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
567 { .name
= "FCSEIDR(S)",
568 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 0,
569 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_S
,
570 .fieldoffset
= offsetof(CPUARMState
, cp15
.fcseidr_s
),
571 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
572 /* Define the secure and non-secure context identifier CP registers
573 * separately because there is no secure bank in V8 (no _EL3). This allows
574 * the secure register to be properly reset and migrated. In the
575 * non-secure case, the 32-bit register will have reset and migration
576 * disabled during registration as it is handled by the 64-bit instance.
578 { .name
= "CONTEXTIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
579 .opc0
= 3, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 1,
580 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_NS
,
581 .fieldoffset
= offsetof(CPUARMState
, cp15
.contextidr_el
[1]),
582 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
583 { .name
= "CONTEXTIDR(S)", .state
= ARM_CP_STATE_AA32
,
584 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 1,
585 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_S
,
586 .fieldoffset
= offsetof(CPUARMState
, cp15
.contextidr_s
),
587 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
591 static const ARMCPRegInfo not_v8_cp_reginfo
[] = {
592 /* NB: Some of these registers exist in v8 but with more precise
593 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
595 /* MMU Domain access control / MPU write buffer control */
597 .cp
= 15, .opc1
= CP_ANY
, .crn
= 3, .crm
= CP_ANY
, .opc2
= CP_ANY
,
598 .access
= PL1_RW
, .resetvalue
= 0,
599 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
600 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dacr_s
),
601 offsetoflow32(CPUARMState
, cp15
.dacr_ns
) } },
602 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
603 * For v6 and v5, these mappings are overly broad.
605 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 0,
606 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
607 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 1,
608 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
609 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 4,
610 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
611 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 8,
612 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
613 /* Cache maintenance ops; some of this space may be overridden later. */
614 { .name
= "CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
615 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
616 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
},
620 static const ARMCPRegInfo not_v6_cp_reginfo
[] = {
621 /* Not all pre-v6 cores implemented this WFI, so this is slightly
624 { .name
= "WFI_v5", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= 2,
625 .access
= PL1_W
, .type
= ARM_CP_WFI
},
629 static const ARMCPRegInfo not_v7_cp_reginfo
[] = {
630 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
631 * is UNPREDICTABLE; we choose to NOP as most implementations do).
633 { .name
= "WFI_v6", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
634 .access
= PL1_W
, .type
= ARM_CP_WFI
},
635 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
636 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
637 * OMAPCP will override this space.
639 { .name
= "DLOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 0,
640 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_data
),
642 { .name
= "ILOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 1,
643 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_insn
),
645 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
646 { .name
= "DUMMY", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= CP_ANY
,
647 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
649 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
650 * implementing it as RAZ means the "debug architecture version" bits
651 * will read as a reserved value, which should cause Linux to not try
652 * to use the debug hardware.
654 { .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
655 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
656 /* MMU TLB control. Note that the wildcarding means we cover not just
657 * the unified TLB ops but also the dside/iside/inner-shareable variants.
659 { .name
= "TLBIALL", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
660 .opc1
= CP_ANY
, .opc2
= 0, .access
= PL1_W
, .writefn
= tlbiall_write
,
661 .type
= ARM_CP_NO_RAW
},
662 { .name
= "TLBIMVA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
663 .opc1
= CP_ANY
, .opc2
= 1, .access
= PL1_W
, .writefn
= tlbimva_write
,
664 .type
= ARM_CP_NO_RAW
},
665 { .name
= "TLBIASID", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
666 .opc1
= CP_ANY
, .opc2
= 2, .access
= PL1_W
, .writefn
= tlbiasid_write
,
667 .type
= ARM_CP_NO_RAW
},
668 { .name
= "TLBIMVAA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
669 .opc1
= CP_ANY
, .opc2
= 3, .access
= PL1_W
, .writefn
= tlbimvaa_write
,
670 .type
= ARM_CP_NO_RAW
},
671 { .name
= "PRRR", .cp
= 15, .crn
= 10, .crm
= 2,
672 .opc1
= 0, .opc2
= 0, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
673 { .name
= "NMRR", .cp
= 15, .crn
= 10, .crm
= 2,
674 .opc1
= 0, .opc2
= 1, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
678 static void cpacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
683 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
684 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
685 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
686 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
687 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
689 if (arm_feature(env
, ARM_FEATURE_VFP
)) {
690 /* VFP coprocessor: cp10 & cp11 [23:20] */
691 mask
|= (1 << 31) | (1 << 30) | (0xf << 20);
693 if (!arm_feature(env
, ARM_FEATURE_NEON
)) {
694 /* ASEDIS [31] bit is RAO/WI */
698 /* VFPv3 and upwards with NEON implement 32 double precision
699 * registers (D0-D31).
701 if (!arm_feature(env
, ARM_FEATURE_NEON
) ||
702 !arm_feature(env
, ARM_FEATURE_VFP3
)) {
703 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
709 env
->cp15
.cpacr_el1
= value
;
712 static CPAccessResult
cpacr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
715 if (arm_feature(env
, ARM_FEATURE_V8
)) {
716 /* Check if CPACR accesses are to be trapped to EL2 */
717 if (arm_current_el(env
) == 1 &&
718 (env
->cp15
.cptr_el
[2] & CPTR_TCPAC
) && !arm_is_secure(env
)) {
719 return CP_ACCESS_TRAP_EL2
;
720 /* Check if CPACR accesses are to be trapped to EL3 */
721 } else if (arm_current_el(env
) < 3 &&
722 (env
->cp15
.cptr_el
[3] & CPTR_TCPAC
)) {
723 return CP_ACCESS_TRAP_EL3
;
730 static CPAccessResult
cptr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
733 /* Check if CPTR accesses are set to trap to EL3 */
734 if (arm_current_el(env
) == 2 && (env
->cp15
.cptr_el
[3] & CPTR_TCPAC
)) {
735 return CP_ACCESS_TRAP_EL3
;
741 static const ARMCPRegInfo v6_cp_reginfo
[] = {
742 /* prefetch by MVA in v6, NOP in v7 */
743 { .name
= "MVA_prefetch",
744 .cp
= 15, .crn
= 7, .crm
= 13, .opc1
= 0, .opc2
= 1,
745 .access
= PL1_W
, .type
= ARM_CP_NOP
},
746 /* We need to break the TB after ISB to execute self-modifying code
747 * correctly and also to take any pending interrupts immediately.
748 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
750 { .name
= "ISB", .cp
= 15, .crn
= 7, .crm
= 5, .opc1
= 0, .opc2
= 4,
751 .access
= PL0_W
, .type
= ARM_CP_NO_RAW
, .writefn
= arm_cp_write_ignore
},
752 { .name
= "DSB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 4,
753 .access
= PL0_W
, .type
= ARM_CP_NOP
},
754 { .name
= "DMB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 5,
755 .access
= PL0_W
, .type
= ARM_CP_NOP
},
756 { .name
= "IFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 2,
758 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ifar_s
),
759 offsetof(CPUARMState
, cp15
.ifar_ns
) },
761 /* Watchpoint Fault Address Register : should actually only be present
762 * for 1136, 1176, 11MPCore.
764 { .name
= "WFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 1,
765 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0, },
766 { .name
= "CPACR", .state
= ARM_CP_STATE_BOTH
, .opc0
= 3,
767 .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 2, .accessfn
= cpacr_access
,
768 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.cpacr_el1
),
769 .resetvalue
= 0, .writefn
= cpacr_write
},
773 static CPAccessResult
pmreg_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
776 /* Performance monitor registers user accessibility is controlled
779 if (arm_current_el(env
) == 0 && !env
->cp15
.c9_pmuserenr
) {
780 return CP_ACCESS_TRAP
;
785 #ifndef CONFIG_USER_ONLY
787 static inline bool arm_ccnt_enabled(CPUARMState
*env
)
789 /* This does not support checking PMCCFILTR_EL0 register */
791 if (!(env
->cp15
.c9_pmcr
& PMCRE
)) {
798 void pmccntr_sync(CPUARMState
*env
)
802 temp_ticks
= muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
803 ARM_CPU_FREQ
, NANOSECONDS_PER_SECOND
);
805 if (env
->cp15
.c9_pmcr
& PMCRD
) {
806 /* Increment once every 64 processor clock cycles */
810 if (arm_ccnt_enabled(env
)) {
811 env
->cp15
.c15_ccnt
= temp_ticks
- env
->cp15
.c15_ccnt
;
815 static void pmcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
821 /* The counter has been reset */
822 env
->cp15
.c15_ccnt
= 0;
825 /* only the DP, X, D and E bits are writable */
826 env
->cp15
.c9_pmcr
&= ~0x39;
827 env
->cp15
.c9_pmcr
|= (value
& 0x39);
832 static uint64_t pmccntr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
834 uint64_t total_ticks
;
836 if (!arm_ccnt_enabled(env
)) {
837 /* Counter is disabled, do not change value */
838 return env
->cp15
.c15_ccnt
;
841 total_ticks
= muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
842 ARM_CPU_FREQ
, NANOSECONDS_PER_SECOND
);
844 if (env
->cp15
.c9_pmcr
& PMCRD
) {
845 /* Increment once every 64 processor clock cycles */
848 return total_ticks
- env
->cp15
.c15_ccnt
;
851 static void pmccntr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
854 uint64_t total_ticks
;
856 if (!arm_ccnt_enabled(env
)) {
857 /* Counter is disabled, set the absolute value */
858 env
->cp15
.c15_ccnt
= value
;
862 total_ticks
= muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
863 ARM_CPU_FREQ
, NANOSECONDS_PER_SECOND
);
865 if (env
->cp15
.c9_pmcr
& PMCRD
) {
866 /* Increment once every 64 processor clock cycles */
869 env
->cp15
.c15_ccnt
= total_ticks
- value
;
872 static void pmccntr_write32(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
875 uint64_t cur_val
= pmccntr_read(env
, NULL
);
877 pmccntr_write(env
, ri
, deposit64(cur_val
, 0, 32, value
));
880 #else /* CONFIG_USER_ONLY */
882 void pmccntr_sync(CPUARMState
*env
)
888 static void pmccfiltr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
892 env
->cp15
.pmccfiltr_el0
= value
& 0x7E000000;
896 static void pmcntenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
900 env
->cp15
.c9_pmcnten
|= value
;
903 static void pmcntenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
907 env
->cp15
.c9_pmcnten
&= ~value
;
910 static void pmovsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
913 env
->cp15
.c9_pmovsr
&= ~value
;
916 static void pmxevtyper_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
919 env
->cp15
.c9_pmxevtyper
= value
& 0xff;
922 static void pmuserenr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
925 env
->cp15
.c9_pmuserenr
= value
& 1;
928 static void pmintenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
931 /* We have no event counters so only the C bit can be changed */
933 env
->cp15
.c9_pminten
|= value
;
936 static void pmintenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
940 env
->cp15
.c9_pminten
&= ~value
;
943 static void vbar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
946 /* Note that even though the AArch64 view of this register has bits
947 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
948 * architectural requirements for bits which are RES0 only in some
949 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
950 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
952 raw_write(env
, ri
, value
& ~0x1FULL
);
955 static void scr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
957 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
958 * For bits that vary between AArch32/64, code needs to check the
959 * current execution mode before directly using the feature bit.
961 uint32_t valid_mask
= SCR_AARCH64_MASK
| SCR_AARCH32_MASK
;
963 if (!arm_feature(env
, ARM_FEATURE_EL2
)) {
964 valid_mask
&= ~SCR_HCE
;
966 /* On ARMv7, SMD (or SCD as it is called in v7) is only
967 * supported if EL2 exists. The bit is UNK/SBZP when
968 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
969 * when EL2 is unavailable.
970 * On ARMv8, this bit is always available.
972 if (arm_feature(env
, ARM_FEATURE_V7
) &&
973 !arm_feature(env
, ARM_FEATURE_V8
)) {
974 valid_mask
&= ~SCR_SMD
;
978 /* Clear all-context RES0 bits. */
980 raw_write(env
, ri
, value
);
983 static uint64_t ccsidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
985 ARMCPU
*cpu
= arm_env_get_cpu(env
);
987 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
990 uint32_t index
= A32_BANKED_REG_GET(env
, csselr
,
991 ri
->secure
& ARM_CP_SECSTATE_S
);
993 return cpu
->ccsidr
[index
];
996 static void csselr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
999 raw_write(env
, ri
, value
& 0xf);
1002 static uint64_t isr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1004 CPUState
*cs
= ENV_GET_CPU(env
);
1007 if (cs
->interrupt_request
& CPU_INTERRUPT_HARD
) {
1010 if (cs
->interrupt_request
& CPU_INTERRUPT_FIQ
) {
1013 /* External aborts are not possible in QEMU so A bit is always clear */
1017 static const ARMCPRegInfo v7_cp_reginfo
[] = {
1018 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1019 { .name
= "NOP", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
1020 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1021 /* Performance monitors are implementation defined in v7,
1022 * but with an ARM recommended set of registers, which we
1023 * follow (although we don't actually implement any counters)
1025 * Performance registers fall into three categories:
1026 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1027 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1028 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1029 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1030 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1032 { .name
= "PMCNTENSET", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 1,
1033 .access
= PL0_RW
, .type
= ARM_CP_ALIAS
,
1034 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcnten
),
1035 .writefn
= pmcntenset_write
,
1036 .accessfn
= pmreg_access
,
1037 .raw_writefn
= raw_write
},
1038 { .name
= "PMCNTENSET_EL0", .state
= ARM_CP_STATE_AA64
,
1039 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 1,
1040 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1041 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
), .resetvalue
= 0,
1042 .writefn
= pmcntenset_write
, .raw_writefn
= raw_write
},
1043 { .name
= "PMCNTENCLR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 2,
1045 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcnten
),
1046 .accessfn
= pmreg_access
,
1047 .writefn
= pmcntenclr_write
,
1048 .type
= ARM_CP_ALIAS
},
1049 { .name
= "PMCNTENCLR_EL0", .state
= ARM_CP_STATE_AA64
,
1050 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 2,
1051 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1052 .type
= ARM_CP_ALIAS
,
1053 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
),
1054 .writefn
= pmcntenclr_write
},
1055 { .name
= "PMOVSR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 3,
1056 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmovsr
),
1057 .accessfn
= pmreg_access
,
1058 .writefn
= pmovsr_write
,
1059 .raw_writefn
= raw_write
},
1060 { .name
= "PMOVSCLR_EL0", .state
= ARM_CP_STATE_AA64
,
1061 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 3,
1062 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1063 .type
= ARM_CP_ALIAS
,
1064 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmovsr
),
1065 .writefn
= pmovsr_write
,
1066 .raw_writefn
= raw_write
},
1067 /* Unimplemented so WI. */
1068 { .name
= "PMSWINC", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 4,
1069 .access
= PL0_W
, .accessfn
= pmreg_access
, .type
= ARM_CP_NOP
},
1070 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
1071 * We choose to RAZ/WI.
1073 { .name
= "PMSELR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 5,
1074 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
1075 .accessfn
= pmreg_access
},
1076 #ifndef CONFIG_USER_ONLY
1077 { .name
= "PMCCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 0,
1078 .access
= PL0_RW
, .resetvalue
= 0, .type
= ARM_CP_IO
,
1079 .readfn
= pmccntr_read
, .writefn
= pmccntr_write32
,
1080 .accessfn
= pmreg_access
},
1081 { .name
= "PMCCNTR_EL0", .state
= ARM_CP_STATE_AA64
,
1082 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 13, .opc2
= 0,
1083 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1085 .readfn
= pmccntr_read
, .writefn
= pmccntr_write
, },
1087 { .name
= "PMCCFILTR_EL0", .state
= ARM_CP_STATE_AA64
,
1088 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 15, .opc2
= 7,
1089 .writefn
= pmccfiltr_write
,
1090 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1092 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmccfiltr_el0
),
1094 { .name
= "PMXEVTYPER", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 1,
1096 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmxevtyper
),
1097 .accessfn
= pmreg_access
, .writefn
= pmxevtyper_write
,
1098 .raw_writefn
= raw_write
},
1099 /* Unimplemented, RAZ/WI. */
1100 { .name
= "PMXEVCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 2,
1101 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
1102 .accessfn
= pmreg_access
},
1103 { .name
= "PMUSERENR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 0,
1104 .access
= PL0_R
| PL1_RW
,
1105 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmuserenr
),
1107 .writefn
= pmuserenr_write
, .raw_writefn
= raw_write
},
1108 { .name
= "PMUSERENR_EL0", .state
= ARM_CP_STATE_AA64
,
1109 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 14, .opc2
= 0,
1110 .access
= PL0_R
| PL1_RW
, .type
= ARM_CP_ALIAS
,
1111 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmuserenr
),
1113 .writefn
= pmuserenr_write
, .raw_writefn
= raw_write
},
1114 { .name
= "PMINTENSET", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 1,
1116 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
1118 .writefn
= pmintenset_write
, .raw_writefn
= raw_write
},
1119 { .name
= "PMINTENCLR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 2,
1120 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
1121 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
1122 .writefn
= pmintenclr_write
, },
1123 { .name
= "PMINTENCLR_EL1", .state
= ARM_CP_STATE_AA64
,
1124 .opc0
= 3, .opc1
= 0, .crn
= 9, .crm
= 14, .opc2
= 2,
1125 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
1126 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
1127 .writefn
= pmintenclr_write
},
1128 { .name
= "VBAR", .state
= ARM_CP_STATE_BOTH
,
1129 .opc0
= 3, .crn
= 12, .crm
= 0, .opc1
= 0, .opc2
= 0,
1130 .access
= PL1_RW
, .writefn
= vbar_write
,
1131 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.vbar_s
),
1132 offsetof(CPUARMState
, cp15
.vbar_ns
) },
1134 { .name
= "CCSIDR", .state
= ARM_CP_STATE_BOTH
,
1135 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 0,
1136 .access
= PL1_R
, .readfn
= ccsidr_read
, .type
= ARM_CP_NO_RAW
},
1137 { .name
= "CSSELR", .state
= ARM_CP_STATE_BOTH
,
1138 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 2, .opc2
= 0,
1139 .access
= PL1_RW
, .writefn
= csselr_write
, .resetvalue
= 0,
1140 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.csselr_s
),
1141 offsetof(CPUARMState
, cp15
.csselr_ns
) } },
1142 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1143 * just RAZ for all cores:
1145 { .name
= "AIDR", .state
= ARM_CP_STATE_BOTH
,
1146 .opc0
= 3, .opc1
= 1, .crn
= 0, .crm
= 0, .opc2
= 7,
1147 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1148 /* Auxiliary fault status registers: these also are IMPDEF, and we
1149 * choose to RAZ/WI for all cores.
1151 { .name
= "AFSR0_EL1", .state
= ARM_CP_STATE_BOTH
,
1152 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 0,
1153 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1154 { .name
= "AFSR1_EL1", .state
= ARM_CP_STATE_BOTH
,
1155 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 1,
1156 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1157 /* MAIR can just read-as-written because we don't implement caches
1158 * and so don't need to care about memory attributes.
1160 { .name
= "MAIR_EL1", .state
= ARM_CP_STATE_AA64
,
1161 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0,
1162 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[1]),
1164 { .name
= "MAIR_EL3", .state
= ARM_CP_STATE_AA64
,
1165 .opc0
= 3, .opc1
= 6, .crn
= 10, .crm
= 2, .opc2
= 0,
1166 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[3]),
1168 /* For non-long-descriptor page tables these are PRRR and NMRR;
1169 * regardless they still act as reads-as-written for QEMU.
1171 /* MAIR0/1 are defined separately from their 64-bit counterpart which
1172 * allows them to assign the correct fieldoffset based on the endianness
1173 * handled in the field definitions.
1175 { .name
= "MAIR0", .state
= ARM_CP_STATE_AA32
,
1176 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0, .access
= PL1_RW
,
1177 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.mair0_s
),
1178 offsetof(CPUARMState
, cp15
.mair0_ns
) },
1179 .resetfn
= arm_cp_reset_ignore
},
1180 { .name
= "MAIR1", .state
= ARM_CP_STATE_AA32
,
1181 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 1, .access
= PL1_RW
,
1182 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.mair1_s
),
1183 offsetof(CPUARMState
, cp15
.mair1_ns
) },
1184 .resetfn
= arm_cp_reset_ignore
},
1185 { .name
= "ISR_EL1", .state
= ARM_CP_STATE_BOTH
,
1186 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 1, .opc2
= 0,
1187 .type
= ARM_CP_NO_RAW
, .access
= PL1_R
, .readfn
= isr_read
},
1188 /* 32 bit ITLB invalidates */
1189 { .name
= "ITLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 0,
1190 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1191 { .name
= "ITLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 1,
1192 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1193 { .name
= "ITLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 2,
1194 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1195 /* 32 bit DTLB invalidates */
1196 { .name
= "DTLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 0,
1197 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1198 { .name
= "DTLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 1,
1199 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1200 { .name
= "DTLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 2,
1201 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1202 /* 32 bit TLB invalidates */
1203 { .name
= "TLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
1204 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1205 { .name
= "TLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
1206 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1207 { .name
= "TLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
1208 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1209 { .name
= "TLBIMVAA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
1210 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
1214 static const ARMCPRegInfo v7mp_cp_reginfo
[] = {
1215 /* 32 bit TLB invalidates, Inner Shareable */
1216 { .name
= "TLBIALLIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
1217 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_is_write
},
1218 { .name
= "TLBIMVAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
1219 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_is_write
},
1220 { .name
= "TLBIASIDIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
1221 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
1222 .writefn
= tlbiasid_is_write
},
1223 { .name
= "TLBIMVAAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
1224 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
1225 .writefn
= tlbimvaa_is_write
},
1229 static void teecr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1236 static CPAccessResult
teehbr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1239 if (arm_current_el(env
) == 0 && (env
->teecr
& 1)) {
1240 return CP_ACCESS_TRAP
;
1242 return CP_ACCESS_OK
;
1245 static const ARMCPRegInfo t2ee_cp_reginfo
[] = {
1246 { .name
= "TEECR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 6, .opc2
= 0,
1247 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, teecr
),
1249 .writefn
= teecr_write
},
1250 { .name
= "TEEHBR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 6, .opc2
= 0,
1251 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, teehbr
),
1252 .accessfn
= teehbr_access
, .resetvalue
= 0 },
1256 static const ARMCPRegInfo v6k_cp_reginfo
[] = {
1257 { .name
= "TPIDR_EL0", .state
= ARM_CP_STATE_AA64
,
1258 .opc0
= 3, .opc1
= 3, .opc2
= 2, .crn
= 13, .crm
= 0,
1260 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[0]), .resetvalue
= 0 },
1261 { .name
= "TPIDRURW", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 2,
1263 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidrurw_s
),
1264 offsetoflow32(CPUARMState
, cp15
.tpidrurw_ns
) },
1265 .resetfn
= arm_cp_reset_ignore
},
1266 { .name
= "TPIDRRO_EL0", .state
= ARM_CP_STATE_AA64
,
1267 .opc0
= 3, .opc1
= 3, .opc2
= 3, .crn
= 13, .crm
= 0,
1268 .access
= PL0_R
|PL1_W
,
1269 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidrro_el
[0]),
1271 { .name
= "TPIDRURO", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 3,
1272 .access
= PL0_R
|PL1_W
,
1273 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidruro_s
),
1274 offsetoflow32(CPUARMState
, cp15
.tpidruro_ns
) },
1275 .resetfn
= arm_cp_reset_ignore
},
1276 { .name
= "TPIDR_EL1", .state
= ARM_CP_STATE_AA64
,
1277 .opc0
= 3, .opc1
= 0, .opc2
= 4, .crn
= 13, .crm
= 0,
1279 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[1]), .resetvalue
= 0 },
1280 { .name
= "TPIDRPRW", .opc1
= 0, .cp
= 15, .crn
= 13, .crm
= 0, .opc2
= 4,
1282 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidrprw_s
),
1283 offsetoflow32(CPUARMState
, cp15
.tpidrprw_ns
) },
1288 #ifndef CONFIG_USER_ONLY
1290 static CPAccessResult
gt_cntfrq_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1293 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1294 * Writable only at the highest implemented exception level.
1296 int el
= arm_current_el(env
);
1300 if (!extract32(env
->cp15
.c14_cntkctl
, 0, 2)) {
1301 return CP_ACCESS_TRAP
;
1305 if (!isread
&& ri
->state
== ARM_CP_STATE_AA32
&&
1306 arm_is_secure_below_el3(env
)) {
1307 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1308 return CP_ACCESS_TRAP_UNCATEGORIZED
;
1316 if (!isread
&& el
< arm_highest_el(env
)) {
1317 return CP_ACCESS_TRAP_UNCATEGORIZED
;
1320 return CP_ACCESS_OK
;
1323 static CPAccessResult
gt_counter_access(CPUARMState
*env
, int timeridx
,
1326 unsigned int cur_el
= arm_current_el(env
);
1327 bool secure
= arm_is_secure(env
);
1329 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1331 !extract32(env
->cp15
.c14_cntkctl
, timeridx
, 1)) {
1332 return CP_ACCESS_TRAP
;
1335 if (arm_feature(env
, ARM_FEATURE_EL2
) &&
1336 timeridx
== GTIMER_PHYS
&& !secure
&& cur_el
< 2 &&
1337 !extract32(env
->cp15
.cnthctl_el2
, 0, 1)) {
1338 return CP_ACCESS_TRAP_EL2
;
1340 return CP_ACCESS_OK
;
1343 static CPAccessResult
gt_timer_access(CPUARMState
*env
, int timeridx
,
1346 unsigned int cur_el
= arm_current_el(env
);
1347 bool secure
= arm_is_secure(env
);
1349 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1350 * EL0[PV]TEN is zero.
1353 !extract32(env
->cp15
.c14_cntkctl
, 9 - timeridx
, 1)) {
1354 return CP_ACCESS_TRAP
;
1357 if (arm_feature(env
, ARM_FEATURE_EL2
) &&
1358 timeridx
== GTIMER_PHYS
&& !secure
&& cur_el
< 2 &&
1359 !extract32(env
->cp15
.cnthctl_el2
, 1, 1)) {
1360 return CP_ACCESS_TRAP_EL2
;
1362 return CP_ACCESS_OK
;
1365 static CPAccessResult
gt_pct_access(CPUARMState
*env
,
1366 const ARMCPRegInfo
*ri
,
1369 return gt_counter_access(env
, GTIMER_PHYS
, isread
);
1372 static CPAccessResult
gt_vct_access(CPUARMState
*env
,
1373 const ARMCPRegInfo
*ri
,
1376 return gt_counter_access(env
, GTIMER_VIRT
, isread
);
1379 static CPAccessResult
gt_ptimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1382 return gt_timer_access(env
, GTIMER_PHYS
, isread
);
1385 static CPAccessResult
gt_vtimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1388 return gt_timer_access(env
, GTIMER_VIRT
, isread
);
1391 static CPAccessResult
gt_stimer_access(CPUARMState
*env
,
1392 const ARMCPRegInfo
*ri
,
1395 /* The AArch64 register view of the secure physical timer is
1396 * always accessible from EL3, and configurably accessible from
1399 switch (arm_current_el(env
)) {
1401 if (!arm_is_secure(env
)) {
1402 return CP_ACCESS_TRAP
;
1404 if (!(env
->cp15
.scr_el3
& SCR_ST
)) {
1405 return CP_ACCESS_TRAP_EL3
;
1407 return CP_ACCESS_OK
;
1410 return CP_ACCESS_TRAP
;
1412 return CP_ACCESS_OK
;
1414 g_assert_not_reached();
1418 static uint64_t gt_get_countervalue(CPUARMState
*env
)
1420 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) / GTIMER_SCALE
;
1423 static void gt_recalc_timer(ARMCPU
*cpu
, int timeridx
)
1425 ARMGenericTimer
*gt
= &cpu
->env
.cp15
.c14_timer
[timeridx
];
1428 /* Timer enabled: calculate and set current ISTATUS, irq, and
1429 * reset timer to when ISTATUS next has to change
1431 uint64_t offset
= timeridx
== GTIMER_VIRT
?
1432 cpu
->env
.cp15
.cntvoff_el2
: 0;
1433 uint64_t count
= gt_get_countervalue(&cpu
->env
);
1434 /* Note that this must be unsigned 64 bit arithmetic: */
1435 int istatus
= count
- offset
>= gt
->cval
;
1438 gt
->ctl
= deposit32(gt
->ctl
, 2, 1, istatus
);
1439 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
],
1440 (istatus
&& !(gt
->ctl
& 2)));
1442 /* Next transition is when count rolls back over to zero */
1443 nexttick
= UINT64_MAX
;
1445 /* Next transition is when we hit cval */
1446 nexttick
= gt
->cval
+ offset
;
1448 /* Note that the desired next expiry time might be beyond the
1449 * signed-64-bit range of a QEMUTimer -- in this case we just
1450 * set the timer for as far in the future as possible. When the
1451 * timer expires we will reset the timer for any remaining period.
1453 if (nexttick
> INT64_MAX
/ GTIMER_SCALE
) {
1454 nexttick
= INT64_MAX
/ GTIMER_SCALE
;
1456 timer_mod(cpu
->gt_timer
[timeridx
], nexttick
);
1458 /* Timer disabled: ISTATUS and timer output always clear */
1460 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
], 0);
1461 timer_del(cpu
->gt_timer
[timeridx
]);
1465 static void gt_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1468 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1470 timer_del(cpu
->gt_timer
[timeridx
]);
1473 static uint64_t gt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1475 return gt_get_countervalue(env
);
1478 static uint64_t gt_virt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1480 return gt_get_countervalue(env
) - env
->cp15
.cntvoff_el2
;
1483 static void gt_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1487 env
->cp15
.c14_timer
[timeridx
].cval
= value
;
1488 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
1491 static uint64_t gt_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1494 uint64_t offset
= timeridx
== GTIMER_VIRT
? env
->cp15
.cntvoff_el2
: 0;
1496 return (uint32_t)(env
->cp15
.c14_timer
[timeridx
].cval
-
1497 (gt_get_countervalue(env
) - offset
));
1500 static void gt_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1504 uint64_t offset
= timeridx
== GTIMER_VIRT
? env
->cp15
.cntvoff_el2
: 0;
1506 env
->cp15
.c14_timer
[timeridx
].cval
= gt_get_countervalue(env
) - offset
+
1507 sextract64(value
, 0, 32);
1508 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
1511 static void gt_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1515 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1516 uint32_t oldval
= env
->cp15
.c14_timer
[timeridx
].ctl
;
1518 env
->cp15
.c14_timer
[timeridx
].ctl
= deposit64(oldval
, 0, 2, value
);
1519 if ((oldval
^ value
) & 1) {
1520 /* Enable toggled */
1521 gt_recalc_timer(cpu
, timeridx
);
1522 } else if ((oldval
^ value
) & 2) {
1523 /* IMASK toggled: don't need to recalculate,
1524 * just set the interrupt line based on ISTATUS
1526 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
],
1527 (oldval
& 4) && !(value
& 2));
1531 static void gt_phys_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1533 gt_timer_reset(env
, ri
, GTIMER_PHYS
);
1536 static void gt_phys_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1539 gt_cval_write(env
, ri
, GTIMER_PHYS
, value
);
1542 static uint64_t gt_phys_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1544 return gt_tval_read(env
, ri
, GTIMER_PHYS
);
1547 static void gt_phys_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1550 gt_tval_write(env
, ri
, GTIMER_PHYS
, value
);
1553 static void gt_phys_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1556 gt_ctl_write(env
, ri
, GTIMER_PHYS
, value
);
1559 static void gt_virt_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1561 gt_timer_reset(env
, ri
, GTIMER_VIRT
);
1564 static void gt_virt_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1567 gt_cval_write(env
, ri
, GTIMER_VIRT
, value
);
1570 static uint64_t gt_virt_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1572 return gt_tval_read(env
, ri
, GTIMER_VIRT
);
1575 static void gt_virt_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1578 gt_tval_write(env
, ri
, GTIMER_VIRT
, value
);
1581 static void gt_virt_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1584 gt_ctl_write(env
, ri
, GTIMER_VIRT
, value
);
1587 static void gt_cntvoff_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1590 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1592 raw_write(env
, ri
, value
);
1593 gt_recalc_timer(cpu
, GTIMER_VIRT
);
1596 static void gt_hyp_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1598 gt_timer_reset(env
, ri
, GTIMER_HYP
);
1601 static void gt_hyp_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1604 gt_cval_write(env
, ri
, GTIMER_HYP
, value
);
1607 static uint64_t gt_hyp_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1609 return gt_tval_read(env
, ri
, GTIMER_HYP
);
1612 static void gt_hyp_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1615 gt_tval_write(env
, ri
, GTIMER_HYP
, value
);
1618 static void gt_hyp_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1621 gt_ctl_write(env
, ri
, GTIMER_HYP
, value
);
1624 static void gt_sec_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1626 gt_timer_reset(env
, ri
, GTIMER_SEC
);
1629 static void gt_sec_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1632 gt_cval_write(env
, ri
, GTIMER_SEC
, value
);
1635 static uint64_t gt_sec_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1637 return gt_tval_read(env
, ri
, GTIMER_SEC
);
1640 static void gt_sec_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1643 gt_tval_write(env
, ri
, GTIMER_SEC
, value
);
1646 static void gt_sec_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1649 gt_ctl_write(env
, ri
, GTIMER_SEC
, value
);
1652 void arm_gt_ptimer_cb(void *opaque
)
1654 ARMCPU
*cpu
= opaque
;
1656 gt_recalc_timer(cpu
, GTIMER_PHYS
);
1659 void arm_gt_vtimer_cb(void *opaque
)
1661 ARMCPU
*cpu
= opaque
;
1663 gt_recalc_timer(cpu
, GTIMER_VIRT
);
1666 void arm_gt_htimer_cb(void *opaque
)
1668 ARMCPU
*cpu
= opaque
;
1670 gt_recalc_timer(cpu
, GTIMER_HYP
);
1673 void arm_gt_stimer_cb(void *opaque
)
1675 ARMCPU
*cpu
= opaque
;
1677 gt_recalc_timer(cpu
, GTIMER_SEC
);
1680 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
1681 /* Note that CNTFRQ is purely reads-as-written for the benefit
1682 * of software; writing it doesn't actually change the timer frequency.
1683 * Our reset value matches the fixed frequency we implement the timer at.
1685 { .name
= "CNTFRQ", .cp
= 15, .crn
= 14, .crm
= 0, .opc1
= 0, .opc2
= 0,
1686 .type
= ARM_CP_ALIAS
,
1687 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
1688 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c14_cntfrq
),
1690 { .name
= "CNTFRQ_EL0", .state
= ARM_CP_STATE_AA64
,
1691 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 0,
1692 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
1693 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntfrq
),
1694 .resetvalue
= (1000 * 1000 * 1000) / GTIMER_SCALE
,
1696 /* overall control: mostly access permissions */
1697 { .name
= "CNTKCTL", .state
= ARM_CP_STATE_BOTH
,
1698 .opc0
= 3, .opc1
= 0, .crn
= 14, .crm
= 1, .opc2
= 0,
1700 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntkctl
),
1703 /* per-timer control */
1704 { .name
= "CNTP_CTL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 1,
1705 .secure
= ARM_CP_SECSTATE_NS
,
1706 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL1_RW
| PL0_R
,
1707 .accessfn
= gt_ptimer_access
,
1708 .fieldoffset
= offsetoflow32(CPUARMState
,
1709 cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
1710 .writefn
= gt_phys_ctl_write
, .raw_writefn
= raw_write
,
1712 { .name
= "CNTP_CTL(S)",
1713 .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 1,
1714 .secure
= ARM_CP_SECSTATE_S
,
1715 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL1_RW
| PL0_R
,
1716 .accessfn
= gt_ptimer_access
,
1717 .fieldoffset
= offsetoflow32(CPUARMState
,
1718 cp15
.c14_timer
[GTIMER_SEC
].ctl
),
1719 .writefn
= gt_sec_ctl_write
, .raw_writefn
= raw_write
,
1721 { .name
= "CNTP_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
1722 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 1,
1723 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1724 .accessfn
= gt_ptimer_access
,
1725 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
1727 .writefn
= gt_phys_ctl_write
, .raw_writefn
= raw_write
,
1729 { .name
= "CNTV_CTL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 1,
1730 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL1_RW
| PL0_R
,
1731 .accessfn
= gt_vtimer_access
,
1732 .fieldoffset
= offsetoflow32(CPUARMState
,
1733 cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
1734 .writefn
= gt_virt_ctl_write
, .raw_writefn
= raw_write
,
1736 { .name
= "CNTV_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
1737 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 1,
1738 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1739 .accessfn
= gt_vtimer_access
,
1740 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
1742 .writefn
= gt_virt_ctl_write
, .raw_writefn
= raw_write
,
1744 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1745 { .name
= "CNTP_TVAL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 0,
1746 .secure
= ARM_CP_SECSTATE_NS
,
1747 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1748 .accessfn
= gt_ptimer_access
,
1749 .readfn
= gt_phys_tval_read
, .writefn
= gt_phys_tval_write
,
1751 { .name
= "CNTP_TVAL(S)",
1752 .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 0,
1753 .secure
= ARM_CP_SECSTATE_S
,
1754 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1755 .accessfn
= gt_ptimer_access
,
1756 .readfn
= gt_sec_tval_read
, .writefn
= gt_sec_tval_write
,
1758 { .name
= "CNTP_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1759 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 0,
1760 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1761 .accessfn
= gt_ptimer_access
, .resetfn
= gt_phys_timer_reset
,
1762 .readfn
= gt_phys_tval_read
, .writefn
= gt_phys_tval_write
,
1764 { .name
= "CNTV_TVAL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 0,
1765 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1766 .accessfn
= gt_vtimer_access
,
1767 .readfn
= gt_virt_tval_read
, .writefn
= gt_virt_tval_write
,
1769 { .name
= "CNTV_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1770 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 0,
1771 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1772 .accessfn
= gt_vtimer_access
, .resetfn
= gt_virt_timer_reset
,
1773 .readfn
= gt_virt_tval_read
, .writefn
= gt_virt_tval_write
,
1775 /* The counter itself */
1776 { .name
= "CNTPCT", .cp
= 15, .crm
= 14, .opc1
= 0,
1777 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_RAW
| ARM_CP_IO
,
1778 .accessfn
= gt_pct_access
,
1779 .readfn
= gt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
1781 { .name
= "CNTPCT_EL0", .state
= ARM_CP_STATE_AA64
,
1782 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 1,
1783 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
1784 .accessfn
= gt_pct_access
, .readfn
= gt_cnt_read
,
1786 { .name
= "CNTVCT", .cp
= 15, .crm
= 14, .opc1
= 1,
1787 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_RAW
| ARM_CP_IO
,
1788 .accessfn
= gt_vct_access
,
1789 .readfn
= gt_virt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
1791 { .name
= "CNTVCT_EL0", .state
= ARM_CP_STATE_AA64
,
1792 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 2,
1793 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
1794 .accessfn
= gt_vct_access
, .readfn
= gt_virt_cnt_read
,
1796 /* Comparison value, indicating when the timer goes off */
1797 { .name
= "CNTP_CVAL", .cp
= 15, .crm
= 14, .opc1
= 2,
1798 .secure
= ARM_CP_SECSTATE_NS
,
1799 .access
= PL1_RW
| PL0_R
,
1800 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
1801 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
1802 .accessfn
= gt_ptimer_access
,
1803 .writefn
= gt_phys_cval_write
, .raw_writefn
= raw_write
,
1805 { .name
= "CNTP_CVAL(S)", .cp
= 15, .crm
= 14, .opc1
= 2,
1806 .secure
= ARM_CP_SECSTATE_S
,
1807 .access
= PL1_RW
| PL0_R
,
1808 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
1809 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].cval
),
1810 .accessfn
= gt_ptimer_access
,
1811 .writefn
= gt_sec_cval_write
, .raw_writefn
= raw_write
,
1813 { .name
= "CNTP_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1814 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 2,
1815 .access
= PL1_RW
| PL0_R
,
1817 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
1818 .resetvalue
= 0, .accessfn
= gt_ptimer_access
,
1819 .writefn
= gt_phys_cval_write
, .raw_writefn
= raw_write
,
1821 { .name
= "CNTV_CVAL", .cp
= 15, .crm
= 14, .opc1
= 3,
1822 .access
= PL1_RW
| PL0_R
,
1823 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
1824 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
1825 .accessfn
= gt_vtimer_access
,
1826 .writefn
= gt_virt_cval_write
, .raw_writefn
= raw_write
,
1828 { .name
= "CNTV_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1829 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 2,
1830 .access
= PL1_RW
| PL0_R
,
1832 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
1833 .resetvalue
= 0, .accessfn
= gt_vtimer_access
,
1834 .writefn
= gt_virt_cval_write
, .raw_writefn
= raw_write
,
1836 /* Secure timer -- this is actually restricted to only EL3
1837 * and configurably Secure-EL1 via the accessfn.
1839 { .name
= "CNTPS_TVAL_EL1", .state
= ARM_CP_STATE_AA64
,
1840 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 0,
1841 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
,
1842 .accessfn
= gt_stimer_access
,
1843 .readfn
= gt_sec_tval_read
,
1844 .writefn
= gt_sec_tval_write
,
1845 .resetfn
= gt_sec_timer_reset
,
1847 { .name
= "CNTPS_CTL_EL1", .state
= ARM_CP_STATE_AA64
,
1848 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 1,
1849 .type
= ARM_CP_IO
, .access
= PL1_RW
,
1850 .accessfn
= gt_stimer_access
,
1851 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].ctl
),
1853 .writefn
= gt_sec_ctl_write
, .raw_writefn
= raw_write
,
1855 { .name
= "CNTPS_CVAL_EL1", .state
= ARM_CP_STATE_AA64
,
1856 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 2,
1857 .type
= ARM_CP_IO
, .access
= PL1_RW
,
1858 .accessfn
= gt_stimer_access
,
1859 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].cval
),
1860 .writefn
= gt_sec_cval_write
, .raw_writefn
= raw_write
,
1866 /* In user-mode none of the generic timer registers are accessible,
1867 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1868 * so instead just don't register any of them.
1870 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
1876 static void par_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1878 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1879 raw_write(env
, ri
, value
);
1880 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
1881 raw_write(env
, ri
, value
& 0xfffff6ff);
1883 raw_write(env
, ri
, value
& 0xfffff1ff);
1887 #ifndef CONFIG_USER_ONLY
1888 /* get_phys_addr() isn't present for user-mode-only targets */
1890 static CPAccessResult
ats_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1894 /* The ATS12NSO* operations must trap to EL3 if executed in
1895 * Secure EL1 (which can only happen if EL3 is AArch64).
1896 * They are simply UNDEF if executed from NS EL1.
1897 * They function normally from EL2 or EL3.
1899 if (arm_current_el(env
) == 1) {
1900 if (arm_is_secure_below_el3(env
)) {
1901 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3
;
1903 return CP_ACCESS_TRAP_UNCATEGORIZED
;
1906 return CP_ACCESS_OK
;
1909 static uint64_t do_ats_write(CPUARMState
*env
, uint64_t value
,
1910 int access_type
, ARMMMUIdx mmu_idx
)
1913 target_ulong page_size
;
1918 MemTxAttrs attrs
= {};
1919 ARMMMUFaultInfo fi
= {};
1921 ret
= get_phys_addr(env
, value
, access_type
, mmu_idx
,
1922 &phys_addr
, &attrs
, &prot
, &page_size
, &fsr
, &fi
);
1923 if (extended_addresses_enabled(env
)) {
1924 /* fsr is a DFSR/IFSR value for the long descriptor
1925 * translation table format, but with WnR always clear.
1926 * Convert it to a 64-bit PAR.
1928 par64
= (1 << 11); /* LPAE bit always set */
1930 par64
|= phys_addr
& ~0xfffULL
;
1931 if (!attrs
.secure
) {
1932 par64
|= (1 << 9); /* NS */
1934 /* We don't set the ATTR or SH fields in the PAR. */
1937 par64
|= (fsr
& 0x3f) << 1; /* FS */
1938 /* Note that S2WLK and FSTAGE are always zero, because we don't
1939 * implement virtualization and therefore there can't be a stage 2
1944 /* fsr is a DFSR/IFSR value for the short descriptor
1945 * translation table format (with WnR always clear).
1946 * Convert it to a 32-bit PAR.
1949 /* We do not set any attribute bits in the PAR */
1950 if (page_size
== (1 << 24)
1951 && arm_feature(env
, ARM_FEATURE_V7
)) {
1952 par64
= (phys_addr
& 0xff000000) | (1 << 1);
1954 par64
= phys_addr
& 0xfffff000;
1956 if (!attrs
.secure
) {
1957 par64
|= (1 << 9); /* NS */
1960 par64
= ((fsr
& (1 << 10)) >> 5) | ((fsr
& (1 << 12)) >> 6) |
1961 ((fsr
& 0xf) << 1) | 1;
1967 static void ats_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1969 int access_type
= ri
->opc2
& 1;
1972 int el
= arm_current_el(env
);
1973 bool secure
= arm_is_secure_below_el3(env
);
1975 switch (ri
->opc2
& 6) {
1977 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
1980 mmu_idx
= ARMMMUIdx_S1E3
;
1983 mmu_idx
= ARMMMUIdx_S1NSE1
;
1986 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S1NSE1
;
1989 g_assert_not_reached();
1993 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
1996 mmu_idx
= ARMMMUIdx_S1SE0
;
1999 mmu_idx
= ARMMMUIdx_S1NSE0
;
2002 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S1NSE0
;
2005 g_assert_not_reached();
2009 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2010 mmu_idx
= ARMMMUIdx_S12NSE1
;
2013 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2014 mmu_idx
= ARMMMUIdx_S12NSE0
;
2017 g_assert_not_reached();
2020 par64
= do_ats_write(env
, value
, access_type
, mmu_idx
);
2022 A32_BANKED_CURRENT_REG_SET(env
, par
, par64
);
2025 static void ats1h_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2028 int access_type
= ri
->opc2
& 1;
2031 par64
= do_ats_write(env
, value
, access_type
, ARMMMUIdx_S2NS
);
2033 A32_BANKED_CURRENT_REG_SET(env
, par
, par64
);
2036 static CPAccessResult
at_s1e2_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2039 if (arm_current_el(env
) == 3 && !(env
->cp15
.scr_el3
& SCR_NS
)) {
2040 return CP_ACCESS_TRAP
;
2042 return CP_ACCESS_OK
;
2045 static void ats_write64(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2048 int access_type
= ri
->opc2
& 1;
2050 int secure
= arm_is_secure_below_el3(env
);
2052 switch (ri
->opc2
& 6) {
2055 case 0: /* AT S1E1R, AT S1E1W */
2056 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S1NSE1
;
2058 case 4: /* AT S1E2R, AT S1E2W */
2059 mmu_idx
= ARMMMUIdx_S1E2
;
2061 case 6: /* AT S1E3R, AT S1E3W */
2062 mmu_idx
= ARMMMUIdx_S1E3
;
2065 g_assert_not_reached();
2068 case 2: /* AT S1E0R, AT S1E0W */
2069 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S1NSE0
;
2071 case 4: /* AT S12E1R, AT S12E1W */
2072 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S12NSE1
;
2074 case 6: /* AT S12E0R, AT S12E0W */
2075 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S12NSE0
;
2078 g_assert_not_reached();
2081 env
->cp15
.par_el
[1] = do_ats_write(env
, value
, access_type
, mmu_idx
);
2085 static const ARMCPRegInfo vapa_cp_reginfo
[] = {
2086 { .name
= "PAR", .cp
= 15, .crn
= 7, .crm
= 4, .opc1
= 0, .opc2
= 0,
2087 .access
= PL1_RW
, .resetvalue
= 0,
2088 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.par_s
),
2089 offsetoflow32(CPUARMState
, cp15
.par_ns
) },
2090 .writefn
= par_write
},
2091 #ifndef CONFIG_USER_ONLY
2092 /* This underdecoding is safe because the reginfo is NO_RAW. */
2093 { .name
= "ATS", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= CP_ANY
,
2094 .access
= PL1_W
, .accessfn
= ats_access
,
2095 .writefn
= ats_write
, .type
= ARM_CP_NO_RAW
},
2100 /* Return basic MPU access permission bits. */
2101 static uint32_t simple_mpu_ap_bits(uint32_t val
)
2108 for (i
= 0; i
< 16; i
+= 2) {
2109 ret
|= (val
>> i
) & mask
;
2115 /* Pad basic MPU access permission bits to extended format. */
2116 static uint32_t extended_mpu_ap_bits(uint32_t val
)
2123 for (i
= 0; i
< 16; i
+= 2) {
2124 ret
|= (val
& mask
) << i
;
2130 static void pmsav5_data_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2133 env
->cp15
.pmsav5_data_ap
= extended_mpu_ap_bits(value
);
2136 static uint64_t pmsav5_data_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2138 return simple_mpu_ap_bits(env
->cp15
.pmsav5_data_ap
);
2141 static void pmsav5_insn_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2144 env
->cp15
.pmsav5_insn_ap
= extended_mpu_ap_bits(value
);
2147 static uint64_t pmsav5_insn_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2149 return simple_mpu_ap_bits(env
->cp15
.pmsav5_insn_ap
);
2152 static uint64_t pmsav7_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2154 uint32_t *u32p
= *(uint32_t **)raw_ptr(env
, ri
);
2160 u32p
+= env
->cp15
.c6_rgnr
;
2164 static void pmsav7_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2167 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2168 uint32_t *u32p
= *(uint32_t **)raw_ptr(env
, ri
);
2174 u32p
+= env
->cp15
.c6_rgnr
;
2175 tlb_flush(CPU(cpu
), 1); /* Mappings may have changed - purge! */
2179 static void pmsav7_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2181 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2182 uint32_t *u32p
= *(uint32_t **)raw_ptr(env
, ri
);
2188 memset(u32p
, 0, sizeof(*u32p
) * cpu
->pmsav7_dregion
);
2191 static void pmsav7_rgnr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2194 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2195 uint32_t nrgs
= cpu
->pmsav7_dregion
;
2197 if (value
>= nrgs
) {
2198 qemu_log_mask(LOG_GUEST_ERROR
,
2199 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2200 " > %" PRIu32
"\n", (uint32_t)value
, nrgs
);
2204 raw_write(env
, ri
, value
);
2207 static const ARMCPRegInfo pmsav7_cp_reginfo
[] = {
2208 { .name
= "DRBAR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 0,
2209 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
2210 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.drbar
),
2211 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
, .resetfn
= pmsav7_reset
},
2212 { .name
= "DRSR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 2,
2213 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
2214 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.drsr
),
2215 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
, .resetfn
= pmsav7_reset
},
2216 { .name
= "DRACR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 4,
2217 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
2218 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.dracr
),
2219 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
, .resetfn
= pmsav7_reset
},
2220 { .name
= "RGNR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 2, .opc2
= 0,
2222 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_rgnr
),
2223 .writefn
= pmsav7_rgnr_write
},
2227 static const ARMCPRegInfo pmsav5_cp_reginfo
[] = {
2228 { .name
= "DATA_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
2229 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
2230 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
2231 .readfn
= pmsav5_data_ap_read
, .writefn
= pmsav5_data_ap_write
, },
2232 { .name
= "INSN_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
2233 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
2234 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
2235 .readfn
= pmsav5_insn_ap_read
, .writefn
= pmsav5_insn_ap_write
, },
2236 { .name
= "DATA_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 2,
2238 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
2240 { .name
= "INSN_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 3,
2242 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
2244 { .name
= "DCACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
2246 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_data
), .resetvalue
= 0, },
2247 { .name
= "ICACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 1,
2249 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_insn
), .resetvalue
= 0, },
2250 /* Protection region base and size registers */
2251 { .name
= "946_PRBS0", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0,
2252 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2253 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[0]) },
2254 { .name
= "946_PRBS1", .cp
= 15, .crn
= 6, .crm
= 1, .opc1
= 0,
2255 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2256 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[1]) },
2257 { .name
= "946_PRBS2", .cp
= 15, .crn
= 6, .crm
= 2, .opc1
= 0,
2258 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2259 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[2]) },
2260 { .name
= "946_PRBS3", .cp
= 15, .crn
= 6, .crm
= 3, .opc1
= 0,
2261 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2262 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[3]) },
2263 { .name
= "946_PRBS4", .cp
= 15, .crn
= 6, .crm
= 4, .opc1
= 0,
2264 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2265 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[4]) },
2266 { .name
= "946_PRBS5", .cp
= 15, .crn
= 6, .crm
= 5, .opc1
= 0,
2267 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2268 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[5]) },
2269 { .name
= "946_PRBS6", .cp
= 15, .crn
= 6, .crm
= 6, .opc1
= 0,
2270 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2271 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[6]) },
2272 { .name
= "946_PRBS7", .cp
= 15, .crn
= 6, .crm
= 7, .opc1
= 0,
2273 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2274 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[7]) },
2278 static void vmsa_ttbcr_raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2281 TCR
*tcr
= raw_ptr(env
, ri
);
2282 int maskshift
= extract32(value
, 0, 3);
2284 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
2285 if (arm_feature(env
, ARM_FEATURE_LPAE
) && (value
& TTBCR_EAE
)) {
2286 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2287 * using Long-desciptor translation table format */
2288 value
&= ~((7 << 19) | (3 << 14) | (0xf << 3));
2289 } else if (arm_feature(env
, ARM_FEATURE_EL3
)) {
2290 /* In an implementation that includes the Security Extensions
2291 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2292 * Short-descriptor translation table format.
2294 value
&= TTBCR_PD1
| TTBCR_PD0
| TTBCR_N
;
2300 /* Update the masks corresponding to the TCR bank being written
2301 * Note that we always calculate mask and base_mask, but
2302 * they are only used for short-descriptor tables (ie if EAE is 0);
2303 * for long-descriptor tables the TCR fields are used differently
2304 * and the mask and base_mask values are meaningless.
2306 tcr
->raw_tcr
= value
;
2307 tcr
->mask
= ~(((uint32_t)0xffffffffu
) >> maskshift
);
2308 tcr
->base_mask
= ~((uint32_t)0x3fffu
>> maskshift
);
2311 static void vmsa_ttbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2314 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2316 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
2317 /* With LPAE the TTBCR could result in a change of ASID
2318 * via the TTBCR.A1 bit, so do a TLB flush.
2320 tlb_flush(CPU(cpu
), 1);
2322 vmsa_ttbcr_raw_write(env
, ri
, value
);
2325 static void vmsa_ttbcr_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2327 TCR
*tcr
= raw_ptr(env
, ri
);
2329 /* Reset both the TCR as well as the masks corresponding to the bank of
2330 * the TCR being reset.
2334 tcr
->base_mask
= 0xffffc000u
;
2337 static void vmsa_tcr_el1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2340 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2341 TCR
*tcr
= raw_ptr(env
, ri
);
2343 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2344 tlb_flush(CPU(cpu
), 1);
2345 tcr
->raw_tcr
= value
;
2348 static void vmsa_ttbr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2351 /* 64 bit accesses to the TTBRs can change the ASID and so we
2352 * must flush the TLB.
2354 if (cpreg_field_is_64bit(ri
)) {
2355 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2357 tlb_flush(CPU(cpu
), 1);
2359 raw_write(env
, ri
, value
);
2362 static void vttbr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2365 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2366 CPUState
*cs
= CPU(cpu
);
2368 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
2369 if (raw_read(env
, ri
) != value
) {
2370 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S12NSE1
, ARMMMUIdx_S12NSE0
,
2371 ARMMMUIdx_S2NS
, -1);
2372 raw_write(env
, ri
, value
);
2376 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo
[] = {
2377 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
2378 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
2379 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dfsr_s
),
2380 offsetoflow32(CPUARMState
, cp15
.dfsr_ns
) }, },
2381 { .name
= "IFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
2382 .access
= PL1_RW
, .resetvalue
= 0,
2383 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.ifsr_s
),
2384 offsetoflow32(CPUARMState
, cp15
.ifsr_ns
) } },
2385 { .name
= "DFAR", .cp
= 15, .opc1
= 0, .crn
= 6, .crm
= 0, .opc2
= 0,
2386 .access
= PL1_RW
, .resetvalue
= 0,
2387 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.dfar_s
),
2388 offsetof(CPUARMState
, cp15
.dfar_ns
) } },
2389 { .name
= "FAR_EL1", .state
= ARM_CP_STATE_AA64
,
2390 .opc0
= 3, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 0,
2391 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[1]),
2396 static const ARMCPRegInfo vmsa_cp_reginfo
[] = {
2397 { .name
= "ESR_EL1", .state
= ARM_CP_STATE_AA64
,
2398 .opc0
= 3, .crn
= 5, .crm
= 2, .opc1
= 0, .opc2
= 0,
2400 .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[1]), .resetvalue
= 0, },
2401 { .name
= "TTBR0_EL1", .state
= ARM_CP_STATE_BOTH
,
2402 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 0, .opc2
= 0,
2403 .access
= PL1_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
2404 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr0_s
),
2405 offsetof(CPUARMState
, cp15
.ttbr0_ns
) } },
2406 { .name
= "TTBR1_EL1", .state
= ARM_CP_STATE_BOTH
,
2407 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 0, .opc2
= 1,
2408 .access
= PL1_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
2409 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr1_s
),
2410 offsetof(CPUARMState
, cp15
.ttbr1_ns
) } },
2411 { .name
= "TCR_EL1", .state
= ARM_CP_STATE_AA64
,
2412 .opc0
= 3, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
2413 .access
= PL1_RW
, .writefn
= vmsa_tcr_el1_write
,
2414 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= raw_write
,
2415 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[1]) },
2416 { .name
= "TTBCR", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
2417 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
, .writefn
= vmsa_ttbcr_write
,
2418 .raw_writefn
= vmsa_ttbcr_raw_write
,
2419 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tcr_el
[3]),
2420 offsetoflow32(CPUARMState
, cp15
.tcr_el
[1])} },
2424 static void omap_ticonfig_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2427 env
->cp15
.c15_ticonfig
= value
& 0xe7;
2428 /* The OS_TYPE bit in this register changes the reported CPUID! */
2429 env
->cp15
.c0_cpuid
= (value
& (1 << 5)) ?
2430 ARM_CPUID_TI915T
: ARM_CPUID_TI925T
;
2433 static void omap_threadid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2436 env
->cp15
.c15_threadid
= value
& 0xffff;
2439 static void omap_wfi_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2442 /* Wait-for-interrupt (deprecated) */
2443 cpu_interrupt(CPU(arm_env_get_cpu(env
)), CPU_INTERRUPT_HALT
);
2446 static void omap_cachemaint_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2449 /* On OMAP there are registers indicating the max/min index of dcache lines
2450 * containing a dirty line; cache flush operations have to reset these.
2452 env
->cp15
.c15_i_max
= 0x000;
2453 env
->cp15
.c15_i_min
= 0xff0;
2456 static const ARMCPRegInfo omap_cp_reginfo
[] = {
2457 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= CP_ANY
,
2458 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_OVERRIDE
,
2459 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.esr_el
[1]),
2461 { .name
= "", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 0,
2462 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
2463 { .name
= "TICONFIG", .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0,
2465 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_ticonfig
), .resetvalue
= 0,
2466 .writefn
= omap_ticonfig_write
},
2467 { .name
= "IMAX", .cp
= 15, .crn
= 15, .crm
= 2, .opc1
= 0, .opc2
= 0,
2469 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_max
), .resetvalue
= 0, },
2470 { .name
= "IMIN", .cp
= 15, .crn
= 15, .crm
= 3, .opc1
= 0, .opc2
= 0,
2471 .access
= PL1_RW
, .resetvalue
= 0xff0,
2472 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_min
) },
2473 { .name
= "THREADID", .cp
= 15, .crn
= 15, .crm
= 4, .opc1
= 0, .opc2
= 0,
2475 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_threadid
), .resetvalue
= 0,
2476 .writefn
= omap_threadid_write
},
2477 { .name
= "TI925T_STATUS", .cp
= 15, .crn
= 15,
2478 .crm
= 8, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
2479 .type
= ARM_CP_NO_RAW
,
2480 .readfn
= arm_cp_read_zero
, .writefn
= omap_wfi_write
, },
2481 /* TODO: Peripheral port remap register:
2482 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2483 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2486 { .name
= "OMAP_CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
2487 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
2488 .type
= ARM_CP_OVERRIDE
| ARM_CP_NO_RAW
,
2489 .writefn
= omap_cachemaint_write
},
2490 { .name
= "C9", .cp
= 15, .crn
= 9,
2491 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
,
2492 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
, .resetvalue
= 0 },
2496 static void xscale_cpar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2499 env
->cp15
.c15_cpar
= value
& 0x3fff;
2502 static const ARMCPRegInfo xscale_cp_reginfo
[] = {
2503 { .name
= "XSCALE_CPAR",
2504 .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
2505 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_cpar
), .resetvalue
= 0,
2506 .writefn
= xscale_cpar_write
, },
2507 { .name
= "XSCALE_AUXCR",
2508 .cp
= 15, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 1, .access
= PL1_RW
,
2509 .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_xscaleauxcr
),
2511 /* XScale specific cache-lockdown: since we have no cache we NOP these
2512 * and hope the guest does not really rely on cache behaviour.
2514 { .name
= "XSCALE_LOCK_ICACHE_LINE",
2515 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 0,
2516 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2517 { .name
= "XSCALE_UNLOCK_ICACHE",
2518 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 1,
2519 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2520 { .name
= "XSCALE_DCACHE_LOCK",
2521 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 0,
2522 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
2523 { .name
= "XSCALE_UNLOCK_DCACHE",
2524 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 1,
2525 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2529 static const ARMCPRegInfo dummy_c15_cp_reginfo
[] = {
2530 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2531 * implementation of this implementation-defined space.
2532 * Ideally this should eventually disappear in favour of actually
2533 * implementing the correct behaviour for all cores.
2535 { .name
= "C15_IMPDEF", .cp
= 15, .crn
= 15,
2536 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
2538 .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
| ARM_CP_OVERRIDE
,
2543 static const ARMCPRegInfo cache_dirty_status_cp_reginfo
[] = {
2544 /* Cache status: RAZ because we have no cache so it's always clean */
2545 { .name
= "CDSR", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 6,
2546 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2551 static const ARMCPRegInfo cache_block_ops_cp_reginfo
[] = {
2552 /* We never have a a block transfer operation in progress */
2553 { .name
= "BXSR", .cp
= 15, .crn
= 7, .crm
= 12, .opc1
= 0, .opc2
= 4,
2554 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2556 /* The cache ops themselves: these all NOP for QEMU */
2557 { .name
= "IICR", .cp
= 15, .crm
= 5, .opc1
= 0,
2558 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2559 { .name
= "IDCR", .cp
= 15, .crm
= 6, .opc1
= 0,
2560 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2561 { .name
= "CDCR", .cp
= 15, .crm
= 12, .opc1
= 0,
2562 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2563 { .name
= "PIR", .cp
= 15, .crm
= 12, .opc1
= 1,
2564 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2565 { .name
= "PDR", .cp
= 15, .crm
= 12, .opc1
= 2,
2566 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2567 { .name
= "CIDCR", .cp
= 15, .crm
= 14, .opc1
= 0,
2568 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2572 static const ARMCPRegInfo cache_test_clean_cp_reginfo
[] = {
2573 /* The cache test-and-clean instructions always return (1 << 30)
2574 * to indicate that there are no dirty cache lines.
2576 { .name
= "TC_DCACHE", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 3,
2577 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2578 .resetvalue
= (1 << 30) },
2579 { .name
= "TCI_DCACHE", .cp
= 15, .crn
= 7, .crm
= 14, .opc1
= 0, .opc2
= 3,
2580 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2581 .resetvalue
= (1 << 30) },
2585 static const ARMCPRegInfo strongarm_cp_reginfo
[] = {
2586 /* Ignore ReadBuffer accesses */
2587 { .name
= "C9_READBUFFER", .cp
= 15, .crn
= 9,
2588 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
2589 .access
= PL1_RW
, .resetvalue
= 0,
2590 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
| ARM_CP_NO_RAW
},
2594 static uint64_t midr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2596 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2597 unsigned int cur_el
= arm_current_el(env
);
2598 bool secure
= arm_is_secure(env
);
2600 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL2
) && !secure
&& cur_el
== 1) {
2601 return env
->cp15
.vpidr_el2
;
2603 return raw_read(env
, ri
);
2606 static uint64_t mpidr_read_val(CPUARMState
*env
)
2608 ARMCPU
*cpu
= ARM_CPU(arm_env_get_cpu(env
));
2609 uint64_t mpidr
= cpu
->mp_affinity
;
2611 if (arm_feature(env
, ARM_FEATURE_V7MP
)) {
2612 mpidr
|= (1U << 31);
2613 /* Cores which are uniprocessor (non-coherent)
2614 * but still implement the MP extensions set
2615 * bit 30. (For instance, Cortex-R5).
2617 if (cpu
->mp_is_up
) {
2618 mpidr
|= (1u << 30);
2624 static uint64_t mpidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2626 unsigned int cur_el
= arm_current_el(env
);
2627 bool secure
= arm_is_secure(env
);
2629 if (arm_feature(env
, ARM_FEATURE_EL2
) && !secure
&& cur_el
== 1) {
2630 return env
->cp15
.vmpidr_el2
;
2632 return mpidr_read_val(env
);
2635 static const ARMCPRegInfo mpidr_cp_reginfo
[] = {
2636 { .name
= "MPIDR", .state
= ARM_CP_STATE_BOTH
,
2637 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 5,
2638 .access
= PL1_R
, .readfn
= mpidr_read
, .type
= ARM_CP_NO_RAW
},
2642 static const ARMCPRegInfo lpae_cp_reginfo
[] = {
2644 { .name
= "AMAIR0", .state
= ARM_CP_STATE_BOTH
,
2645 .opc0
= 3, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 0,
2646 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
2648 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2649 { .name
= "AMAIR1", .cp
= 15, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 1,
2650 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
2652 { .name
= "PAR", .cp
= 15, .crm
= 7, .opc1
= 0,
2653 .access
= PL1_RW
, .type
= ARM_CP_64BIT
, .resetvalue
= 0,
2654 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.par_s
),
2655 offsetof(CPUARMState
, cp15
.par_ns
)} },
2656 { .name
= "TTBR0", .cp
= 15, .crm
= 2, .opc1
= 0,
2657 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
2658 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr0_s
),
2659 offsetof(CPUARMState
, cp15
.ttbr0_ns
) },
2660 .writefn
= vmsa_ttbr_write
, },
2661 { .name
= "TTBR1", .cp
= 15, .crm
= 2, .opc1
= 1,
2662 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
2663 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr1_s
),
2664 offsetof(CPUARMState
, cp15
.ttbr1_ns
) },
2665 .writefn
= vmsa_ttbr_write
, },
2669 static uint64_t aa64_fpcr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2671 return vfp_get_fpcr(env
);
2674 static void aa64_fpcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2677 vfp_set_fpcr(env
, value
);
2680 static uint64_t aa64_fpsr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2682 return vfp_get_fpsr(env
);
2685 static void aa64_fpsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2688 vfp_set_fpsr(env
, value
);
2691 static CPAccessResult
aa64_daif_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2694 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UMA
)) {
2695 return CP_ACCESS_TRAP
;
2697 return CP_ACCESS_OK
;
2700 static void aa64_daif_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2703 env
->daif
= value
& PSTATE_DAIF
;
2706 static CPAccessResult
aa64_cacheop_access(CPUARMState
*env
,
2707 const ARMCPRegInfo
*ri
,
2710 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2711 * SCTLR_EL1.UCI is set.
2713 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UCI
)) {
2714 return CP_ACCESS_TRAP
;
2716 return CP_ACCESS_OK
;
2719 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2720 * Page D4-1736 (DDI0487A.b)
2723 static void tlbi_aa64_vmalle1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2726 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2727 CPUState
*cs
= CPU(cpu
);
2729 if (arm_is_secure_below_el3(env
)) {
2730 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S1SE1
, ARMMMUIdx_S1SE0
, -1);
2732 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S12NSE1
, ARMMMUIdx_S12NSE0
, -1);
2736 static void tlbi_aa64_vmalle1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2739 bool sec
= arm_is_secure_below_el3(env
);
2742 CPU_FOREACH(other_cs
) {
2744 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S1SE1
, ARMMMUIdx_S1SE0
, -1);
2746 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S12NSE1
,
2747 ARMMMUIdx_S12NSE0
, -1);
2752 static void tlbi_aa64_alle1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2755 /* Note that the 'ALL' scope must invalidate both stage 1 and
2756 * stage 2 translations, whereas most other scopes only invalidate
2757 * stage 1 translations.
2759 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2760 CPUState
*cs
= CPU(cpu
);
2762 if (arm_is_secure_below_el3(env
)) {
2763 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S1SE1
, ARMMMUIdx_S1SE0
, -1);
2765 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
2766 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S12NSE1
, ARMMMUIdx_S12NSE0
,
2767 ARMMMUIdx_S2NS
, -1);
2769 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S12NSE1
, ARMMMUIdx_S12NSE0
, -1);
2774 static void tlbi_aa64_alle2_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2777 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2778 CPUState
*cs
= CPU(cpu
);
2780 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S1E2
, -1);
2783 static void tlbi_aa64_alle3_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2786 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2787 CPUState
*cs
= CPU(cpu
);
2789 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S1E3
, -1);
2792 static void tlbi_aa64_alle1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2795 /* Note that the 'ALL' scope must invalidate both stage 1 and
2796 * stage 2 translations, whereas most other scopes only invalidate
2797 * stage 1 translations.
2799 bool sec
= arm_is_secure_below_el3(env
);
2800 bool has_el2
= arm_feature(env
, ARM_FEATURE_EL2
);
2803 CPU_FOREACH(other_cs
) {
2805 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S1SE1
, ARMMMUIdx_S1SE0
, -1);
2806 } else if (has_el2
) {
2807 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S12NSE1
,
2808 ARMMMUIdx_S12NSE0
, ARMMMUIdx_S2NS
, -1);
2810 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S12NSE1
,
2811 ARMMMUIdx_S12NSE0
, -1);
2816 static void tlbi_aa64_alle2is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2821 CPU_FOREACH(other_cs
) {
2822 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S1E2
, -1);
2826 static void tlbi_aa64_alle3is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2831 CPU_FOREACH(other_cs
) {
2832 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S1E3
, -1);
2836 static void tlbi_aa64_vae1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2839 /* Invalidate by VA, EL1&0 (AArch64 version).
2840 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
2841 * since we don't support flush-for-specific-ASID-only or
2842 * flush-last-level-only.
2844 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2845 CPUState
*cs
= CPU(cpu
);
2846 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2848 if (arm_is_secure_below_el3(env
)) {
2849 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S1SE1
,
2850 ARMMMUIdx_S1SE0
, -1);
2852 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S12NSE1
,
2853 ARMMMUIdx_S12NSE0
, -1);
2857 static void tlbi_aa64_vae2_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2860 /* Invalidate by VA, EL2
2861 * Currently handles both VAE2 and VALE2, since we don't support
2862 * flush-last-level-only.
2864 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2865 CPUState
*cs
= CPU(cpu
);
2866 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2868 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S1E2
, -1);
2871 static void tlbi_aa64_vae3_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2874 /* Invalidate by VA, EL3
2875 * Currently handles both VAE3 and VALE3, since we don't support
2876 * flush-last-level-only.
2878 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2879 CPUState
*cs
= CPU(cpu
);
2880 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2882 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S1E3
, -1);
2885 static void tlbi_aa64_vae1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2888 bool sec
= arm_is_secure_below_el3(env
);
2890 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2892 CPU_FOREACH(other_cs
) {
2894 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S1SE1
,
2895 ARMMMUIdx_S1SE0
, -1);
2897 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S12NSE1
,
2898 ARMMMUIdx_S12NSE0
, -1);
2903 static void tlbi_aa64_vae2is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2907 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2909 CPU_FOREACH(other_cs
) {
2910 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S1E2
, -1);
2914 static void tlbi_aa64_vae3is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2918 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2920 CPU_FOREACH(other_cs
) {
2921 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S1E3
, -1);
2925 static void tlbi_aa64_ipas2e1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2928 /* Invalidate by IPA. This has to invalidate any structures that
2929 * contain only stage 2 translation information, but does not need
2930 * to apply to structures that contain combined stage 1 and stage 2
2931 * translation information.
2932 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
2934 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2935 CPUState
*cs
= CPU(cpu
);
2938 if (!arm_feature(env
, ARM_FEATURE_EL2
) || !(env
->cp15
.scr_el3
& SCR_NS
)) {
2942 pageaddr
= sextract64(value
<< 12, 0, 48);
2944 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S2NS
, -1);
2947 static void tlbi_aa64_ipas2e1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2953 if (!arm_feature(env
, ARM_FEATURE_EL2
) || !(env
->cp15
.scr_el3
& SCR_NS
)) {
2957 pageaddr
= sextract64(value
<< 12, 0, 48);
2959 CPU_FOREACH(other_cs
) {
2960 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S2NS
, -1);
2964 static CPAccessResult
aa64_zva_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2967 /* We don't implement EL2, so the only control on DC ZVA is the
2968 * bit in the SCTLR which can prohibit access for EL0.
2970 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_DZE
)) {
2971 return CP_ACCESS_TRAP
;
2973 return CP_ACCESS_OK
;
2976 static uint64_t aa64_dczid_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2978 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2979 int dzp_bit
= 1 << 4;
2981 /* DZP indicates whether DC ZVA access is allowed */
2982 if (aa64_zva_access(env
, NULL
, false) == CP_ACCESS_OK
) {
2985 return cpu
->dcz_blocksize
| dzp_bit
;
2988 static CPAccessResult
sp_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2991 if (!(env
->pstate
& PSTATE_SP
)) {
2992 /* Access to SP_EL0 is undefined if it's being used as
2993 * the stack pointer.
2995 return CP_ACCESS_TRAP_UNCATEGORIZED
;
2997 return CP_ACCESS_OK
;
3000 static uint64_t spsel_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3002 return env
->pstate
& PSTATE_SP
;
3005 static void spsel_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t val
)
3007 update_spsel(env
, val
);
3010 static void sctlr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3013 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3015 if (raw_read(env
, ri
) == value
) {
3016 /* Skip the TLB flush if nothing actually changed; Linux likes
3017 * to do a lot of pointless SCTLR writes.
3022 raw_write(env
, ri
, value
);
3023 /* ??? Lots of these bits are not implemented. */
3024 /* This may enable/disable the MMU, so do a TLB flush. */
3025 tlb_flush(CPU(cpu
), 1);
3028 static CPAccessResult
fpexc32_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3031 if ((env
->cp15
.cptr_el
[2] & CPTR_TFP
) && arm_current_el(env
) == 2) {
3032 return CP_ACCESS_TRAP_FP_EL2
;
3034 if (env
->cp15
.cptr_el
[3] & CPTR_TFP
) {
3035 return CP_ACCESS_TRAP_FP_EL3
;
3037 return CP_ACCESS_OK
;
3040 static const ARMCPRegInfo v8_cp_reginfo
[] = {
3041 /* Minimal set of EL0-visible registers. This will need to be expanded
3042 * significantly for system emulation of AArch64 CPUs.
3044 { .name
= "NZCV", .state
= ARM_CP_STATE_AA64
,
3045 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 2,
3046 .access
= PL0_RW
, .type
= ARM_CP_NZCV
},
3047 { .name
= "DAIF", .state
= ARM_CP_STATE_AA64
,
3048 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 2,
3049 .type
= ARM_CP_NO_RAW
,
3050 .access
= PL0_RW
, .accessfn
= aa64_daif_access
,
3051 .fieldoffset
= offsetof(CPUARMState
, daif
),
3052 .writefn
= aa64_daif_write
, .resetfn
= arm_cp_reset_ignore
},
3053 { .name
= "FPCR", .state
= ARM_CP_STATE_AA64
,
3054 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 4,
3055 .access
= PL0_RW
, .readfn
= aa64_fpcr_read
, .writefn
= aa64_fpcr_write
},
3056 { .name
= "FPSR", .state
= ARM_CP_STATE_AA64
,
3057 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 4,
3058 .access
= PL0_RW
, .readfn
= aa64_fpsr_read
, .writefn
= aa64_fpsr_write
},
3059 { .name
= "DCZID_EL0", .state
= ARM_CP_STATE_AA64
,
3060 .opc0
= 3, .opc1
= 3, .opc2
= 7, .crn
= 0, .crm
= 0,
3061 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
,
3062 .readfn
= aa64_dczid_read
},
3063 { .name
= "DC_ZVA", .state
= ARM_CP_STATE_AA64
,
3064 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 4, .opc2
= 1,
3065 .access
= PL0_W
, .type
= ARM_CP_DC_ZVA
,
3066 #ifndef CONFIG_USER_ONLY
3067 /* Avoid overhead of an access check that always passes in user-mode */
3068 .accessfn
= aa64_zva_access
,
3071 { .name
= "CURRENTEL", .state
= ARM_CP_STATE_AA64
,
3072 .opc0
= 3, .opc1
= 0, .opc2
= 2, .crn
= 4, .crm
= 2,
3073 .access
= PL1_R
, .type
= ARM_CP_CURRENTEL
},
3074 /* Cache ops: all NOPs since we don't emulate caches */
3075 { .name
= "IC_IALLUIS", .state
= ARM_CP_STATE_AA64
,
3076 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
3077 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3078 { .name
= "IC_IALLU", .state
= ARM_CP_STATE_AA64
,
3079 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
3080 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3081 { .name
= "IC_IVAU", .state
= ARM_CP_STATE_AA64
,
3082 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 5, .opc2
= 1,
3083 .access
= PL0_W
, .type
= ARM_CP_NOP
,
3084 .accessfn
= aa64_cacheop_access
},
3085 { .name
= "DC_IVAC", .state
= ARM_CP_STATE_AA64
,
3086 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
3087 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3088 { .name
= "DC_ISW", .state
= ARM_CP_STATE_AA64
,
3089 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
3090 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3091 { .name
= "DC_CVAC", .state
= ARM_CP_STATE_AA64
,
3092 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 10, .opc2
= 1,
3093 .access
= PL0_W
, .type
= ARM_CP_NOP
,
3094 .accessfn
= aa64_cacheop_access
},
3095 { .name
= "DC_CSW", .state
= ARM_CP_STATE_AA64
,
3096 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
3097 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3098 { .name
= "DC_CVAU", .state
= ARM_CP_STATE_AA64
,
3099 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 11, .opc2
= 1,
3100 .access
= PL0_W
, .type
= ARM_CP_NOP
,
3101 .accessfn
= aa64_cacheop_access
},
3102 { .name
= "DC_CIVAC", .state
= ARM_CP_STATE_AA64
,
3103 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 14, .opc2
= 1,
3104 .access
= PL0_W
, .type
= ARM_CP_NOP
,
3105 .accessfn
= aa64_cacheop_access
},
3106 { .name
= "DC_CISW", .state
= ARM_CP_STATE_AA64
,
3107 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
3108 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3109 /* TLBI operations */
3110 { .name
= "TLBI_VMALLE1IS", .state
= ARM_CP_STATE_AA64
,
3111 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
3112 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3113 .writefn
= tlbi_aa64_vmalle1is_write
},
3114 { .name
= "TLBI_VAE1IS", .state
= ARM_CP_STATE_AA64
,
3115 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
3116 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3117 .writefn
= tlbi_aa64_vae1is_write
},
3118 { .name
= "TLBI_ASIDE1IS", .state
= ARM_CP_STATE_AA64
,
3119 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
3120 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3121 .writefn
= tlbi_aa64_vmalle1is_write
},
3122 { .name
= "TLBI_VAAE1IS", .state
= ARM_CP_STATE_AA64
,
3123 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
3124 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3125 .writefn
= tlbi_aa64_vae1is_write
},
3126 { .name
= "TLBI_VALE1IS", .state
= ARM_CP_STATE_AA64
,
3127 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
3128 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3129 .writefn
= tlbi_aa64_vae1is_write
},
3130 { .name
= "TLBI_VAALE1IS", .state
= ARM_CP_STATE_AA64
,
3131 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
3132 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3133 .writefn
= tlbi_aa64_vae1is_write
},
3134 { .name
= "TLBI_VMALLE1", .state
= ARM_CP_STATE_AA64
,
3135 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
3136 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3137 .writefn
= tlbi_aa64_vmalle1_write
},
3138 { .name
= "TLBI_VAE1", .state
= ARM_CP_STATE_AA64
,
3139 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
3140 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3141 .writefn
= tlbi_aa64_vae1_write
},
3142 { .name
= "TLBI_ASIDE1", .state
= ARM_CP_STATE_AA64
,
3143 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
3144 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3145 .writefn
= tlbi_aa64_vmalle1_write
},
3146 { .name
= "TLBI_VAAE1", .state
= ARM_CP_STATE_AA64
,
3147 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
3148 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3149 .writefn
= tlbi_aa64_vae1_write
},
3150 { .name
= "TLBI_VALE1", .state
= ARM_CP_STATE_AA64
,
3151 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
3152 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3153 .writefn
= tlbi_aa64_vae1_write
},
3154 { .name
= "TLBI_VAALE1", .state
= ARM_CP_STATE_AA64
,
3155 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
3156 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3157 .writefn
= tlbi_aa64_vae1_write
},
3158 { .name
= "TLBI_IPAS2E1IS", .state
= ARM_CP_STATE_AA64
,
3159 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 1,
3160 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3161 .writefn
= tlbi_aa64_ipas2e1is_write
},
3162 { .name
= "TLBI_IPAS2LE1IS", .state
= ARM_CP_STATE_AA64
,
3163 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 5,
3164 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3165 .writefn
= tlbi_aa64_ipas2e1is_write
},
3166 { .name
= "TLBI_ALLE1IS", .state
= ARM_CP_STATE_AA64
,
3167 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 4,
3168 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3169 .writefn
= tlbi_aa64_alle1is_write
},
3170 { .name
= "TLBI_VMALLS12E1IS", .state
= ARM_CP_STATE_AA64
,
3171 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 6,
3172 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3173 .writefn
= tlbi_aa64_alle1is_write
},
3174 { .name
= "TLBI_IPAS2E1", .state
= ARM_CP_STATE_AA64
,
3175 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 1,
3176 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3177 .writefn
= tlbi_aa64_ipas2e1_write
},
3178 { .name
= "TLBI_IPAS2LE1", .state
= ARM_CP_STATE_AA64
,
3179 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 5,
3180 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3181 .writefn
= tlbi_aa64_ipas2e1_write
},
3182 { .name
= "TLBI_ALLE1", .state
= ARM_CP_STATE_AA64
,
3183 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 4,
3184 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3185 .writefn
= tlbi_aa64_alle1_write
},
3186 { .name
= "TLBI_VMALLS12E1", .state
= ARM_CP_STATE_AA64
,
3187 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 6,
3188 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3189 .writefn
= tlbi_aa64_alle1is_write
},
3190 #ifndef CONFIG_USER_ONLY
3191 /* 64 bit address translation operations */
3192 { .name
= "AT_S1E1R", .state
= ARM_CP_STATE_AA64
,
3193 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 0,
3194 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3195 { .name
= "AT_S1E1W", .state
= ARM_CP_STATE_AA64
,
3196 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 1,
3197 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3198 { .name
= "AT_S1E0R", .state
= ARM_CP_STATE_AA64
,
3199 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 2,
3200 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3201 { .name
= "AT_S1E0W", .state
= ARM_CP_STATE_AA64
,
3202 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 3,
3203 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3204 { .name
= "AT_S12E1R", .state
= ARM_CP_STATE_AA64
,
3205 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 4,
3206 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3207 { .name
= "AT_S12E1W", .state
= ARM_CP_STATE_AA64
,
3208 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 5,
3209 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3210 { .name
= "AT_S12E0R", .state
= ARM_CP_STATE_AA64
,
3211 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 6,
3212 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3213 { .name
= "AT_S12E0W", .state
= ARM_CP_STATE_AA64
,
3214 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 7,
3215 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3216 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3217 { .name
= "AT_S1E3R", .state
= ARM_CP_STATE_AA64
,
3218 .opc0
= 1, .opc1
= 6, .crn
= 7, .crm
= 8, .opc2
= 0,
3219 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3220 { .name
= "AT_S1E3W", .state
= ARM_CP_STATE_AA64
,
3221 .opc0
= 1, .opc1
= 6, .crn
= 7, .crm
= 8, .opc2
= 1,
3222 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3223 { .name
= "PAR_EL1", .state
= ARM_CP_STATE_AA64
,
3224 .type
= ARM_CP_ALIAS
,
3225 .opc0
= 3, .opc1
= 0, .crn
= 7, .crm
= 4, .opc2
= 0,
3226 .access
= PL1_RW
, .resetvalue
= 0,
3227 .fieldoffset
= offsetof(CPUARMState
, cp15
.par_el
[1]),
3228 .writefn
= par_write
},
3230 /* TLB invalidate last level of translation table walk */
3231 { .name
= "TLBIMVALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
3232 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_is_write
},
3233 { .name
= "TLBIMVAALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
3234 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
3235 .writefn
= tlbimvaa_is_write
},
3236 { .name
= "TLBIMVAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
3237 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
3238 { .name
= "TLBIMVAAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
3239 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
3240 /* 32 bit cache operations */
3241 { .name
= "ICIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
3242 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3243 { .name
= "BPIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 6,
3244 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3245 { .name
= "ICIALLU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
3246 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3247 { .name
= "ICIMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 1,
3248 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3249 { .name
= "BPIALL", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 6,
3250 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3251 { .name
= "BPIMVA", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 7,
3252 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3253 { .name
= "DCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
3254 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3255 { .name
= "DCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
3256 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3257 { .name
= "DCCMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 1,
3258 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3259 { .name
= "DCCSW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
3260 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3261 { .name
= "DCCMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 11, .opc2
= 1,
3262 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3263 { .name
= "DCCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 1,
3264 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3265 { .name
= "DCCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
3266 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3267 /* MMU Domain access control / MPU write buffer control */
3268 { .name
= "DACR", .cp
= 15, .opc1
= 0, .crn
= 3, .crm
= 0, .opc2
= 0,
3269 .access
= PL1_RW
, .resetvalue
= 0,
3270 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
3271 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dacr_s
),
3272 offsetoflow32(CPUARMState
, cp15
.dacr_ns
) } },
3273 { .name
= "ELR_EL1", .state
= ARM_CP_STATE_AA64
,
3274 .type
= ARM_CP_ALIAS
,
3275 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 1,
3277 .fieldoffset
= offsetof(CPUARMState
, elr_el
[1]) },
3278 { .name
= "SPSR_EL1", .state
= ARM_CP_STATE_AA64
,
3279 .type
= ARM_CP_ALIAS
,
3280 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 0,
3282 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_SVC
]) },
3283 /* We rely on the access checks not allowing the guest to write to the
3284 * state field when SPSel indicates that it's being used as the stack
3287 { .name
= "SP_EL0", .state
= ARM_CP_STATE_AA64
,
3288 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 1, .opc2
= 0,
3289 .access
= PL1_RW
, .accessfn
= sp_el0_access
,
3290 .type
= ARM_CP_ALIAS
,
3291 .fieldoffset
= offsetof(CPUARMState
, sp_el
[0]) },
3292 { .name
= "SP_EL1", .state
= ARM_CP_STATE_AA64
,
3293 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 1, .opc2
= 0,
3294 .access
= PL2_RW
, .type
= ARM_CP_ALIAS
,
3295 .fieldoffset
= offsetof(CPUARMState
, sp_el
[1]) },
3296 { .name
= "SPSel", .state
= ARM_CP_STATE_AA64
,
3297 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 2, .opc2
= 0,
3298 .type
= ARM_CP_NO_RAW
,
3299 .access
= PL1_RW
, .readfn
= spsel_read
, .writefn
= spsel_write
},
3300 { .name
= "FPEXC32_EL2", .state
= ARM_CP_STATE_AA64
,
3301 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 3, .opc2
= 0,
3302 .type
= ARM_CP_ALIAS
,
3303 .fieldoffset
= offsetof(CPUARMState
, vfp
.xregs
[ARM_VFP_FPEXC
]),
3304 .access
= PL2_RW
, .accessfn
= fpexc32_access
},
3305 { .name
= "DACR32_EL2", .state
= ARM_CP_STATE_AA64
,
3306 .opc0
= 3, .opc1
= 4, .crn
= 3, .crm
= 0, .opc2
= 0,
3307 .access
= PL2_RW
, .resetvalue
= 0,
3308 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
3309 .fieldoffset
= offsetof(CPUARMState
, cp15
.dacr32_el2
) },
3310 { .name
= "IFSR32_EL2", .state
= ARM_CP_STATE_AA64
,
3311 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 0, .opc2
= 1,
3312 .access
= PL2_RW
, .resetvalue
= 0,
3313 .fieldoffset
= offsetof(CPUARMState
, cp15
.ifsr32_el2
) },
3314 { .name
= "SPSR_IRQ", .state
= ARM_CP_STATE_AA64
,
3315 .type
= ARM_CP_ALIAS
,
3316 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 0,
3318 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_IRQ
]) },
3319 { .name
= "SPSR_ABT", .state
= ARM_CP_STATE_AA64
,
3320 .type
= ARM_CP_ALIAS
,
3321 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 1,
3323 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_ABT
]) },
3324 { .name
= "SPSR_UND", .state
= ARM_CP_STATE_AA64
,
3325 .type
= ARM_CP_ALIAS
,
3326 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 2,
3328 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_UND
]) },
3329 { .name
= "SPSR_FIQ", .state
= ARM_CP_STATE_AA64
,
3330 .type
= ARM_CP_ALIAS
,
3331 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 3,
3333 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_FIQ
]) },
3337 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
3338 static const ARMCPRegInfo el3_no_el2_cp_reginfo
[] = {
3339 { .name
= "VBAR_EL2", .state
= ARM_CP_STATE_AA64
,
3340 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 0,
3342 .readfn
= arm_cp_read_zero
, .writefn
= arm_cp_write_ignore
},
3343 { .name
= "HCR_EL2", .state
= ARM_CP_STATE_AA64
,
3344 .type
= ARM_CP_NO_RAW
,
3345 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 0,
3347 .readfn
= arm_cp_read_zero
, .writefn
= arm_cp_write_ignore
},
3348 { .name
= "CPTR_EL2", .state
= ARM_CP_STATE_BOTH
,
3349 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 2,
3350 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3351 { .name
= "MAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
3352 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 0,
3353 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3355 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
3356 .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 1,
3357 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3358 { .name
= "AMAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
3359 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 0,
3360 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3362 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
3363 .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 1,
3364 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3366 { .name
= "AFSR0_EL2", .state
= ARM_CP_STATE_BOTH
,
3367 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 0,
3368 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3370 { .name
= "AFSR1_EL2", .state
= ARM_CP_STATE_BOTH
,
3371 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 1,
3372 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3374 { .name
= "TCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3375 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 2,
3376 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3377 { .name
= "VTCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3378 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 2,
3379 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
3380 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3381 { .name
= "VTTBR", .state
= ARM_CP_STATE_AA32
,
3382 .cp
= 15, .opc1
= 6, .crm
= 2,
3383 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
3384 .type
= ARM_CP_CONST
| ARM_CP_64BIT
, .resetvalue
= 0 },
3385 { .name
= "VTTBR_EL2", .state
= ARM_CP_STATE_AA64
,
3386 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 0,
3387 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3388 { .name
= "SCTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
3389 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 0,
3390 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3391 { .name
= "TPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
3392 .opc0
= 3, .opc1
= 4, .crn
= 13, .crm
= 0, .opc2
= 2,
3393 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3394 { .name
= "TTBR0_EL2", .state
= ARM_CP_STATE_AA64
,
3395 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 0,
3396 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3397 { .name
= "HTTBR", .cp
= 15, .opc1
= 4, .crm
= 2,
3398 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
3400 { .name
= "CNTHCTL_EL2", .state
= ARM_CP_STATE_BOTH
,
3401 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 1, .opc2
= 0,
3402 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3403 { .name
= "CNTVOFF_EL2", .state
= ARM_CP_STATE_AA64
,
3404 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 0, .opc2
= 3,
3405 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3406 { .name
= "CNTVOFF", .cp
= 15, .opc1
= 4, .crm
= 14,
3407 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
3409 { .name
= "CNTHP_CVAL_EL2", .state
= ARM_CP_STATE_AA64
,
3410 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 2,
3411 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3412 { .name
= "CNTHP_CVAL", .cp
= 15, .opc1
= 6, .crm
= 14,
3413 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
3415 { .name
= "CNTHP_TVAL_EL2", .state
= ARM_CP_STATE_BOTH
,
3416 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 0,
3417 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3418 { .name
= "CNTHP_CTL_EL2", .state
= ARM_CP_STATE_BOTH
,
3419 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 1,
3420 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3421 { .name
= "MDCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3422 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 1,
3423 .access
= PL2_RW
, .accessfn
= access_tda
,
3424 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3425 { .name
= "HPFAR_EL2", .state
= ARM_CP_STATE_BOTH
,
3426 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 4,
3427 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
3428 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3432 static void hcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
3434 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3435 uint64_t valid_mask
= HCR_MASK
;
3437 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
3438 valid_mask
&= ~HCR_HCD
;
3440 valid_mask
&= ~HCR_TSC
;
3443 /* Clear RES0 bits. */
3444 value
&= valid_mask
;
3446 /* These bits change the MMU setup:
3447 * HCR_VM enables stage 2 translation
3448 * HCR_PTW forbids certain page-table setups
3449 * HCR_DC Disables stage1 and enables stage2 translation
3451 if ((raw_read(env
, ri
) ^ value
) & (HCR_VM
| HCR_PTW
| HCR_DC
)) {
3452 tlb_flush(CPU(cpu
), 1);
3454 raw_write(env
, ri
, value
);
3457 static const ARMCPRegInfo el2_cp_reginfo
[] = {
3458 { .name
= "HCR_EL2", .state
= ARM_CP_STATE_AA64
,
3459 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 0,
3460 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.hcr_el2
),
3461 .writefn
= hcr_write
},
3462 { .name
= "ELR_EL2", .state
= ARM_CP_STATE_AA64
,
3463 .type
= ARM_CP_ALIAS
,
3464 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 0, .opc2
= 1,
3466 .fieldoffset
= offsetof(CPUARMState
, elr_el
[2]) },
3467 { .name
= "ESR_EL2", .state
= ARM_CP_STATE_AA64
,
3468 .type
= ARM_CP_ALIAS
,
3469 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 2, .opc2
= 0,
3470 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[2]) },
3471 { .name
= "FAR_EL2", .state
= ARM_CP_STATE_AA64
,
3472 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 0,
3473 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[2]) },
3474 { .name
= "SPSR_EL2", .state
= ARM_CP_STATE_AA64
,
3475 .type
= ARM_CP_ALIAS
,
3476 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 0, .opc2
= 0,
3478 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_HYP
]) },
3479 { .name
= "VBAR_EL2", .state
= ARM_CP_STATE_AA64
,
3480 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 0,
3481 .access
= PL2_RW
, .writefn
= vbar_write
,
3482 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[2]),
3484 { .name
= "SP_EL2", .state
= ARM_CP_STATE_AA64
,
3485 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 1, .opc2
= 0,
3486 .access
= PL3_RW
, .type
= ARM_CP_ALIAS
,
3487 .fieldoffset
= offsetof(CPUARMState
, sp_el
[2]) },
3488 { .name
= "CPTR_EL2", .state
= ARM_CP_STATE_BOTH
,
3489 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 2,
3490 .access
= PL2_RW
, .accessfn
= cptr_access
, .resetvalue
= 0,
3491 .fieldoffset
= offsetof(CPUARMState
, cp15
.cptr_el
[2]) },
3492 { .name
= "MAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
3493 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 0,
3494 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[2]),
3496 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
3497 .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 1,
3498 .access
= PL2_RW
, .type
= ARM_CP_ALIAS
,
3499 .fieldoffset
= offsetofhigh32(CPUARMState
, cp15
.mair_el
[2]) },
3500 { .name
= "AMAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
3501 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 0,
3502 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3504 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3505 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
3506 .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 1,
3507 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3509 { .name
= "AFSR0_EL2", .state
= ARM_CP_STATE_BOTH
,
3510 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 0,
3511 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3513 { .name
= "AFSR1_EL2", .state
= ARM_CP_STATE_BOTH
,
3514 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 1,
3515 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3517 { .name
= "TCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3518 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 2,
3519 .access
= PL2_RW
, .writefn
= vmsa_tcr_el1_write
,
3520 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= raw_write
,
3521 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[2]) },
3522 { .name
= "VTCR", .state
= ARM_CP_STATE_AA32
,
3523 .cp
= 15, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 2,
3524 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
3525 .fieldoffset
= offsetof(CPUARMState
, cp15
.vtcr_el2
) },
3526 { .name
= "VTCR_EL2", .state
= ARM_CP_STATE_AA64
,
3527 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 2,
3528 .access
= PL2_RW
, .type
= ARM_CP_ALIAS
,
3529 .fieldoffset
= offsetof(CPUARMState
, cp15
.vtcr_el2
) },
3530 { .name
= "VTTBR", .state
= ARM_CP_STATE_AA32
,
3531 .cp
= 15, .opc1
= 6, .crm
= 2,
3532 .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
3533 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
3534 .fieldoffset
= offsetof(CPUARMState
, cp15
.vttbr_el2
),
3535 .writefn
= vttbr_write
},
3536 { .name
= "VTTBR_EL2", .state
= ARM_CP_STATE_AA64
,
3537 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 0,
3538 .access
= PL2_RW
, .writefn
= vttbr_write
,
3539 .fieldoffset
= offsetof(CPUARMState
, cp15
.vttbr_el2
) },
3540 { .name
= "SCTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
3541 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 0,
3542 .access
= PL2_RW
, .raw_writefn
= raw_write
, .writefn
= sctlr_write
,
3543 .fieldoffset
= offsetof(CPUARMState
, cp15
.sctlr_el
[2]) },
3544 { .name
= "TPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
3545 .opc0
= 3, .opc1
= 4, .crn
= 13, .crm
= 0, .opc2
= 2,
3546 .access
= PL2_RW
, .resetvalue
= 0,
3547 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[2]) },
3548 { .name
= "TTBR0_EL2", .state
= ARM_CP_STATE_AA64
,
3549 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 0,
3550 .access
= PL2_RW
, .resetvalue
= 0,
3551 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[2]) },
3552 { .name
= "HTTBR", .cp
= 15, .opc1
= 4, .crm
= 2,
3553 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
3554 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[2]) },
3555 { .name
= "TLBI_ALLE2", .state
= ARM_CP_STATE_AA64
,
3556 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 0,
3557 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3558 .writefn
= tlbi_aa64_alle2_write
},
3559 { .name
= "TLBI_VAE2", .state
= ARM_CP_STATE_AA64
,
3560 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 1,
3561 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3562 .writefn
= tlbi_aa64_vae2_write
},
3563 { .name
= "TLBI_VALE2", .state
= ARM_CP_STATE_AA64
,
3564 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 5,
3565 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3566 .writefn
= tlbi_aa64_vae2_write
},
3567 { .name
= "TLBI_ALLE2IS", .state
= ARM_CP_STATE_AA64
,
3568 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 0,
3569 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3570 .writefn
= tlbi_aa64_alle2is_write
},
3571 { .name
= "TLBI_VAE2IS", .state
= ARM_CP_STATE_AA64
,
3572 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 1,
3573 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3574 .writefn
= tlbi_aa64_vae2is_write
},
3575 { .name
= "TLBI_VALE2IS", .state
= ARM_CP_STATE_AA64
,
3576 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 5,
3577 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3578 .writefn
= tlbi_aa64_vae2is_write
},
3579 #ifndef CONFIG_USER_ONLY
3580 /* Unlike the other EL2-related AT operations, these must
3581 * UNDEF from EL3 if EL2 is not implemented, which is why we
3582 * define them here rather than with the rest of the AT ops.
3584 { .name
= "AT_S1E2R", .state
= ARM_CP_STATE_AA64
,
3585 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 0,
3586 .access
= PL2_W
, .accessfn
= at_s1e2_access
,
3587 .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3588 { .name
= "AT_S1E2W", .state
= ARM_CP_STATE_AA64
,
3589 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 1,
3590 .access
= PL2_W
, .accessfn
= at_s1e2_access
,
3591 .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3592 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3593 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3594 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3595 * to behave as if SCR.NS was 1.
3597 { .name
= "ATS1HR", .cp
= 15, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 0,
3599 .writefn
= ats1h_write
, .type
= ARM_CP_NO_RAW
},
3600 { .name
= "ATS1HW", .cp
= 15, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 1,
3602 .writefn
= ats1h_write
, .type
= ARM_CP_NO_RAW
},
3603 { .name
= "CNTHCTL_EL2", .state
= ARM_CP_STATE_BOTH
,
3604 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 1, .opc2
= 0,
3605 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3606 * reset values as IMPDEF. We choose to reset to 3 to comply with
3607 * both ARMv7 and ARMv8.
3609 .access
= PL2_RW
, .resetvalue
= 3,
3610 .fieldoffset
= offsetof(CPUARMState
, cp15
.cnthctl_el2
) },
3611 { .name
= "CNTVOFF_EL2", .state
= ARM_CP_STATE_AA64
,
3612 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 0, .opc2
= 3,
3613 .access
= PL2_RW
, .type
= ARM_CP_IO
, .resetvalue
= 0,
3614 .writefn
= gt_cntvoff_write
,
3615 .fieldoffset
= offsetof(CPUARMState
, cp15
.cntvoff_el2
) },
3616 { .name
= "CNTVOFF", .cp
= 15, .opc1
= 4, .crm
= 14,
3617 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
| ARM_CP_IO
,
3618 .writefn
= gt_cntvoff_write
,
3619 .fieldoffset
= offsetof(CPUARMState
, cp15
.cntvoff_el2
) },
3620 { .name
= "CNTHP_CVAL_EL2", .state
= ARM_CP_STATE_AA64
,
3621 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 2,
3622 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].cval
),
3623 .type
= ARM_CP_IO
, .access
= PL2_RW
,
3624 .writefn
= gt_hyp_cval_write
, .raw_writefn
= raw_write
},
3625 { .name
= "CNTHP_CVAL", .cp
= 15, .opc1
= 6, .crm
= 14,
3626 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].cval
),
3627 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_IO
,
3628 .writefn
= gt_hyp_cval_write
, .raw_writefn
= raw_write
},
3629 { .name
= "CNTHP_TVAL_EL2", .state
= ARM_CP_STATE_BOTH
,
3630 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 0,
3631 .type
= ARM_CP_IO
, .access
= PL2_RW
,
3632 .resetfn
= gt_hyp_timer_reset
,
3633 .readfn
= gt_hyp_tval_read
, .writefn
= gt_hyp_tval_write
},
3634 { .name
= "CNTHP_CTL_EL2", .state
= ARM_CP_STATE_BOTH
,
3636 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 1,
3638 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].ctl
),
3640 .writefn
= gt_hyp_ctl_write
, .raw_writefn
= raw_write
},
3642 /* The only field of MDCR_EL2 that has a defined architectural reset value
3643 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
3644 * don't impelment any PMU event counters, so using zero as a reset
3645 * value for MDCR_EL2 is okay
3647 { .name
= "MDCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3648 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 1,
3649 .access
= PL2_RW
, .resetvalue
= 0,
3650 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdcr_el2
), },
3651 { .name
= "HPFAR", .state
= ARM_CP_STATE_AA32
,
3652 .cp
= 15, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 4,
3653 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
3654 .fieldoffset
= offsetof(CPUARMState
, cp15
.hpfar_el2
) },
3655 { .name
= "HPFAR_EL2", .state
= ARM_CP_STATE_AA64
,
3656 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 4,
3658 .fieldoffset
= offsetof(CPUARMState
, cp15
.hpfar_el2
) },
3662 static CPAccessResult
nsacr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3665 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
3666 * At Secure EL1 it traps to EL3.
3668 if (arm_current_el(env
) == 3) {
3669 return CP_ACCESS_OK
;
3671 if (arm_is_secure_below_el3(env
)) {
3672 return CP_ACCESS_TRAP_EL3
;
3674 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
3676 return CP_ACCESS_OK
;
3678 return CP_ACCESS_TRAP_UNCATEGORIZED
;
3681 static const ARMCPRegInfo el3_cp_reginfo
[] = {
3682 { .name
= "SCR_EL3", .state
= ARM_CP_STATE_AA64
,
3683 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 0,
3684 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.scr_el3
),
3685 .resetvalue
= 0, .writefn
= scr_write
},
3686 { .name
= "SCR", .type
= ARM_CP_ALIAS
,
3687 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 0,
3688 .access
= PL1_RW
, .accessfn
= access_trap_aa32s_el1
,
3689 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.scr_el3
),
3690 .writefn
= scr_write
},
3691 { .name
= "MDCR_EL3", .state
= ARM_CP_STATE_AA64
,
3692 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 3, .opc2
= 1,
3694 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mdcr_el3
) },
3695 { .name
= "SDCR", .type
= ARM_CP_ALIAS
,
3696 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 3, .opc2
= 1,
3697 .access
= PL1_RW
, .accessfn
= access_trap_aa32s_el1
,
3698 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.mdcr_el3
) },
3699 { .name
= "SDER32_EL3", .state
= ARM_CP_STATE_AA64
,
3700 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 1,
3701 .access
= PL3_RW
, .resetvalue
= 0,
3702 .fieldoffset
= offsetof(CPUARMState
, cp15
.sder
) },
3704 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 1,
3705 .access
= PL3_RW
, .resetvalue
= 0,
3706 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.sder
) },
3707 { .name
= "MVBAR", .cp
= 15, .opc1
= 0, .crn
= 12, .crm
= 0, .opc2
= 1,
3708 .access
= PL1_RW
, .accessfn
= access_trap_aa32s_el1
,
3709 .writefn
= vbar_write
, .resetvalue
= 0,
3710 .fieldoffset
= offsetof(CPUARMState
, cp15
.mvbar
) },
3711 { .name
= "SCTLR_EL3", .state
= ARM_CP_STATE_AA64
,
3712 .type
= ARM_CP_ALIAS
, /* reset handled by AArch32 view */
3713 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 0, .opc2
= 0,
3714 .access
= PL3_RW
, .raw_writefn
= raw_write
, .writefn
= sctlr_write
,
3715 .fieldoffset
= offsetof(CPUARMState
, cp15
.sctlr_el
[3]) },
3716 { .name
= "TTBR0_EL3", .state
= ARM_CP_STATE_AA64
,
3717 .opc0
= 3, .opc1
= 6, .crn
= 2, .crm
= 0, .opc2
= 0,
3718 .access
= PL3_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
3719 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[3]) },
3720 { .name
= "TCR_EL3", .state
= ARM_CP_STATE_AA64
,
3721 .opc0
= 3, .opc1
= 6, .crn
= 2, .crm
= 0, .opc2
= 2,
3722 .access
= PL3_RW
, .writefn
= vmsa_tcr_el1_write
,
3723 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= raw_write
,
3724 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[3]) },
3725 { .name
= "ELR_EL3", .state
= ARM_CP_STATE_AA64
,
3726 .type
= ARM_CP_ALIAS
,
3727 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 0, .opc2
= 1,
3729 .fieldoffset
= offsetof(CPUARMState
, elr_el
[3]) },
3730 { .name
= "ESR_EL3", .state
= ARM_CP_STATE_AA64
,
3731 .type
= ARM_CP_ALIAS
,
3732 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 2, .opc2
= 0,
3733 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[3]) },
3734 { .name
= "FAR_EL3", .state
= ARM_CP_STATE_AA64
,
3735 .opc0
= 3, .opc1
= 6, .crn
= 6, .crm
= 0, .opc2
= 0,
3736 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[3]) },
3737 { .name
= "SPSR_EL3", .state
= ARM_CP_STATE_AA64
,
3738 .type
= ARM_CP_ALIAS
,
3739 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 0, .opc2
= 0,
3741 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_MON
]) },
3742 { .name
= "VBAR_EL3", .state
= ARM_CP_STATE_AA64
,
3743 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 0, .opc2
= 0,
3744 .access
= PL3_RW
, .writefn
= vbar_write
,
3745 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[3]),
3747 { .name
= "CPTR_EL3", .state
= ARM_CP_STATE_AA64
,
3748 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 2,
3749 .access
= PL3_RW
, .accessfn
= cptr_access
, .resetvalue
= 0,
3750 .fieldoffset
= offsetof(CPUARMState
, cp15
.cptr_el
[3]) },
3751 { .name
= "TPIDR_EL3", .state
= ARM_CP_STATE_AA64
,
3752 .opc0
= 3, .opc1
= 6, .crn
= 13, .crm
= 0, .opc2
= 2,
3753 .access
= PL3_RW
, .resetvalue
= 0,
3754 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[3]) },
3755 { .name
= "AMAIR_EL3", .state
= ARM_CP_STATE_AA64
,
3756 .opc0
= 3, .opc1
= 6, .crn
= 10, .crm
= 3, .opc2
= 0,
3757 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
3759 { .name
= "AFSR0_EL3", .state
= ARM_CP_STATE_BOTH
,
3760 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 1, .opc2
= 0,
3761 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
3763 { .name
= "AFSR1_EL3", .state
= ARM_CP_STATE_BOTH
,
3764 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 1, .opc2
= 1,
3765 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
3767 { .name
= "TLBI_ALLE3IS", .state
= ARM_CP_STATE_AA64
,
3768 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 0,
3769 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3770 .writefn
= tlbi_aa64_alle3is_write
},
3771 { .name
= "TLBI_VAE3IS", .state
= ARM_CP_STATE_AA64
,
3772 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 1,
3773 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3774 .writefn
= tlbi_aa64_vae3is_write
},
3775 { .name
= "TLBI_VALE3IS", .state
= ARM_CP_STATE_AA64
,
3776 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 5,
3777 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3778 .writefn
= tlbi_aa64_vae3is_write
},
3779 { .name
= "TLBI_ALLE3", .state
= ARM_CP_STATE_AA64
,
3780 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 0,
3781 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3782 .writefn
= tlbi_aa64_alle3_write
},
3783 { .name
= "TLBI_VAE3", .state
= ARM_CP_STATE_AA64
,
3784 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 1,
3785 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3786 .writefn
= tlbi_aa64_vae3_write
},
3787 { .name
= "TLBI_VALE3", .state
= ARM_CP_STATE_AA64
,
3788 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 5,
3789 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3790 .writefn
= tlbi_aa64_vae3_write
},
3794 static CPAccessResult
ctr_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3797 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
3798 * but the AArch32 CTR has its own reginfo struct)
3800 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UCT
)) {
3801 return CP_ACCESS_TRAP
;
3803 return CP_ACCESS_OK
;
3806 static void oslar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3809 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
3810 * read via a bit in OSLSR_EL1.
3814 if (ri
->state
== ARM_CP_STATE_AA32
) {
3815 oslock
= (value
== 0xC5ACCE55);
3820 env
->cp15
.oslsr_el1
= deposit32(env
->cp15
.oslsr_el1
, 1, 1, oslock
);
3823 static const ARMCPRegInfo debug_cp_reginfo
[] = {
3824 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
3825 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
3826 * unlike DBGDRAR it is never accessible from EL0.
3827 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
3830 { .name
= "DBGDRAR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 0,
3831 .access
= PL0_R
, .accessfn
= access_tdra
,
3832 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3833 { .name
= "MDRAR_EL1", .state
= ARM_CP_STATE_AA64
,
3834 .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 0,
3835 .access
= PL1_R
, .accessfn
= access_tdra
,
3836 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3837 { .name
= "DBGDSAR", .cp
= 14, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
3838 .access
= PL0_R
, .accessfn
= access_tdra
,
3839 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3840 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
3841 { .name
= "MDSCR_EL1", .state
= ARM_CP_STATE_BOTH
,
3842 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
3843 .access
= PL1_RW
, .accessfn
= access_tda
,
3844 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdscr_el1
),
3846 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
3847 * We don't implement the configurable EL0 access.
3849 { .name
= "MDCCSR_EL0", .state
= ARM_CP_STATE_BOTH
,
3850 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 0,
3851 .type
= ARM_CP_ALIAS
,
3852 .access
= PL1_R
, .accessfn
= access_tda
,
3853 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdscr_el1
), },
3854 { .name
= "OSLAR_EL1", .state
= ARM_CP_STATE_BOTH
,
3855 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 4,
3856 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3857 .accessfn
= access_tdosa
,
3858 .writefn
= oslar_write
},
3859 { .name
= "OSLSR_EL1", .state
= ARM_CP_STATE_BOTH
,
3860 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 4,
3861 .access
= PL1_R
, .resetvalue
= 10,
3862 .accessfn
= access_tdosa
,
3863 .fieldoffset
= offsetof(CPUARMState
, cp15
.oslsr_el1
) },
3864 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
3865 { .name
= "OSDLR_EL1", .state
= ARM_CP_STATE_BOTH
,
3866 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 3, .opc2
= 4,
3867 .access
= PL1_RW
, .accessfn
= access_tdosa
,
3868 .type
= ARM_CP_NOP
},
3869 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
3870 * implement vector catch debug events yet.
3873 .cp
= 14, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 0,
3874 .access
= PL1_RW
, .accessfn
= access_tda
,
3875 .type
= ARM_CP_NOP
},
3879 static const ARMCPRegInfo debug_lpae_cp_reginfo
[] = {
3880 /* 64 bit access versions of the (dummy) debug registers */
3881 { .name
= "DBGDRAR", .cp
= 14, .crm
= 1, .opc1
= 0,
3882 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
3883 { .name
= "DBGDSAR", .cp
= 14, .crm
= 2, .opc1
= 0,
3884 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
3888 void hw_watchpoint_update(ARMCPU
*cpu
, int n
)
3890 CPUARMState
*env
= &cpu
->env
;
3892 vaddr wvr
= env
->cp15
.dbgwvr
[n
];
3893 uint64_t wcr
= env
->cp15
.dbgwcr
[n
];
3895 int flags
= BP_CPU
| BP_STOP_BEFORE_ACCESS
;
3897 if (env
->cpu_watchpoint
[n
]) {
3898 cpu_watchpoint_remove_by_ref(CPU(cpu
), env
->cpu_watchpoint
[n
]);
3899 env
->cpu_watchpoint
[n
] = NULL
;
3902 if (!extract64(wcr
, 0, 1)) {
3903 /* E bit clear : watchpoint disabled */
3907 switch (extract64(wcr
, 3, 2)) {
3909 /* LSC 00 is reserved and must behave as if the wp is disabled */
3912 flags
|= BP_MEM_READ
;
3915 flags
|= BP_MEM_WRITE
;
3918 flags
|= BP_MEM_ACCESS
;
3922 /* Attempts to use both MASK and BAS fields simultaneously are
3923 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
3924 * thus generating a watchpoint for every byte in the masked region.
3926 mask
= extract64(wcr
, 24, 4);
3927 if (mask
== 1 || mask
== 2) {
3928 /* Reserved values of MASK; we must act as if the mask value was
3929 * some non-reserved value, or as if the watchpoint were disabled.
3930 * We choose the latter.
3934 /* Watchpoint covers an aligned area up to 2GB in size */
3936 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
3937 * whether the watchpoint fires when the unmasked bits match; we opt
3938 * to generate the exceptions.
3942 /* Watchpoint covers bytes defined by the byte address select bits */
3943 int bas
= extract64(wcr
, 5, 8);
3947 /* This must act as if the watchpoint is disabled */
3951 if (extract64(wvr
, 2, 1)) {
3952 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
3953 * ignored, and BAS[3:0] define which bytes to watch.
3957 /* The BAS bits are supposed to be programmed to indicate a contiguous
3958 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
3959 * we fire for each byte in the word/doubleword addressed by the WVR.
3960 * We choose to ignore any non-zero bits after the first range of 1s.
3962 basstart
= ctz32(bas
);
3963 len
= cto32(bas
>> basstart
);
3967 cpu_watchpoint_insert(CPU(cpu
), wvr
, len
, flags
,
3968 &env
->cpu_watchpoint
[n
]);
3971 void hw_watchpoint_update_all(ARMCPU
*cpu
)
3974 CPUARMState
*env
= &cpu
->env
;
3976 /* Completely clear out existing QEMU watchpoints and our array, to
3977 * avoid possible stale entries following migration load.
3979 cpu_watchpoint_remove_all(CPU(cpu
), BP_CPU
);
3980 memset(env
->cpu_watchpoint
, 0, sizeof(env
->cpu_watchpoint
));
3982 for (i
= 0; i
< ARRAY_SIZE(cpu
->env
.cpu_watchpoint
); i
++) {
3983 hw_watchpoint_update(cpu
, i
);
3987 static void dbgwvr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3990 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3993 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
3994 * register reads and behaves as if values written are sign extended.
3995 * Bits [1:0] are RES0.
3997 value
= sextract64(value
, 0, 49) & ~3ULL;
3999 raw_write(env
, ri
, value
);
4000 hw_watchpoint_update(cpu
, i
);
4003 static void dbgwcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4006 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4009 raw_write(env
, ri
, value
);
4010 hw_watchpoint_update(cpu
, i
);
4013 void hw_breakpoint_update(ARMCPU
*cpu
, int n
)
4015 CPUARMState
*env
= &cpu
->env
;
4016 uint64_t bvr
= env
->cp15
.dbgbvr
[n
];
4017 uint64_t bcr
= env
->cp15
.dbgbcr
[n
];
4022 if (env
->cpu_breakpoint
[n
]) {
4023 cpu_breakpoint_remove_by_ref(CPU(cpu
), env
->cpu_breakpoint
[n
]);
4024 env
->cpu_breakpoint
[n
] = NULL
;
4027 if (!extract64(bcr
, 0, 1)) {
4028 /* E bit clear : watchpoint disabled */
4032 bt
= extract64(bcr
, 20, 4);
4035 case 4: /* unlinked address mismatch (reserved if AArch64) */
4036 case 5: /* linked address mismatch (reserved if AArch64) */
4037 qemu_log_mask(LOG_UNIMP
,
4038 "arm: address mismatch breakpoint types not implemented");
4040 case 0: /* unlinked address match */
4041 case 1: /* linked address match */
4043 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4044 * we behave as if the register was sign extended. Bits [1:0] are
4045 * RES0. The BAS field is used to allow setting breakpoints on 16
4046 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4047 * a bp will fire if the addresses covered by the bp and the addresses
4048 * covered by the insn overlap but the insn doesn't start at the
4049 * start of the bp address range. We choose to require the insn and
4050 * the bp to have the same address. The constraints on writing to
4051 * BAS enforced in dbgbcr_write mean we have only four cases:
4052 * 0b0000 => no breakpoint
4053 * 0b0011 => breakpoint on addr
4054 * 0b1100 => breakpoint on addr + 2
4055 * 0b1111 => breakpoint on addr
4056 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4058 int bas
= extract64(bcr
, 5, 4);
4059 addr
= sextract64(bvr
, 0, 49) & ~3ULL;
4068 case 2: /* unlinked context ID match */
4069 case 8: /* unlinked VMID match (reserved if no EL2) */
4070 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4071 qemu_log_mask(LOG_UNIMP
,
4072 "arm: unlinked context breakpoint types not implemented");
4074 case 9: /* linked VMID match (reserved if no EL2) */
4075 case 11: /* linked context ID and VMID match (reserved if no EL2) */
4076 case 3: /* linked context ID match */
4078 /* We must generate no events for Linked context matches (unless
4079 * they are linked to by some other bp/wp, which is handled in
4080 * updates for the linking bp/wp). We choose to also generate no events
4081 * for reserved values.
4086 cpu_breakpoint_insert(CPU(cpu
), addr
, flags
, &env
->cpu_breakpoint
[n
]);
4089 void hw_breakpoint_update_all(ARMCPU
*cpu
)
4092 CPUARMState
*env
= &cpu
->env
;
4094 /* Completely clear out existing QEMU breakpoints and our array, to
4095 * avoid possible stale entries following migration load.
4097 cpu_breakpoint_remove_all(CPU(cpu
), BP_CPU
);
4098 memset(env
->cpu_breakpoint
, 0, sizeof(env
->cpu_breakpoint
));
4100 for (i
= 0; i
< ARRAY_SIZE(cpu
->env
.cpu_breakpoint
); i
++) {
4101 hw_breakpoint_update(cpu
, i
);
4105 static void dbgbvr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4108 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4111 raw_write(env
, ri
, value
);
4112 hw_breakpoint_update(cpu
, i
);
4115 static void dbgbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4118 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4121 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4124 value
= deposit64(value
, 6, 1, extract64(value
, 5, 1));
4125 value
= deposit64(value
, 8, 1, extract64(value
, 7, 1));
4127 raw_write(env
, ri
, value
);
4128 hw_breakpoint_update(cpu
, i
);
4131 static void define_debug_regs(ARMCPU
*cpu
)
4133 /* Define v7 and v8 architectural debug registers.
4134 * These are just dummy implementations for now.
4137 int wrps
, brps
, ctx_cmps
;
4138 ARMCPRegInfo dbgdidr
= {
4139 .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
4140 .access
= PL0_R
, .accessfn
= access_tda
,
4141 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->dbgdidr
,
4144 /* Note that all these register fields hold "number of Xs minus 1". */
4145 brps
= extract32(cpu
->dbgdidr
, 24, 4);
4146 wrps
= extract32(cpu
->dbgdidr
, 28, 4);
4147 ctx_cmps
= extract32(cpu
->dbgdidr
, 20, 4);
4149 assert(ctx_cmps
<= brps
);
4151 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4152 * of the debug registers such as number of breakpoints;
4153 * check that if they both exist then they agree.
4155 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
4156 assert(extract32(cpu
->id_aa64dfr0
, 12, 4) == brps
);
4157 assert(extract32(cpu
->id_aa64dfr0
, 20, 4) == wrps
);
4158 assert(extract32(cpu
->id_aa64dfr0
, 28, 4) == ctx_cmps
);
4161 define_one_arm_cp_reg(cpu
, &dbgdidr
);
4162 define_arm_cp_regs(cpu
, debug_cp_reginfo
);
4164 if (arm_feature(&cpu
->env
, ARM_FEATURE_LPAE
)) {
4165 define_arm_cp_regs(cpu
, debug_lpae_cp_reginfo
);
4168 for (i
= 0; i
< brps
+ 1; i
++) {
4169 ARMCPRegInfo dbgregs
[] = {
4170 { .name
= "DBGBVR", .state
= ARM_CP_STATE_BOTH
,
4171 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 4,
4172 .access
= PL1_RW
, .accessfn
= access_tda
,
4173 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbvr
[i
]),
4174 .writefn
= dbgbvr_write
, .raw_writefn
= raw_write
4176 { .name
= "DBGBCR", .state
= ARM_CP_STATE_BOTH
,
4177 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 5,
4178 .access
= PL1_RW
, .accessfn
= access_tda
,
4179 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbcr
[i
]),
4180 .writefn
= dbgbcr_write
, .raw_writefn
= raw_write
4184 define_arm_cp_regs(cpu
, dbgregs
);
4187 for (i
= 0; i
< wrps
+ 1; i
++) {
4188 ARMCPRegInfo dbgregs
[] = {
4189 { .name
= "DBGWVR", .state
= ARM_CP_STATE_BOTH
,
4190 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 6,
4191 .access
= PL1_RW
, .accessfn
= access_tda
,
4192 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwvr
[i
]),
4193 .writefn
= dbgwvr_write
, .raw_writefn
= raw_write
4195 { .name
= "DBGWCR", .state
= ARM_CP_STATE_BOTH
,
4196 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 7,
4197 .access
= PL1_RW
, .accessfn
= access_tda
,
4198 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwcr
[i
]),
4199 .writefn
= dbgwcr_write
, .raw_writefn
= raw_write
4203 define_arm_cp_regs(cpu
, dbgregs
);
4207 void register_cp_regs_for_features(ARMCPU
*cpu
)
4209 /* Register all the coprocessor registers based on feature bits */
4210 CPUARMState
*env
= &cpu
->env
;
4211 if (arm_feature(env
, ARM_FEATURE_M
)) {
4212 /* M profile has no coprocessor registers */
4216 define_arm_cp_regs(cpu
, cp_reginfo
);
4217 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
4218 /* Must go early as it is full of wildcards that may be
4219 * overridden by later definitions.
4221 define_arm_cp_regs(cpu
, not_v8_cp_reginfo
);
4224 if (arm_feature(env
, ARM_FEATURE_V6
)) {
4225 /* The ID registers all have impdef reset values */
4226 ARMCPRegInfo v6_idregs
[] = {
4227 { .name
= "ID_PFR0", .state
= ARM_CP_STATE_BOTH
,
4228 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 0,
4229 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4230 .resetvalue
= cpu
->id_pfr0
},
4231 { .name
= "ID_PFR1", .state
= ARM_CP_STATE_BOTH
,
4232 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 1,
4233 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4234 .resetvalue
= cpu
->id_pfr1
},
4235 { .name
= "ID_DFR0", .state
= ARM_CP_STATE_BOTH
,
4236 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 2,
4237 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4238 .resetvalue
= cpu
->id_dfr0
},
4239 { .name
= "ID_AFR0", .state
= ARM_CP_STATE_BOTH
,
4240 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 3,
4241 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4242 .resetvalue
= cpu
->id_afr0
},
4243 { .name
= "ID_MMFR0", .state
= ARM_CP_STATE_BOTH
,
4244 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 4,
4245 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4246 .resetvalue
= cpu
->id_mmfr0
},
4247 { .name
= "ID_MMFR1", .state
= ARM_CP_STATE_BOTH
,
4248 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 5,
4249 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4250 .resetvalue
= cpu
->id_mmfr1
},
4251 { .name
= "ID_MMFR2", .state
= ARM_CP_STATE_BOTH
,
4252 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 6,
4253 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4254 .resetvalue
= cpu
->id_mmfr2
},
4255 { .name
= "ID_MMFR3", .state
= ARM_CP_STATE_BOTH
,
4256 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 7,
4257 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4258 .resetvalue
= cpu
->id_mmfr3
},
4259 { .name
= "ID_ISAR0", .state
= ARM_CP_STATE_BOTH
,
4260 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 0,
4261 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4262 .resetvalue
= cpu
->id_isar0
},
4263 { .name
= "ID_ISAR1", .state
= ARM_CP_STATE_BOTH
,
4264 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 1,
4265 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4266 .resetvalue
= cpu
->id_isar1
},
4267 { .name
= "ID_ISAR2", .state
= ARM_CP_STATE_BOTH
,
4268 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
4269 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4270 .resetvalue
= cpu
->id_isar2
},
4271 { .name
= "ID_ISAR3", .state
= ARM_CP_STATE_BOTH
,
4272 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 3,
4273 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4274 .resetvalue
= cpu
->id_isar3
},
4275 { .name
= "ID_ISAR4", .state
= ARM_CP_STATE_BOTH
,
4276 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 4,
4277 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4278 .resetvalue
= cpu
->id_isar4
},
4279 { .name
= "ID_ISAR5", .state
= ARM_CP_STATE_BOTH
,
4280 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 5,
4281 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4282 .resetvalue
= cpu
->id_isar5
},
4283 /* 6..7 are as yet unallocated and must RAZ */
4284 { .name
= "ID_ISAR6", .cp
= 15, .crn
= 0, .crm
= 2,
4285 .opc1
= 0, .opc2
= 6, .access
= PL1_R
, .type
= ARM_CP_CONST
,
4287 { .name
= "ID_ISAR7", .cp
= 15, .crn
= 0, .crm
= 2,
4288 .opc1
= 0, .opc2
= 7, .access
= PL1_R
, .type
= ARM_CP_CONST
,
4292 define_arm_cp_regs(cpu
, v6_idregs
);
4293 define_arm_cp_regs(cpu
, v6_cp_reginfo
);
4295 define_arm_cp_regs(cpu
, not_v6_cp_reginfo
);
4297 if (arm_feature(env
, ARM_FEATURE_V6K
)) {
4298 define_arm_cp_regs(cpu
, v6k_cp_reginfo
);
4300 if (arm_feature(env
, ARM_FEATURE_V7MP
) &&
4301 !arm_feature(env
, ARM_FEATURE_MPU
)) {
4302 define_arm_cp_regs(cpu
, v7mp_cp_reginfo
);
4304 if (arm_feature(env
, ARM_FEATURE_V7
)) {
4305 /* v7 performance monitor control register: same implementor
4306 * field as main ID register, and we implement only the cycle
4309 #ifndef CONFIG_USER_ONLY
4310 ARMCPRegInfo pmcr
= {
4311 .name
= "PMCR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 0,
4313 .type
= ARM_CP_IO
| ARM_CP_ALIAS
,
4314 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcr
),
4315 .accessfn
= pmreg_access
, .writefn
= pmcr_write
,
4316 .raw_writefn
= raw_write
,
4318 ARMCPRegInfo pmcr64
= {
4319 .name
= "PMCR_EL0", .state
= ARM_CP_STATE_AA64
,
4320 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 0,
4321 .access
= PL0_RW
, .accessfn
= pmreg_access
,
4323 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcr
),
4324 .resetvalue
= cpu
->midr
& 0xff000000,
4325 .writefn
= pmcr_write
, .raw_writefn
= raw_write
,
4327 define_one_arm_cp_reg(cpu
, &pmcr
);
4328 define_one_arm_cp_reg(cpu
, &pmcr64
);
4330 ARMCPRegInfo clidr
= {
4331 .name
= "CLIDR", .state
= ARM_CP_STATE_BOTH
,
4332 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 1,
4333 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->clidr
4335 define_one_arm_cp_reg(cpu
, &clidr
);
4336 define_arm_cp_regs(cpu
, v7_cp_reginfo
);
4337 define_debug_regs(cpu
);
4339 define_arm_cp_regs(cpu
, not_v7_cp_reginfo
);
4341 if (arm_feature(env
, ARM_FEATURE_V8
)) {
4342 /* AArch64 ID registers, which all have impdef reset values */
4343 ARMCPRegInfo v8_idregs
[] = {
4344 { .name
= "ID_AA64PFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4345 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 0,
4346 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4347 .resetvalue
= cpu
->id_aa64pfr0
},
4348 { .name
= "ID_AA64PFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4349 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 1,
4350 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4351 .resetvalue
= cpu
->id_aa64pfr1
},
4352 { .name
= "ID_AA64DFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4353 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 0,
4354 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4355 /* We mask out the PMUVer field, because we don't currently
4356 * implement the PMU. Not advertising it prevents the guest
4357 * from trying to use it and getting UNDEFs on registers we
4360 .resetvalue
= cpu
->id_aa64dfr0
& ~0xf00 },
4361 { .name
= "ID_AA64DFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4362 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 1,
4363 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4364 .resetvalue
= cpu
->id_aa64dfr1
},
4365 { .name
= "ID_AA64AFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4366 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 4,
4367 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4368 .resetvalue
= cpu
->id_aa64afr0
},
4369 { .name
= "ID_AA64AFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4370 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 5,
4371 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4372 .resetvalue
= cpu
->id_aa64afr1
},
4373 { .name
= "ID_AA64ISAR0_EL1", .state
= ARM_CP_STATE_AA64
,
4374 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 0,
4375 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4376 .resetvalue
= cpu
->id_aa64isar0
},
4377 { .name
= "ID_AA64ISAR1_EL1", .state
= ARM_CP_STATE_AA64
,
4378 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 1,
4379 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4380 .resetvalue
= cpu
->id_aa64isar1
},
4381 { .name
= "ID_AA64MMFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4382 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 0,
4383 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4384 .resetvalue
= cpu
->id_aa64mmfr0
},
4385 { .name
= "ID_AA64MMFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4386 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 1,
4387 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4388 .resetvalue
= cpu
->id_aa64mmfr1
},
4389 { .name
= "MVFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4390 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 0,
4391 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4392 .resetvalue
= cpu
->mvfr0
},
4393 { .name
= "MVFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4394 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 1,
4395 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4396 .resetvalue
= cpu
->mvfr1
},
4397 { .name
= "MVFR2_EL1", .state
= ARM_CP_STATE_AA64
,
4398 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 2,
4399 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4400 .resetvalue
= cpu
->mvfr2
},
4401 { .name
= "PMCEID0", .state
= ARM_CP_STATE_AA32
,
4402 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 12, .opc2
= 6,
4403 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
4404 .resetvalue
= cpu
->pmceid0
},
4405 { .name
= "PMCEID0_EL0", .state
= ARM_CP_STATE_AA64
,
4406 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 6,
4407 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
4408 .resetvalue
= cpu
->pmceid0
},
4409 { .name
= "PMCEID1", .state
= ARM_CP_STATE_AA32
,
4410 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 12, .opc2
= 7,
4411 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
4412 .resetvalue
= cpu
->pmceid1
},
4413 { .name
= "PMCEID1_EL0", .state
= ARM_CP_STATE_AA64
,
4414 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 7,
4415 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
4416 .resetvalue
= cpu
->pmceid1
},
4419 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4420 if (!arm_feature(env
, ARM_FEATURE_EL3
) &&
4421 !arm_feature(env
, ARM_FEATURE_EL2
)) {
4422 ARMCPRegInfo rvbar
= {
4423 .name
= "RVBAR_EL1", .state
= ARM_CP_STATE_AA64
,
4424 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 0, .opc2
= 1,
4425 .type
= ARM_CP_CONST
, .access
= PL1_R
, .resetvalue
= cpu
->rvbar
4427 define_one_arm_cp_reg(cpu
, &rvbar
);
4429 define_arm_cp_regs(cpu
, v8_idregs
);
4430 define_arm_cp_regs(cpu
, v8_cp_reginfo
);
4432 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
4433 uint64_t vmpidr_def
= mpidr_read_val(env
);
4434 ARMCPRegInfo vpidr_regs
[] = {
4435 { .name
= "VPIDR", .state
= ARM_CP_STATE_AA32
,
4436 .cp
= 15, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 0,
4437 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
4438 .resetvalue
= cpu
->midr
,
4439 .fieldoffset
= offsetof(CPUARMState
, cp15
.vpidr_el2
) },
4440 { .name
= "VPIDR_EL2", .state
= ARM_CP_STATE_AA64
,
4441 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 0,
4442 .access
= PL2_RW
, .resetvalue
= cpu
->midr
,
4443 .fieldoffset
= offsetof(CPUARMState
, cp15
.vpidr_el2
) },
4444 { .name
= "VMPIDR", .state
= ARM_CP_STATE_AA32
,
4445 .cp
= 15, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 5,
4446 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
4447 .resetvalue
= vmpidr_def
,
4448 .fieldoffset
= offsetof(CPUARMState
, cp15
.vmpidr_el2
) },
4449 { .name
= "VMPIDR_EL2", .state
= ARM_CP_STATE_AA64
,
4450 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 5,
4452 .resetvalue
= vmpidr_def
,
4453 .fieldoffset
= offsetof(CPUARMState
, cp15
.vmpidr_el2
) },
4456 define_arm_cp_regs(cpu
, vpidr_regs
);
4457 define_arm_cp_regs(cpu
, el2_cp_reginfo
);
4458 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4459 if (!arm_feature(env
, ARM_FEATURE_EL3
)) {
4460 ARMCPRegInfo rvbar
= {
4461 .name
= "RVBAR_EL2", .state
= ARM_CP_STATE_AA64
,
4462 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 1,
4463 .type
= ARM_CP_CONST
, .access
= PL2_R
, .resetvalue
= cpu
->rvbar
4465 define_one_arm_cp_reg(cpu
, &rvbar
);
4468 /* If EL2 is missing but higher ELs are enabled, we need to
4469 * register the no_el2 reginfos.
4471 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
4472 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
4473 * of MIDR_EL1 and MPIDR_EL1.
4475 ARMCPRegInfo vpidr_regs
[] = {
4476 { .name
= "VPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
4477 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 0,
4478 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
4479 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->midr
,
4480 .fieldoffset
= offsetof(CPUARMState
, cp15
.vpidr_el2
) },
4481 { .name
= "VMPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
4482 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 5,
4483 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
4484 .type
= ARM_CP_NO_RAW
,
4485 .writefn
= arm_cp_write_ignore
, .readfn
= mpidr_read
},
4488 define_arm_cp_regs(cpu
, vpidr_regs
);
4489 define_arm_cp_regs(cpu
, el3_no_el2_cp_reginfo
);
4492 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
4493 define_arm_cp_regs(cpu
, el3_cp_reginfo
);
4494 ARMCPRegInfo rvbar
= {
4495 .name
= "RVBAR_EL3", .state
= ARM_CP_STATE_AA64
,
4496 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 0, .opc2
= 1,
4497 .type
= ARM_CP_CONST
, .access
= PL3_R
, .resetvalue
= cpu
->rvbar
4499 define_one_arm_cp_reg(cpu
, &rvbar
);
4501 /* The behaviour of NSACR is sufficiently various that we don't
4502 * try to describe it in a single reginfo:
4503 * if EL3 is 64 bit, then trap to EL3 from S EL1,
4504 * reads as constant 0xc00 from NS EL1 and NS EL2
4505 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
4506 * if v7 without EL3, register doesn't exist
4507 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
4509 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
4510 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
4511 ARMCPRegInfo nsacr
= {
4512 .name
= "NSACR", .type
= ARM_CP_CONST
,
4513 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 2,
4514 .access
= PL1_RW
, .accessfn
= nsacr_access
,
4517 define_one_arm_cp_reg(cpu
, &nsacr
);
4519 ARMCPRegInfo nsacr
= {
4521 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 2,
4522 .access
= PL3_RW
| PL1_R
,
4524 .fieldoffset
= offsetof(CPUARMState
, cp15
.nsacr
)
4526 define_one_arm_cp_reg(cpu
, &nsacr
);
4529 if (arm_feature(env
, ARM_FEATURE_V8
)) {
4530 ARMCPRegInfo nsacr
= {
4531 .name
= "NSACR", .type
= ARM_CP_CONST
,
4532 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 2,
4536 define_one_arm_cp_reg(cpu
, &nsacr
);
4540 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
4541 if (arm_feature(env
, ARM_FEATURE_V6
)) {
4542 /* PMSAv6 not implemented */
4543 assert(arm_feature(env
, ARM_FEATURE_V7
));
4544 define_arm_cp_regs(cpu
, vmsa_pmsa_cp_reginfo
);
4545 define_arm_cp_regs(cpu
, pmsav7_cp_reginfo
);
4547 define_arm_cp_regs(cpu
, pmsav5_cp_reginfo
);
4550 define_arm_cp_regs(cpu
, vmsa_pmsa_cp_reginfo
);
4551 define_arm_cp_regs(cpu
, vmsa_cp_reginfo
);
4553 if (arm_feature(env
, ARM_FEATURE_THUMB2EE
)) {
4554 define_arm_cp_regs(cpu
, t2ee_cp_reginfo
);
4556 if (arm_feature(env
, ARM_FEATURE_GENERIC_TIMER
)) {
4557 define_arm_cp_regs(cpu
, generic_timer_cp_reginfo
);
4559 if (arm_feature(env
, ARM_FEATURE_VAPA
)) {
4560 define_arm_cp_regs(cpu
, vapa_cp_reginfo
);
4562 if (arm_feature(env
, ARM_FEATURE_CACHE_TEST_CLEAN
)) {
4563 define_arm_cp_regs(cpu
, cache_test_clean_cp_reginfo
);
4565 if (arm_feature(env
, ARM_FEATURE_CACHE_DIRTY_REG
)) {
4566 define_arm_cp_regs(cpu
, cache_dirty_status_cp_reginfo
);
4568 if (arm_feature(env
, ARM_FEATURE_CACHE_BLOCK_OPS
)) {
4569 define_arm_cp_regs(cpu
, cache_block_ops_cp_reginfo
);
4571 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
4572 define_arm_cp_regs(cpu
, omap_cp_reginfo
);
4574 if (arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
4575 define_arm_cp_regs(cpu
, strongarm_cp_reginfo
);
4577 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
4578 define_arm_cp_regs(cpu
, xscale_cp_reginfo
);
4580 if (arm_feature(env
, ARM_FEATURE_DUMMY_C15_REGS
)) {
4581 define_arm_cp_regs(cpu
, dummy_c15_cp_reginfo
);
4583 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
4584 define_arm_cp_regs(cpu
, lpae_cp_reginfo
);
4586 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
4587 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
4588 * be read-only (ie write causes UNDEF exception).
4591 ARMCPRegInfo id_pre_v8_midr_cp_reginfo
[] = {
4592 /* Pre-v8 MIDR space.
4593 * Note that the MIDR isn't a simple constant register because
4594 * of the TI925 behaviour where writes to another register can
4595 * cause the MIDR value to change.
4597 * Unimplemented registers in the c15 0 0 0 space default to
4598 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
4599 * and friends override accordingly.
4602 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= CP_ANY
,
4603 .access
= PL1_R
, .resetvalue
= cpu
->midr
,
4604 .writefn
= arm_cp_write_ignore
, .raw_writefn
= raw_write
,
4605 .readfn
= midr_read
,
4606 .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cpuid
),
4607 .type
= ARM_CP_OVERRIDE
},
4608 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
4610 .cp
= 15, .crn
= 0, .crm
= 3, .opc1
= 0, .opc2
= CP_ANY
,
4611 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4613 .cp
= 15, .crn
= 0, .crm
= 4, .opc1
= 0, .opc2
= CP_ANY
,
4614 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4616 .cp
= 15, .crn
= 0, .crm
= 5, .opc1
= 0, .opc2
= CP_ANY
,
4617 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4619 .cp
= 15, .crn
= 0, .crm
= 6, .opc1
= 0, .opc2
= CP_ANY
,
4620 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4622 .cp
= 15, .crn
= 0, .crm
= 7, .opc1
= 0, .opc2
= CP_ANY
,
4623 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4626 ARMCPRegInfo id_v8_midr_cp_reginfo
[] = {
4627 { .name
= "MIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
4628 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 0,
4629 .access
= PL1_R
, .type
= ARM_CP_NO_RAW
, .resetvalue
= cpu
->midr
,
4630 .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cpuid
),
4631 .readfn
= midr_read
},
4632 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
4633 { .name
= "MIDR", .type
= ARM_CP_ALIAS
| ARM_CP_CONST
,
4634 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 4,
4635 .access
= PL1_R
, .resetvalue
= cpu
->midr
},
4636 { .name
= "MIDR", .type
= ARM_CP_ALIAS
| ARM_CP_CONST
,
4637 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 7,
4638 .access
= PL1_R
, .resetvalue
= cpu
->midr
},
4639 { .name
= "REVIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
4640 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 6,
4641 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->revidr
},
4644 ARMCPRegInfo id_cp_reginfo
[] = {
4645 /* These are common to v8 and pre-v8 */
4647 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 1,
4648 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
4649 { .name
= "CTR_EL0", .state
= ARM_CP_STATE_AA64
,
4650 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 0, .crm
= 0,
4651 .access
= PL0_R
, .accessfn
= ctr_el0_access
,
4652 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
4653 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
4655 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 2,
4656 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4659 /* TLBTR is specific to VMSA */
4660 ARMCPRegInfo id_tlbtr_reginfo
= {
4662 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 3,
4663 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
4665 /* MPUIR is specific to PMSA V6+ */
4666 ARMCPRegInfo id_mpuir_reginfo
= {
4668 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 4,
4669 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4670 .resetvalue
= cpu
->pmsav7_dregion
<< 8
4672 ARMCPRegInfo crn0_wi_reginfo
= {
4673 .name
= "CRN0_WI", .cp
= 15, .crn
= 0, .crm
= CP_ANY
,
4674 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_W
,
4675 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
4677 if (arm_feature(env
, ARM_FEATURE_OMAPCP
) ||
4678 arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
4680 /* Register the blanket "writes ignored" value first to cover the
4681 * whole space. Then update the specific ID registers to allow write
4682 * access, so that they ignore writes rather than causing them to
4685 define_one_arm_cp_reg(cpu
, &crn0_wi_reginfo
);
4686 for (r
= id_pre_v8_midr_cp_reginfo
;
4687 r
->type
!= ARM_CP_SENTINEL
; r
++) {
4690 for (r
= id_cp_reginfo
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
4693 id_tlbtr_reginfo
.access
= PL1_RW
;
4694 id_tlbtr_reginfo
.access
= PL1_RW
;
4696 if (arm_feature(env
, ARM_FEATURE_V8
)) {
4697 define_arm_cp_regs(cpu
, id_v8_midr_cp_reginfo
);
4699 define_arm_cp_regs(cpu
, id_pre_v8_midr_cp_reginfo
);
4701 define_arm_cp_regs(cpu
, id_cp_reginfo
);
4702 if (!arm_feature(env
, ARM_FEATURE_MPU
)) {
4703 define_one_arm_cp_reg(cpu
, &id_tlbtr_reginfo
);
4704 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
4705 define_one_arm_cp_reg(cpu
, &id_mpuir_reginfo
);
4709 if (arm_feature(env
, ARM_FEATURE_MPIDR
)) {
4710 define_arm_cp_regs(cpu
, mpidr_cp_reginfo
);
4713 if (arm_feature(env
, ARM_FEATURE_AUXCR
)) {
4714 ARMCPRegInfo auxcr_reginfo
[] = {
4715 { .name
= "ACTLR_EL1", .state
= ARM_CP_STATE_BOTH
,
4716 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 1,
4717 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
4718 .resetvalue
= cpu
->reset_auxcr
},
4719 { .name
= "ACTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
4720 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 1,
4721 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
4723 { .name
= "ACTLR_EL3", .state
= ARM_CP_STATE_AA64
,
4724 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 0, .opc2
= 1,
4725 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
4729 define_arm_cp_regs(cpu
, auxcr_reginfo
);
4732 if (arm_feature(env
, ARM_FEATURE_CBAR
)) {
4733 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
4734 /* 32 bit view is [31:18] 0...0 [43:32]. */
4735 uint32_t cbar32
= (extract64(cpu
->reset_cbar
, 18, 14) << 18)
4736 | extract64(cpu
->reset_cbar
, 32, 12);
4737 ARMCPRegInfo cbar_reginfo
[] = {
4739 .type
= ARM_CP_CONST
,
4740 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
4741 .access
= PL1_R
, .resetvalue
= cpu
->reset_cbar
},
4742 { .name
= "CBAR_EL1", .state
= ARM_CP_STATE_AA64
,
4743 .type
= ARM_CP_CONST
,
4744 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 3, .opc2
= 0,
4745 .access
= PL1_R
, .resetvalue
= cbar32
},
4748 /* We don't implement a r/w 64 bit CBAR currently */
4749 assert(arm_feature(env
, ARM_FEATURE_CBAR_RO
));
4750 define_arm_cp_regs(cpu
, cbar_reginfo
);
4752 ARMCPRegInfo cbar
= {
4754 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
4755 .access
= PL1_R
|PL3_W
, .resetvalue
= cpu
->reset_cbar
,
4756 .fieldoffset
= offsetof(CPUARMState
,
4757 cp15
.c15_config_base_address
)
4759 if (arm_feature(env
, ARM_FEATURE_CBAR_RO
)) {
4760 cbar
.access
= PL1_R
;
4761 cbar
.fieldoffset
= 0;
4762 cbar
.type
= ARM_CP_CONST
;
4764 define_one_arm_cp_reg(cpu
, &cbar
);
4768 /* Generic registers whose values depend on the implementation */
4770 ARMCPRegInfo sctlr
= {
4771 .name
= "SCTLR", .state
= ARM_CP_STATE_BOTH
,
4772 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 0,
4774 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.sctlr_s
),
4775 offsetof(CPUARMState
, cp15
.sctlr_ns
) },
4776 .writefn
= sctlr_write
, .resetvalue
= cpu
->reset_sctlr
,
4777 .raw_writefn
= raw_write
,
4779 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
4780 /* Normally we would always end the TB on an SCTLR write, but Linux
4781 * arch/arm/mach-pxa/sleep.S expects two instructions following
4782 * an MMU enable to execute from cache. Imitate this behaviour.
4784 sctlr
.type
|= ARM_CP_SUPPRESS_TB_END
;
4786 define_one_arm_cp_reg(cpu
, &sctlr
);
4790 ARMCPU
*cpu_arm_init(const char *cpu_model
)
4792 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU
, cpu_model
));
4795 void arm_cpu_register_gdb_regs_for_features(ARMCPU
*cpu
)
4797 CPUState
*cs
= CPU(cpu
);
4798 CPUARMState
*env
= &cpu
->env
;
4800 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
4801 gdb_register_coprocessor(cs
, aarch64_fpu_gdb_get_reg
,
4802 aarch64_fpu_gdb_set_reg
,
4803 34, "aarch64-fpu.xml", 0);
4804 } else if (arm_feature(env
, ARM_FEATURE_NEON
)) {
4805 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
4806 51, "arm-neon.xml", 0);
4807 } else if (arm_feature(env
, ARM_FEATURE_VFP3
)) {
4808 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
4809 35, "arm-vfp3.xml", 0);
4810 } else if (arm_feature(env
, ARM_FEATURE_VFP
)) {
4811 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
4812 19, "arm-vfp.xml", 0);
4816 /* Sort alphabetically by type name, except for "any". */
4817 static gint
arm_cpu_list_compare(gconstpointer a
, gconstpointer b
)
4819 ObjectClass
*class_a
= (ObjectClass
*)a
;
4820 ObjectClass
*class_b
= (ObjectClass
*)b
;
4821 const char *name_a
, *name_b
;
4823 name_a
= object_class_get_name(class_a
);
4824 name_b
= object_class_get_name(class_b
);
4825 if (strcmp(name_a
, "any-" TYPE_ARM_CPU
) == 0) {
4827 } else if (strcmp(name_b
, "any-" TYPE_ARM_CPU
) == 0) {
4830 return strcmp(name_a
, name_b
);
4834 static void arm_cpu_list_entry(gpointer data
, gpointer user_data
)
4836 ObjectClass
*oc
= data
;
4837 CPUListState
*s
= user_data
;
4838 const char *typename
;
4841 typename
= object_class_get_name(oc
);
4842 name
= g_strndup(typename
, strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
4843 (*s
->cpu_fprintf
)(s
->file
, " %s\n",
4848 void arm_cpu_list(FILE *f
, fprintf_function cpu_fprintf
)
4852 .cpu_fprintf
= cpu_fprintf
,
4856 list
= object_class_get_list(TYPE_ARM_CPU
, false);
4857 list
= g_slist_sort(list
, arm_cpu_list_compare
);
4858 (*cpu_fprintf
)(f
, "Available CPUs:\n");
4859 g_slist_foreach(list
, arm_cpu_list_entry
, &s
);
4862 /* The 'host' CPU type is dynamically registered only if KVM is
4863 * enabled, so we have to special-case it here:
4865 (*cpu_fprintf
)(f
, " host (only available in KVM mode)\n");
4869 static void arm_cpu_add_definition(gpointer data
, gpointer user_data
)
4871 ObjectClass
*oc
= data
;
4872 CpuDefinitionInfoList
**cpu_list
= user_data
;
4873 CpuDefinitionInfoList
*entry
;
4874 CpuDefinitionInfo
*info
;
4875 const char *typename
;
4877 typename
= object_class_get_name(oc
);
4878 info
= g_malloc0(sizeof(*info
));
4879 info
->name
= g_strndup(typename
,
4880 strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
4882 entry
= g_malloc0(sizeof(*entry
));
4883 entry
->value
= info
;
4884 entry
->next
= *cpu_list
;
4888 CpuDefinitionInfoList
*arch_query_cpu_definitions(Error
**errp
)
4890 CpuDefinitionInfoList
*cpu_list
= NULL
;
4893 list
= object_class_get_list(TYPE_ARM_CPU
, false);
4894 g_slist_foreach(list
, arm_cpu_add_definition
, &cpu_list
);
4900 static void add_cpreg_to_hashtable(ARMCPU
*cpu
, const ARMCPRegInfo
*r
,
4901 void *opaque
, int state
, int secstate
,
4902 int crm
, int opc1
, int opc2
)
4904 /* Private utility function for define_one_arm_cp_reg_with_opaque():
4905 * add a single reginfo struct to the hash table.
4907 uint32_t *key
= g_new(uint32_t, 1);
4908 ARMCPRegInfo
*r2
= g_memdup(r
, sizeof(ARMCPRegInfo
));
4909 int is64
= (r
->type
& ARM_CP_64BIT
) ? 1 : 0;
4910 int ns
= (secstate
& ARM_CP_SECSTATE_NS
) ? 1 : 0;
4912 /* Reset the secure state to the specific incoming state. This is
4913 * necessary as the register may have been defined with both states.
4915 r2
->secure
= secstate
;
4917 if (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1]) {
4918 /* Register is banked (using both entries in array).
4919 * Overwriting fieldoffset as the array is only used to define
4920 * banked registers but later only fieldoffset is used.
4922 r2
->fieldoffset
= r
->bank_fieldoffsets
[ns
];
4925 if (state
== ARM_CP_STATE_AA32
) {
4926 if (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1]) {
4927 /* If the register is banked then we don't need to migrate or
4928 * reset the 32-bit instance in certain cases:
4930 * 1) If the register has both 32-bit and 64-bit instances then we
4931 * can count on the 64-bit instance taking care of the
4933 * 2) If ARMv8 is enabled then we can count on a 64-bit version
4934 * taking care of the secure bank. This requires that separate
4935 * 32 and 64-bit definitions are provided.
4937 if ((r
->state
== ARM_CP_STATE_BOTH
&& ns
) ||
4938 (arm_feature(&cpu
->env
, ARM_FEATURE_V8
) && !ns
)) {
4939 r2
->type
|= ARM_CP_ALIAS
;
4941 } else if ((secstate
!= r
->secure
) && !ns
) {
4942 /* The register is not banked so we only want to allow migration of
4943 * the non-secure instance.
4945 r2
->type
|= ARM_CP_ALIAS
;
4948 if (r
->state
== ARM_CP_STATE_BOTH
) {
4949 /* We assume it is a cp15 register if the .cp field is left unset.
4955 #ifdef HOST_WORDS_BIGENDIAN
4956 if (r2
->fieldoffset
) {
4957 r2
->fieldoffset
+= sizeof(uint32_t);
4962 if (state
== ARM_CP_STATE_AA64
) {
4963 /* To allow abbreviation of ARMCPRegInfo
4964 * definitions, we treat cp == 0 as equivalent to
4965 * the value for "standard guest-visible sysreg".
4966 * STATE_BOTH definitions are also always "standard
4967 * sysreg" in their AArch64 view (the .cp value may
4968 * be non-zero for the benefit of the AArch32 view).
4970 if (r
->cp
== 0 || r
->state
== ARM_CP_STATE_BOTH
) {
4971 r2
->cp
= CP_REG_ARM64_SYSREG_CP
;
4973 *key
= ENCODE_AA64_CP_REG(r2
->cp
, r2
->crn
, crm
,
4974 r2
->opc0
, opc1
, opc2
);
4976 *key
= ENCODE_CP_REG(r2
->cp
, is64
, ns
, r2
->crn
, crm
, opc1
, opc2
);
4979 r2
->opaque
= opaque
;
4981 /* reginfo passed to helpers is correct for the actual access,
4982 * and is never ARM_CP_STATE_BOTH:
4985 /* Make sure reginfo passed to helpers for wildcarded regs
4986 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
4991 /* By convention, for wildcarded registers only the first
4992 * entry is used for migration; the others are marked as
4993 * ALIAS so we don't try to transfer the register
4994 * multiple times. Special registers (ie NOP/WFI) are
4995 * never migratable and not even raw-accessible.
4997 if ((r
->type
& ARM_CP_SPECIAL
)) {
4998 r2
->type
|= ARM_CP_NO_RAW
;
5000 if (((r
->crm
== CP_ANY
) && crm
!= 0) ||
5001 ((r
->opc1
== CP_ANY
) && opc1
!= 0) ||
5002 ((r
->opc2
== CP_ANY
) && opc2
!= 0)) {
5003 r2
->type
|= ARM_CP_ALIAS
;
5006 /* Check that raw accesses are either forbidden or handled. Note that
5007 * we can't assert this earlier because the setup of fieldoffset for
5008 * banked registers has to be done first.
5010 if (!(r2
->type
& ARM_CP_NO_RAW
)) {
5011 assert(!raw_accessors_invalid(r2
));
5014 /* Overriding of an existing definition must be explicitly
5017 if (!(r
->type
& ARM_CP_OVERRIDE
)) {
5018 ARMCPRegInfo
*oldreg
;
5019 oldreg
= g_hash_table_lookup(cpu
->cp_regs
, key
);
5020 if (oldreg
&& !(oldreg
->type
& ARM_CP_OVERRIDE
)) {
5021 fprintf(stderr
, "Register redefined: cp=%d %d bit "
5022 "crn=%d crm=%d opc1=%d opc2=%d, "
5023 "was %s, now %s\n", r2
->cp
, 32 + 32 * is64
,
5024 r2
->crn
, r2
->crm
, r2
->opc1
, r2
->opc2
,
5025 oldreg
->name
, r2
->name
);
5026 g_assert_not_reached();
5029 g_hash_table_insert(cpu
->cp_regs
, key
, r2
);
5033 void define_one_arm_cp_reg_with_opaque(ARMCPU
*cpu
,
5034 const ARMCPRegInfo
*r
, void *opaque
)
5036 /* Define implementations of coprocessor registers.
5037 * We store these in a hashtable because typically
5038 * there are less than 150 registers in a space which
5039 * is 16*16*16*8*8 = 262144 in size.
5040 * Wildcarding is supported for the crm, opc1 and opc2 fields.
5041 * If a register is defined twice then the second definition is
5042 * used, so this can be used to define some generic registers and
5043 * then override them with implementation specific variations.
5044 * At least one of the original and the second definition should
5045 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5046 * against accidental use.
5048 * The state field defines whether the register is to be
5049 * visible in the AArch32 or AArch64 execution state. If the
5050 * state is set to ARM_CP_STATE_BOTH then we synthesise a
5051 * reginfo structure for the AArch32 view, which sees the lower
5052 * 32 bits of the 64 bit register.
5054 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5055 * be wildcarded. AArch64 registers are always considered to be 64
5056 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5057 * the register, if any.
5059 int crm
, opc1
, opc2
, state
;
5060 int crmmin
= (r
->crm
== CP_ANY
) ? 0 : r
->crm
;
5061 int crmmax
= (r
->crm
== CP_ANY
) ? 15 : r
->crm
;
5062 int opc1min
= (r
->opc1
== CP_ANY
) ? 0 : r
->opc1
;
5063 int opc1max
= (r
->opc1
== CP_ANY
) ? 7 : r
->opc1
;
5064 int opc2min
= (r
->opc2
== CP_ANY
) ? 0 : r
->opc2
;
5065 int opc2max
= (r
->opc2
== CP_ANY
) ? 7 : r
->opc2
;
5066 /* 64 bit registers have only CRm and Opc1 fields */
5067 assert(!((r
->type
& ARM_CP_64BIT
) && (r
->opc2
|| r
->crn
)));
5068 /* op0 only exists in the AArch64 encodings */
5069 assert((r
->state
!= ARM_CP_STATE_AA32
) || (r
->opc0
== 0));
5070 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5071 assert((r
->state
!= ARM_CP_STATE_AA64
) || !(r
->type
& ARM_CP_64BIT
));
5072 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5073 * encodes a minimum access level for the register. We roll this
5074 * runtime check into our general permission check code, so check
5075 * here that the reginfo's specified permissions are strict enough
5076 * to encompass the generic architectural permission check.
5078 if (r
->state
!= ARM_CP_STATE_AA32
) {
5081 case 0: case 1: case 2:
5094 /* unallocated encoding, so not possible */
5102 /* min_EL EL1, secure mode only (we don't check the latter) */
5106 /* broken reginfo with out-of-range opc1 */
5110 /* assert our permissions are not too lax (stricter is fine) */
5111 assert((r
->access
& ~mask
) == 0);
5114 /* Check that the register definition has enough info to handle
5115 * reads and writes if they are permitted.
5117 if (!(r
->type
& (ARM_CP_SPECIAL
|ARM_CP_CONST
))) {
5118 if (r
->access
& PL3_R
) {
5119 assert((r
->fieldoffset
||
5120 (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1])) ||
5123 if (r
->access
& PL3_W
) {
5124 assert((r
->fieldoffset
||
5125 (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1])) ||
5129 /* Bad type field probably means missing sentinel at end of reg list */
5130 assert(cptype_valid(r
->type
));
5131 for (crm
= crmmin
; crm
<= crmmax
; crm
++) {
5132 for (opc1
= opc1min
; opc1
<= opc1max
; opc1
++) {
5133 for (opc2
= opc2min
; opc2
<= opc2max
; opc2
++) {
5134 for (state
= ARM_CP_STATE_AA32
;
5135 state
<= ARM_CP_STATE_AA64
; state
++) {
5136 if (r
->state
!= state
&& r
->state
!= ARM_CP_STATE_BOTH
) {
5139 if (state
== ARM_CP_STATE_AA32
) {
5140 /* Under AArch32 CP registers can be common
5141 * (same for secure and non-secure world) or banked.
5143 switch (r
->secure
) {
5144 case ARM_CP_SECSTATE_S
:
5145 case ARM_CP_SECSTATE_NS
:
5146 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
5147 r
->secure
, crm
, opc1
, opc2
);
5150 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
5153 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
5159 /* AArch64 registers get mapped to non-secure instance
5161 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
5171 void define_arm_cp_regs_with_opaque(ARMCPU
*cpu
,
5172 const ARMCPRegInfo
*regs
, void *opaque
)
5174 /* Define a whole list of registers */
5175 const ARMCPRegInfo
*r
;
5176 for (r
= regs
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
5177 define_one_arm_cp_reg_with_opaque(cpu
, r
, opaque
);
5181 const ARMCPRegInfo
*get_arm_cp_reginfo(GHashTable
*cpregs
, uint32_t encoded_cp
)
5183 return g_hash_table_lookup(cpregs
, &encoded_cp
);
5186 void arm_cp_write_ignore(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
5189 /* Helper coprocessor write function for write-ignore registers */
5192 uint64_t arm_cp_read_zero(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
5194 /* Helper coprocessor write function for read-as-zero registers */
5198 void arm_cp_reset_ignore(CPUARMState
*env
, const ARMCPRegInfo
*opaque
)
5200 /* Helper coprocessor reset function for do-nothing-on-reset registers */
5203 static int bad_mode_switch(CPUARMState
*env
, int mode
)
5205 /* Return true if it is not valid for us to switch to
5206 * this CPU mode (ie all the UNPREDICTABLE cases in
5207 * the ARM ARM CPSRWriteByInstr pseudocode).
5210 case ARM_CPU_MODE_USR
:
5211 case ARM_CPU_MODE_SYS
:
5212 case ARM_CPU_MODE_SVC
:
5213 case ARM_CPU_MODE_ABT
:
5214 case ARM_CPU_MODE_UND
:
5215 case ARM_CPU_MODE_IRQ
:
5216 case ARM_CPU_MODE_FIQ
:
5218 case ARM_CPU_MODE_MON
:
5219 return !arm_is_secure(env
);
5225 uint32_t cpsr_read(CPUARMState
*env
)
5228 ZF
= (env
->ZF
== 0);
5229 return env
->uncached_cpsr
| (env
->NF
& 0x80000000) | (ZF
<< 30) |
5230 (env
->CF
<< 29) | ((env
->VF
& 0x80000000) >> 3) | (env
->QF
<< 27)
5231 | (env
->thumb
<< 5) | ((env
->condexec_bits
& 3) << 25)
5232 | ((env
->condexec_bits
& 0xfc) << 8)
5233 | (env
->GE
<< 16) | (env
->daif
& CPSR_AIF
);
5236 void cpsr_write(CPUARMState
*env
, uint32_t val
, uint32_t mask
)
5238 uint32_t changed_daif
;
5240 if (mask
& CPSR_NZCV
) {
5241 env
->ZF
= (~val
) & CPSR_Z
;
5243 env
->CF
= (val
>> 29) & 1;
5244 env
->VF
= (val
<< 3) & 0x80000000;
5247 env
->QF
= ((val
& CPSR_Q
) != 0);
5249 env
->thumb
= ((val
& CPSR_T
) != 0);
5250 if (mask
& CPSR_IT_0_1
) {
5251 env
->condexec_bits
&= ~3;
5252 env
->condexec_bits
|= (val
>> 25) & 3;
5254 if (mask
& CPSR_IT_2_7
) {
5255 env
->condexec_bits
&= 3;
5256 env
->condexec_bits
|= (val
>> 8) & 0xfc;
5258 if (mask
& CPSR_GE
) {
5259 env
->GE
= (val
>> 16) & 0xf;
5262 /* In a V7 implementation that includes the security extensions but does
5263 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
5264 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
5265 * bits respectively.
5267 * In a V8 implementation, it is permitted for privileged software to
5268 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
5270 if (!arm_feature(env
, ARM_FEATURE_V8
) &&
5271 arm_feature(env
, ARM_FEATURE_EL3
) &&
5272 !arm_feature(env
, ARM_FEATURE_EL2
) &&
5273 !arm_is_secure(env
)) {
5275 changed_daif
= (env
->daif
^ val
) & mask
;
5277 if (changed_daif
& CPSR_A
) {
5278 /* Check to see if we are allowed to change the masking of async
5279 * abort exceptions from a non-secure state.
5281 if (!(env
->cp15
.scr_el3
& SCR_AW
)) {
5282 qemu_log_mask(LOG_GUEST_ERROR
,
5283 "Ignoring attempt to switch CPSR_A flag from "
5284 "non-secure world with SCR.AW bit clear\n");
5289 if (changed_daif
& CPSR_F
) {
5290 /* Check to see if we are allowed to change the masking of FIQ
5291 * exceptions from a non-secure state.
5293 if (!(env
->cp15
.scr_el3
& SCR_FW
)) {
5294 qemu_log_mask(LOG_GUEST_ERROR
,
5295 "Ignoring attempt to switch CPSR_F flag from "
5296 "non-secure world with SCR.FW bit clear\n");
5300 /* Check whether non-maskable FIQ (NMFI) support is enabled.
5301 * If this bit is set software is not allowed to mask
5302 * FIQs, but is allowed to set CPSR_F to 0.
5304 if ((A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_NMFI
) &&
5306 qemu_log_mask(LOG_GUEST_ERROR
,
5307 "Ignoring attempt to enable CPSR_F flag "
5308 "(non-maskable FIQ [NMFI] support enabled)\n");
5314 env
->daif
&= ~(CPSR_AIF
& mask
);
5315 env
->daif
|= val
& CPSR_AIF
& mask
;
5317 if ((env
->uncached_cpsr
^ val
) & mask
& CPSR_M
) {
5318 if (bad_mode_switch(env
, val
& CPSR_M
)) {
5319 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
5320 * We choose to ignore the attempt and leave the CPSR M field
5325 switch_mode(env
, val
& CPSR_M
);
5328 mask
&= ~CACHED_CPSR_BITS
;
5329 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~mask
) | (val
& mask
);
5332 /* Sign/zero extend */
5333 uint32_t HELPER(sxtb16
)(uint32_t x
)
5336 res
= (uint16_t)(int8_t)x
;
5337 res
|= (uint32_t)(int8_t)(x
>> 16) << 16;
5341 uint32_t HELPER(uxtb16
)(uint32_t x
)
5344 res
= (uint16_t)(uint8_t)x
;
5345 res
|= (uint32_t)(uint8_t)(x
>> 16) << 16;
5349 uint32_t HELPER(clz
)(uint32_t x
)
5354 int32_t HELPER(sdiv
)(int32_t num
, int32_t den
)
5358 if (num
== INT_MIN
&& den
== -1)
5363 uint32_t HELPER(udiv
)(uint32_t num
, uint32_t den
)
5370 uint32_t HELPER(rbit
)(uint32_t x
)
5375 #if defined(CONFIG_USER_ONLY)
5377 /* These should probably raise undefined insn exceptions. */
5378 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
5380 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5382 cpu_abort(CPU(cpu
), "v7m_msr %d\n", reg
);
5385 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
5387 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5389 cpu_abort(CPU(cpu
), "v7m_mrs %d\n", reg
);
5393 void switch_mode(CPUARMState
*env
, int mode
)
5395 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5397 if (mode
!= ARM_CPU_MODE_USR
) {
5398 cpu_abort(CPU(cpu
), "Tried to switch out of user mode\n");
5402 uint32_t arm_phys_excp_target_el(CPUState
*cs
, uint32_t excp_idx
,
5403 uint32_t cur_el
, bool secure
)
5408 void aarch64_sync_64_to_32(CPUARMState
*env
)
5410 g_assert_not_reached();
5415 void switch_mode(CPUARMState
*env
, int mode
)
5420 old_mode
= env
->uncached_cpsr
& CPSR_M
;
5421 if (mode
== old_mode
)
5424 if (old_mode
== ARM_CPU_MODE_FIQ
) {
5425 memcpy (env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
5426 memcpy (env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
5427 } else if (mode
== ARM_CPU_MODE_FIQ
) {
5428 memcpy (env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
5429 memcpy (env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
5432 i
= bank_number(old_mode
);
5433 env
->banked_r13
[i
] = env
->regs
[13];
5434 env
->banked_r14
[i
] = env
->regs
[14];
5435 env
->banked_spsr
[i
] = env
->spsr
;
5437 i
= bank_number(mode
);
5438 env
->regs
[13] = env
->banked_r13
[i
];
5439 env
->regs
[14] = env
->banked_r14
[i
];
5440 env
->spsr
= env
->banked_spsr
[i
];
5443 /* Physical Interrupt Target EL Lookup Table
5445 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
5447 * The below multi-dimensional table is used for looking up the target
5448 * exception level given numerous condition criteria. Specifically, the
5449 * target EL is based on SCR and HCR routing controls as well as the
5450 * currently executing EL and secure state.
5453 * target_el_table[2][2][2][2][2][4]
5454 * | | | | | +--- Current EL
5455 * | | | | +------ Non-secure(0)/Secure(1)
5456 * | | | +--------- HCR mask override
5457 * | | +------------ SCR exec state control
5458 * | +--------------- SCR mask override
5459 * +------------------ 32-bit(0)/64-bit(1) EL3
5461 * The table values are as such:
5465 * The ARM ARM target EL table includes entries indicating that an "exception
5466 * is not taken". The two cases where this is applicable are:
5467 * 1) An exception is taken from EL3 but the SCR does not have the exception
5469 * 2) An exception is taken from EL2 but the HCR does not have the exception
5471 * In these two cases, the below table contain a target of EL1. This value is
5472 * returned as it is expected that the consumer of the table data will check
5473 * for "target EL >= current EL" to ensure the exception is not taken.
5477 * BIT IRQ IMO Non-secure Secure
5478 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
5480 static const int8_t target_el_table
[2][2][2][2][2][4] = {
5481 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5482 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
5483 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5484 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
5485 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5486 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
5487 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5488 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
5489 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
5490 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
5491 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
5492 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
5493 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5494 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
5495 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5496 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
5500 * Determine the target EL for physical exceptions
5502 uint32_t arm_phys_excp_target_el(CPUState
*cs
, uint32_t excp_idx
,
5503 uint32_t cur_el
, bool secure
)
5505 CPUARMState
*env
= cs
->env_ptr
;
5510 /* Is the highest EL AArch64? */
5511 int is64
= arm_feature(env
, ARM_FEATURE_AARCH64
);
5513 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
5514 rw
= ((env
->cp15
.scr_el3
& SCR_RW
) == SCR_RW
);
5516 /* Either EL2 is the highest EL (and so the EL2 register width
5517 * is given by is64); or there is no EL2 or EL3, in which case
5518 * the value of 'rw' does not affect the table lookup anyway.
5525 scr
= ((env
->cp15
.scr_el3
& SCR_IRQ
) == SCR_IRQ
);
5526 hcr
= ((env
->cp15
.hcr_el2
& HCR_IMO
) == HCR_IMO
);
5529 scr
= ((env
->cp15
.scr_el3
& SCR_FIQ
) == SCR_FIQ
);
5530 hcr
= ((env
->cp15
.hcr_el2
& HCR_FMO
) == HCR_FMO
);
5533 scr
= ((env
->cp15
.scr_el3
& SCR_EA
) == SCR_EA
);
5534 hcr
= ((env
->cp15
.hcr_el2
& HCR_AMO
) == HCR_AMO
);
5538 /* If HCR.TGE is set then HCR is treated as being 1 */
5539 hcr
|= ((env
->cp15
.hcr_el2
& HCR_TGE
) == HCR_TGE
);
5541 /* Perform a table-lookup for the target EL given the current state */
5542 target_el
= target_el_table
[is64
][scr
][rw
][hcr
][secure
][cur_el
];
5544 assert(target_el
> 0);
5549 static void v7m_push(CPUARMState
*env
, uint32_t val
)
5551 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
5554 stl_phys(cs
->as
, env
->regs
[13], val
);
5557 static uint32_t v7m_pop(CPUARMState
*env
)
5559 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
5562 val
= ldl_phys(cs
->as
, env
->regs
[13]);
5567 /* Switch to V7M main or process stack pointer. */
5568 static void switch_v7m_sp(CPUARMState
*env
, int process
)
5571 if (env
->v7m
.current_sp
!= process
) {
5572 tmp
= env
->v7m
.other_sp
;
5573 env
->v7m
.other_sp
= env
->regs
[13];
5574 env
->regs
[13] = tmp
;
5575 env
->v7m
.current_sp
= process
;
5579 static void do_v7m_exception_exit(CPUARMState
*env
)
5584 type
= env
->regs
[15];
5585 if (env
->v7m
.exception
!= 0)
5586 armv7m_nvic_complete_irq(env
->nvic
, env
->v7m
.exception
);
5588 /* Switch to the target stack. */
5589 switch_v7m_sp(env
, (type
& 4) != 0);
5590 /* Pop registers. */
5591 env
->regs
[0] = v7m_pop(env
);
5592 env
->regs
[1] = v7m_pop(env
);
5593 env
->regs
[2] = v7m_pop(env
);
5594 env
->regs
[3] = v7m_pop(env
);
5595 env
->regs
[12] = v7m_pop(env
);
5596 env
->regs
[14] = v7m_pop(env
);
5597 env
->regs
[15] = v7m_pop(env
);
5598 if (env
->regs
[15] & 1) {
5599 qemu_log_mask(LOG_GUEST_ERROR
,
5600 "M profile return from interrupt with misaligned "
5601 "PC is UNPREDICTABLE\n");
5602 /* Actual hardware seems to ignore the lsbit, and there are several
5603 * RTOSes out there which incorrectly assume the r15 in the stack
5604 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
5606 env
->regs
[15] &= ~1U;
5608 xpsr
= v7m_pop(env
);
5609 xpsr_write(env
, xpsr
, 0xfffffdff);
5610 /* Undo stack alignment. */
5613 /* ??? The exception return type specifies Thread/Handler mode. However
5614 this is also implied by the xPSR value. Not sure what to do
5615 if there is a mismatch. */
5616 /* ??? Likewise for mismatches between the CONTROL register and the stack
5620 void arm_v7m_cpu_do_interrupt(CPUState
*cs
)
5622 ARMCPU
*cpu
= ARM_CPU(cs
);
5623 CPUARMState
*env
= &cpu
->env
;
5624 uint32_t xpsr
= xpsr_read(env
);
5628 arm_log_exception(cs
->exception_index
);
5631 if (env
->v7m
.current_sp
)
5633 if (env
->v7m
.exception
== 0)
5636 /* For exceptions we just mark as pending on the NVIC, and let that
5638 /* TODO: Need to escalate if the current priority is higher than the
5639 one we're raising. */
5640 switch (cs
->exception_index
) {
5642 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
);
5645 /* The PC already points to the next instruction. */
5646 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SVC
);
5648 case EXCP_PREFETCH_ABORT
:
5649 case EXCP_DATA_ABORT
:
5650 /* TODO: if we implemented the MPU registers, this is where we
5651 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
5653 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_MEM
);
5656 if (semihosting_enabled()) {
5658 nr
= arm_lduw_code(env
, env
->regs
[15], env
->bswap_code
) & 0xff;
5661 qemu_log_mask(CPU_LOG_INT
,
5662 "...handling as semihosting call 0x%x\n",
5664 env
->regs
[0] = do_arm_semihosting(env
);
5668 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_DEBUG
);
5671 env
->v7m
.exception
= armv7m_nvic_acknowledge_irq(env
->nvic
);
5673 case EXCP_EXCEPTION_EXIT
:
5674 do_v7m_exception_exit(env
);
5677 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
5678 return; /* Never happens. Keep compiler happy. */
5681 /* Align stack pointer. */
5682 /* ??? Should only do this if Configuration Control Register
5683 STACKALIGN bit is set. */
5684 if (env
->regs
[13] & 4) {
5688 /* Switch to the handler mode. */
5689 v7m_push(env
, xpsr
);
5690 v7m_push(env
, env
->regs
[15]);
5691 v7m_push(env
, env
->regs
[14]);
5692 v7m_push(env
, env
->regs
[12]);
5693 v7m_push(env
, env
->regs
[3]);
5694 v7m_push(env
, env
->regs
[2]);
5695 v7m_push(env
, env
->regs
[1]);
5696 v7m_push(env
, env
->regs
[0]);
5697 switch_v7m_sp(env
, 0);
5699 env
->condexec_bits
= 0;
5701 addr
= ldl_phys(cs
->as
, env
->v7m
.vecbase
+ env
->v7m
.exception
* 4);
5702 env
->regs
[15] = addr
& 0xfffffffe;
5703 env
->thumb
= addr
& 1;
5706 /* Function used to synchronize QEMU's AArch64 register set with AArch32
5707 * register set. This is necessary when switching between AArch32 and AArch64
5710 void aarch64_sync_32_to_64(CPUARMState
*env
)
5713 uint32_t mode
= env
->uncached_cpsr
& CPSR_M
;
5715 /* We can blanket copy R[0:7] to X[0:7] */
5716 for (i
= 0; i
< 8; i
++) {
5717 env
->xregs
[i
] = env
->regs
[i
];
5720 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
5721 * Otherwise, they come from the banked user regs.
5723 if (mode
== ARM_CPU_MODE_FIQ
) {
5724 for (i
= 8; i
< 13; i
++) {
5725 env
->xregs
[i
] = env
->usr_regs
[i
- 8];
5728 for (i
= 8; i
< 13; i
++) {
5729 env
->xregs
[i
] = env
->regs
[i
];
5733 /* Registers x13-x23 are the various mode SP and FP registers. Registers
5734 * r13 and r14 are only copied if we are in that mode, otherwise we copy
5735 * from the mode banked register.
5737 if (mode
== ARM_CPU_MODE_USR
|| mode
== ARM_CPU_MODE_SYS
) {
5738 env
->xregs
[13] = env
->regs
[13];
5739 env
->xregs
[14] = env
->regs
[14];
5741 env
->xregs
[13] = env
->banked_r13
[bank_number(ARM_CPU_MODE_USR
)];
5742 /* HYP is an exception in that it is copied from r14 */
5743 if (mode
== ARM_CPU_MODE_HYP
) {
5744 env
->xregs
[14] = env
->regs
[14];
5746 env
->xregs
[14] = env
->banked_r14
[bank_number(ARM_CPU_MODE_USR
)];
5750 if (mode
== ARM_CPU_MODE_HYP
) {
5751 env
->xregs
[15] = env
->regs
[13];
5753 env
->xregs
[15] = env
->banked_r13
[bank_number(ARM_CPU_MODE_HYP
)];
5756 if (mode
== ARM_CPU_MODE_IRQ
) {
5757 env
->xregs
[16] = env
->regs
[14];
5758 env
->xregs
[17] = env
->regs
[13];
5760 env
->xregs
[16] = env
->banked_r14
[bank_number(ARM_CPU_MODE_IRQ
)];
5761 env
->xregs
[17] = env
->banked_r13
[bank_number(ARM_CPU_MODE_IRQ
)];
5764 if (mode
== ARM_CPU_MODE_SVC
) {
5765 env
->xregs
[18] = env
->regs
[14];
5766 env
->xregs
[19] = env
->regs
[13];
5768 env
->xregs
[18] = env
->banked_r14
[bank_number(ARM_CPU_MODE_SVC
)];
5769 env
->xregs
[19] = env
->banked_r13
[bank_number(ARM_CPU_MODE_SVC
)];
5772 if (mode
== ARM_CPU_MODE_ABT
) {
5773 env
->xregs
[20] = env
->regs
[14];
5774 env
->xregs
[21] = env
->regs
[13];
5776 env
->xregs
[20] = env
->banked_r14
[bank_number(ARM_CPU_MODE_ABT
)];
5777 env
->xregs
[21] = env
->banked_r13
[bank_number(ARM_CPU_MODE_ABT
)];
5780 if (mode
== ARM_CPU_MODE_UND
) {
5781 env
->xregs
[22] = env
->regs
[14];
5782 env
->xregs
[23] = env
->regs
[13];
5784 env
->xregs
[22] = env
->banked_r14
[bank_number(ARM_CPU_MODE_UND
)];
5785 env
->xregs
[23] = env
->banked_r13
[bank_number(ARM_CPU_MODE_UND
)];
5788 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
5789 * mode, then we can copy from r8-r14. Otherwise, we copy from the
5790 * FIQ bank for r8-r14.
5792 if (mode
== ARM_CPU_MODE_FIQ
) {
5793 for (i
= 24; i
< 31; i
++) {
5794 env
->xregs
[i
] = env
->regs
[i
- 16]; /* X[24:30] <- R[8:14] */
5797 for (i
= 24; i
< 29; i
++) {
5798 env
->xregs
[i
] = env
->fiq_regs
[i
- 24];
5800 env
->xregs
[29] = env
->banked_r13
[bank_number(ARM_CPU_MODE_FIQ
)];
5801 env
->xregs
[30] = env
->banked_r14
[bank_number(ARM_CPU_MODE_FIQ
)];
5804 env
->pc
= env
->regs
[15];
5807 /* Function used to synchronize QEMU's AArch32 register set with AArch64
5808 * register set. This is necessary when switching between AArch32 and AArch64
5811 void aarch64_sync_64_to_32(CPUARMState
*env
)
5814 uint32_t mode
= env
->uncached_cpsr
& CPSR_M
;
5816 /* We can blanket copy X[0:7] to R[0:7] */
5817 for (i
= 0; i
< 8; i
++) {
5818 env
->regs
[i
] = env
->xregs
[i
];
5821 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
5822 * Otherwise, we copy x8-x12 into the banked user regs.
5824 if (mode
== ARM_CPU_MODE_FIQ
) {
5825 for (i
= 8; i
< 13; i
++) {
5826 env
->usr_regs
[i
- 8] = env
->xregs
[i
];
5829 for (i
= 8; i
< 13; i
++) {
5830 env
->regs
[i
] = env
->xregs
[i
];
5834 /* Registers r13 & r14 depend on the current mode.
5835 * If we are in a given mode, we copy the corresponding x registers to r13
5836 * and r14. Otherwise, we copy the x register to the banked r13 and r14
5839 if (mode
== ARM_CPU_MODE_USR
|| mode
== ARM_CPU_MODE_SYS
) {
5840 env
->regs
[13] = env
->xregs
[13];
5841 env
->regs
[14] = env
->xregs
[14];
5843 env
->banked_r13
[bank_number(ARM_CPU_MODE_USR
)] = env
->xregs
[13];
5845 /* HYP is an exception in that it does not have its own banked r14 but
5846 * shares the USR r14
5848 if (mode
== ARM_CPU_MODE_HYP
) {
5849 env
->regs
[14] = env
->xregs
[14];
5851 env
->banked_r14
[bank_number(ARM_CPU_MODE_USR
)] = env
->xregs
[14];
5855 if (mode
== ARM_CPU_MODE_HYP
) {
5856 env
->regs
[13] = env
->xregs
[15];
5858 env
->banked_r13
[bank_number(ARM_CPU_MODE_HYP
)] = env
->xregs
[15];
5861 if (mode
== ARM_CPU_MODE_IRQ
) {
5862 env
->regs
[14] = env
->xregs
[16];
5863 env
->regs
[13] = env
->xregs
[17];
5865 env
->banked_r14
[bank_number(ARM_CPU_MODE_IRQ
)] = env
->xregs
[16];
5866 env
->banked_r13
[bank_number(ARM_CPU_MODE_IRQ
)] = env
->xregs
[17];
5869 if (mode
== ARM_CPU_MODE_SVC
) {
5870 env
->regs
[14] = env
->xregs
[18];
5871 env
->regs
[13] = env
->xregs
[19];
5873 env
->banked_r14
[bank_number(ARM_CPU_MODE_SVC
)] = env
->xregs
[18];
5874 env
->banked_r13
[bank_number(ARM_CPU_MODE_SVC
)] = env
->xregs
[19];
5877 if (mode
== ARM_CPU_MODE_ABT
) {
5878 env
->regs
[14] = env
->xregs
[20];
5879 env
->regs
[13] = env
->xregs
[21];
5881 env
->banked_r14
[bank_number(ARM_CPU_MODE_ABT
)] = env
->xregs
[20];
5882 env
->banked_r13
[bank_number(ARM_CPU_MODE_ABT
)] = env
->xregs
[21];
5885 if (mode
== ARM_CPU_MODE_UND
) {
5886 env
->regs
[14] = env
->xregs
[22];
5887 env
->regs
[13] = env
->xregs
[23];
5889 env
->banked_r14
[bank_number(ARM_CPU_MODE_UND
)] = env
->xregs
[22];
5890 env
->banked_r13
[bank_number(ARM_CPU_MODE_UND
)] = env
->xregs
[23];
5893 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
5894 * mode, then we can copy to r8-r14. Otherwise, we copy to the
5895 * FIQ bank for r8-r14.
5897 if (mode
== ARM_CPU_MODE_FIQ
) {
5898 for (i
= 24; i
< 31; i
++) {
5899 env
->regs
[i
- 16] = env
->xregs
[i
]; /* X[24:30] -> R[8:14] */
5902 for (i
= 24; i
< 29; i
++) {
5903 env
->fiq_regs
[i
- 24] = env
->xregs
[i
];
5905 env
->banked_r13
[bank_number(ARM_CPU_MODE_FIQ
)] = env
->xregs
[29];
5906 env
->banked_r14
[bank_number(ARM_CPU_MODE_FIQ
)] = env
->xregs
[30];
5909 env
->regs
[15] = env
->pc
;
5912 static void arm_cpu_do_interrupt_aarch32(CPUState
*cs
)
5914 ARMCPU
*cpu
= ARM_CPU(cs
);
5915 CPUARMState
*env
= &cpu
->env
;
5922 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
5923 switch (env
->exception
.syndrome
>> ARM_EL_EC_SHIFT
) {
5925 case EC_BREAKPOINT_SAME_EL
:
5929 case EC_WATCHPOINT_SAME_EL
:
5935 case EC_VECTORCATCH
:
5944 env
->cp15
.mdscr_el1
= deposit64(env
->cp15
.mdscr_el1
, 2, 4, moe
);
5947 /* TODO: Vectored interrupt controller. */
5948 switch (cs
->exception_index
) {
5950 new_mode
= ARM_CPU_MODE_UND
;
5959 new_mode
= ARM_CPU_MODE_SVC
;
5962 /* The PC already points to the next instruction. */
5966 env
->exception
.fsr
= 2;
5967 /* Fall through to prefetch abort. */
5968 case EXCP_PREFETCH_ABORT
:
5969 A32_BANKED_CURRENT_REG_SET(env
, ifsr
, env
->exception
.fsr
);
5970 A32_BANKED_CURRENT_REG_SET(env
, ifar
, env
->exception
.vaddress
);
5971 qemu_log_mask(CPU_LOG_INT
, "...with IFSR 0x%x IFAR 0x%x\n",
5972 env
->exception
.fsr
, (uint32_t)env
->exception
.vaddress
);
5973 new_mode
= ARM_CPU_MODE_ABT
;
5975 mask
= CPSR_A
| CPSR_I
;
5978 case EXCP_DATA_ABORT
:
5979 A32_BANKED_CURRENT_REG_SET(env
, dfsr
, env
->exception
.fsr
);
5980 A32_BANKED_CURRENT_REG_SET(env
, dfar
, env
->exception
.vaddress
);
5981 qemu_log_mask(CPU_LOG_INT
, "...with DFSR 0x%x DFAR 0x%x\n",
5983 (uint32_t)env
->exception
.vaddress
);
5984 new_mode
= ARM_CPU_MODE_ABT
;
5986 mask
= CPSR_A
| CPSR_I
;
5990 new_mode
= ARM_CPU_MODE_IRQ
;
5992 /* Disable IRQ and imprecise data aborts. */
5993 mask
= CPSR_A
| CPSR_I
;
5995 if (env
->cp15
.scr_el3
& SCR_IRQ
) {
5996 /* IRQ routed to monitor mode */
5997 new_mode
= ARM_CPU_MODE_MON
;
6002 new_mode
= ARM_CPU_MODE_FIQ
;
6004 /* Disable FIQ, IRQ and imprecise data aborts. */
6005 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
6006 if (env
->cp15
.scr_el3
& SCR_FIQ
) {
6007 /* FIQ routed to monitor mode */
6008 new_mode
= ARM_CPU_MODE_MON
;
6013 new_mode
= ARM_CPU_MODE_MON
;
6015 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
6019 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
6020 return; /* Never happens. Keep compiler happy. */
6023 if (new_mode
== ARM_CPU_MODE_MON
) {
6024 addr
+= env
->cp15
.mvbar
;
6025 } else if (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_V
) {
6026 /* High vectors. When enabled, base address cannot be remapped. */
6029 /* ARM v7 architectures provide a vector base address register to remap
6030 * the interrupt vector table.
6031 * This register is only followed in non-monitor mode, and is banked.
6032 * Note: only bits 31:5 are valid.
6034 addr
+= A32_BANKED_CURRENT_REG_GET(env
, vbar
);
6037 if ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_MON
) {
6038 env
->cp15
.scr_el3
&= ~SCR_NS
;
6041 switch_mode (env
, new_mode
);
6042 /* For exceptions taken to AArch32 we must clear the SS bit in both
6043 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
6045 env
->uncached_cpsr
&= ~PSTATE_SS
;
6046 env
->spsr
= cpsr_read(env
);
6047 /* Clear IT bits. */
6048 env
->condexec_bits
= 0;
6049 /* Switch to the new mode, and to the correct instruction set. */
6050 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~CPSR_M
) | new_mode
;
6052 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
6053 * and we should just guard the thumb mode on V4 */
6054 if (arm_feature(env
, ARM_FEATURE_V4T
)) {
6055 env
->thumb
= (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_TE
) != 0;
6057 env
->regs
[14] = env
->regs
[15] + offset
;
6058 env
->regs
[15] = addr
;
6061 /* Handle exception entry to a target EL which is using AArch64 */
6062 static void arm_cpu_do_interrupt_aarch64(CPUState
*cs
)
6064 ARMCPU
*cpu
= ARM_CPU(cs
);
6065 CPUARMState
*env
= &cpu
->env
;
6066 unsigned int new_el
= env
->exception
.target_el
;
6067 target_ulong addr
= env
->cp15
.vbar_el
[new_el
];
6068 unsigned int new_mode
= aarch64_pstate_mode(new_el
, true);
6070 if (arm_current_el(env
) < new_el
) {
6071 /* Entry vector offset depends on whether the implemented EL
6072 * immediately lower than the target level is using AArch32 or AArch64
6078 is_aa64
= (env
->cp15
.scr_el3
& SCR_RW
) != 0;
6081 is_aa64
= (env
->cp15
.hcr_el2
& HCR_RW
) != 0;
6084 is_aa64
= is_a64(env
);
6087 g_assert_not_reached();
6095 } else if (pstate_read(env
) & PSTATE_SP
) {
6099 switch (cs
->exception_index
) {
6100 case EXCP_PREFETCH_ABORT
:
6101 case EXCP_DATA_ABORT
:
6102 env
->cp15
.far_el
[new_el
] = env
->exception
.vaddress
;
6103 qemu_log_mask(CPU_LOG_INT
, "...with FAR 0x%" PRIx64
"\n",
6104 env
->cp15
.far_el
[new_el
]);
6112 env
->cp15
.esr_el
[new_el
] = env
->exception
.syndrome
;
6123 qemu_log_mask(CPU_LOG_INT
,
6124 "...handling as semihosting call 0x%" PRIx64
"\n",
6126 env
->xregs
[0] = do_arm_semihosting(env
);
6129 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
6133 env
->banked_spsr
[aarch64_banked_spsr_index(new_el
)] = pstate_read(env
);
6134 aarch64_save_sp(env
, arm_current_el(env
));
6135 env
->elr_el
[new_el
] = env
->pc
;
6137 env
->banked_spsr
[aarch64_banked_spsr_index(new_el
)] = cpsr_read(env
);
6139 env
->cp15
.esr_el
[new_el
] |= 1 << 25;
6141 env
->elr_el
[new_el
] = env
->regs
[15];
6143 aarch64_sync_32_to_64(env
);
6145 env
->condexec_bits
= 0;
6147 qemu_log_mask(CPU_LOG_INT
, "...with ELR 0x%" PRIx64
"\n",
6148 env
->elr_el
[new_el
]);
6150 pstate_write(env
, PSTATE_DAIF
| new_mode
);
6152 aarch64_restore_sp(env
, new_el
);
6156 qemu_log_mask(CPU_LOG_INT
, "...to EL%d PC 0x%" PRIx64
" PSTATE 0x%x\n",
6157 new_el
, env
->pc
, pstate_read(env
));
6160 static inline bool check_for_semihosting(CPUState
*cs
)
6162 /* Check whether this exception is a semihosting call; if so
6163 * then handle it and return true; otherwise return false.
6165 ARMCPU
*cpu
= ARM_CPU(cs
);
6166 CPUARMState
*env
= &cpu
->env
;
6169 if (cs
->exception_index
== EXCP_SEMIHOST
) {
6170 /* This is always the 64-bit semihosting exception.
6171 * The "is this usermode" and "is semihosting enabled"
6172 * checks have been done at translate time.
6174 qemu_log_mask(CPU_LOG_INT
,
6175 "...handling as semihosting call 0x%" PRIx64
"\n",
6177 env
->xregs
[0] = do_arm_semihosting(env
);
6184 /* Only intercept calls from privileged modes, to provide some
6185 * semblance of security.
6187 if (!semihosting_enabled() ||
6188 ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_USR
)) {
6192 switch (cs
->exception_index
) {
6194 /* Check for semihosting interrupt. */
6196 imm
= arm_lduw_code(env
, env
->regs
[15] - 2, env
->bswap_code
)
6202 imm
= arm_ldl_code(env
, env
->regs
[15] - 4, env
->bswap_code
)
6204 if (imm
== 0x123456) {
6210 /* See if this is a semihosting syscall. */
6212 imm
= arm_lduw_code(env
, env
->regs
[15], env
->bswap_code
)
6224 qemu_log_mask(CPU_LOG_INT
,
6225 "...handling as semihosting call 0x%x\n",
6227 env
->regs
[0] = do_arm_semihosting(env
);
6232 /* Handle a CPU exception for A and R profile CPUs.
6233 * Do any appropriate logging, handle PSCI calls, and then hand off
6234 * to the AArch64-entry or AArch32-entry function depending on the
6235 * target exception level's register width.
6237 void arm_cpu_do_interrupt(CPUState
*cs
)
6239 ARMCPU
*cpu
= ARM_CPU(cs
);
6240 CPUARMState
*env
= &cpu
->env
;
6241 unsigned int new_el
= env
->exception
.target_el
;
6245 arm_log_exception(cs
->exception_index
);
6246 qemu_log_mask(CPU_LOG_INT
, "...from EL%d to EL%d\n", arm_current_el(env
),
6248 if (qemu_loglevel_mask(CPU_LOG_INT
)
6249 && !excp_is_internal(cs
->exception_index
)) {
6250 qemu_log_mask(CPU_LOG_INT
, "...with ESR %x/0x%" PRIx32
"\n",
6251 env
->exception
.syndrome
>> ARM_EL_EC_SHIFT
,
6252 env
->exception
.syndrome
);
6255 if (arm_is_psci_call(cpu
, cs
->exception_index
)) {
6256 arm_handle_psci_call(cpu
);
6257 qemu_log_mask(CPU_LOG_INT
, "...handled as PSCI call\n");
6261 /* Semihosting semantics depend on the register width of the
6262 * code that caused the exception, not the target exception level,
6263 * so must be handled here.
6265 if (check_for_semihosting(cs
)) {
6269 assert(!excp_is_internal(cs
->exception_index
));
6270 if (arm_el_is_aa64(env
, new_el
)) {
6271 arm_cpu_do_interrupt_aarch64(cs
);
6273 arm_cpu_do_interrupt_aarch32(cs
);
6276 if (!kvm_enabled()) {
6277 cs
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
6281 /* Return the exception level which controls this address translation regime */
6282 static inline uint32_t regime_el(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
6285 case ARMMMUIdx_S2NS
:
6286 case ARMMMUIdx_S1E2
:
6288 case ARMMMUIdx_S1E3
:
6290 case ARMMMUIdx_S1SE0
:
6291 return arm_el_is_aa64(env
, 3) ? 1 : 3;
6292 case ARMMMUIdx_S1SE1
:
6293 case ARMMMUIdx_S1NSE0
:
6294 case ARMMMUIdx_S1NSE1
:
6297 g_assert_not_reached();
6301 /* Return true if this address translation regime is secure */
6302 static inline bool regime_is_secure(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
6305 case ARMMMUIdx_S12NSE0
:
6306 case ARMMMUIdx_S12NSE1
:
6307 case ARMMMUIdx_S1NSE0
:
6308 case ARMMMUIdx_S1NSE1
:
6309 case ARMMMUIdx_S1E2
:
6310 case ARMMMUIdx_S2NS
:
6312 case ARMMMUIdx_S1E3
:
6313 case ARMMMUIdx_S1SE0
:
6314 case ARMMMUIdx_S1SE1
:
6317 g_assert_not_reached();
6321 /* Return the SCTLR value which controls this address translation regime */
6322 static inline uint32_t regime_sctlr(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
6324 return env
->cp15
.sctlr_el
[regime_el(env
, mmu_idx
)];
6327 /* Return true if the specified stage of address translation is disabled */
6328 static inline bool regime_translation_disabled(CPUARMState
*env
,
6331 if (mmu_idx
== ARMMMUIdx_S2NS
) {
6332 return (env
->cp15
.hcr_el2
& HCR_VM
) == 0;
6334 return (regime_sctlr(env
, mmu_idx
) & SCTLR_M
) == 0;
6337 /* Return the TCR controlling this translation regime */
6338 static inline TCR
*regime_tcr(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
6340 if (mmu_idx
== ARMMMUIdx_S2NS
) {
6341 return &env
->cp15
.vtcr_el2
;
6343 return &env
->cp15
.tcr_el
[regime_el(env
, mmu_idx
)];
6346 /* Return the TTBR associated with this translation regime */
6347 static inline uint64_t regime_ttbr(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
6350 if (mmu_idx
== ARMMMUIdx_S2NS
) {
6351 return env
->cp15
.vttbr_el2
;
6354 return env
->cp15
.ttbr0_el
[regime_el(env
, mmu_idx
)];
6356 return env
->cp15
.ttbr1_el
[regime_el(env
, mmu_idx
)];
6360 /* Return true if the translation regime is using LPAE format page tables */
6361 static inline bool regime_using_lpae_format(CPUARMState
*env
,
6364 int el
= regime_el(env
, mmu_idx
);
6365 if (el
== 2 || arm_el_is_aa64(env
, el
)) {
6368 if (arm_feature(env
, ARM_FEATURE_LPAE
)
6369 && (regime_tcr(env
, mmu_idx
)->raw_tcr
& TTBCR_EAE
)) {
6375 /* Returns true if the stage 1 translation regime is using LPAE format page
6376 * tables. Used when raising alignment exceptions, whose FSR changes depending
6377 * on whether the long or short descriptor format is in use. */
6378 bool arm_s1_regime_using_lpae_format(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
6380 if (mmu_idx
== ARMMMUIdx_S12NSE0
|| mmu_idx
== ARMMMUIdx_S12NSE1
) {
6381 mmu_idx
+= ARMMMUIdx_S1NSE0
;
6384 return regime_using_lpae_format(env
, mmu_idx
);
6387 static inline bool regime_is_user(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
6390 case ARMMMUIdx_S1SE0
:
6391 case ARMMMUIdx_S1NSE0
:
6395 case ARMMMUIdx_S12NSE0
:
6396 case ARMMMUIdx_S12NSE1
:
6397 g_assert_not_reached();
6401 /* Translate section/page access permissions to page
6402 * R/W protection flags
6405 * @mmu_idx: MMU index indicating required translation regime
6406 * @ap: The 3-bit access permissions (AP[2:0])
6407 * @domain_prot: The 2-bit domain access permissions
6409 static inline int ap_to_rw_prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
6410 int ap
, int domain_prot
)
6412 bool is_user
= regime_is_user(env
, mmu_idx
);
6414 if (domain_prot
== 3) {
6415 return PAGE_READ
| PAGE_WRITE
;
6420 if (arm_feature(env
, ARM_FEATURE_V7
)) {
6423 switch (regime_sctlr(env
, mmu_idx
) & (SCTLR_S
| SCTLR_R
)) {
6425 return is_user
? 0 : PAGE_READ
;
6432 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
6437 return PAGE_READ
| PAGE_WRITE
;
6440 return PAGE_READ
| PAGE_WRITE
;
6441 case 4: /* Reserved. */
6444 return is_user
? 0 : PAGE_READ
;
6448 if (!arm_feature(env
, ARM_FEATURE_V6K
)) {
6453 g_assert_not_reached();
6457 /* Translate section/page access permissions to page
6458 * R/W protection flags.
6460 * @ap: The 2-bit simple AP (AP[2:1])
6461 * @is_user: TRUE if accessing from PL0
6463 static inline int simple_ap_to_rw_prot_is_user(int ap
, bool is_user
)
6467 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
6469 return PAGE_READ
| PAGE_WRITE
;
6471 return is_user
? 0 : PAGE_READ
;
6475 g_assert_not_reached();
6480 simple_ap_to_rw_prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
, int ap
)
6482 return simple_ap_to_rw_prot_is_user(ap
, regime_is_user(env
, mmu_idx
));
6485 /* Translate S2 section/page access permissions to protection flags
6488 * @s2ap: The 2-bit stage2 access permissions (S2AP)
6489 * @xn: XN (execute-never) bit
6491 static int get_S2prot(CPUARMState
*env
, int s2ap
, int xn
)
6507 /* Translate section/page access permissions to protection flags
6510 * @mmu_idx: MMU index indicating required translation regime
6511 * @is_aa64: TRUE if AArch64
6512 * @ap: The 2-bit simple AP (AP[2:1])
6513 * @ns: NS (non-secure) bit
6514 * @xn: XN (execute-never) bit
6515 * @pxn: PXN (privileged execute-never) bit
6517 static int get_S1prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
, bool is_aa64
,
6518 int ap
, int ns
, int xn
, int pxn
)
6520 bool is_user
= regime_is_user(env
, mmu_idx
);
6521 int prot_rw
, user_rw
;
6525 assert(mmu_idx
!= ARMMMUIdx_S2NS
);
6527 user_rw
= simple_ap_to_rw_prot_is_user(ap
, true);
6531 prot_rw
= simple_ap_to_rw_prot_is_user(ap
, false);
6534 if (ns
&& arm_is_secure(env
) && (env
->cp15
.scr_el3
& SCR_SIF
)) {
6538 /* TODO have_wxn should be replaced with
6539 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
6540 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
6541 * compatible processors have EL2, which is required for [U]WXN.
6543 have_wxn
= arm_feature(env
, ARM_FEATURE_LPAE
);
6546 wxn
= regime_sctlr(env
, mmu_idx
) & SCTLR_WXN
;
6550 switch (regime_el(env
, mmu_idx
)) {
6553 xn
= pxn
|| (user_rw
& PAGE_WRITE
);
6560 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
6561 switch (regime_el(env
, mmu_idx
)) {
6565 xn
= xn
|| !(user_rw
& PAGE_READ
);
6569 uwxn
= regime_sctlr(env
, mmu_idx
) & SCTLR_UWXN
;
6571 xn
= xn
|| !(prot_rw
& PAGE_READ
) || pxn
||
6572 (uwxn
&& (user_rw
& PAGE_WRITE
));
6582 if (xn
|| (wxn
&& (prot_rw
& PAGE_WRITE
))) {
6585 return prot_rw
| PAGE_EXEC
;
6588 static bool get_level1_table_address(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
6589 uint32_t *table
, uint32_t address
)
6591 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
6592 TCR
*tcr
= regime_tcr(env
, mmu_idx
);
6594 if (address
& tcr
->mask
) {
6595 if (tcr
->raw_tcr
& TTBCR_PD1
) {
6596 /* Translation table walk disabled for TTBR1 */
6599 *table
= regime_ttbr(env
, mmu_idx
, 1) & 0xffffc000;
6601 if (tcr
->raw_tcr
& TTBCR_PD0
) {
6602 /* Translation table walk disabled for TTBR0 */
6605 *table
= regime_ttbr(env
, mmu_idx
, 0) & tcr
->base_mask
;
6607 *table
|= (address
>> 18) & 0x3ffc;
6611 /* Translate a S1 pagetable walk through S2 if needed. */
6612 static hwaddr
S1_ptw_translate(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
6613 hwaddr addr
, MemTxAttrs txattrs
,
6615 ARMMMUFaultInfo
*fi
)
6617 if ((mmu_idx
== ARMMMUIdx_S1NSE0
|| mmu_idx
== ARMMMUIdx_S1NSE1
) &&
6618 !regime_translation_disabled(env
, ARMMMUIdx_S2NS
)) {
6619 target_ulong s2size
;
6624 ret
= get_phys_addr_lpae(env
, addr
, 0, ARMMMUIdx_S2NS
, &s2pa
,
6625 &txattrs
, &s2prot
, &s2size
, fsr
, fi
);
6637 /* All loads done in the course of a page table walk go through here.
6638 * TODO: rather than ignoring errors from physical memory reads (which
6639 * are external aborts in ARM terminology) we should propagate this
6640 * error out so that we can turn it into a Data Abort if this walk
6641 * was being done for a CPU load/store or an address translation instruction
6642 * (but not if it was for a debug access).
6644 static uint32_t arm_ldl_ptw(CPUState
*cs
, hwaddr addr
, bool is_secure
,
6645 ARMMMUIdx mmu_idx
, uint32_t *fsr
,
6646 ARMMMUFaultInfo
*fi
)
6648 ARMCPU
*cpu
= ARM_CPU(cs
);
6649 CPUARMState
*env
= &cpu
->env
;
6650 MemTxAttrs attrs
= {};
6653 attrs
.secure
= is_secure
;
6654 as
= arm_addressspace(cs
, attrs
);
6655 addr
= S1_ptw_translate(env
, mmu_idx
, addr
, attrs
, fsr
, fi
);
6659 return address_space_ldl(as
, addr
, attrs
, NULL
);
6662 static uint64_t arm_ldq_ptw(CPUState
*cs
, hwaddr addr
, bool is_secure
,
6663 ARMMMUIdx mmu_idx
, uint32_t *fsr
,
6664 ARMMMUFaultInfo
*fi
)
6666 ARMCPU
*cpu
= ARM_CPU(cs
);
6667 CPUARMState
*env
= &cpu
->env
;
6668 MemTxAttrs attrs
= {};
6671 attrs
.secure
= is_secure
;
6672 as
= arm_addressspace(cs
, attrs
);
6673 addr
= S1_ptw_translate(env
, mmu_idx
, addr
, attrs
, fsr
, fi
);
6677 return address_space_ldq(as
, addr
, attrs
, NULL
);
6680 static bool get_phys_addr_v5(CPUARMState
*env
, uint32_t address
,
6681 int access_type
, ARMMMUIdx mmu_idx
,
6682 hwaddr
*phys_ptr
, int *prot
,
6683 target_ulong
*page_size
, uint32_t *fsr
,
6684 ARMMMUFaultInfo
*fi
)
6686 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
6697 /* Pagetable walk. */
6698 /* Lookup l1 descriptor. */
6699 if (!get_level1_table_address(env
, mmu_idx
, &table
, address
)) {
6700 /* Section translation fault if page walk is disabled by PD0 or PD1 */
6704 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
6707 domain
= (desc
>> 5) & 0x0f;
6708 if (regime_el(env
, mmu_idx
) == 1) {
6709 dacr
= env
->cp15
.dacr_ns
;
6711 dacr
= env
->cp15
.dacr_s
;
6713 domain_prot
= (dacr
>> (domain
* 2)) & 3;
6715 /* Section translation fault. */
6719 if (domain_prot
== 0 || domain_prot
== 2) {
6721 code
= 9; /* Section domain fault. */
6723 code
= 11; /* Page domain fault. */
6728 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
6729 ap
= (desc
>> 10) & 3;
6731 *page_size
= 1024 * 1024;
6733 /* Lookup l2 entry. */
6735 /* Coarse pagetable. */
6736 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
6738 /* Fine pagetable. */
6739 table
= (desc
& 0xfffff000) | ((address
>> 8) & 0xffc);
6741 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
6744 case 0: /* Page translation fault. */
6747 case 1: /* 64k page. */
6748 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
6749 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
6750 *page_size
= 0x10000;
6752 case 2: /* 4k page. */
6753 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
6754 ap
= (desc
>> (4 + ((address
>> 9) & 6))) & 3;
6755 *page_size
= 0x1000;
6757 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
6759 /* ARMv6/XScale extended small page format */
6760 if (arm_feature(env
, ARM_FEATURE_XSCALE
)
6761 || arm_feature(env
, ARM_FEATURE_V6
)) {
6762 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
6763 *page_size
= 0x1000;
6765 /* UNPREDICTABLE in ARMv5; we choose to take a
6766 * page translation fault.
6772 phys_addr
= (desc
& 0xfffffc00) | (address
& 0x3ff);
6775 ap
= (desc
>> 4) & 3;
6778 /* Never happens, but compiler isn't smart enough to tell. */
6783 *prot
= ap_to_rw_prot(env
, mmu_idx
, ap
, domain_prot
);
6784 *prot
|= *prot
? PAGE_EXEC
: 0;
6785 if (!(*prot
& (1 << access_type
))) {
6786 /* Access permission fault. */
6789 *phys_ptr
= phys_addr
;
6792 *fsr
= code
| (domain
<< 4);
6796 static bool get_phys_addr_v6(CPUARMState
*env
, uint32_t address
,
6797 int access_type
, ARMMMUIdx mmu_idx
,
6798 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
6799 target_ulong
*page_size
, uint32_t *fsr
,
6800 ARMMMUFaultInfo
*fi
)
6802 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
6816 /* Pagetable walk. */
6817 /* Lookup l1 descriptor. */
6818 if (!get_level1_table_address(env
, mmu_idx
, &table
, address
)) {
6819 /* Section translation fault if page walk is disabled by PD0 or PD1 */
6823 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
6826 if (type
== 0 || (type
== 3 && !arm_feature(env
, ARM_FEATURE_PXN
))) {
6827 /* Section translation fault, or attempt to use the encoding
6828 * which is Reserved on implementations without PXN.
6833 if ((type
== 1) || !(desc
& (1 << 18))) {
6834 /* Page or Section. */
6835 domain
= (desc
>> 5) & 0x0f;
6837 if (regime_el(env
, mmu_idx
) == 1) {
6838 dacr
= env
->cp15
.dacr_ns
;
6840 dacr
= env
->cp15
.dacr_s
;
6842 domain_prot
= (dacr
>> (domain
* 2)) & 3;
6843 if (domain_prot
== 0 || domain_prot
== 2) {
6845 code
= 9; /* Section domain fault. */
6847 code
= 11; /* Page domain fault. */
6852 if (desc
& (1 << 18)) {
6854 phys_addr
= (desc
& 0xff000000) | (address
& 0x00ffffff);
6855 phys_addr
|= (uint64_t)extract32(desc
, 20, 4) << 32;
6856 phys_addr
|= (uint64_t)extract32(desc
, 5, 4) << 36;
6857 *page_size
= 0x1000000;
6860 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
6861 *page_size
= 0x100000;
6863 ap
= ((desc
>> 10) & 3) | ((desc
>> 13) & 4);
6864 xn
= desc
& (1 << 4);
6867 ns
= extract32(desc
, 19, 1);
6869 if (arm_feature(env
, ARM_FEATURE_PXN
)) {
6870 pxn
= (desc
>> 2) & 1;
6872 ns
= extract32(desc
, 3, 1);
6873 /* Lookup l2 entry. */
6874 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
6875 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
6877 ap
= ((desc
>> 4) & 3) | ((desc
>> 7) & 4);
6879 case 0: /* Page translation fault. */
6882 case 1: /* 64k page. */
6883 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
6884 xn
= desc
& (1 << 15);
6885 *page_size
= 0x10000;
6887 case 2: case 3: /* 4k page. */
6888 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
6890 *page_size
= 0x1000;
6893 /* Never happens, but compiler isn't smart enough to tell. */
6898 if (domain_prot
== 3) {
6899 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
6901 if (pxn
&& !regime_is_user(env
, mmu_idx
)) {
6904 if (xn
&& access_type
== 2)
6907 if (arm_feature(env
, ARM_FEATURE_V6K
) &&
6908 (regime_sctlr(env
, mmu_idx
) & SCTLR_AFE
)) {
6909 /* The simplified model uses AP[0] as an access control bit. */
6910 if ((ap
& 1) == 0) {
6911 /* Access flag fault. */
6912 code
= (code
== 15) ? 6 : 3;
6915 *prot
= simple_ap_to_rw_prot(env
, mmu_idx
, ap
>> 1);
6917 *prot
= ap_to_rw_prot(env
, mmu_idx
, ap
, domain_prot
);
6922 if (!(*prot
& (1 << access_type
))) {
6923 /* Access permission fault. */
6928 /* The NS bit will (as required by the architecture) have no effect if
6929 * the CPU doesn't support TZ or this is a non-secure translation
6930 * regime, because the attribute will already be non-secure.
6932 attrs
->secure
= false;
6934 *phys_ptr
= phys_addr
;
6937 *fsr
= code
| (domain
<< 4);
6941 /* Fault type for long-descriptor MMU fault reporting; this corresponds
6942 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
6945 translation_fault
= 1,
6947 permission_fault
= 3,
6951 * check_s2_mmu_setup
6953 * @is_aa64: True if the translation regime is in AArch64 state
6954 * @startlevel: Suggested starting level
6955 * @inputsize: Bitsize of IPAs
6956 * @stride: Page-table stride (See the ARM ARM)
6958 * Returns true if the suggested S2 translation parameters are OK and
6961 static bool check_s2_mmu_setup(ARMCPU
*cpu
, bool is_aa64
, int level
,
6962 int inputsize
, int stride
)
6964 const int grainsize
= stride
+ 3;
6967 /* Negative levels are never allowed. */
6972 startsizecheck
= inputsize
- ((3 - level
) * stride
+ grainsize
);
6973 if (startsizecheck
< 1 || startsizecheck
> stride
+ 4) {
6978 CPUARMState
*env
= &cpu
->env
;
6979 unsigned int pamax
= arm_pamax(cpu
);
6982 case 13: /* 64KB Pages. */
6983 if (level
== 0 || (level
== 1 && pamax
<= 42)) {
6987 case 11: /* 16KB Pages. */
6988 if (level
== 0 || (level
== 1 && pamax
<= 40)) {
6992 case 9: /* 4KB Pages. */
6993 if (level
== 0 && pamax
<= 42) {
6998 g_assert_not_reached();
7001 /* Inputsize checks. */
7002 if (inputsize
> pamax
&&
7003 (arm_el_is_aa64(env
, 1) || inputsize
> 40)) {
7004 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
7008 /* AArch32 only supports 4KB pages. Assert on that. */
7009 assert(stride
== 9);
7018 static bool get_phys_addr_lpae(CPUARMState
*env
, target_ulong address
,
7019 int access_type
, ARMMMUIdx mmu_idx
,
7020 hwaddr
*phys_ptr
, MemTxAttrs
*txattrs
, int *prot
,
7021 target_ulong
*page_size_ptr
, uint32_t *fsr
,
7022 ARMMMUFaultInfo
*fi
)
7024 ARMCPU
*cpu
= arm_env_get_cpu(env
);
7025 CPUState
*cs
= CPU(cpu
);
7026 /* Read an LPAE long-descriptor translation table. */
7027 MMUFaultType fault_type
= translation_fault
;
7034 hwaddr descaddr
, descmask
;
7035 uint32_t tableattrs
;
7036 target_ulong page_size
;
7039 int32_t va_size
= 32;
7042 TCR
*tcr
= regime_tcr(env
, mmu_idx
);
7043 int ap
, ns
, xn
, pxn
;
7044 uint32_t el
= regime_el(env
, mmu_idx
);
7045 bool ttbr1_valid
= true;
7046 uint64_t descaddrmask
;
7049 * This code does not handle the different format TCR for VTCR_EL2.
7050 * This code also does not support shareability levels.
7051 * Attribute and permission bit handling should also be checked when adding
7052 * support for those page table walks.
7054 if (arm_el_is_aa64(env
, el
)) {
7057 if (mmu_idx
!= ARMMMUIdx_S2NS
) {
7058 tbi
= extract64(tcr
->raw_tcr
, 20, 1);
7061 if (extract64(address
, 55, 1)) {
7062 tbi
= extract64(tcr
->raw_tcr
, 38, 1);
7064 tbi
= extract64(tcr
->raw_tcr
, 37, 1);
7069 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
7073 ttbr1_valid
= false;
7076 /* There is no TTBR1 for EL2 */
7078 ttbr1_valid
= false;
7082 /* Determine whether this address is in the region controlled by
7083 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
7084 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
7085 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
7087 if (va_size
== 64) {
7088 /* AArch64 translation. */
7089 t0sz
= extract32(tcr
->raw_tcr
, 0, 6);
7090 t0sz
= MIN(t0sz
, 39);
7091 t0sz
= MAX(t0sz
, 16);
7092 } else if (mmu_idx
!= ARMMMUIdx_S2NS
) {
7093 /* AArch32 stage 1 translation. */
7094 t0sz
= extract32(tcr
->raw_tcr
, 0, 3);
7096 /* AArch32 stage 2 translation. */
7097 bool sext
= extract32(tcr
->raw_tcr
, 4, 1);
7098 bool sign
= extract32(tcr
->raw_tcr
, 3, 1);
7099 t0sz
= sextract32(tcr
->raw_tcr
, 0, 4);
7101 /* If the sign-extend bit is not the same as t0sz[3], the result
7102 * is unpredictable. Flag this as a guest error. */
7104 qemu_log_mask(LOG_GUEST_ERROR
,
7105 "AArch32: VTCR.S / VTCR.T0SZ[3] missmatch\n");
7108 t1sz
= extract32(tcr
->raw_tcr
, 16, 6);
7109 if (va_size
== 64) {
7110 t1sz
= MIN(t1sz
, 39);
7111 t1sz
= MAX(t1sz
, 16);
7113 if (t0sz
&& !extract64(address
, va_size
- t0sz
, t0sz
- tbi
)) {
7114 /* there is a ttbr0 region and we are in it (high bits all zero) */
7116 } else if (ttbr1_valid
&& t1sz
&&
7117 !extract64(~address
, va_size
- t1sz
, t1sz
- tbi
)) {
7118 /* there is a ttbr1 region and we are in it (high bits all one) */
7121 /* ttbr0 region is "everything not in the ttbr1 region" */
7123 } else if (!t1sz
&& ttbr1_valid
) {
7124 /* ttbr1 region is "everything not in the ttbr0 region" */
7127 /* in the gap between the two regions, this is a Translation fault */
7128 fault_type
= translation_fault
;
7132 /* Note that QEMU ignores shareability and cacheability attributes,
7133 * so we don't need to do anything with the SH, ORGN, IRGN fields
7134 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
7135 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
7136 * implement any ASID-like capability so we can ignore it (instead
7137 * we will always flush the TLB any time the ASID is changed).
7139 if (ttbr_select
== 0) {
7140 ttbr
= regime_ttbr(env
, mmu_idx
, 0);
7142 epd
= extract32(tcr
->raw_tcr
, 7, 1);
7144 inputsize
= va_size
- t0sz
;
7146 tg
= extract32(tcr
->raw_tcr
, 14, 2);
7147 if (tg
== 1) { /* 64KB pages */
7150 if (tg
== 2) { /* 16KB pages */
7154 /* We should only be here if TTBR1 is valid */
7155 assert(ttbr1_valid
);
7157 ttbr
= regime_ttbr(env
, mmu_idx
, 1);
7158 epd
= extract32(tcr
->raw_tcr
, 23, 1);
7159 inputsize
= va_size
- t1sz
;
7161 tg
= extract32(tcr
->raw_tcr
, 30, 2);
7162 if (tg
== 3) { /* 64KB pages */
7165 if (tg
== 1) { /* 16KB pages */
7170 /* Here we should have set up all the parameters for the translation:
7171 * va_size, inputsize, ttbr, epd, stride, tbi
7175 /* Translation table walk disabled => Translation fault on TLB miss
7176 * Note: This is always 0 on 64-bit EL2 and EL3.
7181 if (mmu_idx
!= ARMMMUIdx_S2NS
) {
7182 /* The starting level depends on the virtual address size (which can
7183 * be up to 48 bits) and the translation granule size. It indicates
7184 * the number of strides (stride bits at a time) needed to
7185 * consume the bits of the input address. In the pseudocode this is:
7186 * level = 4 - RoundUp((inputsize - grainsize) / stride)
7187 * where their 'inputsize' is our 'inputsize', 'grainsize' is
7188 * our 'stride + 3' and 'stride' is our 'stride'.
7189 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
7190 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
7191 * = 4 - (inputsize - 4) / stride;
7193 level
= 4 - (inputsize
- 4) / stride
;
7195 /* For stage 2 translations the starting level is specified by the
7196 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
7198 int startlevel
= extract32(tcr
->raw_tcr
, 6, 2);
7201 if (va_size
== 32 || stride
== 9) {
7202 /* AArch32 or 4KB pages */
7203 level
= 2 - startlevel
;
7205 /* 16KB or 64KB pages */
7206 level
= 3 - startlevel
;
7209 /* Check that the starting level is valid. */
7210 ok
= check_s2_mmu_setup(cpu
, va_size
== 64, level
, inputsize
, stride
);
7212 /* AArch64 reports these as level 0 faults.
7213 * AArch32 reports these as level 1 faults.
7215 level
= va_size
== 64 ? 0 : 1;
7216 fault_type
= translation_fault
;
7221 /* Clear the vaddr bits which aren't part of the within-region address,
7222 * so that we don't have to special case things when calculating the
7223 * first descriptor address.
7225 if (va_size
!= inputsize
) {
7226 address
&= (1ULL << inputsize
) - 1;
7229 descmask
= (1ULL << (stride
+ 3)) - 1;
7231 /* Now we can extract the actual base address from the TTBR */
7232 descaddr
= extract64(ttbr
, 0, 48);
7233 descaddr
&= ~((1ULL << (inputsize
- (stride
* (4 - level
)))) - 1);
7235 /* The address field in the descriptor goes up to bit 39 for ARMv7
7236 * but up to bit 47 for ARMv8.
7238 if (arm_feature(env
, ARM_FEATURE_V8
)) {
7239 descaddrmask
= 0xfffffffff000ULL
;
7241 descaddrmask
= 0xfffffff000ULL
;
7244 /* Secure accesses start with the page table in secure memory and
7245 * can be downgraded to non-secure at any step. Non-secure accesses
7246 * remain non-secure. We implement this by just ORing in the NSTable/NS
7247 * bits at each step.
7249 tableattrs
= regime_is_secure(env
, mmu_idx
) ? 0 : (1 << 4);
7251 uint64_t descriptor
;
7254 descaddr
|= (address
>> (stride
* (4 - level
))) & descmask
;
7256 nstable
= extract32(tableattrs
, 4, 1);
7257 descriptor
= arm_ldq_ptw(cs
, descaddr
, !nstable
, mmu_idx
, fsr
, fi
);
7262 if (!(descriptor
& 1) ||
7263 (!(descriptor
& 2) && (level
== 3))) {
7264 /* Invalid, or the Reserved level 3 encoding */
7267 descaddr
= descriptor
& descaddrmask
;
7269 if ((descriptor
& 2) && (level
< 3)) {
7270 /* Table entry. The top five bits are attributes which may
7271 * propagate down through lower levels of the table (and
7272 * which are all arranged so that 0 means "no effect", so
7273 * we can gather them up by ORing in the bits at each level).
7275 tableattrs
|= extract64(descriptor
, 59, 5);
7279 /* Block entry at level 1 or 2, or page entry at level 3.
7280 * These are basically the same thing, although the number
7281 * of bits we pull in from the vaddr varies.
7283 page_size
= (1ULL << ((stride
* (4 - level
)) + 3));
7284 descaddr
|= (address
& (page_size
- 1));
7285 /* Extract attributes from the descriptor */
7286 attrs
= extract64(descriptor
, 2, 10)
7287 | (extract64(descriptor
, 52, 12) << 10);
7289 if (mmu_idx
== ARMMMUIdx_S2NS
) {
7290 /* Stage 2 table descriptors do not include any attribute fields */
7293 /* Merge in attributes from table descriptors */
7294 attrs
|= extract32(tableattrs
, 0, 2) << 11; /* XN, PXN */
7295 attrs
|= extract32(tableattrs
, 3, 1) << 5; /* APTable[1] => AP[2] */
7296 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
7297 * means "force PL1 access only", which means forcing AP[1] to 0.
7299 if (extract32(tableattrs
, 2, 1)) {
7302 attrs
|= nstable
<< 3; /* NS */
7305 /* Here descaddr is the final physical address, and attributes
7308 fault_type
= access_fault
;
7309 if ((attrs
& (1 << 8)) == 0) {
7314 ap
= extract32(attrs
, 4, 2);
7315 xn
= extract32(attrs
, 12, 1);
7317 if (mmu_idx
== ARMMMUIdx_S2NS
) {
7319 *prot
= get_S2prot(env
, ap
, xn
);
7321 ns
= extract32(attrs
, 3, 1);
7322 pxn
= extract32(attrs
, 11, 1);
7323 *prot
= get_S1prot(env
, mmu_idx
, va_size
== 64, ap
, ns
, xn
, pxn
);
7326 fault_type
= permission_fault
;
7327 if (!(*prot
& (1 << access_type
))) {
7332 /* The NS bit will (as required by the architecture) have no effect if
7333 * the CPU doesn't support TZ or this is a non-secure translation
7334 * regime, because the attribute will already be non-secure.
7336 txattrs
->secure
= false;
7338 *phys_ptr
= descaddr
;
7339 *page_size_ptr
= page_size
;
7343 /* Long-descriptor format IFSR/DFSR value */
7344 *fsr
= (1 << 9) | (fault_type
<< 2) | level
;
7345 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
7346 fi
->stage2
= fi
->s1ptw
|| (mmu_idx
== ARMMMUIdx_S2NS
);
7350 static inline void get_phys_addr_pmsav7_default(CPUARMState
*env
,
7352 int32_t address
, int *prot
)
7354 *prot
= PAGE_READ
| PAGE_WRITE
;
7356 case 0xF0000000 ... 0xFFFFFFFF:
7357 if (regime_sctlr(env
, mmu_idx
) & SCTLR_V
) { /* hivecs execing is ok */
7361 case 0x00000000 ... 0x7FFFFFFF:
7368 static bool get_phys_addr_pmsav7(CPUARMState
*env
, uint32_t address
,
7369 int access_type
, ARMMMUIdx mmu_idx
,
7370 hwaddr
*phys_ptr
, int *prot
, uint32_t *fsr
)
7372 ARMCPU
*cpu
= arm_env_get_cpu(env
);
7374 bool is_user
= regime_is_user(env
, mmu_idx
);
7376 *phys_ptr
= address
;
7379 if (regime_translation_disabled(env
, mmu_idx
)) { /* MPU disabled */
7380 get_phys_addr_pmsav7_default(env
, mmu_idx
, address
, prot
);
7381 } else { /* MPU enabled */
7382 for (n
= (int)cpu
->pmsav7_dregion
- 1; n
>= 0; n
--) {
7384 uint32_t base
= env
->pmsav7
.drbar
[n
];
7385 uint32_t rsize
= extract32(env
->pmsav7
.drsr
[n
], 1, 5);
7389 if (!(env
->pmsav7
.drsr
[n
] & 0x1)) {
7394 qemu_log_mask(LOG_GUEST_ERROR
, "DRSR.Rsize field can not be 0");
7398 rmask
= (1ull << rsize
) - 1;
7401 qemu_log_mask(LOG_GUEST_ERROR
, "DRBAR %" PRIx32
" misaligned "
7402 "to DRSR region size, mask = %" PRIx32
,
7407 if (address
< base
|| address
> base
+ rmask
) {
7411 /* Region matched */
7413 if (rsize
>= 8) { /* no subregions for regions < 256 bytes */
7415 uint32_t srdis_mask
;
7417 rsize
-= 3; /* sub region size (power of 2) */
7418 snd
= ((address
- base
) >> rsize
) & 0x7;
7419 srdis
= extract32(env
->pmsav7
.drsr
[n
], snd
+ 8, 1);
7421 srdis_mask
= srdis
? 0x3 : 0x0;
7422 for (i
= 2; i
<= 8 && rsize
< TARGET_PAGE_BITS
; i
*= 2) {
7423 /* This will check in groups of 2, 4 and then 8, whether
7424 * the subregion bits are consistent. rsize is incremented
7425 * back up to give the region size, considering consistent
7426 * adjacent subregions as one region. Stop testing if rsize
7427 * is already big enough for an entire QEMU page.
7429 int snd_rounded
= snd
& ~(i
- 1);
7430 uint32_t srdis_multi
= extract32(env
->pmsav7
.drsr
[n
],
7431 snd_rounded
+ 8, i
);
7432 if (srdis_mask
^ srdis_multi
) {
7435 srdis_mask
= (srdis_mask
<< i
) | srdis_mask
;
7439 if (rsize
< TARGET_PAGE_BITS
) {
7440 qemu_log_mask(LOG_UNIMP
, "No support for MPU (sub)region"
7441 "alignment of %" PRIu32
" bits. Minimum is %d\n",
7442 rsize
, TARGET_PAGE_BITS
);
7451 if (n
== -1) { /* no hits */
7452 if (cpu
->pmsav7_dregion
&&
7453 (is_user
|| !(regime_sctlr(env
, mmu_idx
) & SCTLR_BR
))) {
7454 /* background fault */
7458 get_phys_addr_pmsav7_default(env
, mmu_idx
, address
, prot
);
7459 } else { /* a MPU hit! */
7460 uint32_t ap
= extract32(env
->pmsav7
.dracr
[n
], 8, 3);
7462 if (is_user
) { /* User mode AP bit decoding */
7467 break; /* no access */
7469 *prot
|= PAGE_WRITE
;
7473 *prot
|= PAGE_READ
| PAGE_EXEC
;
7476 qemu_log_mask(LOG_GUEST_ERROR
,
7477 "Bad value for AP bits in DRACR %"
7480 } else { /* Priv. mode AP bits decoding */
7483 break; /* no access */
7487 *prot
|= PAGE_WRITE
;
7491 *prot
|= PAGE_READ
| PAGE_EXEC
;
7494 qemu_log_mask(LOG_GUEST_ERROR
,
7495 "Bad value for AP bits in DRACR %"
7501 if (env
->pmsav7
.dracr
[n
] & (1 << 12)) {
7502 *prot
&= ~PAGE_EXEC
;
7507 *fsr
= 0x00d; /* Permission fault */
7508 return !(*prot
& (1 << access_type
));
7511 static bool get_phys_addr_pmsav5(CPUARMState
*env
, uint32_t address
,
7512 int access_type
, ARMMMUIdx mmu_idx
,
7513 hwaddr
*phys_ptr
, int *prot
, uint32_t *fsr
)
7518 bool is_user
= regime_is_user(env
, mmu_idx
);
7520 *phys_ptr
= address
;
7521 for (n
= 7; n
>= 0; n
--) {
7522 base
= env
->cp15
.c6_region
[n
];
7523 if ((base
& 1) == 0) {
7526 mask
= 1 << ((base
>> 1) & 0x1f);
7527 /* Keep this shift separate from the above to avoid an
7528 (undefined) << 32. */
7529 mask
= (mask
<< 1) - 1;
7530 if (((base
^ address
) & ~mask
) == 0) {
7539 if (access_type
== 2) {
7540 mask
= env
->cp15
.pmsav5_insn_ap
;
7542 mask
= env
->cp15
.pmsav5_data_ap
;
7544 mask
= (mask
>> (n
* 4)) & 0xf;
7554 *prot
= PAGE_READ
| PAGE_WRITE
;
7559 *prot
|= PAGE_WRITE
;
7563 *prot
= PAGE_READ
| PAGE_WRITE
;
7576 /* Bad permission. */
7584 /* get_phys_addr - get the physical address for this virtual address
7586 * Find the physical address corresponding to the given virtual address,
7587 * by doing a translation table walk on MMU based systems or using the
7588 * MPU state on MPU based systems.
7590 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
7591 * prot and page_size may not be filled in, and the populated fsr value provides
7592 * information on why the translation aborted, in the format of a
7593 * DFSR/IFSR fault register, with the following caveats:
7594 * * we honour the short vs long DFSR format differences.
7595 * * the WnR bit is never set (the caller must do this).
7596 * * for PSMAv5 based systems we don't bother to return a full FSR format
7600 * @address: virtual address to get physical address for
7601 * @access_type: 0 for read, 1 for write, 2 for execute
7602 * @mmu_idx: MMU index indicating required translation regime
7603 * @phys_ptr: set to the physical address corresponding to the virtual address
7604 * @attrs: set to the memory transaction attributes to use
7605 * @prot: set to the permissions for the page containing phys_ptr
7606 * @page_size: set to the size of the page containing phys_ptr
7607 * @fsr: set to the DFSR/IFSR value on failure
7609 static bool get_phys_addr(CPUARMState
*env
, target_ulong address
,
7610 int access_type
, ARMMMUIdx mmu_idx
,
7611 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
7612 target_ulong
*page_size
, uint32_t *fsr
,
7613 ARMMMUFaultInfo
*fi
)
7615 if (mmu_idx
== ARMMMUIdx_S12NSE0
|| mmu_idx
== ARMMMUIdx_S12NSE1
) {
7616 /* Call ourselves recursively to do the stage 1 and then stage 2
7619 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
7624 ret
= get_phys_addr(env
, address
, access_type
,
7625 mmu_idx
+ ARMMMUIdx_S1NSE0
, &ipa
, attrs
,
7626 prot
, page_size
, fsr
, fi
);
7628 /* If S1 fails or S2 is disabled, return early. */
7629 if (ret
|| regime_translation_disabled(env
, ARMMMUIdx_S2NS
)) {
7634 /* S1 is done. Now do S2 translation. */
7635 ret
= get_phys_addr_lpae(env
, ipa
, access_type
, ARMMMUIdx_S2NS
,
7636 phys_ptr
, attrs
, &s2_prot
,
7637 page_size
, fsr
, fi
);
7639 /* Combine the S1 and S2 perms. */
7644 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
7646 mmu_idx
+= ARMMMUIdx_S1NSE0
;
7650 /* The page table entries may downgrade secure to non-secure, but
7651 * cannot upgrade an non-secure translation regime's attributes
7654 attrs
->secure
= regime_is_secure(env
, mmu_idx
);
7655 attrs
->user
= regime_is_user(env
, mmu_idx
);
7657 /* Fast Context Switch Extension. This doesn't exist at all in v8.
7658 * In v7 and earlier it affects all stage 1 translations.
7660 if (address
< 0x02000000 && mmu_idx
!= ARMMMUIdx_S2NS
7661 && !arm_feature(env
, ARM_FEATURE_V8
)) {
7662 if (regime_el(env
, mmu_idx
) == 3) {
7663 address
+= env
->cp15
.fcseidr_s
;
7665 address
+= env
->cp15
.fcseidr_ns
;
7669 /* pmsav7 has special handling for when MPU is disabled so call it before
7670 * the common MMU/MPU disabled check below.
7672 if (arm_feature(env
, ARM_FEATURE_MPU
) &&
7673 arm_feature(env
, ARM_FEATURE_V7
)) {
7674 *page_size
= TARGET_PAGE_SIZE
;
7675 return get_phys_addr_pmsav7(env
, address
, access_type
, mmu_idx
,
7676 phys_ptr
, prot
, fsr
);
7679 if (regime_translation_disabled(env
, mmu_idx
)) {
7680 /* MMU/MPU disabled. */
7681 *phys_ptr
= address
;
7682 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
7683 *page_size
= TARGET_PAGE_SIZE
;
7687 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
7689 *page_size
= TARGET_PAGE_SIZE
;
7690 return get_phys_addr_pmsav5(env
, address
, access_type
, mmu_idx
,
7691 phys_ptr
, prot
, fsr
);
7694 if (regime_using_lpae_format(env
, mmu_idx
)) {
7695 return get_phys_addr_lpae(env
, address
, access_type
, mmu_idx
, phys_ptr
,
7696 attrs
, prot
, page_size
, fsr
, fi
);
7697 } else if (regime_sctlr(env
, mmu_idx
) & SCTLR_XP
) {
7698 return get_phys_addr_v6(env
, address
, access_type
, mmu_idx
, phys_ptr
,
7699 attrs
, prot
, page_size
, fsr
, fi
);
7701 return get_phys_addr_v5(env
, address
, access_type
, mmu_idx
, phys_ptr
,
7702 prot
, page_size
, fsr
, fi
);
7706 /* Walk the page table and (if the mapping exists) add the page
7707 * to the TLB. Return false on success, or true on failure. Populate
7708 * fsr with ARM DFSR/IFSR fault register format value on failure.
7710 bool arm_tlb_fill(CPUState
*cs
, vaddr address
,
7711 int access_type
, int mmu_idx
, uint32_t *fsr
,
7712 ARMMMUFaultInfo
*fi
)
7714 ARMCPU
*cpu
= ARM_CPU(cs
);
7715 CPUARMState
*env
= &cpu
->env
;
7717 target_ulong page_size
;
7720 MemTxAttrs attrs
= {};
7722 ret
= get_phys_addr(env
, address
, access_type
, mmu_idx
, &phys_addr
,
7723 &attrs
, &prot
, &page_size
, fsr
, fi
);
7725 /* Map a single [sub]page. */
7726 phys_addr
&= TARGET_PAGE_MASK
;
7727 address
&= TARGET_PAGE_MASK
;
7728 tlb_set_page_with_attrs(cs
, address
, phys_addr
, attrs
,
7729 prot
, mmu_idx
, page_size
);
7736 hwaddr
arm_cpu_get_phys_page_attrs_debug(CPUState
*cs
, vaddr addr
,
7739 ARMCPU
*cpu
= ARM_CPU(cs
);
7740 CPUARMState
*env
= &cpu
->env
;
7742 target_ulong page_size
;
7746 ARMMMUFaultInfo fi
= {};
7748 *attrs
= (MemTxAttrs
) {};
7750 ret
= get_phys_addr(env
, addr
, 0, cpu_mmu_index(env
, false), &phys_addr
,
7751 attrs
, &prot
, &page_size
, &fsr
, &fi
);
7759 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
7761 ARMCPU
*cpu
= arm_env_get_cpu(env
);
7765 return xpsr_read(env
) & 0xf8000000;
7767 return xpsr_read(env
) & 0xf80001ff;
7769 return xpsr_read(env
) & 0xff00fc00;
7771 return xpsr_read(env
) & 0xff00fdff;
7773 return xpsr_read(env
) & 0x000001ff;
7775 return xpsr_read(env
) & 0x0700fc00;
7777 return xpsr_read(env
) & 0x0700edff;
7779 return env
->v7m
.current_sp
? env
->v7m
.other_sp
: env
->regs
[13];
7781 return env
->v7m
.current_sp
? env
->regs
[13] : env
->v7m
.other_sp
;
7782 case 16: /* PRIMASK */
7783 return (env
->daif
& PSTATE_I
) != 0;
7784 case 17: /* BASEPRI */
7785 case 18: /* BASEPRI_MAX */
7786 return env
->v7m
.basepri
;
7787 case 19: /* FAULTMASK */
7788 return (env
->daif
& PSTATE_F
) != 0;
7789 case 20: /* CONTROL */
7790 return env
->v7m
.control
;
7792 /* ??? For debugging only. */
7793 cpu_abort(CPU(cpu
), "Unimplemented system register read (%d)\n", reg
);
7798 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
7800 ARMCPU
*cpu
= arm_env_get_cpu(env
);
7804 xpsr_write(env
, val
, 0xf8000000);
7807 xpsr_write(env
, val
, 0xf8000000);
7810 xpsr_write(env
, val
, 0xfe00fc00);
7813 xpsr_write(env
, val
, 0xfe00fc00);
7816 /* IPSR bits are readonly. */
7819 xpsr_write(env
, val
, 0x0600fc00);
7822 xpsr_write(env
, val
, 0x0600fc00);
7825 if (env
->v7m
.current_sp
)
7826 env
->v7m
.other_sp
= val
;
7828 env
->regs
[13] = val
;
7831 if (env
->v7m
.current_sp
)
7832 env
->regs
[13] = val
;
7834 env
->v7m
.other_sp
= val
;
7836 case 16: /* PRIMASK */
7838 env
->daif
|= PSTATE_I
;
7840 env
->daif
&= ~PSTATE_I
;
7843 case 17: /* BASEPRI */
7844 env
->v7m
.basepri
= val
& 0xff;
7846 case 18: /* BASEPRI_MAX */
7848 if (val
!= 0 && (val
< env
->v7m
.basepri
|| env
->v7m
.basepri
== 0))
7849 env
->v7m
.basepri
= val
;
7851 case 19: /* FAULTMASK */
7853 env
->daif
|= PSTATE_F
;
7855 env
->daif
&= ~PSTATE_F
;
7858 case 20: /* CONTROL */
7859 env
->v7m
.control
= val
& 3;
7860 switch_v7m_sp(env
, (val
& 2) != 0);
7863 /* ??? For debugging only. */
7864 cpu_abort(CPU(cpu
), "Unimplemented system register write (%d)\n", reg
);
7871 void HELPER(dc_zva
)(CPUARMState
*env
, uint64_t vaddr_in
)
7873 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
7874 * Note that we do not implement the (architecturally mandated)
7875 * alignment fault for attempts to use this on Device memory
7876 * (which matches the usual QEMU behaviour of not implementing either
7877 * alignment faults or any memory attribute handling).
7880 ARMCPU
*cpu
= arm_env_get_cpu(env
);
7881 uint64_t blocklen
= 4 << cpu
->dcz_blocksize
;
7882 uint64_t vaddr
= vaddr_in
& ~(blocklen
- 1);
7884 #ifndef CONFIG_USER_ONLY
7886 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
7887 * the block size so we might have to do more than one TLB lookup.
7888 * We know that in fact for any v8 CPU the page size is at least 4K
7889 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
7890 * 1K as an artefact of legacy v5 subpage support being present in the
7891 * same QEMU executable.
7893 int maxidx
= DIV_ROUND_UP(blocklen
, TARGET_PAGE_SIZE
);
7894 void *hostaddr
[maxidx
];
7896 unsigned mmu_idx
= cpu_mmu_index(env
, false);
7897 TCGMemOpIdx oi
= make_memop_idx(MO_UB
, mmu_idx
);
7899 for (try = 0; try < 2; try++) {
7901 for (i
= 0; i
< maxidx
; i
++) {
7902 hostaddr
[i
] = tlb_vaddr_to_host(env
,
7903 vaddr
+ TARGET_PAGE_SIZE
* i
,
7910 /* If it's all in the TLB it's fair game for just writing to;
7911 * we know we don't need to update dirty status, etc.
7913 for (i
= 0; i
< maxidx
- 1; i
++) {
7914 memset(hostaddr
[i
], 0, TARGET_PAGE_SIZE
);
7916 memset(hostaddr
[i
], 0, blocklen
- (i
* TARGET_PAGE_SIZE
));
7919 /* OK, try a store and see if we can populate the tlb. This
7920 * might cause an exception if the memory isn't writable,
7921 * in which case we will longjmp out of here. We must for
7922 * this purpose use the actual register value passed to us
7923 * so that we get the fault address right.
7925 helper_ret_stb_mmu(env
, vaddr_in
, 0, oi
, GETRA());
7926 /* Now we can populate the other TLB entries, if any */
7927 for (i
= 0; i
< maxidx
; i
++) {
7928 uint64_t va
= vaddr
+ TARGET_PAGE_SIZE
* i
;
7929 if (va
!= (vaddr_in
& TARGET_PAGE_MASK
)) {
7930 helper_ret_stb_mmu(env
, va
, 0, oi
, GETRA());
7935 /* Slow path (probably attempt to do this to an I/O device or
7936 * similar, or clearing of a block of code we have translations
7937 * cached for). Just do a series of byte writes as the architecture
7938 * demands. It's not worth trying to use a cpu_physical_memory_map(),
7939 * memset(), unmap() sequence here because:
7940 * + we'd need to account for the blocksize being larger than a page
7941 * + the direct-RAM access case is almost always going to be dealt
7942 * with in the fastpath code above, so there's no speed benefit
7943 * + we would have to deal with the map returning NULL because the
7944 * bounce buffer was in use
7946 for (i
= 0; i
< blocklen
; i
++) {
7947 helper_ret_stb_mmu(env
, vaddr
+ i
, 0, oi
, GETRA());
7951 memset(g2h(vaddr
), 0, blocklen
);
7955 /* Note that signed overflow is undefined in C. The following routines are
7956 careful to use unsigned types where modulo arithmetic is required.
7957 Failure to do so _will_ break on newer gcc. */
7959 /* Signed saturating arithmetic. */
7961 /* Perform 16-bit signed saturating addition. */
7962 static inline uint16_t add16_sat(uint16_t a
, uint16_t b
)
7967 if (((res
^ a
) & 0x8000) && !((a
^ b
) & 0x8000)) {
7976 /* Perform 8-bit signed saturating addition. */
7977 static inline uint8_t add8_sat(uint8_t a
, uint8_t b
)
7982 if (((res
^ a
) & 0x80) && !((a
^ b
) & 0x80)) {
7991 /* Perform 16-bit signed saturating subtraction. */
7992 static inline uint16_t sub16_sat(uint16_t a
, uint16_t b
)
7997 if (((res
^ a
) & 0x8000) && ((a
^ b
) & 0x8000)) {
8006 /* Perform 8-bit signed saturating subtraction. */
8007 static inline uint8_t sub8_sat(uint8_t a
, uint8_t b
)
8012 if (((res
^ a
) & 0x80) && ((a
^ b
) & 0x80)) {
8021 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
8022 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
8023 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
8024 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
8027 #include "op_addsub.h"
8029 /* Unsigned saturating arithmetic. */
8030 static inline uint16_t add16_usat(uint16_t a
, uint16_t b
)
8039 static inline uint16_t sub16_usat(uint16_t a
, uint16_t b
)
8047 static inline uint8_t add8_usat(uint8_t a
, uint8_t b
)
8056 static inline uint8_t sub8_usat(uint8_t a
, uint8_t b
)
8064 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
8065 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
8066 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
8067 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
8070 #include "op_addsub.h"
8072 /* Signed modulo arithmetic. */
8073 #define SARITH16(a, b, n, op) do { \
8075 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
8076 RESULT(sum, n, 16); \
8078 ge |= 3 << (n * 2); \
8081 #define SARITH8(a, b, n, op) do { \
8083 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
8084 RESULT(sum, n, 8); \
8090 #define ADD16(a, b, n) SARITH16(a, b, n, +)
8091 #define SUB16(a, b, n) SARITH16(a, b, n, -)
8092 #define ADD8(a, b, n) SARITH8(a, b, n, +)
8093 #define SUB8(a, b, n) SARITH8(a, b, n, -)
8097 #include "op_addsub.h"
8099 /* Unsigned modulo arithmetic. */
8100 #define ADD16(a, b, n) do { \
8102 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
8103 RESULT(sum, n, 16); \
8104 if ((sum >> 16) == 1) \
8105 ge |= 3 << (n * 2); \
8108 #define ADD8(a, b, n) do { \
8110 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
8111 RESULT(sum, n, 8); \
8112 if ((sum >> 8) == 1) \
8116 #define SUB16(a, b, n) do { \
8118 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
8119 RESULT(sum, n, 16); \
8120 if ((sum >> 16) == 0) \
8121 ge |= 3 << (n * 2); \
8124 #define SUB8(a, b, n) do { \
8126 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
8127 RESULT(sum, n, 8); \
8128 if ((sum >> 8) == 0) \
8135 #include "op_addsub.h"
8137 /* Halved signed arithmetic. */
8138 #define ADD16(a, b, n) \
8139 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
8140 #define SUB16(a, b, n) \
8141 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
8142 #define ADD8(a, b, n) \
8143 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
8144 #define SUB8(a, b, n) \
8145 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
8148 #include "op_addsub.h"
8150 /* Halved unsigned arithmetic. */
8151 #define ADD16(a, b, n) \
8152 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
8153 #define SUB16(a, b, n) \
8154 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
8155 #define ADD8(a, b, n) \
8156 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
8157 #define SUB8(a, b, n) \
8158 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
8161 #include "op_addsub.h"
8163 static inline uint8_t do_usad(uint8_t a
, uint8_t b
)
8171 /* Unsigned sum of absolute byte differences. */
8172 uint32_t HELPER(usad8
)(uint32_t a
, uint32_t b
)
8175 sum
= do_usad(a
, b
);
8176 sum
+= do_usad(a
>> 8, b
>> 8);
8177 sum
+= do_usad(a
>> 16, b
>>16);
8178 sum
+= do_usad(a
>> 24, b
>> 24);
8182 /* For ARMv6 SEL instruction. */
8183 uint32_t HELPER(sel_flags
)(uint32_t flags
, uint32_t a
, uint32_t b
)
8196 return (a
& mask
) | (b
& ~mask
);
8199 /* VFP support. We follow the convention used for VFP instructions:
8200 Single precision routines have a "s" suffix, double precision a
8203 /* Convert host exception flags to vfp form. */
8204 static inline int vfp_exceptbits_from_host(int host_bits
)
8206 int target_bits
= 0;
8208 if (host_bits
& float_flag_invalid
)
8210 if (host_bits
& float_flag_divbyzero
)
8212 if (host_bits
& float_flag_overflow
)
8214 if (host_bits
& (float_flag_underflow
| float_flag_output_denormal
))
8216 if (host_bits
& float_flag_inexact
)
8217 target_bits
|= 0x10;
8218 if (host_bits
& float_flag_input_denormal
)
8219 target_bits
|= 0x80;
8223 uint32_t HELPER(vfp_get_fpscr
)(CPUARMState
*env
)
8228 fpscr
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & 0xffc8ffff)
8229 | (env
->vfp
.vec_len
<< 16)
8230 | (env
->vfp
.vec_stride
<< 20);
8231 i
= get_float_exception_flags(&env
->vfp
.fp_status
);
8232 i
|= get_float_exception_flags(&env
->vfp
.standard_fp_status
);
8233 fpscr
|= vfp_exceptbits_from_host(i
);
8237 uint32_t vfp_get_fpscr(CPUARMState
*env
)
8239 return HELPER(vfp_get_fpscr
)(env
);
8242 /* Convert vfp exception flags to target form. */
8243 static inline int vfp_exceptbits_to_host(int target_bits
)
8247 if (target_bits
& 1)
8248 host_bits
|= float_flag_invalid
;
8249 if (target_bits
& 2)
8250 host_bits
|= float_flag_divbyzero
;
8251 if (target_bits
& 4)
8252 host_bits
|= float_flag_overflow
;
8253 if (target_bits
& 8)
8254 host_bits
|= float_flag_underflow
;
8255 if (target_bits
& 0x10)
8256 host_bits
|= float_flag_inexact
;
8257 if (target_bits
& 0x80)
8258 host_bits
|= float_flag_input_denormal
;
8262 void HELPER(vfp_set_fpscr
)(CPUARMState
*env
, uint32_t val
)
8267 changed
= env
->vfp
.xregs
[ARM_VFP_FPSCR
];
8268 env
->vfp
.xregs
[ARM_VFP_FPSCR
] = (val
& 0xffc8ffff);
8269 env
->vfp
.vec_len
= (val
>> 16) & 7;
8270 env
->vfp
.vec_stride
= (val
>> 20) & 3;
8273 if (changed
& (3 << 22)) {
8274 i
= (val
>> 22) & 3;
8276 case FPROUNDING_TIEEVEN
:
8277 i
= float_round_nearest_even
;
8279 case FPROUNDING_POSINF
:
8282 case FPROUNDING_NEGINF
:
8283 i
= float_round_down
;
8285 case FPROUNDING_ZERO
:
8286 i
= float_round_to_zero
;
8289 set_float_rounding_mode(i
, &env
->vfp
.fp_status
);
8291 if (changed
& (1 << 24)) {
8292 set_flush_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
8293 set_flush_inputs_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
8295 if (changed
& (1 << 25))
8296 set_default_nan_mode((val
& (1 << 25)) != 0, &env
->vfp
.fp_status
);
8298 i
= vfp_exceptbits_to_host(val
);
8299 set_float_exception_flags(i
, &env
->vfp
.fp_status
);
8300 set_float_exception_flags(0, &env
->vfp
.standard_fp_status
);
8303 void vfp_set_fpscr(CPUARMState
*env
, uint32_t val
)
8305 HELPER(vfp_set_fpscr
)(env
, val
);
8308 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
8310 #define VFP_BINOP(name) \
8311 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
8313 float_status *fpst = fpstp; \
8314 return float32_ ## name(a, b, fpst); \
8316 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
8318 float_status *fpst = fpstp; \
8319 return float64_ ## name(a, b, fpst); \
8331 float32
VFP_HELPER(neg
, s
)(float32 a
)
8333 return float32_chs(a
);
8336 float64
VFP_HELPER(neg
, d
)(float64 a
)
8338 return float64_chs(a
);
8341 float32
VFP_HELPER(abs
, s
)(float32 a
)
8343 return float32_abs(a
);
8346 float64
VFP_HELPER(abs
, d
)(float64 a
)
8348 return float64_abs(a
);
8351 float32
VFP_HELPER(sqrt
, s
)(float32 a
, CPUARMState
*env
)
8353 return float32_sqrt(a
, &env
->vfp
.fp_status
);
8356 float64
VFP_HELPER(sqrt
, d
)(float64 a
, CPUARMState
*env
)
8358 return float64_sqrt(a
, &env
->vfp
.fp_status
);
8361 /* XXX: check quiet/signaling case */
8362 #define DO_VFP_cmp(p, type) \
8363 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
8366 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
8367 case 0: flags = 0x6; break; \
8368 case -1: flags = 0x8; break; \
8369 case 1: flags = 0x2; break; \
8370 default: case 2: flags = 0x3; break; \
8372 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
8373 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
8375 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
8378 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
8379 case 0: flags = 0x6; break; \
8380 case -1: flags = 0x8; break; \
8381 case 1: flags = 0x2; break; \
8382 default: case 2: flags = 0x3; break; \
8384 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
8385 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
8387 DO_VFP_cmp(s
, float32
)
8388 DO_VFP_cmp(d
, float64
)
8391 /* Integer to float and float to integer conversions */
8393 #define CONV_ITOF(name, fsz, sign) \
8394 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
8396 float_status *fpst = fpstp; \
8397 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
8400 #define CONV_FTOI(name, fsz, sign, round) \
8401 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
8403 float_status *fpst = fpstp; \
8404 if (float##fsz##_is_any_nan(x)) { \
8405 float_raise(float_flag_invalid, fpst); \
8408 return float##fsz##_to_##sign##int32##round(x, fpst); \
8411 #define FLOAT_CONVS(name, p, fsz, sign) \
8412 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
8413 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
8414 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
8416 FLOAT_CONVS(si
, s
, 32, )
8417 FLOAT_CONVS(si
, d
, 64, )
8418 FLOAT_CONVS(ui
, s
, 32, u
)
8419 FLOAT_CONVS(ui
, d
, 64, u
)
8425 /* floating point conversion */
8426 float64
VFP_HELPER(fcvtd
, s
)(float32 x
, CPUARMState
*env
)
8428 float64 r
= float32_to_float64(x
, &env
->vfp
.fp_status
);
8429 /* ARM requires that S<->D conversion of any kind of NaN generates
8430 * a quiet NaN by forcing the most significant frac bit to 1.
8432 return float64_maybe_silence_nan(r
);
8435 float32
VFP_HELPER(fcvts
, d
)(float64 x
, CPUARMState
*env
)
8437 float32 r
= float64_to_float32(x
, &env
->vfp
.fp_status
);
8438 /* ARM requires that S<->D conversion of any kind of NaN generates
8439 * a quiet NaN by forcing the most significant frac bit to 1.
8441 return float32_maybe_silence_nan(r
);
8444 /* VFP3 fixed point conversion. */
8445 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8446 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
8449 float_status *fpst = fpstp; \
8451 tmp = itype##_to_##float##fsz(x, fpst); \
8452 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
8455 /* Notice that we want only input-denormal exception flags from the
8456 * scalbn operation: the other possible flags (overflow+inexact if
8457 * we overflow to infinity, output-denormal) aren't correct for the
8458 * complete scale-and-convert operation.
8460 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
8461 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
8465 float_status *fpst = fpstp; \
8466 int old_exc_flags = get_float_exception_flags(fpst); \
8468 if (float##fsz##_is_any_nan(x)) { \
8469 float_raise(float_flag_invalid, fpst); \
8472 tmp = float##fsz##_scalbn(x, shift, fpst); \
8473 old_exc_flags |= get_float_exception_flags(fpst) \
8474 & float_flag_input_denormal; \
8475 set_float_exception_flags(old_exc_flags, fpst); \
8476 return float##fsz##_to_##itype##round(tmp, fpst); \
8479 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
8480 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8481 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
8482 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
8484 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
8485 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8486 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
8488 VFP_CONV_FIX(sh
, d
, 64, 64, int16
)
8489 VFP_CONV_FIX(sl
, d
, 64, 64, int32
)
8490 VFP_CONV_FIX_A64(sq
, d
, 64, 64, int64
)
8491 VFP_CONV_FIX(uh
, d
, 64, 64, uint16
)
8492 VFP_CONV_FIX(ul
, d
, 64, 64, uint32
)
8493 VFP_CONV_FIX_A64(uq
, d
, 64, 64, uint64
)
8494 VFP_CONV_FIX(sh
, s
, 32, 32, int16
)
8495 VFP_CONV_FIX(sl
, s
, 32, 32, int32
)
8496 VFP_CONV_FIX_A64(sq
, s
, 32, 64, int64
)
8497 VFP_CONV_FIX(uh
, s
, 32, 32, uint16
)
8498 VFP_CONV_FIX(ul
, s
, 32, 32, uint32
)
8499 VFP_CONV_FIX_A64(uq
, s
, 32, 64, uint64
)
8501 #undef VFP_CONV_FIX_FLOAT
8502 #undef VFP_CONV_FLOAT_FIX_ROUND
8504 /* Set the current fp rounding mode and return the old one.
8505 * The argument is a softfloat float_round_ value.
8507 uint32_t HELPER(set_rmode
)(uint32_t rmode
, CPUARMState
*env
)
8509 float_status
*fp_status
= &env
->vfp
.fp_status
;
8511 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
8512 set_float_rounding_mode(rmode
, fp_status
);
8517 /* Set the current fp rounding mode in the standard fp status and return
8518 * the old one. This is for NEON instructions that need to change the
8519 * rounding mode but wish to use the standard FPSCR values for everything
8520 * else. Always set the rounding mode back to the correct value after
8522 * The argument is a softfloat float_round_ value.
8524 uint32_t HELPER(set_neon_rmode
)(uint32_t rmode
, CPUARMState
*env
)
8526 float_status
*fp_status
= &env
->vfp
.standard_fp_status
;
8528 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
8529 set_float_rounding_mode(rmode
, fp_status
);
8534 /* Half precision conversions. */
8535 static float32
do_fcvt_f16_to_f32(uint32_t a
, CPUARMState
*env
, float_status
*s
)
8537 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
8538 float32 r
= float16_to_float32(make_float16(a
), ieee
, s
);
8540 return float32_maybe_silence_nan(r
);
8545 static uint32_t do_fcvt_f32_to_f16(float32 a
, CPUARMState
*env
, float_status
*s
)
8547 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
8548 float16 r
= float32_to_float16(a
, ieee
, s
);
8550 r
= float16_maybe_silence_nan(r
);
8552 return float16_val(r
);
8555 float32
HELPER(neon_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
8557 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.standard_fp_status
);
8560 uint32_t HELPER(neon_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
8562 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.standard_fp_status
);
8565 float32
HELPER(vfp_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
8567 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.fp_status
);
8570 uint32_t HELPER(vfp_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
8572 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.fp_status
);
8575 float64
HELPER(vfp_fcvt_f16_to_f64
)(uint32_t a
, CPUARMState
*env
)
8577 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
8578 float64 r
= float16_to_float64(make_float16(a
), ieee
, &env
->vfp
.fp_status
);
8580 return float64_maybe_silence_nan(r
);
8585 uint32_t HELPER(vfp_fcvt_f64_to_f16
)(float64 a
, CPUARMState
*env
)
8587 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
8588 float16 r
= float64_to_float16(a
, ieee
, &env
->vfp
.fp_status
);
8590 r
= float16_maybe_silence_nan(r
);
8592 return float16_val(r
);
8595 #define float32_two make_float32(0x40000000)
8596 #define float32_three make_float32(0x40400000)
8597 #define float32_one_point_five make_float32(0x3fc00000)
8599 float32
HELPER(recps_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
8601 float_status
*s
= &env
->vfp
.standard_fp_status
;
8602 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
8603 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
8604 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
8605 float_raise(float_flag_input_denormal
, s
);
8609 return float32_sub(float32_two
, float32_mul(a
, b
, s
), s
);
8612 float32
HELPER(rsqrts_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
8614 float_status
*s
= &env
->vfp
.standard_fp_status
;
8616 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
8617 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
8618 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
8619 float_raise(float_flag_input_denormal
, s
);
8621 return float32_one_point_five
;
8623 product
= float32_mul(a
, b
, s
);
8624 return float32_div(float32_sub(float32_three
, product
, s
), float32_two
, s
);
8629 /* Constants 256 and 512 are used in some helpers; we avoid relying on
8630 * int->float conversions at run-time. */
8631 #define float64_256 make_float64(0x4070000000000000LL)
8632 #define float64_512 make_float64(0x4080000000000000LL)
8633 #define float32_maxnorm make_float32(0x7f7fffff)
8634 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
8636 /* Reciprocal functions
8638 * The algorithm that must be used to calculate the estimate
8639 * is specified by the ARM ARM, see FPRecipEstimate()
8642 static float64
recip_estimate(float64 a
, float_status
*real_fp_status
)
8644 /* These calculations mustn't set any fp exception flags,
8645 * so we use a local copy of the fp_status.
8647 float_status dummy_status
= *real_fp_status
;
8648 float_status
*s
= &dummy_status
;
8649 /* q = (int)(a * 512.0) */
8650 float64 q
= float64_mul(float64_512
, a
, s
);
8651 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
8653 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
8654 q
= int64_to_float64(q_int
, s
);
8655 q
= float64_add(q
, float64_half
, s
);
8656 q
= float64_div(q
, float64_512
, s
);
8657 q
= float64_div(float64_one
, q
, s
);
8659 /* s = (int)(256.0 * r + 0.5) */
8660 q
= float64_mul(q
, float64_256
, s
);
8661 q
= float64_add(q
, float64_half
, s
);
8662 q_int
= float64_to_int64_round_to_zero(q
, s
);
8664 /* return (double)s / 256.0 */
8665 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
8668 /* Common wrapper to call recip_estimate */
8669 static float64
call_recip_estimate(float64 num
, int off
, float_status
*fpst
)
8671 uint64_t val64
= float64_val(num
);
8672 uint64_t frac
= extract64(val64
, 0, 52);
8673 int64_t exp
= extract64(val64
, 52, 11);
8675 float64 scaled
, estimate
;
8677 /* Generate the scaled number for the estimate function */
8679 if (extract64(frac
, 51, 1) == 0) {
8681 frac
= extract64(frac
, 0, 50) << 2;
8683 frac
= extract64(frac
, 0, 51) << 1;
8687 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
8688 scaled
= make_float64((0x3feULL
<< 52)
8689 | extract64(frac
, 44, 8) << 44);
8691 estimate
= recip_estimate(scaled
, fpst
);
8693 /* Build new result */
8694 val64
= float64_val(estimate
);
8695 sbit
= 0x8000000000000000ULL
& val64
;
8697 frac
= extract64(val64
, 0, 52);
8700 frac
= 1ULL << 51 | extract64(frac
, 1, 51);
8701 } else if (exp
== -1) {
8702 frac
= 1ULL << 50 | extract64(frac
, 2, 50);
8706 return make_float64(sbit
| (exp
<< 52) | frac
);
8709 static bool round_to_inf(float_status
*fpst
, bool sign_bit
)
8711 switch (fpst
->float_rounding_mode
) {
8712 case float_round_nearest_even
: /* Round to Nearest */
8714 case float_round_up
: /* Round to +Inf */
8716 case float_round_down
: /* Round to -Inf */
8718 case float_round_to_zero
: /* Round to Zero */
8722 g_assert_not_reached();
8725 float32
HELPER(recpe_f32
)(float32 input
, void *fpstp
)
8727 float_status
*fpst
= fpstp
;
8728 float32 f32
= float32_squash_input_denormal(input
, fpst
);
8729 uint32_t f32_val
= float32_val(f32
);
8730 uint32_t f32_sbit
= 0x80000000ULL
& f32_val
;
8731 int32_t f32_exp
= extract32(f32_val
, 23, 8);
8732 uint32_t f32_frac
= extract32(f32_val
, 0, 23);
8738 if (float32_is_any_nan(f32
)) {
8740 if (float32_is_signaling_nan(f32
)) {
8741 float_raise(float_flag_invalid
, fpst
);
8742 nan
= float32_maybe_silence_nan(f32
);
8744 if (fpst
->default_nan_mode
) {
8745 nan
= float32_default_nan
;
8748 } else if (float32_is_infinity(f32
)) {
8749 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
8750 } else if (float32_is_zero(f32
)) {
8751 float_raise(float_flag_divbyzero
, fpst
);
8752 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
8753 } else if ((f32_val
& ~(1ULL << 31)) < (1ULL << 21)) {
8754 /* Abs(value) < 2.0^-128 */
8755 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
8756 if (round_to_inf(fpst
, f32_sbit
)) {
8757 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
8759 return float32_set_sign(float32_maxnorm
, float32_is_neg(f32
));
8761 } else if (f32_exp
>= 253 && fpst
->flush_to_zero
) {
8762 float_raise(float_flag_underflow
, fpst
);
8763 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
8767 f64
= make_float64(((int64_t)(f32_exp
) << 52) | (int64_t)(f32_frac
) << 29);
8768 r64
= call_recip_estimate(f64
, 253, fpst
);
8769 r64_val
= float64_val(r64
);
8770 r64_exp
= extract64(r64_val
, 52, 11);
8771 r64_frac
= extract64(r64_val
, 0, 52);
8773 /* result = sign : result_exp<7:0> : fraction<51:29>; */
8774 return make_float32(f32_sbit
|
8775 (r64_exp
& 0xff) << 23 |
8776 extract64(r64_frac
, 29, 24));
8779 float64
HELPER(recpe_f64
)(float64 input
, void *fpstp
)
8781 float_status
*fpst
= fpstp
;
8782 float64 f64
= float64_squash_input_denormal(input
, fpst
);
8783 uint64_t f64_val
= float64_val(f64
);
8784 uint64_t f64_sbit
= 0x8000000000000000ULL
& f64_val
;
8785 int64_t f64_exp
= extract64(f64_val
, 52, 11);
8791 /* Deal with any special cases */
8792 if (float64_is_any_nan(f64
)) {
8794 if (float64_is_signaling_nan(f64
)) {
8795 float_raise(float_flag_invalid
, fpst
);
8796 nan
= float64_maybe_silence_nan(f64
);
8798 if (fpst
->default_nan_mode
) {
8799 nan
= float64_default_nan
;
8802 } else if (float64_is_infinity(f64
)) {
8803 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
8804 } else if (float64_is_zero(f64
)) {
8805 float_raise(float_flag_divbyzero
, fpst
);
8806 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
8807 } else if ((f64_val
& ~(1ULL << 63)) < (1ULL << 50)) {
8808 /* Abs(value) < 2.0^-1024 */
8809 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
8810 if (round_to_inf(fpst
, f64_sbit
)) {
8811 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
8813 return float64_set_sign(float64_maxnorm
, float64_is_neg(f64
));
8815 } else if (f64_exp
>= 2045 && fpst
->flush_to_zero
) {
8816 float_raise(float_flag_underflow
, fpst
);
8817 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
8820 r64
= call_recip_estimate(f64
, 2045, fpst
);
8821 r64_val
= float64_val(r64
);
8822 r64_exp
= extract64(r64_val
, 52, 11);
8823 r64_frac
= extract64(r64_val
, 0, 52);
8825 /* result = sign : result_exp<10:0> : fraction<51:0> */
8826 return make_float64(f64_sbit
|
8827 ((r64_exp
& 0x7ff) << 52) |
8831 /* The algorithm that must be used to calculate the estimate
8832 * is specified by the ARM ARM.
8834 static float64
recip_sqrt_estimate(float64 a
, float_status
*real_fp_status
)
8836 /* These calculations mustn't set any fp exception flags,
8837 * so we use a local copy of the fp_status.
8839 float_status dummy_status
= *real_fp_status
;
8840 float_status
*s
= &dummy_status
;
8844 if (float64_lt(a
, float64_half
, s
)) {
8845 /* range 0.25 <= a < 0.5 */
8847 /* a in units of 1/512 rounded down */
8848 /* q0 = (int)(a * 512.0); */
8849 q
= float64_mul(float64_512
, a
, s
);
8850 q_int
= float64_to_int64_round_to_zero(q
, s
);
8852 /* reciprocal root r */
8853 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
8854 q
= int64_to_float64(q_int
, s
);
8855 q
= float64_add(q
, float64_half
, s
);
8856 q
= float64_div(q
, float64_512
, s
);
8857 q
= float64_sqrt(q
, s
);
8858 q
= float64_div(float64_one
, q
, s
);
8860 /* range 0.5 <= a < 1.0 */
8862 /* a in units of 1/256 rounded down */
8863 /* q1 = (int)(a * 256.0); */
8864 q
= float64_mul(float64_256
, a
, s
);
8865 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
8867 /* reciprocal root r */
8868 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
8869 q
= int64_to_float64(q_int
, s
);
8870 q
= float64_add(q
, float64_half
, s
);
8871 q
= float64_div(q
, float64_256
, s
);
8872 q
= float64_sqrt(q
, s
);
8873 q
= float64_div(float64_one
, q
, s
);
8875 /* r in units of 1/256 rounded to nearest */
8876 /* s = (int)(256.0 * r + 0.5); */
8878 q
= float64_mul(q
, float64_256
,s
);
8879 q
= float64_add(q
, float64_half
, s
);
8880 q_int
= float64_to_int64_round_to_zero(q
, s
);
8882 /* return (double)s / 256.0;*/
8883 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
8886 float32
HELPER(rsqrte_f32
)(float32 input
, void *fpstp
)
8888 float_status
*s
= fpstp
;
8889 float32 f32
= float32_squash_input_denormal(input
, s
);
8890 uint32_t val
= float32_val(f32
);
8891 uint32_t f32_sbit
= 0x80000000 & val
;
8892 int32_t f32_exp
= extract32(val
, 23, 8);
8893 uint32_t f32_frac
= extract32(val
, 0, 23);
8899 if (float32_is_any_nan(f32
)) {
8901 if (float32_is_signaling_nan(f32
)) {
8902 float_raise(float_flag_invalid
, s
);
8903 nan
= float32_maybe_silence_nan(f32
);
8905 if (s
->default_nan_mode
) {
8906 nan
= float32_default_nan
;
8909 } else if (float32_is_zero(f32
)) {
8910 float_raise(float_flag_divbyzero
, s
);
8911 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
8912 } else if (float32_is_neg(f32
)) {
8913 float_raise(float_flag_invalid
, s
);
8914 return float32_default_nan
;
8915 } else if (float32_is_infinity(f32
)) {
8916 return float32_zero
;
8919 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
8920 * preserving the parity of the exponent. */
8922 f64_frac
= ((uint64_t) f32_frac
) << 29;
8924 while (extract64(f64_frac
, 51, 1) == 0) {
8925 f64_frac
= f64_frac
<< 1;
8926 f32_exp
= f32_exp
-1;
8928 f64_frac
= extract64(f64_frac
, 0, 51) << 1;
8931 if (extract64(f32_exp
, 0, 1) == 0) {
8932 f64
= make_float64(((uint64_t) f32_sbit
) << 32
8936 f64
= make_float64(((uint64_t) f32_sbit
) << 32
8941 result_exp
= (380 - f32_exp
) / 2;
8943 f64
= recip_sqrt_estimate(f64
, s
);
8945 val64
= float64_val(f64
);
8947 val
= ((result_exp
& 0xff) << 23)
8948 | ((val64
>> 29) & 0x7fffff);
8949 return make_float32(val
);
8952 float64
HELPER(rsqrte_f64
)(float64 input
, void *fpstp
)
8954 float_status
*s
= fpstp
;
8955 float64 f64
= float64_squash_input_denormal(input
, s
);
8956 uint64_t val
= float64_val(f64
);
8957 uint64_t f64_sbit
= 0x8000000000000000ULL
& val
;
8958 int64_t f64_exp
= extract64(val
, 52, 11);
8959 uint64_t f64_frac
= extract64(val
, 0, 52);
8961 uint64_t result_frac
;
8963 if (float64_is_any_nan(f64
)) {
8965 if (float64_is_signaling_nan(f64
)) {
8966 float_raise(float_flag_invalid
, s
);
8967 nan
= float64_maybe_silence_nan(f64
);
8969 if (s
->default_nan_mode
) {
8970 nan
= float64_default_nan
;
8973 } else if (float64_is_zero(f64
)) {
8974 float_raise(float_flag_divbyzero
, s
);
8975 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
8976 } else if (float64_is_neg(f64
)) {
8977 float_raise(float_flag_invalid
, s
);
8978 return float64_default_nan
;
8979 } else if (float64_is_infinity(f64
)) {
8980 return float64_zero
;
8983 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
8984 * preserving the parity of the exponent. */
8987 while (extract64(f64_frac
, 51, 1) == 0) {
8988 f64_frac
= f64_frac
<< 1;
8989 f64_exp
= f64_exp
- 1;
8991 f64_frac
= extract64(f64_frac
, 0, 51) << 1;
8994 if (extract64(f64_exp
, 0, 1) == 0) {
8995 f64
= make_float64(f64_sbit
8999 f64
= make_float64(f64_sbit
9004 result_exp
= (3068 - f64_exp
) / 2;
9006 f64
= recip_sqrt_estimate(f64
, s
);
9008 result_frac
= extract64(float64_val(f64
), 0, 52);
9010 return make_float64(f64_sbit
|
9011 ((result_exp
& 0x7ff) << 52) |
9015 uint32_t HELPER(recpe_u32
)(uint32_t a
, void *fpstp
)
9017 float_status
*s
= fpstp
;
9020 if ((a
& 0x80000000) == 0) {
9024 f64
= make_float64((0x3feULL
<< 52)
9025 | ((int64_t)(a
& 0x7fffffff) << 21));
9027 f64
= recip_estimate(f64
, s
);
9029 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
9032 uint32_t HELPER(rsqrte_u32
)(uint32_t a
, void *fpstp
)
9034 float_status
*fpst
= fpstp
;
9037 if ((a
& 0xc0000000) == 0) {
9041 if (a
& 0x80000000) {
9042 f64
= make_float64((0x3feULL
<< 52)
9043 | ((uint64_t)(a
& 0x7fffffff) << 21));
9044 } else { /* bits 31-30 == '01' */
9045 f64
= make_float64((0x3fdULL
<< 52)
9046 | ((uint64_t)(a
& 0x3fffffff) << 22));
9049 f64
= recip_sqrt_estimate(f64
, fpst
);
9051 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
9054 /* VFPv4 fused multiply-accumulate */
9055 float32
VFP_HELPER(muladd
, s
)(float32 a
, float32 b
, float32 c
, void *fpstp
)
9057 float_status
*fpst
= fpstp
;
9058 return float32_muladd(a
, b
, c
, 0, fpst
);
9061 float64
VFP_HELPER(muladd
, d
)(float64 a
, float64 b
, float64 c
, void *fpstp
)
9063 float_status
*fpst
= fpstp
;
9064 return float64_muladd(a
, b
, c
, 0, fpst
);
9067 /* ARMv8 round to integral */
9068 float32
HELPER(rints_exact
)(float32 x
, void *fp_status
)
9070 return float32_round_to_int(x
, fp_status
);
9073 float64
HELPER(rintd_exact
)(float64 x
, void *fp_status
)
9075 return float64_round_to_int(x
, fp_status
);
9078 float32
HELPER(rints
)(float32 x
, void *fp_status
)
9080 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
9083 ret
= float32_round_to_int(x
, fp_status
);
9085 /* Suppress any inexact exceptions the conversion produced */
9086 if (!(old_flags
& float_flag_inexact
)) {
9087 new_flags
= get_float_exception_flags(fp_status
);
9088 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
9094 float64
HELPER(rintd
)(float64 x
, void *fp_status
)
9096 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
9099 ret
= float64_round_to_int(x
, fp_status
);
9101 new_flags
= get_float_exception_flags(fp_status
);
9103 /* Suppress any inexact exceptions the conversion produced */
9104 if (!(old_flags
& float_flag_inexact
)) {
9105 new_flags
= get_float_exception_flags(fp_status
);
9106 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
9112 /* Convert ARM rounding mode to softfloat */
9113 int arm_rmode_to_sf(int rmode
)
9116 case FPROUNDING_TIEAWAY
:
9117 rmode
= float_round_ties_away
;
9119 case FPROUNDING_ODD
:
9120 /* FIXME: add support for TIEAWAY and ODD */
9121 qemu_log_mask(LOG_UNIMP
, "arm: unimplemented rounding mode: %d\n",
9123 case FPROUNDING_TIEEVEN
:
9125 rmode
= float_round_nearest_even
;
9127 case FPROUNDING_POSINF
:
9128 rmode
= float_round_up
;
9130 case FPROUNDING_NEGINF
:
9131 rmode
= float_round_down
;
9133 case FPROUNDING_ZERO
:
9134 rmode
= float_round_to_zero
;
9141 * The upper bytes of val (above the number specified by 'bytes') must have
9142 * been zeroed out by the caller.
9144 uint32_t HELPER(crc32
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
9150 /* zlib crc32 converts the accumulator and output to one's complement. */
9151 return crc32(acc
^ 0xffffffff, buf
, bytes
) ^ 0xffffffff;
9154 uint32_t HELPER(crc32c
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
9160 /* Linux crc32c converts the output to one's complement. */
9161 return crc32c(acc
, buf
, bytes
) ^ 0xffffffff;